กระบวนการเกิดโฟมของพอลิเมอร์ผสมของ พอลิเอทิลีนชนิดความหนาแน่นสูงและยางธรรมชาติ

นางสาวสุรัขนา ถิ่นนคร

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาปิโตรเคมีและวิทยาศาสตร์พอลิเมอร์ หลักสูตรวิชาปิโตรเคมีและวิทยาศาสตร์พอลิเมอร์ บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2541 ISBN 974-331-863-1 ลิขสิทธิ์ของบัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

19 51.8. 2545

FOAMING PROCESS OF

HIGH-DENSITY POLYETHYLENE AND NATURAL RUBBER BLENDS

Miss Suratchana Thinakom

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Petrochemistry and Polymer Science Program of Petrochemistry and Polymer Science

> Graduate School Chulalongkom University Academic Year 1998 ISBN 974-331-863-1

Thesis title	FOAMING PROCESS OF HIGH-DENSITY POLYETHYLENE	
	AND NATURAL RUBBER BLENDS	
Ву	Miss Suratchana Thinakom	
Department	Petrochemistry and Polymer Science	
Thesis Advisor	Associate Professor Suda Kiatkamjornwong, Ph.D.	
Thesis Co-advisor	Mr. Pienpak Tasakom, Ph.D.	

Accepted by the Graduate School, Chulalongkorn University in Partial Fulfillment of the Requirements for Master's Degree

Dean of Graduate School

(Professor Supawat Chutivongse, M.D.)

Thesis Committee A Chairman

(Professor Pattarapan Prasassarakich, Ph.D.)

Kiatkamjomwong

Thesis Advisor

(Associate Professor Suda Kiatkamjomwong, Ph.D.)

P. // Thesis Co-advisor

(Mr. Pienpak Tasakom, Ph.D.)

A.R

Member

(Associate Professor Anantasin Techangumpuch, Ph.D.)

Vuejonh.

Member

(Mrs. Varapom Kajomchaiyakul, M.Phll.)

สุรัชนา ถิ่นนคร: กระบวนการเกิดโฟมของพอลิเมอร์ผสมของพอลิเอทิลีนชนิดความหนาแน่นสูงและ ยางธรรมชาติ (FOAMING PROCESS OF HIGH-DENSITY POLYETHYLENE AND NATURAL RUBBER BLENDS) อ.ที่ปรึกษาวิทยานิพนธ์: รศ. ดร. สุดา เกียรติกำจรวงศ์ อ.ที่ปรึกษาวิทยานิพนธ์ ร่วม: ดร. เพียรพรรค ทัศคร, 136 หน้า ISBN 974-331-863-1

งานวิจัยนี้ศึกษาปัจจัยต่าง ๆ ที่มีอิทธิพลต่อโครงสร้างและสมบัติของโฟมพอลิเมอร์ผสมของพอลิเอทิ ลื่นขนิดความหนาแน่นสูง(HDPE)/ยางธรรมชาติ (NR) ซึ่งได้แก่ เวลาในการให้ความร้อน, ปริมาณตัวฟู, อัตราส่วน ระหว่าง HDPE/NR, ปริมาณสารเชื่อมขวางโมเลกุล, และอัตราส่วนระหว่าง HDPE/NR ที่ปริมาณสารเชื่อมขวาง โมเลกุลคงที่ โดยมีวัตถุประสงค์เพื่อเข้าใจถึงกระบวนการเกิดโฟมและเพื่อควบคุมกระบวนผลิตโฟมของ HDPE/NR ที่มีคุณภาพดี

การเตรียมโฟมของพอลิเมอร์ผสมของ HDPE/NR ประกอบด้วย พอลิเอทิลีนขนิดความหนาแน่นสูง, ยางธรรมขาติ, ตัวฟูทางเคมี, และสารเชื่อมขวางโมเลกุล ทำการผสมส่วนประกอบดังกล่าวด้วยเครื่องบดผสม 2 ลูก กลิ้ง จากนั้นทำให้เกิดโฟมโดยการอัดแบบขั้นตอนเดียว

จากการทดลองพบว่า เวลาในการให้ความร้อนที่เหมาะสมในการเกิดโฟมคือ 20 นาที อัตราส่วน ระหว่าง HDPE/NR มีอิทธิพลอย่างมากต่อสมบัติเชิงกลและโครงสร้างของโฟมพอลิเมอร์ผสมของ HDPE/NR กล่าว คือ ที่อัตราส่วนในการผสมระหว่าง HDPE/NR มีค่าสูง โครงสร้างของเซลล์ถูกทำลายและสมบัติเชิงกลมีค่าต่ำ การ เติมสารเชื่อมขวางโมเลกุลทำให้ค่าความแข็ง, และความทนแรงดึงดีขึ้น ขนาดของเซลล์โดยเฉลี่ยลดลงเมื่อปริมาณ สารเชื่อมขวางโมเลกุลเพิ่มขึ้น ปริมาณสารเชื่อมขวางโมเลกุลที่เหมาะสมสำหรับการผสมที่มียางธรรมชาติ 30 ส่วน ต่อร้อยส่วนพอลิเมอร์ คือ 0.6 ส่วนต่อร้อยส่วนพอลิเมอร์

สถาบนวทยบรการ จุฬาลงกรณ์มหาวิทยาลัย

ลายมือขือนิสิต	number .
ลายมือชื่ออาจารย์ที่ปรึกษา	Am incertine in
ลายมือชื่ออาจารย์ที่ปรึกษาร่ว	N. Barry

#3972258123 : MAJOR POLYMER SCIENCE KEY WORD:

FOAM / BOLWING AGENT / POLYMER BLENDS

SURATCHANA THINAKORN: FOAMING PROCESS OF HIGH-DENSITY POLYETHYLENE AND NATURAL RUBBER BLENDS. THESIS ADVISOR: ASSOC. PROF. SUDA KIATKAMJORNWONG. Ph.D. THESIS CO-ADVISOR: MR. PIENPAK TASAKORN. Ph.D. 136 pp. ISBN 974-331-863-1

Studies were made of various factors affecting the structures and properties of highdensity polyethylene (HDPE)/natural rubber (NR) foam such as heating time, blowing agent loading, HDPE/NR ratio, cross-linking agent loading, and ratio of HDPE/NR at a fixed cross-linking agent loading. The objectives were to gain insight into the foaming in the production process and to control foaming process for the manufacturing of good quality HDPE/NR foam.

Preparation of the HDPE/NR foam, comprises basically of a high-density polyethylene, natural rubber, Epolene wax, a chemical blowing agent, and a cross-linking agent. The HDPE/NR blends were prepared on a two-roll mill. Subsequently, foamed structures of the blends were obtained by a single stage compression molding.

The results showed that the suitable heating time in this foaming process was 20 minutes. The HDPE/NR ratios had a significant effect on the mechanical properties and cell structure of HDPE/NR foams. At high ratio of HDPE/NR blend, the cells shape were distorted and the lower mechanical properties occurred. Adding the cross-linking agent could improve hardness and tensile strength. The average cell size decreased with increasing cross-linking agent loading. The suitable cross-linking agent loading for 30 pphp the blend containing NR was 0.6 pphp cross-linking agent.

ภาควิชา	ถายมือชื่อนิสิต <u> </u>	บัหนุก
สาขาวิชา ปโตแคมีและวิทยาคำสุดก์พงล์เมอ/	้ ลายมือชื่ออาจารย์ที่ปรึกษา	for infostinoinos
ปีการศึกษา 1998	ลายมือชื่ออาจารย์ที่ปรึกษาร่	DN Dimm

ACKNOWLEDGEMENTS

I would like to acknowledge my sincere gratitude to my thesis advisor, Associate Professor Suda Kiatkamjomwong, Ph.D. and co-advisor Dr. Pienpak Tassakom, for their supervision, helpful guidance, valuable advice, reviewing the writing of the thesis and kindness throughout the course of this research. My grateful appreciation goes to the members of the thesis committee for their comments, suggestions, and time to review the thesis. Appreciations are also expressed to the Graduate School of Chulalongkom University for the partial financial support, Thai Petrochemical Industry Public Co., Ltd. for support high density polyethylene resin, Rubber Research Institute of Thailand for supporting blocks of natural rubber, National Metal and Materials Technology Center for the polymer testing and the Department of Photographic Science and Printing Technology for providing the laboratory facilities. In addition, I wish to thanks everyone in Polymer Imaging lab for their kind contributions.

A special note of gratitude to my parents for their love and many thanks for my friends, help, understanding and encouragement throughout the study for the Masters degree.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

CON

NTENTS	

	PAGE
ABSTRACT (in Thai)	iv
ABSTRACT (in English)	v
ACKNOWLEDGMENTS	vi
CONTENTS	vii
LIST OF TABLES	x
LIST OF FIGURES	xii
ABBREVIATIONS	xix
CHAPTER 1: INTRODUCTION	1
1.1 Scientific rationale	1
1.2 Scope of the thesis	2
1.3 Content of the thesis	3
CHAPTER 2: THEORETICAL CONSIDERATION AND	
LITERATURE REVIEW	5
2.1 Multicomponent polymers	5
2.1.1 Scope of multicomponent polymers	5
2.1.2 Comparison of various types of	
multicomponent polymers	7
2.2 Polymer blends	8
2.2.1 Reason for blending	8
2.2.2 Method of preparation of polymer blends	9
2.2.3 Category of polymer blends	11
2.2.4 Blend morphology	13
2.3 Expanded solid polymers	15
2.3.1 Theory of the expansion process	15
2.3.2 Production methods of expanded polymers	20

CONTENTS (continued)

• • • • •

F	AGE
2.3.3 Chemical composition of expanded polymers	24
2.3.4 Relationship between cell structure and properties	
of expanded polymers	30
2.3.5 Application for cellular materials	38
2.4 Literature review	42
CHAPTER 3: EXPERIMENTAL	
3.1 Materials	51
3.2 Instruments	52
3.3 Foaming process	55
3.4 Physical measurements	56
3.4.1 Determination of decomposition temperature of the	
blowing agent	56
3.4.2 Thermogravimetric analysis (TGA)	56
3.4.3 Dynamic mechanical analysis (DMA)	57
3.4.4 Physical property measurements	57
3.4.5 Morphological studies	58
3.4.6 Characterization of cell structure of foam	59
3.5 Flow chart of the whole experiment	60
CHAPTER 4: RESULTS AND DISCUSSION	61
4.1 Selection of the suitable blowing agent activator loading	
by thermal analysis	61
4.1.1 Equipment setup for decomposition temperature	
measurement (EDTM)	61
4.1.2 Thermogravimetric analysis (TGA)	62

CONTENTS (continued)

	PAGE
4.1.3 Comparison of the two method for the measurement of	
decomposition temperature	62
4.2 Determination of the distribution of natural rubber phase	
in high-density polyethylene phase	65
4.3 Factors affecting the dynamic mechanical properties	
of HDPE/NR foams	68
4.3.1 Effect of HDPE/NR ratio	68
4.3.2 Effect of blowing agent loading	69
4.4 Factors affecting the cell structures and mechanical properties	
of HDPE/NR foams	77
4.4.1 Effect of foaming time	. 77
4.4.2 Effect of blowing agent loading	. 86
4.4.3 Effect of HDPE/NR ratio	. 95
4.4.4 Effect of cross-linking agent loading	103
4.4.5 Effect of HDPE/NR ratio at a fixed cross-linking	
agent loading	112
4.5 Comparison of the mechanical properties of HDPE/NR foam	
with other materials	. 121
CHAPTER 5: CONCLUSIONS AND SUGGESTIONS	. 124
REFERENCES	. 126
	. 129
VITA	. 136

LIST OF TABLES

ТАВ	LE PAGE
2.1	Characteristics of chemical blowing agents
2.2	Properties of expanded polyethylene at various densities
2.3	Application for polyolefin foams
3.1	Materials used in the present study
3.2	Steps and preparative conditions of HDPE/NR blends in
	foaming process
3.3	Formulation of polymer blends of HDPE/NR compounds
4.1	Comparison of the two methods for the measurements of
	decomposition temperature63
4.2	Effect of HDPE/NR ratio on the dynamic mechanical properties
	of HDPE/NR foam
4.3	Effect of blowing agent loading on the dynamic mechanical
	properties of HDPE/NR foam
4.4	Effect of heating time on the cell structure and properties
	of HDPE/NR foams
4.5	Effect of blowing agent loading on the cell structure and mechanical
	properties of HDPE/NR foams
4.6	Effect of ratio HDPE/NR on the cell structure and mechanical properties
	of HDPE/NR foams
4.7	Effect of cross-linking agent loading on the cell structure and
	mechanical properties of HDPE/NR foams 104
4.8	Effect of HDPE/NR ratio at fixed cross-linking agent loading on
	the cell structure and mechanical properties of HDPE/NR foams 113
4.9	Comparison of the mechanical properties at the same ratio of HDPE/NR
	blends without cross-linking agent and with cross-linking agent

LIST OF TABLES (continued)

TABLE	PAGE
4.10 Comparison of some mechanical properties of HDPE/NR with another	
materials	122
4.11 Types of cellular polymer and their principal application	123

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

LIST OF FIGURES

FIG	JRE PAGE
2.1	Schematic illustration of molecular and phase domain morphologies
	in various types of polymer blends
2.2	Schematic representation of temperature dependence of storage
	shear modulus for polymers A and B and their 50:50 mixture
2.3	Interrelation in polymer blend nomenclature
2.4	Different types of dispersion of a polymer in the matrix of
	an immiscible polymer 14
2.5	Conceptual illustration of an interpenetrating network of phases by
	showing the two interlocking materials separated from one another 14
2.6	Steps in preparation of cellular polymers
2.7	Relations governing cell growth and collapse
2.8	Idealized two-dimensional cellular structures at different stages
	of foam expansion 19
2.9	Flow diagram of extrusion process
2.10	Schematic diagram of tandem extruder
2.11	Accumulation extrusion system 22
2.12	23 Compression moulding technique
2.13	Flow diagram of radiation crosslink process
2.14	Chemical structure of azodicarbonamide (AZD)
2.15	Decomposition reactions of azodicarbonamide (AZD) 28
2.16	s isothermal gas evolution test data of activators for AZD at 170 °C 29
2.17	Isothermal gas evolution test data of moderate activators
	for AZD at 185 °C
2 18	Effect of density on flexural modulus of LDPE and HDPE foams

.....

FIGU	FIGURE	
2.19	Compressive stress-strain curves of polyethylene foams with	
	various fractions of open cells	32
2.20	Compressive strength VS. percentage open cells for	
	polyethylene foams	32
2.21	Typical structure of (1) open, (2) closed, (3) reticulate cell foams	33
2.22	Tensile strength versus cell size	. 34
2.23	Elongation versus cell size	34
2.24	Tear strength versus cell size	35
2.25	Compression-deflection versus cell size	35
2.26	Role of window in compression	36
2.27	Effect of cell size on compression properties foam A-large cells	
	and foam B-smaller cells	36
2.28	Compression-deflection properties of unbalanced foam	37
2.29	Typical effect of cell structure on rigid foam strength	. 37
2.30	Model describing the static vulcanization process in	
	NR/LDPE blends	43
2.31	Model describing the dynamic vulcanization process in	
	NR/LDPE blends	43
3.1	Equipment setup for decomposition temperature measurement	56
3.2	Rectangular sheet	57
3.3	Flow chart of the whole experiment	60
4.1	TGA thermogram of azodicarbonamide	64
4.2	SEM micrographs of toluene extracted blends: (a) 0 pphp NR,	
	(b) 10 pphp NR, (c) 20 pphp NR, (d) 30 pphp NR, (e) 40 pphp NR,	
	and (f) 50 pphp NR (series C)	66

FIGUI	RE PA	GE
4.3	The distribution of threads width from SEM micrographs	67
4.4	Dynamic mechanical spectra of HDPE/NR foam at 10 pphp NR content	70
4.5	Dynamic mechanical spectra of HDPE/NR foam at 20 pphp NR content	.70
4.6	Dynamic mechanical spectra of HDPE/NR foam at 30 pphp NR content	71
4.7	Dynamic mechanical spectra of HDPE/NR foam at 40 pphp NR content	71
4.8	Dynamic mechanical spectra of HDPE/NR foam at 50 pphp NR content	72
4,9	Dynamic mechanical spectra of HDPE/NR foam at 1.0 pphp	
	blowing agent	74
4.10	Dynamic mechanical spectra of HDPE/NR foam at 2.0 pphp	
	blowing agent	74
4.11	Dynamic mechanical spectra of HDPE/NR foam at 3.0 pphp	
	blowing agent	75
4.12	Dynamic mechanical spectra of HDPE/NR foam at 4.0 pphp	
	blowing agent	75
4.13	Dynamic mechanical spectra of HDPE/NR foam at 5.0 pphp	
	blowing agent	76
4.14	Effect of heating time on foam density	79
4.15	Effect of heating time on hardness	79
4.16	Effect of heating time on tensile strength	80
4.17	Effect of heating time on elongation at break	80
4.18	Effect of heating time on tear strength	81
4.19	Effect of heating time on flexural strength	81
4.20	Effect of heating time on elastic modulus	82
4.21	The effect of heating time on cell size distribution of HDPF/NR foam	

FIGURE		
	(a) 10 min, (b) 15 min, (c) 20 min, (d) 25 min, and (e) 30 min	
	(series A)	84
4.22	The effect of heating time on cell structures of HDPE/NR foam	
	(a) 10 min, (b) 15 min, (c) 20 min, (d) 25 min, and (e) 30 min	
	(series A)	85
4.23	Effect of blowing agent loading on foam density	88
4.24	Effect of blowing agent loading on hardness	88
4.25	Effect of blowing agent loading on tensile strength	. 89
4.26	Effect of blowing agent loading on elongation at break	. 89
4,27	Effect of blowing agent loading on tear strength	90
4.28	Effect of blowing agent loading on flexural strength	90
4.29	Effect of blowing agent loading on elastic modulus	91
4.30	The effect of blowing agent loading on cell size distribution of	
	HDPE/NR foam (a) 1.0 pphp, (b) 2.0 pphp, (c) 3.0 pphp, (d) 4.0 pph	Э,
	and (e) 5.0 pphp (series B)	93
4.31	The effect of blowing agent loading on cell structures of HDPE/NR	
	foam (a) 1.0 pphp, (b) 2.0 pphp, (c) 3.0 pphp. (d) 4.0 pphp, and	
	(e) 5.0 pphp (series B)	94
4.32	Effect of NR content on foam density	97
4.33	Effect of NR content on hardness	97
4.34	Effect of NR content on tensile strength	98
4.35	Effect of NR content on elongation at break	98
4.36	Effect of NR content on tear strength	99
4.37	Effect of NR content on flexural strength	99
4.38	Effect of NR content on elastic modulus	100

~

FIGURE		
4.39	The effect of NR content on cell size distribution of HDPE/NR foam	
	(a) 10 pphp, and (b) 20pphp (series C) 101	
4.40	The effect of NR content on cell structures of HDPE/NR foam	
	(a) 10 pphp, (b) 20 pphp, (c) 30 pphp, (d) 40 pphp, and	
	(e) 50 pphp (series C) 102	
4.41	Effect of cross-linking agent loading on foam density	
4,42	Effect of cross-linking agent loading on hardness	
4.43	Effect of cross-linking agent loading on tensile strength	
4.44	Effect of cross-linking agent loading on elongation at break 106	
4.45	Effect of cross-linking agent loading on tear strength	
4.46	Effect of cross-linking agent loading on flexural strength	
4.47	Effect of cross-linking agent loading on elastic modulus	
4.48	Effect of cross-linking agent loading on gel content	
4.49	The effect of cross-linking agent loading on cell size distribution of	
	HDPE/NR foam (a) 0.4 pphp, (b) 0.6 pphp, (c) 0.8 pphp, and	
	(d) 1.0 pphp (series D) 110	
4.50	The effect of cross-linking agent loading on cell structures of HDPE/NR	
	foam (a) 0.2 pphp, (b) 0.4 pphp, (c) 0.6 pphp, (d) 0.8 pphp, and	
	(e) 1.0pphp (series D) 111	
4.51	Effect of NR content at fixed cross-linking agent loading on	
	foam density 114	
4.52	Effect of NR content at fixed cross-linking agent loading on	
	hardness 114	
4.53	Effect of NR content at fixed cross-linking agent loading on	
	tensile strength 115	

FIGUI	RE PAGE
4.54	Effect of NR content at fixed cross-linking agent loading on
	elongation at break 115
4.55	Effect of NR content at fixed cross-linking agent loading on
	tear strength 116
4.56	Effect of NR content at fixed cross-linking agent loading on
	flexural strength 116
4.57	Effect of NR content at fixed cross-linking agent loading on
	elastic modulus 117
4.58	Effect of NR content at fixed cross-linking agent loading on
	gel content 117
4.59	The effect of NR content at 0.6 pphp cross-linking agent on cell size
	distribution of HDPE/NR foam (a) 10 pphp,(b) 20 pphp, and
	(c) 30 pphp (series E) 118
4.60	The effect of NR content at 0.6 pphp cross-linking agent on cell
	structures of HDPE/NR foam (a) 10 pphp, (b) 20 pphp, (c) 30 pphp,
	(d) 40 pphp, and (e) 50 pphp (series E) 119
B1	TGA thermogram of azodicarbonamide activated by
	0.1 pphp zinc oxide 131
B2	TGA thermogram of azodicarbonamide activated by
	2.5 pphp zinc oxide 132
B3	TGA thermogram of azodicarbonamide activated by
	5.0 pphp zinc oxide
B4	TGA thermogram of azodicarbonamide activated by
	7.5 pphp zinc oxide

FIGURE		PAGE
B5	TGA thermogram of azodicarbonamide activated by	
	10.0 pphp zinc oxide	. 135

ABBREVIATIONS

AZDC	Azodicarbonamide
DMA	Dynamic mechanical analysis
EDTM	Equipment for decomposition temperature
	measurement
EPW	Epolene wax
HDPE	High density polyethylene
NR	Natural rubber
pphp	part per hundred polymer
S	Sulphur
SEM	Scanning electron microscopy
Tg	Glass transition temperature
TGA	Thermogravimetric analysis
ZnO	Zinc oxide

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย