BIBLIOGRAPHY

1.Martinez, EN. Effective Mass ofaClassical Linear Chain. American Journal of Physics 61 (December, 1993): 1102-1110.

2.Brillouin, L. Wave Propagation in Periodic Structures. 2nd ed. NewYork:Dover, 1946, p.26-30,45.

3.Ashcrof, N.W. and Mermin, N.D. Solid State Physics. International ed. Florida: Holt, 1976, p.430-437.

4.Ashcroft, N.W. and Mermin, N.D. Solid State Physics . p.433-437.
5.Brillouin, L. Wave Propagation in Periodic Stuctures, ,p.45.
6. Wert, C.A. and Thomson; R.M. Physics of Solids 2 nd ed. New York MoGraw-Hill, 1970, p.176-179.

7.Kittel, C. Impoduction to Solid State Physics. 6th ed. New York: Wiley\&sons, 1986, p.168-171.

8Kittel, C. Introduction to Solid State Physias p.176-179.

9.Newland, D.E. Random Vibrations Spectral and Wayelet Analysis. 3rd ed. Cambridge: Longman, 1993, p.53-54.
10.Michels, W.C. ,Correll, M. and Patterson, A.L. Eoundation of Physics. 1st ed. New York: Van Nostrand, 1968, p. 272.
11.Brillouin, L. Wave Propagation in Periodic Stuctures.
12.Rohlf, J.W. Modem Physics fromato Zo. Ist ed. Singapore: Wiley\&sons, 1994, p. 280 .
13.Corben, H.C. Classical Mechamics 1st ed. New York Wiley\&sons, 1960, p.220-224.
สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

APPENDIX A

THE EQUATIONS OF MOTION FOR INFINITE MONATOMIC

AND DIATOMIC CHAINS

In the Classical Mechanics, the Hamiltonian, H, is equal to the summation of the kinetic energy, T, and the potential energy, V.

$$
H=T+V
$$

where

$$
\begin{equation*}
T=\frac{p^{2}}{2 m} \tag{A.2}
\end{equation*}
$$

and the potential energy of spring is

$$
\begin{equation*}
V=\frac{C u^{2}}{2} \tag{A.3}
\end{equation*}
$$

Here \mathbf{P} is the linear momentum, m is the mass, C is the spring constant and u is the displacement. Then, in the case of the infinite monatomic chain, the Hamiltonian is

From the definition of the linear momentum of mass m,

$$
\begin{equation*}
m \dot{u}_{n}=P_{n} \tag{A.5}
\end{equation*}
$$

Taking the time derivative Eq. (A.5) yields

$$
\begin{equation*}
m \stackrel{\bullet}{u}_{n}=\dot{P}_{n} \tag{A.5.1}
\end{equation*}
$$

From Eq. (A.4), $\mathbf{H}=\mathbf{H}(\mathbf{P}, \mathrm{u})$ and the Hamiltonian's equations of motion are

$$
\begin{equation*}
\dot{u}=\frac{\partial H}{\partial P}, \text { and } \dot{P}=\frac{\partial H}{\partial u} . \tag{A.6}
\end{equation*}
$$

Consider

$$
\begin{equation*}
\dot{P}_{n}=\frac{\partial H}{\partial u_{n}} \tag{A.6.1}
\end{equation*}
$$

Insert Eq.(A.4) and Eq.(A.5.1) into Eq.(A.6.1) and then obtain

$$
\begin{aligned}
& \dot{m u}=-\frac{C}{2} \frac{\partial\left(u_{n+1}-u_{n}\right)^{2}}{\partial u_{n}} \\
& =-\frac{C}{2}\left[-2\left(u_{n+1}-u_{n}\right)\right]-\frac{C}{2}\left[2\left(u_{n}-u_{n-1}\right)\right] .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\dot{m u}=C\left(u_{1},-u_{-}\right)+C\left(u_{1},-u_{0}\right) \tag{A.7}
\end{equation*}
$$

สถาบนวิทยปรการ

Similarly, in the case of the infinite diatomic chain, the Hamiltonian is

$$
\begin{align*}
H= & \left(1 / 2 m_{1}\right) \sum_{n=-\infty}^{\infty} P_{s 1, n}^{2}+\left(C_{1} / 2\right) \sum_{n=-\infty}^{\infty}\left(u_{s 2, n}-u_{s 1, n}\right)^{2} \\
& +\left(1 / 2 m_{2}\right) \sum_{n=-\infty}^{\infty} P_{s 2, n}^{2}+\left(C_{2} / 2\right) \sum_{n=-\infty}^{\infty}\left(u_{s 1, n+1}-u_{s 2, n}\right)^{2} \tag{A.8}
\end{align*}
$$

Since the definition of the linear momentum of mass $m 1$ is

$$
\begin{equation*}
m \dot{u}_{s l, n}=P_{s l, n} \tag{A.9}
\end{equation*}
$$

Taking the time derivative of Eq.(A.9) yields

$$
\begin{equation*}
m \stackrel{\oplus}{u}_{t l, n}=\dot{P}_{s t, n} \tag{A.9.1}
\end{equation*}
$$

Insert Eq.(A.8) and Eq.(A.9.1) into Eq.(A.6.1) and then obtain

$$
\begin{aligned}
& m_{1} u_{s l, n}=-\frac{C_{l}}{2} \frac{\partial\left(u_{s z, n}-u_{s l, n}\right)^{2}}{\partial u_{s l n}}-\frac{C_{z}}{2} \frac{\partial\left(u_{s l, n+1}-u_{s 2, n}\right)^{2}}{\partial u_{s l, n}}, \\
& =-\frac{C_{l}}{2}\left[-2\left(u_{s 2, n}-u_{s l, n}\right]-\frac{C_{2}}{2}\left[2\left(u_{s l, n}-u_{s, n-n}\right)\right]\right.
\end{aligned}
$$

Therefore

$$
\begin{equation*}
m_{1} \ddot{u}_{s l, n}=C_{1}\left(u_{s 2, n}-u_{s 1, n}\right)+C_{2}\left(u_{s 2, n-1}-u_{s l, n}\right) \tag{A.10}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
m_{2} \ddot{u}_{s 2, n}=C_{1}\left(u_{s 1, n}-u_{s 2, n}\right)+C_{2}\left(u_{s i, n+1}-u_{s 2, n}\right) \tag{A.11}
\end{equation*}
$$

สถาบันวิทยบริการ

APPENDIX B

THE EQUATIONS OF MOTION FOR SEMI-INFINITE MONATOMIC

AND DIATOMIC CHAINS

In the Classical Mechanics, the Hamiltonian, H, is equal to the summation of the kinetic energy,T, and the potential energy, V.

$$
\begin{equation*}
H=T+V \tag{B.1}
\end{equation*}
$$

where

$$
\begin{equation*}
T=\frac{p^{2}}{2 m} \tag{B.2}
\end{equation*}
$$

and the potential energy of spring is

Here P is the linear momentum, m is the mass, C is a spring constant and u is the displacement. Then, in the case of the semi-infinite monatomic chain, the Hamiltonian
is

$$
\begin{equation*}
H=(1 / 2 m) \sum_{n=0}^{\infty} P_{n}^{2}+(C / 2) \sum_{n=0}^{\infty}\left(u_{n+1}-u_{n}\right)^{2} \tag{B.4}
\end{equation*}
$$

From the definition of the linear momentum of mass m,

$$
\begin{equation*}
m \dot{u}_{n}=P_{n} \tag{B.5}
\end{equation*}
$$

Taking the time derivative of Eq. (B.5) yields

$$
\begin{equation*}
m \ddot{u}_{n}=\dot{P}_{n} \tag{B.5.1}
\end{equation*}
$$

From Eq. (B.4), $\mathbf{H}=\mathbf{H}(\mathrm{P}, \mathrm{u})$ and the Hamiltonian's equations of motion are

$$
\begin{equation*}
\dot{u}=\frac{\partial H}{\partial P} \text {, and } \dot{P}=\frac{\partial H}{\partial u} \tag{B.6}
\end{equation*}
$$

Consider

$$
\begin{equation*}
\dot{P}_{n}=\frac{\partial H}{\partial u_{n}} . \tag{B.6.1}
\end{equation*}
$$

Insert Eq.(B.4) and Eq.(B.5.1) into Eq.(B.6.1) yields

$$
\begin{aligned}
& m \stackrel{\circ}{u}=-\frac{C}{2} \frac{\partial\left(u_{n+1}-u_{n}\right)^{2}}{\partial u_{n}} \\
& =-\frac{C}{2}\left[-2\left(u_{n+1}-u_{n}\right)\right]-\frac{C}{2}\left[2\left(u_{n}-u_{n-1}\right)\right] .
\end{aligned}
$$

Therefore, the equation of motion for the first mass is
while the equation of motion for the other mass ($n>1$) is

$$
\begin{equation*}
m \ddot{u}_{n}=C\left(u_{n+1}-u_{n}\right)+C\left(u_{n-1}-u_{n}\right) \tag{B.8}
\end{equation*}
$$

Similarly, in the case of the semi-infinite diatomic chain, the Hamiltonian is

$$
\begin{aligned}
H & =\left(1 / 2 m_{1}\right) \sum_{n=0}^{\infty} P_{s 1, n}^{2}+\left(C_{1} / 2\right) \sum_{n=0}^{\infty}\left(u_{s, n, n}-u_{s 1, n}\right)^{2} \\
& +\left(1 / 2 m_{2}\right) \sum_{n=0}^{\infty} P_{s 2, n}^{2}+\left(C_{2} / 2\right) \sum_{n=0}^{\infty}\left(u_{s l, n+1}-u_{s 2, n}\right)^{2}
\end{aligned}
$$

Since the definition of the linear momentum of mass ml is

$$
\begin{equation*}
m \dot{u}_{s l, n}=P_{s i, n} \tag{B.10}
\end{equation*}
$$

Taking the time derivative of Eq.(B.9) yields

$$
\begin{equation*}
m \dot{u}_{s l, n}=\dot{P}_{s l, n} \tag{B.10.1}
\end{equation*}
$$

Insert Eq.(B.8) and Eq.(B.9.1) into Eq.(B.6.1) yield

$$
\begin{aligned}
& m_{1} u_{s l, n}=-\frac{C_{1}}{2} \frac{\partial\left(u_{s, n}-u_{s l, n}\right)^{2}}{\partial u_{s l, n}}-\frac{C_{2}}{2} \frac{\partial\left(u_{s l, n+1}-u_{s 2, n}\right)^{2}}{\partial u_{s l, n}}, \\
& =-\frac{C_{l}}{2}\left[-2\left(u_{s 2, n}-u_{s, n}\right)\right]-\frac{C_{2}}{2}\left[2\left(u_{s l, n}-u_{s 2, n-}\right)\right] .
\end{aligned}
$$

Therefore, the equation of motion for the first mass (81) is

$$
\begin{equation*}
\text { 66) } \boldsymbol{m}_{1} \boldsymbol{u}_{s}=\boldsymbol{c}_{1}\left(\boldsymbol{u}_{s 2}-\boldsymbol{u}_{s 1}\right) \text {, } \tag{B.11}
\end{equation*}
$$

while the equation of motion for the other mass $(n>0)$ is

$$
\begin{equation*}
\ddot{m}_{1} \ddot{u}_{s l, n}=C_{1}\left(u_{s 2, n}-u_{s l, n}\right)+C_{2}\left(u_{s 2, n-1}-u_{s l, n}\right) ; n \geq 1 . \tag{B.12}
\end{equation*}
$$

Similarly, the equation of motion for the $s 2+n$th mass ($n>0$) is

$$
\begin{equation*}
m_{2} \ddot{u}_{s 2, n}=C_{1}\left(u_{s 1, n}-u_{s 2, n}\right)+C_{2}\left(u_{s 1, n+1}-u_{s 2, n}\right) ; n \geq 0 . \tag{B.13}
\end{equation*}
$$

APPENDIX C

THE PROOF OF BLOCH'S THEOREM

Bloch's theorem follows from the fact that the potential function in the Schoedinger equation is periodic. The Schroedinger equation of two different cells of lattice is

$$
\begin{gather*}
\frac{-h^{2}}{2 m} \nabla^{2} \Psi(r)+v(r) \Psi(r)=E \Psi(r), \tag{C.1}\\
\frac{-h^{2}}{2 m} \nabla^{2} \Psi(r+R)+\nu(r+R) \Psi(r+R)=E \Psi(r+R), \tag{C.2}
\end{gather*}
$$

Here \mathbf{R} is a lattice vector connecting the two cells. Sence lattice is completely periodic $v(r)=v(r+R)$. The solution of Eq. (C.1) and (C.2), $\Psi(r)$ and $\Psi(r+R)$ respectively, are translated from another by R. The solutions must be the same physical wave function, which they are equivalence. The function must he normalized, thus the multiple factor may be a complex number which has magnitude equal to one, $\exp i o c$, as $(\exp i \alpha)^{2}=1$.

$$
\begin{equation*}
\Psi(r)=e^{i \alpha} \Psi(r+R) \tag{C.3}
\end{equation*}
$$

If two independent lattice translations, $\mathbf{R}_{\mathbf{1}}$ and $\mathbf{R}_{\mathbf{2}}$, are performed, the result must be a lattice translations which we call $\mathbf{R}_{\mathbf{3}}$.

$$
\begin{equation*}
\Psi\left(r+R_{1}+R_{2}\right)=e^{i \alpha_{2}} \Psi\left(r+R_{1}\right)=e^{i\left(\alpha_{l}+\alpha_{2}\right)} \Psi(r) \tag{C.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\Psi\left(r+R_{l}+R_{2}\right)=\Psi\left(r+R_{3}\right)=e^{i\left(\alpha_{j}\right)} \Psi(r) \tag{C.5}
\end{equation*}
$$

then
and

$$
\begin{equation*}
\alpha_{3}=\alpha_{1}+\alpha_{3} \tag{C.6}
\end{equation*}
$$

This gives to be the linear in the distance of the translation, thus we can write the translation $\mathbf{R}_{\mathbf{x}}$ in \mathbf{x} direction as follows.

$$
\alpha=k_{x} R_{x}
$$

or in the other direction (for three dimensions),

$$
\begin{equation*}
\alpha=k_{x} R_{x}+k_{y} R_{y}+k_{z} R_{z}=k R \tag{C.7}
\end{equation*}
$$

Then the solution of the Schroedinger equation must have the form

Multiply Eq.(C.8) by exp (ikr) on each side, then obtain

$$
\begin{equation*}
e^{i(k r)} \Psi(r)=e^{i(k(r+R))} \Psi(r+R) \tag{C.9}
\end{equation*}
$$

That it means the product $\exp (i k r) \Psi(r)$ is the periodic function which repeats itself within each cell of the lattice. If we call this function as $u(r)$, then

$$
\begin{equation*}
e^{\prime(\sigma \lambda} \Psi(r)=u(r) \tag{C.10}
\end{equation*}
$$

or
$\Psi(r)=e^{-l(l r)} u(r)$
which is the Bloch's theorem.

Reference

C. A. Wert and R. M. Thomson, Physics of Solids 2 nd. ed. (New York: McGraw-Hill, 1970) p.176-179.

APPENDIX D

THE RELATIONSHIP BETWEEN THE CAUSE AND THE EFFECT

In the special case of the simple harmonic motion, the force F applied on mass m is proportional to the displacement \times from its equilibrium (in the opposite direction).

Thus,

$$
\begin{equation*}
F=-k x \tag{D.1}
\end{equation*}
$$

and , according to the second law, $F=$ ma. Hence

$$
m \frac{d^{2} x}{d l^{2}}=-\omega^{2} m x \quad ; \omega=\sqrt{k} / \mathrm{m}
$$

therefore,

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+\omega^{2} x=0 \tag{D.2}
\end{equation*}
$$

The one of the solution is $\square 199 \mathrm{mel}$

If $t=0$, then $x=0$, and it $t_{n}=(2 n+1) \pi / 200 ; n=0,1,2, \ldots$, then x is maximum $\left(x=x_{\text {max }}=A\right)$. Thus $\quad \omega=(2 n+l) \pi / 2 t_{n}=\omega_{n}$
and

$$
\begin{equation*}
x_{n}=A \sin \omega_{n} t=x_{\max } \sin \omega_{n} t \tag{D.4}
\end{equation*}
$$

To find $x_{\text {max }}$, differentiating the Eq. (D.4) two times with response to time t, hence

$$
\frac{d^{2} x_{n}}{d t^{2}}=-x_{\max } \omega_{n}^{2} \sin \omega_{n} t
$$

Mutiplying the mass m on the both side yields

Therefore,

$$
F=-m x_{\max } \omega_{n}^{2} \sin \omega_{n} t
$$

F will be maximum when $\sin \omega_{n} t=1, F_{\max }=F_{0}=-m x_{\max } \omega_{n}{ }^{2}$ thus,

$$
\begin{equation*}
x_{\max }=\frac{-F_{0}}{m \omega_{n}{ }^{2}} \tag{D.5}
\end{equation*}
$$

Insertiong Eq. (D.5) into Eq. (D.4) yields

$$
\begin{equation*}
x_{n}=\frac{-F_{0}}{m \omega_{n}^{2}} \sin \omega_{n} t \tag{D.6}
\end{equation*}
$$

In the case of the solution which there is the phase factor

$$
\begin{equation*}
66{ }_{x_{n}}=\frac{-F_{0}}{\boldsymbol{m} \omega_{n}^{2}} \sin \left(\omega_{n} t-\delta\right) \quad, \tag{D.7}
\end{equation*}
$$

where δ is the phase factor, or

$$
x_{n}=\frac{-F_{0}}{m \omega_{n}^{2}} \sin \omega_{n}\left(t-\delta / \omega_{n}\right)
$$

Let $\delta / \omega_{n}=t_{n}$, hence

APPENDIX E

THE DEFINITION OF THE FOURIER TRANSFORM

OF THE RESPONSE FUNCTION

The displacement of the first mass has the from $u_{0}(t)=u_{0}(\omega) \exp (i \omega t)$ and the force is $F(t)=F_{0} \exp (i 0 t)$. From the relationship between the cause and the effect in Eq. (4.2) in chapter IV, we can write the cause as

$$
\begin{equation*}
x(t)=F_{0} \exp (i \omega x) \chi(\omega), \tag{E.1}
\end{equation*}
$$

where $\mathbf{x}(t)$ means the effect such that $x(t)$ is the acceleration of the first mass. Therefore

Substitutiing $u_{0}(t)=u_{0}(\omega) \exp (i \omega t)$ into Eq. (E.2) yields

$$
\begin{equation*}
x(t)=-\exp (i \omega t) \omega^{2} u_{0} \tag{E.3}
\end{equation*}
$$

Insert Eq. (E.3) into Eq. (E.1), we get

$$
\begin{equation*}
F_{o} \exp (i \omega t) \chi(\omega)=-\exp (i \omega t) \omega^{2} u_{0} \tag{E.4}
\end{equation*}
$$

therefore,

$$
F_{o} \chi(\omega)=-\omega^{2} u_{0}
$$

Insert the Harmonic motion, $\ddot{u}(\omega)=-\omega^{2} u(\omega)$ into this last equation, can be written as

$$
\begin{equation*}
\ddot{u}(\omega)=F_{0} \chi(\omega) \tag{E.5}
\end{equation*}
$$

APPENDIX F

THE MATHCAD (MCAD) PROGRAM

The MCAD program for window is the high guality program. It can solve the complex equation of Mathematics (such as, integral, differential, numericalmethods,

Matrix, etc.), plot the graphs (in 1-3 dimensions, polar, contour,etc.), and so on.

In this thesis, we used the MCAD program for window to evaluate variables and to plot graphs.

Program for Fig 4.2

$$
\begin{aligned}
& \mathrm{N}:=15, \omega:=0.5, \mathrm{~m}:=2 \\
& \mathrm{~T}:=1 . . \mathrm{N}, \mathrm{t}:=1 . . \mathrm{N}, \\
& \chi(T, t):=\frac{\cos (\omega[T-t])}{m \omega} \\
& M_{(t, r)}:=\chi(T, t)
\end{aligned}
$$

Program for Fig 4.3

$$
\begin{aligned}
& \mathrm{N}:=15, \omega:=0.5, \mathrm{~m}:=2, \\
& \mathrm{~T}:=1 . \mathrm{N}, \mathrm{t}:=1, \mathrm{~N}, \\
& \mathbf{x}(\mathrm{~T}, \mathrm{t}):=\mathrm{T}-\mathrm{t}, \\
& \mathrm{~h}(\mathrm{~T}, \mathrm{t}):=\operatorname{if}(\mathrm{T}<\mathrm{t}, \mathbf{x}(\mathrm{~T}, \mathrm{t}), 0), \\
& \boldsymbol{x}(T, t):=\frac{\cos (\omega \boldsymbol{\omega}[T, t])}{m \omega} \\
& M_{(t, T)}:=\boldsymbol{\chi}(T, t)
\end{aligned}
$$

Program for Fig 5.2.3

$$
\begin{aligned}
& \mathrm{m}_{1}:=5.8852 \times 10^{-26}, \quad \mathrm{~m}_{2}:=3.8163 \times 10^{-26}, \\
& M:=2.315 \times 10^{-26}, \quad C:=78.4945, \\
& \omega:=-9.000 \times 10^{13},-8.995 \times 10^{13} .9 .000 \times 10^{13} \\
& \chi_{1}(\omega)=\frac{\omega^{2}}{2 C}\left[1-\frac{\left(m_{1}-m_{2}\right) C}{m_{1} m_{2} \omega^{2}-\left(m_{1}+m_{2}\right) C}\right] \\
& {\left[1-\sqrt{\left.1+\frac{4 C\left[(C+C)-m_{2} \omega^{2}\right]\left[m_{1} m_{2} \omega^{2}-\left(m_{1}+m_{2}\right) C\right]}{\omega^{2}\left[m_{1} m_{2} \omega^{2}-\left(m_{1}+m_{2}\right) C-\left(m_{1}-m_{2}\right) C\right]^{2}}\right]}\right.}
\end{aligned}
$$

Program for Fig 5,2.4

$$
\begin{aligned}
& m_{1}:=5.8852 \times 10^{-26}, \quad m_{2}:=3.8163 \times 10^{-26} \\
& M:=2.315 \times 10^{-26}, C:=78.4945, \\
& \omega:=-9.000 \times 10^{13},-8.995 \times 10^{13} . .9 .000 \times 10^{13}
\end{aligned}
$$

$$
\begin{aligned}
x_{2}(\omega)= & \frac{\omega^{2}}{2 C}\left[1+\frac{\left(m_{1}-m_{2}\right) C}{m_{1} m_{2} \omega^{2}-\left(m_{1}+m_{2}\right) C}\right] \\
& {\left[1-\sqrt{\left.1+\frac{4 C\left[(C+C)-m_{2} \omega^{2}\right]\left[m_{1} m_{2} \omega^{2}-\left(m_{1}+m_{2}\right) C\right]}{\omega^{2}\left[m_{1} m_{2} \omega^{2}-\left(m_{1}+m_{2}\right) C-\left(m_{1}-m_{2}\right) C\right]^{2}}\right]}\right.}
\end{aligned}
$$

Program for Fia 5,3.1

$$
\begin{aligned}
& m_{1}:=5.8852 \times 10^{-26}, m_{2}:=3.8163 \times 10^{-26} \\
& M:=2.315 \times 10^{-26}, \quad C:=78.4945, \\
& \omega:=-9.000 \times 10^{13},-8.995 \times 10^{13} .9 .000 \times 10^{13} \\
& x_{1}(\omega)=\frac{\omega^{2}}{2 C}\left[1-\frac{\left(m_{1}-m_{2}\right) C}{m_{1} m_{2} \omega^{2}-\left(m_{1}+m_{2}\right) C}\right] \\
& x_{2}(\omega)= \frac{\omega^{2}}{2 C}\left[1+\frac{\left(m_{1}-m_{2}\right) C}{m_{1} m_{2} \omega^{2}-\left(m_{1}+m_{2}\right) C}\right] \\
& {\left[1+\frac{4 C \cdot\left[(C+C)-m_{2} \omega^{2}\right]\left[m_{1} m_{2} \omega^{2}-\left(m_{1}+m_{2}\right) C\right]}{\omega^{2}\left[m_{1} m_{2} \omega^{2}-\left(m_{1}+m_{2}\right) C-\left(m_{1}-m_{2}\right) C\right]^{2}}\right] }
\end{aligned}, .
$$

CIRRICURUM VITAE

Miss Orapin Niamploy was born on 22 August 1972; at Bangkok and received the Bachelor degree of Science in physics from the department of physics, faculty of science, Mahidol University in 1994. Miss Orapin Niamploy has been a student in the department of physics at the graduate school of Chulalongkorn University since 1994.

