CHAPTER IV

TOTALLY POSITIVELY ORDERED 0-SKEWSEMIFIELDS

Lemma 4.1. Let K be a positively ordered skewsemifield. The following statements hold:

- 1) K is a totally positively ordered skewsemifield if and only if $K = P \cup P^{-1} \cup \{0\}$.
- 2) K is a totally positively ordered skewsemifield if and only if for every $x \in K$, $x \le 1$ or $x \ge 1$.
- 3) Suppose that K is a totally positively ordered skewsemifield, A and B o-convex subsets of K. Then AB is an o-convex set of K.
- 4) Suppose that K is a totally positively ordered skewsemifield, C an o-convex normal subgroup of K. Then C is a convex normal subgroup of K.

Proof 1) and 2) are obvious.

3) Let $a_1, a_2 \in A$ and $b_1, b_2 \in B$. Let $x \in K$ be such that $a_1b_1 \le x \le a_2b_2$. Then $a_1b_2 \ge x$ or $a_1b_2 \le x$.

Case 1: $a_1b_2 \ge x$. Then $a_1b_1 \le x \le a_1b_2$, so $b_1 \le (a_1)^{-1}x \le b_2$. By the o-convexity of B, $(a_1)^{-1}x \in B$, so $x = a_1(a_1)^{-1}x \in AB$.

Case 2: $a_1b_2 \le x$. Then $a_1b_2 \le x \le a_2b_2$, so $a_1 \le x(a_2)^{-1} \le a_1$. By the o-convexity of A, $x(b_2)^{-1} \in A$, so $x = x(b_2)^{-1}b_2 \in AB$. Thus AB is an o-convex set.

4) See [3], pp. 68. #

Examples 4.2. 1) R_0^+ , Q_0^+ are totally positively ordered skewsemifields.

2) From Example 2.5., 3), we have that K is a positively ordered

skewsemifield. To show that K is total, let $M_1 = \begin{bmatrix} a & c \\ 0 & b \end{bmatrix}$ and $M_2 = \begin{bmatrix} a' & c' \\ 0 & b' \end{bmatrix} \in K$.

We shall show that $M_1 \le M_2$ or $M_2 \le M_1$. Since R satisfies the Trichotomy law, a < a' or a = a' or a > a'. If a < a' or a > a' then done. So suppose that a = a'. Since R satisfies the Trichotomy law, b < b' or b = b' or b > b'. If b < b' or b > b' then done. So suppose that b = b'. Since R satisfies the Trichotomy law, $c \le c'$ or $c' \le c$, so $M_1 \le M_2$ or $M_2 \le M_1$. Hence K is a totally positively ordered skewsemifield.

3) From Example 2.5. 4), $K^* \times L^* \cup \{(0,0)\}$ is a totally positively ordered skewsemifield where K and L are totally positive ordered skewsemifields.

Let K be a totally positively ordered skewsemifield and C a convex normal subgroup of K. Then K/C is a positively ordered skewsemifild.

To prove that \leq on $K_{/C}$ is a total order, let $x \in K$.

Case 1: $x \le 1$. Then $xC \le C$.

Case 2: $x \ge 1$. Then $xC \ge C$.

By Lemma 4.1., 2) K/C is a totally positively ordered skewsemifield.

Theorem 4.3. Let S be a totally positively ordered semiring with multiplicative zero 0 having the M.C. property and such that (S, \bullet) satisfies the right [left] Ore condition. If \leq is M.R. then S can be embedded into a totally positively ordered skewsemifield.

Proof See [5], pp. 46. *

Theorem 4.4. Let $n \in \mathbf{Z}^+$ be such that $n \ge 2$. Let $K_n = \{0\} \cup \{A \in M_n(\mathbf{R}) [M_n(\mathbf{Q})] / A_{ij} > 0 \text{ if } i = j \text{ and } A_{ij} = 0 \text{ if } i = j\}$. Then there exists a positively total order on K_n .

<u>Proof</u> If n=2 then done by Example 4.3., 2). Induction assumption, let $n \in \mathbf{Z}^+$ be such that n > 2. Let K_{n-1} with the following partial order is a totally

positively ordered skewsemifield. Let $P_n = \{ \begin{bmatrix} A_1 & A_3 \\ 0 & A_2 \end{bmatrix} \in K_n / 1 \} A_1 > 1$ or

2) $A_1 = 1$ and $A_2 > 1$ or 3) $A_1 = 1$, $A_2 = 1$ and $A_{n-1,n} > 0$ or 4) $A_1 = 1$, $A_2 = 1$ and there exists an $i \in \{1,...,n-2\}$ such $A_{in} > 0$ and $A_{kn} = 0$ for all n > k > i or 4) $A_1 = 1$, $A_2 = 1$ and $A_3 = 0$ where $A_1 \in K_{n-1}$ }. By Theorem 2.13., P is the positive cone of K.

To show that $K_n = P_n \cup (P_n)^{-1} \cup \{0\}$, let $X \in K_n$ be such that $X \neq 0$ and $X \notin P$. We must to show that $X^{-1} \in P$. By induction hypothesis, $X_1 \leq 1$ or $X_1 > 1$. Since $X \notin P$, $X_1 \leq 1$, so $X_1^{-1} \geq 1$. If $X_1^{-1} > 1$ then done Suppose that $X_1^{-1} = 1$. Since R satisfies the Trichotomy law, $X_2 \leq 1$ or $X_2 > 1$. Since $X \notin P$, $X \leq 1$, so $X_2^{-1} \geq 1$. If $X_2^{-1} > 1$ then done. Suppose that $X_2^{-1} = 1$. Since R satisfies the Trichotomy law, $X_{n-1,n} > 0$ or $X_{n-1,n} \leq 0$. If $X_{n-1,n} > 0$ then $X \in P$ which is a contradiction since $X \notin P$. Thus $X_{n-1,n} \leq 0$.

Case 1:
$$X_{n-1,n} < 0$$
. Then $0 = (XX^{-1})_{n-1,n} = \sum_{i=1}^{n} X_{n-1,i}(X^{-1})_{in}$

$$= \sum_{i=1}^{n-1} X_{n-1,i}(X^{-1})_{in} + X_{n-1,n}(X^{-1})_{nn} = (X^{-1})_{n-1,n} + X_{n-1,n}. \text{ Hence } (X^{-1})_{n-1,n} = -(X_{n-1,n}) > 0$$
and therefore $X^{-1} \in P$.

Case 2: $X_{n-1,n} = 0$.

Claim that there exists an $i^* \in \{1,\dots,n-2\}$ such $X_{i^*n} < 0$ and $X_{kn} = 0$ for all $n > k > i^*$. Suppose that (*), $X_{in} \ge 0$ for all $n-1 > i \ge 1$. If $X_{in} = 0$ for all $1 \le i < n-1$ then X = 1 which is a contradiction since $X \notin P$. Then there is a $j \in \{1,\dots,n-2\}$ such that $X_{jn} > 0$, so let $j^* = \max\{j \mid 1 \le j < n-1 \text{ and } X_{jn} > 0\}$. Let $n > k > j^*$. Then $X_{kn} \le 0$. By (*), $X_{kn} = 0$ which is a contradiction since $X \notin P$. Thus (*) is not true, hence there is an $i \in \{1,\dots,n-2\}$ such that $X_{in} < 0$. let $i^* = \max\{i \mid 1 \le i < n-1 \text{ and } X_{in} < 0\}$. Suppose that there exists a $i^* < k < n$ such that $X_{kn} \ne 0$. Then $X_{kn} \ge 0$. Let $x_{kn} \ne 0$. Then $x_{kn} \ge 0$. Since $x_{kn} \ge 0$ which is a contradiction since $x_{kn} \ge 0$. Then $x_{kn} \ge 0$. Since $x_{kn} \ge 0$ which is a contradiction since $x_{kn} \ge 0$. Then $x_{kn} \le 0$ for all $x_{kn} \ge 0$, we have claim.

By claim, there exists an $i^* \in \{1,...,n-2\}$ such $X_{i^*n} < 0$ and $X_{kn} = 0$ for all

$$\begin{split} &n>k>i^{\star}. \text{ Then } 0=I_{I^{\star},n}=(XX^{-1})_{I^{\star}n}=\sum_{i=1}^{n} X_{I^{\star}i}(X^{-1})_{in}=\sum_{i=1}^{n-1} X_{I^{\star}i}(X^{-1})_{in}+X_{I^{\star}n}(X^{-1})_{nn}\\ &=(X^{-1})_{I^{\star}n}+X_{I^{\star}n}. \text{ Thus } (X^{-1})_{I^{\star}n}=-(X_{I^{\star}n})>0. \text{ Let } n>k>i^{\star}. \text{ Then } 0=(XX^{-1})_{kn}\\ &=\sum_{i=1}^{n} X_{ki}(X^{-1})_{in}=\sum_{i=1}^{n-1} X_{ki}(X^{-1})_{in}+X_{kn}(X^{-1})_{nn}=(X^{-1})_{kn}+X_{kn}. \ \, (X^{-1})_{kn}=X_{kn}=0. \text{ Therefore}\\ &X^{-1}\in P. \text{ Hence } K_{n} \text{ is a totally positively ordered skewsemifield.} \end{split}$$

Proposition 4.5. $\prod_{i \in I} K_i$ is a totally positively ordered skewsemifield if and only if either $I = \{i\}$ and K_i is a totally positively ordered skewsemifield or there exists $i_0 \in I$ such that K_{i_0} is a totally positively ordered skewsemifiled and $|K_{i_0}| = 2$ for every $i \in I \setminus \{i_0\}$.

Proof See [4], pp. 46.

Let K be a skewsemifield and $A \subseteq K^*$. Let $C = \{B \subseteq K \mid A \subseteq B \text{ and } B \text{ has } b \in B \}$ the property that

- 1) $1 \in B$,
- 2) $B^2 \subset B$,
- 3) $B + K \subseteq K$ and $K + B \subseteq B$ and
- 4) B is and a-convex normal subset of K }.

Since $K^* \in \mathbb{C}$. $\mathbb{C} \neq \emptyset$. Then the smallest subset of K satisfying 1) – 4) exists.

Definition 4.6. Let K be a positively ordered skewsemifield and $A \subseteq K^*$. The <u>hull</u> of A, denoted by H(A) is the smallest subset of K satisfying 1) – 4). And A has property (*) if and only if for all $x_1, ..., x_n \in K^*$, there exist $\varepsilon_1, ..., \varepsilon_n \in \{-1, 1\}$ such that $H(P \cup \{x_1^{\varepsilon_1}, ..., x_n^{\varepsilon_n}\})$ is a conic subset of K. From now on we shall use $H(P, x_1^{\varepsilon_1}, ..., x_n^{\varepsilon_n})$ instead of $H(P \cup \{x_1^{\varepsilon_1}, ..., x_n^{\varepsilon_n}\})$.

Notation Let K be a skewsemifield and $S \subseteq K$. Let (S) be the smallest multiplicative normal subsemigroup of K containing S. Then $(S) = \{ x(a_1...a_n)x^{-1} / a_n \}$

 $n \in \mathbf{Z}^{\uparrow}, a_i \in \mathbf{S}$ for all $1 \le i \le n$ and $x \in \mathbf{K}^*$ }.

Proposition 4.7. Let K be a positively ordered skewsemifield and $A \subseteq K$. Then $H(A) = \{ \sum_{i=1}^{n} [s_i + (\sum_{j_i=1}^{m_i} \alpha_{j_i} m_{j_i}) + t_i] / n, m \in \mathbf{Z}^{+}, s_i, t_i \in K \text{ for all } 1 \le i \le n, \alpha_{j_i} \in K \}$ $m_{j_i} \in (A \cup \{1\}) \text{ such that } \sum_{j_i=1}^{m_i} \alpha_{j_i} = 1 \text{ for all } 1 \le j_i \le m_i \}.$

Proof Let B =
$$\left\{\sum_{i=1}^{n} \left[s_{i} + \left(\sum_{j_{i}=1}^{m_{i}} \alpha_{j_{i}} m_{j_{i}}\right) + t_{i}\right] / n, m \in \mathbb{Z}^{+}, s_{i}, t_{i} \in \mathbb{K} \text{ for all } 1 \leq i \leq n,\right\}$$

$$\alpha_{j_i} \in K$$
 $m_{j_i} \in (A \cup \{1\})$ such that $\sum_{j_i=1}^{m_i} \alpha_{j_i} = 1$ for all $1 \le j_i \le m_i$ }.

Clearly, B is an additive ideal of K.

Let
$$b_1 = \sum_{i=1}^n [s_i + (\sum_{j_i=1}^{m_i} \alpha_{j_i} m_{j_i}) + t_i]$$
 and $b_2 = \sum_{k=1}^p [u_k + (\sum_{l_k=1}^{q_k} \beta_{l_k} n_{l_k}) + v_k] \in K$.

Then
$$b_1b_2 = \sum_{i=1}^n [s_i + (\sum_{j_i=1}^{m_i} \alpha_{j_i} m_{j_i}) + t_i]b_2 = \sum_{i=1}^n [u_ib_2 + (\sum_{j_i=1}^{m_i} \alpha_{j_i} m_{j_i})b_2 + t_ib_2]$$

$$= \sum_{i=1}^{n} [s_{i}b_{2} + (\sum_{j_{i}=1}^{m_{j}} \alpha_{j_{i}} m_{j_{i}}) (\sum_{k=1}^{p} [u_{k} + (\sum_{j_{k}=1}^{q_{k}} \beta_{j_{k}} n_{j_{k}}) + v_{k}]) + t_{i}b_{2}]$$

$$=\sum_{i=1}^{n}[s_{i}b_{2}+(\sum_{j_{i}=1}^{m_{i}}\alpha_{j_{i}}m_{j_{i}})(\sum_{k=1}^{p}u_{k})]+[(\sum_{j_{i}=1}^{m_{i}}\alpha_{j_{i}}m_{j_{i}})(\sum_{l_{k}=1}^{q_{k}}\beta_{l_{k}}n_{l_{k}})]+[(\sum_{j_{i}=1}^{m_{i}}\alpha_{j_{i}}m_{j_{i}})v_{k}+t_{i}b_{2}])$$

$$= \sum_{i=1}^{n} [s_{i}b_{2} + (\sum_{j_{i}=1}^{m_{i}} \alpha_{j_{i}} m_{j_{i}}) (\sum_{k=1}^{p} u_{k})] + [(\sum_{j_{i}=1}^{m_{i}} (\sum_{l_{k}=1}^{q_{k}} (\alpha_{j_{i}} m_{j_{i}}) (\beta_{l_{k}} n_{l_{k}}))] + [(\sum_{i_{k}=1}^{m_{i}} \alpha_{j_{i}} m_{j_{i}}) v_{k} + t_{i}b_{2}])$$

$$= \sum_{i=1}^{n} [s_{i}b_{2} + (\sum_{j_{i}=1}^{m_{i}} \alpha_{j_{i}}m_{j_{i}}) (\sum_{k=1}^{p} u_{k})] + [\sum_{l_{i}=1}^{m_{i}} (\sum_{l_{k}=1}^{q_{k}} (\alpha_{j_{i}}m_{j_{i}}) (\beta_{l_{k}}^{-1}m_{j_{i}}\beta_{l_{k}}n_{l_{k}}))]$$

+
$$[(\sum_{j_1=1}^{m_1} \alpha_{j_1} m_{j_1}) v_k + t_1 b_2])$$
. Let $1 \le i \le n$ and $1 \le k \le p$. We must to show that

$$\sum_{j_{i}=1}^{m_{i}}(\sum_{l_{k}=1}^{q_{k}}(\alpha_{j_{i}}m_{j_{i}}))=1. \ \ \text{Therefore} \ \ \sum_{j_{i}=1}^{m_{i}}(\sum_{l_{k}=1}^{q_{k}}(\alpha_{j_{i}}m_{j_{i}}))=\sum_{j_{i}=1}^{m_{i}}\alpha_{j_{i}}(\sum_{l_{k}=1}^{q_{k}}b\beta_{l_{k}})=\sum_{j_{i}=1}^{m_{i}}\alpha_{j_{i}}=1.$$

Thus $b_1b_2 \in B$, so $B^2 \subseteq B$. Next, let $x \in K^*$. Then xb_1x^{-1}

$$= x(\sum_{i=1}^{n} [s_{i} + (\sum_{j_{i}=1}^{m_{i}} \alpha_{j_{i}} m_{j_{i}}) + t_{i}])x^{-1} = \sum_{i=1}^{n} [xs_{i}x^{-1} + (\sum_{j_{i}=1}^{m_{i}} x(\alpha_{j_{i}} m_{j_{i}})x^{-1}) + xt_{i}x^{-1}]$$

$$= \sum_{i=1}^{n} [xs_{i}x^{-1} + (\sum_{j_{i}=1}^{m_{i}} x\alpha_{j_{i}}x^{-1}(xm_{j_{i}}x^{-1})) + xt_{i}x^{-1}]. \text{ Let } 1 \le i \le n. \text{ We must to show that}$$

$$\sum_{j_{i}=1}^{m_{i}} x\alpha_{j_{i}}x^{-1} = 1. \text{ Therefore } \sum_{j_{i}=1}^{m_{i}} x\alpha_{j_{i}}x^{-1} = x(\sum_{j_{i}=1}^{m_{i}} \alpha_{j_{i}})x^{-1} = 1, \text{ so B is a normal set.}$$

Next, let $a, b \in K$ be such that a + b = 1. Then $ab_1 + bb_2$

$$= a(\sum_{i=1}^{n} [s_{i} + (\sum_{j_{i}=1}^{m_{i}} \alpha_{j_{i}} m_{j_{i}}) + t_{i}]) + b(\sum_{k=1}^{p} [u_{k} + (\sum_{j_{k}=1}^{q_{k}} \beta_{j_{k}} n_{j_{k}}) + v_{k}])$$

$$=(\sum_{i=1}^{n}[as_{i}+(\sum_{j_{i}=1}^{m_{i}}a\alpha_{j_{i}}m_{j_{i}})+at_{i}])+(\sum_{k=1}^{p}[bu_{k}+(\sum_{l_{k}=1}^{q_{i_{k}}}b\beta_{l_{k}}n_{l_{k}})+bv_{k}]).$$

Let $1 \le i \le n$ and $1 \le k \le p$. We must to show that $(\sum_{j_1=1}^{m_1} a\alpha_{j_1}) + (\sum_{j_k=1}^{q_k} b\beta_{j_k}) = 1$.

Therefore $(\sum_{j_1=1}^{m_i} a\alpha_{j_1}) + (\sum_{l_k=1}^{q_k} b\beta_{l_k}) = a(\sum_{j_1=1}^{m_l} \alpha_{j_1}) + b(\sum_{l_k=1}^{q_k} \beta_{l_k}) = a + b = 1$. Hence

 $ab_1 + bb_2 \in B$, so B is an a-convex normal set of K.

Let S be an additively a-convex normal multiplicative subsemigroup of K containing $A \cup \{1\}$. We shall show that $b_1 \in S$. Clearly, $m_{j_1} \in S$ for all $1 \le j \le m$.

Since
$$\sum_{j_i=1}^{m_i} \alpha_{j_i} = 1$$
 for all $1 \le i \le n$ and by Remark 1.37., 3), $\sum_{j_i=1}^{m_i} \alpha_{j_i} \in S$ for all

$$1 \le i \le n$$
. Then $b_1 = (\sum_{i=1}^n [s_i + (\sum_{j_i=1}^{m_i} \alpha_{j_i} m_{j_i}) + t_i]) = \in S$. Then B is the smallest

additively a-convex normal multiplicative subsemigroup of K containing $A \cup \{1\}$, hence H(A) = B.

Lemma 4.8. ([2]) Let K be a positively ordered skewsemifield and P the positive cone of K. Suppose that P satisfies property (*). Then for every $x \in K^*$ either H(P, x) or $H(P, x^{-1})$ satisfies 1) – 4) of Theorem 2.9. and also satisfies property (*).

Proof The proof is similar to the one given in [3] pp. 70.

Theorem 4.9. Let K be a positively ordered skewsemifield and P the positive cone of K. Then $\leq_{\mathbb{P}}$ (from Theorem 2.9.) can be extended to a total order on K if and only if P satisfies property (*).

Proof Assume that P can be extended to a total order of K, say Q. Let

 $x_1,...,x_n \in K^*$. Choose $\epsilon_1,...,\epsilon_n \in \{-1,1\}$ such that $x_i^{\epsilon_i} \in Q$ for all i. Then $H(P, x_1^{\epsilon_1}, ..., x_n^{\epsilon_n}) \subseteq Q$. To show that $H(P, x_1^{\epsilon_1}, ..., x_n^{\epsilon_n})$ is an conic subset of K, let $x \in H(P, x_1^{\epsilon_1}, ..., x_n^{\epsilon_n}) \cap [H(P, x_1^{\epsilon_1}, ..., x_n^{\epsilon_n})]^{-1}$. Suppose that $x \neq 1$. Case 1: x < 1. Then $x \notin Q$, so $x \notin H(P, x_1^{\epsilon_1}, ..., x_n^{\epsilon_n})$ which is a contradiction. Case 2: x > 1. Then $x^{-1} < 1$. Therefore $x^{-1} \notin Q$, so $x \notin H(P, x_1^{\epsilon_1}, ..., x_n^{\epsilon_n})$ which is a contradiction. Hence x = 1, so $H(P, x_1^{\epsilon_1}, ..., x_n^{\epsilon_n})$ is a conic subset of K. Conversely, let $C = \{Q \mid Q \text{ is a positive cone of K containing P and } \}$ satisfies (*). Since $P \in \mathbb{C}$, $\mathbb{C} \neq \emptyset$. Let $\{Q_i \mid i \in I\}$ be a nonempty subset of \mathbb{C} . Suppose that $\bigcup Q_i$ does not satisfy (*). Then there exist $x_1,...,x_n \in K^*$ such that $H(P, x_1^{g_1}, ..., x_n^{g_n})$ is not conic for all choices of $\epsilon_1, ..., \epsilon_n$, so there exists an $x \in H(P, x_1^{\epsilon_1}, ..., x_n^{\epsilon_n}) \cap [H(P, x_1^{\epsilon_1}, ..., x_n^{\epsilon_n})]^{-1}$ such that $x \neq 1$. Therefore $x, x^{-1} \in H(P, x_1^{\epsilon_1}, ..., x_n^{\epsilon_n})$. By Proposition 4.7., we can choose k such that $x_1, x^{-1} \in H(Q_k, x_1^{\epsilon_1}, ..., x_n^{\epsilon_n})$ which is a contradiction to Q_k satisfying (*). Hence U Q_i satisfies (*). Clearly, U Q_i is a positive cone of K containing P which is an upper bound of $\{Q_i \mid i \in I\}$, so $\bigcup_{i \in I} Q_i \in C$. By Zom's Lemma, C has a maximal element, say Q. Let $x \in K^*$. By Lemma 4.8., $H(Q, x) \in C$ or $H(Q, x^{-1}) \in C$. By the maximality of Q, either $x \in Q$ or $x^{-1} \in Q$. Hence Q defines a total order on K.,

Definition 4.10. Let K be a positively ordered skewsemifield. K is called a <u>vector skewsemifield</u> if and only if it is a subdirect product of a totally positively ordered skewsemifield.

Let $\{K_i \mid i \in I\}$ be a family of totally positively ordered skewsemifields. Let K be a subskewsemifield of $\prod_{j \in I} K_j$. Then the j^{th} projection map from K into K_j is isotone for every $j \in I$ as will now be shown.

To prove this, Let $(x_i)_{i \in I}$, $(y_i)_{i \in I} \in K$ be such that $(x_i)_{i \in I} \le (y_i)_{i \in I}$. Then $x_i \le y_i$ for all $i \in I$. Let $j \in I$. Then $\prod_j ((x_i)_{i \in I}) = x_j \le y_j = \prod_j ((y_i)_{i \in I})$, so \prod_j is isotone.

Theorem 4.11. Let K be a positively ordered skewsemifield. Then the following statements hold:

- 1) if K is a subskewsemifield of $\prod_{i \in I} K_i$ where K_i is a totally positively ordered skewsemifield for every $i \in I$ then its positive cone can be represented as the intersection of T_i where
 - i) T₁ are convex normal multiplicative subsemigroups of K* containing P,
 - ii) for every $x \in K^*$, $x \notin T_1$ implies that $x^{-1} \in T_p$
 - iii) $1 + K \subseteq T_i$ and $K + 1 \subseteq T_i$.
- 2) If $P = \bigcap_{i \in I} T_i$ where T_i satisfies i) iii) as above for all $i \in I$ then K is a vector skewsemifield.
- Proof 1) Assume K is a subskewsemifield of $\prod_{i \in I} K_i$ where K_i is a totally positively ordered skewsemifield for every $i \in I$. Let $i \in I$. Let $T_i = \prod_i^{-1}(P_i) \cap K$ where P_i is a positive cone of K_i .
- i) Let $x,y\in T_i$. Then $\Pi_i(x)$, $\Pi_i(y)\in P_i$ and $x,y\in K$, so $\Pi_i(xy)=\Pi_i(x)\Pi_i(y)\in P_i$ and $xy\in K$. Then $xy\in \Pi_i^{-1}(P_i)\cap K=T_i$. Next, let $z\in K^*$. Then $zxz^{-1}\in K$ and $\Pi_i(zxz^{-1})=\Pi_i(z)\Pi_i(x)\Pi_i(y)^{-1}\in P_i$, so $zxz^{-1}\in \Pi_i^{-1}(P_i)\cap K=T_i$. Next, let $a,b\in K$ be such that a+b=1. Then $\Pi_i(a)+\Pi_i(b)=\Pi_i(a+b)=\Pi_i(1)=1_i$. Thus $ax+by\in K$ and $\Pi_i(ax+by)=\Pi_i(a)\Pi_i(x)+\Pi_i(b)\Pi_i(y)\in P_i$, so $ax+by\in \Pi_i^{-1}(P_i)\cap K=T_i$. Next, let $u\in K$ be such that $x\leq u\leq y$. Since Π_i is isotone, $\Pi_i(x)\leq \Pi_i(u)\leq \Pi_i(y)$. By the o-convexity of P, $\Pi_i(u)\in P$, so $u\in \Pi_i^{-1}(P_i)\cap K=T_i$. Let $p\in P$. Then $1\leq p$, so $1=\Pi_i(1)\leq \Pi_i(p)$. Thus $p\in \Pi_i^{-1}(P_i)\cap K=T_i$. Clearly, $1\leq T_i$. Then $1\leq T_i$ is convex

normal multiplicative subsemigroup of K* containing P.

- ii) Let $x \in K^*$ be such that $x \notin T_i$. Then $\Pi_i(x) \notin P_i$. Since P_i is a total order, $\Pi_i(x) \in (P_i)^{-1}$, so $\Pi_i(x^{-1}) = (\Pi_i(x))^{-1} \in P_i$. Hence $x^{-1} \Pi_i^{-1}(P_i) = T_i$.
- iii) Let $x \in K$. Then $x + 1 \in P$ and $1 + x \in P$. Since $\Pi_i(P) \subseteq P_i$, $\Pi_i(x + 1) \in P_i$ and $\Pi_i(1 + x) \in P_i$, we get that $1 + x, x + 1 \in \Pi_i^{-1}(P_i) \cap K = T_i$.

Finally, to show that $P = \bigcap_{i \in I} T_i$, let $x \in P$. Let $i \in I$. Since $\Pi_i(P) \subseteq P_i$, $\Pi_i(x) \in P_i$, we get that $x \in \Pi_i^{-1}(P_i) \cap K = T_i$. Hence $x \in \bigcap_{i \in I} T_i$, so $P \subseteq \bigcap_{i \in I} T_i$. Next, let $y \in \bigcap_{i \in I} T_i$. Let $i \in I$. Then $y \in T_i = \prod_i^{-1}(P_i) \cap K$, so $\Pi_i(y) \in P_i$. Thus $y \in P$, so $\bigcap_{i \in I} T_i \subseteq P$. Hence $P = \bigcap_{i \in I} T_i$.

To prove 2), assume that $P = \bigcap_{i \in I} T_i$. Let $i \in I$ and $N_i = T_i \cap (T_i)^{-1}$. To show that N_i is a convex normal subgroup of K, let $x, y \in N_i$. Then $x, y, x^{-1}, y^{-1} \in T_i$, so $xy^{-1} \in T_i \cap (T_i)^{-1} = N_i$. Let $z \in K^*$. Then $zxz^{-1} \in T_i$ and $(zxz^{-1})^{-1} = zx^{-1}z^{-1} \in T_i$, so $zxz^{-1} \in T_i \cap (T_i)^{-1} = N_i$. Next, let $a, b \in K$ be such that a + b = 1. Then $ax + by \in T_i$ and $(ax + by)^{-1} = (ax + by)^{-1}(a + b)$ $= [(ax + by)^{-1}ax]x^{-1} + [(ax + by)^{-1}by]y^{-1} \in T_i$, so $ax + by \in T_i \cap (T_i)^{-1} = N_i$. Let $u \in K$ be such that $x \le u \le y$. Then $y^{-1} \le u^{-1} \le x^{-1}$. By the o-convexity of T_i , $u, u^{-1} \in T_i$, so $u \in T_i \cap (T_i)^{-1} = N_i$. Thus N_i is a convex normal subgroup of K.

Let $K_i = K_i/N_i$. Then K_i is a skewsemifield for all $i \in I$. Define $f: K \to \prod_{i \in I} K_i$ by $f(x) = (xN_i)_{i \in I}$ for all $x \in K$. Then f is a homomorphism. Since $\bigcap_{i \in I} N_i$ $i \in I$ $= \bigcap_{i \in I} [T_i \cap (T_i)^{-1}] = (\bigcap_{i \in I} T_i) \cap (\bigcap_{i \in I} T_i)^{-1} = P \cap P^{-1} = \{1\}$, f is a monomorphism. Let $i \in I$. Let $P_i = \prod_i \circ f(T_i)$.

To show that P_i is a multiplicative subsemigroup, let $\alpha, \beta \in P_i$. Then there exist a, b \in T_i such that $\Pi_i \circ f(a) = \alpha$ and $\Pi_i \circ f(b) = \beta$, so $aN_i = \alpha$ and $bN_i = \alpha\beta$. Thus $\alpha\beta = (aN_i)(aN_i) = (abN_i) = \Pi_i \circ f(ab) \in \Pi_i \circ f(T_i)$.

To show that P_i is a conic set, let $\alpha \in P_i \cap (P_i)^{-1}$. Then $\alpha, \alpha^{-1} \in P_i$, so there exist $a, b \in T_i$ such that $\alpha = aN_i$ and $\alpha^{-1} = bN_i$. Then $N_i = \alpha\alpha^{-1} = (aN_i)(bN_i)$

= (abN_i) , so $ab \in N_i$. Thus ab, $(ab)^{-1} \in T_i$. Therefore $a^{-1} = b(b^{-1}a^{-1}) = b(ab)^{-1} \in T_i$, so $a \in T_i \cap (T_i) = N_i$. Hence $\alpha = (aN_i) = N_i$, so P_i is a conic set.

To show that P_i is an a-convex normal set, let $\alpha \in P_i$ and $\beta \in K_i \setminus \{0\}$. Then there exist $a \in T_i$ and $b \in K$ such that $\alpha = aN_i$ and $\alpha\beta = bN_i$, so $b \neq 0$. Therefore $\beta\alpha\beta^{-1} = (bN_i)(aN_i)(bN_i)^{-1} = (bab^{-1})N_i = \prod_i \circ f(bab^{-1}) \in \prod_i \circ f(T_i)$. Next, to show the a-convexity of P_i , let α , $\beta \in P_i$ and C, $D \in K_i$ be such that $C + D = N_i$. Then there exist $a, b \in T_i$, $c \in C$ and $d \in D$ such that $\alpha = aN_i$, $\beta = bN_i$ and c + d = 1. By the a-convexity of T_i , $ca + db \in T_i$. Thus $C\alpha + D\beta = (cN_i)(aN_i) + (dN_i)(bN_i) = (ca + db)N_i = \prod_i \circ f(ca + db) \in \prod_i \circ f(T_i)$, so P_i is an a-convex normal set.

To show that P_i is an additive ideal of K_i , let $\alpha \in K_i$. Let $x \in \alpha$. Then $x+1 \in T_i$ and $1+x \in T_i$, so $\alpha+N_i=xN_i+N_i=(x+1)N_i=\prod_i \circ f(x+1) \in \prod_i \circ f(T_i)$ and $N_i+\alpha=N_i+xN_i=(1+x)N_i=\prod_i \circ f(1+x) \in \prod_i \circ f(T_i)$.

By Theorem 2.9., P_i is a positive cone of K_i . Next, to show that $K_i = P_i \cup (P_i)^{-1} \cup \{0\}$, let $\alpha \in K_i \setminus \{0\}$. Let $x \in \alpha$. Then $x \neq 0$.

Case 1: $x \in T_i$. Then $\alpha = xN_i = \prod_i \circ f(x) \in \prod_i \circ f(T_i) = P_i$.

Case 2: $x \notin T_i$. Then $x^{-1} \in T_i$, so $\alpha^{-1} = (xN_i)^{-1} = x^{-1}N_i = \prod_i \circ f(x^{-1}) \in \prod_i \circ f(T_i) = P_i$. Hence K_i is a totally positively ordered skewsemifield.

Finally, to show that $f(P) = P_{f(K)}$, let $x \in P = \bigcap_{i \in I} T_i$. Then $x \in T_i$ for every $i \in I$. Let $j \in I$. Then $xN_j = f(x) = f(T_j) = P_j$, so $xN_j \ge N_j$. Therefore $f(x) = (xN_j)_{1 \in I} \ge (N_j)_{1 \in I}$, so $f(x) \in P_{f(K)}$. Next, let $f(x)_{1 \in I} \in P_{f(K)}$. Then $f(x)_{1 \in I} \ge (N_j)_{1 \in I}$, so $f(x)_{1 \in I} = N_j$ for all $f(x)_{1 \in I} \in P_{f(K)}$. Then $f(x)_{1 \in I} \ge (N_j)_{1 \in I}$, so $f(x)_{1 \in I} = N_j$ for all $f(x)_{1 \in I} = N_j$. Then there exists a $f(x)_{1 \in I} = N_j$ such that $f(x)_{1 \in I} = N_j$, so $f(x)_{1 \in I} = N_j$. Thus $f(x)_{1 \in I} = N_j$. Hence $f(x)_{1 \in I} = N_j$, so $f(x)_{1 \in I} = N_j$, so $f(x)_{1 \in I} = N_j$. Therefore $f(x)_{1 \in I} = N_j$, so $f(x)_{1 \in I} = N_j$. Hence $f(x)_{1 \in I} = N_j$, so $f(x)_{1 \in I} = N_j$, so $f(x)_{1 \in I} = N_j$. Hence $f(x)_{1 \in I} = N_j$, so $f(x)_{1 \in I} = N_j$, so $f(x)_{1 \in I} = N_j$. Hence

<u>Corollary 4.12.</u> Let K be a positively ordered skewsemifield. If K is a vector skewsemifield then its positive cone P satisfies the property that for every $x_1,...,x_n \in K^*$, $\cap H(P, x_1^{E_1},...,x_n^{E_n}) = P$ where the intersection is to be extended

over all possible choices of signs $\varepsilon_1, ..., \varepsilon_n \in \{-1, 1\}$.

Proof Assume that K is a vector skewsemifield. By Theorem 4.12., $P = \bigcap_{i \in I} T_i \text{ where } T_i \text{ satisfies } i) - iii) \text{ for all } i \in I. \text{ Let } x_1, \dots, x_n \in K^*. \text{ By Property } ii)$ of T_i , we can choose $\epsilon_{i_1}, \dots, \epsilon_{n_i} \in \{1, -1\}$ such that $x_1^{\epsilon_{i_1}}, \dots, x_n^{\epsilon_{n_i}} \in T_i \text{ for all } i \in I. \text{ Hence } H(P, x_1^{\epsilon_{i_1}}, \dots, x_n^{\epsilon_{n_i}}) \subseteq T_i \text{ for all } i \in I. \text{ So we get that } P \subseteq \cap H(P, x_1^{\epsilon_{i_1}}, \dots, x_n^{\epsilon_{n_i}}) \subseteq \bigcap_{i \in I} H(P, x_1^{\epsilon_{i_1}}, \dots, x_n^{\epsilon_{n_i}}) \subseteq \bigcap_{i \in I} T_i = P \text{ and therefore } \cap H(P, x_1^{\epsilon_{i_1}}, \dots, x_n^{\epsilon_{n_i}}) = P.$

Lemma 4.13. Let A and B be subskewsemifields of a totally positively ordered skewsemifield K, A₁ and B₁ convex normal subgroup of A and B, respectively. Then $(A_1 \cap B)(A \cap B_1)$ is a convex normal subgroup of $A \cap B$ and $(A \cap B)A_1$, $(A \cap B)B_1$ are subskewsemifields of K.

Proof By Lemma 1.57., $(A_1 \cap B)(A \cap B_1)$ is an a-convex normal subgroup of $(A \cap B)$. Since A_1 is a convex subset of A, by Lemma 2.21., $A_1 \cap B$ is also a convex subset of $A \cap B$ therefore $A_1 \cap B$ is an o-convex subset of $A \cap B$. Similarly, $A \cap B_1$ is an a-convex subset of $A \cap B$. By Remark 4.2., 3), $(A_1 \cap B)(A \cap B_1)$ is an o-convex subset of $A \cap B$. Then $(A_1 \cap B)(A \cap B_1)$ is a convex normal subgroup of $A \cap B$.

Proposition 4.14. Let A and B be subskewsemifields of a totally positively ordered skewsemifield K, A₁ and B₁ convex normal subgroups of A and B, respectively. Then $(A \cap B)A_1/(A \cap B_1)A_1 \cong (A \cap B)B_1/(A_1 \cap B)B_1$.

<u>Proof</u> Let f be the epimorphism defined in the proof of Proposition 1.58. To show that $f(P(A \cap B_1)A_1) \subseteq P(A \cap B)/(A_1 \cap B)(A \cap B_1)$, let $c \in A \cap B$ and $a_1 \in A_1$ be such that $ca_1 \ge 1$.

Case 1: $c \le 1$. Then $f(ca_1) = c[(A_1 \cap B)(A \cap B_1)] \ge (A_1 \cap B)(A \cap B_1)$. Case 2: $c \le 1$. Then $1 \le ca_1 \le a_1$, so $(a_1)^{-1} \le c \le 1$. By the o-convexity of A_1 , $c \in A_1$, so $c \in A_1 \cap B$. Therefore $f(ca_1) = c[(A_1 \cap B)(A \cap B_1)] = (A_1 \cap B)(A \cap B_1)$. Hence $f(P(A \cap B_1)A_1) \subseteq P(A \cap B)/(A_1 \cap B)(A \cap B_1)$.

Next, to show that $P(A \cap B)/(A_1 \cap B)(A \cap B_1) \subseteq f(P(A \cap B_1)A_1)$, let $c[(A_1 \cap B)(A \cap B_1)] \in P(A \cap B)/(A_1 \cap B)(A \cap B_1)$. We must to show that there exist $x \in A \cap B$ and $y \in A_1$ such that $xy \ge 1$ and $f(xy) = c[(A_1 \cap B)(A \cap B_1)]$. Since $c[(A_1 \cap B)(A \cap B_1)] \ge (A_1 \cap B)(A \cap B_1)$, there exist $a_1, a_2 \in A_1 \cap B$ and $b_1, b_2 \in A \cap B_1$ such that $ca_1b_1 \ge a_2b_2$, so $(a_2)^{-1}ca_1b_1(b_2)^{-1} \ge 1$. Since A_1 is a normal subset of A, there exists a $a_3 \in A_1$ such that $(a_1)^{-1}c = ca_3$. Let $x = cb_1(b_2)^{-1}$ and $y = [b_1(b_2)^{-1}]^{-1}a_3a_1[b_1(b_2)^{-1}]$. Then $x \in A \cap B$. Since A₁ is a normal subset of A, $y = [b_1(b_2)^{-1}]^{-1}a_1a_2[b_1(b_2)^{-1}] \in A_1$. Then xy $= [cb_1(b_2)^{-1}][b_1(b_2)^{-1}]^{-1}a_3a_1[b_1(b_2)^{-1}] = [ca_3a_1[b_1(b_2)^{-1}] = (a_2)^{-1}ca_1[b_1(b_2)^{-1}] \ge 1 \text{ and}$ $f(xy) = x[(A_1 \cap B)(A \cap B_1)] = cb_1(b_2)^{-1}[(A_1 \cap B)(A \cap B_1)]$ $= c[(A_1 \cap B)(A \cap B_1)]b_1(b_2)^{-1}[(A_1 \cap B)(A \cap B_1)] = c[(A_1 \cap B)(A \cap B_1)].$ Thus $f(P(A \cap B_1)A_1) \subseteq P(A \cap B)/(A_1 \cap B)(A \cap B_1)$, so $f(P(A \cap B_1)A_1)$ = $P(A \cap B)/(A_1 \cap B)(A \cap B_1)$. By Proposition 1.58., $(A \cap B_1)A_1 = \ker f$. Then $(A \cap B)A_1/(A \cap B_1)A_1 \cong (A \cap B)/(A_1 \cap B_1)(A \cap B_1)$. Similarly, we get that $(A \cap B)B_1/(A_1 \cap B)B_1 \cong (A \cap B)/(A_1 \cap B)(A \cap B_1)$. Hence $(A \cap B)A_1/(A \cap B_1)A_1 \cong (A \cap B)B_1/(A_1 \cap B)B_1 *$

<u>Definition 4.15.</u> Let K be a positively ordered skewsemifield. K is said to be Archimedian if and only if for all $x, y \in K^*$, if x < y then

- 1) there exists an $n \in \mathbf{Z}^+$ such that y < nx and
- 2) there exists an $n \in \mathbf{Z}$ such that $y < x^n$ if $x \ne 1$.

<u>Theorem 4.16.</u> Let K be an Archimedian totally positively ordered skewsemifield such that $1+1 \neq 1$ and $K_0 \subseteq K$, the prime skewsemifield of K is order isomorphic

to \mathbf{Q}_0^+ . Then K can be embedded into a complete totally positively ordered skewsemifield.

<u>Proof</u> The proof is exactly the same as the proof for semifield given in [3] pp. 80-85.

Corollary 4.17. A complete totally positively ordered skewsemifield is multiplicative commutative and addition is either commutative or for every $x \in K^*$, there exists a unique $y \in K$ such that $x + y \neq y + x$.

REFERENCES

- Birkhoff, G. <u>Lattice Theory.</u> American Mathematical Society Colloquium Publications Vol. 25, 1940.
- Fuchs, L. Partially Ordered Algebraic Systems. Oxford: Pergamon Press, 1963.
- Namnak, C. "<u>Positive Ordered 0-Semifields</u>" Master's thesis, Department of Mathematics, Graduate School, Chulalongkom University, 1996.
- Phayakul, J. "Foundations of Some Partially Ordered Semirings" Master's thesis,

 Department of Mathematics, Graduate School, Chulalongkom University,

 1991.
- Satravaha, P. "Extensions and Decompositions of Semirings" Master's thesis,

 Department of Mathematics, Graduate School, Chulalongkom University,

 1989.
- Wisetmongkolchai, P. "Classification of Some Complete Ordered Semirings"

 Master's thesis, Department of Mathematics, Graduate School,

 Chulalongkom University, 1990.