CHAPTER ||
POSITIVELY ORDERED O-SKEWSEMIFIELDS

In this chapter, we shall give some fundamental theorems of a theory of

positively ordered skewsemifields.

Definition 2.1, Let < be a partial order on a semiring S with a multiplicative zero
0. < is said to be compatible if and only if it satisfies the following property, for
all x,y,z€ 8, x<y implies that 1) x+z<y+z and z+x<z+y and 2) xz<yz

and zx<zy, if z=0.

Definition 2.2, A partiel order < on a semiring S with a mutiplicative zero 0 is
said to be muitiplicatively regular (M.R.) if (x2<yz and 0 <z imply that x<vy)
and (zx<zy and 0<z imply that x<y} for all x,y,z€ S.

Definition 2.3. A system (S, +,e,<) is said to be an grdered gemjﬂng_if?nd
on_iy if (S,+,e) is a semiring with a multiplicative zero 0 and < is a
compatible partial order on S, If 0< x, for every x € S then we say that S is
a positively ordered semifing.

Remark 2.4, let K be a positively ordered skewsemifieid. Then the
following statements clearly hold :
1) for all nonzero elements x,y € K, x<y implies that y"' <x™.

2) for all x,y.ze€ K, zx<zy or x2<yz implies that z=0 or x<y.

Examples 2.5. 1) Q:, R;' are positively ordered skewsemifields.
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2) Let A={f:R>R/f(x)=ax+b,a>0} u{0}. Let
fif f#0

K=(Ao0,+)and L=(A0,®) where fdg= g if £=0 , for all f,g eL.
Then K and L are skewsemifields, so K =K* x L*«w{(0,0)} which is
a skewsemifiled. Define < on A as folldws s let #(x) =.ax +b,gx)=cx+deA{0}.
Define f<g if 1) a<c or 2) a=c and b<d. And let 0<h for every he A.
Define <* on K by (f.f,)<"(h,h,) if 1) f,<hyor 2) f,=h, and f,<h, for all
(f,5,). (huh,) € K. Clearly, <* is a partial order and F<* G implies that
FH <* GH and HF <* HG for ali F, G,H e K. Let F=(f,f,),H=(h,h,) and
G=(g,0,) € K be such that (f.,)<" (h,h,). Consider F+G =(f,+g,,Dg,)
H+G=(h,+g,h,®9,),C+F=(g,+f,0,81%) and G+H=(g,+h,g,®h,)
fG=0then F+G=F<*H=H+G and G+F=F<*H=G+H. Suppose that
G#0. Then g,#0.
Case 1: F=0. Thenf, =0.If H=0 then F+G=6G<"G=H+G and G+F=G
<*G =G+ H. Suppose that H=0. Then h, > 0. Since K is additively cencellative,
f,+9,=9,<h,+g, and g, +f, =g, <g,+h,.
Case 2: F#0. Then H=0, so f, h, #0.
Subcase 2.1: f, <h,. Since K is additively cencellative, f, + g, <h, +g, and
g, +f,<g,+h,. '
Subcase 2.2: f,=h,. Then f,<h, Thus f,®g,=f,<h,=h,®g, and
9, ®f,=9,<9,=9,®f, Therefore F+G<*H+G and G+ F<*G+H, hence Kis
a positively ordered skewsemifield.

a

c
. J /{abeQ [R7and ceQ[R] } U{0})

3) Let Kz{[

Then K with the usual binary operation is a skewsemifield. Define a relation

0 b 0 b

or 3) a=a’, b=b" and c <c'. To show that < is a partial order, it is clear that

' a ¢ a ¢
< on K by < if and only if 1) a<a’ or 2) a=a’ and b<b’



a c¢ a’ ¢
< is reflexive. Let M, = 1: ] M, = [ :| € K be such that M, <M, and
0 b 10 b

M,<M,. Then a<a’ and a’<a, so a=4a'. Hence b<b" and b'<b, so b=b".
Thus c<c’ and ¢'<c, so c =c'. Therefore M, =M,, so < is anti-symmetric. Let

a ¢ a ¢ a" ¢
M, = M, = WM, = € K be such that M, <M, and
: 0 b 0 b 0 b

M,<M, Then a<a’ and & <a”.

Case 1: a<a' or a’'<a’”. Then a<a".

Case 2: a=a'=a". Then b<b’ and b’'<b".

Subcase 2.1: b<b' or b’ <b"”. Then b<b".

Subcase 22: b=b"=b". Then csc’ and c'<c", so c<c".

Hence M,'s M,. Therefore < is transitive. Next, to show that < is compatible,
|:a c] {a' c'] {x z}

Let M, = M, = € K be such that M, <M,. Let W= € K.

0 b 0 b 0 vy

Since M,<M,, a<a’ ora=2a' If a<a’ then a+x<a'"+x, so done. Suppose -

that a=a'. Then a+x=a’+x and b<b’.

Case 1: b<b’. Then b+y<b'+y.

Case 2: b=0'". Then c<c', so c +z=c’ +z Therefore M, +W<M, + W,

ax aztcy xa xc+zb a'x a'z+cly
Thus MW = » WM, = » MW= .
0 by 0 yb 0 b'y

xa' xc'+zb'
and WM, =
0 yb'

Suppose that W=0. Then x,y>0. If a<a' then ax<a’a and xa<xa'. Suppose

}. I W =0 then M,W=0<MW and WM, =0<WM,.

that a=a'. Then ax=a'x, xa=xa' and b<b'.
Case 1: b<b’. Then by<b'y and yb <yb'.
Case 2: b=Db'. Then c<c’, so ax+cy<a'x+cy and xc+zb<xc' +zb'.
Therefore WM, <WM, and MW <M,W. Hence K is a positively ordered
skewsemifield.

4) Let K and L be positively ordered skewsemifields. Define

a relation < on K*xL*w{(0,0)} by (x,y)<(zw) if and only if x<z and y<w,
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for all (x,y), (zw) € K* xL* U {(0,0)}. Then K*xL*U{(0,0)} is a positively
ordered skewsemifield.
5} Let K and L be positively ordered skewsemifields such that

K is additively cancellative. Define a relation < on K*x L*w {(0,0)} by
(x.y) < (zw) if and bhly if x<z or x=z and y<w, for all (x,y) and
(zw) € K*x L* w{(0,0)}. Then K*xL*w {(0,0)} is a positively- ordered
skewsemifield. ' |

Note that the partial order < defined in Example 2.5., 2),3) and 5) are

called the lexicographic order.

Defipition 2.6, Let C be a subset of a positively ordered skewsemifield K.
Then C is called a convex subset of K if it is an o-convex subset and

an a-convex subset of K.

Definition 2.7, Let K be a positively ordered skewsemifield. Then the set
P={xeK/x=1}is called the positive cone of K.

Remark 2.8, Let P be the positive cone of a positively ordered . skewsemifield K.
Then the following statements hoid :

1) f P={1}then K={0,1}.

2) P is a multiplicative subsemigroup of K. -

3) For every xe K, 1+xeP and x+1eP. Hence P is an additive ideal of
K, that is K+PcP and P+KcP.

4) P is a conic subset of K.

5) P is a convex normal subset of K.

B) For every x € K*, x=ab™ for some a, b € P.

7) For all x,y € P, xy=1 implies that x =y =1,

8) If H is a subskewsemifield of K, then P, =P ~H where

P,={xeH /x=1}.
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Theorem 2.9, Let K be a skewsemifield and P & K*. Suppose that P satisfies
the following conditions :

1) P is multiplicative subsemigroup of K*,

2) P is a conic subset of K,

3) P is an additive ideal of K,

4) P is an a-convex normal subset of K.
Then there exists a unique compatible partial order < on K such that P is the

positive cone of <. < is called the partial order induced by P.

Proof Define <, on K as follows:let x,y € K, x<,y if and only if x=0 or
x”1y € P. To show that <, is a partial order, it is clear that <; is reflexive since
1 €P. Next, let x,y €K be such that x<,y and y<,x.

Case 1: x=0. If y=0 then 0=y '(0) € P which is a contradiction, so y =0 =x.
Case 2: x20. If y=0 then 0=x"y € P which is a contradiction, so y=0,
Therefore X'y € P and (X'y) =y 'x e P. By 2), X'y =1, so x =y. Therefore

<, is anti-symmetric. Let x, y,ie K be such that x<,y and y<,z. If x=0 then
x <, z. Suppose that x#0. Then y#0, s0 x“1y € P and y"z € P. By 1),
x'z=("yNy'2) € P, so x<,z Thersfore <, is transitive, hence <, is a partial
order. Next, let x,y € K be such that x<,y. Let ze K. If x=0 or z=0 then
xz=0=yz and zx =0 = zy. Suppose that x#0 and z#0. Then
(zx)"zy=(x'1z'1)zy.= X'y €P, s0 zx <, zy. Since P is a normal set of K,
x2)'yz=2"(x"y)z € P, s0 xz<,yz. |

Nekt, let x,y € K be such that x<,y. Let ze K.

Case 1: x=0. fz=0 then x+z=0<,y+z and z+x=0<,z+Y, so done.
suppose that z#0. By 3), z'(z+y)=1+Z'yeP and z(y+2)=z"y+1€P,
S0 z+x=zsz+y and x+z=z<, y+z

Case 2: x#0. Then Xy € P. By the a-convexity of P, (x +2)"(y + 2)

= (x+2) Ty + (X + 2"z = (x +2)'x X'y +[(x+2)'z) € P, s0 x+2 Sy tz

Similarly, z+x <,z +y. Therefore <, is a compatible partial order on K.



Cleaﬁy, for every x € K, 0<,x. Hence P is a positive cone of K. Thus K is
a positively ordered skewsemifield having P as its positive cone.

To prove the uniqueness, let <* be a compatible partial order on K such
that P is its positive cone. Let x,y € K be such that x<*vy. If x=0 then XS Y.
Suppose that x =0, Then 1<*x'y, so X'y € P. Then x<,y. Hence <" C <,.

Similarly, <, € <*. Therefore <, =<",
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Coroliary 2,10, Let K be a skewsemifield, A the set of all subsets of K* which

satisfy 1)-4) in Theorem 2.9. and B the set of all positive compatible partial

orders on K. Then there exists an order isomorphism from A onto B.

Proof Define ¢ : A — B as follows : let P € A. By Theorem 2.10., P
determines a unique positive compatible partial order <, induced by P on K.
Define @(P) = <,. Clearly, ¢ is a bijection.

To prove that ¢ is isotone, let P, Q € A be such that P< Q. Then
o(P) =<, and ¢(Q) =<, We must show that < C <, Let x,y € K be such
that x<,y. Then x=0 or X'y € P.

Case 1: x=0. Then x<,y.
Case 2: X'yeP. Since PcQ, X Y€ Q, 50 x<, y.
Then @(P) =<, <, =¢(Q), so ¢ is isotone.

Next, to show that @ is isotone, let <, <* € B be such that <c <.
Then ¢'(<) = P¢ and ¢ '(<*) = P<*. We must to show that Psc P<*. Let x € K
be such that x € P. Then 1<x. Since <c <", 1<"x, s0 x € P*. Therefore

0'()c o (<), so ¢ is isotone. Hence @ is an order isomorphism from
A onto B.,

Proposition 2,11, Let K be a skewsemifieid. Suppose that K has a compatible

partial order. Then there exits maximal compatible partial order on K,
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Proof Let P={P / P is a positive cone of K}. Since K has a compatible
partial order, there exists a P P, so P#@. Let D be a nonempty chain of P.

Let Q=uUD. Then Q € P. By Zom's Lemma, P has a maximal element. ,

Theorem 2,12, Let (S,e) be a positively ordered semiring with multiplicative zero
0 having the M.C. property and satisfying the right[left] Ore condition. if < is

M.R. then S can be embedded into a positively ordered skewsemifield.

Proof Using the construction of Theorem 1.31., we have that
K=8x(S\{0})~ is the skewsemifieid of a right quotients of S. Let
i be a right quotient embedding of S into K. Let P
={a e K/ a=iXily)" for some x, y €S0} such that x2y}.

To show that P is a multiplicative subsemigroup of K, Let o = i(x)iy)” and
B =i(z)itw)” € K. Then y<x and w<z. By the right Ore condition, there exist
ab € $ such that ya =zb, so af =iXx)i(y)”". Since wszb =ya<xa, off €P.
Then P is a multiplicative subsemigroup of K.

To show that P is an additive ideal of K, Let & =i(a)i(b)” & K.
Then o+ 1=[(a,b)]+ [ (b,b)]=i(ab + bb)i(bb) ] = i(ab + bb)i(bb)™ and
1+ a =i(b,)i(b) + i(a)i(a) = i(bb + ab)i{bb). Since bb<ab + bb and
bb<bb+ab, a+1eP and 1+ eP. Hence P is an additive ideal.

Claim that for all a, b € S\{ 0}, i(a)i(b)” € P implies that a>b.
Let a,b € S\{0} be such that i(a)i(b)” e P. Then there exist P, q&€ S0} such
that i(a)i(b)”" = i(p)ilq)”" and p=q. Then there exist p’, @' € S\{ 0} such that
ap’ =pq’ and bp’=qqg’. Then ap’ =pq’ 2 qq’ =bq’. By the M.R. property, a 2 b,
S0 wé have the claim.

To show that P is a conic set of K, let a € P~ P™". Then « € P and
o€ P Then there exist a,b € S0} such that o =i(a)i(b)” and a2b. Since
i(bita)™" = (i(a)io) Y’ =" € P and by the claim, b>a, we get that a = b.

Thus aa=[(a,a)]=1, so P is a conic set.
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To show that P is a normal ‘subset of K, Let a =i(x)ily)” € P and
B =i(2)i(w)” € K. Then y<x, By the right Ore condition, there exist a,b € S\{0}
such that ya =zb, so Pa= i()ity)™. By the right Ore condition, there exist
¢,d e S{ 0} such that ybc =wd, so Pop = i()i(y)". Since wd=ybc<xbc
=wac, using the M.C. property, d<ac, so Pap™ € P. Thus P is a normal set.
Claim that for all o, B,y € K*, Pa’’ € P implies that (B + Yo +7)" € P.
Let o = ix)ily)™, B =i2)iw)™" and y=i(u)iv)" € K* be such that Pa” € P.
By the right Ore condition, there exist a,b € S\{ 0} such that ya=vb, so a+y
=i(xa + ub)i(ya)'1. By the right Ore conditjon. there exist c, d eIS\{O} such that
wc=vd, so B+y=i(zc+ ud)ifwe)™". By the right Ore condition, there exist
e,feS\(0) such that wee =vyaf, so (B+ y)Ma +7)" = i[(zc + udelil(xa + ud)fl".
Since vbf= yaflz wee = vde, bf = de. Since i(zce)i(xaf) = fa”' € P, xaf <zce ,s0
(xa + ub)f = ( xaf + ubf) = (xaf + ude) < (zce + ude) = (z¢ + ud)e. Then
B+ Pa+y’ eP, so we have the claim.
To show the a-convexity of P, let x,ye P and o, B € K be such that a.+ B
=1. if a=0 then xao+ yp =y € P. So suppose that o= 0. By the claim,
(y +yBo )1 +yBo )" € P. Since P is a normal subset of K,
(1+ yBe™Y "y + yBor) = (1 + yBor™) 'y + yBar )1 + yBe Y '(1 + yBa™) € P.
- Then cu+ yB = (a+yB)a+ BY" =[(1+yBa )y + yBo )" Iy € P. Thus xa.+yB
= (xou + yB)ot + yB) (ot + yB)=[ (x+ yBor" )1 + yBor")” Kot + yB) € P. Hence P
is an a-convex normal subset of K. By Theorem 2.9., P is the positive cone of
K, so K is a positively ordered skewsemifield.
To show that i is an isotone map, let a,b € S be such that b>a. If a=0
then i(a) =0 <i(b). Suppose that a=0. Then i(b)i(a)™ € P, so i(b)i(a)™" =1.

Thus i(b) 2i(a). Hence i is isotone.

Theorem 2.13. Let n€ Z be such that n>2. Let K. = {0} u
{AeM(R) [MQ]/A>0if i=]and A=0 if i>] }. Then there exists

a compatible positive partial order on K,.
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Proof If n=2 then done by Example 2.5., 3). Induction assumption, iet

neZ be such that n>2. Let K_, with the following partial order is a positively

AL A
1 3

ordered skewsemifield. Let P = { o A |€ K,/ 1) A>10r2) A =1 and
2

A,>tor3) AA=1 A=1and A_,,>0o0r 4 A, =1, A,=1 and there exists
an ie{1,..,n2} such A, >0 and A =0 for all n>k>i or 4) A,=1, A,=1
and A;=0 where A, e K |

To show that P, is an additive ideal of K, let X € K, If X=0 then 1+ X
=1 e P,. Suppose that X#0. Then X, =0, so X, >0. Since K_, is additive
cencellative, 1 + X, > 1. Therefore 1+ X € P_. Hence P, is an additive ideal.

To show that P_ is a multiplicative subsemigroup of K, let X,Y € P,.

X1Y1 X1Y3+X3Y2

0 X2Y2

XY € P, Suppose that X,Y,=1. Then X, =(Y)" e (P, )" (P )" ={1}, so X, =Y,
=1. Thus X;21 and Y, 21, so X,Y,21. If X,Y,>1 then XY € P,. Suppose that

Then X, 21, Y, 21 and XY= , 50 X,Y,21. If X,Y,>1 then

XY, =1, Then X;=Y,=1. Thus X .. =0 and Y,

n=1,n n=1,n

= 0.

Case 1: X_,,>0 or Y., >0. Then (XY}, = 2 (X _ )Y,
k=1

= E (Xn—1.k)(Ykn) + (xn-1.n)(Ynn) = (xn—1.n—1)(Yn-1.n) - (xn-'l.n)(Yn—Ln) = Yn-1.ﬂ + Xn-1.n > 0'

k=1

Case 2: X,,,=0 and Y,;,=0. If X,=0 or Y,=0 then X=1 or Y=1, so
XYe P.. Suppose that X, #0 and Y,#0. Then there exist i’,i"" € {1,...,n-2} such

that X, >0, X,,=0 for all n>k>i" and Y» >0, Y,,=0 for all n>k>i". Let
i=max{i",i"}. Then i=i' or i=i", s0 (XY), = Z (XY = OGY,) + (XY,
k=t

=X+ Y, >0. Let n>j>i. Thenso (XY), = Zn: K (Y = (X(Y,) + (X, XY,

k=1

=X+ Y, =0. Therefore XY € P, hence P is a multiplicative subsemigroup of K.

To show that P is a normal subset of K, let A€ P, Then A 21. Let
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)(1A1 X1A3+X3A2

0 X2A2

a B, € P, such that X,A, =BX,. Since XA, =AX,, let B,=A,. Let B,
= (XA XA, = BX)(X) . Then XA=BX. We must show that B  P. Since

Xe K;. Then XA = . Since A€ P, A P, so there exists

AeP,A 21 f Aj>1 then B,>1, so B € P,. Suppose that A, =1. Then B, =1
and A,21. if A,>1 then B,>1, so B € P, Suppose that A,=1.
If A,=0 then B=1=A € P, Suppose that A, =0.

=1 -

y =1
Case 1: An-1.n.> 0. Then Br'|-1.n . (Z ' xn—1.kAkn < xn-1.nAm - Z Bn—‘l.kxkn)(xnn)_1
. k=1 =1

= (Xn-1.n-1An-1.n + xn—1.n — Bn-1.n—1)(n—1.n)(xnﬂ)_1 3 (xn-1.n—1An-1.n)(xnn)-1 > 0'
Case 2: there exists an i€ {1,....n-2} such that A >0 and A,_=0 for all

n=1

n>k>i Then B, = (nf X + XA = & BEIK) = (XA, + X~ BX) (Ko)

= (X,An)(xnn)-1 >0. Let n>j>i. Then B, =(X
k=1

n=1

KA T KoPon — k§ B]kan)(Xm)'1 |
= (XA + X = BX X" = (X, - X)(X,)" =0. Then B & P,. Hence XP,C P, X.

Therefore P, is a normal subset of K.. Next, to show the a-convexity of P_, let

A1+B1 ‘A3+BS
X,YeP Lot ABekK h that A+B= =1, ‘
€ P, Let € K, be such that B 0 A2+82 1. Then

A +B,=1, A,+B,=1 and A, + B,=0. Therefore XA +YB =

X1A1+Y1B1I X1A3+XBA2+Y1BS+Y352

0 X2A2+Y282

Y.B,>B,, s0o XA +Y,B,>A, +B,=1. Hence XA+ YB € P,. Suppose that X, =1

X >1 or Y, >1, then XA > A, or

~and Y, =1. Then XA+ Y,B;=1,X,21 and Y, 21. If X,>1 or ¥,>1 then by
using a proof similar to the above, we get that XA+ YB € P,. Suppose that X, =
1 and Y,=1. Then XA, +Y,B,=A,+B,=1, |

Chaim that for all | € {1,...n-11}, (XA +YB), = (X,)(A,) + (Y, )(B.).

Let i€ {1,...n=1}. Then (XA +YB), = é XA + 3";1 (Y, )(B.)

= (xﬂ)(Aln) * (Xln)(Ann) + (Yil)(Bln) + (Yln)(Bnn) = AIn + (xin)(Ann) + Birl + (Yln)(Bnn)
= (AA) + (Y )B,), so we have the claim,
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Case 1: X,=0 and Y,=0. Then X=1,¥Y=1 and XA+YB=A+B=1€P,
Case 2: X;=0 and Y,#0.
Subcase 2.1: Y, >0.Then (XA-+YB),_,, = (X HA + (Yo 1 )Bo) = (Yo, )(B,,)
>0, so XA+YB eP,
Subcase 2.2: there exist an i€ {1,..,n-2} such that Y,,>0 and Y,, =0 for all
n>k>i. Then (XA +YB) =0{JA,)+ (Y )B,)=(Y)B,) >0. Let n>]>i. Then
(XA + YB), = (X,XA,) + (Y,)(B,) =0, s0 XA+YBe€P,
Case 3: X;#0 and Y,=0. The proof is similar to the proof of case 2.
Case 4: X;#0 and Y, #0. .
Subcase 4.1: X , >0 or Y, >0.Then (XA +YB)_, =(X_ A+ (Y )B,)
>0, s0 XA+YBeP,, '
Subcase 4.2: there exist I', i € {1,....n-2} such that X;, >0 and X,, =0 for all
n>k>i" and Y, >0, Y, , =0 for all n>k>i{". Let i=max{i,i"}. Then i=i or
i=i", so (XA +YB), = (X )A,) + (Y )(B,)>0. Let n>j>i. Then (XA +YB),
= (X, )(A,) + (Y, )(B,,) = 0. Therefore XA +YB &P,
Hence P, is an a-convex normal subset of K.

To show that P.is a conic set of K, let X &€ (Pn)n(Pn)”. Then X € P_and
X' eP, so X, 21 and X,” 21. Hence X, =1, s0 X,21 and X," >1. Thus X,=1.
Case 1: X, >0.Then 0=1_,,= 0K, = T (X, )0,

ket

n=1

= 2 KX Y + KO Ny = Xy )X Y+ K e = 60+ (),

k=1
s0 (X 1),,_1'“ =—(X,_,,) <0 which is a contradiction since X' € P,

Case 2: there exist an i € {1,...,n-2} such that x, >0 and x_ =0 for all

n =1

n>k>i Then 0= IIr'l = (xx-1)ln = E (Xlk)(x_1)kn = z (Xk)(x1)m + (xln)(x'-1)nn
ka1

st

= (XX ) + KO = X, + (%), 50 (X, =~(X.) < 0. Let n>j>i. Then

0=1,= (X", = z XX )y = z XN+ X HX ) = XX, + X)),

= (XT)+ (X, so (XT), ==(X,) =0 which is a contradiction since X" € P..
Hence X, =0, so X =1. Therefore P.is a conic subset of K,.

By Theorem 2.9., P is the positive cone of K, hence K, is a positively
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ordered skewsemifield. ,

Definition 2,14, Let K and' M be positively ordered skewsemifields. A function
f:K—»M is called an order homomorphism of K into M if f is an isotone
homomorphism of skewsemifields.

An order honomorphism f: K-> M is called an order monomorphism if f is
an injection and f(P,) =P, an order epimorphism if f is onto and f(P,) =P, and
an order isomorphism if fis a bijection and f and f ! are isotdne. K and M are
said to be order isomorphic if there exists an order isomorphism K onto M and
we denote this by K=o M.

Remark 215, Let f:K—>M be an order homomorphism of positively ordered
skewsemifields. Then the following statements hold :

1) f(P) < Py,

2) m-kerf is a convex normal subgroup of K.

3) f C’' is a convex normal subgroup of M then f'(C’) is a convex normal

subgroup of K containing m-ker f.

Proof 1) Obvious. _
2) By Remark 1.41., 2), m-kerf is an a-convex nomal subgroup of K.
To show the o-convexity of m-ker f, let x,y e m-kerf and z € K be such that
x<z<y. Since f is isotone, 1 =f(x)<f(z) <f(y) =1, so f(z)=1. Then z € m-kerf.
Hence m-kerf is a convex normal subgroup of K.
3) By Remark 1.41, 3), f Y(C") is an a-convex normal subgroup of K
containing m-ker f and by Remark 1.20., 2), f'(C) is an o-convex subset of K.

Hence f 1(C’) is a convex normal subgroup of K containing m-kerf.

Proposition 2,16, Let f: K->»M be a homomorphism of positively ordered

skewsemifields. Then the following statements hold :
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1) f is isotone if and only if fP,) P,

© 2) if fis a bijection then ' is isotone if and only if P, < f(P,).

Proof 1) Obvious.

2) Assume that f is isotone. Let y € P,. Then y2>1. Since f is onto,
there exists an x € K be such that f(x) =y. Since ' is isotone, 1=f"(1)=f"(y)
=f(f(x)) =x, s0 x € P.. Then y € f(P,), hence P, c f(P,).

Conversely, assume that P,, C f(P,). Let x,y € M be such that y=x.
If x=0 then f(y) >0 = f(x). Suppose that x0. Then X'y € P, so there exists a
p € P, such that f(p) = xy. Since f is onto, there exist a, b € K such that f(a) =x
and f(b) =y, so f(p) =x"'y =f(a) f(b) = f(a"'b). Since f is an injection, a’ b
=peP, s0a b2t Thus f'(y)=b=a=f'(x). Hence  is isotone.,

Corollary 2,17, Let f:K—> M be a isomorphism of positively ordered

skewsemifields, Then f is an order isomorphism if and only if fP,) =P,

Let C be a convex normal subgroup of a positively ordered skewsemifield
K. Then K;c is a skewsemifild. Define a relation < on Ky as follows : for all
aC, bC e Ky, define aC<bC if and. only if there exist c,, c, € C such that
ac, sbc, To show that <is a partial order on Ky, it is clear that < is reflexive.
Let xC, yC € Ky be such that xC<yC and yC <xC. Then there exist
Cy: €4 Cy, €, € C such that xc, < yc, and yc, Sxc,.
Case 1: x=0. Then 0<yc, and yc,<0, so 0<y and y<0. Therefore y=0.
Hence xC =yC.
Case 2: x#0. Then c1(cz)'1 < x'y and x'y < c(cy)™". By the o-convexity of C,
X'y € C, so xC =yC. Hence < is anti-symmetric. Next, let xC,yC, zC € Ko be
such that xC< yC and yC< zC. Then there exist c,, ¢, Cy €, € C such that

XC, Syc, and yc, Sxc,. Since yc,C = Cyc,, there exists a ¢, € C such that
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¥C,C,= Cs¥Cy. Since c,g2c, € ¢,zC = zc,C, there exists a ¢, € C such that
CgZC, = ZC,Cq. Then Xc,C, £ YC,C; = Cybe, < €,2C, = 26,64, 50 XC<2C. Thus < is
transitive, and hence < is a partial order. Next, to show that < is a compatibie
partiai order on Ko, let xC, yC € Ko be such that xC <yC. Then there exist
€, C, € C such that xc, Syc,. Let zC € Ky Then 2xc, < zyc,, so (zC)(xC) =zxC
< zyC = (zC)(yC). Since zC = Cz, there exist c,, ¢, € C such that z¢,=c,z and
ZC, = C,Z, SO XZC, = XC,Z < YC,Z = yzC,. Therefore (xC)(zC) = xzC < yzC = (yC)}zC).
Since C is an a-convex normal set, (yc, + zc,) € (yC +zC) =(y + z)C, so there
exists a ¢, € C such that yc,+ zc, = (y + z)c,. Then (x + z)c, = xc, +2¢, S yc, + z¢,
=y +2)cy, 50 xC+2C=(x+2)C<(y+2)C=yC + 2C. Similarly, zC +xC
<zC +yC. Clearly, [0] S« for every a € Ki. Therefore Ko is a positively
ordered skewsemifield.

From the above, we define <" on Kjc as follows :let o, B € K¢, define
a<p if.and only if for every a € a, there exists a b € B such that a<b. Then

we get that <" is a positively compatible partial order on Ki». To show that
<=<" let o, B € Ko be such that a<P. If =0 then o <*B. Suppose that
a=0. Then there exist an a€ a and b € B such that a<b and a=0. Let

ceC. Then ca” € C. Since a<h,1<a b, so c<c(@'b). Since cla’'b) € Cb
=bC, a<* B, so <c <. Clearly, £ C<.. Hence <=<*,

Proposition 2,18, Let K be a positively ordered skewsemifield and C c K*.
Then C is a convex normal subgroup of K if and only if C the m-kemel of some

order epimorphism.

Proof Assume that C is a convex normal subgroup of K. Define
IT: K= Ksc by I'x) =xC, for every x € K. Then TI is an epimorphism and
m-ker [1=C. To show that [I(P) = Peer l6t x € P. Then x21, so TI(X) =xC=C.

Therefore TI{x) € Py, so TI(P) < P,.. Next, let & € P,.. Then a>C, so there
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exist 2 € o and ¢ € C such that a=c. Therefore ac' €P, so a=aC=(ac’)C
=T(ac™) e TI(P). Then P, II(P), so II(P) = P,,. Therefore IT is an order
epimorphism.

The converse follows from Remark 2.16., 2).,

Let f: K— M be an order epimorphism of positively ordered skewsemifields.

Then Kim-ker f=o M.

Proof Let ¢ be the isomorphiém defined in the proof of Theorem 1.51.
To show that @ Is isotone, let o e Kim-kerf De such that a <. There exist
xea, and y € B such that xsy. Since f is isotone, @(a) =1(a) <f(b) = o(B).
Then ¢ is isotone. Next, to show that (p"1 is isotone, let y € P,,. There exists

a p € P, such that f(p) =y, so p(m-kerf} € Kjm-kerf Then y=f(p)
= g(p(m-ker)) € (P, o). Therefore P, C (P, ). Therefore ¢ is isotone, so

¢ is an order isomorphism. Hence Kip.kerf=o M.,

Lemma 220, Let H be a subskewsemifield of a positively ordered skewsemifield
K and C a convex normal subgroup of K. Then H~C is a convex norrhal

subgroup of H and HC is a subskewsemifield of K.

Proof By, Lemma 1.52,, H n C is an a-convex normal subgroup of H and
HC is a subskewsemifield of K. To show the o-convexity of H N C, let-
X, yeHNC and z € H be such that x<z<y. By the o-convexity of C, z € C,

so ze HNC, Therefore HC is a convex normal subgroup of H. .,

Let H be a subskewsemifield of a positively ordered skewsemifields K and
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C a convex nomal subgroup of K such that P,.c P.. Then Hjy ~ C =0 HC/o.

Proof Let ¢ be the epimorphism given in the proof of Theorem 1.53.
Let x € H be such that x=1. Then f(x) =xC 2C, hence ¢(P,) S P,cc.
To show that P,ee < O(P,), let o € Pyoq. Define I1: HC — HC/c by T(x) = xC.

Then 1 is an order epimorphism. Then IT(P..) = P, Hence there exists an
x € P, such that a =T¥x) =xC. Since P, c P, x€P,, s0 a=xC
= @(x) € ¢(P,). Hence P, O(P,). Therefore @(P,) =P, S0 @ is an order

epimorphism and m-ker@ =HNC, Thus Hyq ~ c =0 HC /.,

Lemma 222, Let D and H be convex normal subgroups of a positively ordered
skewsemifield K such that HZ D. Then Dyy is @ convex normal subgroup of
K/H-

Proof By Lemma 1.54., Dy is a convex normal subgroup of Kjy. To show
the o-convexity of Dy, let a, B € Dy and ¥ € Ky be such that a<B<y.

Then there exist a €a, bceP and d ey such that a<b and c<d, so
a(b™'c)<b(b™'c) = c <d. Since bH = y=cH, b'ce HcD, so ab’'c e D.
By the o-convexify of D, c € D, s0 Y=cH € Dyq. Therefore Dy is a convex

normal subgroup of K.,

I 223, (Third | hism_ T |

Let K be a positively ordered skewsemifield, D and C an a-convex normal

subgroup of K such 'H< D. Then K/H/DIH =o K/p.

Praof Let ¢ be the epimorphism given in the proof of Theorem 1.55,
Let o, B € K4y be such that <. Then there exist a c o, and b € B such that

a<b. Then ¢(ct) = (aH) = aD < bD = (bH) = ¢(B). Therefore f is isotone. Therefore
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O(P) S (Pyp)- To show that P, < (P let & € Py Then there exist a € a
and b e D such that a=b, so ab” 1. Hence ab™'H > H. Therefore

ab™'H & P,,. Thus & =aD = (aD)(b"'D) = (ab™)D = (ab™'H) & @(Py,). Thersfore
Q(Pyy) = (Pcp). Hence ¢ is an order epimorphism and m-ker ¢ = Dyy. Then

Proposition 2.24, Let f: K—> M be an epimorphism of positive ordered
skewsemifields. If C’ is a convex normal subgroup of M then
K/f'1(C') = Mp.

Proof By Remark 2.16., 3), f (C) is a convex normal subgroup of M. Let
¢ be the epimorphism defined in the proof of Proposition 1.56.

To show that @ is isotone, let x, y € K be such that x2y. Then f(x) 2 f(y).
So @(x) = f(x)C’' 2 f(y)C' = @(y). Therefore ¢ is isotone, so @(P,) =P,
Let o € P,,- Define T1: M — Mycr by TI(x) = xC'". for all x € M. Then

I is an order isomorphism. Thus II(P,) = P,.. Then there exists a y € P,, such
that a =I1(y) = yC’. Since f(P,) < P, there exists an x € P, such that f(x) =y, so
d = yC' =f{x)C' = ¢(x) € (p(PK). Hence P, < @(P,). Therefore @(P,) =P, SO

@ is an order epimorphism and ker @ =f (C'). Then K (cy =0 M/p.

Theorem_2.25. Let P be a semiring with 1. Then there exists a positively ordered
skewsemifield having its positive cone isomorphic to P if and only if P satisfies
the foliowing conditions :

1) P is M.C.

2) For all x,y€ P, xy=1 implies that x=y=1.

3) For every a € P, aP = Pa.

4) For all a,b € P, aP + bP = (a + b)P.

5) For all a,beP, a+beaP and a+b € bP.
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Proof Assume that P satisfies properties 1)“—'5). By properties 1) and 3)
of P, we get that for all a, x € P, there exists a unique x, € P such that
xa = ax,. Using the same proof as in [4], pp. 10, we get that

1) a,=a.

2) (y)y = %Yo

3) (x,), = x,, and

4) (x+y),=x,+y, for all a,b,x,yeP.

Define a relation ~ on P x P as follows : for all a,b,c,d € P, (a,b) ~(c,d)
if and only if ad, =cb. In [4], pp. 10 it was shown that ~ is an equivalence
relation. Let K=P x P,. {0 }. Define the operations + and » on K by

[(ab)]e[(c.d)]=[(ac,db)]

[(@b)]+[(cd)]=[(ad+cb,bd)], for all a,b,c,deP.

In [4], pp. 10, it was shown that e is well-defined and (K*,e) is a group with
[(1,1)] as the identity and [(b,a)] as the multiplicative inverse of [(a,b)] for all
abeP.

In [4]), pp. 53 it was shown that + is well-defined, associative and e is
distributive over + in K. Therefore K is a skewsemifiled.

Define i: P — K by i(x) = [(x,1)] for every x € P. In [4], pp. 56. it was shown
that i is a right quotient embedding of P into K. Then K is a skewsemifield of
right quotients.

Since i is a homorphism, i(P) is a muitiplicative subsemigroup of K.

To show that i(P) is a normal set, let a, b, x € P. Since xa, € aP = Pa, there
exists a ye P such that ax, =ya, so ax,b=yab. By (yab,ab)~ (y,1),
[(@0)li)@.b)]" = {(a,0)ix)(b,a)] = [(ab))[(x,)]i(b,a)] = [(ax,b)((b.a)]

= [(ax,b,,ab)] =[(axb.ab}] = [(yab,ab)] = [(y,1)] € i(P), so iP) is a normal subset
of K. Next, to show the a-convexity, let i(a), i(b) € i(P) and o =[(x,y)] and

B =[(c.d)] € K be such that a+ B =1. Then [(1,1)] = a + B = [(x,y)] + [(c,d)]

= [(xd + cy,yd)], so xd + cy, = yd. Hence ai(a) + Bi(b) = [(x,y)][(a,1)] + [{c,d)]{(b,1)]
= [(ax,.y)] + [(cb,.d)] = [(xa,d + cb,y,y0)] = [(xda,, + cy,bxd + Cy,)]. By 4),
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there exists a p € P such that xda + CYabyd? p(xd + cy,), so
(xda,, + cy b qxd + cy,) ~ (p,1). Then aifa) + Bitb) = [(p,1)]) = i(p) € P),
hence i(P) is an a-convex normal set.

To show that i(P) is an additive ideal of K, let o =[(a,b)] K. Then
1+0=[(11] +[@b)] =[(b +ab)] By 5) and 4), there exists a p € P such that
b+a=pb. Then (b +ab)~(p,1), so 1+a=[(p,1)] €i(P). By 5) and 4), there
exists a p’ € P such that a+b=p'b. Then a+1=[(a,a)] +[(1,1)]=[(a + b,b}]
={(p’,1)] € i(P), so i(P} is an additive ideal of K.

To show that i{P) is & conic set of K, let a € i(P)ni(P)". Then there
exist a,b € P such that i(2) = a = i(b)". Then [(ab,1)] = i(ab) = Ka)i(b) =i(b)"i(a)
=[(1,1)], so (ab,1)~ (1,1) and therefore ab=1. By 2), a=b =1, so a=[(1,1)],
~hence i(P) is a conic set. By Theorem 2.8., i(P) is a positive cone of K.

Conversely, let P be the positively cohe of some positive ordered
skewsemifield. Then 1),2) and 3) clearly hold. Let a, b € P. By Proposition 1.36.,
aP + bP = (a + b)P. |

To prove 5), let a,b € P. Then ab'+1e P, so there exists a p € P such
that ab™ +1=p. Then (a+b)=(ab"' + )b =pb € Pb=DbP. Since 1+a b eP,
there exists a p’ € P such that 1+a 'b=p’. Then (a+b)=a(@ b+ b

=ap’ € aP.,

Theorem_2.26. Let P be a semiring with 1 which satisfies 1)-5) in Theorem
2.25. and K its skewsemifield of right quotients.{ Then K is the smallest positively

ordered skewsemifield having ‘P as its positive cone.

Proof Let | be a right quotients embedding of P into K. Let L be a
skewsemifield and j: P — L a monomorphism. Define f: K—L by f(x,y)]
= j(i(y)™" for every [(xy)] € K. To prove that f is well-defined, let (a,b) ~ (a’.b’).
~ Then ab’y =a'b, so j(@)j(b’y) =j(ab’,) = j(a'b) = j(@")i(b).
Claim that for all x,y € P, j(x) = j(y) j()i(y). Let x,y € P. Since xy = yx,
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JOIY) = X, 80 j6x) = iy i00i(y) and we have the claim.
By the claim, j(a)i(b)i(b')i(b) = (@)i(b"y) = a"i(b), so j@i(b)” =j(aib"™
Therefore f is well-defined.

Next, to show that f is a monomorphism, let a=[(a,b)] and
B =[(c,d)] € K. Then o = [(ac,,db)], so f(aB)=j(acb)j(db)"1 |
= j@i(e (Do) = i(a)i(b) Je)(iLIid) ' = j@)(0) Je)@) " = fH(B).

Since a + B =[(ad + cb,bd)], f(c + B) = j(ad + cby)i(bd)™

= [i(ad) + {(cb (A (o) = @)Y + HEN(SY MY o)

=j(a)j(b)'1 -1-j(c)j(d)'1 = flo) +f(B).‘ Thus f is a homomorphism. Next, let
a=[(a,b)] € K be such that j(a)j(b)” —-f(a) 1. Then j(a) = (b), so a=b.
Therefore m-ker f = { 1} hence f is a monomorpism.

To prove that fei=j, lat x € P. Then fei(x) = f(i(x)) = f([(x,1)]) =j(x)(1)™
=j(x). Next, to show the uniqueness, let h: K — L be such that hei=j. Let o=
[(a.0)] € K. Then f(a) = (@)j(b)” =[h o i(a)][h < ib)T" = hit@)h(i(o™)) = hi(a,b)]
= h(a).

To prove that f is isotone, let a =[(a,b)] € K be such'that 1< o
Then [(a.b)] € i(P), so f{[{a,b)]} € {(P}) = {P). Therefare f(PK)gP,(K,.

By Proposition 2.17., 1), f is isotone.

Next, to show that P, C f(P,), let & € Pro = i(P). Then there exists a pe P
such that & = j(p) = (i(p)) & f(P,). Then Py = f(Pa); s0 by Corollary 2.18., K 2o f(K).
Therefore K is the smallest positively ordered skewsemifield having P as its

positive cone, ,

Definifion 2.27. Let G be a group. A compatible partial order < on G is a
partial order on G such that for all x,y,z € G, x<y implies that xz< yz and

ZxX 5 zy.

Emmsmm_z,z& Let C be an a-convex normal subgroup of skewsemifield K.

Let < be a compatible paﬂial order on C and <* a compatible partial order on
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the skewsemifield K;c. Suppose that

1) P, Is invariant under all inner automorphisms of K, ’

2) for all x,y € P, and a,b € K such that a+b =1, ax+ by P,

3) for every x € K, 1+x e C implies that 1+x € P; and x+ 1 € C implies
that x+ 1 € P, and

4) K is a left [ ight] additively cancellative skewsemifield.

Then there exists a compatible partial order < on K such that < is the restriction

of the partial order on C and the projection map IT is an order epimorphism.

Proof Let P=P,u( Ua )
ueP/ -{C}

To show that P is a multiplicative subsemigroup of K, !ei x,y € P.
Case 1: x,y € P.. Then xy € P,C P.
Case 2: x€ P; and y e o where o € Py o Then xy € (PJ)a=a, so xy € P.
Case 3: xe o where o € Pucygcy @nd y € P, The proof is similar to the proof
of case 2.
Case 4: xea and y € § where o, € Py ) Then xy€ af and af *>a*>C,
s0 af € Py._., Therefore xy € P, so P is a multiplicative subsemigroup.l

To show that P is a conic set of K, let x€ P~P™. Then x,x" € P.
Case 1: x € P, and x" € gC where gC ¢ Pueqcy Hence there exist ¢,,c, € C
such that x =¢, and X" =gc, 50 1=x'x=gc,C Then g = ) (c,)" e C, so
gC =C which is a contradiction,
Case 2: X' €P,and x € gC where gC € Pecqc) Then there exist ¢,,c, € C
such that x=gc, and X" =¢, s0 1=xx" =gc,c, Then g =(c,)(c,)" € C, so
gC = C which is a contradiction. '
Case 3: x€g,C and y € g,C where g.C, 9:C € Pye ¢y Then there exist
C;, C, € C such that x=g,c, and X" =g,C,, 50 1=X'x = g,6,0,C,. Then
0, = (€)@ = (@)™, 50 9,C = ((9,e )C = (g,Y'C = (g,C)". Therefore

9.CeP* (P ={C}, so g,C=C which is a contradiction. Then x,x" € P,
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s0 x € Po(P)" ={1}. Thus x=1. Hence P is a conic subset of K. |
To show that P is an additive ideal of K, tet x € P. Then x+1exC+C,
Since xC+ C € Py, xC+C"2C.
Case 1: xXC+C=C, Then x+1€C. By 3), x+1eP,cP.
Case 2: xC+C*>C. Then x+1€P.
Similarly, 1+x € P. Hence P is an additive ideal of K.
Let xe P and y € K".
Case 1: x € P,. Let i, :K— K be defined by i(g) =ygy'1. for every g € K.
Then i, is an inner automorphism of K. By 1), yxy € yPcy'1 =i (Pg) = Pe.
Then yxy " € P.
Case 2: x € & for some & € Pe o) Then yxy™' € (yxy )C = (yC)XC)yC)™
= (yC)ayC) ™. Since Pec is @ normal set, (yC)alyC)™" € Pec: SO (yC)alyC)™" *= C.
Iif (yC){yC)" = C then o = C which is a contradiction. Thus (ClafyC)" *> C,
$0 yxy‘1 &€ P. Hence P is a normal subset of K. Next, to show the a-convexity of
P, let x,yeP and a,b € K be such that a+b =1.
Case 1: x,y€ P, By 2), ax+tbye P, CP.
Case 2: x€ P, and y € & where o € P, Then ax+ by € axC + byC
=aC+bo. By 4), aC+ba>C, so ax+bxeP.
Case 3: ye P, and x € o where & € Py, The proof is similar to the proof of
case 2.
Case 4: xea and y€ B where o, B € P, ., The proof is similar to the proof
of case 2. By Theorem 2.9., P is the positive cone of K.

Let <' be a positive compatible order induced by P. Next, to show that <
is the restriction of < on C, let x,y € C be such that x<'y, Then 1<’ x'1y. S0
x"y € P. Therefore x"‘y € P,, s0 x<y. Hence < is the restriction of <" on C.

Finally, to prove that IT1(P) =P, let x e P.

Case 1: x€P_. Then x € C, s0 I x) =xC = C € Py,.

Case 2: x € a for some o € P —{C}. Then IKx) =xC = € Pyp.

Therefore TI(P) € P.. Next, let o € Py,
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Case 1: a=C. Then a=C =TI(1) € II(P,) c ITI(P).
Case 2: a#C. Then a € P, —{C}. Let x €. Then x € P, 80

a=xC=I Ua )eIIP). Hence Py CTI(P), so II(P) =Py,
aePl, , -{C}
K/

Definition 2.29. Let {K, /i€ |} be a family of positively ordered skewsemifields.

Define < on II K by the natural partial order, that is for all (x), e, (y),e, € 1K,
1€l 1€l

(x),e,<(y), e, if and only if x, <y, for every i€l

Remark 2.30. Let {K /i€ |} be a family of positively ordered a skewsemifields.

Then Prj = 1P where P={xeK / x21] for every i € |.
i€l i€l

Proposition 2.31. tet {K /i€l} be a family of positively ordered skewsemifields

and C, a convex normal subgroup of K for all iel. Then IIC, is a convex
I €l

normal subgroup of l'I K and TIK/II ¢ =o IT (K/C)
el €1 i€l el

Proof Let @ be an epimorphism given in the proof of Proposition 1.61.

To show that @(P [T ) = P IT g, let (x) e, € I K be such that
i€l €] =3

(x),e,2(1),e, Then x 21, for all i €1, so xC,2C, for all i € |. Therefore

Ol(x) e ] = (xCliey € P IT ey 50 OGP TI ) S P IT iy

i€l i€l el
Next, let (x) e, € II (K) be such that (xC) e, 2(C) e, Then xC zC,
lel

- for all i €l, so there exist ¢, d, € C, such that xc, 2d, for all i €. Therefore

(XC)e; = ([xlci(di)-1]Cl)I¢| = (p(xlcl(dl)-1)lel € ¢{P 1 ), and hence P( IT 4,
1€l i€l
c o(P 1 ). Therefore (P 11 ) =P II gy SO @ is an order epimorphism.
i€l . 1€l 1€l

Clearly, m-ker ¢ =. IT C. By Theorem 2.20., MK/ ¢ = H(K,/C)
€l 1€l i€l ¥
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