CHAPTER II

POSITIVELY ORDERED 0-SKEWSEMIFIELDS

In this chapter, we shall give some fundamental theorems of a theory of positively ordered skewsemifields.

<u>Definition 2.1.</u> Let \leq be a partial order on a semining S with a multiplicative zero $0. \leq$ is said to be <u>compatible</u> if and only if it satisfies the following property, for all x, y, z \in S, x \leq y implies that 1) x + z \leq y + z and z + x \leq z + y and 2) xz \leq yz and zx \leq zy, if z \geq 0.

<u>Definition 2.2.</u> A partial order \leq on a semiring S with a multiplicative zero 0 is said to be multiplicatively regular (M.R.) if $(xz \leq yz \text{ and } 0 < z \text{ imply that } x \leq y)$ and $(zx \leq zy \text{ and } 0 < z \text{ imply that } x \leq y)$ for all $x, y, z \in S$.

<u>Definition 2.3.</u> A system $(S, +, \bullet, \le)$ is said to be an <u>ordered semiring</u> if and only if $(S, +, \bullet)$ is a semiring with a multiplicative zero 0 and \le is a compatible partial order on S. If $0 \le x$, for every $x \in S$ then we say that S is a <u>positively ordered semiring</u>.

Remark 2.4. Let K be a positively ordered skewsemifield. Then the following statements clearly hold:

- 1) for all nonzero elements $x, y \in K$, $x \le y$ implies that $y^{-1} \le x^{-1}$.
- 2) for all $x, y, z \in K$, $zx \le zy$ or $xz \le yz$ implies that z = 0 or $x \le y$.

Examples 2.5. 1) Q_0^+ , R_0^+ are positively ordered skewsemifields.

2) Let $A = \{f : R \rightarrow R \ / \ f(x) = ax + b, a > 0\} \cup \{0\}$. Let K = (A, o, +) and $L = (A, o, \oplus)$ where $f \oplus g = \begin{cases} f \ \text{if} \ f \neq 0 \\ g \ \text{if} \ f = 0 \end{cases}$, for all $f, g \in L$.

Then K and L are skewsemifields, so $K = K^* \times L^* \cup \{(0,0)\}$ which is a skewsemifiled. Define \leq on A as follows: let f(x) = ax + b, $g(x) = cx + d \in A\setminus\{0\}$. Define $f \leq g$ if 1) a < c or 2) a = c and $b \leq d$. And let $0 \leq h$ for every $h \in A$. Define \leq^* on K by $(f_1,f_2) \leq^* (h_1,h_2)$ if 1) $f_1 < h_1$ or 2) $f_1 = h_1$ and $f_2 \leq h_2$ for all (f_1,f_2) , $(h_1,h_2) \in K$. Clearly, \leq^* is a partial order and $F \leq^* G$ implies that $FH \leq^* GH$ and $HF \leq^* HG$ for all $F,G,H \in K$. Let $F = (f_1,f_2),H = (h_1,h_2)$ and $G = (g_1,g_2) \in K$ be such that $(f_1,f_2) \leq^* (h_1,h_2)$. Consider $F + G = (f_1 + g_1,f_2 \oplus g_2)$, $G + F = (g_1 + f_1,g_2 \oplus f_2)$ and $G + H = (g_1 + h_1,g_2 \oplus h_2)$. If G = 0 then $F + G = F \leq^* H = H + G$ and $G + F = F \leq^* H = G + H$. Suppose that $G \neq 0$. Then $g_2 \neq 0$.

Case 1: F = 0. Then $f_1 = 0$. If H = 0 then $F + G = G \le^* G = H + G$ and G + F = G $\le^* G = G + H$. Suppose that $H \ne 0$. Then $h_1 > 0$. Since K is additively cencellative, $f_1 + g_1 = g_1 < h_1 + g_1$ and $g_1 + f_1 = g_1 < g_1 + h_1$.

Case 2: $F \neq 0$. Then $H \neq 0$, so f_2 , $h_2 \neq 0$.

Subcase 2.1: $f_1 < h_1$. Since K is additively cencellative, $f_1 + g_1 < h_1 + g_1$ and $g_1 + f_1 < g_1 + h_1$.

Subcase 2.2: $f_1 = h_1$. Then $f_2 \le h_2$. Thus $f_2 \oplus g_2 = f_2 \le h_2 = h_2 \oplus g_2$ and $g_2 \oplus f_2 = g_2 \le g_2 = g_2 \oplus f_2$. Therefore $F + G \le^* H + G$ and $G + F \le^* G + H$, hence K is a positively ordered skewsemifield.

3) Let
$$K = \left\{ \begin{bmatrix} a & c \\ 0 & b \end{bmatrix} / a, b \in \mathbf{Q}^{\dagger}[\mathbf{R}^{\dagger}] \text{ and } c \in \mathbf{Q}[\mathbf{R}] \right\} \cup \{0\}.$$

Then K with the usual binary operation is a skewsemifield. Define a relation $\leq \text{ on K by } \begin{bmatrix} a & c \\ 0 & b \end{bmatrix} \leq \begin{bmatrix} a' & c' \\ 0 & b' \end{bmatrix} \text{ if and only if 1) a < a' \text{ or 2) a = a' and b < b'}$ or 3) a = a', b = b' and c < c'. To show that \leq is a partial order, it is clear that

 \leq is reflexive. Let $M_1 = \begin{bmatrix} a & c \\ 0 & b \end{bmatrix}$, $M_2 = \begin{bmatrix} a' & c' \\ 0 & b' \end{bmatrix} \in K$ be such that $M_1 \leq M_2$ and

 $M_2 \le M_1$. Then $a \le a'$ and $a' \le a$, so a = a'. Hence $b \le b'$ and $b' \le b$, so b = b'.

Thus $c \le c'$ and $c' \le c$, so c = c'. Therefore $M_1 = M_2$, so \le is anti-symmetric. Let

$$M_1 = \begin{bmatrix} a & c \\ 0 & b \end{bmatrix}$$
, $M_2 = \begin{bmatrix} a' & c' \\ 0 & b' \end{bmatrix}$, $M_3 = \begin{bmatrix} a'' & c'' \\ 0 & b'' \end{bmatrix} \in K$ be such that $M_1 \le M_2$ and

 $M_2 \le M_3$. Then $a \le a'$ and $a' \le a''$.

Case 1: a < a' or a' < a''. Then a < a''.

Case 2: a = a' = a''. Then $b \le b'$ and $b' \le b''$.

Subcase 2.1: b < b' or b' < b''. Then b < b''.

Subcase 2.2: b = b' = b''. Then $c \le c'$ and $c' \le c''$, so $c \le c''$.

Hence $M_1 \le M_3$. Therefore \le is transitive. Next, to show that \le is compatible,

Let
$$M_1 = \begin{bmatrix} a & c \\ 0 & b \end{bmatrix}$$
, $M_2 = \begin{bmatrix} a' & c' \\ 0 & b' \end{bmatrix} \in K$ be such that $M_1 \le M_2$. Let $W = \begin{bmatrix} x & z \\ 0 & y \end{bmatrix} \in K$.

Since $M_1 \le M_2$, a < a' or a = a'. If a < a' then a + x < a' + x, so done. Suppose that a = a'. Then a + x = a' + x and $b \le b'$.

Case 1: b < b'. Then b + y < b' + y.

Case 2: b = b'. Then $c \le c'$, so c + z = c' + z. Therefore $M_1 + W \le M_2 + W$.

Thus
$$M_1W = \begin{bmatrix} ax & az+cy \\ 0 & by \end{bmatrix}$$
, $WM_1 = \begin{bmatrix} xa & xc+zb \\ 0 & yb \end{bmatrix}$, $M_2W = \begin{bmatrix} a'x & a'z+c'y \\ 0 & b'y \end{bmatrix}$,

and
$$WM_2 = \begin{bmatrix} xa' & xc'+zb' \\ 0 & yb' \end{bmatrix}$$
. If $W = 0$ then $M_1W = 0 \le M_2W$ and $WM_1 = 0 \le WM_2$.

Suppose that $W \neq 0$. Then x, y > 0. If a < a' then ax < a'a and xa < xa'. Suppose that a = a'. Then ax = a'x, xa = xa' and $b \leq b'$.

Case 1: b < b'. Then by < b'y and yb < yb'.

Case 2: b = b'. Then $c \le c'$, so $ax + cy \le a'x + cy'$ and $xc + zb \le xc' + zb'$.

Therefore $WM_1 \le WM_2$ and $M_1W \le M_2W$. Hence K is a positively ordered skewsemifield.

4) Let K and L be positively ordered skewsemifields. Define a relation \leq on K* \times L* \cup { (0,0) } by (x,y) \leq (z,w) if and only if $x \leq z$ and $y \leq w$,

for all (x,y), $(z,w) \in K^* \times L^* \cup \{ (0,0) \}$. Then $K^* \times L^* \cup \{ (0,0) \}$ is a positively ordered skewsemifield.

5) Let K and L be positively ordered skewsemifields such that K is additively cancellative. Define a relation \leq on $K^* \times L^* \cup \{ (0,0) \}$ by $(x,y) \leq (z,w)$ if and only if x < z or x = z and $y \leq w$, for all (x,y) and $(z,w) \in K^* \times L^* \cup \{ (0,0) \}$. Then $K^* \times L^* \cup \{ (0,0) \}$ is a positively ordered skewsemifield.

Note that the partial order ≤ defined in Example 2.5., 2), 3) and 5) are called the lexicographic order.

<u>Definition 2.6.</u> Let C be a subset of a positively ordered skewsemifield K. Then C is called a <u>convex subset</u> of K if it is an o-convex subset and an a-convex subset of K.

<u>Definition 2.7.</u> Let K be a positively ordered skewsemifield. Then the set $P = \{x \in K \mid x \ge 1\}$ is called the <u>positive cone</u> of K.

Remark 2.8. Let P be the positive cone of a positively ordered skewsemifield K. Then the following statements hold:

- 1) If $P = \{1\}$ then $K = \{0, 1\}$.
- 2) P is a multiplicative subsemigroup of K.
- 3) For every $x \in K$, $1+x \in P$ and $x+1 \in P$. Hence P is an additive ideal of K, that is $K+P \subseteq P$ and $P+K \subseteq P$.
 - 4) P is a conic subset of K,
 - 5) P is a convex normal subset of K.
 - 6) For every $x \in K^*$, $x = ab^{-1}$ for some $a, b \in P$.
 - 7) For all $x, y \in P$, xy = 1 implies that x = y = 1.
- 8) If H is a subskewsemifield of K, then $P_H = P \cap H$ where $P_H = \{x \in H \mid x \ge 1\}$.

<u>Theorem 2.9.</u> Let K be a skewsemifield and P ⊆ K*. Suppose that P satisfies the following conditions:

- 1) P is multiplicative subsemigroup of K*,
- 2) P is a conic subset of K,
- 3) P is an additive ideal of K,
- 4) P is an a-convex normal subset of K.

Then there exists a unique compatible partial order \leq on K such that P is the positive cone of \leq . \leq is called the partial order induced by P.

Proof Define \leq_p on K as follows: let $x, y \in K$, $x \leq_p y$ if and only if x = 0 or $x^{-1}y \in P$. To show that \leq_p is a partial order, it is clear that \leq_p is reflexive since $1 \in P$. Next, let $x, y \in K$ be such that $x \leq_p y$ and $y \leq_p x$.

Case 1: x = 0. If $y \neq 0$ then $0 = y^{-1}(0) \in P$ which is a contradiction, so y = 0 = x. Case $2: x \neq 0$. If y = 0 then $0 = x^{-1}y \in P$ which is a contradiction, so $y \neq 0$. Therefore $x^{-1}y \in P$ and $(x^{-1}y)^{-1} = y^{-1}x \in P$. By 2), $x^{-1}y = 1$, so x = y. Therefore \leq_p is anti-symmetric. Let $x, y, z \in K$ be such that $x \leq_p y$ and $y \leq_p z$. If x = 0 then $x \leq_p z$. Suppose that $x \neq 0$. Then $y \neq 0$, so $x^{-1}y \in P$ and $y^{-1}z \in P$. By 1), $x^{-1}z = (x^{-1}y)(y^{-1}z) \in P$, so $x \leq_p z$. Therefore \leq_p is transitive, hence \leq_p is a partial order. Next, let $x, y \in K$ be such that $x \leq_p y$. Let $z \in K$. If x = 0 or z = 0 then xz = 0 = yz and x = 0 = zy. Suppose that $x \neq 0$ and $z \neq 0$. Then $(zx)^{-1}zy = (x^{-1}z^{-1})zy = x^{-1}y \in P$, so $zx \leq_p zy$. Since P is a normal set of K, $(xz)^{-1}yz = z^{-1}(x^{-1}y)z \in P$, so $xz \leq_p yz$.

Next, let $x, y \in K$ be such that $x \leq_p y$. Let $z \in K$.

Case 1: x = 0. If z = 0 then $x + z = 0 \le_P y + z$ and $z + x = 0 \le_P z + y$, so done. Suppose that $z \ne 0$. By 3), $z^{-1}(z + y) = 1 + z^{-1}y \in P$ and $z^{-1}(y + z) = z^{-1}y + 1 \in P$, so $z + x = z \le_P z + y$ and $x + z = z \le_P y + z$.

Case 2: $x \ne 0$. Then $x^{-1}y \in P$. By the a-convexity of P, $(x + z)^{-1}(y + z)$ = $(x + z)^{-1}y + (x + z)^{-1}z = [(x + z)^{-1}x]x^{-1}y + [(x + z)^{-1}z] \in P$, so $x + z \le_p y + z$. Similarly, $z + x \le_p z + y$. Therefore \le_p is a compatible partial order on K. Clearly, for every $x \in K$, $0 \le_p x$. Hence P is a positive cone of K. Thus K is a positively ordered skewsemifield having P as its positive cone.

To prove the uniqueness, let \leq^* be a compatible partial order on K such that P is its positive cone. Let $x, y \in K$ be such that $x \leq^* y$. If x = 0 then $x \leq_p y$. Suppose that $x \neq 0$. Then $1 \leq^* x^{-1}y$, so $x^{-1}y \in P$. Then $x \leq_p y$. Hence $\leq^* \subseteq \leq_p$. Similarly, $\leq_p \subseteq \leq^*$. Therefore $\leq_p = \leq^*$.

Corollary 2.10. Let K be a skewsemifield, A the set of all subsets of K* which satisfy 1) – 4) in Theorem 2.9. and B the set of all positive compatible partial orders on K. Then there exists an order isomorphism from A onto B.

Proof Define $\phi: A \to B$ as follows: let $P \in A$. By Theorem 2.10., P determines a unique positive compatible partial order \leq_p induced by P on K. Define $\phi(P) = \leq_p$. Clearly, ϕ is a bijection.

To prove that ϕ is isotone, let $P,Q\in A$ be such that $P\subseteq Q$. Then $\phi(P)=\leq_p$ and $\phi(Q)=\leq_Q$. We must show that $\leq_p\subseteq\leq_Q$. Let $x,y\in K$ be such that $x\leq_p y$. Then x=0 or $x^{-1}y\in P$.

Case 1: x = 0. Then $x \le_{\alpha} y$.

Case 2: $x^{-1}y \in P$. Since $P \subseteq Q$, $x^{-1}y \in Q$, so $x \leq_Q y$.

Then $\varphi(P) = \leq_{p} \subseteq \leq_{Q} = \varphi(Q)$, so φ is isotone.

Next, to show that ϕ^{-1} is isotone, let \leq , \leq * \in B be such that \leq \subseteq \leq *. Then $\phi^{-1}(\leq) = P_{\leq}$ and $\phi^{-1}(\leq^*) = P_{\leq}$ *. We must to show that $P_{\leq} \subseteq P_{\leq}$ *. Let $x \in K$ be such that $x \in P$. Then $1 \leq x$. Since $\leq \subseteq \leq$ *, $1 \leq$ * $x \in P$ *. Therefore $\phi^{-1}(\leq) \subseteq \phi^{-1}(\leq^*)$, so ϕ^{-1} is isotone. Hence ϕ is an order isomorphism from A onto B.

<u>Proposition 2.11.</u> Let K be a skewsemifield. Suppose that K has a compatible partial order. Then there exits maximal compatible partial order on K.

Proof Let $P = \{P \mid P \text{ is a positive cone of } K\}$. Since K has a compatible partial order, there exists a $P \in P$, so $P \neq \emptyset$. Let D be a nonempty chain of P. Let $Q = \bigcup D$. Then $Q \in P$. By Zom's Lemma, P has a maximal element.

Theorem 2.12. Let (S, \bullet) be a positively ordered semiring with multiplicative zero 0 having the M.C. property and satisfying the right [left] Ore condition. If \leq is M.R. then S can be embedded into a positively ordered skewsemifield.

<u>Proof</u> Using the construction of Theorem 1.31., we have that $K = S \times (S \setminus \{0\})_{/\sim}$ is the skewsemifield of a right quotients of S. Let i be a right quotient embedding of S into K. Let P = $\{\alpha \in K \mid \alpha = i(x)i(y)^{-1} \text{ for some } x, y \in S \setminus \{0\} \text{ such that } x \ge y\}$.

To show that P is a multiplicative subsemigroup of K, Let $\alpha = i(x)i(y)^{-1}$ and $\beta = i(z)i(w)^{-1} \in K$. Then $y \le x$ and $w \le z$. By the right Ore condition, there exist a, b \in S such that ya = zb, so $\alpha\beta = i(x)i(y)^{-1}$. Since $wb \le zb = ya \le xa$, $\alpha\beta \in P$. Then P is a multiplicative subsemigroup of K.

To show that P is an additive ideal of K, Let $\alpha = i(a)i(b)^{-1} \in K$. Then $\alpha + 1 = [(a,b)] + [(b,b)] = i(ab + bb)i(bb)] = i(ab + bb)i(bb)^{-1}$ and $1 + \alpha = i(b,)i(b) + i(a)i(a) = i(bb + ab)i(bb)$. Since $bb \le ab + bb$ and $bb \le bb + ab$, $\alpha + 1 \in P$ and $1 + \alpha \in P$. Hence P is an additive ideal.

Claim that for all $a, b \in S\setminus\{0\}$, $i(a)i(b)^{-1} \in P$ implies that $a \ge b$. Let $a, b \in S\setminus\{0\}$ be such that $i(a)i(b)^{-1} \in P$. Then there exist $p, q \in S\setminus\{0\}$ such that $i(a)i(b)^{-1} = i(p)i(q)^{-1}$ and $p \ge q$. Then there exist $p', q' \in S\setminus\{0\}$ such that ap' = pq' and bp' = qq'. Then $ap' = pq' \ge qq' = bq'$. By the M.R. property, $a \ge b$, so we have the claim.

To show that P is a conic set of K, let $\alpha \in P \cap P^{-1}$. Then $\alpha \in P$ and $\alpha \in P^{-1}$. Then there exist a, b \in S\{ 0 } such that $\alpha = i(a)i(b)^{-1}$ and $a \ge b$. Since $i(b)i(a)^{-1} = (i(a)i(b)^{-1})^{-1} = \alpha^{-1} \in P$ and by the claim, $b \ge a$, we get that a = b. Thus $\alpha = [(a,a)] = 1$, so P is a conic set.

To show that P is a normal subset of K, Let $\alpha = i(x)i(y)^{-1} \in P$ and $\beta = i(z)i(w)^{-1} \in K$. Then $y \le x$. By the right Ore condition, there exist a, b $\in S\setminus\{0\}$ such that ya = zb, so $\beta\alpha = i(x)i(y)^{-1}$. By the right Ore condition, there exist c, d $\in S\setminus\{0\}$ such that ybc = wd, so $\beta\alpha\beta^{-1} = i(x)i(y)^{-1}$. Since $wd = ybc \le xbc = wac$, using the M.C. property, $d \le ac$, so $\beta\alpha\beta^{-1} \in P$. Thus P is a normal set.

Claim that for all α , β , $\gamma \in K^*$, $\beta\alpha^{-1} \in P$ implies that $(\beta + \gamma)(\alpha + \gamma)^{-1} \in P$. Let $\alpha = i(x)i(y)^{-1}$, $\beta = i(z)i(w)^{-1}$ and $\gamma = i(u)i(v)^{-1} \in K^*$ be such that $\beta\alpha^{-1} \in P$. By the right Ore condition, there exist a, b $\in S\setminus\{0\}$ such that ya = vb, so $\alpha + \gamma = i(xa + ub)i(ya)^{-1}$. By the right Ore condition, there exist c, d $\in S\setminus\{0\}$ such that wc = vd, so $\beta + \gamma = i(zc + ud)i(wc)^{-1}$. By the right Ore condition, there exist e, f $\in S\setminus\{0\}$ such that wc = yaf, so $(\beta + \gamma)(\alpha + \gamma)^{-1} = i[(zc + ud)e]i[(xa + ud)f]^{-1}$. Since vbf = yaf = wce = vde, bf = de. Since $i(zce)i(xaf) = \beta\alpha^{-1} \in P$, $xaf \le zce$, so $(xa + ub)f = (xaf + ubf) = (xaf + ude) \le (zce + ude) = (zc + ud)e$. Then

To show the a-convexity of P, let x, y \in P and α , $\beta \in$ K be such that $\alpha + \beta = 1$. If $\alpha = 0$ then $x\alpha + y\beta = y \in$ P. So suppose that $\alpha \neq 0$. By the claim, $(y + y\beta\alpha^{-1})(1 + y\beta\alpha^{-1})^{-1} \in$ P. Since P is a normal subset of K, $(1 + y\beta\alpha^{-1})^{-1}(y + y\beta\alpha^{-1}) = (1 + y\beta\alpha^{-1})^{-1}(y + y\beta\alpha^{-1})(1 + y\beta\alpha^{-1})^{-1}(1 + y\beta\alpha^{-1}) \in$ P. Then $\alpha + y\beta = (\alpha + y\beta)(\alpha + \beta)^{-1} = [(1 + y\beta\alpha^{-1})(y + y\beta\alpha^{-1})^{-1}]y \in$ P. Thus $x\alpha + y\beta = (x\alpha + y\beta)(\alpha + y\beta)^{-1}(\alpha + y\beta) = [(x + y\beta\alpha^{-1})(1 + y\beta\alpha^{-1})^{-1}](\alpha + y\beta) \in$ P. Hence P is an a-convex normal subset of K. By Theorem 2.9., P is the positive cone of K, so K is a positively ordered skewsemifield.

To show that i is an isotone map, let $a, b \in S$ be such that $b \ge a$. If a = 0 then $i(a) = 0 \le i(b)$. Suppose that $a \ne 0$. Then $i(b)i(a)^{-1} \in P$, so $i(b)i(a)^{-1} \ge 1$. Thus $i(b) \ge i(a)$. Hence i is isotone. "

Theorem 2.13. Let $n \in \mathbf{Z}^+$ be such that $n \ge 2$. Let $K_n = \{0\} \cup \{A \in M_n(\mathbf{R}) \ [M_n(\mathbf{Q})] \ / \ A_{ij} > 0 \ \text{if } i = j \ \text{and} \ A_{ij} = 0 \ \text{if } i > j \ \}$. Then there exists a compatible positive partial order on K_n .

Proof If n=2 then done by Example 2.5., 3). Induction assumption, let $n \in \mathbf{Z}^+$ be such that n > 2. Let K_{n-1} with the following partial order is a positively ordered skewsemifield. Let $P_n = \{\begin{bmatrix} A_1 & A_3 \\ 0 & A_2 \end{bmatrix} \in K_n / 1$) $A_1 > 1$ or 2) $A_1 = 1$ and $A_2 > 1$ or 3) $A_1 = 1$, $A_2 = 1$ and $A_{n-1,n} > 0$ or 4) $A_1 = 1$, $A_2 = 1$ and there exists an $i \in \{1, ..., n-2\}$ such $A_{in} > 0$ and $A_{kn} = 0$ for all n > k > i or 4) $A_1 = 1$, $A_2 = 1$ and $A_3 = 0$ where $A_1 \in K_{n-1}$.

To show that P_n is an additive ideal of K, let $X \in K_n$ If X = 0 then $1 + X = 1 \in P_n$. Suppose that $X \neq 0$. Then $X_1 \neq 0$, so $X_1 > 0$. Since K_{n-1} is additive cencellative, $1 + X_1 > 1$. Therefore $1 + X \in P_n$. Hence P_n is an additive ideal.

To show that P_n is a multiplicative subsemigroup of K, let X, Y $\in P_n$.

To show that P_n is a normal subset of K_n , let $A \in P_n$. Then $A_1 \ge 1$. Let

 $X \in K_n$. Then $XA = \begin{bmatrix} X_1A_1 & X_1A_3+X_3A_2 \\ 0 & X_2A_2 \end{bmatrix}$. Since $A \in P_n$, $A_1 \in P_n$, so there exists

a $B_1 \in P_{n-1}$ such that $X_1A_1 = B_1X_1$. Since $X_2A_2 = A_2X_2$, let $B_2 = A_2$. Let $B_3 = (X_1A_3 + X_3A_2 - B_1X_3)(X_2)^{-1}$. Then XA = BX. We must show that $B \in P$. Since $A \in P_n$, $A_1 \ge 1$. If $A_1 > 1$ then $B_1 > 1$, so $B \in P_n$. Suppose that $A_1 = 1$. Then $B_1 = 1$ and $A_2 \ge 1$. If $A_2 > 1$ then $B_2 > 1$, so $B \in P_n$. Suppose that $A_2 = 1$.

If $A_3 = 0$ then $B = 1 = A \in P_n$. Suppose that $A_3 \neq 0$.

Case 1:
$$A_{n-1,n} > 0$$
. Then $B_{n-1,n} = (\sum_{k=1}^{n-1} X_{n-1,k} A_{kn} + X_{n-1,n} A_{nn} - \sum_{k=1}^{n-1} B_{n-1,k} X_{kn})(X_{nn})^{-1}$
= $(X_{n-1,n-1} A_{n-1,n} + X_{n-1,n} - B_{n-1,n-1} X_{n-1,n})(X_{nn})^{-1} = (X_{n-1,n-1} A_{n-1,n})(X_{nn})^{-1} > 0$.

Case 2: there exists an $i \in \{1,...,n-2\}$ such that $A_{in} > 0$ and $A_{kn} = 0$ for all n > k > i. Then $B_{in} = (\sum_{k=1}^{n-1} X_{ik}A_{kn} + X_{im}A_{nn} - \sum_{k=1}^{n-1} B_{ik}X_{kn})(X_{nn})^{-1} = (X_{ik}A_{in} + X_{in} - B_{ik}X_{in})(X_{nn})^{-1}$

=
$$(X_{ij}A_{in})(X_{nn})^{-1} > 0$$
. Let $n > j > i$. Then $B_{jn} = (\sum_{k=1}^{n-1} X_{jk}A_{kn} + X_{jn}A_{nn} - \sum_{k=1}^{n-1} B_{jk}X_{kn})(X_{nn})^{-1}$

$$= (X_{jj}A_{jn} + X_{jn} - B_{jj}X_{jn})(X_{nn})^{-1} = (X_{jn} - X_{jn})(X_{nn})^{-1} = 0. \text{ Then } B \in P_n. \text{ Hence } XP_n \subseteq P_n X.$$

Therefore P_n is a normal subset of K_n. Next, to show the a-convexity of P_n, let

$$X, Y \in P_n$$
 Let $A, B \in K_n$ be such that $A + B = \begin{bmatrix} A_1 + B_1 & A_3 + B_3 \\ 0 & A_2 + B_2 \end{bmatrix} = 1$. Then

 $A_1 + B_1 = 1$, $A_2 + B_2 = 1$ and $A_3 + B_3 = 0$. Therefore XA + YB =

$$\begin{bmatrix} X_1A_1 + Y_1B_1 & X_1A_3 + X_3A_2 + Y_1B_3 + Y_3B_2 \\ 0 & X_2A_2 + Y_2B_2 \end{bmatrix}. \text{ If } X_1 > 1 \text{ or } Y_1 > 1, \text{ then } X_1A_1 > A_1 \text{ or } Y_2 > 1$$

 $Y_1B_1 > B_1$, so $X_1A_1 + Y_1B_1 > A_1 + B_1 = 1$. Hence $XA + YB \in P_n$. Suppose that $X_1 = 1$ and $Y_1 = 1$. Then $X_1A_1 + Y_1B_1 = 1$, $X_2 \ge 1$ and $Y_2 \ge 1$. If $X_2 > 1$ or $Y_2 > 1$ then by using a proof similar to the above, we get that $XA + YB \in P_n$. Suppose that $X_2 = 1$ and $Y_2 = 1$. Then $X_2A_2 + Y_2B_2 = A_2 + B_2 = 1$.

Claim that for all $i \in \{1,...,n-1\}$, $(XA + YB)_{in} = (X_{in})(A_{nn}) + (Y_{in})(B_{nn})$.

Let
$$i \in \{1,...,n-1\}$$
. Then $(XA + YB)_{ln} = \sum_{k=1}^{n} (X_{lk})(A_{kn}) + \sum_{k=1}^{n} (Y_{lk})(B_{kn})$

$$= (X_{ij})(A_{in}) + (X_{in})(A_{nn}) + (Y_{ij})(B_{in}) + (Y_{in})(B_{nn}) = A_{in} + (X_{in})(A_{nn}) + B_{in} + (Y_{in})(B_{nn})$$

= $(A_{in})(A_{nn}) + (Y_{in})(B_{nn})$, so we have the claim.

Case 1: $X_3 = 0$ and $Y_3 = 0$. Then X = 1, Y = 1 and $XA + YB = A + B = 1 \in P_n$.

Case 2: $X_3 = 0$ and $Y_3 \neq 0$.

Subcase 2.1 : $Y_{n-1,n} > 0$. Then $(XA + YB)_{n-1,n} = (X_{n-1,n})(A_{nn}) + (Y_{n-1,n})(B_{nn}) = (Y_{n-1,n})(B_{nn}) > 0$, so $XA + YB \in P_n$.

Subcase 2.2: there exist an $i \in \{1,...,n-2\}$ such that $Y_{in} > 0$ and $Y_{kn} = 0$ for all n > k > i. Then $(XA + YB)_{in} = (X_{in})(A_{nn}) + (Y_{in})(B_{nn}) = (Y_{in})(B_{nn}) > 0$. Let n > j > i. Then $(XA + YB)_{in} = (X_{in})(A_{nn}) + (Y_{in})(B_{nn}) = 0$, so $XA + YB \in P_n$.

Case 3: $X_3 \neq 0$ and $Y_3 = 0$. The proof is similar to the proof of case 2.

Case 4: $X_3 \neq 0$ and $Y_3 \neq 0$.

Subcase 4.1 : $X_{n-1,n} > 0$ or $Y_{n-1,n} > 0$. Then $(XA + YB)_{n-1,n} = (X_{n-1,n})(A_{nn}) + (Y_{n-1,n})(B_{nn}) > 0$, so $XA + YB \in P_n$.

Subcase 4.2: there exist i', i'' $\in \{1,...,n-2\}$ such that $X_{i'n} > 0$ and $X_{kn} = 0$ for all n > k > i' and $Y_{i''n} > 0$, $Y_{kn} = 0$ for all n > k > i''. Let $i = \max\{i', i''\}$. Then i = i' or i = i'', so $(XA + YB)_{in} = (X_{in})(A_{nn}) + (Y_{in})(B_{nn}) > 0$. Let n > j > i. Then $(XA + YB)_{jn} = (X_{jn})(A_{nn}) + (Y_{jn})(B_{nn}) = 0$. Therefore $XA + YB \in P_n$.

Hence P_n is an a-convex normal subset of K_n.

To show that P_n is a conic set of K_n , let $X \in (P_n) \cap (P_n)^{-1}$. Then $X \in P_n$ and $X^{-1} \in P_n$, so $X_1 \ge 1$ and $X_1^{-1} \ge 1$. Hence $X_1 = 1$, so $X_2 \ge 1$ and $X_2^{-1} \ge 1$. Thus $X_2 = 1$.

Case 1:
$$X_{n-1,n} > 0$$
. Then $0 = I_{n-1,n} = (XX^{-1})_{n-1,n} = \sum_{k=1}^{n} (X_{n-1,k})(X^{-1})_{kn}$

$$=\sum_{k=1}^{n-1} (X_{n-1,k})(X^{-1})_{kn} + (X_{n-1,n})(X^{-1})_{nn} = (X_{n-1,n-1})(X^{-1})_{n-1,n} + (X_{n-1,n})(X^{-1})_{nn} = (x^{-1})_{n-1,n} + (x_{n-1,n}),$$

so $(X^{-1})_{n-1,n} = -(X_{n-1,n}) < 0$ which is a contradiction since $X^{-1} \in P_n$.

Case 2: there exist an $i \in \{1,...,n-2\}$ such that $x_{in} > 0$ and $x_{kn} = 0$ for all

$$n > k > i$$
. Then $0 = I_{ln} = (XX^{-1})_{in} = \sum_{k=1}^{n} (X_{lk})(X^{-1})_{kn} = \sum_{k=1}^{n-1} (X_{lk})(X^{-1})_{kn} + (X_{ln})(X^{-1})_{nn}$

$$= (X_{ij})(X^{-1})_{in} + (X_{in})(X^{-1})_{nn} = (X^{-1})_{in} + (X_{in}), \text{ so } (X^{-1})_{in} = -(X_{in}) < 0. \text{ Let } n > j > i. \text{ Then}$$

$$0 = I_{jn} = (XX^{-1})_{jn} = \sum_{k=1}^{n} (X_{jk})(X^{-1})_{kn} = \sum_{k=1}^{n-1} (X_{jk})(X^{-1})_{kn} + (X_{jn})(X^{-1})_{nn} = (X_{jj})(X^{-1})_{jn} + (X_{jn})(X^{-1})_{nn}$$

= $(X^{-1})_{jn} + (X_{jn})$, so $(X^{-1})_{jn} = -(X_{jn}) = 0$ which is a contradiction since $X^{-1} \in P_n$.

Hence $X_3 = 0$, so X = 1. Therefore P_n is a conic subset of K_n .

By Theorem 2.9., P_n is the positive cone of K_n , hence K_n is a positively

ordered skewsemifield. "

<u>Definition 2.14.</u> Let K and M be positively ordered skewsemifields. A function $f: K \to M$ is called an <u>order homomorphism</u> of K into M if f is an isotone homomorphism of skewsemifields.

An order honomorphism $f: K \to M$ is called an <u>order monomorphism</u> if f is an injection and $f(P_K) = P_{f(K)}$, an <u>order epimorphism</u> if f is onto and $f(P_K) = P_M$, and an <u>order isomorphism</u> if f is a bijection and f and f^{-1} are isotone. K and M are said to be <u>order isomorphic</u> if there exists an order isomorphism K onto M and we denote this by $K \cong_{\mathbb{N}} M$.

Remark 2.15. Let f: K → M be an order homomorphism of positively ordered skewsemifields. Then the following statements hold:

- 1) $f(P_{\kappa}) \subseteq P_{\mu}$.
- 2) m-kerf is a convex normal subgroup of K.
- 3) If C' is a convex normal subgroup of M then $f^1(C')$ is a convex normal subgroup of K containing m-ker f.

Proof 1) Obvious.

- 2) By Remark 1.41., 2), m-kerf is an a-convex normal subgroup of K. To show the o-convexity of m-ker f, let $x, y \in m$ -kerf and $z \in K$ be such that $x \le z \le y$. Since f is isotone, $1 = f(x) \le f(z) \le f(y) = 1$, so f(z) = 1. Then $z \in m$ -kerf. Hence m-kerf is a convex normal subgroup of K.
- 3) By Remark 1.41., 3), $f^1(C')$ is an a-convex normal subgroup of K containing m-kerf and by Remark 1.20., 2), $f^1(C')$ is an o-convex subset of K. Hence $f^1(C')$ is a convex normal subgroup of K containing m-kerf. **

<u>Proposition 2.16.</u> Let $f: K \to M$ be a homomorphism of positively ordered skewsemifields. Then the following statements hold:

- 1) f is isotone if and only if $f(P_K) \subseteq P_M$.
- 2) if f is a bijection then f^1 is isotone if and only if $P_M \subseteq f(P_K)$.

Proof 1) Obvious.

2) Assume that f^1 is isotone. Let $y \in P_M$. Then $y \ge 1$. Since f is onto, there exists an $x \in K$ be such that f(x) = y. Since f^1 is isotone, $1 = f^1(1) \ge f^1(y) = f^1(f(x)) = x$, so $x \in P_K$. Then $y \in f(P_K)$, hence $P_M \subseteq f(P_K)$.

Conversely, assume that $P_M \subseteq f(P_K)$. Let $x, y \in M$ be such that $y \ge x$. If x = 0 then $f(y) \ge 0 = f(x)$. Suppose that $x \ne 0$. Then $x^{-1}y \in P_M$, so there exists a $p \in P_K$ such that $f(p) = x^{-1}y$. Since f is onto, there exist $a, b \in K$ such that f(a) = x and f(b) = y, so $f(p) = x^{-1}y = f(a)^{-1}f(b) = f(a^{-1}b)$. Since f is an injection, $a^{-1}b = p \in P_K$, so $a^{-1}b \ge 1$. Thus $f^{-1}(y) = b \ge a = f^{-1}(x)$. Hence f^{-1} is isotone.

<u>Corollary 2.17.</u> Let $f: K \to M$ be a isomorphism of positively ordered skewsemifields. Then f is an order isomorphism if and only if $f(P_K) = P_M$.

Let C be a convex normal subgroup of a positively ordered skewsemifield K. Then $K_{/C}$ is a skewsemifild. Define a relation \leq on $K_{/C}$ as follows: for all aC, $bC \in K_{/C}$, define $aC \leq bC$ if and only if there exist c_1 , $c_2 \in C$ such that $ac_1 \leq bc_2$. To show that \leq is a partial order on $K_{/C}$, it is clear that \leq is reflexive. Let xC, $yC \in K_{/C}$ be such that $xC \leq yC$ and $yC \leq xC$. Then there exist c_1 , c_2 , c_3 , $c_4 \in C$ such that $xc_1 \leq yc_2$ and $yc_3 \leq xc_4$. Case 1: x = 0. Then $0 \leq yc_2$ and $yc_3 \leq 0$, so $0 \leq y$ and $y \leq 0$. Therefore y = 0. Hence xC = yC.

Case 2: $x \neq 0$. Then $c_1(c_2)^{-1} \leq x^{-1}y$ and $x^{-1}y \leq c_4(c_3)^{-1}$. By the o-convexity of C, $x^{-1}y \in C$, so xC = yC. Hence \leq is anti-symmetric. Next, let xC, yC, $zC \in K/C$ be such that $xC \leq yC$ and $yC \leq zC$. Then there exist c_1 , c_2 , c_3 , $c_4 \in C$ such that $xc_1 \leq yc_2$ and $yc_3 \leq xc_4$. Since $yc_2C = Cyc_2$, there exists a $c_5 \in C$ such that

 $yc_2c_3=c_5yc_3$. Since $c_5zc_4\in c_5zC=zc_4C$, there exists a $c_6\in C$ such that $c_5zc_4=zc_4c_6$. Then $xc_1c_3\leq yc_2c_3=c_5bc_3\leq c_5zc_4=zc_4c_6$, so $xC\leq zC$. Thus \leq is transitive, and hence \leq is a partial order. Next, to show that \leq is a compatible partial order on $K_{/C}$, let xC, $yC\in K_{/C}$ be such that $xC\leq yC$. Then there exist c_1 , $c_2\in C$ such that $xc_1\leq yc_2$. Let $zC\in K_{/C}$. Then $zxc_1\leq zyc_2$, so $(zC)(xC)=zxC\leq zyC=(zC)(yC)$. Since zC=Cz, there exist c_3 , $c_4\in C$ such that $zc_3=c_1z$ and $zc_4=c_2z$, so $xzc_3=xc_1z\leq yc_2z=yzc_3$. Therefore $(xC)(zC)=xzC\leq yzC=(yC)(zC)$. Since C is an a-convex normal set, $(yc_2+zc_1)\in (yC+zC)=(y+z)C$, so there exists a $c_5\in C$ such that $yc_2+zc_1=(y+z)c_5$. Then $(x+z)c_1=xc_1+zc_1\leq yc_2+zc_1=(y+z)c_5$, so $xC+zC=(x+z)C\leq (y+z)C=yC+zC$. Similarly, $zC+xC\leq zC+yC$. Clearly, $[0]\leq \alpha$ for every $\alpha\in K_{/C}$. Therefore $K_{/C}$ is a positively ordered skewsemifield.

From the above, we define \leq^* on $K_{/C}$ as follows: let α , $\beta \in K_{/C}$, define $\alpha \leq \beta$ if and only if for every $a \in \alpha$, there exists a $b \in \beta$ such that $a \leq b$. Then we get that \leq^* is a positively compatible partial order on $K_{/C}$. To show that $\leq \leq \leq^*$, let α , $\beta \in K_{/C}$ be such that $\alpha \leq \beta$. If $\alpha = 0$ then $\alpha \leq^* \beta$. Suppose that $\alpha \neq 0$. Then there exist an $\alpha \in \alpha$ and $\alpha \in \beta$ such that $\alpha \neq 0$. Let $\alpha \in C$. Then $\alpha \leq^{-1} \in C$. Since $\alpha \leq b$, $\alpha \leq C$. Since $\alpha \leq b$, $\alpha \leq C$. Hence $\alpha \leq C$. Hence $\alpha \leq C$.

<u>Proposition 2.18.</u> Let K be a positively ordered skewsemifield and $C \subseteq K^*$. Then C is a convex normal subgroup of K if and only if C the m-kernel of some order epimorphism.

<u>Proof</u> Assume that C is a convex normal subgroup of K. Define $\Pi: K \to K/C$ by $\Pi(x) = xC$, for every $x \in K$. Then Π is an epimorphism and m-ker $\Pi = C$. To show that $\Pi(P) = P_{K/C}$, let $x \in P$. Then $x \ge 1$, so $\Pi(x) = xC \ge C$. Therefore $\Pi(x) \in P_{K/C}$, so $\Pi(P) \subseteq P_{K/C}$. Next, let $\alpha \in P_{K/C}$. Then $\alpha \ge C$, so there

exist $a \in \alpha$ and $c \in C$ such that $a \ge c$. Therefore $ac^{-1} \in P$, so $\alpha = aC = (ac^{-1})C$ $= \Pi(ac^{-1}) \in \Pi(P)$. Then $P_{K/C} \subseteq \Pi(P)$, so $\Pi(P) = P_{K/C}$. Therefore Π is an order epimorphism.

The converse follows from Remark 2.16., 2). #

Theorem 2.19. (First Isomorphism Theorem).

Let $f: K \to M$ be an order epimorphism of positively ordered skewsemifields. Then $K_{/m-ker}f \cong M$.

Proof Let ϕ be the isomorphism defined in the proof of Theorem 1.51. To show that ϕ is isotone, let $\alpha \in K_{/m\text{-ker}\,f}$ be such that $\alpha \leq \beta$. There exist $x \in \alpha$, and $y \in \beta$ such that $x \leq y$. Since f is isotone, $\phi(\alpha) = f(a) \leq f(b) = \phi(\beta)$. Then ϕ is isotone. Next, to show that ϕ^{-1} is isotone, let $y \in P_M$. There exists a $p \in P_K$ such that f(p) = y, so $p(m\text{-ker}\,f) \in K_{/m\text{-ker}\,f}$. Then $y = f(p) = \phi(p(m\text{-ker}\,f)) \in \phi(P_{K_{/m\text{-ker}\,f}})$. Therefore $P_M \subseteq \phi(P_{K_{/m\text{-ker}\,f}})$. Therefore ϕ^{-1} is isotone, so ϕ is an order isomorphism. Hence $K_{/m\text{-ker}\,f} \cong M$.

Lemma 2.20. Let H be a subskewsemifield of a positively ordered skewsemifield K and C a convex normal subgroup of K. Then H \(\) C is a convex normal subgroup of H and HC is a subskewsemifield of K.

<u>Proof</u> By, Lemma 1.52., $H \cap C$ is an a-convex normal subgroup of H and HC is a subskewsemifield of K. To show the o-convexity of $H \cap C$, let $x, y \in H \cap C$ and $z \in H$ be such that $x \le z \le y$. By the o-convexity of C, $z \in C$, so $z \in H \cap C$. Therefore $H \cap C$ is a convex normal subgroup of H.

Theorem 2.21. (Second Isomorphism Theorem).

Let H be a subskewsemifield of a positively ordered skewsemifields K and

C a convex normal subgroup of K such that $P_{HC} \subseteq P_H$. Then $H_{/H} \cap C \cong HC_{/C}$.

Proof Let ϕ be the epimorphism given in the proof of Theorem 1.53. Let $x \in H$ be such that $x \ge 1$. Then $f(x) = xC \ge C$, hence $\phi(P_H) \subseteq P_{HC/C}$. To show that $P_{HC/C} \subseteq \phi(P_H)$, let $\alpha \in P_{HC/C}$. Define $\Pi : HC \to HC/C$ by $\Pi(x) = xC$. Then Π is an order epimorphism. Then $\Pi(P_{HC}) = P_{HC/C}$. Hence there exists an $x \in P_{HC}$ such that $\alpha = \Pi(x) = xC$. Since $P_{HC} \subseteq P_{H'}$ $x \in P_{HC'}$ so $\alpha = xC$ $= \phi(x) \in \phi(P_H)$. Hence $P_{HC/C} \subseteq \phi(P_H)$. Therefore $\phi(P_H) = P_{HC/C}$, so ϕ is an order epimorphism and m-ker $\phi = H \cap C$. Thus $H/H \cap C \cong HC/C$.

Lemma 2.22. Let D and H be convex normal subgroups of a positively ordered skewsemifield K such that $H \subseteq D$. Then $D_{/H}$ is a convex normal subgroup of $K_{/H}$.

Proof By Lemma 1.54., $D_{/H}$ is a convex normal subgroup of $K_{/H}$. To show the o-convexity of $D_{/H}$, let α , $\beta \in D_{/H}$ and $\gamma \in K_{/H}$ be such that $\alpha \le \beta \le \gamma$. Then there exist $a \in \alpha$, $b, c \in \beta$ and $d \in \gamma$ such that $a \le b$ and $c \le d$, so $a(b^{-1}c) \le b(b^{-1}c) = c \le d$. Since $bH = \gamma = cH$, $b^{-1}c \in H \subseteq D$, so $ab^{-1}c \in D$. By the o-convexity of D, $c \in D$, so $\gamma = cH \in D_{/H}$. Therefore $D_{/H}$ is a convex normal subgroup of $K_{/H}$.

Theorem 2.23. (Third Isomorphism Theorem).

Let K be a positively ordered skewsemifield, D and C an a-convex normal subgroup of K such $H \subseteq D$. Then $K_{H/D_{H}} \cong_{V} K_{D}$.

Proof Let ϕ be the epimorphism given in the proof of Theorem 1.55. Let $\alpha, \beta \in K_{/H}$ be such that $\alpha \leq \beta$. Then there exist $a \in \alpha$, and $b \in \beta$ such that $a \leq b$. Then $\phi(\alpha) = (aH) = aD \leq bD = (bH) = \phi(\beta)$. Therefore f is isotone. Therefore $\phi(P_{KH}) \subseteq (P_{KD})$. To show that $P_{KD} \subseteq \phi(P_{KH})$, let $\alpha \in P_{KD}$. Then there exist $a \in \alpha$ and $b \in D$ such that $a \ge b$, so $ab^{-1} \ge 1$. Hence $ab^{-1}H \ge H$. Therefore $ab^{-1}H \in P_{KH}$. Thus $\alpha = aD = (aD)(b^{-1}D) = (ab^{-1})D = (ab^{-1}H) \in \phi(P_{KH})$. Therefore $\phi(P_{KH}) = (P_{KD})$. Hence ϕ is an order epimorphism and m-ker $\phi = D_{/H}$. Then $K_{/H/D/H} \cong o K_{/D}$.

<u>Proposition 2.24.</u> Let $f: K \to M$ be an epimorphism of positive ordered skewsemifields. If C' is a convex normal subgroup of M then $K/f^{-1}(C') \cong M/D$.

<u>Proof</u> By Remark 2.16., 3), $f^1(C')$ is a convex normal subgroup of M. Let φ be the epimorphism defined in the proof of Proposition 1.56.

To show that ϕ is isotone, let $x, y \in K$ be such that $x \ge y$. Then $f(x) \ge f(y)$. So $\phi(x) = f(x)C' \ge f(y)C' = \phi(y)$. Therefore ϕ is isotone, so $\phi(P_K) = P_{M/C'}$. Let $\alpha \in P_{M/C'}$. Define $\Pi: M \to M/C'$ by $\Pi(x) = xC'$. for all $x \in M$. Then Π is an order isomorphism. Thus $\Pi(P_M) = P_{M/C'}$. Then there exists a $y \in P_M$ such that $\alpha = \Pi(y) = yC'$. Since $f(P_K) \subseteq P_M$, there exists an $x \in P_K$ such that f(x) = y, so $\alpha = yC' = f(x)C' = \phi(x) \in \phi(P_K)$. Hence $P_{M/C'} \subseteq \phi(P_K)$. Therefore $\phi(P_K) = P_{M/C'}$, so ϕ is an order epimorphism and $\ker \phi = f^{-1}(C')$. Then $K/f^{-1}(C') \cong M/D$.

<u>Theorem 2.25.</u> Let P be a semiring with 1. Then there exists a positively ordered skewsemifield having its positive cone isomorphic to P if and only if P satisfies the following conditions:

- 1) P is M.C.
- 2) For all $x, y \in P$, xy = 1 implies that x = y = 1.
- 3) For every $a \in P$, aP = Pa.
- 4) For all $a, b \in P$, aP + bP = (a + b)P.
- 5) For all $a, b \in P$, $a + b \in aP$ and $a + b \in bP$.

<u>Proof</u> Assume that P satisfies properties 1) – 5). By properties 1) and 3) of P, we get that for all $a, x \in P$, there exists a unique $x_a \in P$ such that $xa = ax_a$. Using the same proof as in [4], pp. 10, we get that

- 1) $a_{\bullet} = a$.
- 2) $(xy)_{a} = x_{a}y_{a}$.
- 3) $(x_a)_b = x_{ab}$ and
- 4) $(x + y)_a = x_a + y_a$, for all a, b, x, y ∈ P.

Define a relation \sim on P × P as follows: for all a,b, c, d \in P, (a,b) \sim (c,d) if and only if $ad_b = cb$. In [4], pp. 10 it was shown that \sim is an equivalence relation. Let $K = P \times P/\sim \cup \{0\}$. Define the operations + and \bullet on K by

$$[(a,b)] \cdot [(c,d)] = [(ac_b,db)]$$

 $[(a,b)] + [(c,d)] = [(ad + cb_d,bd)], \text{ for all } a,b,c,d \in P.$

In [4], pp. 10, it was shown that \bullet is well-defined and (K^*, \bullet) is a group with [(1,1)] as the identity and [(b,a)] as the multiplicative inverse of [(a,b)] for all $a, b \in P$.

In [4], pp. 53 it was shown that + is well-defined, associative and • is distributive over + in K. Therefore K is a skewsemifiled.

Define $i: P \to K$ by i(x) = [(x,1)] for every $x \in P$. In [4], pp. 56. it was shown that i is a right quotient embedding of P into K. Then K is a skewsemifield of right quotients.

Since i is a homorphism, i(P) is a multiplicative subsemigroup of K. To show that i(P) is a normal set, let a, b, $x \in P$. Since $xa_b \in aP = Pa$, there exists a $y \in P$ such that $ax_b = ya$, so $ax_bb = yab$. By $(yab,ab) \sim (y,1)$, $[(a,b)]i(x)[(a,b)]^{-1} = [(a,b)]i(x)[(b,a)] = [(a,b)][(x,1)][(b,a)] = [(ax_b,b)][(b,a)] = [(ax_b,b)][(b,a)] = [(ax_b,b)] = [(ax_b,b)] = [(yab,ab)] = [(y,1)] \in i(P)$, so i(P) is a normal subset of K. Next, to show the a-convexity, let i(a), $i(b) \in i(P)$ and $\alpha = [(x,y)]$ and $\beta = [(c,d)] \in K$ be such that $\alpha + \beta = 1$. Then $[(1,1)] = \alpha + \beta = [(x,y)] + [(c,d)] = [(xd + cy_d,yd)]$, so $xd + cy_d = yd$. Hence $\alpha i(a) + \beta i(b) = [(x,y)][(a,1)] + [(c,d)][(b,1)] = [(ax_y,y)] + [(cb_d,d)] = [(xa_yd + cb_dy_d,yd)] = [(xda_yd + cy_db_yd,xd + cy_d)]$. By 4),

there exists a $p \in P$ such that $xda_{yd} + cy_db_{yd} = p(xd + cy_d)$, so $(xda_{yd} + cy_db_{yd}, xd + cy_d) \sim (p,1)$. Then $\alpha i(a) + \beta i(b) = [(p,1)] = i(p) \in i(P)$, hence i(P) is an a-convex normal set.

To show that i(P) is an additive ideal of K, let $\alpha = [(a,b)]$ K. Then $1 + \alpha = [(1,1)] + [(a,b)] = [(b+a,b)]$ By 5) and 4), there exists a $p \in P$ such that b + a = pb. Then $(b+a,b) \sim (p,1)$, so $1 + \alpha = [(p,1)] \in i(P)$. By 5) and 4), there exists a $p' \in P$ such that a + b = p'b. Then $\alpha + 1 = [(a,a)] + [(1,1)] = [(a+b,b)] = [(p',1)] \in i(P)$, so i(P) is an additive ideal of K.

To show that i(P) is a conic set of K, let $\alpha \in i(P) \cap i(P)^{-1}$. Then there exist a, b \in P such that $i(a) = \alpha = i(b)^{-1}$. Then $[(ab,1)] = i(ab) = i(a)i(b) = i(b)^{-1}i(a)$ = [(1,1)], so $(ab,1) \sim (1,1)$ and therefore ab = 1. By 2), a = b = 1, so $\alpha = [(1,1)]$, hence i(P) is a conic set.. By Theorem 2.9., i(P) is a positive cone of K.

Conversely, let P be the positively cone of some positive ordered skewsemifield. Then 1), 2) and 3) clearly hold. Let $a, b \in P$. By Proposition 1.36., aP + bP = (a + b)P.

To prove 5), let $a, b \in P$. Then $ab^{-1} + 1 \in P$, so there exists $a p \in P$ such that $ab^{-1} + 1 = p$. Then $(a + b) = (ab^{-1} + 1)b = pb \in Pb = bP$. Since $1 + a^{-1}b \in P$, there exists $a p' \in P$ such that $1 + a^{-1}b = p'$. Then $(a + b) = a(a^{-1}b + 1)b$ = $ap' \in aP$.

<u>Theorem 2.26.</u> Let P be a semiring with 1 which satisfies 1) - 5 in Theorem 2.25. and K its skewsemifield of right quotients. Then K is the smallest positively ordered skewsemifield having P as its positive cone.

Proof Let i be a right quotients embedding of P into K. Let L be a skewsemifield and $j: P \to L$ a monomorphism. Define $f: K \to L$ by $f[(x,y)] = j(x)j(y)^{-1}$ for every $[(x,y)] \in K$. To prove that f is well-defined, let $(a,b) \sim (a',b')$. Then $ab'_b = a'b$, so $j(a)j(b'_b) = j(ab'_b) = j(a'b) = j(a')j(b)$. Claim that for all $x, y \in P$, $j(x_y) = j(y)^{-1}j(x)j(y)$. Let $x, y \in P$. Since $xy = yx_y$,

 $j(x)j(y) = j(y)j(x_y)$, so $j(x_y) = j(y)^{-1}j(x)j(y)$ and we have the claim. By the claim, $j(a)j(b)^{-1}j(b')j(b) = j(a)j(b'_b) = j(a')j(b)$, so $j(a)j(b)^{-1} = j(a')j(b')^{-1}$. Therefore f is well-defined.

Next, to show that f is a monomorphism, let $\alpha = [(a,b)]$ and $\beta = [(c,d)] \in K. \text{ Then } \alpha = [(ac_b,db)], \text{ so } f(\alpha\beta) = j(ac_b)j(db)^{-1}$ $= j(a)j(c_b)j(d)j(b) = j(a)j(b)^{-1}j(c)j(b)j(b)-1j(d)^{-1} = j(a)j(b)^{-1}j(c)j(d)^{-1} = f(\alpha)f(\beta).$ Since $\alpha + \beta = [(ad + cb_d,bd)], f(\alpha + \beta) = j(ad + cb_d)j(bd)^{-1}$ $= [j(ad) + j(cb_d)]j(d)^{-1}j(b)^{-1} = j(a)j(b)^{-1} + j(c)j(d)^{-1}j(b)j(d)j(d)^{-1}j(b)^{-1}$ $= j(a)j(b)^{-1} + j(c)j(d)^{-1} = f(\alpha) + f(\beta). \text{ Thus f is a homomorphism. Next, let}$ $\alpha = [(a,b)] \in K \text{ be such that } j(a)j(b)^{-1} = f(\alpha) = 1. \text{ Then } j(a) = j(b), \text{ so } a = b.$ Therefore m-ker f = { 1 }, hence f is a monomorpism.

To prove that $f \circ i = j$, let $x \in P$. Then $f \circ i(x) = f(i(x)) = f([(x,1)]) = j(x)j(1)^{-1}$ = j(x). Next, to show the uniqueness, let $h : K \to L$ be such that $h \circ i = j$. Let $\alpha = [(a,b)] \in K$. Then $f(\alpha) = j(a)j(b)^{-1} = [h \circ i(a)][h \circ i(b)]^{-1} = h(i(a))h(i(b^{-1})) = h[(a,b)]$ = $h(\alpha)$.

To prove that f is isotone, let $\alpha = [(a,b)] \in K$ be such that $1 \le \alpha$. Then $[(a,b)] \in i(P)$, so $f([(a,b)]) \in f((P)) = j(P)$. Therefore $f(P_K) \subseteq P_{f(K)}$. By Proposition 2.17., 1), f is isotone.

Next, to show that $P_{f(K)} \subseteq f(P_K)$, let $\alpha \in P_{f(K)} = j(P)$. Then there exists a $p \in P$ such that $\alpha = j(p) = f(i(p)) \in f(P_K)$. Then $P_{f(K)} = f(P_K)$, so by Corollary 2.18., $K \cong_0 f(K)$. Therefore K is the smallest positively ordered skewsemifield having P as its positive cone. #

<u>Definition 2.27.</u> Let G be a group. A <u>compatible partial order \leq on G is a partial order on G such that for all x, y, z \in G, x \leq y implies that xz \leq yz and zx \leq zy.</u>

Proposition 2.28. Let C be an a-convex normal subgroup of skewsemifield K. Let \leq be a compatible partial order on C and \leq * a compatible partial order on

the skewsemifield K/C. Suppose that

- 1) Pc is invariant under all inner automorphisms of K,
- 2) for all $x, y \in P_c$ and $a, b \in K$ such that a + b = 1, $ax + by P_c$,
- 3) for every $x \in K$, $1 + x \in C$ implies that $1 + x \in P_C$ and $x + 1 \in C$ implies that $x + 1 \in P_C$, and
 - 4) K/C is a left [right] additively cancellative skewsemifield.

Then there exists a compatible partial order \leq on K such that \leq is the restriction of the partial order on C and the projection map Π is an order epimorphism.

Proof Let
$$P = P_c \cup (\bigcup_{\alpha \in P_{K/c}} -\{C\})$$

To show that P is a multiplicative subsemigroup of K, let $x, y \in P$.

Case 1: $x, y \in P_c$. Then $xy \in P_c \subseteq P$.

Case 2: $x \in P_c$ and $y \in \alpha$ where $\alpha \in P_{KC-\{c\}}$. Then $xy \in (P_c)\alpha = \alpha$, so $xy \in P$.

Case 3: $x \in \alpha$ where $\alpha \in P_{\kappa/c-\{c\}}$ and $y \in P_c$. The proof is similar to the proof of case 2.

Case 4: $x \in \alpha$ and $y \in \beta$ where $\alpha, \beta \in P_{\kappa/C-\{C\}}$. Then $xy \in \alpha\beta$ and $\alpha\beta *> \alpha *> C$, so $\alpha\beta \in P_{\kappa/C-\{C\}}$. Therefore $xy \in P$, so P is a multiplicative subsemigroup.

To show that P is a conic set of K, let $x \in P \cap P^{-1}$. Then $x, x^{-1} \in P$.

Case 1: $x \in P_C$ and $x^{-1} \in gC$ where $gC \in P_{KC-\{C\}}$. Hence there exist $c_1, c_2 \in C$ such that $x = c_1$ and $x^{-1} = gc_2$, so $1 = x^{-1}x = gc_2c_1$. Then $g = (c_1)^{-1}(c_2)^{-1} \in C$, so gC = C which is a contradiction.

Case 2: $x^{-1} \in P_c$ and $x \in gC$ where $gC \in P_{\kappa/c-\{c\}}$. Then there exist $c_1, c_2 \in C$ such that $x = gc_1$ and $x^{-1} = c_2$, so $1 = xx^{-1} = gc_1c_2$. Then $g = (c_2)^{-1}(c_1)^{-1} \in C$, so gC = C which is a contradiction.

Case 3: $x \in g_1C$ and $y \in g_2C$ where $g_1C_1, g_2C \in P_{K/C-\{C\}}$. Then there exist $c_1, c_2 \in C$ such that $x = g_1c_1$ and $x^{-1} = g_2c_2$, so $1 = x^{-1}x = g_2c_2g_1c_1$. Then $g_2c_2 = (c_1)^{-1}(g_1)^{-1} = (g_1c_1)^{-1}$, so $g_2C = ((g_1c_1)^{-1})C = (g_1)^{-1}C = (g_1C)^{-1}$. Therefore $g_2C \in P^* \cap (P^*)^{-1} = \{C\}$, so $g_2C = C$ which is a contradiction. Then $x, x^{-1} \in P_{C}$,

so $x \in P_c \cap (P_c)^{-1} = \{1\}$. Thus x = 1. Hence P is a conic subset of K.

To show that P is an additive ideal of K, let $x \in P$. Then $x + 1 \in xC + C$.

Since $xC + C \in P_{K/C}$, $xC + C \ge C$.

Case 1: xC + C = C. Then $x + 1 \in C$. By 3), $x + 1 \in P_c \subseteq P$.

Case 2: xC + C > C. Then $x + 1 \in P$.

Similarly, 1+x ∈ P. Hence P is an additive ideal of K.

Let $x \in P$ and $y \in K^*$.

Case 1: $x \in P_c$. Let $i_y : K \to K$ be defined by $i_y(g) = ygy^{-1}$, for every $g \in K$. Then i_y is an inner automorphism of K. By 1), $yxy^{-1} \in yP_cy^{-1} = i_y(P_c) = P_c$. Then $yxy^{-1} \in P$.

Case 2: $x \in \alpha$ for some $\alpha \in P_{K/C-\{C\}}$. Then $yxy^{-1} \in (yxy^{-1})C = (yC)(xC)(yC)^{-1}$

= $(yC)\alpha(yC)^{-1}$. Since $P_{K/C}$ is a normal set, $(yC)\alpha(yC)^{-1} \in P_{K/C}$, so $(yC)\alpha(yC)^{-1} *\geq C$.

If $(yC)\alpha(yC)^{-1} = C$ then $\alpha = C$ which is a contradiction. Thus $(yC)\alpha(yC)^{-1} *> C$,

so $yxy^{-1} \in P$. Hence P is a normal subset of K. Next, to show the a-convexity of P, let $x, y \in P$ and $a, b \in K$ be such that a + b = 1.

Case 1: $x, y \in P_c$. By 2), $ax + by \in P_c \subseteq P$.

Case 2: $x \in P_c$ and $y \in \alpha$ where $\alpha \in P_{K/C-\{C\}}$. Then $ax + by \in axC + byC$ = $aC + b\alpha$. By 4), $aC + b\alpha > C$, so $ax + bx \in P$.

Case 3: $y \in P_c$ and $x \in \alpha$ where $\alpha \in P_{\kappa/c-\{c\}}$. The proof is similar to the proof of case 2.

Case 4: $x \in \alpha$ and $y \in \beta$ where $\alpha, \beta \in P_{\kappa/c-\{c\}}$. The proof is similar to the proof of case 2. By Theorem 2.9., P is the positive cone of K.

Let \leq' be a positive compatible order induced by P. Next, to show that \leq is the restriction of \leq' on C, let $x, y \in C$ be such that $x \leq' y$. Then $1 \leq' x^{-1} y$, so $x^{-1} y \in P$. Therefore $x^{-1} y \in P_C$, so $x \leq y$. Hence \leq is the restriction of \leq' on C.

Finally, to prove that $\Pi(P) = P_{K/C}$, let $x \in P$.

Case 1: $x \in P_c$. Then $x \in C$, so $\Pi(x) = xC = C \in P_{K/C}$.

Case 2: $x \in \alpha$ for some $\alpha \in P_{K/C} - \{C\}$. Then $\Pi(x) = xC = \alpha \in P_{K/C}$.

Therefore $\Pi(P) \subseteq P_{K/C}$. Next, let $\alpha \in P_{K/C}$.

Case 1: $\alpha = C$. Then $\alpha = C = \Pi(1) \in \Pi(P_C) \subseteq \Pi(P)$.

Case 2: $\alpha \neq C$. Then $\alpha \in P_{K/C} - \{C\}$. Let $x \in \alpha$. Then $x \in P$, so $\alpha = xC = \Pi(\bigcup_{\alpha \in P_{K/C}} - \{C\})$. Hence $P_{K/C} \subseteq \Pi(P)$, so $\Pi(P) = P_{K/C} \cdot \#$

Definition 2.29. Let $\{K_i \mid i \in I\}$ be a family of positively ordered skewsemifields. Define \leq on $\prod_{i \in I} K_i$ by the natural partial order, that is for all $(x_i)_{i \in I}$, $(y_i)_{i \in I} \in \prod_{i \in I} K_i$, $(x_i)_{i \in I} \leq (y_i)_{i \in I}$ if and only if $x_i \leq y_i$ for every $i \in I$.

Remark 2.30. Let $\{K_i \mid i \in I\}$ be a family of positively ordered a skewsemifields. Then $P \prod_{i \in I} P_i$ where $P_i = \{x \in K_i \mid x \ge 1_i\}$ for every $i \in I$.

<u>Proposition 2.31.</u> Let $\{K_i \mid i \in I\}$ be a family of positively ordered skewsemifields and C_i a convex normal subgroup of K_i for all $i \in I$. Then $\prod_{i \in I} C_i$ is a convex normal subgroup of $\prod_{i \in I} K_i$ and $\prod_{i \in I} K_i / \prod_{i \in I} C_i \cong \prod_{i \in I} (K_i / C_i)$.

Proof Let ϕ be an epimorphism given in the proof of Proposition 1.61. To show that $\phi(P \prod_{i \in I} K_i) = P \prod_{i \in I} K_i$, let $(x_i)_{1 \in I} \in \Pi$ K_i be such that $(x_i)_{1 \in I} \ge (1_i)_{1 \in I}$. Then $x_i \ge 1_i$ for all $i \in I$, so $x_i C_i \ge C_i$ for all $i \in I$. Therefore $\phi[(x_i)_{1 \in I}] = (x_i C_i)_{1 \in I} \in P \prod_{(K \cup C_i)_i} SO \phi(P \prod_{K \mid i}) \subseteq P \prod_{(K \cup C_i)_i} K(K \cup C_i)$.

Next, let $(x_i)_{1 \in I} \in \Pi$ (K_i) be such that $(x_i C_i)_{1 \in I} \ge (C_i)_{1 \in I}$. Then $x_i C_i \ge C_i$ for all $i \in I$, so there exist c_i , $d_i \in C_i$ such that $x_i c_i \ge d_i$ for all $i \in I$. Therefore $(x_i C_i)_{1 \in I} = ([x_i c_i(d_i)^{-1}]C_i)_{1 \in I} = \phi(x_i c_i(d_i)^{-1})_{1 \in I} \in \phi(P \prod_{K \mid i})$, and hence $P(\prod_{i \in I} K(K \cup C_i))$ if $i \in I$.

Clearly, m-ker $\phi = \prod_{i \in I} C_i$. By Theorem 2.20., $\prod_{i \in I} K_i / \prod_{i \in I} C_i \cong \prod_{i \in I} (K_i / C_i)$.