APPENDIX

We now generalize the last theorem from the theory of skewsemifields to skewing.

<u>Definition 1.</u> Let $(S, +, \bullet)$ be a semiring with a multiplicative zero 0. S is called a <u>skewring</u> if (S, +) is a group.

<u>Definition 2.</u> Let R be an ordered skewring. Then the set $P = \{x \in R \mid x \ge 0\}$ is called the <u>positive cone</u> of R.

<u>Definition 3.</u> Let R be an ordered skewring and $x \in R$. Then x is dense if there for every $y \in R$ such that x < y, there exists a $z \in R$ such that x < z < y.

If x is not dense then we shall call x discrete.

<u>Definition 4.</u> Let R and M be skewrings. A function $f: R \rightarrow M$ is called an <u>order homomorphism</u> if and only if f is an isotone homomorphism of skewrings.

The definitions of <u>order monomorphisms</u>, <u>order epimorphisms</u> and <u>order</u> isomorphisms are defined as one would expect. If there exists an order ismorphism from R onto M, we denote this by R ≅o M.

<u>Definition 5.</u> A totally ordered skewring R is called an Archemedean skewring if and only if for all $x, y \in R$ if 0 < x < y then there exists an $n \in \mathbf{Z}^+$ such that y < nx.

<u>Theorem 6.</u> A totally ordered skewring R can be embedded into a complete totally ordered skewring if and only if it is Archimedean.

Proof Let R > 1.

- 1. 0 is dense. Let \boldsymbol{R} be the set of all subsets D of R having the property that :
 - 1) $\emptyset \neq D \neq R$.
 - 2) For all $x, y \in R$, $x \in D$ and y < x imply that $y \in D$.
 - 3) For every $x \in D$, there exists a $y \in D$ such that x < y.

Define + on R by $A+B=\{a+b \mid a\in A \text{ and } b\in B\}$ for all $A,B\in R$. Clearly, $A+B\neq \emptyset$.

Claim 1, there exists a $p \in RVA$ such p > 0. Since $A \neq R$, there exists an $x \in RVA$. Case 1: x > 0. Let p = x.

Case 2: x=0. Then there exists a $p \in R$ such that p>0, so $p \notin A$.

Case 3: x<0. Then -x>0 and $-x \notin A$. Let p=-x, so we have claim 1.

Similarly, there exists a $q \in R\setminus B$ such that q>0. Let $a \in A$ and $b \in B$. Then a < p and b < q, so a+b < p+q. Then $p+q \notin A+B$, so $A+B \ne R$. Next, let x, $y \in R$ be such that y < x and $x \in A+B$. Then there exist $a \in A$ and $b \in B$ such that x=a+b, so y-b < a. Then $y-b \in A$, so $y=(y-b)+b \in A+B$. Next, let $x \in A+B$. Then there exist $a \in A$ and $b \in B$ such that x=a+b. Since $a \in A$, there exist $a \in A$ and $a \in B$ such that a < a and $a \in B$ such that a < a and $a \in B$. Hence $a \in A$ and $a \in B$ such that a < a and $a \in B$. Hence $a \in A$ are associative law holds.

Let $D_0 = \{ x \in \mathbb{R} \mid x < 0 \}$. Then $D_0 \in \mathbb{R}$. Let $A \in \mathbb{R}$. Let $a \in A$ and $y \in D_0$. Then y < 0, so a + y < a. By 2), $a + y \in A$, so $A + D_0 \subseteq A$. Next, let $a \in A$. Then there exists an $x \in A$ such that a < x, so a - x < 0. Then $a = a + (a - y) \in A + D_0$, so $A \subseteq A + D_0$. Hence $A = A + D_0$.

Let $D \in \mathbb{R} \setminus \{D_0\}$. Let $-D = \{p \in \mathbb{R} \mid \text{there exists an } q \in \mathbb{R} \setminus D \text{ such that } p < -q \}$. By claim 1, there exists a $p \in \mathbb{R} \setminus D$ such that p > 0. Let x = p + p. Then x > p, so -x < -p. Hence $-x \in -D$, so $-D \neq \emptyset$. Since $D \neq \emptyset$, there exists a $d \in D$. Let $x \in \mathbb{R} \setminus D$. Then d < x, so -x < -d. Hence $-d \notin -D$. Next, let $x, y \in \mathbb{R}$ such that y < x and $x \in -D$. Then there exists a $q \in \mathbb{R} \setminus D$ such that y < x < -q,

so $y \in D$. Next, let $p \in D$. Then there exists a $q \in R\setminus D$ such that x < -q, so there exists an $r \in R$ such that p < r < -q. Then $r \in D$, hence $-D \in R$.

To show that $D+(-D)\subseteq D_0$, let $x\in D$ and $y\in -D$. Then there exists a $q\in R\setminus D$ such that y<-q, so x< q. Then x+y< q+y< q+(-q)=0, so $x+y\in D_0$. Hence $D+(-D)\subseteq D_0$.

Claim 2, for all $A \in \mathbb{R}$ and $x \in \mathbb{R}$, if x > 0 and $0 \in A$ imply that there exists a $q \in \mathbb{R} \setminus A$ such that $q - x, -x + q \in A$.

Let $0 \in A$ and x > 0. Suppose that $nx \in D$ for all $n \in Z^{+}$. Let $p \in R$.

Case 1: $p \le x$. Then $p \in A$.

Case 2: p > x. By the Archemedean property, there exists an $N \in \mathbf{Z}^+$ such that p < Nx, so $p \in A$. Then $A = \mathbf{R}$ which is a contradiction, so there exists an $N_0 \in \mathbf{Z}^+$ such that $N_0 x \notin D$.

Let $n_0 = \min \{ n \in \mathbb{Z}^+ / nx \notin \mathbb{D} \}$. Then $n_0 \ge 1$.

Case 1: $n_0 = 1$. Then $(1 - n_0)x = (n_0 - 1)x = 0 \in A$, so let q = x.

Case 2: $n_0 > 1$. Then $n_0 - 1 \in \mathbb{Z}^+$, so $(n_0 - 1)x = (n_0 - 1)x \in A$. Let $q = n_0 x$, so we have claim 2.

To show that $D_0 \subseteq D + (-D)$, let $x \in D_0$. Then x < 0.

Case 1: $0 \in D$. Then $x \in D$. Since 0 is dense, there exists a $d \in R$ such that x < d < 0, so $d \in D$. Then 0 < d - x. By claim 2, there exists a $t \in R\setminus D$ such that $[-(d-x)+t] \in D$. Since d < 0, -t+d < -t, so $(-t+d) \in -D$. Then $x = [-(d-x)+t]+(-t+d) \in D+(-D)$.

Case 2: $0 \notin D$. Then for every $y \in D$, y < 0, hence $D \subseteq D_0$. Then $D \subset D_0$, so there exists a $q \in D_0 \setminus D$. Then q < 0, so 0 < -q. Hence $0 \in -D$. By definition, $-(-D) = \{ m \in R \mid \text{there exists an } n \in R \setminus (-D) \text{ such that } m < -n \}$. To show that $-(-D) \subseteq D$, let $z \in -(-D)$. Then there exists an $n \in R \setminus (-D)$ such that z < -n. Suppose that $z \notin D$. If $n \le -z$ then $n \in -D$ which is a contradiction. Then n > -z, so -n < z which is a contradiction. Then $z \in D$, so $-(-D) \subseteq D$. Since 0 is dense, there exists a $d \in R$ such that x < d < 0, so 0 < -x + d. By claim 2, there exists

a $t \in R\setminus D$ such that $t-(-x+d) \in D$. Since d<0, d-t<-t, so $d-t\in -(-D)$. Then $x=(d-t)+[t-(-x+d)]\in D+(-D)$. Thus $D+(-D)=D_0$, hence R is a group.

Define \leq on R by $D \leq C$ if and only if $D \subsetneq C$, for all $C, D \in R$. Clearly, R is an ordered group. To show that \leq is a total order, let $C, D \in R$. Suppose that $C \not\subset D$ and $D \not\subset C$. Then there exist $c \in C \setminus D$ and $d \in D \setminus C$. Thus c < d, so $c \in D$ which is a contradiction. Then $C \subsetneq D$ or $D \subsetneq C$, so $C \leq D$ or $D \leq C$.

To show that R is complete, let $\{D_i \mid i \in I\}$ be a family in R such that there exists a $C \in R$ with the property that $D_i \leq C$ for all $i \in I$. Let $D = \bigcup D_i$. Since $I \neq \emptyset$, there exists an $i_o \in I$ such that $\emptyset \neq D_{i_o} \subseteq D$. Since $C \neq R$, there exists an $a \in R \setminus C$, so $a \notin D_i$ for all $i \in I$. Then $a \notin D$. Next, let $p, q \in R$ be such that p < q and $q \in D$. Then there exists an $i_o \in I$ such that $q \in D_{i_o}$ so $p \in D_{i_o} \subseteq D$. Next, let $x \in D$. Then there exists an $i_o \in I$ such that $x \in D_{i_o}$ so there exists a $y \in D_{i_o} \subseteq D$ with the property that x < y. Then $x \in C$ clearly, $x \in D$ is a least upper bound of $x \in D$, $x \in C$ is complete.

Let $A, B \in \mathbf{R}$ be such that $A, B \ge D_0$. Define $AB = \{ z \in \mathbf{R} \mid \text{there exist} \ a \in A \mid D_0 \text{ and } b \in B \mid D_0 \text{ such that } z < ab \ \} \cup D_0$. Then $AB \ne \emptyset$. Since $A, B \ne \emptyset$, there exist $x \in R \mid A$ and $y \in R \mid B$, so $x, y \ge 0$. Then $xy \ge 0$, so $xy \notin D_0$. If $A = D_0$ or $B = D_0$ then $xy \notin D_0 = AB$. Suppose that $A \ne D_0$ and $B \ne D_0$. Let $a \in A \mid D_0$ and $b \in B \mid D_0$. Then x > a and y > b, so $xy \ge ab$. Then $xy \notin AB$. Clearly, for all $x \in AB$ and $y \in R$, $x \in AB$ and y < x imply that $y \in AB$. Next, let $x \in AB$.

Case 1: $x \in D_0$. Then there exists a $p \in D_0 \subseteq AB$ such that x < p.

Case 2: $x \notin D_0$. Then there exist $a \in A \setminus D_0$ and $b \in B \setminus D_0$ such that x < ab. Since 0 is dense, there exists a $p \in R$ such that $x , so <math>p \in AB$. Hence

$$\text{Define} \bullet \text{ on } \mathbf{R} \text{ by } \mathsf{A} \bullet \mathsf{B} = \begin{cases} \mathsf{AB} \text{ if } \mathsf{A} \geq \mathsf{D}_0 \text{ and } \mathsf{B} \geq \mathsf{D}_0 \quad , \\ -(\mathsf{A}(\mathsf{-B})) \text{ if } \mathsf{A} \geq \mathsf{D}_0 \text{ and } \mathsf{B} < \mathsf{D}_0 \quad , \\ -((\mathsf{-A})\mathsf{B}) \text{ if } \mathsf{A} < \mathsf{D}_0 \text{ and } \mathsf{B} \geq \mathsf{D}_0 \quad , \\ (\mathsf{-A})(\mathsf{-B}) \text{ if } \mathsf{A} < \mathsf{D}_0 \text{ and } \mathsf{B} < \mathsf{D}_0 \quad . \end{cases}$$

 $AB \in \mathbf{R}$.

Claim 3, for all A, B, C \in R, A, B, C \geq D₀ imply that A(BC) = (AB)C.

Let A, B, C \in R be such that A, B, C \geq D₀.

Case 1: there exist a, b > 0 such that ab = 0. Let X, Y \in R be such that X and Y > D₀. Next, Let $x \in X \setminus D_0$ and $y \in Y \setminus D_0$. If x = 0 or y = 0 then xy = 0. Suppose that x, y > 0.

Subcase 1.1: $0 < x \le a$ and $0 < y \le b$. Then $0 \le xy \le ab = 0$, so xy = 0.

Subcase 1.2: 0 < a < x and $0 < y \le b$. By the Archemedean property, there exists an $n \in \mathbb{Z}^+$ such that x < na. Then $0 \le xy \le (na)b \le n(ab) = 0$, so xy = 0.

Subcase 1.3: $0 < x \le a$ and 0 < b < y. The proof is similar to the proof of subcase 1.2.

Subcase 1.4: 0 < a < x and 0 < b < y. By the Archemedean property, there exist $n, m \in \mathbb{Z}^+$ such that x < na and y < mb. Then $0 \le xy \le (na)(mb) = (nm)(ab) = 0$, so xy = 0. Hence $XY = D_0$, so $A(BC) = D_0 = (AB)C$.

Case 2: for all a, b > 0, ab > 0. Then for all $a, b, c \in R$, a < b and 0 < c imply that ac < bc and ca < cb. To show that $(AB)C \subset A(BC)$, Let $x \in (AB)C$.

Subcase 2.1: $x \in D_0$. Then $x \in A(BC)$.

Subcase 2.2: there exist $a \in A \setminus D_0$ and $p \in BC \setminus D_0$ such that x < ap. Then there exist $b \in B \setminus D_0$ and $c \in C \setminus D_0$ such that p < bc, so $x < ap \le a(bc) = (ab)c$. Since a and $b \ge 0$, $ab \ge 0$, so $ab \notin D_0$. There exist $k \in A$ and $l \in B$ such that a < k and b < l, so k > 0 and l > 0. Then $ab \le kb < kl$, so $ab \in AB \setminus D_0$. Hence $x \in (AB)C$, so $A(BC) \subseteq (AB)C$. Similarly, $(AB)C \subseteq A(BC)$. Therefore (AB)C = A(BC), so we have claim 3.

To show • is associative, let A, B, C ∈ R.

Case 1: A, B, $C \ge D_0$. Then done.

Case 2: A, B, $\geq D_0$ and C $< D_0$. Then A(BC) = A[-(B(-C))] = -[A(B(-C))] = -[(AB)(-C)] = (AB)C = (AB)C.

Case 3: A, C \geq D₀ and B < D₀. Then A(BC) = A[-((-B)C)] = -[A((-B)C)] = -[(A(-B))C] = [-(A(-B))]C = (AB)C.

Case 4: $A \ge D_0$ and B, C < D_0 . Then A(BC) = A[(-B)(-C)] = A[(-B)(-C)]

= [A(-B)](-C)] = (-(-[(A(-B)]))(-C) = [-(A(-B))]C = (AB)C.

Case 5: $A < D_0$ and B, $C \ge D_0$. Then A(BC) = A(BC) = -[(-A)(BC)]

= -[((-A)B)C] = -[-(-[(-A)B])] = (-[(-A)B])C = (AB)C.

Case 6: A, C < D₀ and B \geq D₀. Then A(BC) = A[- (B(-C))] = (-A)[B(-C)]

= [(-A)B](-C) = [-(-[(-A)B])]C = -[(-A)B]C = (AB)C.

Case 7: A, B < D₀ and C \geq D₀. Then A(BC) = A[- ((-B)C)] = (-A)[(-B)C]

= [(-A)(-B)]C) = [(-A)(-B)]C = (AB)C.

Case 8: A, B, C < D₀. Then A(BC) = A[(-B)(-C)] = -[(-A)((-B)(-C))]

= -[((-A)(-B))(-C)] = [(-A)(-B)]C = (AB)C.

Claim 4, for all A, B, C \in R, A, B, C \geq D, imply that A(B + C) = AB + AC.

Let A, B, C \in R be such that A, B, C \geq D₀.

If there exist a, b > 0 such that ab = 0 then $A(B+C) = D_0 = D_0 + D_0 = AB + AC$, so done. Suppose that for all a, b > 0, ab > 0. Let $x \in A(B+C)$.

Case 1: $x \in D_0$. Then $x \in AB + AC$.

Case 2: there exist $a \in A \setminus D_0$ and $p \in (B + C) \setminus D_0$ such that $0 \le x < ap$. Then there exist $b \in B$ and $c \in C$ such that p = b + c, so x < ap = a(b + c) = ab + ac. Since $a \in A$, there exists $a \in A \setminus D_0$ such that a < c, so there exist $c \in A \setminus D_0$ and $c \in A \setminus D_0$ such that c < c, so $c \in A \setminus D_0$ such that c < c, so $c \in A \setminus D_0$ such that c < c, so $c \in A \setminus D_0$ such that c < c, so $c \in A \setminus D_0$ such that c < c and $c \in A \setminus D_0$ such that c < c and $c \in A \setminus D_0$ such that $c \in A \setminus D_0$ such that

Next, let $x \in AB + AC$. Then there exist $y \in AB$ and $z \in AC$ such that x = y + z.

Case 1: $y, z \in D_0$. Then x = y + z < z, so $x \in AB + AC$.

Case 2: $y \in D_0$ and there exist $a \in A \setminus D_0$ and $c \in C \setminus D_0$ such that $0 \le z < ac$. Then $x = y + z < z < ac = a(0 + c) \in A(B + C)$.

Case 3: there exist $a \in A \setminus D_0$ and $b \in B \setminus D_0$ such that $0 \le y < ab$ and $z \in D_0$. The proof is similar to the proof of case 2.

Case 4: there exist $a_1, a_2 \in A \setminus D_0$, $b \in C \setminus D_0$ and $c \in C \setminus D_0$ such that $0 \le y < a_1b$ and $0 \le z < a_2c$. WLOG, suppose that $a_1 \le a_2$. Then $x = y + z < a_1b + a_2c \le a_2b + a_2c$

 $= a_2(b+c) \in A(B+C)$, so $AB+AC \in A(B+C)$, Then A(B+C) = AB+AC, so we have claim 4.

To show \bullet is distributive over + in R, let X, Y, Z \in R.

Case 1: $X, Y, Z \ge D_0$. Then done.

Case 2: $X, Y, \ge D_0$ and $Z < D_0$.

Subcase 2.1: $Y + Z \ge D_p$. Then X(Y + Z) - (XZ) = X(Y + Z) - (-[X(-Z)])

= X(Y + Z) + X(-Z) = X[(Y + Z) + (-Z)] = XY, so X(Y + Z) = (XY) + (XZ).

Subcase 2.2: $Y + Z < D_0$. Then -(XY) + [X(Y + Z)] = -(XY) + (-[X(-(Y + Z))])

= -[XY + X(-Y-Z)] = -[X(Y + (-Y-Z))] = -[X(-Z)] = XZ, so X(Y + Z)

=(XY)+(XZ).

Case 3: $X, Z \ge D_0$ and $Y < D_0$. The proof is similar to the proof of case 2.

Case 4: $X \ge D_0$ and Y, $Z < D_0$. Then $Y + Z < D_0$, so X(Y + Z) = -[X(-(Y + Z))]

= -[X(-Y-Z)] = -[X(-Y) + X(-Z)] = -[X(-Y)] + (-[X(-Z)]) = (XY) + (XZ).

Case 5: $X < D_0$ and $Y, Z \ge D_0$. Then X(Y + Z) = -[(-X)(Y + Z)]

= -[((-X)Y) + ((-X)Z)] = -[(-X)Y] + [(-X)Z] = (XY) + (XZ).

Case 6: $X, Z, < D_0$ and $Y \ge D_0$.

Subcase 6.1: $Y + Z \ge D_0$. Then X(Y + Z) - (XZ) = -[(-X)(Y + Z)] - [(-X)(-Z)]

= -[(-X)(Y+Z) + (-X)(-Z)] = -[(-X)(Y+Z-Z)] = -[(-X)Y] = XY, so X(Y+Z)

= (XY) + (XZ).

Subcase 6.2: $Y + Z < D_0$. Then -(XY) + [X(Y + Z)]

= -[-(-X)Y] + [(-X)(-(Y+Z))] = (-X)Y + (-X)(-Y-Z) = (-X)[Y + (-Y-Z)]

= (-X)(-Z) = XZ, so X(Y + Z) = (XY) + (XZ).

Case 7: $X, Y \ge D_0$ and $Z \ge D_0$. The proof is similar to the proof of case 6.

Case 8: X, Y, Z < D₀. Then Y + Z < D₀, so X(Y + Z) = (-X)(-(Y + Z)) = (-X)(-Y - Z)

= (-X)[(-Y) + (-Z)] = (-X)(-Y) + (-X)(-Z) = (XY) + (XZ).

Hence R is a skewring, so R is a complete totally ordered skewring.

Let $x \in \mathbb{R}$. Let $D_x = \{ y \in \mathbb{R} \mid y < x \}$. Clearly, $D_x \in \mathbb{R}$. Define $i : \mathbb{R} \to \mathbb{R}$ by $i(x) = D_x$ for every $x \in \mathbb{R}$. To show that i is injective, let $x, y \in \mathbb{R}$ be such that i(x) = i(y). If $x \neq y$ then $D_x \neq D_y$ which is a contradiction. Then x = y, so i is injective.

Let $x,y\in R$. To show that $D_x+D_y\subseteq D_{x+y}$, let $a\in D_x$ and $b\in D_y$. Then a< x and b< y, so a+b< x+y. Then $a+b\in D_{x+y}$, so $D_x+D_y\subseteq D_{x+y}$. Next, let $c\in D_{x+y}$. Then c< x+y, so c-y< x. Hence there exists an $r\in R$ such that c-y< x-y, so $r\in D_x$. Since c-y< r, -r+c< y, we get that $-r+c\in D_y$. Then $c=r+(-r+c)\in D_x+D_y$, so $D_{x+y}\subseteq D_x+D_y$. Thus $i(x)+i(y)=D_x+D_y=D_{x+y}=i(x+y)$. Claim 5, for all $x,y\in R$, $x,y\geq 0$ imply that $D_xD_y=D_{xy}$. Let $x,y\in R$ be such that $x,y\geq 0$. If x=0 or y=0 then done. So suppose that x,y>0. Let $z\in D_xD_y$.

Case 1: $z \in D_0$. Then $z \in D_x$.

Case 2: there exist $a \in D_x \setminus D_0$ and $b \in D_y \setminus D_0$ such that $0 \le z < ab$. Then $z < ab \le xy$, so $z \in D_{xy}$. Hence $D_x D_y \subseteq D_{xy}$.

To show that $D_{xy} \subseteq D_x D_y$, let $c \in D_{xy}$. Then c < xy. If there exist a, b > 0 such that ab = 0 then $c \in D_0 = D_x D_y$. So suppose that for all a, b > 0, ab > 0. Since c < xy, xy - c > 0. Let z = xy - c. Then c = xy - z and z > 0. Suppose that for all $p \in D_x \setminus D_0$ and for all $q \in D_y \setminus D_0$, $pq \le c$.

Claim (*), for all $0 < r_x \le x$ and $0 < r_y \le y$, $z < xr_y + r_x y$.

Let $0 < r_x \le x$ and $0 < r_y \le y$. Then $0 \le x - r_x$ and $0 \le y - r_y$, so $x - r_x \in D_x \setminus D_0$ and $y - r_y \in D_y \setminus D_0$. By hypothesis, $xy - z = c \ge (x - r_x)(y - r_y) = xy - xr_y - r_x y + r_x r_y$, so $-z \ge -xr_y - r_x y + r_x r_y > -xr_y - r_x y$. Hence $z < xr_y + r_x y$, so we have claim (*).

Since z > 0, there exist p, q > 0 such that z = p + q. Let $C = \{ D_r / 0 < r \le y \}$. Then $\inf(C) = D_0$.

Claim (**), for all $D > D_0$, $\inf(DC) = D(\inf(C)) = D_0$.

Let $D > D_0$ and $D_r \in C$. Then $D_r \ge \inf(C)$, so $DD_r \ge D(\inf(C))$. Then $\inf(DC)$ exists, say B and $B \ge D_0$. Let $0 < r \le y$. Then there exists an $r_1 \in R$ such that $0 < r_1 < r \le y$. Then $0 < r - r_1 \le y - r_1 < y$. Let $r_2 = r - r_1$. Then $r = r_1 + r_2$, so $D_r = D_{r1 + r2} = D_{r1} + D_{r2}$. Since D_{r1} , $D_{r2} \in C$, $DD_r = D(D_{r1} + D_{r2}) = DD_{r1} + DD_{r2} \ge \inf(DC) + \inf(DC) = B + B$. Then $B = \inf(DC) \ge B + B$, so $D_0 \ge B$. Hence $\inf(DC) = D_0$, so we have claim (**).

Since |R| > 1, there exists a $t \in R$ such that t > 0, x + t > x > 0. Then $D_{x+t} > D_0$.

By claim (**), $\inf(D_{x+t}C) = D_0$. Since p > 0, $D_p > D_0$, so there exists a $0 < d \le y$ such that $D_{x+t}D_d < D_p$. Then there exists an $r_y \in R$ such that $0 < r_y < d$, so $xr_y < xd$. Then $xr_y \in D_{x+t}D_d < D_p$, so $xr_y < p$.

Similarly, there exists an $0 < r_x \le x$ such that $r_x y < q$. Then $xr_y + r_x y which is contradicts to claim (*). Hence there exist <math>a \in D_x \setminus D_0$ and $b \in D_y \setminus D_0$ such that c < ab, so $c \in D_x D_y$. Thus $D_{xy} \subseteq D_x D_y$ and hence $D_x D_y = Dxy$, so we have claim 5.

Let $p, q \in R$.

Case 1: $p, q \ge 0$. Then done.

Case 2: p < 0 and $q \ge 0$. Then -p > 0. Since -[(-p)q] = pq, i(pq)

 $=i(-[(-p)(q)])=D_{-\{(-p)q\}}=-D_{(-p)q}=-[D_{(-p)}D_{q}]=D_{p}D_{q}=i(p)i(q).$

Case 3: $p \ge 0$ and q < 0. The proof is similar to the proof of case 2.

Case 4: p, q < 0. Then -p, -q > 0. Since pq = (-p)(-q), i(pq) = i((-p)(-q))

 $= D_{(-p)(-q)} = (D_{(-p)})(D_{(-q)}) = (-D_p)(-D_q) = D_pD_q = i(p)i(q)$, so i is a monomorphism.

Clearly, i is isotone, so $i(P_R) \subseteq P_{i(R)}$. To show that $P_{i(R)} \subseteq i(P_R)$, Let $D_x \in P_{i(R)}$. Then $D_x \ge D_0$. If x < 0 then $D_x < D_0$ which is a contradiction. Then $x \ge 0$, so $i(P_R) = P_{i(R)}$.

Thus i is an order monomorphism, so R ≅o i(R). Hence R can be embedded into

a complete totally ordered skewring.

To show that i(R) is dense, let $A, B \in R$ be such that A < B. Then there exists an $x \in B \setminus A$, so there exists a $y \in B$ such that x < y. Clearly, $A \le i(y) \le B$. Since $y \in B$ and $y \notin i(y)$, i(y) < B. Since $x \notin A$ and $x \in i(y)$, we get that A < i(y).

2. 0 is discrete. Then there exists an $a \in R$ such that a > 0 and there does not exist $z \in R$ such that a > z > 0. Claim 6, $R = \{ na / n \in Z^+ \} =: \langle a \rangle$. Let $x \in R$.

Case 1: x = a or x = 0. Then done.

Case 2: x > a. Let $A = \{ n \in \mathbb{Z}^+ / x < na \}$. By the Archimedean property, there exists a $m \in \mathbb{Z}^+$ such that x < ma, so $A \neq \emptyset$. Let N = minA. Then N > 1, so $N - 1 \in \mathbb{Z}^+$, so $x \ge (N - 1)a$. Suppose that x > (N - 1)a. Then Na > x > (N - 1)a, so 0 > x - Na > -a. Then 0 < -x + Na < a which is a contradiction. Then

 $x = (N - 1)a \in \langle a \rangle$.

Case 3: x < a. Then x < 0, so -x > 0. Then $-x \ge a$. By case 1 and case 2, there exists an $n \in \mathbb{Z}$ such that -x = na, $x = (-n)a \in <a>$. Hence R = <a>, so we have claim 6.

Claim 7, for $m, n \in \mathbb{Z}$, m < n implies that ma < na.

Let m, $n \in \mathbb{Z}$ be such that m < n. Then $n - m \in \mathbb{Z}^+$. Since a > 0, na - ma = (n - m)a > 0. Then ma < na, so we have claim 7.

By claim 6 and claim 7, we have that for every $r \in R$, there exists a unique $n \in Z$ such that r = na. Since $a^2 \in R$ and $a^2 > 0$, there exists a unique $n_0 \in Z^+$ such that $a^2 = n_0 a$.

Define \bullet on \mathbb{Z} by $\mathbf{m} \bullet \mathbf{n} = \mathbf{mnn_0}$ for all $\mathbf{m_1} \mathbf{n_2} = \mathbb{Z}$. Let $\mathbf{m_1} \mathbf{m_2} \mathbf{m_3} \in \mathbb{Z}$. Then $\mathbf{m_1}(\mathbf{m_2m_3}) = \mathbf{m_1}[(\mathbf{m_2m_3})\mathbf{n_0}] = [\mathbf{m_1}(\mathbf{m_2m_3})\mathbf{n_0}]\mathbf{n_0} = [((\mathbf{m_1m_2})\mathbf{n_0})\mathbf{m_3})]\mathbf{n_0} = [(\mathbf{m_1m_2})\mathbf{n_0}]\mathbf{m_3}$ $= (\mathbf{m_1m_2})\mathbf{m_3}$ and $\mathbf{m_1}(\mathbf{m_2} + \mathbf{m_3}) = [\mathbf{m_1}(\mathbf{m_2} + \mathbf{m_3})]\mathbf{n_0} = \mathbf{m_1}\mathbf{m_2}\mathbf{n_0} + \mathbf{m_1}\mathbf{m_3}\mathbf{n_0}$ $= (\mathbf{m_1m_2}) + (\mathbf{m_1m_3})$. Hence $(\mathbb{Z}, +, \bullet)$ is a skewring.

Clearly, $(Z, +, \bullet, \leq)$ is a complete totally ordered commutative ring.

Define $i: R \rightarrow Z$ as follows: let $r \in R$. Then there exists a unique $n \in Z$ such that r = na. Let i(r) = n. Clearly, i is a bijection, i and i^{-1} are isotone.

Let $x, y \in \mathbb{R}$. Then there exist $m, n \in \mathbb{Z}$ such that x = ma and y = na. Then i(x + y) = i(ma + na) = i([m + n]a) = m + n = i(x) + i(y) and i(xy) = i((ma)(na)) = $i((mn)a^2) = i((mnn_0)a) = mnn_0 = mn = i(x)i(y)$. Thus i is an order isomorphism, so $\mathbb{R} \cong 0 \mathbb{Z}$

Corollary 6. An Archimedean totally ordered skewring is a commutative ring.

<u>Proof</u> In [6], pp. 130 – 136 it was shown that all complete ordered skewrings were classified and were shown to be both multiplicatively and additively commutative.

VITA

Name : Mr. Boonlert Sreehirun

Degree : B. Sc. in Mathematics, 1992.

Ramkamhaeng University, Bangkok, Thailand.

าลงกรณ์มหาวิทยาลย