APPENDIX

We now generalize the last theorem -from the theory of skewsemifields to

skewring.

Qeﬁmnm_l. Let (S, +, ¢) be a semiring with a multiplicative zero 0. S is
called a skewring if (S,+) is a group.

Definition 2. Let R be an ordered skewring. Then the set P={ xe R / x20 }
is called the positive. cona of R.

Definition 3. Let R be an ordered skewring and x € R. Then x is dense if there
- for every y € R such that x <y, there exists @ z € R such that x<z<y.

If x is not dense then we shall call x discrete.

Definition 4. Let R and M be skewrings. A function f:R —» M is called an grdar
homomorphism if and only if f is an isotone homomorphism of skewrings.

The definitions of grder monomorphisms, order gpimorphisms and grder
ispmorphisms are . defined as one would expect. If there exists an order

ismorphism from R onto M, we denote this by R =0 M.

Definition 5. A totally ordered skewring R is called an Archemedean skewring if
and only if for all x, ye R if 0 <x <y then there exists an n & Z" such that

y < nX.

Theoram 6. A totally ordered skewring R can be embedded into a complete

totally ordered skewring if angd only if it is Archimedean.
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Proof Let IRI > 1.

1.0 is dense. Let R be the set of all subsets D of R having the
property that :

1) @#D=R

2) For all x,ye R, xe D and y<x imply that y € D.

3) For every x € D, there exists a ye D such that x<y,

Define + on R by A+B={a+b /aeA and beB} for al ABeR.
Clearly, A+B= Q.

Claim 1, there exists a p € R\A such p>0. Since A#R, there exists an x € RA,
Case 1: x>0. Let p=x.

Case 2: x=0. Then there exists a p € R such that p>0, so p ¢ A

Case 3: x<0. Then -x>0 and -x € A, Let p=-x S0 we have claim 1.
Similarly, there exists a g € R\B such that g>0. Let a € A and b € B. Then
a<pand b<q, so a+b<p+q. Then p+q e A+B, so A+B=R. Next let x,
y € R be such that y<x and x € A+ B. Then there exist a€ A and b & B such
that x=a+b, so y—b<a, Then y-b €A, so y=(y-b)+b e A+B. Next, let

x € A+ B, Then there exist a € A and b € B such that x=a+b. Since A, BeR,
there exist me A and ne B such that a<m and b<n, so x=a+b<m+n and
m+n e A+ B, Hence + is well-defined. Clearly, the associative law holds.

Let D,={ xe R/ x<0 }. Then D,e R. Let AcR. Let ac A and y e D,
Then y<0, soaty<a. By 2), a+y €A, so A+D,CA. Next, let a € A. Then
there exi#ts an x € A such that a<x, s0 a~-x<0. Then a=a+(a-y)eA+D,
S0 ACA+D, Hence A=A +D,

Let D e Ry Dy} Let -D={ p eR / thers exists an g € R\D such that
p<-q } By claim 1, there exists a p € R\D such that p >0. Let x=p +p. Then
X>p, 80 ~x<-p, Hence - x&-D, s0 =D . Since D #J, there exists a
deD. Let xe R\D. Then d <x, so -x<-d. Hence —d & - D. Next, let x,y € R
such that y<x and x € -D. Then there exists a g € R\D such that y<x<-gq,



so y €-D. Next, iet p € -D. Then there exists a q € R\D such that x<-q, so
there exists an r e R such that p<r<-g. Then re-D, hence -D € R.

To show that D+(-D)c D,, let x€ D and y € —~D. Then there exists a
q€ R\D such that y<-q, so x <q. Then x+y<gq+y<q+(-q)=0, so
x+y € D, Hence D +(-D) ¢ D,

Claim 2, for al AcRand xe R, if x>0 and 0 € A imply that there exists a
g € R such that g-x,-x+q € A

Let 0 € A and x> 0. Suppose that nxe D for all ne Z". Let p € R.

Case 1: p<x. Then p € A.

Case 2: p >x. By the Archemedean property, there exists an N € Z" such that
P <Nx, so p € A. Then A =R which is a contradiction, so there exists an

N, € Z° such that Nx ¢ D.

Let ng=min {neZ /nx&D }. Then n,21.

Case 1: n,=1. Then (1-n)x=(n,-1)x=0€A, so let q=x

Case 2: n,>1. Then ny—1¢€ 2", 50 (n,=1)x=(n,~1)x € A. Let g =nex, s0 we
have claim 2.

To show that D, D +(-D), let x € D, Then x<0.

Case 1: 0 e D. Then x € D. Since 0 is dense, there exists a d € R such that
x<d<0, so deD. Then 0 <d-x. By claim 2, there exists a t € R\D such that
[ -(d—.x)+t] €D. Since d<0,-t+d<-t so(-t+d)e~D. Then x
=[~-(d-x)+t]+(~-t+dyeD+(-D).

Case 2: 0 ¢ D. Then for every y €D, y<0, hence Dc D, Then DcD,, so
there exists a q € D,\D. Then g <0, so 0 <-g. Hence 0 € - D. By definition,
-{(-D)={ meR / there exists an n € R\(-D) such that m<-n }. To show that
-{(-D)cD, let ze~(-D). Then there exists an n € R\(- D) such that z<-n.
Suppose that ze¢ D. If n<-z then n € -D which is a contradiction. Then n > -z,
S0 ~n <z which is a contradiction. Then z& D, so - (-D)< D. Since 0 is dense,

there exists @ d € R such that x<d <0, so 0 <-x+d. By claim 2, there exists
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a te RD such that t-(-x+d)eD. Since d<0, d-t<-t, so d-te~-(-D).
Then x={d—t)+[t-{-x+d)] € D +(~D). Thus D+(-D)=D,, hence R is a
group.

Define < on R by D<C if and only if D C, for alt C,D e R. Clearly, R
is an ordered group. To show that < is a total order, let C,D € R. suppose that
CaD and D@ C. Then there exist ¢ € C\D and d e D\C. Thus c<d, so ceD
which is a contradiction. Then Cc D or DcC, so C<D or D<C.

To show that R is complete, let { B, / i€l } be a family in R such that
there exists a C € R with the property that D,<C for all i € I. Let D=UD,
Since | # &, there exists an i, €| such that & =D, ¢ D. Since c#R, there
exists an a€ R\C, so ag D, for all iel. Then a g D. Next, let p,g e R be such
that p<q and q € D. Then there exists an iy € | such that q € D, so
p € D_cD. Next, let x € D. Then there exists an i, € | such that x € D, so
there exists & y € D, D with the property that x<y. Then D € R. Clearty, D is
a least upper bound of { D, /i€l }, so R is complete.

Let A, B € R be such that A, B>D,. Define AB={ z e R / there exist
a € AD, and b € B\D, such that z<ab } U D, Then AB= . Since A, B =,
there exist x € R\A and y € R\B, so x,y=0. Then xy =20, so xy ¢ D,. f A=0, or
B =D, then xy ¢ D, = AB. Suppose that A= D, and B« D, Let a € A\D, and
b € B\D,. Then x>a and y>b, so xy2ab. Then xy ¢ AB. Clearly, for all x and
y € R, x € AB and y <x imply that y € AB. Next, let x € AB.

Case 1: x € D,. Then there exists a p € D, AB such that x <p.

Case 2: x ¢ D, Then there exist a € A\D, and b € B\D, such that x <ab. Since
0 is dense, there exists a p € R such that x<p <ab, so p € AB. Hence
ABeR.

( AB if A2D, and B2D,

-(A(B)) if A2D, and B<D, ,

Define « on R by AeB =1 ) it A<D, and B2D, .
(-A)(-B) if A<D, and B<D, .

.



Ctaim 3, for alt A, 8,C e R, A B, C2D, imply that A(BC) = (AB)C.
Let A, B,C e R be such that A, B,C2D,
Case 1: there exist a, b >0 such that ab =0. Let X,Y € R be such thet X and
Y > D, Next, Let x € X\D, and y € Y\D,,, If x=0 or y=0 then xy =0. Suppose
that x,y > 0.
Subcase 1.1: 0<x<a and O0<y<b. Then 0<xy<ab=0, so xy=0.
Subcase 1.2: 0<a<x and 0 <y=<b. By the Archemedean property, there exists
an ne€ 2 such that x<na. Then 0<xy<{na)b <nlab)=0, so xy=0.
Subcase 1.3: 0<x<a and 0<b<y. The proof is similar to the proof of
subcase 1.2.
Subcase 14: 0<a<x and 0<b<y, By the Archemedean property, there exist
n,me Z" such that x<na and y<mb. Then 0<xy< {na){mb) = (nm)(ab) =0, so
xy = 0. Hence XY =D, so A(BC)=D,=(AB)C.
Case 2: for ali &, b>0, ab>0. Then for all a,b,ce R, a<b and 0 <c imply
that ac <bc and ca <cb. To show that (AB)C < A(BC), Let x € (AB)C.
Subcase 2.1: x € D, Then x € A(BC).
Subcase 2.2: there exisi a € A\D, and p € BC\D, such that x <ap. Then there
exist b € B\D, and ¢ € C\D, such that p <bc, so x <ap <a(bc) = (ab)c. Since a
and b20, ab2 0, so ab & D,. There exist k € A and | € B such that a <k and
b<1, so k>0 and 1> 0. Then ab< kb <kl, so ab € AB\D,. Hence x € (AB)C, so
A(BC) c (AB)C. Similerly, (AB)C < A(BC}. Therefore (AB)C = A(BC), so we have
claim 3.

To show e is associative, let A, B,C e R.
Case 1. A,B,CzD,. Then done.
Case 2: A, B, 2D, and C<D, Then A(BC)=A[-(B(-C))]1=-[AB(-C))]
=~ [ (AB)-C)]=(AB)C = (AB)C.
Case 3: A,C2D, and B<D, Then A(BC)=A[-((-B)C)]=-[A((-B)C)]
=~[(A=B)C]=[-(A(-B))]C = (AB)C.
Case 4: A2D, and B,C <D, Then A(BC)=A[(-B)(~C)1=A[ (-B){-C)]



=[A-B)-C) )= (- (- [ (A-BY ) (-C) = [ - (A(- B)) ]C = (AB)C.
Case 5: A<D, and B, C=D,. Then A(BC)=A(BC)=-[ (- A)BC)]
=-[(-ABICI=-[--{(-ABD]=(-[{-AB]C = (AB)C.
Case 8: A, C <D, and B 2D, Then ABBC)=A[-(B(-C)}]1=(-AlB(-C)]
=[(-AB)-C) =[-(-[-AB] ]C=-[(-ABIC = (AB)C.
Case 7: A, B<D, and C20,. Then A(BC)=A[-((-B)C)]=(-A) {(-B)C]
=[(~-AX-B)]JC) = [ (~A)-B) ] C = (AB)C.
Case B: A, B, C<D, Then A(BC)=A[ (-B)(~C)1=-[ (- A{(-B)-C))]
=-[ (-A-B)(-C) ] = [ (-A)-B) IC = (AB)C.
Claim 4, for all A, B,Ce R, A B,C=D, imply that A(B + C) = AB + AC.
Let A B,CeR be such that A, B,C=D,
If there exist a, b >0 such that ab=0 then A(B+ C)=D,=D,+D,=AB+AC, s0
done. Suppose that for all 2,b >0, ab>0. Let x € A(B + C).
Case 1: x € D,. Then x € AB + AC.
Case 2: there exist a € A\D, and p € (B + C)\D, such that 0 <x <ap. Then there
exist beB and c € C such that p=b +c, s0 x<ap=a(b +¢) =ab +ac. Since
a € A, there exists a z € A\D, such that a <2z, so there exist k € B\D, and
| € C\D, such that b <k and c<|, so ab<ak<zk and ac<al<z. Then ab € AB
and ac € AC. Then x € AB + AC, so A(B + C)c AB + AC.

Next, let x € AB + AC. Then there exist y € AB and z € AC such that x
=y+z
Case 1: y,z€ D, Then x=y+z<z, s0 x € AB+AC.
Case 2: y € D, and there exist a € A\D, and ¢ € C\D, such that 0 £z <ac. Then
x=y+z<z<ac=all+c)e AB+C).
Case 3: there exist a € A\D, and b € B\D, such that 0<y<ab and z € D,. The
proof is similar to the proof of case 2. |
Case 4: there exist a,, a, € A\D,,b € C\D, and ¢ € C\D, such that 0<y<ab

and 0 <z<a,c. WLOG, suppose that a,<a,. Then x=y+z<ab+a,c<ab+a,c



=a,b +c) € A(B+C), so AB+AC € A(B +C), Then A(B + C) =AB + AC, so we
have claim 4.

To show e is distributive over + in R, 1et X,v,ze R.
Case 1: X,Y,Z2D, Then done,
Case 2: X,Y,2D, and Z< D,
Subcase 2.1: Y+ Z2D, Then X(Y+2Z)-(XZ)=X(Y+Z}-(-[X(-2)])
=X A EXD) = X[ (Y + 2y + (- 2) ] = XY, so X(Y + Z) = (XY) + (XZ).
Subcase 22: Y+ Z<D, Then - (XY} +[X(Y +2)]=-(X) + (-[ X(-(Y+Z} ]}
=—[XY + X(-Y=2)J==[X(Y+ (-Y-2)]=-[X-2}] =XZ, so X(Y+ 2)
= (XY) + (XZ).
Case 3: X,Z2D, and Y <D,. The proof is similar to the proof of case 2.
Case 4: X2D, and Y,Z<D,. Then Y+Z<D, so X{(Y+2Z)=-[X(-(¥+2Z))]
=={XY-2) )= [ XY+ XD 1=~ [ XY ] + ([ X(-2) D) = (XY) + (X2).
Case 5: X<Dj and Y,Z2D,. Then X(Y +Z)=-[(=X)Y+2Z)]
==X+ (X)) ] =~ [ (=X)Y ]+ [{(=X)Z] = (X¥) + (XZ).
Case 6: X,Z,<D, and Y20,
Subcase 6.1: Y+Z2D,. Then X(Y+Z)-(XZ})=-[(-X}Y +2) ] -[ (- X}~2)]
==[EXNY+ 2+ EXN=2) == [EXNY + Z-2) ]==[(-X)Y]1=XY, s0 X{Y+2)
= (XY) + (X2).
Subcase 6.2: Y+ Z <D, Then —(XY)+[X (Y +2)]
== [~ CXYIHLE XY + 2D ] = XY+ CXH-Y=2) = XY + (-Y-2)]
=(=X)N=2)=XZ, 50 X(Y + 2) = {XY)+ (X2).
Case 7: X,Y2D; and Z>D,. The proof is similar to the proof of case 6.
Case 8: X,Y,Z<D,. Then Y+Z <D, 50 XY+ 2D =(-X)} =Y +2) =(=X)~Y-2)
= X0 EY) + (-2 ] =(=XH=Y) + (- X)2) = (XY) + (X2).
Hence R is a skewring, so Risa complete totally ordered skewring.

Let xeR. Lot D,={ ye R/ y<x }. Clearly, DxeR. Define i: R—>R by
i(x) =D, for every x € R. To show that i is injective, let x,y € R be such that i(x)

=i(y). If x=y then D,#D, which is a contradiction. Then x =y, so i is injective.



Let x,y € R. To show that D .+ D, cD,, , let ae D, and b € D,. Then a<x
and b<y, so a+b<x+y Then a+beD,,, so D,+D,cD,,. Next let
ceD,,,. Then c<x+y, s0 C-y<X Hence there exists an re R such that c-y
<r<x, so re D, Since c~y<r, -r+c<y, we get that ~r+c € D, Then ¢
=r+(-r+c)eD,+D, so D,,,cD+D, Thus i)+iy) =D, +D,=D,, = i{x+y).
Claim 5, for all x,y € R, xy20 imply that D,D, =D,.

Let x,y € R be such that x,y20. If x=0 or y=0 then done. So suppose that
xy>0. Let ze DD,

Case 1: ze D, Then ze D,

Case 2: there exist a € D\D, and b € D\D, such that 0<z<ab. Then z<ab
<xy, so ze D,. Hence DD, D,

To show that D_c DD, let c € D,. Then ¢ <xy. I there exist a,b>0 such
that ab =0 then ¢ € D,=D,D,. So suppose that for all a, b>0, ab>0. Since
c<xy, xy~c>0. Let z=xy—~c. Then c=xy-~z and z>0. Suppose that for all
p € D\D, and for all q € D\D,, pg<=c.

Claim (%), for all 0<r,<x and 0<r, <y, Z<Xr+ry.

Let 0<r,<x and 0<r,<y. Then 0<x-r1, and 0<y~r, so x-r, € DD, and
y-ry € D\D,. By hypothesis, xy-z=c2(x-r)y-r)=xy-xr,-ny+ Sy SO
-ZZ-XI =LYy + 5 >-xi,~ry. Hence z<xr, +ry, so we have claim (*).

Since z> 0, there exist p,g>0 such that z=p+q. Let C={ D,/ 0<r<y }
Then inf(C) = D,

Claim (**), for all D > D,, inf(DC) = D(inf(C)) = D,,

Let D>D, and D, € C. Then D zinf(C), so DD,=D(inf(C)). Then inf(DC) exists,
say B and B2D,, Let 0 <r<y. Then there exists an r, € R such that 0 <r,<r
<y. Then O0<r-r<y-r,<y. Lot ,=r-r. Then r=r,+r, so D.=D,,,

=D, + D, Since D,, D, € C, DD,=D(D,, + D) = DD, + DO, 2 inf(DC) + inf(DC)
=B+ B, Then B=inf(DC) 2B + B, so D,28. Hence Inf(DC) =D,, so we have

claim ().

Since IR' >1, there exists 2 t € R such that t>0, x+t>x>0. Then D_,,>D,.



By claim (**), Inf(D,, C) =D,. Since p>0, D,> D, so there exists a ¢ <d<y
such that D,,,D,<D,. Then there exists an r, € R such that 0<r,<d, so

xr, < xd. Then xr, € D,, D, <D,, so x, <p.

Similarly, there exists an 0 <r <x such that ry <q. Then xr, +ry<p+Q=2
which is contradicts to claim (*). Hence there exist a € DD, and b € D\D, such
that c <ab, so ¢ € D,D,. Thus D, c DD, and hence DD, =Dxy, so we have
claim 5.

Let p,q e R

Case 1: p,q20. Then done.

Case 2: p<0 and q=0. Then -p >0. Since - (~p)a]=pa, i(pq)

=i(=[ (- PX@ D) = D_;(. oy = = D ya =~ [ D.yDg ] =D,0, = ifplifa).

Case 3: p20 and g<0. The proof is simifar to the proof of case 2.

Case 4: p,q<0. Then —p,~q>0. Since pq = (~p)=q), i(pa) =i((~p)~q))

=D e = (Prp) D) = (-D)-Dy = DD, =i(p)i(q), so i is @ monomorphism.
Clearly, | is isotone, S0 i(Pp) & Pys. To show that P Ci(Pg), Let D, € P, Then
D 2D, if x<0 then D, <D, which is a contradiction. Then x 20, s0 i(Pg) = Py,
Thus i is an order monomorphism, so R=0i(R). Hence R can be embedded into
a complete totaily ordéred skewring. ‘

To show that i(R) is dense, let A, B € R be such that A<B. Then there
exists an x € B\A, so there exists a y € B such that x <y. Clearly, A<i(y) <B.
Since ye B and y g i(y), i(y) <B. Since x ¢ A and x € i(y), we get that A<i(y).

2. 0 is discrete. Then there exists an a € R such that a>0 and there does
not exist z € R such that a>z>0. Claim 6, R={ na/neZ }=:<a>
Let x € R
Case 1. x=a or x=0. Then done. _

Case 2: x>a. Let A={ neZ' / x<na }. By the Archimedean property, there
exists @ m € 2" such that x<ma, so A= . Let N =minA. Then N>1, so
N-1e2Z", so x2{N-1)a. Suppose that x> (N-1)a. Then Na >x> (N~ 1)a, so

0>x-Na>-a. Then 0 <-x-+ Na<a which is a contradiction. Then
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x=(N-1)a € <a>.
Case 3: x<a. Then x <0, so ~x>0. Then -x2a. By case 1 and case 2,
there exists an n e Z such that ~x=na, x=(-n)a € <a>. Hence R = <a>, 50
we have claim 6.
Claim 7, for m,n € Z, m <n implies that ma <na.
Let m,n € Z be such that m<n. Then n—-m & Z". Since 2 >0, na—-ma = (n-m)a
> (0. Then ma <na, so we have cilaim 7. .
By claim 8 and claim 7, we have that for every reR, thef'e exists a unigue
neZ such that r=na. Since a° € R and a° >0, there exists a unique N, € z'
such that a° = nqa.

Define ® on Z by men=mnn, for all m,n e Z. Let m,, m,, m; € Z, Then
m,(m,m,) = m,[ (mm,)n, ] = [ m (m,myn, In, = [ ((m,my)nglm,) Ing = { (m,m,n; Im,
= (m,mym, and m,(m, + m,) =[ m1(rhz +m,) In, = mm,n, + mmyn,
= {m,m,) + (m,m,). Hence (Z, +,®) is a skewring.
Clearly, (Z, +,¢,<) is a complete totaily ordered commutative ring.

Define i:R—>Z as follows :let r € R. Then there exists a unique ne€ Z
such that r=na. Let i() =n. Cleary, i is a bijection, i and i are isotone.

Let x,y € R. Then there exist m,n € Z such that x=ma and y = na. Then
ix+y)=ima+na)=i(f m+nla)=m+n=ix)+i{y) and i(xy} =i({(ma)(na))
= i((mn)a’) =i((mnny)a) = mnn, =mn =i(x)i(y). Thus i is an order isomorphism, so

R=o0Z
Corpilary 6. An Archimedean totally ordered skewring is a commutative ring.

Proof in [8], pp. 130-136 it was shown that all complete ordered skewrings
were classified and were shown to be both muitiplicatively and additively

commutative.
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