REFERENCES

Thai

อรรควุณิ ทัศน์สองขั้น (2529) เรื่องของข้าว กรุงเทพ : โอเดียนสโตร์.

English

- Bos, C.E., Bolhuis, G.K., Lerk, C.F., and Duineveld, C.A.A. (1992), Evaluation of Modified Rice Starch, a New Excipient for Direct Compression, *Drug Development and Industrial Pharmacy*, 18(1), 93-106.
- Chowdary, K.P.R. and Venkateswara, P. (1991), Evaluation of Some Modified Starches as Carriers for Solid Dispersions, *Indian Drugs*, 29(5), 224-227.
- Deem, D.E. (1988), Rheology of Disperse Systems, in <u>Pharmaceutical Dosage Form</u>

 <u>Disperse System</u>, vol.1, Edited by H.A.Lieberman, M.M.Rieger, G.S.

 Banker, U.S.A: Marcel Dekker.
- Farley, C.A. and Lund, W. (1976), Suspending Agents for Extemporaneous

 Dispensing: Evaluation of Alternatives to Tragacanth, *The Pharmaceutical Journal*, 216 (June 26): 562-566.
- Filbert, W.F. (1952), Carboxymethyl Ethers, US Patent No. 2,599,620 June, 10, 1952.
- Hullinger, C.H. (1960) in <u>Starch: Chemistry and Technology</u>, edited by R.L.Whistler and E.F.Paschall.
- Karr, J.I., Shiromani, P.K., and Bavitz, J.F. (1990), Binding Efficiencies of Starch N.F. and Modified Starches in Formulations of Poorly Water Soluble Drugs, *Drug Development and Industrial Pharmacy*, 16(5), 821-835.

- Lieberman, H.A., Rieger, M.M., Banker, G.S. (1988), <u>Pharmaceutical Dosage Form</u>, <u>Disperse System</u>, vol 1, U.S.A: Marcel Dekker.
- Martin, A.N. (1961), Physical Chemical Approach to the Formulation of Pharmaceutical Suspensions, *Journal of Pharmaceutical Science*, 50(6): 513-518.
- Mishra, P., Jain, A., and Agrawal, R.K. (1990), Studies on Starch Derivatives Part I: Sodium O-Carboxymethyl Starch as a Suspending Agent, *Indian J. Nat. Prod.*, 6(1), 2-25.
- Nash, R.A. (1966), The Pharmaceutical Suspension, Part 2, Drug and Cosmetic Inclustry, 98(1): 39-44.
- Nash, R.A. (1988), Pharmaceutical Suspensions, pp.151-198, in <u>Pharmaceutical</u>

 <u>Dosage Forms: Disperse Systems</u> Vol.1, Edited by H.A.Lieberman, M.M.

 Rieger, and G.S.Banker, New York: Marcel Dekker.
- Nasipuri, R.N. and Ogunlana, E.O. (1978), Formulation and Evaluation of a Sulphadimidime Suspension for Infants, *The Pharmaceutical Journal*, 221 (Sep 16): 258-259.
- Paliwal, J.K. and Joshi, S.B. (1989), Evaluation of Pseudoplastic Polymers for Their Suspension Activity, *Indian Journal of Pharmaceutical Science*, 51(4): 119-123.
- Patel, N.K., Kennon, L., and Levinson, R.S. Pharmaceutical Suspensions, pp.479-501, in <u>The Theory and Practice of Industrial Pharmacy</u>, 3rd edition, Edited by L. Lachman, H.A. Lieberman, and J.L.Kanig, Philadelphia: Lea Febiger, 1986.

- Rawlins, D.A. and Kayes, J.B. (1983) Pharmaceutical Suspension Studies III. The
 Redispersibility of Suspensions, *International Journal of Pharmaceutics*,
 13: 171-181.
- Scheer, A.J. (1981), Practical Guidelines for Suspension Formulation I, Drug and Cosmetic Industry, April: 40-44.
- Schoch, T.J. (1960), Properties and Uses of Rice Starch, in <u>Starch: Chemistry and</u>
 Technology, edited by R.L.Whistler and E.F.Paschall.
- Schramm, G. (1981a), Optimization of Rotovisco Tests, HAAKE Viscometers.
- Schramm, G. (1981b), Introduction to Practical Viscometry, HAAKE Viscometers.
- Schwartz, J.B. and Zelinskie, J.A.(1978), Drug Development and Industrial Pharmacy, 4(5), 463
- Shah, N.H., Lazarus, J.H., Sheth, P.R., and Jarowski, C.I. (1981),
 Carboxymethylcellulose: Effect of Degree of Polymerization and Substitution
 on Tablet Disintegration and Dissolution, Journal of Pharmaceutical Sciences,
 70(6): 611-613.
- Siriyos Timaroon and Poj Kulvanich (1992), Pharmaceutical Technology of Starch:
 Invention of Directly Compressible Starch, *Thai Journal of Pharmaceutical Science*, 16(4): 309-315.
- Soontorn Vorakul (1980), Influence of Various Starches and Flours on the Dissolution of Compressed Tablets, Master's Thesis, Mahidol University, Bangkok,

 Thailand.

- Tasana Pitaksuteepong (1995), Tablet Binder Properties of Sodium Carboxymethyl starch, Master's Thesis, Chulalongkorn University, Bangkok, Thailand.
- Thavisak Teruya (1995), Development of Superdisintegrant from Tapioca Starch, Ph.D. Dissertation, Chulalongkorn University, Bangkok, Thailand.
- United States Pharmacopeia (USP) XXIII and the National Formulary (NF) XVI (1995), The United States Pharmacopeial Convention, Taunton: Rand Mcnally.
- Visavarungroj, N., Herman, J., and Remon, J.P. (1990a), Crosslinked Starch as a Binding Agent I. Conventional Wet Granulation, *International Journal of Pharmaceutics*, 59, 73-78.
- Visavarungroj, N., and Remon, J.P. (1990b), Crosslinked Starch as a Binding Agent II.

 Granulation in a high shear mixer, *International Journal of Pharmaceutics*, 65, 43-48.
- Visavarungroj, N., Herman, J., and Remon, J.P. (1990c), Crosslinked Starch as

 Sustained Release Agent. Drug Development and Industrial Pharmacy, 16(7),

 1091-1108.
- Visavarungroj, N. and Remon, J.P. (1991), Crosslinked Starch as a Binding Agent III.

 Granulation of an Insoluble Filler, *International Journal of Pharmaceutics*, 69, 43-51.
- Wade A. and Weller, P.J. (ed.), Handbook of Pharmaceutical Excipients, 2nd edition, American Pharmaceutical Association, Washington, 1994.

- Wallop Weecharangsan (1995), The Production and Evaluation of Directly
 Compressible Modified Rice Starch, Master's Thesis, Chulalongkorn
 University, Bangkok, Thailand.
- Ward, J.B., Kinney, J.F., and Saad, H.Y. (1974), Application of Rheological Studies to Product Formulation, Stability, and Processing Problems, J. Soc. Cosmet. Chem., 25, 437-454.
- Wood, J.H. (1986), Pharmaceutical Rheology, in <u>The Theory and Practice of Industrial</u>

 <u>Pharmacy</u>, 3rd edition, edited by Lachman, L.; Lieberman, H.A.; and

 Kanig, J.L., Philadelphia: Lea & Febiger.
- Wu, K., Gan, W., and Chen, M. (1993) Dry Process Preparation of Carboxymethyl starch, Zhongguo Yiyao Gongye Zazhi, 24(4): 150-152, CA 120: 137552x
- Zatz, J.L., Berry, J.J., and Alderman, D.A. (1988), Viscosity-Imparting Agents in Disperse Systems, in <u>Pharmaceutical Dosage Form</u>, volume 2.
- Zatz, J.L. (1985), Physical Stability of Suspensions, J. Soc. Cosmet. Chem., 36, 393-411.
- Zhang, J., Li, D., Shi, Y., and Zhang, X. (1993) Preparation of Carboxymethyl Starch with High Degree of Substitution, *Huaxue Shijie*, 34(7): 322-5, CA 122: 190867w

Table 34 Sedimentation Volume (Hu/Ho) of Calcium Carbonate Suspensions Containing Modified Starches as Suspending Agent Evaluated Under Normal Condition Over 28 days

					٠.																							
Sus.Agent	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
MCS 0.13 1%	0.90	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
MCS 0.13 2%	0.96	0.96	0.24	0.12	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
MCS 0.13 3%	0.96	0.96	0.94	0.90	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
MCS 0.26 1%	0.96	0.96	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
MCS 0.26 2%	0.90	0.80	0.20	0.16	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.12	0.12	0.12	0.12	0.12	0.12	0.10	0.10	0.10	0.10
MCS 0.26 3%	0.96	0.96	0.84	0.34	0.34	0.32	0.30	0.30	0.30	0.28	0.28	0.28	0.28	0.28	0.28	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.24	0.24	0.24	0.24	0.24	0.24
MCS 0.39 1%	0.90	0.90	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
MCS 0.39 2%	0.96	0.96	0.94	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
MCS 0.39 3%	0.96	0.94	0.80	0.28	0.28	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24
MGS 0.16 1%	1.00	0.98	0.98	0.98	0.98	0.98	0.98	0.74	0.70	0.70	0.68	0.68	0.68	0.64	0.64	0.64	0.64	0.64	0.60	0.60	0.60	0.58	0.58	0.58	0.58	0.58	0.58	0.58
MGS 0.16 2%	0.96	0.94	0.92	0.90	0.88	0.86	0.84	0.82	0.82	0.80	0.78	0.78	0.76	0.76	0.76	0.74	0.74	0.74	0.72	0.72	0.72	0.72	0.72	0.70	0.70	0.70	0.70	0.70
MGS 0.16 3%	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
MGS 0.26 1%	0.86	0.86	0.84	0.84	0.82	0.50	0.50	0.50	0.50	0.48	0.48	0.48	0.48	0.48	0.48	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.44	0.44	0.44	0.44	0.44	0.44
MGS 0.26 2%	1.00	1.00	0.98	0.98	0.98	0.98	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
MGS 0.26 3%	1.00	1.00	1.00	1.00	1.00	1.00	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
MGS 0.39 1%	0.96	0.94	0.20	0.20	0.20	0.20	0.18	0.18	0.16	0.16	0.16	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12
MGS 0.39 2%	0.84	0.84	0.82	0.80	0.78	0.78	0.78	0.70	0.66	0.64	0.62	0.60	0.58	0.56	0.54	0.52	0.50	0.46	0.46	0.44	0.44	0.40	0.40	0.40	0.40	0.40	0.40	0.40
MGS 0.39 3%	1.00	1.00	1.00	0.88	0.86	0.82	0.80	0.78	0.76	.0.74	0.72	0.72	0.70	0.70	0.68	0.68	0.68	0.66	0.66	0.66	0.64	0.64	0.62	0.60	0.60	0.60	0.60	0.60
MRS 0.15 1%	0.92	0.90	0.74	0.70	0.40	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34
MRS 0.15 2%	0.96	0.94	0.92	0.76	0.70	0.58	0.58	0.58	0.54	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48
MRS 0.15 3%	1.00	1.00	0.98	0.98	0.98	0.98	0.98	0.98	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.92	0.92	0.92	0.92
MRS 0.26 1%	0.80	0.78	0.78	0.78	0.78	0.40	0.40	0.40	0.40	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.36	0.36	0.36	0.36	0.34	0.34	0.34	0.34	0.34	0.34	0.34
MRS 0.26 2%	1.00	0.98	0.96	0.84	0.64	0.60	0.58	0.58	0.58	0.58	0.56	0.56	0.56	0.56	0.56	0.56	0.56	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54
MRS 0.26 3%	1.00	1.00	1.00	1.00	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
MRS 0.39 1%	0.88	0.82	0.74	0.72	0.38	0.38	0.38	0.38	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.32	0.32	0.30	0.30	0.30	0.30
MRS 0.39 2%	0.94	0.92	0.90	0.56	0.54	0.52	0.52	0.50	0.50	0.50	0.50	0.48	0.48	0.48	0.48	0.48	0.48	0.46	0.46	0.46	0.46	0.46	0.46	0.44	0.44	0.44	0.44	0.44
MRS 0.39 3%	0.88	0.86	0.84	0.84	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
MTS 0.13 1%	0.98	0.98	0.86	0.56	0.50	0.46	0.46	0.44	0.44	0.42	0.42	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.38	0.38	0.38	0.38	0.38	0.36	0.36	0.36	0.36
MTS 0.13 2%	0.98	0.80	0.72	,0.68	0.64	0.58	0.56	0.54	0.52	0.52	0.50	0.50	0.50	0.50	0.50	0.50	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48
MTS 0.13 3%	0.98	0.96	0.96	0.96	0.94	0.94	0.94	0.90	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
MTS 0.20 1%	0.98	0.98	0.90	0.66	0.62	0.60	0.56	0.54	0.52	0.50	0.48	0.46	0.46	0.46	0.46	0.44	0.44	0.44	0.44	0.42	0.42	0.42	0.42	0.40	0.40	0.40	0.40	0.40
MTS 0.20 2%	0.82	0.80	0.78	0.78	0.78	0.60	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.56	0.56	0.56	0.56	0.56	0.54	0.54	0.54	0.52	0.50	0.50	0.50	0.48	0.48	0.48
MTS 0.20 3%	1.00	1.00	1.00	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
MTS 0.38 1%	0.72	0.72	0.70	0.70	0.68	0.66	0.62	0.62	0.62	0.60	0.60	0.60	0.58	0.56	0.56	0.54	0.52	0.50	0.50	0.50	0.50	0.46	0.40	0.40	0.40	0.40	0.40	0.40
MTS 0.38 2%	0.90	0.90	0.88	0.88	0.86	0.84	0.84	0.80	0.80	0.80	0.80	0.80	0.78	0.76	0.74	0.70	0.68	0.66	0.64	0.64	0.64	0.64	0.62	0.62	0.60	0.60	0.60	0.60
MTS 0.38 3%	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98

Table 35 Sedimentation Volume (Hu/Ho) of Ibuprofen Suspensions Containing Different Concentrations of Suspending Agent Evaluated Under Normal Condition Over 84 days

Suc agamte	1	2	4			40	40	4.4	4.0	40	-	-															
Sus. agents AC 1%	0.02	-	0.00	6	8	10		14	16		20		24	26	-		35		45	50		60					84
AC 2%			0.02		0.02		0.02	0.02		0.02			0.02				0.02		0.02	0.02		0.02		0.02	0.02	0.02	0.02
AC 3%	0.02	0.02	0.02		0.02		0.02	0.02	0.02			0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
AV 1%	0.02		0.02				0.02	0.02	0.02		0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
	0.56	0.54	0.52	0.50	0.50	0.48		0.48		0.48	0.48	0.48					_			0.46		0.46			0.46	0.46	0.46
AV 2%	0.78	0.76	0.74		0.72	0.72	0.70	0.70		_	_		0.70							0.70		0.70	0.70	0.70	0. <i>7</i> 0	0.70	0.70
AV 3%	0.84	0.82	0.82		0.82		0.82	_	-	-	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
MGS 1%	1.00	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
MGS 2%	1.00	0.98	0.96	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
MGS 3%	1.00	1.00	0.98	0.98	0.98	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
MRS 1%	1.00	1.00	1.00	1.00	1.00	1.00	0.98	0.98	0.98	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
MRS 2%	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MRS 3%	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MTS 1%	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
MTS 2%	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MTS 3%	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
SA 1%	0.06	0.04	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
SA 2%	0.96	0.94	0.90	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
SA 3%	1.00	0.90	0.86	0.84	0.60	0.40	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
SCMC 1%	1.00	0.98	0.90	0.80	0.78	0.76	0.74	0.72	0.70	0.68	0.66	0.64	0.62	0.60	0.58	0.56	0.56	0.56	0.54	0.52	0.50	0.50	0.50	0.50	0.50	0.50	0.50
SCMC 2%	1.00	1.00	0.98	0.98	0.98	0.98	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96					0.96		0.96	0.96	0.96		0.96	-
SCMC 3%	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	_		_	1.00	_		1.00	-		1.00	1.00		1.00	1.00	1.00	
TG 1%	0.32	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	$\overline{}$	0.30							0.30		0.30	0.30	0.30	0.30	
TG 2%	0.96	0.96	0.94	0.94	0.92	0.92	0.90	0.90	0.90	0.90	0.90	0.90	0.88	0.88	0.88	0.88		_		0.86		0.84	0.84	0.84	0.84	0.84	-
TG 3%	1.00	1.00	1.00	1.00	1.00	1.00	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98				0.98	0.98	0.98	0.98	_	0.98	-
XG 1%	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	-			1.00				1.00	1.00	1.00	
XG 2%	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			1.00	1.00	-	1.00	1.00	-	_				1.00		1.00	1.00	1.00	1.00	
XG 3%	1.00	1.00	1.00	1.00	1.00	_				1.00			_	1.00			_						1.00			1.00	\vdash

Table 36 Absorbance of Ibuprofen Standard Solution in Phosphate Buffer pH 7.2 at 223 nm.

Concentration (mg/100 mL)	Absorbance
0.0	0.0000
0.4	0.1706
1.2	0.5092
2.0	0.8367
2.8	1.1811
3.6	1.5017

Correlation Coefficient

: 0.9999

Y = 0.41778X + 0.00352

Figure 82 Standard Curve of Ibuprofen (223 nm, Buffer pH 7.2)

Figure 83 Ultraviolet Spectrogram of Ibuprofen (in Phosphate Buffer pH 7.2)

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Table 37 Ibuprofen Contents (g/100 mL) Found at Different Locations of Test Tubes Containing Ibuprofen Suspension with 1% XG as Suspending Agent

Sampling Point			Ibuprofen	Content (g	/100mL)	·	· · · · · · · · · · · · · · · · · · ·
(Location-Tube)	Week 0	Week 2	Week 4	Week 6	Week 8	Week 10	Week 12
Top-1	1.9974	1.9256	1.9065	1.8921	1.8777	1.8825	1.8562
Middle-1	1.9759	1.9711	1.9854	1.9735	1.9615	1.9831	1.9878
Bottom-1	1.9735	1.9854	2.0214	2.0740	2.0860	2.1267	2.1291
Top-2	1.9902	1.9208	1.8993	1.8921	1.8825	1.8658	1.8634
Middle-2	1.9926	1.9902	1.9974	1.9831	1.9663	1.9974	1.9543
Bottom-2	1.9783	1.9926	2.0070	2.0860	2.0979	2.1219	2.1219
Top-3	1.9854	1.9065	1.9184	1.8897	1.8849	1.8777	1.8921
Middle-3	2.0046	1.9974	2.0046	1.9783	1.9471	1.9663	1.9495
Bottom-3	2.0142	1.9998	2.0142	2.0956	2.1267	2.1362	2.1171

Table 38 Ibuprofen Contents (g/100 mL) Found at Different Locations of Test Tubes Containing Ibuprofen Suspension with 2% XG as Suspending Agent

Sampling Point			Ibuprofen	Content (g	/100mL)		
(Location-Tube)	Week 0	Week 2	Week 4	Week 6	Week 8	Week 10	Week 12
Top-1	1.9759	1.9424	1.9256	1.9065	1.8945	1.9065	1.8825
Middle-1	1.9495	1.9902	1.9998	1.9783	1.9663	1.9543	1.9495
Bottom-1	1.9783	1.9974	2.0261	2.0214	1.9974	1.9998	2.0094
Top-2	1.9663	1.9495	1.9184	1.9184	1.8873	1.8777	1.9136
Middle-2	1.9591	1.9783	2.0070	1.9902	1.9711	1.9950	1.9591
Bottom-2	1.9831	2.0070	2.0094	2.0070	2.0190	2.0070	2.0405
Top-3	1.9687	1.9280	1.9304	1.9017	1.9017	1.8993	1.9041
Middle-3	1.9615	1.9831	1.9950	1.9735	1.9519	1.9448	1.9328
Bottom-3	1.9639	2.0142	2.0285	2.0381	2.0405	2.0237	2.0237

Table 39 Ibuprofen Contents (g/100 mL) Found at Different Locations of Test Tubes Containing Ibuprofen Suspension with 3% XG as Suspending Agent

Sampling Point			Ibuprofen	Content (g	/100mL)		
(Location-Tube)	Week 0	Week 2	Week 4	Week 6	Week 8	Week 10	Week 12
Top-1	1.9854	1.9759	1.9663	1.9615	1.9543	1.9615	1.9328
Middle-1	1.9687	1.9974	1.9831	1.9878	1.9759	1.9831	1.9854
Bottom-1	1.9591	2.0070	2.0046	2.0022	2.0118	2.0166	2.0309
Top-2	1.9878	1.9687	1.9735	1.9543	1.9400	1.9448	1.9495
Middle-2	1.9759	1.9902	1.9902	1.9950	1.9902	1.9950	2.0022
Bottom-2	1.9663	1.9974	2.0166	2.0142	2.0333	2.0381	2.0453
Top-3	1.9998	1.9711	1.9519	1.9495	1.9471	1.9711	1.9687
Middle-3	2.0022	1.9854	2.0022	1.9783	1.9974	1.9687	1.9711
Bottom-3	1.9878	2.0046	2.0070	2.0237	2.0237	2.0070	2.0214

Table 40 Ibuprofen Contents (g/100 mL) Found at Different Locations of Test Tubes Containing Ibuprofen Suspension with 3% TG as Suspending Agent

Sampling Point			Ibuprofen	Content (g	/100mL)		
(Location-Tube)	Week 0	Week 2	Week 4	Week 6	Week 8	Week 10	Week 12
Top-1	1.9902	1.9663	1.8945	1.9256	1.9352	1.9041	1.9136
Middle-1	2.0142	2.0046	1.9424	1.9543	1.9591	1.9495	1.9639
Bottom-1	1.9759	2.0261	1.9974	1.9759	1.9519	1.9926	2.0070
Top-2	2.0118	1.9448	1.9519	1.8945	1.9759	1.9232	1.9160
Middle-2	1.9974	2.0237	1.9735	1.9424	2.0070	1.9711	1.9807
Bottom-2	1.9926	1.9759	2.0070	1.9902	1.9950	1.9807	1.9854
Top-3	1.9998	1.9759	1.9615	1.9400	1.9878	1.9136	1.9256
Middle-3	1.9854	1.9783	1.9854	1.9783	1.9831	1.9878	2.0046
Bottom-3	1.9998	2.0046	2.0477	2.0214	1.9735	1.9974	1.9926

Table 41 Ibuprofen Contents (g/100 mL) Found at Different Locations of Test Tubes Containing Ibuprofen Suspension with 2% SCMC as Suspending Agent

Sampling Point			Ibuprofen	Content (g	/100mL)		
(Location-Tube)	Week 0	Week 2	Week 4	Week 6	Week 8	Week 10	Week 12
Top-i	2.0261	2.0142	1.9998	2.0142	1.9735	1.9926	1.9663
Middle-1	2.0381	2.0261	2.0046	2.0405	2.0190	2.0094	2.0214
Bottom-1	2.0477	2.0381	2.0549	2.0668	2.0788	2.0788	2.0620
Top-2	2.0309	2.0046	2.0118	1.9759	2.0190	2.0070	1.9759
Middle-2	2.0405	2.0190	2.0309	2.0477	2.0309	2.0261	2.0046
Bottom-2	2.0309	2.0668	2.0453	2.0405	2.0477	2.0405	2.0644
Top-3	2.0429	1.9974	1.9831	1.9998	2.0309	1.9759	1.9854
Middle-3	2.0429	2.0453	2.0620	2.0764	1.9950	2.0190	2.0309
Bottom-3	2.0357	2.0237	2.0956	2.0812	2.0692	2.0596	2.0836

Table 42 Ibuprofen Contents (g/100 mL) Found at Different Locations of Test Tubes Containing Ibuprofen Suspension with 3% SCMC as Suspending Agent

Sampling Point			Ibuprofen	Content (g	/100mL)		
(Location-Tube)	Week 0	Week 2	Week 4	Week 6	Week 8	Week 10	Week 12
Top-1	1.9711	1.9615	1.9543	1.9471	1.9663	1.9591	1.9495
Middle-1	1.9831	1.9831	1.9783	1.9663	1.9711	1.9687	1.9783
Bottom-1	1.9711	1.9759	1.9759	1.9783	1.9878	1.9807	1.9854
Top-2	1.9807	1.9854	1.9471	1.9184	1.9471	1.9735	1.9687
Middle-2	1.9639	1.9519	1.9376	1.9759	1.9591	1.9543	1.9567
Bottom-2	1.9807	1.9854	1.9878	1.9854	1.9950	1.9591	1.9950
Top-3	1.9663	1.9926	1.9304	1.9543	1.9567	1.9519	1.9591
Middle-3	1.9687	1.9687	1.9519	1.9495	1.9807	1.9854	1.9639
Bottom-3	1.9663	1.9926	1.9471	1.9711	1.9759	1.9926	1.9735

APPENDIX II

Table 43 Analysis of Variance for Viscosity of Pure Modified Corn Starches

Source of Variation	SS	df		MS	F	P-value	F crit
Among DS	430.079		2	215.039	20.7699	0.00772	6.94428
Among Concentration	1472.81		2	736.405	71.1269	0.00075	6.94428
Error	41.4136		4	10.3534			
Total	1944.3		8				

Table 44 Analysis of Variance for Viscosity of Pure Modified Glutinous Rice Starches

Source of Variation	SS	df		MS	F	P-value	F crit
Among DS	11149	à (a)	2	5574.51	19.4683	0.00868	6.94428
Among Concentration	13421.2		2	6710.59	23.4359	0.00618	6.94428
Error	1145.35		4	286.338			
Total	25715.5	W (C)	8				

Table 45 Analysis of Variance for Viscosity of Pure Modified Rice Starches

Source of Variation	SS	df	MS	F	P-value	F crit
Among DS	678.045	2	339,023	22.0343	0.00692	6.94428
Among Concentration	20064.6	2	10032.3	652.035	9.4E-06	6.94428
Error	61.5445	4	15.3861			
Total	20804.2	8	1913	การ		
6/16/1		d VIII				

Table 46 Analysis of Variance for Viscosity of Pure Modified Tapioca Starches

Source of Variation	SS	df	MS	F	P-value	F crit
Among DS	1137.56	2	568.78	3.96393	0.11246	6.94428
Among Concentration	17439.5	2	8719.73	60.7694	0.00102	6.94428
Error	573.956	4	143.489			
Total	19151	8				

Table 47 Analysis of Variance for Sedimentation Volume of Ibuprofen Suspension
- Final 12 weeks

Source of Variation	SS	df	MS	F	P-value	F crit
Rows	4.3288	8	0.5411	28.549	5E-08	2.5911
Columns	0.1938	2	0.0969	5.1127	0.0192	3.6337
Error	0.3033	16	0.019			
Total	4.8259	26	7			

Table 48 Dependent Comparison (Dunca's New Multiple Range Test) for Sedimentation Volume of Ibuprofen Suspensions - Normal 12 weeks

	XG	MRS	MTS	SCMC	TG	AV	SA	AC	MGS
XG	•	NS	NS	NS	S	S	S	S	S
MRS		_	NS	NS	S	S	S	S	S
MTS			•	NS	S	S	S	S	S
SCMC				-	NS	NS	S	S	S
TG				•	-	NS	S	S	S
ΑV							S	S	S
SA							-	NS	NS
AC								-	NS
MGS									-

Table 49 Analysis of Variance for Sedimentation Volume of Ibuprofen Suspension - Freeze-Thaw Condition

Source of Variation	SS	df	MS	F	P-value	F crit
Rows	3.346	8	0.4183	26.635	8E-08	2.5911
Columns	0.2174	2	0.1087	6.9209	0.0068	3.6337
Error	0.2512	16	0.0157		•	
Total	3.8146	26				

Table 50 Dependent Comparison (Dunca's New Multiple Range Test) for Sedimentation Volume of Ibuprofen Suspensions - FT Condition

	XG	MRS	MTS	SCMC	TG	AV	SA	AC	MGS
XG	-	NS	NS	NS	S	S	S	S	S
MRS		-	NS	NS	S	S	S	S	S
MTS			-	NS	S	S	S	S	S
SCMC				-	NS	NS	S	· S	S
TG					-	NS	S	S	S
ΑV						-	S	S	S
SA							_	NS	S
AC								-	NS
MGS							105		-

Table 51 Analysis of Variance for Thixotropic Quantity of Ibuprofen Suspension Containing Modified Rice Starch Evaluated in Different Conditions

Source of Variation	SS	df	MS	F	P-value	F crit
Rows	0.0847	2	0.0424	1.3620	0.3253	5.1432
Columns	0.1522	3	0.0507	1.6319	0.2788	4.7571
Error	0.1866	6	0.0311			
Total	0.4236	11				

Table 52 Dependent Comparison (Dunca's New Multiple Range Test) for Thixotropic Quantities of Ibuprofen Suspensions Containing Modified Rice Starch as Suspending Agent

	Pure	Initial	FT	Final
Pure		NS	NS	NS
Initial		-	NS	NS
FT			-	NS
Final		//W/S		_

Table 53 Analysis of Variance for Thixotropic Quantity of Ibuprofen Suspension
Containing Modified Glutinous Rice Starch Evaluated in Different Conditions

Source of Variation	SS	df	MS .	F	P-value	F crit
Rows	0.0226	2	0.0113	1.9573	0.2216	5.1432
Columns	0.5051	3	0.1684	29.1479	0.0006	4.7571
Error	0.0347	6	0.0058	•		
Total	0.5624	11				

Table 54 Dependent Comparison (Dunca's New Multiple Range Test) for Thixotropic Quantities of Ibuprofen Suspensions Containing Modified Glutinous Rice Starch as Suspending Agent

	Pure	Initial	FT	Final
Pure	-	NS	S	S
Initial			S	S
FT			-	NS
Final				-

Table 55 Analysis of Variance for Thixotropic Quantity of Ibuprofen Suspension Containing Modified Tapioca Starch Evaluated in Different Conditions

Source of Variation	SS	df	MS	F	P-value	F crit
Rows	0.0667	2	0.0333	4,4594	0.0651	5,1432
Columns	0.2636	3	0.0879	11.7577	0.0063	4.7571
Error	0.0448	6	0.0075	•		
Total	0.3751	11				

Table 56 Dependent Comparison (Dunca's New Multiple Range Test) for Thixotropic Quantities of Ibuprofen Suspensions Containing Modified Tapioca Starch as Suspending Agent

	Pure	Initial	FT	Final
Pure		NS	S	NS
Initial		00000	S	NS
FT			-	S
Final		1988		-

Table 57 Analysis of Variance for Ibuprofen Content Deviation of Suspension Containing 1% Xanthan Gum as Suspending Agent

Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.03763	6	0.00627	102.321	9.5E-11	2.84773
Within Groups	0.00086	14	6.1E-05			
Total	0.03849	20		4		

Table 58 Dependent Comparison (Dunca's New Multiple Range Test) for Ibuprofen Content Deviation of Suspension Containing 1% Xanthan Gum as Suspending Agent

· . · · · · · · · · · · · · · · · · · ·	Week 0	Week 2	Week 4	Week 6	Week 8	Week 10	Week 12
Week 0		S	S	S	S	S	S
Week 2		-	S	S	S	S	S
Week 4			-	S	S	S	S
Week 6				183-	S	S	S
Week 8					-	S	S
Week 10						-	NS
Week 12					Time .		-

Table 59 Analysis of Variance for Ibuprofen Content Deviation of Suspension Containing 2% Xanthan Gum as Suspending Agent

Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.00695	6	0.00116	17.3714	9.4E-06	2.84773
Within Groups	0.00093	14	6.7E-05			
Total	0.00788	20	MMA		=	_

Table 60 Dependent Comparison (Dunca's New Multiple Range Test) for Ibuprofen Content Deviation of Suspension Containing 2% Xanthan Gum as Suspending Agent

	Week 0	Week 2	Week 4	Week 6	Week 8	Week 10	Week 12	
Week 0	-	S	S	S	S	S	S	
Week 2		-	S	S	S	S	S	
Week 4			7678(G(G) G)	NS	S	S	S	
Week 6			19/1/2/14	free to	NS	NS	NS	
Week 8					-	NS	NS	
Week 10						-	NS	
Week 12				•			_	

Table 61 Analysis of Variance for Ibuprofen Content Deviation of Suspension Containing 3% Xanthan Gum as Suspending Agent

Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.00237	6	0.0004	5.70684	0.00348	2.84773
Within Groups	0.00097	14	6.9E-05			
Total	0.00334	20				

Table 62 Dependent Comparison (Duncan's New Multiple Range Test) for Ibuprofen Content Deviation of Suspension Containing 3% Xanthan Gum as Suspending Agent

	Week 0	Week 2	Week 4	Week 6	Week 8	Week 10	Week 12
Week 0	-	NS	S	S	S	S	S
Week 2		-	NS	S	S	S	S
Week 4			-	NS	S	NS	S
Week 6				3/43-	NS	NS	S
Week 8						NS	NS
Week 10						-	S
Week 12					- Company		-

Table 63 Analysis of Variance for Ibuprofen Content Deviation of Suspension Containing 3% Tragacanth as Suspending Agent

Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.00328	6	0.00055	6.76333	0.00158	2.84773
Within Groups	0.00113	14	8.1E-05			•
Total	0.00441	20	Altha			

Table 64 Dependent Comparison (Duncan's New Multiple Range Test) for Ibuprofen
Content Deviation of Suspension Containing 3% Tragacnath as
Suspending Agent

	Week 0	Week 2	Week 4	Week 6	Week 8	Week 10	Week 12
Week 0	-	S	S	S	NS	S	S
Week 2		-	S	S	S	NS	S
Week 4			.	NS	S	NS	NS
Week 6				1000	S	S	NS
Week 8						S	S
Week 10						-	NS
Week 12							-

Table 65 Analysis of Variance for Ibuprofen Content Deviation of Suspension Containing 2% Sodium Carboxymethylcellulose as Suspending Agent

Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.00301	6	0.0005	2.75752	0.05527	2.84773
Within Groups	0.00255	14	0.00018			
Total	0.00556	20				

Table 66 Dependent Comparison (Duncan's New Multiple Range Test) for Ibuprofen
Content Deviation of Suspension Containing 2% Sodium Carboxymethylcellulose
as Suspending Agent

	Week 0	Week 2	Week 4	Week 6	Week 8	Week 10	Week 12
Week 0	-	S	S	S	S	S	S
Week 2		-	NS	NS	NS	NS	S
Week 4			-	NS	NS	NS	NS
Week 6				1/53-	NS	NS	NS
Week 8						NS	NS
Week 10						-	NS
Week 12							-

Table 67 Analysis of Variance for Ibuprofen Content Deviation of Suspension Containing 3% Sodium Carboxymethylcellulose as Suspending Agent

Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.00038	6	6.3E-05	1.01592	0.45398	2.84773
Within Groups	0.00086	14	6.2E-05			
Total	0.00124	20		A		

Table 68 Dependent Comparison (Duncan's New Multiple Range Test) for Ibuprofen
Content Deviation of Suspension Containing 2% Sodium Carboxymethylcellulose
as Suspending Agent

Week 0	Week 2	Week 4	Week 6	Week 8	Week 10	Week 12
-	S	S	S	S	S	S
	-	NS	NS	NS	NS	NS
	N. C.		NS	NS	NS	NS
			1.00 mg	NS	NS	NS
					NS	NS
					-	NS
						-
			- S S	- S S S S NS NS NS - NS	- S S S S S - NS NS - NS NS - NS	- S S S S S S - NS

Table 69 Analysis of Variance for Ibuprofen Content Deviation of Suspension Containing 1% Modified Tapioca Starch as Suspending Agent

Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.00531	6	0.00089	4.12322	0.01360	2.84773
Within Groups	0.00301	14	0.00021			
Total	0.00832	20	AATT	l _M		

Table 70 Dependent Comparison (Duncan's New Multiple Range Test) for Ibuprofen Content Deviation of Suspension Containing 1% Modified Tapioca Starch as Suspending Agent

<u> </u>	Week 0	Week 2	Week 4	Week 6	Week 8	Week 10	Week 1
Week 0	-	NS	NS	S	S	S	S
Week 2		1 - 65	NS	S	S	S	S
Week 4	•		-	NS	NS	S	. S
Week 6					NS	NS	S
Week 8						NS	S
Week 10						-	NS
Week 12						. <u> </u>	

Table 71 Analysis of Variance for Ibuprofen Content Deviation of Suspension Containing 2% Modified Tapioca Starch as Suspending Agent

Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.00662	• 6	0.00110	10.9876	0.00013	2.84773
Within Groups	0.00141	14	0.00010			
Total	0.00802	20	AMA	4		

Table 72 Dependent Comparison (Duncan's New Multiple Range Test) for Ibuprofen Content Deviation of Suspension Containing 2% Modified Tapioca Starch as Suspending Agent

	Week 0	Week 2	Week 4	Week 6	Week 8	Week 10	Week 12
Week 0	-	NS	S	S	S	S	S
Week 2		-	S	S	S	S	S
Week 4				NS	S	S	S
Week 6				1000-	S	S	NS
Week 8					(A)	S	S
Week 10						-	S
Week 12							_

Table 73 Analysis of Variance for Ibuprofen Content Deviation of Suspension Containing 3% Modified Tapioca Starch as Suspending Agent

Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.00105	6	0.00017	1.55623	0.23159	2.84773
Within Groups	0.00157	14	0.00011			
Total	0.00262	20		1		

Table 74 Dependent Comparison (Duncan's New Multiple Range Test) for Ibuprofen Content Deviation of Suspension Containing 3% Modified Tapioca Starch as Suspending Agent

	Week 0	Week 2	Week 4	Week 6	Week 8	Week 10	Week 12
Week 0	•	NS	NS	NS	NS	S	S
Week 2		-	NS	NS	NS .	NS	NS
Week 4			-	NS	NS	S	S
Week 6				163	NS	S	S
Week 8						NS	S
Week 10						-	, NS
Week 12							

Table 75 Analysis of Variance for Ibuprofen Content Deviation of Suspension Containing 1% Modified Rice Starch as Suspending Agent

Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.00661	6	0.0011	10,6400	0.0002	2.8477
Within Groups	0.00145	14	0.0001			
Total	0.00806	20		4		

Table 76 Dependent Comparison (Duncan's New Multiple Range Test) for Ibuprofen Content Deviation of Suspension Containing 1% Modified Rice Starch as Suspending Agent

	Week 0	Week 2	Week 4	Week 6	Week 8	Week 16	Week 1
Week 0	-	S	S	S	S	S	S
Week 2		-	S	S	S	S	S
Week 4				NS	S	S	NS
Week 6			19/12/19	frien-	NS	S	NS
Week-8					-	NS	S
Week 10				٠.		-	S
Week 12							<u> </u>

Table 77 Analysis of Variance for Ibuprofen Content Deviation of Suspension Containing 2% Modified Rice Starch as Suspending Agent

Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.00300	6	0.00050	3.30952	0.03046	2.84773
Within Groups	0.00212	14	0.00015			
Total	0.00512	20		M		·

Table 78 Dependent Comparison (Duncan's New Multiple Range Test) for Ibuprofen Content Deviation of Suspension Containing 2% Modified Rice Starch as Suspending Agent

	Week 0	Week 2	Week 4	Week 6	Week 8	Week 10	Week 12
Week 0	•	NS	S	S	S -	S	S
Week 2		-	S	S	S	S	S
Week 4			-	NS	S	NS	S
Week 6				3/3-	S	NS	S
Week 8						NS	NS
Week 10						-	NS
Week 12						·	

Table 79 Analysis of Variance for Ibuprofen Content Deviation of Suspension Containing 3% Modified Rice Starch as Suspending Agent

Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups Within Groups	0.00149 0.00087		0.00025 6.2E-05	3.98954	0,01544	2,84773
Total	0.00237	20	MMA			

Table 80 Dependent Comparison (Duncan's New Multiple Range Test) for Ibuprofen Content Deviation of Suspension Containing 3% Modified Rice Starch as Suspending Agent

	Week 0	Week 2	Week 4	Week 6	Week 8	Week 10	Week 12
Week 0	_	NS	S	S	S	S	S
Week 2		-	S	S	S	S	S
Week 4			MENTER PORT	NS	NS	NS	S
Week 6				lain-	NS	NS	S
Week 8						S	NS
Week 10						-	S
Week 12							

Table 81 Analysis of Variance for Ibuprofen Content Deviation of Suspension Containing 2% Modified Glutinous Rice Starch as Suspending Agent

Source of Variation	SS	df	MS	F_	P-value	F crit
Between Groups	11.4005	6	1.90008	218.341	5.2E-13	2.84773
Within Groups	0.12183	14	0.0087			
Total	11.5223	20	AMIL	4	···	

Table 82 Dependent Comparison (Duncan's New Multiple Range Test) for Ibuprofen Content Deviation of Suspension Containing 2% Modified Glutinous Rice Starch as Suspending Agent

	Week 0	Week 2	Week 4	Week 6	Week 8	Week 10	Week 1
Week 0	_	NS	S	S	S	S	S
Week 2		-	S	S	S	S	S
Week 4			8161016(6)53	S	S	S	S
Week 6				1/2-	S	S	· S
Week 8						S	S
Week 10						-	NS
Week 12							

Table 83 Analysis of Variance for Ibuprofen Content Deviation of Suspension Containing 3% Modified Glutinous Rice Starch as Suspending Agent

Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	11.9760	6	1.9960	276,867	1.0 E-13	2.8477
Within Groups	0.1009	14	0.0072			
Total	12.0769	20	AMA			

Table 84 Dependent Comparison (Duncan's New Multiple Range Test) for Ibuprofen Content Deviation of Suspension Containing 3% Modified Glutinous Rice Starch as Suspending Agent

	Week 0	Week 2	Week 4	Week 6	Week 8	Week 10	Week 1
Week 0	-	S	S	S	S	S	S
Week 2		<u> </u>	S	S	S	S	S
Week 4			See (Charles	S	S	S	S
Week 6				1000	S	S	S
Week 8						S	S
Week 10						_	NS
Week 12							

Table 85 Analysis of Variance for Ibuprofen Content Deviation of Suspensions Containing
Different Type and Concentration of Suspending Agent

Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	13.875	13	1.0673	15.235	5E-17	1.8385
Within Groups	5.8846	84	0.0701			
Total	19.76	97				

Table 86 Dependent Comparison (Duncan's New Multiple Range Test) for Ibuprofen Content Deviation of Suspensions
Containing Different Type and Concentration of Suspending Agents

	XG 1%	XG 2%	XG 3%	TG 3%	SCMC	2%SCMC 3%	MTS 1%	MTS 2%	MTS 3%	MRS 1%	MRS 2%	MRS 3%	MGS 2%	MGS 3%
XG 1%	-	NS	NS	NS	NS		NS	NS	NS	NS	NS	NS	S -	S
XG 2%		•	NS	NS	NS	NS	NS	NS.	NS	NS	NS	NS	S	S
XG 3%			-	NS	NS		NS	NS	NS	NS	NS	NS	S	S
TG 3%				-	NS		NS	NS	NS	NS	NS	NS	S	S
SCMC 2%	-					NS	NS	NS	NS	NS	NS	NS	S	S
SCMC 3%						•	NS	NS	NS	NS	NS	NS	S	S
MTS 1%							•	NS	NS	NS	NS	NS	S	S
MTS 2%								-	NS	NS	NS	NS	S	S
MTS 3%									-	NS	NS	NS	S	S
MRS 1%										•	NS	NS	S	S
MRS 2%					30							NS	S	S
MRS 3%										,		•,	S	S
MGS 2%													-	S
MGS 2% MGS 3%										. 0	,			-

APPENDIX III

Table 87 Viscosity Calculation of Ibuprofen Suspension Containing 1% MTS

Sample: Ibuprofen Suspension Containing 1% Modified Tapioca Starch (MTS)

Evaluated Condition: Room Temperature - After 12 weeks

Instrument: Haake Viscometer

Data:

Point	Time (min)	Shear rate (1/s)	Shear stress (Pa)	Apparent Viscosity (mPas)
1	0.394		23.430	
2	0.800	196.500	34.570	175.929
3	1.199	297.600	43.020	144.556
4	1.594	396.700	49.470	124.704
5	1.999	498.300	54.610	109.593
6	2.398	599.300	60.430	100.834
7	2.798	698.400	64.950	92.998
8	3.197	800,000	70.090	87.613
9	3.596	898.200	74.700	83.166
10	3.996	999.400	78.900	78.947
11	4.398	902.600	73.180	81.077
12	4.796	802.100	67.200	83,780
13	5.196	703,600	61.800	87.834
14	5.595	601.800	56.290	93,536
15	5,994	502,800	49.990	99.423
16	6.398	403.900	44.120	109.235
17	6.798	302,500	37.140	
18	7.199	202.600	28.840	142.349
19	7.599	102.800	18.800	182.879
20	7.996	1.582	1.123	709.861

Viscosity of Suspension

= Average Viscosity of Point 1-19

= 117.921 mPa

Standard Deviation

=42.659

APPENDIX IV

Phosphate Buffer pH 7.2 (USP XXIII)

Preparation: place 50 mL of 0.2 M monobasic potassium phosphate solution (prepared by dissolving 27.22 g of KH₂PO₄ in 1,000 mL water) in a 200 mL volumetric flask, add 34.7 mL of 0.2 M sodium hydroxide solution, then add water to volume

Storage: in chemically resistant, tight containers such as Type I glass bottles.

Use the solution within three months

APPENDIX V

Acacia

Chemical Name

Acacia

CAS Registry Number:

9000-01-5

Empirical Formula

Acacia is a complex

Molecular Weight

~240,000 - 580,000

Appearance

Acacia occurs as white or yellowish-whitecolored thin

flakes, spheroidal tears, granules or powders. It is odorless

and has bland taste.

Solubility

soluble 1 in 20 of glycerin, propylene glycol, 1 in 2.7 of

water practically insoluble in ethanol (95%)

Specific gravity

1.35-1.49

Stability

Aqueous solutions are subjected to bacterial and enzymatic

degradation but may be preserved by initially boiling the

solution for a short time to inactivate any enzymes present.

Incompatibility

Acacia is incompatible with a number of substances

including amidopyrine, cresol, 95% ethanol, ferric salts,

morphine, phenol, physostigmine, tannins, thymol, and

vanillin.

Avicel RC-591

Chemical Name

Microcrystalline Cellulose and Sodium

Carboxymethylcellulose

Composition

Avicel RC-591 is a modified microcrystalline cellulose

product with a composition, on a dry basis, of 89%

microcrystalline cellulose and 11% Sodium

carboxymethylcellulose.

Appearance

Microsrystalline cellulose is a purified, partially

depolymerized cellulose that occurs as a white-colored,

odorless, tasteless, crystalline powder composed of porous

particles. It is commercially available in different particle

size grades which have different properties and

applications.

Solubility

slightly soluble in 5% w/v sodium hydroxide practically

insoluble in water, dilute acids and most organic

solvents

Stability

Microcrystalline cellulose is stable, though hygroscopic

material. Avicel RC-591 is stable over a pH range of 3.5 -

11. The bulk material should be stored in a well-closed

container in a cool, dry place.

Incompatibility

Incompatible with strong oxidizing agents. Avicel RC-591

dispersions are flocculated by small amounts of electrolyte

and cationic polymers and surfactants

Sodium Carboxymethylcellulose (SCMC)

Chemical Name

Cellulose, carboxymethyl ether, sodium salt

CAS Registry Number:

9004-32-4

Structural Formula

 $R = -CH_2COOH$

Molecular Weight

90,000 - 700,000

Appearance

a white to almost white colored, odorless, granular powder

Solubility

easily dispersed in water at all temperatures, forming clear, colloidal solutions. The aqueous solubility varies with the

degree of substitution.

practically insoluble in acetone, ethanol, ether and toluene

Stability

Sodium carboxymethylcellulose is stable, though hygroscopic material. Under high humidity conditions sodium carboxymethylcellulose can absorp a large quantity (>50%) of water. Aqueous solutions are stable between pH 2-10; below pH 2 precipitation can occur while above pH 10 solution viscosity rapidly decreases. Generally, solutions exhibit maximum viscosity and stability at pH 7-9.

Incompatibility

Sodium carboxymethylcellulose is incompatible with strongly acidic solutions with the soluble salts of iron and some other metals, such as aluminum, mercury and zinc; it is also incompatible with xanthan gum. Precipitation can occur at pH < 2 and when mixed with 95% ethanol.

Sodium Alginate

Chemical Name

Sodium alginate

CAS Registry Number:

9005-38-3

Empirical Formula

Sodium alginate consists chiefly of the sodium salt of alginic acid, a linear glycuronan polymer consisting of a mixture of β -(1->4)-D-mannosyluronic acid and α -(1->4)-

L-gulosyluronic acid residues.

Appearance

an odorless and tasteless, white to pale yellowish-brown

colored powder

Solubility

slowly soluble in water, forming a viscous colloidal solution practically insoluble in ethanol, ether and ethanol/water mixtures in which the ethanol content is greater than 30%, organic solvents and acids

Stability

Sodium alginate is a hygroscopic material although it is very stable if stored at low relative humidities and a cool temperature. Aqueous solutions of sodium alginate are most stable between pH 4-10.

Incompatibility

Sodium alginate is incompatible with acridine derivatives, crystal violet, phenylmercuric acetate and nitrate, calcium salts, heavy metals and ethanol in concentrations greater than 5%. High concentrations of electrolytes cause an increase in viscosity until salting-out occurs if more than 4% of sodium chloride is presented.

Xanthan Gum

Chemical Name

Xanthan gum

CAS Registry Number:

11138-66-2

Empirical Formula

Each xanthan gum repeat unit contains five sugar residues: two glucose; two mannose and one glucuronic acid. The

polymer backboneconsists of four β -D-glucose units linked

at the 1 and 4 positions, and is therefore identical in

structure to cellulose.

Molecular Weight

2 x 106

Appearance

a cream or white-colored, odorless, free-flowing, fine

powder

Solubility

soluble in cold or warm water

practically insoluble in ethanol and ether

Specific gravity

1,600 at 25 C

Stability

Xanthan gum is a stable material. Aqueous solutions are

stable over a wide pH range (pH 3-12) and temperature

between 10-60 C.

Incompatibility

Xanthan gum is an anionic material and is not usually

compatible with cationic surfactant, polymers and

preservatives since precipitation occurs.

Tragacanth

Chemical Name

Tragacanth gum

CAS Registry Number:

9000-65-1

Molecular Weight

~840,000

Appearance

flattened, lamellated, frequently curved fragments or

straight or spirally twisted linear pieces from 0.5-2.5 mm in

thickness; it may also be obtained in a powder form. White

to yellowish in color, tragacanth is a translucent, odorless substance, with an insipid mucilaginous taste.

Solubility

practically insoluble in water, 95% ethanol and other organic solvents. Although insoluble in water, tragacanth gum swell rapidly in 10 times its own weight of cold water to produce viscous colloidal sols or semi-gels.

Specific gravity

1.250-1.385

Stability

Flaked and powdered forms of tragacanth are stable. Tragacanth gels are liable to microbial contamination with enterobacterial species, stock solutions should contain suitable antimicrobial preservatives. Tragacanth dispersions are most stable at pH 4-8 although stability is satisfactory at low pH. For this reason, it is often chosen as the thickener for low pH food products such as salad dressings and sauces.

Incompatibility

At pH 7, tragacanth reduces the efficacy of the antimicrobial preservatives benzalkonium chloride, chlorobutanol and methylparaben, and to the lesser extent phenol and phenylmercuric acetate. At pH < 5, tragacanth has no adverse effects on the preservative efficacy of benzoic acid, chlorobutanol or methylparaben. The addition of strong mineral and organic acids can reduce the viscosity of tragacanth dispersions.

Ibuprofen

Chemical Name : α-methyl-4(2-methylpropyl)-benzeneacetic acid

2-(4-Isobutylphenyl)propionic acid

Chemical Formula

 $C_{13}H_{18}O_2$

Structural Formula

H₃C-CH-COOH

CAS No.

15687-27-1

Molecular Weight

206.29

Description

white crystalline powder or colorless crystals

Solubility

practically insoluble in water

soluble in 1.5 parts of ethanol and of acetone, 2 parts of

ether

freely soluble in dichloroethane

readily soluble in most organic solvents

soluble in dilute solution of alkali hydroxides and

carbonates

Melting Range

75-78°c

Dissociation Constant:

pKa 5.3

pKa (ethanol 60%)

5.2

Stability

In the absence of oxygen, Ibuprofen was found to be stable,

even at high temperatures (105-110 C) for at least four

days.

VITA

Miss Ornanong Suwannapakul was born in Chiangmai, Thailand on May 18, 1971. She has received her Bachelor of Pharmacy degree (B.Pharm) with second class honour from the Faculty of Pharmacy, Chiangmai University, Chiangmai in March 1994. In June of 1994, she was accepted to the Graduate School in Pharmaceutical Science of Chulalongkorn University. Miss Suwannapakul was a recipient of the University Developing Council (UDC) scholarship in the area of Manufacturing Pharmacy as required by the Faculty of Pharmacy, Chiangmai University.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย