CHAPTERII
THE A-CALCULUS WITH PATTERNS

The purpose of this chapter is to cover the basic definitions and relevant
lemmas used in the A-calculus with patterns. These concern terms, free variables,

substitution, changes of bound variables, contractions and reductions.
2.1 Terms, Free Variables, and Substitution

This section contains the most basic definitions and results, namely, those

concerning patterns, terms, free and bound variables, and substitution.

Definition 2.1.1. Assume there are given an infinite sequence of distinct symbols
V1,V2,V3,..., called variables, and a set of symbols which are distinct from the
variables, called constants. The set of expressions called patterns is defined as
follows.

a. All variables and constants are patterns.

b. If P, is a pattern which is not a variable, P, is any pattern, and no variable
occurs in both P; and P,, then (P;P>) is a pattern.

The set of terms is divided into sets of atoms, applications and abstractions,
and is defined as follows.

a. All variables and constants are terms. (These are the atoms.)

~b. If P and Q are any terms, then (PQ) is a term. (These are the applications.)

c. If P is any pattern, Q is any term, and A is any abstraction, then (AP.Q) and

((AP.Q) |A) are terms. (These are the abstractions.) |

Notation 2.1.2.
a. Capital Roman letters will denote arbitrary terms.
b. Small Roman letters will denote variables.

c. Parentheses will be omitted by using association to the left.
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d. AP.MN will abbreviate (AP.(MN)).
e. Syntactic identity of terms will be denoted by =. That is, M = N if and only

. if M is exactly the same term as N.

Notes 2.1.3.
a. Every pattern is a term, so that everything we define or prove for terms will

also apply to pattemns.
b. 1. IMN=PQ,then M=P and N=Q.
ii. FAMN=AP.Q,then M=P and N =Q.
iii, If AM.N|A) = (\P.Q|B), then AM.N = AP.Q, and A =B,
c. An abstraction of the form AP.Q (respectively (AP.Q | A)) is called a simple .
(respectively compound) abstraction.
d. The five classes of terms, namely, variables, constants, applications, simple
abstractions, and compound abstractions, are mutually disjoint. (The combination of

this note and (b) tells us that every term has a unique structure.)

Definition 2.1.4. The length of a term M, denoted by lgh(M), is the total number of
occurrences of atoms in M. More precisely, it is defined by

a. Igh(a) = 1 for any atom a;

b. Igh(PQ) = Igh(P) +1gh(Q);

c. lgh(AP.Q) = Igh(P) + 1gh(Q);

d. Igh((AP.Q | A)) = 1gh(AP.Q) + Igh(A).

Note 2.1.5. References to induction on M will actually mean induction on the length
of M.

Definition 2.1.6. An occurrence of a variable x in a term M is bound if itisin a
subterm of M of the form AP.Q and it occurs in P; otherwise it is free. If x has at least
one free occurrence in M, it is called a free variable of M; the set of all such

variables is denoted by FV(M). A more precise definition of FV(M) is as follows.



& if ais a constant;

a. FV(a) = {

{a} if a is a variable;

b. FV(PQ) =FV(P) U FV(Q);

c. FV(AP.Q) =FV(Q) - FV(P);

d. FV((A\P.Q| A)) = FV(AP.Q) U FV(A).

Definition 2.1.7. Let M and Ny,..., Ni, k = 1, be terms and x,..., Xk be distinct
variables. The result of substituting N; for all free occurrences of x;, i =1, 2,..., k, in
M, denoted by [Ny/x,..., Ni/xk]M, is defined as follows.

a. [Ny/xq,..., Ni/xe]xi=N; for all 1<i<k;

b. [N1/x1,..., Ni/xkJa = a for all atoms a such that a & {Xj,..., Xk};

c. INi/x1,..., NixkJ(PQ) = [N1/Xy,.. s Ni/xiJP [N1/%15. .., Ni/xk]Q;

AP.Q if {xy,..., Xk} "FV(AP.Q) = J;
d. [Ny/x1,..., Nilx AP.Q) = 1[Niy/Xip..., Nio/xi J(AP.Q) if
{X10.., Xe} NFVQAP.Q) = {Xiy,..., Xi };

e. [N1/x1,..., NixkJ(AP.Q) = AP.[N/xy,..., Ni/x¢]Q if {xy,..., X} € FV(AP.Q)
and FV(P) nFV(N,...Ny) = &;

f. IN/x1,..., Ni/xJ(AP.Q) = [N1/xy,...., Ni/xiJ(AM[2/y]P.[2/y]Q) if
{X1,..., Xk} € FV(AP.Q) and FV(P) n FV(N,...Ny) # &, where y is the first variable
in FV(P) n FV(N,...Ny) and z is chosen to be the first variable which is not in
FV(PQN:.. N |

g. [Ny/xq,..., Ni/xiJ(AP.Q | A) = ([Ni/x),..., Ni/xJ(AP.Q) | [N1/xq,..., Ni/xg]A).

Note 2.1.8. Observe that in cases (d) and (f) of the above definition we do not say
immediately how to reduce the ori ginal substitution to one into a term of shorter
length. Instead, in case (d) we tell how to modify the substitution so that it will fall
into one of the cases (¢) or (f), and in case (f) we tell how to reduce the cardinality of
FV(P) n FV(N,...Ny), so that after a finite number of applications of the rule in this
case we will obtain a substitution that falls into case (e) of the definition. The final

result of this process is described by Part (c) of Lemma 2.1.10.



Examples 2.1.9.

a. JAx.xy/x, AxX.Xy/yJ((Ax.xy)(Ay.XY))
= [Ax.xy/X, AX.Xy/YJ(Ax.xy) [Ax.xy/x, Ax.xy/yl(Ay.xy) (by (c))
= [AXXY/yJ(Ax.xy) [Ax.xy/x)(Ay.xy) (by (d))
= (AXJAXXY/YI(xY)) [Ax.xy/x)(A[z/y]y.[2/y)(xy)), where z is the first

variable which is not in FV(xy(Ax.xy)) = {X, y} , (by (e), (f))
= (Ax.x(Ax.xy)) [Axxy/x](Az.xz) (by (a), (b), (c))
= (Ax.X(Ax.xy))(Az.[Ax.xy/x])(xz)) (by (e))
= (Ax.x(Ax.xy))(hz.(Ax.xy)z). (by (a), (b), (c))

b. Let ¢ be a constant.

[Va/vi, Valva, Valvs, Vilvs](M(CV1) V2.V VaVs)

= [Va/va, ViVs] (A(cv1)Va.viV4Vs) (by ()
= [va/va, vi/vs](Mvaivi ] ((evi)va).[va/vi](Vivavs)) (by ()
= [Va/vy, vi/VsJ(M(CV3)V2.V3VaV5) (by (a), (b), (c))
= [Va/va, VIS (AIveval((eva)va). [elva](vsvevs)) (by (D)
= [Va/va, Vi/Vs)(M(CV3)VeV3VaVs) (by (@), (b), (c))
= L(cv3)Ve.[Va/Va, Vi/V5)(V3V4Vs) (by (e))
=ACcva)Vevavavi. (by (@), (b), (©))
Lemma 2.1.10.

a. Let P be a pattem, and xy;.. ; X, k 21, be distinct variables. If yy,..., yi are
distinct variables such that {y1,..., Yk} A FV(P) = {X1,..., X)) = 2, then
[y1/X 15+ Yi/Xk]P is-a pattern.

b. Let M and Ny,..., Ny, k 2 1, be terms, and x,..., Xk be distinct variables. Then
[N1/X1,..., Ni/x¢]M is a term, and if M is not a variable then [N1/x1,..., Ni/xx]M is of
the same form as M.

c. Let AP.Q be a simple abstraction, xi,..., Xk, k > 1, be distinct variables, and

Nj,..., Nk be terms such that {xi,..., xx} " FV(AP.Q) = {Xijse-s xim}, and
FV(P) nFVN;,...N; ) = {y1,..., Y}, Where for each 1 <j < n, y; is the j" variable in
FV({P) FV(Nil...N('m). Then



[N]/Xl,..., Nk/xk]O\.P.Q) = X[Zn/yn]. . [Zl/yl]P.[le/X ippeees Nim/ij] [Zn/yn]. . [Z]/yl]Q,
where z, is the first variable which is not in FV(N;,...N; PQ) and for each 1 < j<n,z

is the first variable which is not in FV(N;,...N;_[zj1/y j1]...[21/y1](PQ)).

Proof of (a). Assume yj,..., yk are distinct variables such that
{Y150005 Yk} N EFV(P) = {X1,..., X}) = & and induct on P.
i. P is an atom.

, y if P=x forsome 1 St<k.
Then [yi/x1,..., Yi/Xk|P =

P otherwise.
Hence [yi/xi,..., yx/c]P is a pattern.

ii. P = PP, for some patterns P and P, such that P, is not a variable and no
variable occurs in both Py and P». Since {yi,..., Yk} N (FV(P) - {x1,..., xc}) =D,
Y15y Vb A (FV(P) = {%1,..., Xi}) = D, i = 1, 2. Hence, by induction ’
[y1/X15..., Ye/Xx]Pi, i = 1, 2, is a pattern.

Claim. [yy/xy,..., yi/Xk]P is not a variable.

Since P, is not a variable, P; falls into one of the following two cases.

Case 1. P, is a constant.

Then [yi/X1,..., Y/Xk]P1 = P; which is not a variable.

Case 2. P, = Q;Q; for some patterns Q; and Q.

Similar to the above, by induction [y/xX1,..., Ye/X«]Qi, 1 = 1, 2, is a pattern.
Since [y1/X1,..+, Ye/XkIP1 = [y1/X1,..., Ye/Xk]Qi[y1/X15. 4.5 Yi/XK] Q2, [Y1/X1,...5 Yi/Xk]P1 18
not a variable.

So we have the claim.
Since yy,..., yk are distinct variables such that
{S12eres Y} A (EV(P1P) = {X1,..., Xc}) = @ and no variable occurs in both Py and P,
no variable occurs in both [yy/xy,..., yx/xx]P: and [yi/x1,..., Yx/Xx]P2. Hence, by the
claim [yy/Xy,..., Y/Xk]P1[y1/X1,..., Ye/Xk]P2 is a pattern. Since
[y1/X150 00 YR/XK]P = [Y1/X15. .05 Y/XKIP1[Y1/X15e o5 Yi/Xk]P2, [Y1/X15..., Yi/XK]P iS a pattern.
0



Proof of (b). Induct on M.

i. M is an atom.

N; ifM=xforsomel<t<k.
Then [Ni/X,.... Ni/x]M =

M otherwise.
Hence [N1/x,..., Ni/xJM is a term. In particular, if M is not a variable then
[N1/x1,..., Ni/x]M is M, so it is of the same form as M.
i, M=MM,.

By induction, [N1/x1,..., Ni/x]M;, i = 1, 2, is a term. Since
[NY/X1,0.0, Ne/XcIM = [N1/X 500, Nixc M [N1/X3,..., N/xeIMa, [N1/X ..., Ni/Xc]M is an
application.

iii. M =AP.Q.

Case 1. {x),..., Xk} N FV(M) = 3.

Then [N1/x4,..., Ni/xxk]M = M. Hence [N1/xi,..., Ni/xi]M is a simple
abstraction. ' |

Case 2. {xy,..., Xk} " FV(M) = &.

By Definition 2.1.7(d), we may assw;ne that {x,..., Xk} € FV(M).

Letm =] FV(P) n FV(N;...Ny) | and induct on m. .

For the case m = 0, we have [Ny/xj,..., Ni/xk]M = AP.[N/xy,..., Ni/x(]Q. By
induction on M, [Nl/xl,...; Ni/x¢]Q is a term. Hence [N/xy,..., Ni/x¢<]M is a simple
abstraction. » .

Now assume m > 0. Let u be the first variable in FV(P) n FV(N,...Ny) and z
be the first variable which is not in FV(PQN;...Ny). '

Then [Ny/x1,..., N/x ]M = [N/Xi,..., Ni/x¢J(A[z/u]P.[2/u] Q). By (a), [z/u]P isa
pattern and, by induction (on M) [2/u]Q is a term. Hence A[z/u]P.[z/u]Q is a simple
abstraction. Since | FV([zu]P) A FV(N...Ni) |=m - 1, by induction
[Ni/x1,..., Ni/xx}(A[z/u]P.[2/u]Q) is a simple abstraction. That is, [Ni/x),..., Ni/Xk]M is
a simple abstraction.

iv. M = (A\P.Q| A).

By induction, [N1/xy,..., Ni/xJ(AP.Q) is a simple abstraction and

[Ny/x1,..., Ni/Xk)A is an abstraction, Since
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INVX1y.es Nid%iIM = (N1/X 1500y Ne/KAP.Q) | N1, NiXiJA), [N1/X1 .0 Ni/xi]M

is a compound abstraction. 0

Proof of (c). Let 2 be the first variable which is not in FV(Nj,...Ni_PQ). Induct on n.
Ifn=1, then FV(P) " FV(N;,...N; ) = {y1}, so it follows directly frqm the
definition that [N1/xi,..., Ni/x](AP.Q) = [Ni /Xiy,..., Ni /xi J(AP.Q)
= [Niy/%i e, Ni /xi WA [21/y1]P.[21/51]Q)
= Mzi/y1]P.[Niy/xi ..., Ni /Xi 1[21/y1]Q.
Now assume n > 1. Then we can use induction to obtain
[N1/x1,..., Ni/xgJ(AP.Q)
= [Ni /Xips--, Ni_/x;_[(AP.Q)
= N /X s Ni_ i 1 [zily P [20/51]Q)
= Mzo/Ynl .+ [22/y2] (211 JP. NG /i e, Ni /% 120/ Y] [22/Y2)[20/1]Q,
where z; is the first variable which is not in FV(N;, ...N;_[zj.1/yj1]...[z1/y1](PQ)) for all

I<j<n. » 0

Lemma 2.1.11. Let Xy,..., Xk, k = 1, be distinct variables, and M, Ny,..., Nk be terms.
Then for each 1 <i <k,
a. if x; ¢ FV(M), then
IN/X 1500 N/ )M = [N/X)5 Nic/Xinl, Nig1/Xie1,- 005 Ni/xk]M;
b. [N1/X1,..., Niat/Xia1, Xi/Xi, Ni+1/xi+|,. vy Ni/x M
= [N1/X1,.. 0, Nist/Xie1s Nis1/Xi415. - .5 Ne/Xk]M.

Proof. Fix 1 <i<k.
Proof of (a). Assume x; ¢ FV(M), and induct on M.
i. M is an atom.
Casel. M=x forsome 1 <t<k.
Since xj € FV(M), 1 # t. Hence
[N1/x15...s Ni/xIM = Ny = [N1/xy,..., Nist/Xie1, Nis1/ X1, Ne/X M.



Case2. M # x;forall 1 <j<k.

Then [N1/X1,..., Ni/xg ]M = M = [N1/X1,..., Nict/Xic1y Nis1/Xi 1. ..s Ni/Xg]M.

ii. M= M;M,. |

~ Since x; ¢ FV(M), x; ¢ FV(M)) and x; ¢ FV(M>). So this case follows

straightforwardly by induction.

iii. M=2AP.Q.

Case 1. {xi,..., xx} N FV(M) = .

Then [Ny/X,.r., NeKIM = M = [Ny/x10es Nit/Xicty Niet/Xints. ., Nidi M.

Case 2. {X1,..., X} "FVIM) = {x; ..., xjn}.

Since x; € FVM), ({X1,..., Xk} = {xi}) N FV(M) = {x,-bl,..., X; }. Hence
[N1/X1,00, Ni/Xc M = [N /X500 N /x5 M

= [Ni/X1,0e0, Nict/Xie1, Niw1/Xis15. .., Ni/Xc]M.
iv. M=(\P.Q| A).

This is similar to (ii).

Proof of (b). If x; & FV(M), then (b) follows from (a).
Suppose x; € FV(M) and induct on M.
i M=x.

[N1/X1,...s Nict/Xio1, Xi/Xiy Nijr1/Xis1,0. ., Ni/Xg M
= ;= [Ny Nit Kty Nisi/Xist. ., NeXM
ii. M=MM,.
This case follows straightforwardly by induction.
iii. M=AP.Q.

Since x; € FV(M), {x1,..., Xk} N FV(M) # &. By Definition 2.1.7(d), we may

assume that {xi,..., Xk} € FV(M).
Letm =|FV(P) A FV(N;...Ni.1 x; Ni+1...Ny) | and induct on m.
If m =0, then

[N1/X15000s Nict/Xiu1, XifXiy Nis1/Xis1,..., Ni'xx]M
= AP.[N1/xy,..., Nict/Xio1, XifXiy Nis1/Xis150 ., Ni/XiJQ

= kP.[Nl/xb..., Ni.llxi-l, Ni+[/Xj+],. vey Nk/xk]Q (by induction on M)
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= [N1/X1,00es Nict/Xiu15 Nis1t/Xit 1,0, Ni'Xg]ML
Néw assume m > 0. Let u be the first variable in
FV(P) N FV(N;...Ni.;xiNis1...Ny) and let z be the first variable which is not in
FV(PQN;...Ni.;1xiNi+1...Ny). Since x; e FV(M), x; ¢ FV(P) and x; € FV(Q).
Hence FV(P) " FV(N|...Ni.xNis1...Ny) = FV(P) " FV(N;...N;.1Nj+1...Ny) and
FV(PQN|...Ni.ixiNis1...Ni) = FV(PQNj...NiiNi+1...Ni). Thus u is the first variable in
FV(P) N FV(N;...Ni.\Nis1...Ny) and z is the first variable which is not in |
FV(PQN|...Ni.iNis1...Ny). Since | EV([zu]P) A FEVQN;...NixNiwr.. N [ =m - 1, by
induction. [N1/X1,..., Nict/Xi-1, Xi/Xis Nix1/Xi+150..» Ni/Xe]M
= [N/X1,..., Ni-1/Xie1, Xi/Xis Nis1/Xis1,. .., Ni/XiJ(Mz/u]P.[2/u]Q)
= [N1/X1,.00p Nict/Xic1, Nie1/Xis1,...s Ne/XeJ(M[2/u]P.[2/u] Q)
= [NY/1,.m, Ni-t/Xit, Nist/is1,.. 0o Ni/xiJ(AP.Q)
= [N1/X 15000y Niet/Xic1, Nis1/Xis1,. . ., Ni/Xg M.
iv. M= (AP.Q| A).

This is similar to (ii). 0

Corollary 2.1.12, Let xy,..., Xk, k 2 1, be distinct variables, M, Ny,..., Ni be terms, and |
AP.Q be a simple abstraction. ‘
a. If {x1,..., X} N FV(M) = &, then [Ny/xy,..., Ni/xx ]M = M.
b. If {x),..., Xx} N FV(M) = {xi,..., X; _}, then
[N1/X1,0.., Ni/Xk]M = [N /500, Ni /%3 IML
C. [X1/X1e0ey XX )M = M.
d. IfFFV(P) n FV(x1...xkNj...Ny) = &, then
[N1/X1500., Ni/Xi J(AP.Q) = AP.[Ny/xy,..., Ni/xk]Q.

Proof. Parts (a) and (b) follow from Lemma 2.1.11(a), while Part (c) follows from
Lemma 2.1.11(b).

Proof of (d). Assume FV(P) N FV(x;...xgN1...Ny) = .
Since FV(AP.Q) = FV(Q) - FV(P) and {xi...., xx} " FV(P) = &,
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{X1,.-» Xk} N FV(AP.Q) = {X1,..., X} N FV(Q).
Case 1. {x),..., xx} "FV(AP.Q) = Q.
Then {x1,..., X} N FV(Q) = J. Hence
[N1/X1,e0s Nk/;(k](kP.Q) =AP.Q ' (by Definition 2.1.7(d))
= AP.[Ny/xys..., Ni/x]Q. (by (a))
Case 2. {X{,..., Xx} N FVAP.Q) = {Xi,..., Xi }.

Then {xi,..., X} N FV(Q) = {xi,..., Xi }. Hence

[N1/X1y...s Ni/x (AP.Q) = [Ni /iy .., Ni /i [(AP.Q) (by Definition 2.1.7(d))
= AP.[N; /i ..., Ni_/x; | 1Q - (by Definition 2.1.7(e))
= AP.[Ni/xy,..., Ni/xXk]Q. (by (b)) O

Lemma 2.1.13. Let xy,..., Xy, k = 1, be distinct variables, and M, Ni,..., Ni be terms.
If {x1,..., Xk} © FV(M), then
FV(IN1/X1,..., Ni/xx]M) = FV(N1...Ni) U (FV(M) = {X1,..., Xk})-

Proof. Assume {Xi,..., Xx} < FV(M). Induct on M.
1. M=x;.
Then FV([N/x;]M) = FV(N;) = FV(Np) U (FV(M) - {x1}).
ii.M=MM,.
Since {X1,... Xk} < FV(M), {X15..., Xk} N FV(M;) # & or
{X1,-.., Xk} N FV(M>) = &. Without loss of generality, assume
{X1yeeey Xk} O FV(MI)% @, the case {Xi,..., Xk} NFV(M2) # & being similar,
Case 1. {Xi,..., Xk} "FV(M,) = 3. '
Then {xi,..., X} € FV(M)). Hence
FV([Ny/x1,..., Ni'xx]M) = FV([N1/X1,..., Ni/xiIM1 [N1/X 1.0, Ni/Xc]M2) .
= FV(([N\/x1,..., Ni/xs]M)M3) (by Corollary 2.1.12(a))
=FV(INy/x1,..., Ni/x]M1) U FV(M3)
=FVN...NY) v FVM)) — {x1,..., Xx}) U FV(M2)
(by inductioni '
=FV(N;...Ny) U (FV(M)) U FV(My)) = {X1,..., Xk})



=FV(N}...Ny) U (FVM) = {x1,..., Xk}).

Case 2. {xi,..., Xk} N FV(M2) = {Xj,..., X; }.

Let {X1,..., X} N FV(M1) = {Xj;,..., Xi_}. Since {Xi,..., Xk} © FV(M),
{its.0r im} Y {j15...5Jn} = {1,..., k}. So we have
FV([Ni/x1,..., Ni/x]M)

= FV(IN; /Xiysenss Ni_ /%0 IMIN} /%500 Nj /%5 TM)

= l_?V([Nil/xil,..., N /xi M) U FV([Nj /x;,..., Nj /%) M)

=FV(Nj,...Ni ) U (FV(M1) = {Xi,.... %i }) W FV(N;LN;)

- VU (FVM) = (X X5, 1)

=FV(N;...No U (FVM)) = {X1,..., Xc}) U (FV(M2) — {x1,..., Xk})

=FV(Ni...N) U (FV(M1) W FV(M)) = {x1,..., Xk})

=FV(N;...Ny) U (FVM) — {x1,..., Xk}).

iii. M= AP.Q. ’

Since {Xi,..., Xk} € FV(M), {x1,..., Xk} = FV(Q) and {x,,..., xx} " FV(P) = &.

Letm =] FV(P) nFV(Ny...Ny) | and induct on m.

If m = 0, then [N,/x,..., Ni/Xc]M = AP.[N/Xy,..., Ni/X(]Q, so
FV([INi/x),..., Ni/x ]M) = FV(AP.[N/X{,..., Ni/Xk]Q)

=FV([Ni/x1,..., Ni/x¢]Q) = FV(P)
=(FV(NL..NY U (FV(Q) —{x1,..., x})) - FV(P)
= EV(N1.. N U (FV(Q) =FV(R)) - {x1,..., xu})
=FV(N1...Ni) U (FV(M) = {x1,..., Xk}).

Now assume m > 0. Let u be the first variable in FV(P)/ " FV(N{...Ny) and z
be the first variable which is not in FV(PQN;...Ni).Then, by induction on m we have
FV([Ni/xy,..., Ni/x ]M) = FV([Ny/xy,..., Ni/x¢]J(A[2/u]P.[2/u]Q))

=FVN;...Ny) U (FVA[u]P.[2u]Q) — {X1,-.., Xi})
=FV(N;...Ny) U (FV([2/u]Q) - FV([z/u]P)) - {x1,..., Xi}).
Let A =FV(N;...Ny) U (FV([zu]Q) - FV([zu]P)) - {x1,..., Xk}).
Case 1.u € FV(Q).
‘Then
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A =FV(N...Ny) U (({z} v FV(Q) - {u})) - ({z} v (FV(P) - {u}))) — {x1,..., x«})
=FV(N1...N©) U (FV(Q) - FV(P)) ~ {X1,..., Xic})
= FV(N1...Ny) U (FV(M) = {X1,..., Xi}).
Case 2.u ¢ FV(Q).
Then A =FV(N;...Ni) U (FV(Q) - ({2} U (FV(P) = {u}))) - {x1,..., Xx})
=FV(N;...Ny) U (FV(Q) = FV(P)) — {X1..., Xk})
= FV(N;...No) U (FV(M) = {X1;..., Xi}).
iv. M= (\P.Q| A).

This is similar to (i1). -0

Corollary 2.1.14. Let X),..., X, k = 1, be distinct variables, and M, Ny,..., Ni be terms.
Then FV([N/x),..., Ni/x]M) € FV(N;..Ny) U (FV(M) = {x1,..., Xk}).

Proof. This follows from Corollary 2.1.12(a), (b) and Lemma 2.1.13. O

Lemma 2.1.15. Let x,,..., Xk, k 2 1, be distinct variables, yy,..., yx be variables, and

M be a term. Then Igh([yi/xy,..., Y/Xk]M) = Igh(M).

Proof. By Corollary 2.1.12(a), (b), we may assume that {xy,..., Xy} € FV(M). Induct
on M.

1 M = x;.

Then [yi/x;]M = y,. Hence Igh([yi/xi]M) = 1 = Igh(M).

ii. M= M;M,.

This case follows straightforwardly by induction.

iii. M =2AP.Q.

Letm =] FV(P) N {y1,..., Yk} | and induct on m.

If m = 0, then [yi/X1,..., Yi/Xk]M = AP.[y1/X),..., /%] Q, s0 we have
Igh([yi/xy,..., ye/xiIM) = 1gh(AP.[y /xy,..., yi/x:]Q)

= Igh(P) + Igh([y1/x1,..., Yi/x]Q)
= 1gh(P) + Igh(Q) (by induction on M)
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=lgh(AP.Q)
= 1gh(M). |
Now assume m > 0. Let u be the first variable in FV(P) » {y1,..., yx} and z be
the first variable which is not in FV(y,...yxPQ). Hence
|FV([z/u]P) A {y1,..., yi} |=m -1 and so

Igh([yy/x1,..., ye/x]M) = Igh([y1/X 1,000, Y/Xi](MZ/u]P.[2/u] Q)

= Igh(Ajz/u]P.[z/u]Q) (by induction on m)
= Igh([z/u]P) + Igh((z/u]Q)

= jgh(P) + 1gh(Q) (by induction on M)
=1gh(AP.Q)

= 1gh(M).

iv. M= (A\P.Q| A).

This is similar to (ii), | 0

Lemma 2.1.16. Let xy,..., Xm, Y1,...; Yo, m 2 1, n > 1, be distinct variables, Uy,...,
Um,V1,...,Vy be terms and M be a term such that no variable bound in M is free in
X1...Xm¥1...¥nU1...UnV1... Vi
a.Foreachl <i<m,1<j<n,
[Ui/x15... Un/Xmd[V1/¥15. s Vi /a1, VilXi, Viert¥je s ., Va/yn]M
= [[Ui/x1,ec0s UnXn] Vi/y 1. o [UVXL. o UndXm] Via/y50[01/X1. o Und/Xm] Vi i,
[U1/X15. s Und/Xm] Vist¥it 1o oo [0 1,0 s Un/Xen] V¥ Ut/X1eeey Uict/Xint, Ut/ Xit1se s
Upn/Xm]M.
b. [Ui/X1,..es Un/Xml[V1/Y1500 s Vo/Yn]M
= [[Ui/X1,e .., Un/Xm]Vi/¥1ses s [Ut/X s ooy Und X ] Vid¥n, U1/X1,. 0y Und/Xm]ML

Proof of (a). Let 1 <i<mand 1 <j <n and induct on M.
i. M is an atom.

Casel. M=xjorM =y, forsomel <t<n,t=]. Let

j if M =x;
S _—

t if M=y,
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Then [[Uixi,..., Un/Xm]V1/¥15e. s [U1/X150 ooy Un/Xm] Vir/¥ia, [Ur/Xase 0 Und/Xm] Vi/Xi,
[U1/X15. o Un/Xm]Viet¥jetse oo [U1/X 1505 U/ Xm] Vi/¥n, Ur/Xys. ., Ui.llx;.l, Uit 1/ Xit 150+ 0
Un/Xm]M

= [Uy/Xy,..., Un/Xm] Vs

= [Ui/X1,. .o, Un/XmlIV1/Y 1505 Vit ¥je1, VilXis Viet /Yt 0 Vi Yn ML

Case2. M #£xjand M £y, forall 1 Sr<n,r#j.

Then
[[01/%15. 0y Un/Xm]Vi/Y1, s [U1X ey UndfXm] Viar/Yi-0,[U1/X 05, Un/Xm] Vi,
[Ur/X1,. ey Un/Xm] Viet/ Yit1500:[U1/X 150 0o UndfXm] Valyn, Ui/X e, Uict/Xier, Uil /X,y
Un/Xm]M

= [Ui/xy,..., Uii/Xi1, Uist/Xislse .. Un/Xm]M (by Lemma 2.1.11(a))
= [Ui/xy,..., Un/xm]M A (by Lemma 2.1.11(a))
= [Ur/x1,. ., UnfXm][V1/Y15. 0 Vit ¥, VilXi, Vier/Yiets e, Vo/yn ML

(by Corollary 2.1.12(a))
ii. M =M M,.

This follows easily by induction.

iii. M=AP.Q.

Since no variable bound in M is free in X;...XmYi...yaU1.. .‘UmV1. ..V,
FV(X1...XmY1...¥aU1...UnV1... Vi) A FV(P) = &. Hence, by Corollary 2.1.12(d)
[U/x1,...s Un/Xml[V1/¥15e 05 Vjet/¥ie1, VilXis Vit t/Yie150 s Vil Yo ]M

= AP.JUVR G oo, UndXnl [V, cos Viaa/yion, Vi, Vist/yjetse. . V¥l Q

= AP.[[Ui/x1,..., Un/Xa] Vi/y1,..., [UvX1,. o, UndfXm] Vit /i,

[Ui/x1,e0, Un/Xm} Vilxi,[U /X1, o0y Und/Xe]Viet/¥je15e -0
[Ui/x1,..0s Un/Xm] Vi/Yn, Ut/X1see s Uict/Xict, Uikt/X i 15000, Un/Xm]Q
(by induction)
= [[Ui/x1,eees Un/Xm]Vily1,.. [UVX1,. .., UndXm] Vit /Y, [UVK ..., Und/Xm Vilx;,
[Ui/x1,e s Un/Xm] Vit Yjttse oo [UtX 150005 UndXe] Vil ¥, Ui/X 1oy Uil/X s
Uiet/X iv150+ o, Um/Xm]M. (by Corollaries 2.1.14 and 2.1.12(d))
iv. M = (A\P.Q| A).

This is similar to (ii).
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Part (b) can be proved similarly. ‘ O

Corollary 2.1.17. Let xi,..., Xm, m 2 1, be distinct variables, yi,..., ya,n 2 1, >be distinct
variables, Uy,..., Un, Vi,...,V, be terms, and M be a term such that no bound variable
in M is free in xl...xmyl...ynUl...UmVi...Vn.

a. If FVM) N ({X1,..0 Xm} = {Vi1se .05 Yn}) =D , then
[U1/X1ye. s Un/Xn][V1/Y1500 0, VilYalM

= [[Ui/X1,. .., Un/Xm]Vi/yr,. . o [Ur/X1,. oo, Un/Xim] Va/yn]M.

b. If FV(M) N ({x1,..., X} = {Y1,--.» Yn}) = {Xipe-o» X, }, then
[Ui/X1y. s Un/Eml[V1/¥15 s Vi/yn] M

= [[Ur/x1,..., Un/Xm] VY1, [UVX 4, s Un/Xm] Vilyn, Ui /Xips. o Ui /X0 ML

c. If {X1,..., Xm} N FV (y1...yn V... Vy) =, then
[U1/x|,.‘.., Un/Xm)[V1/Y15- .., Vo/¥u]M = [U/xy,. .., Un/Xm, v,/y,,...,vn/y,,]M.

Proof. All parts follow from Lemma 2.1.16 and Corollary 2.1.12(a), (b). ]

2.2 Changes of Bound Variables

As mentioned in Chapter I, congruent terms of the original A-calculus have
identical interpretations. This also holds for the new A-calculus. However, the
definition of changes of bound variables has to be adjusted slightly since we have

patterns in the new A-calculus.

Definition 2.2.1. Let A be an occurrence of a simple abstraction AP.Q in a term M.
Letx € FV(P) and y ¢ FV(PQ). The act of replacing A by A[y/x]P.[y/x]Q is called a
change of bound variable or an a-step in M. We say M is congruent to a term N, or
M a-converts to N, denoted by M =, N, if N is obtained from M by a finite sequence

of changes of bound variables.



Lemma 2.2.2. Let M be a term and N be an expression. [f M =, N, then N is a term
and Igh(M) = Igh(N).

Proof. Assume M =, N. Then N is obtained from M by a finite sequence of changes
of bound variables. Therefore to prove this lemma, it is enough to prove the result for
a single change of bound variable. So suppose N is obtained from M by a single
change of bound variable. Let A be the occurrence of a simple abstraction AP.Q in M
such that A changes to A[y/x]P.[y/x]Q, where x € FV(P) and y ¢ FV(PQ), in N. Since
the only part of M that changes is A, it is enough to prove that A[y/x]P.[y/x]Q is a
simple abstraction and Igh(AP.Q) = Igh(A[y/x]P.[y/x]Q).

By Lemma 2.1.10(a), (b), [y/x]P is a pattern and [y/x]Q is a term. Hence
Aly/x]P.[y/x]Q is a simple abstraction,

By Lemma 2.1.15, Igh(P) = lgh([y/x]P) and 1gh(Q) = Igh([y/x]Q). Hence
Igh(AP.Q) = Igh(P) + Igh(Q) = Igh([y/x]P) + Igh(fy/X]Q) = Igh(\ly/IP.[y/x]Q). D

Lemma 2.2.3. The relation =, is transitive, reflexive and symmetric.

Proof. Transitivity and reflexivity are obvious. For symmetry, it is enough to consider
a single change of bound variable. That is, it is enough to prove that
Aly/x]P.[y/x]Q =. AP.Q, where P is a pattern, Q is a term, X € FV(P‘), and
y ¢ FV(PQ). Since y € FV([y/x]P)and x & FV([y/x}(PQ)), we have
Aly/x]P.[y/x]Q =cA[x/y][y/x]P.[x/y][y/x]Q = AP.[x/y][y/x]Q. Thus, it is enough to
prove that [x/y][y/x]Q =, Q wherever y ¢ FV(Q).

If x ¢ FV(Q), then [x/y][y/x]Q = [x/y]Q = Q. Therefore suppose x € FV(Q),
and induct on Q.

i.Q=x.

Then [x/y][y/x]Q = [x/yly =x=Q.

ii. Q =QiQu.

This case follows straightforwardly by induction.

iii, Q = AU.V.

Since x € FV(Q), x & FV(U) and x € FV(V).



Casel.y ¢ FV(U).
Since y ¢ FV(Q), y ¢ FV(V). Hence, by induction
[/yl[y/dQ = [X/y](MU.[y/xIV) = AU [x/y][y/x]V = AUV = Q.
Case 2.y € FV(U).
Letz bé the first variable which is not in FV(yUV). Since x € FV(V),x ¥z

and since X # y, x € FV(A[2/y]U.[2/y]V) and so y € FV(A[z/y]U.[y/x][z/y]V). Note
that y is the first variable in FV(U) N {y}. Hence
[x/yl[y/x]Q = [x/y][y/x](AMzy]U.[Z/y]V)

= [x/yJ(A[z/y]U.[y/x|[2/y]V)

= Mz/ylU.[xylly/x][2y]V

=, Mz/y]U.[2/y]V (by induction)
=, My/z}[2/y]U.[y/z][z/y]V
= A\U.[y/z][z/y]V (by Lemma 2.1.16 and Corollary 2.1.12(c))
=, AUV=Q. (by induction)
iv.Q=(AU.V| A).
This is similar to (ii). a

Lemma 2.2.4. Let M and N be terms such that M =, N.

a. [f M = M|M,, then N = NN for some terms Njand N;, where M; =4 N;,
i=1,2 '

b. If M = AP.Q and no variable in P has been changed, then N = AP.Q’ for
some ferm Q’, where Q =4 Q.

c¢. IfM=(AP.Q | A), then N=(AP'.Q’ |A') for some abstractions AP".Q’ and
A',‘where AP.Q =, XP'.Q' and A=, A’

Proof. Since M =, N, there exists a sequence of terms M=L;,L,,...,Ly,=N,n21,
such that for each 1 <i <n, L+ is obtained from L; by a single change of bound
variable.

Proof of (a). Assume M = M;M,, and induct on n.
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Ifn =1, then M =N and there is nothing to prové.
Now assume n > 1. Since M =4 L,..;, by induction L;.., = T T, for some terms
T, and T, where M; =, T;, i = 1, 2. Note that N is obtained from L,.; by a single

change of bound variable. Let A be the occurrence of a simple abstraction AP.Q in

Lp.1 such that A changes to A'= A[y/x]P.[y/x]Q, where x € FV(P) and y ¢ FV(PQ), in
N. Since A is an abstraction, A is either in T)or in T>. Assume A is in T1. When A

changes to A', suppose T, changes to Nj. So N = N; T, where T} =, N;. The case A is
in T can be proved similarly. So we have N = N|N, for some terms N; and N,, where

Ti =« Nj, i = 1, 2. By the transitivity of the relation =, M =, N;,i=1, 2.
Parts (b) and (c) can be proved similarly. ~ 0

Lemma 2.2.5.
a. For any terms M and N, if M =, N, then FV(M) = FV(N).

b. For any term M, any variables x,..., Xy, n 2 1, there exists a term M

such that M =, M’ and none of x,..., X, is bound in M.

Proof of (a). Let M and N be terms such that M =, N. Then N is obtained frdm M by
a finite sequence of changes of bound variables. Therefore to prove this lemma, it is
enough to prove the result for a single change of bound variable. So suppose N is
obtained from M by a single change of bound variable. Let A be the occurrence of a
‘simple abstraction AP.Q in M such that A changes to A[y/x]P.[y/x]Q, where
x € FV(P) and y ¢ FV(PQ), in N. Since the only part of M that changes is A, it is
enough to show that FV(AP.Q) = FV(}.[y/x]P.[y/;(]Q).
Case 1. x ¢ FV(Q).
FV(Ay/xIP.[y/x]Q) = FV(A[y/x]P.Q)
= FV(Q) - FV([y/xIP) |
=FV(Q-({y} v (FV(P)-{x})) (by Lemma2.1.13)
= FV(Q)— FV(P)
=FV(AP.Q).
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Case 2.x € FV(Q).
FV(ALy/x]P.[y/x]Q) = FV([y/x]Q) - FV([y/x]P)
=({y} U FV(Q) - {x})) - ({y} © FV(P) - {x}))
=FV(Q) - ({x} v (FV(P) - {x}))
=FV(Q)-FV(P) .
= FVOP.Q). | 0

Proof of (b). Let M be a term and Xi,..., Xn, 0 2 1, be variables and induct on M.

i. M is an atom.

The result is obvious since M contains no bound variables.

ii. M = M;Ms.

By induction, there exist terms M;'and My such that M =, Mi’, M=, M,  and
none of X,,..., Xp is bound in M, or M, . Let M' = M;'M; . Then none of xy,..., Xp is
bound in M'and M = MM, =, M’ M; =M.

iii. M =AP.Q.

Letm= | FV(P)N {X1,00. Xn} | and induct on m.

Suppose m =0, so that FV(P) N {xy,..., Xz} = @. By induction, there exists a
term Q' such that Q =, Q" and none of X,,..., X, is bound in Q. Let M' = AP.Q". Then
none of Xj,..., Xy is bound in M and M = AP.Q =, AP.Q=M

Now assume m > 0. Let x; € FV(P) N {xi,..., Xn} and y ¢ FV(x;...x,PQ).

Let My = A[y/xJP.[y/x]Q. By induction on m, there exists a term M’ such that
M, =, M and none of xi,..;; X, is bound in M. Since M =, M=, M and the relation =,

is transitive, M =, M.
iv. M= (AP.Q| A).

This is similar to (ii). O

Lemma 2.2.6. Let x, v, yi,..., ¥, n 2 1, be distinct variables, and V, Uj,..., U, be

terms,

a. For any term M, if v ¢ FV(M), then [V/V][v/X]M =, [V/X]M.
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b. For any term M, if x ¢ FV(Uj...Uy), then
[U1/yl,..., U,,/y,.][V/x]M = [[Ul/yl,..., Un/yn]V/X]I_-Ul/yl,.“, Un/yn]M.

Lemma 2.2.7. Let X1,..., Xy, k 2 1, be distinct variables, and Ny,..., Ny, Ny',..., N be
terms such that N =, N; for all 1 <i<k. Then, for any terms M and M, ifM=, M,
then [Ni/xus..., NidXIM =q [N} A1,..., Ni/x]M'.

Proof of Lemmas 2.2.6 and 2.2.7.

Let M and M’ be terms.
For Lemma 2.2.6(a), assume v ¢ FV(M), for Lemma 2.2.6(b), assume

x ¢ FV(U,...U,), and for Lemma 2.2.7, assume M =, M.
For Lemma 2.2.6, suppose x € FV(M). Then,
for (a) we have [VAV][v/x]M = [V/v]M = M = [V/x]M and
for (b), since x ¢ FV(U,...U,) and x ¢ FV(M), by Corollary 2.1.14
x ¢ FV([Ui/y1,..., Un/ya]M). Hence, by Corollary 2.1.12(a)
[[UiY1,..., Un/yal VXI[Ui/y1,. s Unlya]M = [Uifyy,..., Un/yn]M
= [Ui/y1,eee, Unlyal[V/XIM.
So from this point on we may suppose x € FV(M).
For Lemma 2.2.7, by Corollary 2.1.12(a), (b) and Lemma 2.2.5(a) we may
assume that {X},..., Xk} € FV(M).
We will now prove Lemmas 2.2.6 and 2.2.7 simultaneously, by induction on
M.
i. M is an atom.
For Lemma 2.2.6, M = x. Thus, for (a) we have
[VIV][v/X]M = [V/v]v = V = [V/x]M and for (b) we have
[Ui/¥1s--., Un/yal[V/XIM = [Uy/yy,..., Un/ya]V
= [[Ui/yy,..., Un/yn] V/x]x
= [[Uily1,..., Un/yal V/X][Ui/fy,..., Unfyn]x
= [[Ui/yi,..., Un/yn] V/XI[U /Y1, ., Un/yn]M.
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For Lemma 2.2.7, M =x, =M. Hence [Ny/x;]M =N; =, N, = [N, /x;]M.

ii. M=MM,.

This case follows straightforwar&ly by induction, using the facts that
v & FV(M) implies v ¢ FV(M)) and v ¢ FV(My), and M =, M’ implies
M =M,'M,’, where M; =, M; and M; =, M, .

iii. M=AP.Q.

We will prove Lemma 2.2.7 ﬁr‘st.

Since M =, M, we have a sequence of a-congruences in which each
congruence is of the form AP .Q =, AP .Q", where Q" =,Q", or of the form
AP".Q =, A[w/u]P".[w/u]Q’, where u € FV(P") and w ¢ FV(P'Q"). By the transitivity
of the relation =,, this says we only need to consider the cases M' = AP.Q’, where
Q' =,Q,andM = A[w/u]P.[w/u]Q, where u € FV(P) and w ¢ FV(PQ).

Case L. M' = \P.Q’, where Q' =, Q.

Letm = |FV(P) A FV(Ny...Nx) | and induct on m. Note that
FV(Ni...N) =FV(N,"...N\) and FV(Q) = FV(Q).

If m = 0, then [Ny/xy,..., Nx/ x]JM = AP.[N)/x),..., Nk / xc]Q.

' = AP.INy /31,0, Ni / 30Q
(by induction on M)
=[N /%p;..., N / 3 M.

Now assume m > 0. Let u be the first variable in FV(P) n FV(N;...Ny) and z

be the first variable which is not in FV(PQNj...Ny). By induction on M,

[2/u]Q =¢ [2/4]Q’, so A[Zu]P.[2u]Q =, A[z/u]P.[2/u]Q’. Hence
INy/x1,..., Ni/xidM = [Ny/xy,...., Ne/x(A[zu]P.[2/u]Q)
=0 [N1'/x1,..., Nic ix](A[Z/u]P.[2/u] Q") (by induction on m)
= [N}'/x1,..., Nk %] (AP.Q")
= [Ni'/x1,..., N M.
Case IL. M = A[w/u]P.[w/u]Q, where u € FV(P), w ¢ FV(PQ).

Since {xi,..., xx} € FV(M) =FV(Q)-FV(P), x; £ u and x; & w for all
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1<i<k Letm= |FV([wA]P) A FVQN,'... Ni') | and induct on m.
For the case m = 0, we have
INY/X1,..., N /% JM'= A[w/u]P.[ Ny'/xy,....., Ni /i [W/u]Q
=4 A[WAIP.[NV/X,..., Ni/xe][W/u]Q. | (by induction on M)
Let T = A[w/u]P.[Ny/x1,..., Ni/xe][w/u]Q.
Case 1. u ¢ FV(N;...Ny), so FV(P) n FV(N;...Ni) = &. Then
T =, Afww][w/u]P.[wW/wW][Ny/Xy,..., Ni/xi][w/a]Q
s, AP [N1/Xy,..., Ni/xc][w/w][w/u]Q
| (by 2.1.17, 2.1.12(c) and induction (2.2.6(b)))
= AP.[N/x1,..., Ni/xc]Q (by induction (2.2.6(a), 2.2.7) and 2.1.12(c)))
= [Ni/x1,..., NiXe]J(AP.Q)
= [Ny/xy,..., Ni/xg]M.
Case 2. u € FV(N;...Ny), so FV(P) N FV(N;...Ny) = {u}.
Let‘z be the first variable which is not in FV(PQN;j...Ny). Then
T =, A[zZwW][W/u]P.[z/W][Ni/X1,..., Ni/Xk][W/u]Q
=4 M[Z/u]P.[Ni/x1,..., Ni/xi][z/w][w/u]Q  (by 2.1.16 and induction (2.2.6(b)))
=4 A[ZU)P.[Ny/X1,..., Ni/xg][z0]Q (by induction (2.2.6(a), 2.2.7))
= [Ny/xy,..., Ni/xdM[Z/u]P.[2u]Q)
= [Ny/xy,..., N/xJ(AP.Q)
= [Ny/Xy,..., N/ M.
Now assume m > 0. Let v be the first variable in FV([w/u]P) nFV(N,'...Ni)
and z be the first variable which is not in FV(N,"...Ni [w/u](PQ)). Then
[N{/%1,..., Ni x]M' = [Ny 7y, Ni A J [wAlP. [w/u]Q)
IN) /%1, Ni M2V 1 [wia]P.[2v | [w/i]Q).

Let T = [N;'/x1,..., Ni /] (A[z/v ] [w/u]P.[2/v'][w/u]Q). There are cases and

subcases as follows. |
(1) u is the first variable in FV(P) " FV(N...Ny), sou # z.

(1.1) vV =w, so w € FV(N,...Ny) and z is the first variable which is not in
FV(PQN;,...Ny).
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T= [N{ /1,0, Nk R JO[2/u]P.[z/v T[w/ulQ) (by 2.1.17)
=q [N1/X1,..., Ni/xi](A[2/u]P.[2/u]Q) (by induction (2.2.6(a)) and Case I)
= [Ni/X1,..., NexJ(AP.Q)
= [NV/x1,..., Ne/iM.
12V # w ,s0v € FV(P) n FV(N;...N).

(12.1) w € EV(Ny...Ny), so |[FV(P) A FV(N,...Np| = m.

T=4 [Ny/x1,..., Ne/xJA[wiul[z/v TP.[w/ul[z/v ]Q)

(by 2.1.17, induction(2.2.6(b)) and Case I)
=, N1/X1,. 0 Nk/xg](x[z/v']P.[ﬂv’]Q) (by induction on m)
=2 INV/X1,..., Ne/xJOP.Q) | (by induction on m)
= [Ni/x1,..., Ne/Xc]M.
(122) w & FVQN,...Ny), so |FV(®) AFVN..Ny)| = m+ 1.
(1.2.2.1) w is the first variable which is not in FV(PQN;...N).

T =, [Ny/X1,..., Ni/Xx](A[W/u]P.[w/u]Q) (by induction on m)
= Nv/x1,..., Ni/xi)(AP.Q)
= .[Nl/xl,. ooy Ni/xkJM.

(1.2.2.2) w is not the first variable which is not in FV(PQN;.. .rNk).

Thus z is the first variable which is not in FV(PQN,...Ny) since z # u.
Letz ¢ FV(zwPQN}...Ny).
T=o N1/X1s. .., XMz 2] [z [[Whi)P.[Z /2] [z/v ] [wiu]Q)
=, [N1/x1,..., N/ Mz V' |[wha]P.[2 v ][wiu]Q)
= [Ny/x1,. 0, N dM2zw][2 v ] [wia]P.[2/w] [z v [wiu]Q)
=, [Nv/X1,..., Ni/xJ(AMz v |[z/w][w/a]P.[Z V| [z/w] [w/u]Q)

=y [NV/X1s..., Ni/x Mz V' ][z0)P.[Z V' ][20]Q)

=o [NV/X1,..., Ni/xi](AM[2/0]P.[20]Q)

=[Ny/X1,..., Ni/xJ(AP.Q)

= [Ny/Xy,..., Ni/xc]M.

(2) u s not the first variable in FV(P) n FV(N,...Ny).
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(2.1) V' =w, sow € FV(N,...Ny) and |FV(P) A FV(N}...Ny) | <m, since
w ¢ FV(P).
T =4 [NV/X1,..., Ne/xJ(MZ/u]P.[z/v [w/u]Q)
=, INV/x1,..., Ne/xc]J(A[2/0]P.[z/u]Q)
=, [N1/x1,..., Ne/xJ(AP.Q)
= [N/xy,..., Ni/xgIM.
2V # w, so v is the first variable in FV(P) A FV(N,...Ny).
(22.1) w € FV(Np...NY), 50 | FV(P) A FV(N1..N9 | <m.
221D z#u
Teg [Ni/%1,...., Nelx (Mwisliz/v TP [whal v 1Q)
=, [N1/X1,..., Nexid (Mz/v 1P [2/v']Q)

= [Ni/X1,..., Nexc](AP.Q)
= [N]/X],. ey Nk/Xk]M.
22.12)z=u,s0 FVP) N FV(N;..Ny) =m - 1.

T=y [N1/X15..., Ni/X J(A[W/U]P.[w/n]Q) (by induction on m)
=, [N1/X1,..., Nix JOw/w][w/u]P.[w/w][w/u]Q) (by induction on m)
= [Ny/xy,..., Ni/xeJ(AP.[w/w][w/u]Q) (by 2.1.17 and 2.1.12(c))

=q [N1/x1,..., Ni/xJ(AP.Q) (by Case I, induction (2.2.6(a)) and 2.1.12(c))
= Nx1,..., N/ M. |
(2.2.2) w & FY(N1.Ny), 50 [FV(P) N FV(NL. N9 [sm+ 1.
(2.2.2.1) z is the first variable which is not in FV(PQN;...Ny), so z % u.
T=, [Nl/xl,; o N/ ] A [wru][z/v 1P.[wiu][z/v'1Q)
=o [N1/X1,..., N/xJ(AM[2/V'1P.[2V'1Q)
= [Ny/xp,..., Ni“xiJAP.Q)
= [Ny/Xy,..., Ni/xg]M.
(2.2.2.2) z is not the first variable which is not in FV(PQN]...Ny).
Let " be the first variable which is not in FV(PQN.. .Ny) and choose

z ¢ FV(zz'WPQN...N)).
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T =, [N,/gl,. s N/x(MZ W] [2/v WP [2 /W] [2/v ] [Whi]Q)
=, [N./xl,;.., N/x (M2 1[Z /w)[wh)P.[z/v [z 'w][w/u]Q)
=y [NV/X1,..., N/XeJ(M[2/v ][z u]P.[2/v ][z 0] Q)
=o [N1/X1,..., Ne/xd(Mz /2] [z 1[Z P [2 12} [z )2 ] Q)
=, [NV/X1,..., Ni/x Mz V' [Z mlP.[2 "'V [Z h]Q)
=, [N1/X1,..., Ne/x Mz )z v IP.[z iz v'1Q)

=, [N1/X1,..., Ni/x A2 V' IP.[Z V' 1Q)
= [Ny/xy,..., Ni/xiJ(AP.Q)
= [Ny/x1,..., Ni/xi]M.
This finishes the proof of Lemma 2.2.7 for M = AP.Q.
Next we will prove Lemma 2.2.6. By Lemma 2.2.5(b), there exists a term M;
such that M, =, M and no variable bound in M, is free in xvU;... UV, so
FV(M;) = FV(M) (by Lemma 2.2.5(a)). Hence, by Corollary 2.1.17 and Lemma 2.2.7
for (a) we have [V/V][V/x]M =, [V/V][v/xIM, = [[V/VIv/x, VIVIM,
= [VX]M =, [V/x]M and
for (b) we have
[UV/y1,..., Unfyn][V/X]M =q [Ui/yy,..., Un/ya] [V/XIM,
= [[Ui/y1,..., Unlya]V/x, Uilyy,..., Un/ya]M)
= [[Ui/y1,..., Un/yal V/X][U/y1,..., Unlya]Mi
=a [[Ur/ysee.s Unlyn] VX[ [Ur/ys,. ., Ulys]M.
iv.M=0P.QlA).
This is similar to (ii). O
Corollary 2.2.8. If we remove the condition on variables bound in M from
Lemma 2.1.16 and Corollary 2.1.17 and replace = by =, then those two results

remain true.

Proof. This follows from Lemmas 2.2.5(b), 2.2.7 and 2.1.16, and Corollary 2.1.17. O
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2.3 Contractions and Reductions

As with the original A-calculus, we think of abstractions as representing
functions and applications of abstractions to terms as representing functions applied to
arguments. We also follow the original A-calculus in calculating the results of such
applications by performing contractions. However, since our terms are more
complicated, our definitions of contraction and reduction are more complicated as
well. In pérticular, we find it necessary to define three types of contraction —
B-contractions, y-contractions, and &-contractions — and corresponding types of
reduction — B-reduction, fy-reduction, f&-reduction. Ultimately, we are only

interested in B3-reduction, but we need the other two types of reduction to define it

properly.

Definition 2.3.1. For any abstraction A, and any term N, AN is called a potential
redex, and if A is a simple (respectively compound) abstraction, then we call AN a

simple (respectively compound) potential redex.

Definition 2.3.2. For any pattern P with FV(P) = {xy,..., Xk}, k 2 1 (respectively
FV(P) = &), and any term N, if there exist terms Ny,..., Ni such that
[N1/X1,..., Ni/xi]P = N (respectively P = N), then for any term Q, (AP.Q)N is called a
B-redex and the corresponding term [Ny/xy,..., Nk/xk]Q (respectively Q) is called its
B-contractum.

Let R be an occurrence of a B-redex in a term M. If we replace R by its

B-contractum, and the result is the expression M', then we say M B-contracts to M,

which we denote by M >3 M,

Definition 2.3.3. For any terms M and M', we say M B-reduces to M’, denoted by

Mg M, if there exists a sequence of terms M = M), Ma,..., M, =M, n > 1, such that

for each 1 <i <n, M b1 Mi; or M =4 M.
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Definition 2.3.4. Let (AP.Q | A) be a compound abstraction and N be a term
and let FV(N) = {y1,..., ym}, m 2 1 (respectively FV(N) = &). We will call
(AP.Q| A)N a y-redex with y-contractum S if one of the following two conditions
holds:

a. (AP.Q)N is a B-redex, in which case S = (AP.Q)N; or

b. for all terms Uy,..., Un and all terms N'such that [Uiy15eees Un/ym]N >N
(respectively N >p N"), AP.Q)N' is not a B-redex, in which case S = AN.

Let R be an occurrence of a y-redex in a term M. If we replace R by its
y-contractum, and the result is the expression M, then we say M y-contracts to M,

which we denote by M5, M.

Definition 2.3.5. For any terms M and M', we say M By-reduces to M, denoted by

M >3, M', if there exists a sequence of terms M =M;, M,..., M, = M', n21,such
that for each 1 <i<n, M; >1p Mi+1, Mi &1y Mix1, or M =4 Miy.

Definition 2.3.6. Let (AP.Q | A) be a compound abstraction and N beaterm
and let FV(N) = {y1,..., Ym}, m 2 1 (respectively FV(N) = ). We will call
(AP.Q | A)N a §-redex with 5-contractum S if one of the following two conditions
holds: |

2. (\P.Q)N is aB-redex; in which case § = (kP.Q)N; or

b. for all terms U),..., U and all terms N'such that [Uy/y1,..., Un/ymIN bg, N’
(respectively N >py N'), (KP.Q)N' is not a B-redex, in whicl{ case S = AN.

Let R be an occurrence of a §-redex in a term M. If we replace R by its

§-contractum, and the result is the expression M, then we say M S-contracts to M/,

which we denote by M b5 M.

Definition 2.3.7. For any terms M and M', we say M p&-reduces to M, denoted by

M pgs M), if there exists a sequence of terms M = My, Ma,...., My =M, n > 1, such
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that for each 1 <i <n, M; > g Mix1, M B15 Mjs1, or Mj =5 Mis).

Notes 2.3.8.
a. IfM >3 N, then M >y N,
b. If M b>gs N, then M >, N.
c. The relations >, g, , and bgs are transitive and reflexive but not

Symmetric.
Notation 2.3.9. The expression M >1p;5 N will mean “M >g N or M b 1sN”.

Definition 2.3.10. For any potential redex R, R is called a contractible redex if R is

either a B-redex or a d-redex.

Definition 2.3.11. A term M which contains no contractible redexes is called a
B3-normal form (or a term in B8-normal form). The class of all B3-normal forms is
called p8-nf. If a term M B8-reduces to a term N in p&-nf, then N is called a

p&-normal form of M.

Examples 2.3.12.
a. Let c be a constant.

1.The term (kcxxc)(xc) is not a B-redex since [N/x](cx) # xc for all
terms N.

il. (Acx.xe)(c(Ac.cx)) ©1p (Ae.cx)c >jp CX.

iii. The term (Acx.xc l Ax.cx)(xc) is not a 8-redex since (Acx.xc)(xc) is not a
B-redex (from (i)), and furthermore [c/x](xc) >py cc and (Acx.xc)(cc) is a B-redex. -

iv. (Acx.xc | Ax.cx)((Acx.xy)(cc)) >ip (Aex.xc | Ax.cx)(cy)

>15 (Aex.xc)(cy) >qp ye.
v. (Acx.xc | Ax.x(cx))(Acx.x) B1s (AX.x(cx)}(AcX.X)

>1p (Acx.x)(c(Aex.x)) > Acx.X.



b. Let ¢ be a constant,
Let A = (Ac(cx).c | ACX.X),
M = (Ax.y(xx))(Ax.y(xx)), and
M'= (Ax.c(xx))(AX.c(XX)).
Since the only reductions for M and M are
M1 yM B1g Y(YM) B1g oovo: B1g YO (o (M)...)) P .., and
M >ig M g c(eM) Big ... b1g €(el...(eM)...)) >1p ..., respectively,
M and M’ have no Bé-normal forms. '
The term AM' can be reduced as follows.
i, AM' > AEM) b1 A(C(eM)) Big ... >1g A(e(e(...M)...))) Bip ...,
ii. AM b1 AEM) b1p Ac(eM)) b15 (Ae(ex).c)(c(eM)) >1p C.
Hence AM' has a B8-normal form c, but also has an infinite reduction.

The term AM is not a d-redex since (Ac(cx).c)M is not a B-redex (because
[N/x](c(cx)) # M for all terms N) and furthermore [c/y]M = M'DBY c(cM') and

(Ac(cx).c)(c(cM)) is a B-redex. Since the only possible reduction for AM is
AM b 15 AYM) 1 AGIM)) b1 --ovs 515 AGEC. GM)...)) B1g .oy
AM has no p3-normal forms.
c. Assume {0,S} is a set of constants, and let P = (L0.0 | ASx.x).
Then PO = (1.0.0] xSx.x)0
>13 (A0.0)0 >4 0,
P(S0) = (10.0 | ASx.X)(S0)
>15 (ASx.x)(80) >13 0,
P(S(S0)) = (0.0 | ASx.x)(S(S0))
>15 (ASx.X)(S(S0)) &1 SO,

P(S(S(...(S0)...))) = (A0.0 | ASx.x)(S(S(....(S0)...)))

— —
n copies n CoOpi€s
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>15 (ASX.X)(8(S(...(80)...)))

h’—/
n copies

>1p S( . (SO))

S
n-1 copies

If we think of S as representing the successor function, then P represents the

predecessor function.

Lemma 2.3.13. Let M be a term and N be an expression. If M >1p 5 N, then N is a

term, and if M is not the potential redex which is contracted when M 15,15 N then N

is of the same form as M.

Proof. Assume that M >1p 15 N and R is the occurrence of a poténtial redex in M
which is contracted. Induct on M, and note that since R is in M, M is not an atom.

i M=MM,.

Casel. M £ R.

Then R is either in M;or in M,. Without loss of generality, assume R is in M.
When R is contracted, suppose M; changes to M; . Then M, 18,15 M, and hence
N=M,; M,. By induction, M, 'is a term. Hence N is an application,

Case2.M =R.

Subcase 2.1. M; =AP.Q.

Then M = (AP.Q)M,, which is‘a B-redex. Since M >3 N, N is either Q or
some substitution of Q. Hence, by Lemma 2.1.10(b) N is a term.

Subcase 2.2. M; =(AP.Q | A).

Then M = (AP.Q | A)M,, which is a 5-redex. Since M >15 N, N = (AP.Q)M; or
N = AM,. In either case N is a term.

iil. M=AP.Q.

Then R is in Q. When R is contracted, suppose Q changes to Q. So Q >1p.1s Q

and N= AP.Q’. By induction, Q' is a term. Hence N is a simple abstraction.
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iii. M= (\P.Q| A).

Then R is either in Q or in A. Similar to the case where M is a simple
abstraction, N = (XP.Q' | A') for some Q'and A’ such that either Q >p,15 Q' and
A=A"orQ=Q and Abp5 A'. By induction, Q' is a term and A’ is an abstraction.

Hence N is a compound abstraction. 0

Note 2.3.14. From the proof of the above lemma, we have that if M and N are terms

such that M 15,15 N and R is the occurrence of a potential redex which is contracted
when M 3,15 N, then

a.ifM=M;M; and M # R then N = N|N; for some terms Njand N such
that either M >1p,15 Nj and My = Ny or My = Nj and M; Bp,15 Na;

b. if M = AP.Q then N = AP.Q’ for some term Q' such that Q >15,15Q’;

c.if M= (AP.Q| A) then N = (AP.Q"| A") for some term Q', and some

abstraction A’ such that either Q >1g,15 Q' andA=A'or Q= Q' and A >yp,15 A

Corollary 2.3.1S5. For any term M, if M >ps N, then N is a term and

a.ifM= M;M; and M >ps'N by a sequence of terms M = M, Ma,..., M, =N,
n 2 1, such that for each 1 <i <n, M; is not the potential redex which is contracted
then N = NN, for some terms Njand N> such that M; >pgs N, i=1, 2;

b. if M = AP.Q, and no variable in P has been changed when M >ps N then
N = AP.Q' for some term Q' such that Q >gs Q’;

c. if M= (A\P.Q| A) then N = (AP".Q' | A") for some abstractions AP’.Q"and A’
such that AP.Q >ps AP'.Q and A >ps A,

Proof. This follows from Note 2.3.14 and Lemma 2.2.4. 0

Lemma 2.3.16.
a. For any terms M and N, if M bps N, then FV(N) < FV(M).
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b. Let xi,..., Xk, k 2 1, be distinct variables and M, Uy,..., U, V..., Vk
~ be terms. If U; bps Vi forall 1 <i <k, then
[Ul/ Xlyeaes Uk/ xk]M D>ps [V1/ b, § RN Vk/ xk]M.

Proof of (a). Let M and N be terms such that M >g5 N. By the definition of

Bd-reduction and Lemma 2.2.5(a), we may assume M 1>1g,15 N. Furthermore, since the
only part of M that changes is the redex which is contracted, we may assume that M is
a contractible redex and N is its contractum.
i.M=(PQL
Case 1.FV(P)= Q.
Then P =L and M >3 Q so that N = Q. Hence FV(L) =FV(P) = &. Thus
FV(N) = (FV(Q)-FV(P)) L FV(L) = FV(AP.Q) U FV(L) = FV((AP.Q)L) = FV(M).
Case 2. FV(P) = {xy,..., Xk}.
Then there exist terms Ny,..., Ni such that [N/ x,,..., Ni/ x¢]JP =L and
M > [N1/Xy,..., Ni/xg]Q so that N = [Ny/xy,..., Ni/x¢]Q. So we have
FV(N) = FV([Ni/xy,..., Ni/x¢]Q)
< FV(N1.. N v (FV(Q) — {x1,..., Xk}) (by Corollary 2.1.14)
=FV(N;...Ni) U (FV(Q) -FV(P))
= (FV(N...N) U (FV(P) - {x1,..., xx})) U FV (AP.Q)
=FV([Ni/x1,..., Ni/xc]P) U FV(AP.Q) (by Lemma 2.1.13)
=FV(L) U FV(AP.Q)
=FV((AP.Q)L)
=FV(M).
ii, M= (AP.Q|A)L.
Case 1. M b5 (AP.Q)L, so that N = (AP.Q)L.
Then FV(N) = FV(AP.Q) U FV(L)
< FV(AP.Q) UFV(L) U FV(A)
=FV((P.Q|A)L)
=FV(M).
Case 2. M b5 AL.



36

This is similar to Case 1. , ad

Proof of (b). Assume U;>ps V; for all 1 <i <k. By Corollary 2.1.12(a), (b), we may

assume that {x,,..., X} < FV(M) and induct on M.

i, M=x,.

Then [U/xiIM = U bps V) = [Vi/x]M.

ii. M=MM,.

This case follows straightforwardly by induction.
iii. M = AP.Q. |

Letm= |FV(®) A FV(U,...Uy) | and induct on m.
| For the case m = 0, we have FV(P) n FV(U;...Uy) = &. Since U;>ps Vi for
all 1 i<k, by (a), FV(V1...Vi) € FV(U,...Uy). Hence FV(P) nFV(V,...V ) =3.
Thus [Ui/xy,..., U/x]M = AP.[Uy/xy,..., Ur/xc]Q
Bgs AP.[Vi/x1,..., Vi'xi]Q (by induction on M)
= [Vi/xi,..., Vil'xg]M.
Now assume m > 0. Let u be the first variable in FV(P) n FV(U,...Uy) and z
be the first variable which is not in FV(PQU)...Uy). Then '
U |/x1,‘;., Ux/xx]M = [Uy/xy,..., UxkJ(A[z/u]P.[z/u]Q)
>as [Vi/X1s..., Vi/Xk](A[Z/u]P.[2/0]Q) (by induction on m)
=, [Vi/x,0.., VX ](AP.Q) (by Lemma 2.2.7)
= [V/xy,..., Vil M. ‘
Hence [Uy/xy,..., U/Xk]M >ps [Vi/X1,00, Vi/xk]M.
iv. M= (AP.Q|A).
This is similar to (ii). g

Lemma 2.3.17. The class B&-nf is the smallest class such that

a. all atoms are in the class;

b. if Mg, My,..., My, n 2 1, are in the class and MyM, is not a contractible
redex, then MgM,...M, is in the class;

¢. if Q is in the class, then for any pattern P, AP.Q is in the class; and



d. if AP.Q and an abstraction A are in the class, then (AP.Q ' A) is in the class.

Proof. Let 98 be the intersection of all classes satisfying properties (a) — (d).

Claim 1. &8 satisfies properties (a) — (d).

Proof of Claim 1. ,
i. Since all atoms are in £ for all classes £ which satisfy properties (a) — (d),

all atoms are in 98. Hence 48 satisfies property (a).

ii. Assume Mg, My,..., M, € @,n > 1, and MgM, is not a contractible redex.
Then My, My, ..., M, e A for all classes A which satisfy properties (a) — (d). Since
MM is not a contractible redex, M¢M,...M; € £ for all classes £ which satisfy
properties (a) — (d). Thus MgM...M; € @8. Hence 44 satisfies property (b).

iii. Assume P is a pattern and Q € 98. Then Q e £ for all classes A which
satisfy properties (a) - (d). Thus AP.Q € £ for all classes € which satisfy properties
(a) - (d). Hence AP.Q € @8, so &4 satisfies property (c).

iv. Assume abstractions AP.Q and A are in @. Then AP.Q, A € £ for all
classes . which satisfy properties (a) = (d). Hence (AP.Q| A) € £ for all classes A
which satisfy propérties (a) - (d). Thus (AP.Q | A) € 98, s0 @8 satisfies property (d).

Thus we have Claim 1.

Since 98 c A forall classes /£ which satisfy properties (a) - (d), by
Claim 1 98 is the smallest class which satisfies properties (a) - (d).

Claim 2. f3-nf = G8.
Proof of Claim 2.
To show that B8-nf < 98, let M e P8-nf. We will show that M e &8 by

induction on M.

i. M is an atom.
Since G4 satisfies property (2), M € &8,
iil. M =MM,.
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Since M € Bd-nf, M contains no contractible redexes, and so neither do M,
and M. Hence M;, M; € B8-nf. By induction, M}, M, € @8, Since M contains no
contractible redexes and M = M;Ma, MM is not a contractible redex. Since &8
satisfies property (b), M{M; € &B.

iii. M=AP.Q.

Since M € Bd-nf, M contains no contractible redexes, and so neither does Q.
Then Q e B3-nf, By induction, Q € 98. Since 9f satisfies (c), AP.Q € 4.

iv. M= (AP.Q|A).

By an argument similar to the one above, by induction AP.Q, A € 8. Since &
satisfies property (d), A\P.Q| A) € .

Next we will prove that 98 c Bd-nf. Let M e 98. We will show that
M e Bé-nf by induction on M. Since & satisfies properties (a) — (d), M must fall into
one of the following categories.

i. M is an atom.

Then M contains no contractible redexes. Hence M € Ba-nf.

ii. M = MgM;...M, for some My, M,..., My € @, n 2 1, such that MgM] is not -
a contractible redex. By induction, My, My,..., M, € Bé-nf, so M; contains no
contractible redexes for all 1 <i<n. We will shows that M € Bd-nf by induction on n.

Suppose n = 1; so that M = MgM. Since MgM, is not a contractible redex and
both My and M; contain no contractible redexes, MoM, contains no contractible
redexes. Hence M e pBa-nf. ,

Now assume n > 1. By induction, MoMj...M,.; € B8-nf, so it contains no
contractible redexes. Since MoM,;...My.; is an application, it is not an abstraction.
Hence MgM;...M; is not a potential redex, and so it is not a contractible redex. Hence
MoM;...M; contains no contractible redexes. Thus M € pd-nf.

iii. M = AP.Q for some Q € 48.

By induction, Q € B3-nf, so Q contains no contractible redexes, and so neither
does AP.Q. Hence M € B5-nf.

iv. M = (AP.Q| A) for some AP.Q, A € &
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By induction, AP.Q, A € B&-nf, so they contain no contractible redexes, and so

neither does (AP.Q | A). Hence M € 6-nf.
Thus we have Claim 2.

Since 98 is the smallest class satisfying properties (a) - (d), by Claim 2 p&-nf

is the smallest class satisfying properties (a) — (d). a
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