CHAPTER III

POSITIVE LATTICE 0-SKEWSEMIFIELDS

<u>Definition 3.1.</u> Let S be a positively ordered semiring. S is said to be a <u>positive</u> lattice semiring if and only if the partial order of S is a lattice, that is for all $x, y \in S$, $x \lor y$ and $x \land y$ exist.

- Examples 3.2. 1) Q_0^+ , R_0^+ are positive lattice skewsemifields.
- 2) Let G be a lattice group. Let $K = G \cup \{a\}$ where a is an element not representing in G. Define + on K by $x + y = x \vee y$ and x + a = x = a + x for all $x, y \in K$ and define ax = a = xa and $a \le x$, for every $x \in K$. Then we have that K is a positive lattice skewsemifield.
- 3) Let K be a positive lattice skewsemifield. Then $(K, +^*, \bullet, \leq)$ is a positive lattice skewsemifield such that $x +^* x = x$ for all $x \in K$ if we define $x +^* y = x \vee y$ for all $x, y \in K$.

Remark 3.3. Let K be a positively ordered skewsemifield. Then the following statements hold:

- 1) For all $x, y \in K$, if $x \lor y$ exists then $xw \lor yw$ and $wx \lor wy$ exist for every $w \in K$. Morever, $(x \lor y)w = xw \lor yw$ and $w(x \lor y) = wx \lor wy$.
- 2) For all $x, y \in K$, if $x \wedge y$ exists then $xw \wedge yw$ and $wx \wedge wy$ exist for every $w \in K$. Morever, $(x \wedge y)w = xw \wedge yw$ and $w(x \wedge y) = wx \wedge wy$.

<u>Proof</u> 1) Let $x, y \in K$ be such that $x \lor y$ exists. Let $w \in K$. If w = 0 then done. So suppose that $w \ne 0$. Since $x \le x \lor y$ and $y \le x \lor y$, $xw \le (x \lor y)w$ and $yw \le (x \lor y)w$. Hence $(x \lor y)w$ is an upper bound of xw and yw. Let $z \in K$ be such that $xw \le z$ and $yw \le z$. Then $x \le zw^{-1}$ and $y \le zw^{-1}$, $x \lor y \le zw^{-1}$, so $(x \lor y)w \le z$.

Hence $(x \lor y)w = xw \lor yw$. Similarly, $w(x \lor y) = wx \lor wy$.

2) Dual to 1). #

Theorem 3.4. ([1]) Every positive lattice group G is distributive, that is for all $x, y, z \in G$, $x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$.

Proof See [1], pp. 294. *

<u>Proposition 3.5.</u> Let K be a positively ordered skewsemifield. Then the following statements are equivalent.

- 1) K is a lattice.
- 2) For every $x \in K$, $x \vee 1$ exists.
- 3) For every $x \in K$, $x \wedge 1$ exists.
- 4) P is a lattice where P is the positive cone of K.

Proof 1) \Rightarrow 2) Obvious.

- 2) \Rightarrow 3) Let $x \in K$. If x = 0 then $x \wedge 1 = 0$. Suppose that $x \neq 0$. By 2), $x^{-1} \vee 1$ exists, say y. Then $x^{-1} \leq y$ and $1 \leq y$, so $y^{-1} \leq x$ and $y^{-1} \leq 1$. Let $w \in K^*$ be such that $w \leq 1$ and $w \leq x$. Then $1 \leq w^{-1}$ and $x^{-1} \leq w^{-1}$, so $y = x^{-1} \vee 1 \leq w$. Thus $w \leq y^{-1}$, hence $x \wedge 1 = y^{-1}$.
- 3) \Rightarrow 4) Let $x, y \in P$. Then $xy^{-1} \in K$. By 3), $xy^{-1} \wedge 1$ exists. By Remark 3.3., 2), $x \wedge y = (xy^{-1} \wedge 1)y$. Since $x \geq 1$ and $y \geq 1$, $x \wedge y \geq 1$, so $x \wedge y \in P$. Next, we shall show that $x \vee y$ exists. By 3), $x^{-1} \wedge y^{-1}$ exists, say w. Since $(x + y)^{-1} \leq x^{-1}$ and $(x + y)^{-1} \leq y^{-1}$, $(x + y)^{-1} \leq w$, so $w \neq 0$. Since $x^{-1} \geq w$, $w^{-1} \geq x$, so $w^{-1} \in P$. Let $z \in K$ be such that $x \leq z$ and $y \leq z$. Then $z^{-1} \leq x^{-1}$ and $z^{-1} \leq y^{-1}$, so $z^{-1} \leq x^{-1} \wedge y^{-1} = w$. Therefore $w^{-1} \leq z$, so $x \vee y = w^{-1} \in P$. Hence P is a lattice.
- 4) \Rightarrow 1) Let x, y \in K. If x = 0 or y = 0 then done. Suppose that x \neq 0 and y \neq 0. Then xy⁻¹ \in K*. By Remark 2.8., 6), there exist p, q \in P such that $xy^{-1} = pq^{-1}$. By 4), p \vee q, p \wedge q exist. By Remark 3.3., $xy^{-1} \vee 1 = pq^{-1} \vee 1$

= $(p \lor q)q^{-1}$ and $xy^{-1} \land 1 = pq^{-1} \ 1 = (p \land q)q^{-1}$. Hence $x \lor y = (xy^{-1} \lor 1)y$ and so we get that $x \land y = (xy^{-1} \land 1)y$.

Proposition 3.6. Let K be a positive lattice skewsemifield. Then the following statements hold:

- 1) For every nonzero element $x \in K$, $x = pq^{-1}$ for some $p, q \in P$ such that $p \wedge q = 1$.
 - 2) For all $x, y \in K^*$, $(x \vee y)^{-1} = x^{-1} \wedge y^{-1}$ and $(x \wedge y)^{-1} = x^{-1} \vee y^{-1}$.
 - 3) For all $x, y \in K^*$, $x \lor y = x(x \land y)^{-1}y$ and $x \land y = x(x \lor y)^{-1}y$.
 - 4) For every $x \in K$, $x = (x \lor 1)(x \land 1)$.
- 5) For all x, y, z \in K, if $z \neq 0$ then $[(x \lor y) \land z]z^{-1}[(x \land y) \lor z]$ = $[(x \land y) \lor z]z^{-1}[(x \lor y) \land z]$.

<u>Proof</u> 1) Let $x \in K^*$. By Remark 2.8., 6), there exist $a, b \in P$ such that $x = ab^{-1}$. Let $p = a(a \land b)^{-1}$ and $q = b(a \land b)^{-1}$. Then $p, q \in P$ and $p \land q = [a(a \land b)^{-1}] \land [b(a \land b)^{-1}] = (a \land b)(a \land b)^{-1} = 1$. Therefore $x = ab^{-1} = [a(a \land b)^{-1}][(a \land b)^{-1}b^{-1}] = pq^{-1}$.

2) Define $f: K^* \to K^*$ by $f(x) = x^{-1}$ for every $x \in K^*$. Then f is a bijection. Let $a, b \in K^*$. Then $a \lor b \in K^*$. By the definition of f, $f(a \lor b) = (a \lor b)^{-1}$. Claim that $f(a \lor b) = f(a) \land f(b) = a^{-1} \land b^{-1}$.

By $a \le (a \lor b)$ and $b \le (a \lor b)$, $f(a) \ge f(a \lor b)$ and $f(b) \ge f(a \lor b)$. Let $z \in K$ be such that $z \le f(a)$ and $z \le f(b)$. Since f is onto, there exists a $w \in K^*$ such that z = f(w). Then $w = f^1(f(w) = f^1(z) \ge f^1(f(a) = a)$. Similarly, $w \ge b$. Then $w \ge (a \lor b)$. Thus $z = f(w) \le f(a \lor b)$, so we have the claim.

Therefore $(a \lor b)^{-1} = f(a \lor b) = a^{-1} \land b^{-1}$. Dually, $(a \land b)^{-1} = a^{-1} \lor b^{-1}$.

- 3) Let $x, y \in K^*$, $x(x \wedge y)^{-1}y = x(x^{-1} \vee y^{-1})y = (1 \vee xy^{-1})y = y \vee x = x \vee y$. Similarly, $x \wedge y = x(x \vee y)^{-1}y$.
 - 4) Follows directly from 3).
 - 5) Let $x, y, z \in K$ be such that $z \neq 0$. Suppose that $x \wedge y \neq 0$.

By 3),
$$[(x \lor y) \land z] = (x \lor y)[(x \lor y) \land z]^{-1}z \neq 0$$
. Then $(x \land y) \lor [(x \lor y) \land z]$
 $= (x \land y)[(x \land y) \land ((x \lor y) \land z)]^{-1}[(x \lor y) \land z] = (x \land y)[(x \land y) \land z]^{-1}[(x \lor y) \land z]$
 $= (x \land y)(x \land y)^{-1}[(x \land y) \lor z]z^{-1}[(x \lor y) \land z] = [(x \land y) \lor z]z^{-1}[(x \lor y) \land z].$
Dually, $(x \lor y) \land [(x \land y) \lor z] = [(x \lor y) \land z]z^{-1}[(x \land y) \lor z].$
By Remark 1,5., $(x \land y) \lor [(x \lor y) \land z] = (x \lor y) \land [(x \land y) \lor z].$
Hence $[(x \land y) \lor z]z^{-1}[(x \lor y) \land z] = [(x \lor y) \land z]z^{-1}[(x \land y) \lor z].$

Note that for all nonzero elements x, y in a positive lattice skewsemifileld K, $x \lor y$ and $x \land y$ are non zero.

<u>Proposition 3.7.</u> Let K be a positive lattice skewsemifield. Then the following statements hold: for all $x, y, z \in K$,

- 1) if $x \le y$ then $x \lor z \le y \lor z$ and $x \land z \le y \land z$,
- 2) $x + (y \wedge z) \le (x + y) \wedge (x + z)$ and $(y \wedge z) + x \le (y + x) \wedge (z + x)$,
- 3) $x + (y \lor z) \ge (x + z) \lor (y + z)$ and $(y \lor z) + x \ge (y + x) \lor (z + x)$
- 4) $(x + y) \land z \le (x \land z) + (y \land z)$ and $(x + y) \lor z \le (x \lor z) + (y \lor z)$.

<u>Proof</u> Let $x, y, z \in K$.

- 1) Obvious.
- 2) By $y \wedge z \leq y$ and $y \wedge z \leq z$, $x + (y \wedge z) \leq x + y$ and $x + (y \wedge z) \leq x + z$. Hence $x + (y \wedge z) \leq (x + y) \wedge (x + z)$. Similarly, $(y \wedge z) + x \leq (y + x) \wedge (z + x)$.
 - 3) Dual to 2.
- 4) Suppose that x, y, z ≠ 0. Since x ≤ x + y and (by 1)), x ∨ z ≤ (x + y) ∨ z, we get that $[(x + y) \lor z]^{-1} \le (x \lor z)^{-1}$. Therefore $x[(x + z) \lor z]^{-1}z \le x(x \lor z)^{-1}z$. Similarly, $y[(x + y) \lor z]^{-1}z \le y(y \lor z)^{-1}z$. Then $(x + y) \land z = (x + y)[(x + y) \lor z]^{-1}z$ = $x[(x + y) \lor z]^{-1}z + y[(x + y) \lor z]^{-1}z \le x[x \lor z]^{-1}z + y[y \lor z]^{-1}z$ = $x(x^{-1} \land z^{-1})z + y(y^{-1} \land z^{-1})z = (z \land x) + (z \land y) = (x \land z) + (y \land z)$. Since $x \le x \lor z$ and $y \le y \lor z$, $(x + y) \le (x \lor z) + (y \lor z)$. Clearly, $z \le (x \lor z) + (y \lor z)$, so $(x + y) \lor z \le (x \lor z) + (y \lor z)$.

Theorem 3.8. ([2]) Let K be a positive lattice skewsemifield and $a_1,...,a_m$, $b_1,...,b_n \in P$ such that $a_1...a_m = b_1...b_n$. Then there exist elements $c_{ij} \in P$ for all $i \in \{1,...,m\}$ and $j \in \{1,...,n\}$ satisfying

- 1) $a_i = c_{i1}...c_{in} \ i \in \{1,...,m\},\$
- 2) $b_i = c_{1i}...c_{mi} \ j \in \{1,...,n\},\$
- 3) $c_{i+1,j}...c_{m,j} \wedge c_{i,j+1}...c_{in} = 1$ for all i < m and j < n.

Proof See [2], pp. 68.

Corollary 3.9. If $a, b_1, ..., b_n$ are in the positive cone of a positive lattice skewsemifield K such that $a \le b_1 ... b_n$ then there exist $a_1, ..., a_n \in P$ satisfying $a = a_1 ... a_n$ with $a_i \le b_i$ for every $i \in \{1, ..., n\}$.

Proof It follows from Theorem 3.8. #

<u>Proposition 3.10.</u> Let K be a skewsemifield and $P \subseteq K^*$ positive cone. Then the partial order on K induced by P is a positive lattice if and only if for every $x \in K^*$, there exists a $z \in P$ satisfying the following conditions:

- 1) $zx^{-1} \in P$ and
- 2) for every $w \in P$, $wx^{-1} \in P$ implies that $wz^{-1} \in P$.

<u>Proof</u> Let K be a positive lattice skewsemifield and let $x \in K^*$. Let $z = x \lor 1$. Then $z \ge x$ and $z \ge 1$, so zx^{-1} , $z \in P$. Let $w \in P$ be such that $wx^{-1} \in P$. Then $w \ge x$ and $w \ge 1$, so $w \ge (x \lor 1) = z$. Thus $wz^{-1} \in P$.

Conversely, assume that for all $x \in K^*$, there exists a $z \in P$ such that satisfying conditions 1) and 2). Let $a \in K$. If a = 0 then $a \vee 1 = 0$, so done. Suppose that $a \neq 0$. By assumption, there exists a $z \in P$ satisfying conditions 1) and 2). Then $z \geq x$ and $z \geq 1$. Let $w \in K$ be such that $w \geq x$ and $w \geq 1$. Then wx^{-1} , $w \in P$, so $wz^{-1} \in P$. Therefore $w \geq z$, so $x \vee 1 = z$. Hence K is a lattice. **

Theorem 3.11. Let S be a positive lattice semiring with multiplicative zero 0 satisfying the M.C. property and suppose that (S, \bullet) satisfies the right [left] Ore condition. If \leq is M.R. then S can be embedded into a positive lattice skewsemifield.

Proof By Theorem 2.12., we have that $K = S \times (S \setminus \{0\})/_{\sim}$ is the positively ordered skewsemifield of a right quotients of S. Let $\alpha = [(a,b)] \in K^*$. Let $z = [(a \lor b,b)] = i(a \lor b)i(b)^{-1}$. Since $(a \lor b) \ge b$, $z \in P$. Since $z\alpha^{-1} = [(a \lor b,a)] = i(a \lor b)i(a)^{-1}$, so $z\alpha^{-1} \in P$. Let $w = i(u)i(v)^{-1} \in P$ be such that $w\alpha^{-1} \in P$. Since $v, v, v \in S \setminus \{0\}$, there exist $v, v \in S \setminus \{0\}$ such that vv = bv, so $vv = [(uv,av)] = i(uv)i(av)^{-1}$ and $vv = [(uv,av)] = i(uv)i([(a \lor b)v]^{-1})$. Since $vv = [(uv,av)] = i(uv)i(av)^{-1}$ and $vv = [(uv,av)] = i(uv)i([(a \lor b)v]^{-1})$. Since $vv = [(uv,av)] = i(uv)i([(a \lor b)v]^{-1})$. Since $vv = [(uv,av)] = i(uv)i([(a \lor b)v]^{-1})$. Since vv = [(uv,av)] = [(uv,av)]. Therefore vv = [(uv,av)] = [(uv,

<u>Definition 3.12.</u> Let K be a positive lattice skewsemifield and $x \in K^*$. The <u>absolute value</u> of x, denoted by |x|, is defined to be $x \vee x^{-1}$.

In [2], pp. 76 we have the following elementary properties of the absolute: for all $x, y \in K^*$,

- 1) $|x| \ge 1$ and $|x| = |x^{-1}|$,
- 2) |x| = 1 if and only if x = 1,
- 3) $|xy^{-1}| = (x \vee y)(x \wedge y)^{-1}$,
- 4) $|x| = (x \vee 1)(x \wedge 1)^{-1}$,
- 5) $|x^n| = |x|^n$ for all $n \in \mathbb{Z}^+$ and
- 6) $|xy| \le |x||y||x|$.

<u>Proposition 3.13.</u> Let K be a positive lattice skewsemifield and $x, y, z \in K^*$. Then the following properties hold:

- 1) $|(x \lor z)(y \lor z)^{-1}| |(x \land z)(y \land z)^{-1}| = |xy^{-1}|,$
- 2) $|(x \lor z)(y \lor z)^{-1}| \le |xy^{-1}|$ and $|(x \land z)(y \land z)^{-1}| \le |xy^{-1}|$.
- 3) $|x + y| \le |x| + |y|$,
- 4) $|(x + z)(y + z)^{-1}| \le |xy^{-1}|$.

<u>Proof</u> Let $x, y, z \in K^*$.

- 1) $|(x \lor z)(y \lor z)^{-1}| |(x \land z)(y \land z)^{-1}|$
- $= [(x \lor z) \lor (y \lor z)][(x \lor z) \land (y \lor z)]^{-1}[(x \land z) \lor (y \land z)][(x \land z) \land (y \land z)]^{-1}$
- $= [(x \lor y) \lor z][(x \land y) \lor z]^{-1}[(x \lor y) \land z][z \land (x \land y)]^{-1}$
- $= (x \vee y)[(x \vee y) \wedge z]^{-1}z[(x \wedge y) \vee z]^{-1}[(x \vee y) \wedge z]z^{-1}[(x \wedge y) \vee z)](x \wedge y)^{-1}$
- $= (x \vee y)([(x \wedge y) \vee z]z^{-1}[(x \vee y) \wedge z])^{-1}([(x \vee y) \wedge z]z^{-1}[(x \wedge y) \vee z)])(x \wedge y)^{-1}$
- $= (x \vee y)([(x \wedge y) \vee z]z^{-1}[(x \vee y) \wedge z])^{-1}([(x \wedge y) \vee z]z^{-1}[(x \vee y) \wedge z)])(x \wedge y)^{-1}$
- $= (x \vee y)(x \wedge y)^{-1} = |xy^{-1}|.$
- 2) Since $1 \le |(x \lor z)(y \lor z)^{-1}|$ and $1 \le |(x \land z)(y \land z)^{-1}|$, by 1), we get that $|(x \lor z)(y \lor z)^{-1}| \le |xy^{-1}|$ and $|(x \land z)(y \land z)^{-1}| \le |xy^{-1}|$.
- 3) Since $x \le |x|$ and $y \le |y|$, $x + y \le |x| + |y|$. Since $x \le x + y$ and $y \le x + y$, $(x + y)^{-1} \le x^{-1}$ and $(x + y)^{-1} \le y^{-1}$, so $(x + y)^{-1} \le (x + y)^{-1} + (x + y)^{-1} \le x^{-1} + y^{-1} \le |x| + |y|$. Hence $|x + y| = (x + y) \lor (x + y)^{-1} \le |x| + |y|$.
- 4) $|(x + z)(y + z)^{-1}| = [(x + z) \lor (y + z)][(x + z) \land (y + z)]^{-1}$ $\leq [(x \lor y) + z][(x + z) \land (y + z)]^{-1} \leq [(x \lor y) + z)][(x \land y) + z)]^{-1}.$

Claim that $[(x \lor y) + z)][(x \land y) + z)]^{-1} \le (x \lor y)(x \land y)^{-1}$.

Since $(x \wedge y) \leq (x \vee y)$, $(x \vee y)^{-1} \leq (x \wedge y)^{-1}$, we get that $(x \vee y)^{-1}z \leq (x \wedge y)^{-1}z$. Hence $(x \vee y)^{-1}[(x \vee y) + z)] = 1 + (x \vee y)^{-1}z \leq 1 + (x \wedge y)^{-1}z = (x \wedge y)^{-1}[(x \wedge y) + z)]$ therefore $[(x \vee y) + z)][(x \wedge y) + z)]^{-1} \leq (x \vee y)(x \wedge y)^{-1}$, so we have the claim. Thus $|(x + z)(y + z)^{-1}| \leq [(x \vee y) + z)][(x \wedge y) + z)]^{-1} \leq (x \vee y)(x \wedge y)^{-1} = |xy^{-1}|$.

<u>Proposition 3.14.</u> Let K be a complete positive lattice skewsemifield. Then the following statements hold:

1) Let $x_{\alpha} \in K$ for all $\alpha \in I$, if $\bigvee_{\alpha \in I} x_{\alpha}$ exists then $\bigvee_{\alpha \in I} x_{\alpha} w$ and $\bigvee_{\alpha \in I} wx_{\alpha}$ exist

- for all $w \in K$. Morever, $(\bigvee_{\alpha \in I} x_{\alpha})w = \bigvee_{\alpha \in I} x_{\alpha}w$ and $w(\bigvee_{\alpha \in I} x_{\alpha}) = \bigvee_{\alpha \in I} wx_{\alpha}$.
- 2) Let $x_{\alpha} \in K$ for all $\alpha \in I$, if $\bigwedge_{\alpha \in I} x_{\alpha}$ exists then $\bigwedge_{\alpha \in I} x_{\alpha}$, w and $\bigwedge_{\alpha \in I} wx_{\alpha}$ exist for all $w \in K$. Morever, $(\bigwedge_{\alpha \in I} x_{\alpha})w = \bigwedge_{\alpha \in I} x_{\alpha}w$ and $w(\bigwedge_{\alpha \in I} x_{\alpha}) = \bigwedge_{\alpha \in I} wx_{\alpha}$.
- 3) Let $x_{\alpha} \in K$ for all $\alpha \in I$, if $\bigvee x_{\alpha}$ exists then $w + (\bigvee x_{\alpha}) \leq \bigvee (w + x_{\alpha})$ and $(\bigvee x_{\alpha}) + w \leq \bigvee (x_{\alpha} + w)$ for all $w \in K$.
- 4) Let $x_{\alpha} \in K$ for all $\alpha \in I$, if $\bigwedge_{\alpha \in I} x_{\alpha}$ exists then $w + (\bigwedge_{\alpha \in I} x_{\alpha}) \le \bigwedge_{\alpha \in I} (w + x_{\alpha})$ and $(\bigwedge_{\alpha \in I} x_{\alpha}) + w \le \bigwedge_{\alpha \in I} (x_{\alpha} + w)$ for all $w \in K$.

<u>Proof</u> Let $x_{\alpha} \in K$ for all $\alpha \in I$.

- 1) Assume that $\bigvee_{\alpha \in I} x_{\alpha}$ exists. Let $w \in K$. If w = 0 then done. Suppose that $w \neq 0$. Let $\alpha \in I$. Then $x_{\alpha_0} \leq \bigvee_{\alpha \in I} x_{\alpha}$, so $wx_{\alpha_0} \leq w(\bigvee_{\alpha \in I} x_{\alpha})$. Hence $w(\bigvee_{\alpha \in I} x_{\alpha})$ is an upper bound of $\{wx_{\alpha} \mid \alpha \in I\}$. Therefore $\bigvee_{\alpha \in I} (wx_{\alpha})$ exists and $\bigvee_{\alpha \in I} (wx_{\alpha}) \leq w(\bigvee_{\alpha \in I} x_{\alpha})$. Let $z \in K$ be such that $\bigvee_{\alpha \in I} (wx_{\alpha}) \leq z$. Let $\alpha \in I$. Then $x_{\alpha \in I} = x_{\alpha} = x_{\alpha}$
 - 2) Dual to 1.
- 3) Assume that $\bigvee_{\alpha \in I} x_{\alpha}$ exists. Let $w \in K$. Let $\alpha_0 \in I$. Then $x_{\alpha_0} \leq \bigvee_{\alpha \in I} x_{\alpha}$, so $w + x_{\alpha_0} \leq w + (\bigvee_{\alpha \in I} x_{\alpha})$. Hence $w + (\bigvee_{\alpha \in I} x_{\alpha})$ is an upper bound of $\{w + x_{\alpha} \mid \alpha \in I\}$. Therefore $\bigvee_{\alpha \in I} (w + x_{\alpha})$ exists and $\bigvee_{\alpha \in I} (w + x_{\alpha}) \leq w + (\bigvee_{\alpha \in I} x_{\alpha})$. Similarly, $\bigvee_{\alpha \in I} (x_{\alpha} + w) \leq (\bigvee_{\alpha \in I} x_{\alpha}) + w$.
 - Dual to 3. ..

<u>Definition 3.15.</u> Let K be a positive lattice skewsemifield and A a convex normal subgroup of K. A is said to be an <u>L-ideal</u> if for every $x \in A$, $x \lor 1 \in A$ and $x \land 1 \in A$.

Remark 3.16. Let K be a positive lattice skewsemifield. Then following statements clearly hold:

- 1) {1} and K* are trivial L-ideals of K.
- 2) The intersection of a family of L-ideals of K is an L-ideal of K. Also the union of an increasing chain of L-ideals is an L-ideal.
- 3) Let A be a convex normal subgroup of K. Then A is an L-ideal of K if and only if $x \lor 1 \in A$ for every $x \in A$.

<u>Proposition 3.17.</u> Let K be a positive lattice skewsemifield and $A \subseteq K$. Then A is an L-ideal if and only if it is an a-convex normal subgroup of K such that for all $a \in A$ and $x \in K$, if $|x| \le |a|$ then $x \in A$.

<u>Proof</u> Let A be an ideal of K. Let $a \in A$ and $x \in K$ be such that $|x| \le |a|$. Then $x, x^{-1} \le |a|$. so $|a|^{-1} \le x \le |a|$. By the o-convexity of A, $x \in A$.

Conversely, to show the o-convexity of A, let $x, y \in A$ and $z \in K$ be such that $x \le z \le y$. Then $1 \le zx^{-1} \le yx^{-1}$, so $|zx^{-1}| = zx^{-1} \le yx^{-1} = |yx^{-1}|$. By assumption, $zx^{-1} \in I$, so $z \in A$. Next, let $x \in A$. Since $1 \le |x|$ and $x \le |x|$, $|x \lor 1| = x \lor 1 \le |x|$, so $x \lor 1 \in A$. Hence A is an L-ideal of K. **

Corollary 3.18. Let K be a positive lattice skewsemifield and A an L-ideal of K. Then for all $x, y, z \in K^*$, $xy^{-1} \in A$ implies that $(x \lor z)(y \lor z)^{-1} \in A$ and $(x \land z)(y \land z)^{-1} \in A$.

Proof Let x, y, $z \in K^*$ be such that $xy^{-1} \in A$. By Proposition 3.13., 2), $|(x \lor z)(y \lor z)^{-1}| \le |xy^{-1}|$ and $|(x \land z)(y \land z)^{-1}| \le |xy^{-1}|$. By Proposition 3.17., $(x \lor z)(y \lor z)^{-1} \in A$ and $(x \land z)(y \land z)^{-1} \in A$.

Proposition 3.19. Let A and B be L-ideals of a positive lattice skewsemifield K. Then AB is an L-ideal of K which is the smallest L-ideal containing A and B.

Proof By Remark 1.37., 2), AB is an a-convex normal subgroup of K. Let $x \in A$, $y \in B$, $z \in K$ be such $|z| \le |xy|$. Then $|xy| \le |x||y||x|$. We must show that $z \in AB$. By Corollary 3.9., there exist a, b, $c \in P$ such that $a \le |x|$, $b \le |y|$, $c \le |x|$ and |z| = abc. By Proposition 3.17., a, $c \in A$ and $b \in B$. Since B is a normal subset of K, there exists a $d \in B$ such that bc = cd, so $|z| = abc = acd \in AB$. Since $1 \le (z \lor 1)$ and $1 \le |z|$, $|z \lor 1| = z \lor 1 \le |z| = |z| \lor |z^{-1}| = ||z||$. By using the same proof in a manner similar to the above, we get that $z \lor 1 \in AB$. Since $|z| = (z \lor 1)(z \land 1)^{-1}$, $(z \land 1)$ AB, so $z = (z \lor 1)(z \land 1) \in AB$. By Proposition 3.17., AB is an L-ideal of K.

Next, let D be an L-ideal of K such that A, B \subseteq D. Let a \in A and b \in B. Then ab \in D, so AB \subseteq D. Therefore AB is an L-ideal of K which is the smallest L-ideal containing A and B.

Let C be the set of all L-ideals of a positive lattice skewsemifield K. Let $A, A' \in C$. Then $A \vee A' = AA'$ and $A \wedge A' = A \cap A'$. Hence C is a lattice. Morever, we shall show that C is a distributive lattice.

To prove this, let A, B, C \in C. Let a \in A \cap BC. Then a \in A and a \in BC, so $|a| \in A$ and $|a| \in BC$. Thus there exist b \in B and c \in C such that |a| = bc. Let $x = |a| \land (1 \lor bc)$, $y = |a| \land (1 \lor c)$ and $z = |a| \land 1$. Then x = |a|, so $1 \le y \le |a|$ and z = 1. By the o-convexity of A, x, y, z \in A. Since $(bc)c^{-1} \in B$ and by Corollary 3.18., $(1 \lor bc)(1 \lor c)^{-1} \in B$, we get that $xy^{-1} = [|a| \land (1 \lor bc)][|a| \land (1 \lor c)]^{-1} \in B$. Then $xy^{-1} \in A \cap B$. Since $1 \lor c \in C$ and (by Corollary 3.18.), $yz = yz^{-1}$ $= [|a| \land (1 \lor c)][|a| \land 1]^{-1} \in C$, we get that $yz \in A \cap C$. Therefore |a| = x = xz $= (xy^{-1})(yz) \in (A \cap B)(A \cap C)$. Since $a^{-1} \le |a|$, $|a|^{-1} \le a \le |a|$, we get that $a \in (A \cap B)(A \cap C)$, so $A \cap BC \subseteq (A \cap B)(A \cap C)$. Clearly, $(A \cap B)(A \cap C)$. $\subseteq A \cap BC$. Therefore $A \land (B \lor C) = A \cap BC = (A \cap B)(A \cap C) = (A \land B) \lor (A \land C)$, hence C is a distributive lattice.

Definition 3.20. Let K and M be positive lattice skewsemifields. A function

 $f: K \to M$ is called an <u>L-homomorphism</u> of K into M if and only if f is a homomorphism and for all $x, y \in K$, $f(x \lor y) = f(x) \lor f(y)$.

The definitions of <u>L-monomorphisms</u>, <u>L-epimorphisms</u> and <u>L-isomorphisms</u> are defined as one would expect. If there exists an <u>L-isomorphism</u> K onto M, we denote this by $K \cong LM$.

Remark 3.21. Let $f: K \to M$ be an L-homomorphism of positive lattice skewsemifields. Then the following statements hold:

- 1) f is isotone.
- 2) m-kerf is an L-ideal of K.
- 3) $f(x \wedge y) = f(x) \wedge f(y)$ for all $x, y \in K$.
- 4) If A' is an L-ideal of M then f1(A') is an L-ideal of K.

Proof 1) Obvious.

- 2) By Remark 2.16. 2), m-kerf is a convex normal subgroup of K. Let $x \in m$ -kerf. Then $f(x \lor 1) = f(x) \lor f(1) = 1 \lor 1 = 1$, so $x \lor 1 \in m$ -kerf. Hence m-kerf is an L-ideal of K.
- 3) Let $x, y \in K$. If x = 0 or y = 0 then done. So assume that $x, y \neq 0$. Then $[f(x) \lor f(y)] \neq 0$. By Proposition 3.6., 3) $f(x)[f(x) \land f(y)]^{-1}f(y) = f(x) \lor f(y)$ $= f(x(x \land y)^{-1}y)) = f(x)[f(x \land y)]^{-1}f(y), \text{ so } f(x \land y) = f(x) \land f(y).$
- 4) By Remark 2.16. 3), $f^1(A')$ is a convex normal subgroup of K containing m-ker f. Let $x \in f^1(A')$. Then $f(x) \in A'$, Since A' is an L-ideal of K, $f(x \lor 1) = f(x) \lor f(1) = f(x) \lor 1 \in A'$, so $x \lor 1 \in f^1(A')$. By Proposition 3.4., 2), $f^1(A')$ is an L-ideal of K.

Let K be a positive lattice skewsemifield and A an L-ideal of K. Then K_{A} is a positively ordered skewsemifild.

To prove that $K_{/A}$ is a lattice, let $x \in K$. Claim that $xA \lor A = (x \lor 1)A$. If x = 0 then $xA \lor A = A = (x \lor 1)A$, so done. Suppose that $x \ne 0$. Choose $a \in xA$ and b \in A. Then there exist an i \in A such that a =xi. Since $ix(bx)^{-1} = ib^{-1} \in$ A and by Corollary 3.18., $(a \lor b)[b(x \lor 1)]^{-1} = (ix \lor b)(bx \lor b)^{-1} \in$ A. Since b \in A, $(a \lor b)(x \lor 1)^{-1} = (a \lor b)[b(x \lor 1)]^{-1}b \in$ A. Hence \lor is well-defined. Clearly, $A \le (x \lor 1)A$ and $xA \le (x \lor 1)A$. Let $\alpha \in K_{/A}$ be such that $xA, A \le \alpha$. Then there exist $a_1, a_2 \in$ A and $y, z \in \alpha$ such that $xa_1 \le y$ and $a_2 \le z$, so $(a_1 \land a_2)(x \lor 1) = (a_1 \land a_2)x \lor (a_1 \land a_2) \le a_1x \lor a_2 \le y \lor z = (1 \lor zy^{-1})y$. Since $y, z \in \alpha$, $zy^{-1} \in A$, so $y^{-1} \lor 1 \in$ A. Thus $(x \lor 1)I \le Ay = yA = \alpha$. Hence $xA \lor A = (x \lor 1)A$, so we have claim. By Proposition 3.5., 2), $K_{/A}$ is a positive lattice skewsemifiled.

Note that the projection map Π defined by $\Pi(x) = xC$, for every $x \in K$ is an L-epimorphism of K onto K_{A} .

Theorem 3.22. (First Isomorphism Theroem).

Let $f: K \to M$ be an L-epimorphism of positive lattice skewsemifields. Then $K_{m-ker} f \cong LM$.

Proof Let ϕ be the order isomorphism defined in the proof of Theorem 2.19. To show that ϕ is an L-isomorphism, let $x, y \in K$. Then $\phi(x(m\text{-ker }f) \vee y(m\text{-ker }f)) = f(x \vee y) = f(x) \vee f(y) = \phi(x(m\text{-ker }f)) \vee \phi(y(m\text{-ker }f))$. Then ϕ^{-1} is an L-isomorphism, so $K_{m\text{-ker }f} \cong LM$.

Lemma 3.23. Let H be a subskewsemifield of a positive lattice skewsemifield K and A an L-ideal of K. Then H \(\triangle A \) is an L-ideal of H and HA is a subskewsemifield of K.

Proof This proof is similar to the proof of Lemma 2.20. **

Theorem 3.24. (Second Isomorphism Theorem).

Let H be a subskewsemifield of a positive lattice skewsemifield K and A an L-ideal of K such that $P_{HA} \subseteq P_{H}$. Then $H_{H} \cap A \cong LHA/A$.

Proof This proof is similar to the proof of Theorem 2.21.,

Lemma 3.25. Let A and B be L-ideals of a positive lattice skewsemifield K such that $A \subseteq B$. Then $B_{/A}$ is a convex normal subgroup of $K_{/A}$.

Proof This proof is similar to the proof of Lemma 2.22. "

Theorem 3.26. (Third Isomorphism Theorem).

Let K be a positive lattice skewsemifield, A and B L-ideals of K such that $B \subseteq A$. Then $K_{B/A/R} \cong L K_A$.

Proof This proof is similar to the proof of Theorem 2.23.

<u>Proposition 3.27.</u> Let $f: K \to M$ be an L-epimorphism of positive lattice skewsemifields. If A' is an L-ideal of M then $K/f^{-1}(A') \cong L M/A'$.

Proof This proof is similar to the proof of Proposition 2.24. #

<u>Proposition 3.28.</u> Let $\{K_i \mid i \in I\}$ be a family of positively ordered skewsemifields. Then $\prod_{i \in I} K_i$ is a lattice if and only if K_i is a lattice, for all $i \in I$.

Proof See [4], pp. 46. #

Definition 3,29. Let K be a positive lattice skewsemifield. A congruence p on K

is said to be an L-congruence if and only if for all x, y, $z \in K$, x ρ y implies that $(x \lor z) \rho (y \lor z)$.

Remark 3.34. Let K be a positive lattice skewsemifield and ρ an L-congruence. Then the following statements hold:

- 1) $x \rho y$ implies that $x^{-1} \rho y^{-1}$ for all $x, y \in K^*$.
- 2) $x \rho y$ implies that $(x \wedge z) \rho (y \wedge z)$ for all $x, y, z \in K$.

Examples 3.30. 1) Every positive lattice skewsemifield has the trivial L-congruence, that is for all $x, y \in K$, $x \rho y$ if and only if x = y.

2) Let A be an L-ideal of positive lattice skewsemifield K. Define a relation ρ_A on K by $x \rho_A y$ if and only if $xy^{-1} \in A$ or x = y = 0 for all $x, y \in K$. Then ρ_A is a congruence on K. Next, let $x, y, z \in K$ be such that $x \rho_A y$. If x = y = 0 then $x \vee z = z = y \vee z$ and $x \wedge z = 0 = y \wedge z$, so $(x \vee z) \rho_A (y \vee z)$ and $(x \wedge z) \rho_A (y \wedge z)$. Suppose that $y \neq 0$. Then $xy^{-1} \in A$. By Corollary 3.18., $(x \vee z)(y \vee z)^{-1}$, $(x \wedge z)(y \wedge z)^{-1} \in A$, so $(x \vee z) \rho_A (y \vee z)$ and $(x \wedge z) \rho_A (y \wedge z)$. Therefore ρ_A is an L-congruence on K induced by A.

Note that A is an equivalence class of $K_{/\rho_A}$ and ρ_A is a unique L-congruence on K such that $A \in K_{/\rho_A}$. To prove uniqueness, let ρ^* be an L-congruence on K such that $A \in K_{/\rho^*}$. Let $x, y \in K$ be such that $x \rho^* y$. If y = 0 then done. Suppose that $y \neq 0$. Then $xy^{-1} \in A$, so $x \rho_A y$. Therefore $\rho^* \subseteq \rho_A$. Obviously, $\rho_A \subseteq \rho^*$, so $\rho_A = \rho^*$.

Let C be the set of all L-congruences on a positive lattice skewsemifield K. Let $\rho, \rho' \in C$. Clearly, $\rho \wedge \rho' = \rho \cap \rho'$.

Define $x p^* y$ if and only if there exists a $u \in [1]_p$ such that x p' uy, for all $x, y \in K$. Then we have that p^* is a congruence and $p^* = p' \circ p$.

To show that ρ^* is an L-congruence, let x, y, z \in K be such that x ρ^* y. Case 1: z = 0. Then x \vee z = x and y \vee z = 0. Therefore (x \vee z) ρ^* x and (y \vee z) ρ^* y. Hence (x \vee z) * (y \vee z).

Case 2: $z \neq 0$. Then $(y \vee z) \neq 0$. Since $x \rho^* y$, there exists a $u \in [1]_p$ such that $x \rho' uy$, so $uy \rho y$. Then $(uy \vee z) \rho (y \vee z)$, so $(uy \vee z)(y \vee z)^{-1} \rho 1$. Therefore $(uy \vee z)(y \vee z)^{-1} \in [1]_p$. Since $x \rho' uy$, $(x \vee z) \rho' (uy \vee z)$. Therefore $(x \vee z) \rho' (uy \vee z)(y \vee z)^{-1}(y \vee z)$, so $(x \vee z) \rho^* (y \vee z)$. Thus ρ^* is an L-congruence, hence $\rho^* \in \mathbb{C}$. So we get that $\rho \vee \rho' = \rho^* = \rho' \circ \rho$. Therefore \mathbb{C} is a lattice.

Let ρ be an L-congruence on a positive lattice skewsemifield K. Let A_{ρ} = {x \in K / x \rho 1}. Then we have that A_{ρ} is an a-convex normal subgroup of K.

To show the o-convexity of A_p , let $x, y \in A_p$ and $z \in K$ be such that $x \le z \le y$. Then $x \rho 1$ and $y \rho 1$, so $z = (x \lor z) \rho (1 \lor z)$ and $y = (y \lor z) \rho (1 \lor z)$. Therefore $z \rho y$, so $z \rho 1$. Thus $z \in A_p$ and hence A_p is an o-convex set of K. Next, let $x \in A_p$. Then $x \rho 1$, so $(x \lor 1) \rho (1 \lor 1) = 1$. Therefore $x \lor 1 \in A_p$ and hence A_p is an L-ideal of K.

Proposition 3.31. Let K be a positive lattice skewsemifiled, A the set of all L-congruences on K and B the set of all L-ideals of K. Then there exists an order isomorphism from A onto B.

Proof This proof is similar to the proof of Proposition 1.43. #

<u>Definition 3.32.</u> A positive lattice skewsemifield K is said to be <u>completely</u> integrally <u>closed</u> if for every $a \in K$, if there exists a $b \in K$ such that $a^n \le b$ for every $n \in \mathbf{Z}^+$ implies that $a \le 1$.

<u>Theorem 3.33.</u> A positive lattice skewsemifield K can be embedded into a complete positive lattice skewsemifield if and only if it is completely integrally closed.

<u>Proof</u> Assume that a positive lattice skewsemifield K can be embedded into a complete positive lattice skewsemifield K'. Then there exists an

L-monomorphism $i: K \to K'$. Then $K \cong Li(K)$. Consider K as a subset of K'. To prove that K is completely integrally closed, let $a, b \in K$ be such that $a^n \le b$ for all $n \in \mathbb{Z}^+$ Let $A_n = \{ a \lor a^2 \lor ... \lor a^n \ / \ n \in \mathbb{Z}^+ \}$. Clearly, b is an upper bound of A_n . By assumption, $\sup A_n$ exists, say c. Then $ac = a(a \lor a_2 \lor ...) = a^2 \lor a^3 \lor ... \le c$. Case 1: c = 0. Since $a \in A_n$, $0 \le a \le c = 0$, so a = 0. Then $a \le 1$.

Conversely, assume that K is completely integrally closed. Let $X \subseteq K$. Define $X^* = L(U(X))$. By Remark 1.2., we have that for all subsets X, Y of K,

- 1) $X \subseteq X^*$,
- 2) $X^{**} = X^*$.
- 3) $X \subseteq Y$ implies that $X'' \subseteq Y''$,
- 4) $U(X) = U(X^{\#})$ and $L(X) = L(X^{\#})$.

Let $K' = \{ \varnothing \neq C \subseteq K \ / \ U(C) \neq \varnothing \ \text{and} \ C = C^* \}$. Define \bullet on K' as follows: let X, Y be nonempty subsets of K such that $U(X), U(Y) \neq \varnothing$. Then there exist $a \in U(X)$ and $b \in U(Y)$. Clearly, ab is an upper bound of XY. By 4), $U[(XY)^*] = U(XY) \neq \varnothing$. By 1), $(XY)^{**} = (XY)^*$, so $(XY)^* \in K'$. Define $X^*Y^* = (XY)^*$. Hence $AB = (AB)^*$ for all $A, B \in K'$, for every $C \in K'$ and $a \in K$, $\{a\}^*C = (aC)^*$ and $C\{a\}^* = (Ca)^*$. Clearly, $\{a\}^* = L(U(\{a\})) = L(\{a\})$ for all $a \in K$. Hence $\{1\}^*$ is the multiplicative identity and $\{0\} = L(\{0\}) = \{0\}^*$ which is the multiplicative zero 0.

To show that \bullet is associative, let X, Y, $Z \in K'$. Then $(XY)Z = (XY)^*Z = [(XY)Z]^* = [X(YZ)]^* = X(YZ)^* = X(YZ)$, so \bullet is associative.

Let $C \in K'$ be such that $C \neq \{0\}$. Let $C^{-1} = \{x^{-1} \mid x \in C \text{ and } x \neq 0\}$. Then $C^{-1} \neq \emptyset$. Since $0 \in L(C^{-1})$, $L(C^{-1}) \neq \emptyset$. By Remark 1.2., $U(L(C^{-1})) \supseteq C^{-1} \neq \emptyset$ and $[L(C^{-1})]^\# = L(U(L(C^{-1}))) = L(C^{-1})$, so $L(C^{-1}) \in K'$. We shall show that $L(C^{-1})$ is the multiplicative inverse of C.

Claim 1), for every $x \in K$, $U(C)x \subseteq U(C)$ implies that $x \in P$. Let $x \in K$ be such that $U(C)x \subseteq U(C)$. By induction, $U(C)x^n \subseteq U(C)$ for all $n \in Z^+$. Let $u \in U(C)$. Then $ux^n \in U(C)$ for all $n \in Z^+$. Since $C \neq \{0\}$, there exists a $c \in C$ such that $c \neq 0$. Then $ux^n \geq c$ for all $n \in Z^+$, so $c^{-1}u \geq (x^{-1})^n$ for all $n \in Z^+$. Since K is completely integrally closed, $x^{-1} \le 1$, so $x \ge 1$. Then $x \in P$, so we have claim 1.

Claim 2), $U(L(C^{-1})) = P$.

Let $x \in U(L(C^{-1}))$. To show that $U(C)x \subseteq U(C)$, let $u \in U(C)$. Let $y \in C^{-1}$. Then $y^{-1} \in C$, so $u \ge y^{-1}$. Thus $u^{-1} \le y$, so $u^{-1} \in L(C^{-1})$. Let $c \in C$. Then $x \ge u^{-1}c$, so $ux \ge c$. Thus $ux \in U(C)$, so $U(C)x \subseteq U(C)$. By claim 1., $x \in P$, so $U(L(C^{-1})) \subseteq P$. Let $x \in P$. Let $y \in L(C^{-1})$ and $c \in C$.

Case 1: c = 0. Then $x \ge 0 = yc$.

Case 2: $c \neq 0$. Then $c^{-1} \in C^{-1}$, so $c^{-1} \ge y$. Then $x \ge 1 \ge yc$, so $x \in U(L(C^{-1}))$. Thus $P \subseteq U(L(C^{-1}))$. Hence $U(L(C^{-1})) = P$, so we have claim 2. Now $L(C^{-1})C = [L(C^{-1})C]^* = L(U[L(C^{-1})C]) = L(P) = L(\{1\}) = \{1\}^*$, so $L(C^{-1})$ is the inverse of C. Hence K' is a group with the multiplicative zero 0.

Define \oplus on K' as follows: let X, Y be nonempty subsets of K such that U(X), $U(Y) \neq \emptyset$. Then there exist $a \in U(X)$ and $b \in U(Y)$. Clearly, a + b is an upper bound of X + Y. By 4), $U[(X + Y)^*] = U(X + Y) \neq \emptyset$. By 1), $(X + Y)^{**} = (X + Y)^*$, so $(X + Y)^* \in K'$. Define $X^* \oplus Y^* = (X + Y)^*$. Hence $A \oplus B = (A + B)^*$ for all $A, B \in K'$.

To show that \oplus is associative, let X, Y, Z \in K'. Then $(X \oplus Y) \oplus Z$ = $(X + Y)^n \oplus Z = [(X + Y) + Z]^n = [X + (Y + Z)]^n = X \oplus (Y + Z)^n = X \oplus (Y \oplus Z)$, so \oplus is associative.

To show that \bullet is distributive over \oplus in K', let X, Y, Z \in K'. Then $(X \oplus Y)Z$ = $(X + Y)^{\#}Z = [(X + Y)Z]^{\#} = [XZ + YZ]^{\#} = (XZ)^{\#} \oplus (YZ)^{\#} = (XZ) \oplus (YZ)$ and $Z(X \oplus Y)$ = $Z(X + Y)^{\#} = [Z(X + Y)]^{\#} = [ZX + ZY]^{\#} = (ZX)^{\#} \oplus (ZY)^{\#} = (ZX) \oplus (ZY)$, so \bullet is distributive over \oplus in K'. Clearly, $\{0\} \oplus A = A = A \oplus \{0\}$ for every $A \in K'$. Hence K' is a skewsemifield.

Define \leq on K' by $A \leq B$ if $A \subseteq B$ for all $A, B \in K'$. Then \leq is a partial order. Next, to show that \leq is a compatible order, let $A, B, C \in K'$ be such that $A \leq B$. Then $A \subseteq B$, so $AC \subseteq BC$, $CA \subseteq CB$, $A + C \subseteq B + C$ and $C + A \subseteq B + C$, so we have that:

- 1) $AC = (AC)^{*} \subseteq (BC)^{*} = BC$,
- 2) $CA = (CA)^* \subseteq (CB)^* = CB$,
- 3) $A \oplus C = (A + C)^* \subseteq (B + C)^* = B \oplus C$ and
- 4) $C \oplus A = (C + A)^* \subseteq (C + B)^* = C \oplus B$.

Thus $AC \le BC$, $CA \le CB$, $A + C \le B + C$ and $C + A \le B + C$, so we get that \le is a compatible order. Clearly, $\{0\} \subseteq L(U(A) = A^* = A \text{ for every } A \in K', \text{ hence } K' \text{ is a positively ordered skewsemifield. Next, to show that } \le \text{ is a lattice, let } A, B \in K'.$ Let $x \in U(A)$ and $y \in U(B)$. Then $x \lor y \in U(A \cup^* B)$. By 4), $\emptyset \ne U(A \cup B)$ $= U([A \cup B]^*). \text{ By 2}, (A \cup B)^{**} = (A \cup B)^*, \text{ so } (A \cup B)^* \in K'. \text{ Next, we shall show that } A \lor B = (A \cup B)^*. \text{ Since } A \subseteq A \cup B \text{ and (by using 1)), we get that } A = A^*$ $\subseteq (A \cup B)^*. \text{ Similarly, } B \subseteq (A \cup B)^*. \text{ Let } C \in K' \text{ be such that } A, B \le C. \text{ Then } A \cup B$ $\subseteq C. \text{ By 1}, (A \cup B)^* \subseteq C^* = C, \text{ so } A \lor B = (A \cup B)^*. \text{ Hence } K' \text{ is a lattice.}$

Next, to show that K' is complete, let C be a nonempty subset of K' which has an upper bound. Let $B = \{C \in K' \mid C \text{ is an upper bound of } C \}$. We shall show that $\bigcap C = \sup C$. By assumption, $B \neq \emptyset$, so there exists a $C' \in B$. Then $c \in B$

 \bigcap C \subseteq C'. By Remark 1.2., $\emptyset \neq U(C') \subseteq U(\bigcap$ C). $c \in B$

Claim 3, L(\bigcup U(C)) \subseteq \bigcap [L(U(C)].

Let $C' \in B$. Then $U(C') \subseteq \bigcup_{c \in B} (U(C))$, so $L[U(C')] \supseteq L[\bigcup_{c \in B} (U(C))]$. Then

L(\bigcup U(C)) \subseteq \bigcap [L(U(C)], so we have claim 3. $c \in B$

Claim 4, $L(U(\cap C)) \subseteq L(\cup [U(C)])$. $c \in B$ $c \in B$

 $L(U(\cap C)) \subseteq L(\cup [U(C)])$, so we have claim 4. $c \in B$

Thus $\bigcap C = \bigcap C^* = \bigcap L(U(C)) \supseteq L(\bigcup U(C)) \supseteq L(\bigcup (\bigcap C)) = (\bigcap C)^*$. $c \in B$ $c \in B$ $c \in B$ $c \in B$

Hence \bigcap $C \in K'$. Clearly, \bigcap $C = \sup C$. Hence K' is complete. $c \in B$

Define $f: K \to K'$ by $f(x) = \{x\}^*$ for every $x \in K$. To show that f is an L-homomorphism, let $a, b \in K$. Then $f(ab) = \{ab\}^* = (\{a\}\{b\})^* = \{a\}^*\{b\}^* = f(a)f(b)$,

 $f(a+b) = \{a+b\}^{\#} = (\{a\}+\{b\})^{\#} = \{a\}^{\#} \oplus \{b\}^{\#} = f(a) \oplus f(b) \text{ and } f(a \vee b) = \{a \vee b\}^{\#}$ $= L(\{a \vee b\}). \text{ Since } f(a) = \{a\}^{\#} \text{ and } f(b) = \{b\}^{\#}, \ f(a) \vee f(b) = \{a\}^{\#} \vee \{b\}^{\#} = (\{a\}^{\#} \cup \{b\}^{\#})^{\#}$ $= [L(\{a\}) \cup L(\{b\})]^{\#}. \text{ We shall show that } L(\{a \vee b\}) = [L(\{a\} \cup L(\{b\}))]^{\#}. \text{ Since }$ $L(\{a\}) \subseteq L(\{a \vee b\}) \text{ and } L(\{b\}) \subseteq L(\{a \vee b\}), \ L(\{a\}) \cup L(\{b\}) \subseteq L(\{a \vee b\}), \text{ so }$ $[L(\{a\}) \cup L(\{b\})]^{\#} \subseteq [L(\{a \vee b\})]^{\#}. \text{ Next, let } x \in L(\{a \vee b\}) \text{ and } y \in U[L(\{a\}) \cup L(\{b\})].$ Then $y \geq z$ for all $z \in L(\{a\}) \cup L(\{b\})$. Since $a \in L(\{a\})$ and $b \in L(\{b\})$, $y \geq a$ and $y \geq b$, so $y \geq x$. Hence x is a lower bound of $U[L(\{a\}) \cup L(\{b\})]$, so $x \in L(U[L(\{a\}) \cup L(\{b\})]) = [L(\{a\}) \cup L(\{b\})]^{\#}. \text{ So we get that } L(\{a \vee b\})$ $\subseteq [L(\{a\} \cup L(\{b\})]^{\#}. \text{ Therefore } f(a \vee b) = L(\{a \vee b\}) = [L(\{a\} \cup L(\{b\})]^{\#} = f(a) \vee f(b), \text{ so }$ f is an L-homomorphism.

To show that f is an injection, let x, y \in K be such that f(x) = f(y). Since $x \in \{x\}^{\#} = \{y\}^{\#} = L(\{y\}), x \le y$. Since $y \in \{y\}^{\#} = \{x\}^{\#} = L(\{x\}), y \le x$, so x = y.

To show that $f(P) = P_{f(K)}$, let $x \in P$. Then $f(x) = \{x\}^\# = L(\{x\}) \supseteq L(\{1\}) = \{1\}^\#$, so $f(x) \in P_{f(K)}$. Next, let $x \in K$ be such that $f(x) \in P_{f(K)}$. Then $L(\{x\}) = \{x\}^\# = f(x) \supseteq \{1\}^\#$. Since $1 \in \{1\}^\# \subseteq L(\{x\})$, $1 \le x$, so $x \in P$. Therefore $f(P) = P_{f(K)}$, hence f is an L-monomorphism. Hence $K \cong L f(K)$, so K can be embedded into a complete positive lattice skewsemifield K'.