CHAPTER 1V

DESIGN AND IMPLEMENTATION

" The applications of GA io the high Ie;(el synthesis‘were previously reported by
many researchers [7,8,14]. These 'applic.at"ions concentrate on the problem of
functional unit scheduling and assignment to minimize the number of macro functional
units formed as ALUs and thé number of control steps. However no application has
been done on combining the problem of functional unit scheduling and assignment
with the problem of checkpoint insertion. Here we combine the problem studied in
[7,8,14] with the problem proposed in [2]. We also include chaining and ALU delay
as well as various ALU areas into consideration. |

The synthesis algorithm consists of 'three.méin steps. The first step is (o
transform a behavioral description into a contr;ﬁl-data f]pw graph (CDFG). The second
step is to encode the CDFG into genes. Tlhie final s{ep is to perform the evolution
process on the set of generated genes. Among_thes{_Stpps, the sépond step is the most
difficult one. In the last step, onIy two, gcnc‘l'i;:v‘opér»u‘l:i(éhs, mutaiion énd crossovér, are
considered. However the clﬁssical mutation and c:‘ogéover operations A[13] cannot be
applied to this synthesis problem. New mutaltion a-nd crossover operations suitable to

this synthesis problem are introduced.

In detail, our approach is shown as Figure 4.1. The algorithm starls reading
three inputs—the data-flow graph (DFG), the module libraty and the constraint
requirements—and GA parameters which consists of the following:

= population size (popsize),

= newly created population (repl&cepop),

» probability of crossover Q)r‘c)bcr-o.ws),

» probability of mutation (probinuraté). and

» conditions to perform evolution'fprocess which comprise the maximum

numﬁef of generations denoted by iferation, the maximum similar
population denoted by ma#.ﬁmilar, and the maximum of generations that no
change of the best fitness value of the population appears denoted by
iternochange.
We have performed experiments on a set of problems with the following information;
popsize = 160-500, replacepop = 60-80% of .popsize, probcross = 0.65, probmutate =
0.05-0.1, iteration = 500, maximilar = 95 % of popsize and iternochange = 50-100.
Then, we estimate the size of gene which will be discussed in section 4.1. Next we
generate initial population by random and calculate their fitness value. The process is
repeated until at least one of the éonditions mentioned above is met.

As illustrated in Figure 4.2, we sort the population by their fitness values in
decending order. Then we place in the new population the top of the sorted population
equal to popsize minus replacepop (sce; in the F igure 4.2). The rest of new population

is produced by crossover and/or mutation.

19

{ stat)
/ Read /
1.the input DFG ') /

2.the module library
3.constraint requirements

TR T /'

) /
Calculate the size of
chromosome

= . =

Initial population by random

OidPop=Create COFG and Encode it info chromosome

R —

7.7/ PR NN

Calculate Cost- function-and- |
fitness(OldPop)

'

&/ gen 5 r ‘

The beginning of
Generation

v

Evolution Process

v

gen=gen +.1
increase generation | -

e

OldPopUpdateGeneration(NewPop)

Read GA
parameters

Figure 4.1 The flowchart of gcnc.tic algorithm process

/
/

20

non ST
! uAND1 MO w3 1y

- .
TN Ne0y :
]

i=1 s] . ,, | = popsize - replacepop
i = 2 v R
. / | placed >
—a
Oid populﬂtiOﬂ e e ~- |New popula“on
arranged
. » >
. crossover mutation
> >

| i=popsize. | ... L .
The lowest fitness value : ‘

Figure 4.2 Evolution process
4.1. Encoding Scheme

The CDFG consists of a set of verticesvre.presenting functional units. Throughout
the scheduling, it is noticed that the number of functional units in the CDFG never
changes.' Only the location of each functional unit may change. The number of
functional units may be decreased afler the functionall unit assignment either in the
form of a set of ALUs or by functional unit sharing. However this assignment will not
alter the number of vertices ‘in the CDFG_. Therefore, there are three parts of
information that we must retain. The first part is the location of each functional unit.
The second part is the location of each checkpoint. The third part is the connection of
vertices in CDFG. We call the first part resource information, the second part
rollback information, and the third part dq!a dependency information. The resource

information part consists of the following information.

21

1. Types of functional units. Generally, they‘are adder, multiplier, subtracter, divider,
and ALU (Arithmetic Logic Unit). ALU can sometimes be used to replace a set of

other functional units to reduce the area.

2. Delay times of functional units. The delay times are measured in the term of

numbers of control steps.

3. ‘Minimum and maximum numbers bo‘f control steps. The minimum number of
control steps can be obtained by applying as-soon-as possible scheduling while the
maximum number of control steps can be obtained by applying ﬁs—last-as possible

scheduling.

4. Width and height of a given CDFG. The width and the height of a CDFG are

defined in the following definitions.

Definition 1 The maximum height, /4, of a CDFG is equal to the number of control

stéps obtained after applying the as-last-as possible (ALAP) scheduling to the CDFG.

Definition 2 Let F; be the number of functional units in control step ith obtained by
applying the as-soon-as-possible (ASAP) to the given CDFG. The maximum width,

W, of a CDFG is equal to
W =m a‘x(F,')

As an example in Figure 4.3, F is equal to five, the number of functional units

in 1* control step. Therefore, Athe maximum width is five, W =15,

22

control step 1 *) (*'J (* +> F,=5

\ } \

NI i
control step 2 (,,) <*> <+ <<j F,=4

control step 3 { K) y =1
WA\
\X \[
controi step 4 (' J Fy, =1

Figure 4.3 An example of as-soon-as-possible scheduling

The resource information concerns only the location of each checkpoinl and the
number of checkpoints which are generated by fhe genetic algorithm. The data
dépendency information expresses the dependency of each functional unit and its
residing control step. Each functional unit is named by usingvan integer number. We
use two 2-dimensional arrays to capture the enéodcd ‘genes. The .height of the array is
set to the maximum height H and the width of 'tiic array is set to the maximum width W
of the given CDFG. The first array stores the data dependency information and the
second array stores the resource and rollback iﬁformafion. We call the first array data
dependency array (DDA) and the second array resoufce and rollback array (RRA).
In the DDA, each row corresponds 1o each control step while each column of the RRA
corresponds Lo the assigned location of each functional unit in its residing control step.
The value of each entry (i) of the DDA is set to the name of the functional unit

assigned to this row / and column j. Similarly, each row of the RRA corresponds to

23

each control step while each column of RRA corresponds to the assigned location of
each functional unit in its residing control step. On the contrary, the value of each
entry (i) is set to the type name assigned to the functional unit in its residing at the

entry (i,/). In both arrays, we attach one additional column to store the location of each

checkpoint.
Table 4.1 Modulc library
Operation Type Name [Delay (number of cs)} Area
multiplier A N2 » 64
2 . “\4 8
adder/substracter 3 1 16
4 2 4

- To understand this encoding scheme, lg,t us qovnsider an example whose control-
data flow graph is shown in Figure 4.4, There arevt‘v»;o subgraphs and five functional
units (two subtracters, two multipliers, and one adder‘).; Figure 4.4(a) shows the CDFG
where each functional unit is Iabejed by ilsl'operai'i'ojn and Figure 4.4(b) shows the
CDFG after each Tunctional unit is named by é number. The information.concerning
the type names, delay times, and areas of cach 'functio;ial unit are assumed in the Table

4.1. We call this table Module Library.

24

4

(a) Given CDFG (b) Numbered CDFG

Figure 4.4 an example of a CDFG

Suppose that six control steps are luscd. F@ctional units 1, 2 and 4 are
‘scheduled in one control step and functional units 3 and 5 are scheduled in another
contrél step. Subtracters 1 and 4 are implemented by subtracters of type 4 with two
unit delay times. Multiplier 2 is implement;d by a multiplier of type 1 with two unit
delay times. Adder 3 is implemented t;y an adder of Atype 3 with one unit delay time.
Multiplier 5 is implemented by a multiplier of type 2 with four unit delay times.
Figure 4.5 shows the CDFG with lhi§ implementati&m. Each number in Figure 4.5
denotes the functional unit name as given in Figure 4.4(b). The information in Figure
4.5 is encoded into a gene by using.a DDA ;u'xd a RRA as shown in Figure 4.6(a) and
4.6(b), respectively.

In Figure 4.6(a), there are six rows and four columns. The leftmost column is
the first column. The numbers appearing in columns '1 to 3 refer to the names of the

functional units as denoted in Figure 4.5. Number 0 means that no functional unit

25

exists. The control step having a checkpoint inserted is indicated by number | at the
corresponding row in colurﬁn four. Here; the checkpoints are inserted at control steps
2 and 6. In Figure 4.6(b), the numbers in columns 1 to 3 denote the type names of the
funciional units shown in Figure 4.5. Numbér 0 means there is no ﬁmctiona[unit at
that location. The rightmost column c.aptur'es the control step having a checkpoint

indicated by number 1’s. Number 0 in this column means there is no checkpoint.

AT
-
3 . checkpoint
5
checkpoint

Figurc 4.5 The control steps, the delay time of each functional unit, and the

checkpoints of the CDFG

26

0001 002l
(@ (D)

Figure 4.6 The data dependency array (DDA) of the CDFG in (a) and the

resource and rollback array (RRA) of the CDFG in (b)

4.]1. Mutation

Mutation can be performed on bot‘h data aepetldency array (DDA) and resource
and rollback array (RRA). The mutations of both DDA and RRA must be
collaborated. For the DDA, an encoded gene‘ is mutated by sliding the functional unit
names either up or down. The sliding is valid if it does not violate the original data
dependency of the CDFG.. Once the functional unit is slid either up or down in the
DDA, its type name stored in the RRA m.ust algo be slid accordingly to the appropriate
control step to preserve the data dependency and the actual delay time.

‘For example, suppose that the functional unit | is slid down from control step 1 to
2 in DDA. Since this unit has two unit delay times its descendent functional unit 3

must obviously be slid down from control step 3 to 4 in DDA. After the mutation is

27

performed in DDA, the information in RRA' must be updated. Figure 4.7 shows the

mutated DDA and RRA of the gene in Figure 4.6, respectively.

1240 41410 0240|014
000 |1 4141 _ 100 0| (414
30510 302 |0 | raisd \ 005 |0]||402
ooo|o| |oo2]0o 1300 0302
o000 lo02]o] . 000 0| 002
000 || 0021 A 000 |1 002
(a) (b) (a) (b)

The DDA and RRA in Figure 4.5 : The new DDA and RRA

Figure 4.7 An example of (a) mutated DDA and (b) RRA

For the RRA, the mutation can be performed by changing the type name of some
functional unit. The new type name implies that the new area and the new delay time
are assigned to the functional unit. In addition, the location of each checkpoint can
also be changed to generate a new solution. i—[éwevér;. not every control step can be a
candidate location for a checkpoint. “A checkpoint can only be inserted at the starting
or ending control step of any functional unit. If there exist some functional units with
multiple control step delay then a checkpoin; canﬁot be inserted in between these
control steps. Thus, after the mutation, :;ome ﬂcheckpoivnts must be properly relocat;:d.
In Figure 4.7, the checkpoint originally at control step 2is mutatedv by setting the entry

(2,4) of the RRA to 0.

28

4.2. Crossover Operation

7z
A
7

N
.

parent 1

7

0 + |7
N

V)

(AP
AL

child 1 ‘child 2

Figure 4.8 Crossover operation

This operation requires (wo parents. In our synthesis problem, we cannot directly
apply the crossover opefation suggested in [8,13,14]._: In other words, our crossover
operation is constrained by thé data dependency of the CDFG and the multiple control
step delay time of each functional unit. However, we still use the concept of a cutting
line to cut each parent gene into two parts prior to the crossover operation. This
crossing line is nota straight' line as stated in [i3]. We use a zigzag line to cut through
the DDA and RRA under the condition that a cutting line cannot cut through a
functional unit wflh multiple control step de;lay time. It can only cut through a
functional u;lit at the starting or ending.conti'ol step of that unit. Afler cutting, two
parent genes exchange their DDA and RRA parts at the location guided by the cutting
line. This exchanging process sometimes cannol be freely achieved as in the classical

crossover operation because of the data dependency structures of two different CDFG.

29

Figure 4.8 shows an example of how a crossover operation for this synthesis is

performed.

N\
S

N

NN
N
NN

N

N

N

N
D
N
WY
AN

LR
S
NS

AN\ N

RIS

SO

N
SN

(a) (b) (c)

Figure 4.9 (a) RRA of parent 1, (b) DDA of parent 1, (c) RRA of parent 2 and

(d) DDA of parent 2

Suppose we have two parents as shown in Figure 4.9. The gene of each parent is
represented by two arrays, RRA and DDA. After the crossover operation, we obtain

two children as shown in Figure 4.10. .

30

NN
N
N

T

VAl

e

7

N
§
NN

N

\-

-

N

NN

NN
BN

N
-\- -\\\ . " \
O \.\\

N

'//,// : Pt

/60/9/ (A
(a) BI7F 4\ © @

<
THREEE
=N

N

Figure 4.10 (a) RRA of child 1, (b) DDA of child 1, (¢) RRA of child 2 and (d)

DDA of child 2

4.4. Cost and Fitness Function

The cost function is the principle issue as it reflects the goal of optimization.
The purpose of the simuitaneous scheduling, allécation, module selection, and
checkpoint insertion is to optimize the following threé items; the hardware resources
(i.e. functional units and registers), the number of ¢§ntrol steps and the number of

checkpoints. The cost function is defined as the following equations:

N S .
Constraini_cost = Y. a,(Ccomponent [i] - Crequirement [i])° (1)

=/ .
M . 3
~ Min_cost = Z B, Ccomponent(i] o : (2)
=/ .
Total_cost = Constraints _cost+ Min_cost 3)

KN

where
. Ccomponent[i]. is the cost of i element in array 4 containing a set of constraint

requirements,
= Crequirement(i] is the constant cost of i element in array A4,
* Anarray B clonsists of the rest components not in set 4,
« Nand M are the size of arrays A and B, reépectively,
» @ and f are the arbitrary variables. They control whether the goal of the design is
optimization for performance (speed) or fér minimum area search.
Note that the total components are all co.nstrahlmts, i.e., the number of functional units,
the number of registers, the number of control steps, the number of checkpoints, and
the maximum recovery time. TFurthermore, Ccomponent([i] is calculated by a gene in
population but Crequirement[i] by the given constraints. For example, to define array
A and B, if our problem is 1o optimize the number of control steps, array A contains a
set of the type of each ALU, number of registers, number of checkpoints and the
maximum recovery time. Therefore, array B has only one element, the number of
control step. '

The costs of elements in both array A4 and B mentioned above are computed as
follows. The cost of the ALU of each type is equal to the number of ALUs of that type
plus the size of the ALU type searched from the module library. The cost of register is
derived from the number of registers plus the given size of register. The cost of the
control step is equal to the number of control steps. The cost of the checkpoint and the
maximum recovery lime is equal to' the amount of checkpoints and the size of the
maximum recovery time. . |

The cost of each gene is computed using equation 3 and for fitness calculation

of each gene using a ranking method and linear ordering [13]. in equation 4.

() = k- o - rank(i) : (4)

where k is the mean of raw_fitness and o is the standard deviation of the same.

Furthermore, rank(i) is the function that returns the rank of gene 7 in the population.

This is a value between 1.,....,popsize (the populétion size). The most {it gene has rank

32

1 and the least fit gene has rank popsize. Before above computation, we calculate the
raw_fitness from the following equation.

o
Total _ ﬁtne;s's

©)

raw _ filness =

The cost and fitness calculation for the initial population is shown in Table 4.2.

Table 4.2 The cost a.nd fitness function

Gene Total_cost Filness
1| 4.300000e+01 4.370648e-01
2 [1.320900e+04 2.6488+7e-02
3 | 1.101400e404 3.973316e-02
4 | 2.972000e+03 1.324439e-01
5| 3.512000e+03 1.1919956e-01
6 | 6.6760000+03 6.622193e-02

33

	CHAPTER IV DESIGN AND IMPLEMENTATION
	4.1 Encoding Scheme���������������������������
	4.2 Mulation�������������������
	4.3 Crossover Operation������������������������������
	4 .4 Cost and Fitness Function�������������������������������������

