CHAPTER il
POSITIVE LATTICE 0-SKEWSEMIFIELDS

Definition 3.1. Let S be a positively ordered semiring. S is said to be a positive
lattice semiring if and'only if the partial order of S is a fattice, that is for afl

x,y €S, xvy and XAy exist.

Examples 3.2, 1) Q;, R;' are positive lattice skewsemifields.

2) Let G be a lattice group. Let K=Gu{a} where a is an
element ‘not representing in G. Define + on K by x+y=xvy and x+a=x
=a+x for all x,y € K and define ax=a=xa and a<x, for every x & K.

Then we have that K is a positive lattice skewsemifield.

3) Let K be a positive lattice skewsemifield. Then (K, +*,», <)

is a positive lattice skewsemifield such that x +*x =x for aif x € K if we define

x+'y=xvy for all x,yeK.

Remark 3.3, Let K be a positively ordered skewsemifield. Then the following
statements hold :

1) For all x,y € K, if x vy exists then xw v yw and wx v wy exist for every
w € K. Morever, (x Vv y)w =xw v yw and w(xVy) Swx v wy.

2) For all x,y € K, if x Ay oxists then xw A yw and wx A wy exist for every

w € K. Morever, (x Ay)w =xw A yw and w(X A Yy) = Wx A wy,

Praof 1) Let x,y € K be such that x vy exists. Let we K. If w=0 then
done. So suppose that w= 0. Since x<xvy and y<xvy, xws< (xvyw and yw
<(xvyw. Hence (xVvyw is an upper bound of xw and yw. Let z € K be such

that xw<z and yw<z Then x<zw ' and y<zw™, xvy<zw', so xvyw=z
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Hence: (x v y)w = xw v yw. Similarly, w(x v y) = wx v wy.

2) Dual to 1).,

Theorem 3.4. ([1]) Every positive lattice group G is distributive, that is for all

xy,z€G, xv(yaz)={xvy)a(xvz)

Proof See [1], pp. 294.,

Proposition_3.5. Let K be a positively ordered skewsemifield. Then the following
statements are equivalent.

1) K is a lattice.

2) For every x e K, xVv 1 exists,

3) For every x € K, x A 1 exists.

4) P is a lattice where P is the positive cone of K,

Proof 1) = 2) Obvious. _

2)=>3) Let xe K. If x=0 then xA1=0. Suppose that x=0. By 2),
x" v 1 exists, say y. Then x' <y and 15y, 80 y'1 <x and y <1. Let w € K* be
such that w<1 and w<x. Then 1<w™" and x'<w", so y=x"v1<w. Thus
w<y"', hence xA 1=y

3)=>4) Let x,y € P. Then xy € K. By 3), xy A1 exists. By Remark
33., 2), xAy=(xy A1)y Since x=1 and y21, xAy21, s0 XAy € P. Next,
we shall show that x vy exists. By 3), X' Ay exists, say w. Since x+y) " <x’
and (x+y)"'<y", (x+y) <w, so w=0. Since x'=w, w'2x, sow' e€P. Let
2 € K be such that x<z and y<z. Then z ' <x~ and z' <y, so ' <x Ay’
=w. Therefore w' <z, so xvy=w" € P. Hence P is a lattice.

4) = 1) Let x,ye K. If x=0 or y=0 then done. Suppose that x#0
and y=0. Then xy" € K*. By Remark 2.8., 6), there exist p,q € P such that

xy =pqg . By 4), pvq,pAq exist. By Remark 3.3,, xy'1 vi=pq v1
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=(pva)g and xy A1= pq” 1=(pA a)q": Hence x v y= (xy" v 1)y and

50 we get that xAy= oy Ay, ,

Proposition 3.6. Let K be a positive lattice skewsemifield. Then the following
statements hold: '

1) For every nonzero element x € K, x = pq™ for some p,q € P such that
pAag=1.

2) For all x,y € K, xvy)' =x"Ay" and xAy)y' =x" vy

3) For all x,ye K*, xvy= x(x Ay)ly and xAy= x(x v y)"y.

4) For every x € K, x = (x v 1)(x A 1).

5) For all x,y,ze€ K, if z#0 then [(xVvy) Az]z'1[(x1\y) & d

=[xAy) Vv 7127 [(x v y) A Z].

Proof 1) Let x € K*. By Remark 2.8., 6), there exist a,b € P such that
>§= ab™”. Let p=a(aab)”’ and g=bla b)". Then p,ge P and pAQ
= [ata Ab)'1A[b@A b)) =(aAb)aA by = 1. Therefore x = ab™
=fa(anb) @by 5" = pg.
2) Déﬁne K= K*. by f(x) =x" for every x € K‘;. Then f is a bijection.
Let a,b e K*. Then avb e K*. By the definition of f, flavb)=(av b)™.
Claim that f(a v b) =f(a) Af(b) = a’ AbD. |
By a<(avb) and b<(avb), fla)>favb) and f(b)2f(avb). Let ze K be
such that z<f(a) and z<f(b). Since f is onto, there exists a w € K* such that
2= fw). Then w = F1(fw) = £'(2) > F'(fa) = a. Similarly, w =b. Then 'w > (a v b)
Thus z =f(w) <f(a vb), so we have the ciaim.
Therefore (avb)' =flavb)=a" Ab”. Dually, @Aby'=a"vb™.
3) Let x,y € K* x(xA y)'1y =x(C VY = vRy )Y SYVXEX VY.
Similarly, x Ay =x(x v y)"y.
4) Follows directly from 3).

5)ALet X, ¥, 2 € K be such that z= 0. Suppose that x/\ y=0.
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By 3), (xvy)az]l=Kxvylxvy) A z]'z#0. Then (xAy)V[xvy)AZ)

= (A AN AV ATV Y) A2 = AN A AZT TV Y) AZ)
=xANXAY xAY) v Ixvy) Azl =[x Ay) vZIZ TixVY) AZ).
Dually, xvy)AlxAay)vzl=[xvy)Aa 2127 A y) v z).

By Remark 1,5, (xAy)vixvy)azl=xvy)alxay) vzl

Hence [(x Ay) v 2127 [(x v yyazl=lxvyla 2127 [x A yyvzl,

Note that for all nonzero elements x,y in a positive lattice skewsemifileld K,

xVvy and X Ay are non zero.

Proposition 3.7, Let K be a positive lattice skewsemifield. Then the following
statements hold : for all k. y,z €K,

1) if x<y then xvz<yvz and XAZSYAZ,

) x+(YAZDSK+Y) Al+2) and (yaz) +x<(y+x) Az +X),

I x+yva)zx+z)viy+2z) and (yvz)+x=(y+x)v(z+x)

4) (x+yYyAzsxaz)+(yaz) and x+y)vzs{xvz)+(yvaz).

Proof Let x,y,z € K.

1) Obvious.

2) By ynz<y and yAz<z x+(yAnz)<x+yand x+(ynz)<x+z
Hence x + (y A2) S(x +y) A (x +2). Similady, (y AzZ) +x<(y+x) A (z+ x).

3) Dual to 2.

4) Suppose that x,y,z#0. Since x<x+y and (by 1)), xvz<({x+y)vz,
we get that [(x+y) v 2N <xva)™. Therefore x[x +2) vz 'z<x(x v 2) 'z
Similarly, y{(x +y) v z]"z <ylyv z)'1z. Then x+y)nz=(Xx+ylx+y)v z]'1z
=x{x+y)vzl'z+yix+y)vz'z<x[xvz]'z +ylyvzl'z
=x(x " AZ)zZ+HYY AZZ=@ZAX) +(ZAY) = (XAZ)+ (YA 2).
Since xSsz and ysyvz, (x+y}s(xvz)+({yva).

Clearly, zs(xvz}+(yvz), so x+y)vzs(xvz)+(yva).,



Theorem 3.8. ([2]) Let K be 8 positive lattice skewsemifield and a,,..., a,,
B,,.... b, € P such that a,...a, =b,...b,. Then there exist elements c, € P for all
ie{1,..m}and je{1,.,n} satisfying

1) 3,=¢,...C,, i €{1,..Mm}

2) bj=cy..CyJ € {1,...n},

3) Cluqpo--Cpy A GGy =1 for all i<m and j<n.
Proof See [2], pp. 68.,

Corollary 3.9, If a,b,..... b, are in the positive cone of a positive laftice
skewsemifield K such that a<b....b, then there exist a,,..., a, € P satisfying

a=a,.a, with g <b for every i € {1,...n |2
Proof It follows from Thecrem 3.8.,

Proposition 3.10. Let K be a skewsemifield and P < K" positive cone. Then
the partial order on K induced by P is a positive lattice if and only if for every
x € K*, there exists a z € P satisfying the following conditions :

1) o' € P and

2) for every w € P, wx" & P_implies that wz” & P.

Proof Let K be a positive lattice skewsemifield and let x € K*,

Let z=xv 1. Then z=x and z=1, s0 zx,z € P. Let w € P be such that
wx' € P. Then w=x and w21, so w2 (xv1)=z Thus wz &P,

Conversely, assume that for all x € K*, there exists a z € P such that
satisfying conditions 1) and 2). Let a K. If a=0 then av1=0, so done.
Suppose that a=0. By assumption, there exists a z € P satisfying conditions 1)
and 2). Then z2=x and z>1. Let w € K be such that w=x and w2 1. Then

-1 -4 . .
wx ,weP, so wz €P. Therefore w22, s0 xv 1=z Hence K is a lattice. ,

59
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Theorem 3.11. Let S be a positive lattice semiring with muitiplicative zero 0
satisfying the M.C. property and suppose that (S, ) satisfies the right [left] Ore:
condition. If < is M.R. then S can be embedded into a positiva lattice

skewsemifield.

Progf By Theorem 2.12., we have that K=S x (S\(0} ). is the positively
ordered skewsemifield of a right quotients of S. Let o = [(a.b)] € K*. Let z
=[lavbb)=iav b)i(b)”. Since (avb)zb, z e P. Since zo”" = [(a Vv b,a))
=i(a v b)i(a)”, so zo € P. Let w=i(wi(v)" € P be such that wa' € P. Since
v,b e S0}, there exist x, y € S\{0} such that vx =by, so wa™ = [(ux.ay)]
= i(wx)i(ay)” and wz " = [(ux(a v b)y)] = iux)i[(a v bly] ). Since wel' € P and
by claim in the proof of Theorem 2.12., we get that ux=ay. Since wz' eP,
u2v, 50 uxvx. Therefore ux = (ay v w) = (ay Vv by) =(avbly, so wz  eP.

Hence K is a lattice. ,

Definition 3.12. Let K be a positive lattice skewsemifield and x € K*. The
absolute valu of x, denoted by Ix|, is defined to be xvx

In [2), pp. 76 \;ve have the following elementary properties of the absoiute :
for all x,y € K",

1) Ixl 21 and Ixl = Ix7,

2) Ix| =1 if and only if x=1,

3) Ixy'l = e vdx Ay

8) Ixl = (xvDxA1,

5) Ix" =1x|" for all ne 2" and

6) Ixyl < Ixl|lyllxl.

Proposition 313, Let K be a positive lattice skewsemifield and x,y,z € K", Then
the following properties hold :
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1 lxva)yva) llxaztyaz’l =[xyl

2) lxva)yva) 'l <lxy”} and lxaziyaz)’| < Ixy’l,
3) Ix+yl <lixl + lyl,

4) [(x+2)0y+2)" slxy"‘l.'

Proof Let x,y,z € K,

1) lxvalyva) Hxazly Azl
={ixv2 viyvallx v alyva TxAD vy aDlix Az Aly A2
=[xvy)vZlixay) vz [xvy) AzlizA XA ik
= (x vyl vy) Azl 2xay) v 2 v ) AZ)Z (kA y) v 2)x Ay
= (x v I AY) v ZIZ TV y) AZD) ([ v y) A 27" TxAay) VDAY
= vylxAay) v v ) Az T Ay) v ZIZ T v A DDA Y
=(xvyxay) =yl |

- 2) Since 1<lxvziyvz) | and 1<|xAzyaz)l, by 1), we get that

lxv2)yva) 'l <lxy’l and l(xaz)y Az < Ixyl. |

3) Since x< Ix| and y<lyl, x+y<Ix| + |yl. Since x<x+y and
ySx+y, x+y) <x' and (x+y) Sy, so (x+ W< (x+ Wi+ x+y)"
<x'+y'< x|+ lyl. Hence Ix+yl =(x+y)vx+y" <|xl +lyl.

4) I(x . 2y + 27 =[x+ 2) vy + Dx + ) A ly + 2]
<[(xvy) +zZix+2) A ly +2]" Sfxvy) + 2] Ay) + 2.
Claim that [(x V) + 2)J[(x AY) +2)]” < (x v y)x Ay)".
Since (xAy)<(xvy), (xv y)'1 S (XA y)'1, we get that {x v y)'1z < (XA y)"z.
Hence (xvy) Ix vy) +2)] =1+ (xvy) 21 + (XA y)"z =(xAY)TIx AY) +2)]
therefore [(xvy) + 2)][(x Ay) +2)]" < (x v y)(x A y)". so we have the claim.

Thus [(x+2)(y+2)" | S[xvy) +2JlxAy)+ 2] Sxvydx Ay = Ixy’l.,

Proposition 3.14. Let K be a complete positive lattice skewsemifieid. Then the

following statements hold :

1) Let xoo €K for all @ el, if v xo exists then v xgw and v wxy exist

xEl el uel
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for all w € K. Morever, ( v xq)w- v xaw and w( v xa)- v wxa
el [+ 23

2) Lot xq €K for all ael, if A xq exists then A xgw and A wxg exist

aE] QeI xEl

for all w € K. Morever, ( A xa)w- /\ xuw and w( A xa)- A w><m

xel e

3) Let xq, € K for all ael, if v X exists thenw +( v xa)s v (w+xu)
[+ X3 (e X3

and ( v xa)+ws v (xa+w) for all w e K.

ael

4) Let xg € K for all o €1, if A Xq exists thenw+ ( A Xg )< /\ (w+xa)

REl el

and ( A Xg)+WS A (xg+w) for all weK
oEl] ael

Proof Let xy € K for all & € I,

1) Assume that v xq exists. Let- w € K. f w=20 then done. Suppose that
el

wz0. Let ao €. Then xg < v xa. SO WXy SW( V Xg ). Hence w( v Xa) is

el

an upper bound of {wxy / @ €1}, Therefore v (wxgy) exists and

el

(wxa)SW( v xa) Let z € K be such that v (wxgy) <z Let ae €1. Then

(!.GI aEl

WXg, S v (wxq)SZ. 50 Xg, SW '2. Hence and v xgq SW'z, S0 W( v Xo)SZ

RE] aE]
Hence w( V Xg )= v (wxy). Similary, ( v xa)w- v (xaw)
aE] [+ X3 oEl
2) Dual to 1.

3) Assume that v x exists. Lat we K. Let a0 € |.. Then xg < Vv Xy, SO

oel ael

w+xa0$w+( v xa). Hence w+( v xa) is an upper bound of

{W+Xa / ot €|} Therefore v (w+xg) exists and v (W+xg) SW+( v Xg ).
A€l aer el

Similarly, v (g +W)S( v Xo)+w.
[+ X3

ae]

4) Dual to 3.,

Definition 3,15. Let K be a positive lattice skewsemifield and A a convex normal
subgroup of K. A is said to be an L-ideal if for every x € A, xv1 € A and

xAleA. .
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Remark 3.18. Let K be a positive lattice skewsemifield. Then following statements
clearly hoid :

1) {1} and K* are trivial L-ideals of K.

2) The intersection of a family of L-ideals of K is an L-ideal of K.
Also the union of an increasing chain of L-ideals is an L-ideal. _

3) Let A be a convex normal subgroup of K. Then A is an L-ideal of K

if and only if xv1 €A for every x € A

Proposition 3.17. Let K be a positive lattice skewsemifield and AC K. Then A is
an L-ideal if and only if it is an a-convex normal subgroup of K such that for all

a€A and xeK, if |x| <lal then x € A,

Proof Let A be an ideal of K. Let a € A and x € K be such that x| < |al.
Then x,x" < lal. so*lal™ <x<lal. By the o-convexity of A, x € A,

Conversely, to show the o-convexity of A, let x,y € A and z € K be such
that x<z<y. Then 1< <yx’, so 2" =2 <y’ = lyx']. By assumption,
zx' &1, so ze A Next, let x € A. Since 1< x| and x<Ixl, Ixvtl=xvi<lxl,

so xv1eA Hence A is an L-ideal of K.,

Corollary 3.18. Let K be a positive lattice skewsemifield and A an L-ideal of K.
Then for all x,y,z€ K*, xy' &€ A implies that (x vziyvz)' € A and

xAzZyAa z)'1 € A.

Proof Let x,y, z € K* be such that xy” € A. By Proposition 3.13., 2),
lxv2)yvz)'|<Ixy”'| and |(xaz{yaz)'] <Ixy'l. By Proposition 3.17.,

(x v 2}y v 2" €A and (xA z)(y A 2 e A .

Proposition 3.19. Let A and B be L-ideals of a positive lattice skewsemifieid K.

Then AB is an L-ideal of K which is the smallest L-ideal containing A and B.
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Proof By Remark 1.37., 2), AB is an a-convex normal subgroup of K. Let
x €A yeB,zeK be such [zl <Ixyl. Then Ixyl < [xllylIx|. We must show that
z € AB. By Corollary 3.9., there exist a,b,c € P such that a< x|, b<lyl,c< x|
and |z| =abc. By Proposition 3.17., a,c € A and b € B. Since B is a normat
subset of K, there exists a d € B such that bc =cd, so |z| =abc =acd € AB.
since 1<(zv1) and 1<lzl, lzvil =zvislzl = |zl vIZ"| = |zl]. By using
the same proof in a manner similar to the above, we get that zv 1 € AB. Since
Izl =@@v 1)z A1), (za1) AB, so 2=(z Vv 1){zA 1) € AB. By Proposition 3.17.,
AB is an L-ideal of K.

Next, let D be an L-ideal of K such that A, BcD. Let ae A and b eB.
Then ab € D, so ABc D. Therefore AB is an L-ideal of K which is the smallest

L-ideal containing A and B.,

Let C be the set of all L-ideals of a positive lattice skewsemifield K. Let
A A €C. Then AVA' = AA’ and AAA'=ANA". Hence C is a lattice. Morever,
we shall show that C is a distributive lattice. '

To prove this, let A,B,C e C. Let ac AnBC. Then a € A and a € BC, so
lal € A and {al € BC. Thus there exist b € B and ¢ € C such that |al = bc. Let
x=lal A(1vbe), y=1lal A{(1vc) and z=1al A1. Then x=lal, so 15y<lal
and z=1. By the o-convexity of A, X,y,z € A. Since (bc)c” € B and by Corollary
3.48., (1vbe)ive) eB, we get that xy =[lal A (1voe)ilal A (1ve)” eB.
Then xy" € AN B. Since 1vc e C and (by Corollary 3.18.), yz= yz'1
=[lal A(tve)llal A1 € C, we get that yz € A~ C. Therefore |al =x =xz
=(xy "Nyz) € (ANBXANC). Since a " s lal, lal"<as<]al, we get that
ae (ANB)YANC), so AnBCc(ANB)ANC). Cleany, (AnNB)YANC)

S ANBC. Therefore AA(Bv C)=ANBC=(ANB)ANC)=(AAB)VvV (AAC),

hence C is a distributive lattice.

Refinition 3.20. Let K and M be positive lattice skewsemifieids. A function
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f:K—>M is called an L-homomorphism of K into M if and only if f is a
homomorphism and for all x,y € K, f(x vy) = f(x) v f(y).

The definitions of L-monomorphisms, L-epimorphisms and L-isomorphisms
are defined as one would expect. If there exists an L-isomorphism K onto M,
we denote this by K=L M,

Remark 3.21. Let f: K— M be an L-homomorphism of positive lattice
skewsemifields. Then the following statements hold .

1) f is isotone.

2) m-kerf is an L-ideal of K.

3) fix Ay) =f(x) Af(y) for all x,y e K.

4) If A’ is an L-ideal of M then Y(A") is an L-ideal of K.

Proof 1) Obvious.

2) By Remark 2.16. 2), m-kerf is a convex normal subgroup of K.
Let x € m-kerf. Then fixv 1) =fx)vi1)=1v1=1, so xv1e&m-kerf Hence
m-kerf is an L-ideal of K.

3) Let x,ye K. f x=0 or y=O then done. So assume that x,y=0.
Then [f(x) v f(y)] # 0. By Proposition 3.6., 3) f)f(x) A f(y)] 'y} = ) v Ky)
= f(x(x A YY) = f00Ifx A YT f(y), 50 fx A y) = fx).A fy).

4) By Remark 2.16. 3), f (A") is a convex normal subgroup of K
containing m-kerf. Let x e f (A"). Then f(x) € A, Since A’ is an L:ideal of K,
fixv ) =fx)vi1)=fx)v1eA, so _xv1 e (A, By Proposition 3.4., 2),
f'(A") is an L-ideal of K.,

Let K be a positive lattice skewsemifield and A an L-ideal of K. Then Ky is

a positively ordered skewsemifild.

To prove that Ksa is a lattice, let x € K. Claim that xAv A= (xv 1)A.

If x=0 then xAVA=A=(xVv 1)A s0 done. Suppose that x# 0. Choose a € xA
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and b € A. Then there exist an i € A such that a =xi. Since ix(bx)" =ib" €A
and by Corollary 3.18., (a v b){b(x v 17" = (ix v b)(bx v b)" € A. Since b € A,
(avbXxv 1) =(avb)blxv 'b € A. Hence Vv is well-defined. Clearly,
A<(xv1)A and xA<(xVv 1)A. Let o € K/a be such that xA, A<a. Then there
exist a,,a, € A and y,z € a such that xa, <y and a,<z, so (a,Aa,)xVv1)
=(a,AgxVv(a, na)saxva,syvz=(1v 2y")y. Since y,ze a, zy €A, S0
y'v1eA Thus (xv 1)l SAy=yA=d. Hence xAvA=(xVv1)A, so we have

claim. By Proposition 3.5., 2), K/a is a positive lattice skewsemifiled.

Note that the projection map I defined by Il(x) =xC, for every x e K is
an L-epimorphism of K onto Kja.

T 3.22._(First | hism T ]
Let f: K—» M be an L-epimorphism of positive lattice skewsemifields. Then

Kim-ker £ ZL M.

Proof Let @ be the order isomorphism defined in the proof of Theorem 2.18. '
To show that ¢ is an L-isomorphism, let x, y € K. Then e(x(m-ker f) v y(m-ker f))
= f(x v y) = f(x) v fy) = @(x(m-ker f)) v ¢(y(m-ker f)). Then <p'1 is an L-isomorphism,

0 Kim-ker fSLM.
Lemma 3.23. Let H be a subskewsemifield of a positive lattice skewsemifield K
and A an L-ideal of K. Then HnA is an L-ideal of H and HA is a

subskewsemifield of K.

Praof This proof is similar to the proof of Lemma 2.20.,
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Theorem 3.24, (Second lsomorphism Theorem ),
Let H be a subskewsemifield of a positive lattice skewsemifieid K and A an

L-ideal of K such that P, = P,. Then Hj ~ A =L HAA,

Praof This proof is similar to the proof of Theorem 2.21.,

Lemma 3.25. Let A and B be L-ideais of a positive lattice skewsemifield K such

that Ac B. Then Bja is a convex normal subgroup of Kja,

Proof This proof is similar to the proof of Lemma 2.22.,

I 3.26. (Third | hism T |

Let K be a positive lattice skewsemifield, A and B L-ideals of K such that

B < A. Then K/BIAIB =L K/A

Proof This proof is similar to the proof of Theorem 2.23.,

Propasition 327, lLet f: K—> M be an L-epimorphism of positive lattice
skewsemifields. If A’ is an L-ideal of M then Kj'(an =L Mjar.

Proof This proof is similar to the proof of Proposition 2.24. "

Proposition 3.28. Let {K /iel} be a family of positively ordered

skewsemifields. Then II K, is a lattice if and only if K is a lattice, for ail i € I.
i€l

Proof See [4], pp. 48.,

Definition 3.29. Let K be a positive lattice skewsemifieid. A congruence g on K
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is said to be an L-congruence if and only if for all x,y,z € K, x py implies that
xvz)plyva).

Remark 3.34, Let K bs a positive lattice skewsemifield and p an L-congruence.
Then the following statements hold :

1) xpy implies that x' py™ for all x, y & K*.

2) xpy implies that (xAZ) plyaz) for all x,y,z€ K.

Exampies_3.30. 1) Every positive lattice skewsemifield has the trivial
L-congruence, that is for all x,y e K, xpy if and only if x=y.

2) Let A be an L-ideal of positive lattice.skewsemiﬁeld K. Define
a relation p, on K by xp,y if and only if xy" eAorx=y=0 for all x,y e K.
Then p, is a congruence on K. Next, let x, y,Z € K be such that xp, y If x=y
=0 then xvz=z=yvz and xAnz=0=ynz s0 (xvz)p,lyvz) and
(xA2Z) p,(y A2Z). Suppose that y=0. Then xy € A. By Coroliary 3.18.,
(xvz)(yvz)". (></\z)(y/\z)‘1 €A, s0 (xvz)p.lyvz) and xAz)p,(ynz).
Therefore p, is an L-congruence on K induced by A.

Note that A is an equivalence class of K/PA and p, is a unique
L-congruence on K such that A € K/P,e.' To prove unigueness, let p* be an
L-congruence on K such that A e K/p.. Let x,y € K be such that xp*y. if y=0

then done. Suppose that y= 0. Then xy ' €A, sox p.y. Therefore p* cp,.
Qbviously, p, Cp*, $0 p,=p"

Let C be the set of aill L-congruences on a positive lattice skewsemifield K.
Let p,p’ € C. Clearly, pAp'=pnp'. |

Define x p*y if and only if there exists a u € [1], such that x p’ uy, for all
X,y € K. Then we have that p* is a congruence and p* =p’op.

To show that p* is an L-congruence, let x,y,z € K be such that x p*y.
Case 1:z=0. Then xvz=x and yvz=0. Therefore (x vz)p*x and

(yvz)p*y. Hence (xvz)*(yvaz).
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Case 2: z#0. Then (yvz)#0. Since x p*y, there exists a u € [1), such that
xp'uy, 80 uypy. Then (uyvz)p(yvz), so (uy v 2)ly vz)” p 1. Therefore
(uy v 2)y v )" €[1)p. Since xp'uy, (xVvz)p' (uyVz). Therefore
(x v 2z) p' (uy v )y vz (yvz), so (xvz)p*(yvaz). Thus p* is an L-congruence,
hence p* € C. So we get that pv p’' = p*=p’ o p. Therefore C is a lattice.
Let p be an L-congn}ence on a positive lattice skewsemifield K. Let Ag
={xeK/xp1}. Then we have that A, is an a-convex normal subgroup of K.
To show the o-convexity of A, let x,y € A, and z € K be such that
x<z<y. Then xp1 and yp1,s0 z=(xvz)p(1vz) and y=(yvz)p(tva),
Therefore zpy, so zp 1. Thus z € A, and hence A, is an o-convex set of K.
Next, let x € A,. Then xp 1, so (xv 1)p(1v1)=1. Therefore xv 1 € A, and

hence A, is an L-ideal of K.

Proposition 3.31. Let K be a positive lattice skewsemifiled, A the set of all
L-congruences on K and B the set of all L-ideals of K. Then there

exists an order isomorphism from A onto B.
Proof This proof is similar to the proof of Proposition 1.43.,

Definition 3.32. A positive lattice skewsemifield K is said to be completely
integrally closed if for every a € K, if there exists a b € K such that a"<b for

every n € Z' implies that a < 1.

Theorem 3,33. A positive lattice skewsemifieid K can be embedded into a
complete positive lattice skewsemifield if and only if it is compietely integrally

closed.

Proof Assume that a positive lattice skewsemifield K can be embedded into

a complete positive lattice skewsemifield K'. Then therse exists an
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L-monomorphism i: K —K'. Then K=Li(K). Consider K as a subset of K'. To
prove that K is completely integrally closed, let a,b € K be such that a <b for
al neZ' Let A, ={ ava’v..va /neZ” ). Cleary, b is an upper bound of
A,. By assumption, sup A, exists, say ¢. Then ac=a(ava,Vv..) =g’va'v..ScC
Case 1: ¢=0. Since ae A, 0<a<c=0,s0 a=0. Then a<1.

Case 2: ¢#0. Then a<1.

Conversely, assume that K is completely integrally closed. Let X K. Define
x* = L(U(X)). By Remark 1.2., we have that for all subsets X, Y of K,

1) XgX,

2) X" =X,

3) XY implies that X' Y,

4) UX) = UX") and LX) = LX),

Let K'={@#Cc K/ UC)=2 and C=C"). Define o on K’ as follows : let
X, Y be nonempty subsets of K such that U(X), U(Y)# @. Then there exist
a‘e U(X) and b e U(Y). Clearly, ab is an upper bound of XY. By 4), UI(XY)]
= U(XY) #@. By 1), (XY)™= (XY)*, so (XY)" € K'. Define X'Y" = (XY)". Hence
AB = (AB)" for all A, BeK’, for every C € K' and a € K, {a}’C=(aC)" and
Clal* = (Ca)". Clearly, {a}* = L(U({a})) = L({a}) for all a € K. Hence {1}’ is the
multiplicative identity and {0}= L{{0}) = {0 which is the multiplicative zero 0.

To show that  is associative, let X,Y, Z € K'. Then (XY)Z = (XY)"Z = [(xV)2)"
= [X(Y2))" = X(Y2)* = X(YZ), s0 e is associative.

Let C € K’ be such that C#{0} Let C'={x"' / xe C and'x=0}. Then
C'#@. Since 0 e LCT), LLC)#@. By Remark 1.2., U(L(C)2C =@ and
ILC = LULE =LIC™), so LIC) e K. We shall show that L(C™) is
the multiplicative inverse of C.

Ciaim 1), for every x € K, U(C)x ¢ U(C) implies that x € P.
Let x € K be such that U(C)x = U(C). By induction, U(C)X" < U(C) for all ne Z".
Let u € U(C). Then ux" € U(C) for all ne Z". Since C%{0}, there exists a c € C

such that c#=0. Then ux">c for all ne Z’, so ¢'uz(x")" for all ne 2", Since
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K is completely integraily closed, x'<1, so x21. Then x € P, s0 we have
claim 1.
Claim 2), U(L{CT) =P,
Let\x € U(LICT)). To show that U‘(C)xg W(C), let u € UC). Let y e C. Then
y'eC, so uxy". Thus u" <y, so u" e LIC™). Let ¢ € C. Then x2u™'c, so
uxzc. Thus ux € U(C), so UCxc WC). By claim 1., x € P, so ULEe™ cp.
Let xe P. Let ye L(C™) and c € C.
Case 1: c=0. Then x=20=ye.
Case 2: c#0. Then ¢ G, so c’12y. Then x=12yc, $0 X € ULCc™).
Thus PgU(L(C")). Hence U(L(C™)) =P, so we have claim 2.
Now L(C™)C = [L(C™)CT = LIWIL(CT)C]) = L(P) = L({1}) = (1)", so L(CT) is
the inverse of C. Hence K’ is a group with the multiplicative zero 0.

Define @ on K’ as follows : let X, Y be nonempty subsets of K such that
U(X), U(Y) = @. Then there exist a € U(X} and b € U(Y). Clearly, a+b .is
an upper bound of X +Y, By 4), U[(X+Y)T=UX+Y)=a. By 1),
X+ V)™= (X+Y)", so (X+Y) €K', Define X' @Y" = (X+Y)". Hence
A®B=(A+B) foral A BeK.

To show that @ is assoclative, let X,Y,Z e K. Then (X@Y)®Z
XY @Z=[X+N+Z =X+ (Y+ D =XB(Y+2 =XD(Y@2), 50 ® Is
associative. _

To show that e is distributive over @ in K', let X,Y,Z € K'. Then (X®Y)Z
=(X+Y)'Z=[(X+ V)2 = [XZ + YZI' =(x2)* @ (Y2’ = (X2) ® (Y2) and Z(X DY)
=ZX 2 Y) 2 [2(X + V) = [2X + 2T = @0° @ (2V)° = (2) @ (ZY), 50 o is
distributive aver ® in K'. Clearly, {0 }®A=A=A@{0} for every A € K'. Hence
K’ is a skewsemifieid.

Define < on K' by A<B if AcB for all A, Be K'. Then £ is a partial order.
'Ngxt, to show that < is a compatible order, let A, B, C € K’ be such that A<B.’
Then A< B, so ACCBC,CAcCB, A+CcB+C and C+ACB+C, so we

have that:
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1) AC = (AC)" c (BC) = BC,

2) CA=(CA)' < (CB)" = CB,

3) A@C=(A+C)’c(B+C)'=B®&C and

4) CeA=(C+A ' c(C+B)=C@B.
Thus AC<BC,CA<CB, A+C<B+C and C+A<B+C, so we get that < is a
compatible order. Cleardy, {0} c L(UA) = A" = A for every A e K', hence K’ is a
positively ordered skewsemifield. Next, to show that < is a lattice, let A, B € K.
LMerM)mdyeUﬁ)TMnxvyeUMuﬁ)ByM,Q:MAuB)
=U(AUBT). By 2), (AuB)*=(AuUB)’, so (AUB)' € K. Next, we shall show
that AvB=(AuB)". Since ACAUB and ( by using 1)), we get that A=A
c (AU B)". Similarly, B = (AU B)". Let C € K’ be such that A,B<C. Then AUB
cC. By 1), (AUB)'cC'=C, so AvB=(AUB)" Hence K' is a lattice.

Next, to show that K' is complete, let C be a nonempty subset of K' which
has an upper bound. Let B ={C e K’ / C is an upper bound of C}. We shall
show that N C=sup C. By assumption, B # @, so there exists a C' eB. Then

ceB
N CcC'. By Remark 1.2, @#ULC)cU( N C).
ceB ceB
Ciaim 3, L{ U UC))c N [LU(C)I.
ceB ceB
Let C'eB. Then LICYc U (UC)), so LIUECH]I LI U (UWC)]. Then
ceB ceB
L U uCc N _[LUC). so we have claim 3.
ceB ceB
Claim 4, L(U( N CHcL( U [UEC]).
ceB ceB
Let C'eB. By N CcC, UL N Cl2UC), so UL N Cl= U [U(C). Then
ceB ceB ceB ceB
LU N Chcl( U [UC)) so we have claim 4,
ceB ceB
Thus N C= N C'= N LUECH2L U UEC)oLU( N CH=( N C).
ceB ceB ceB ceB ceB ceB
Hence [ CeK'. Cleadly, N C=supC. Hence K' is complete.
ceB ceB

Deﬁne f: K=K by f(x)={x)" for every x € K. To show that f is an
L-homomorphism, let a, b & K. Then f(ab) = {ab)® = ({a}{b})’ = {a}’{b}" = f(@)(b),



fla+b)={a+ bl = ({a) + (b)) ={a) ® {b})’ =f(a) ®f(b) and Ha vb)={avb}

= L{fa v b}). Since f(a) ={a}* and f(b) = {b}, f(a) v f(b) = {a}" v {b}" = ({a)* L {b}")"
= [L{a)) w L{b)])*. We shall show that L({a v b}) = [L({a} w L{b})])". Since

L{ah c L{{a v b)) and L({b}) c L(fa vb]), L{ah) wL{{bh cL{{avb]), so

[La) u LYY < [La v b)), Next, let x € L{fa v b)) and y € U[L({a}) L L({b})].

Then y=z for all z € L({a}) w L({b}). Since a € L{{a}) and b € L({b}), y=a and
y=b, so y=x. Hence x is @ lower bound of UfL({a}) U L{b}], so

x € LU[L({a)) u LEbhD = [L{fal) U L(bl). So we get that L({a v b))

c [L{a} u L{bYI". Therefore f(a v b) = L{{a v b)) = [L({a} w L{b)]" = f(a) v f(b), so
f is an L-homomorphism. |

To show that f is an injection, let x,y & K be such that f(x) =f(y). Since
x € "= {y}f' = Lly), x<y. Since y € {y}’ = {x}" = L({x)), y<x, so x=y.

To show that (P) = Py, lst x & P. Then f(x) = {x}" = L({x}) 2 L({1}) = {1)", so
f(x) € Py,. Next, let x € K be such that f(x) € P, Then L{{x})}= ) = ) = {1}~
Since 1 & {1} cLUx)), 1<x, s0 x € P. Therefore f(P) = P, hence f is an
L-monomorphism. Hence K =L f(K), so K can be embedded into a complete

positive lattice skewsemifield K'.,
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