CHAPTER |
PRELIMINARIES

in this chapter we shall give some notations, definitions and theorems used
in this thesis. Our notations are:

Z is the set of all integers,

Z" is the set of all positive integers,

Q is the set of all rational numbers,

Q' is the set of all positive rational numbers,

Q, =Q" w{0},

R is the set of all real numbers

R" is the set of all positive real numbers and

Ry =R" U{0}.

In this thesis, if we do not give the definitions of a binary operation or
order on any subset of R then we shall mean the usual binary operation and
order on it.

As usual one niay write y2x for x<y and x<y or y>x to mean that
X<y and x#vy. If neither x<y nor y<x then x and y are said to be
incomparable and this is denoted by x || y.

Qeﬁumgn_‘]_.L For a subset B of a partially ordered set P. The set of all upper
[ lower] bounds ‘of B will be denoted by U(B)[L(B)]. If B is the empty set then
U(B) = L(B) = P, while if B has no upper bound in P then U(B)=@. Similarly, if
B has no lower bound in P then L(B) =@.

Remark 1.2, Let (P,<) be a partially ordered set. Then' the following
statements clearly hold : for all subsets A, B of P,



1) AC B implies that U(A) D U(B) and L(A) 2 L(B),
2) Lu(B))=B and U(L(BN DB,
3) U(L(U(B))) =B and L(U(L(B)))=B.

Definiion 1.3. Let (P,<) be a partially ordered set. P is said to be complete
if and only if every nonempty subset of P which has a lower bound has an

infimum.

The same proof given in [6], pp.5 shows that a partially ordered set is
" complete if and only if every nonempty subset of P which has an upper bound

has a supremum.

Refinition 1.4, Let (E’,s) be a partially ordered set. P isa |ower [ upper]
semilattice if and only if inf{x,y} [sup{x,y}] exists for all x,y € P and we
denote inf{x,y} [sup{x,¥}] by xAy [xvy]. Pis said to be a lattice if and

only if P is both a lower and upper semilattice.

Definition 1.5, Let (P ,<) be a partially ordered set. A nonempty subset S of P
is called dense in P if and only if for all x,y € P, x <y implies that there exists

a ze S such that x'<z<y.

Pefinition_1.6. Let (S,+) be a semigroup. S is said to be a band if and only

if for every x € §, x+x=x.

Let (L,<) be an upper [lower] semilattice. Define a binary operation +<
on L by_'x+s y=xvy[xAy] for all x,y €L, Then we have that (L, +g) is
a commutative band. |

Let (L,+) be a commutative band. Define a binary operation <, on L by

x<,y ifand only if x+y=y [x+y=x] for all x,y €eL. Then we have that
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(L,<.,) is an upper [ lower)] semilattice such that xvy=x+y [ xAy=x+y ]

for all x,y € L.

Proposition 1.7, ({3]1) Let L be a nonempty set. Let S be the set of all

semilattice structures on L and C the set of all commutative band structures on

L. Then there exists a bijection between S and C.

Definition 1.8. Let L be a nonempty set and v, A be binary operations on L
such that

1) (L.A) and (L,v) are commutative bands and

2) for all x,yelL, xv(xAay)=x and xA{xVvy)=x.

Then (L,A,Vv) is called a latlice algebra.

Let (L,A,Vv) be a iattice algebra. Define <., on L by x<,., y if and only
if xAy=x for all x,y € L. Then we have that (L,<.,) is a lower semilattice.

Note that for all x,y € L, we define x<,, y if and only if x Ay=x is
equivalent to xvy=y. Hence (L, <,,) is a lattice.

Let (L,<) be a lattice. Then we have that (L, A<, V<) is a lattice algebra

where x A< y=inf{x,y} and xvgy=sup{x,y} for all x,y € L.

Proposition 1.9. ([3]) Let L be a nonempty set. Let A be the set of all lattice
algebra structures on L and B the set of all lattice struc;tures on L. Then there

exists a bijection between A and B.

Definition 1.10. Let L be a lattice algebra. L is said to be a distributive
lattice algebra if and only if for all x,y,z € L, xvi{ynz)=(xvy)a(xvz).

Remark 1,11, 1) Let L be a lattice algebra. Then L is a distributive lattice

algebra if and only if for all x,y,ze L, xA(yvz)=(xay)v(xaz).



2) Let L be a distributive lattice algebra. Then for all

Xy zZel, (xvy)A[(XAy)vz]=(xAy)v[(xvy)}\z].

Proof 1) See [3], pp. 5.
2) Let x,y,ze L. Then (xvy)Al{xay)vzl

=[(xvy)alxay)lviixvy)azl={xay)vi(xvy)azl,

Definition 1.12. Let L be a lattice. L is said to be a distributive lattice if and

only if for all x,y,zel, xv(yaz)=(xvy)a(xvz) .

Proposition 1.13. ({3]) Let L be a nonempty set, A the set of all distributive
lattice algebra structures on L and B the set of all distributive lattice structures

on L. Then there exists a bijection between A and B.

Definition 1,14, Let L be lattice. L is said to be a modular lattice if and only if

for all x,y,ze L, x<z implies that xv{yaz)=(xvy)Az

Note that every distributive lattice is a modular lattice, but the converse is

not true.

Definition_1.15. Let {P,<) and (P’, <') be partially ordered sets. A function
f:P—P' is said to be isofone if and only if x <y implies that f(x) < f(y) for alf
.y €P, fis said to be an grder isomorphism if and only if f is a bijection and
both f and f' are isotone. In this case, P and P’ are called grder isomorphic.

Definition 1,16, Let P and P’ be lattices. A function f: P — P’ is said to be
a lattice homomorphism if and only if for all x,y € P, f(xvy)zf(x)vf(y) and
fx A y) = f(x) A y).



Remark 1,17, Let P and P’ be lattices and f: P -—» P’ a function. Then
the following statements clearty hold :
1) If fis a lattice homomorphism then f is isotone.

2) i fis én order isomorphism then f is a lattice homomorphism.

Definition 1.18. A subset C of a partiaily ordered set P is to be an grdered
convex subset if and only if for all x,y € C and z € P, the inequalities
x<z<y imply that z e C,

From now we shall call an ordered convex subset an o-convex subset.

Examples 1.19. 1) Let P be a partially ordered set and x & P. Then {x} is
an o-convex subset of P,

2) Every interval of R is an o-convex subset of R,

3) In RxR, {{xy) / X’ +y’' < 4} is an o-convex subset of

R x R where (x.y)s(z,w) if and only if x<z and y<w for ail x,y,zweR,

Remark 1.20, ([3]) 1) The intersection of a family of o-convex subsets of
a partially ordered set is an o-convex set. Also the union of an increasing chain
of o-convex subsets is ano-convex set.

2) ff:P =P is an isotone map and C' an o-convex

subset of P’ then f 1(C’) is an o-convex subset of P.

Refinition 121, A triple (S,+,s) is a semirng if and only if
1) (S,+) and (S,e) are semigroups and

2) for all x,y,z€ 8, x(y+2z)=xy+xz and {(y+z)x=yx+2x

Definition 122, Let (S, +,) be a semiring with multiplicative zero 0. S is said
to be a Q-skewsemifield if and only if (S*,e) is a group and for every x € S,



x+0=x=0+x where S*=8\{0}. A subset H of a 0-skewsemifield K is called
a subskewsemifield of K if and only if H is a 0-skewsemifield under the same
operation. A subset S of K is said to be conic if and only if SAS' ={1}

where S" ={x" /xeS}

.Remark 1.23. ([4]) The intersection of subskewsemifields of a 0O-skewsemifield
is a subskewsemifield. Hence the intersection of all subskewsemifields is the
smallest subskewsemifield of a 0-skewsemifield and will be called the prime

skewsemifield.

Proposition 1.24, ({4]) If K is a O-skewsemifield then the prime skewsemifield of

K is either isomorphic to Q: or Z, where p is a prime number or the

skewsemifield {0,1} with 1+1=1,

Proposition 1.25. ([4]) Let K be a (-skewsemifield, If there exists an x € K*
such that x has a right [ left] additive inverse. Then every element in K has an

additive inverse and hence K is a skewfield.

In our thesis, we shall study only O-skewsemifields which are not skewfieids.

So from now on we shall use the word skewsemifield for 0-skewsemifield.

Examples 1.26, 1) Q;', R;' are skewsemifields.

2) Let G be a group with multiplicative zero 0. Then we can

x if x%#0

define é binary operation® on G by x®y= , for all x,y € G.

yif x=0
Then G is a skewsemifieid.

3) Let ne Z" be such that n>2. Let K. = {0} U
{AeMR) [M@]/A>0ifi=jand Aj=0 if i>] }. Then K, with the usuat

binéry oberation is a skewsemifield.



4) Let G be a lattice group. Let a be an element not
representing in G. Then we define a binary operation + on G by x+y=xVvy
and x+a=x=a+x for all x,y € G. Define ax=a =xa for every x € G. Then

Gu{al is a skewsemifeild.

Definition 1,27, A semiring (S, +,e) is said to be left [ right 1 addifively
cancellative if and only if x + 2= y+z implies that x=y [z +x =z +y implies that
x=y] for all x,y,z € S, additively cancellative (A.C.) if it is both left additively
cancellative and right additively cancellative, left [ dght ] muitiplicatively
cancellative if and only if zx=zy and z#0 imply that x=y [xz=yzand z#0
imply that x =y ] for all x, y, z € S, multiplicatively cancellative (M.C.) if it is both
left multiplicatively cancellative and right multiplicatively canceilative where 0
denotes the multiplicative zero 0 of S if it exists, and cancellative if S is both
AC. and M.C.

Definition 1.28. A semigroup (S,e) is said to satisfy the right [ left] Ore
condition if and only if for all a,b € S{ 0} there exist x,y € S\{ 0} such that

ax =by [xa=yb] where 0 denotes the multiplicative zero of § if it exists.

Definition 129, Let $ and M be semirings, A functionf: S — M is called
a homomorphism of S into M if and only if for all x,y € S,

1) f(0) =0 if 0 exists,

2} f(x +y) = f(x) + f(y) and

3) flxy) = f(x)(y).
And the muitiplicatively kernel of f is the set {xe€ S / f(x) =1}, denoted by
m-ker f.

A homomorphism f:S— M is called a monomorphism if and only if f is

an injection, an epimorphism if f is onto and an isomarphism if fis a bijectibn.

| S an& M are said to be isomorphic if there exists an isomorphism S onto M



and we denote this by S=M. Note that if f:S— M is an isomorphism then f

is also an isomorphism.

Definition 1,29, Let S be a semiring with a muitiplicative zero 0 such that
|S| > 1. Then a skewsemifield K is said to be a skewsemifield of aght [left]
quotients of S if and only if there éxists a monomorphism i:S -» K such that
for every x € K, there exist a € S, b € S\ 0} such that x = i(a)i(b)”
[x=ib)ia)]. A monomorphism i satisfying the above property is said to be
a right [left] quotients embedding of S into K. |

X 2

Example 1.30. Let S={ /x,yeZ and zeZ} {0} and

0

a ¢ |
K={ 0 b /a,beQ and ceQ }uU{0} Then S and K with the usual

addition a'nd multiplication are a semiring with a multiplicative zero 0 and

10

skewsemifield, respectively. in [5], pp. 17 it was shown that K is a skewsemifield

~of right quotient of S.

Theorem 1.31. ([5]) Let S be a semiring with multiplicative zero 0. Then S can

be embedded into a skewsemifield if and only if
1) S is multiplicatively canceliative and

2) (S, ) satisfies the right{left] Ore condition.

Proof We shall now give the construction of the skewsemifield of quotients of

a semiring S which appears in [5], pp. 18 -23.

Assume that S is M.C. and (S, ») satisfies the right[ left] Ore Condition.
Define a relation ~ on Sx (S\{0}), by (x,y)~(zw) if and only if there exist
a,beS\{0} such that xa=zb and ya=wb for all (x,y), (zw) e Sx (S 0}).

In [5], pp. 18 it was shown that ~ is an equivalent relation.
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Let K=Sx (S0} )n. |

Leta, B € K. Define ¢ on K in the following way : Choose (a,b) € o and
(c.d) e B. Since b e S0} and c € S, there exist x € S and y € S\{0} such that
bx = ¢y. Define off =[ (ax,dy)]. |

To show that e is well-defined, let (a,b), (a’,b’), (c,d), (c',d") € K be such that
(a.b)~'(a',b’) and (c.d)~(c'.d’). Then there exist x, X, v,y € S\{(0} such that
bx =dy and b'x’ =d'y’. We must show that (ax,dy) ~ (a’x’,d"y’). Since
(a,b) ~ (a'b’), there exist u,ve S\{0} such that au = a'v and bu =b'v. Since
(c,d) ~(c'.d"), there exist u’,v' € S\{0} such that cu’ =c’v' and du’ =d’Vv'. Since
dy,. d'y' € S\{ 0}, thers exist p,q € S\{ 0} such that dyp =d'y'q. We must show
that axp =é’x'q. Since y'q,v' € S\{ 0}, thers exist g, h € S\{0} such that y'qg
=v'h. -“‘Since ve S0} and x'ge 8, there exist | €S and k € S{ 0} such that
vi=x'gk. Then du'h =d'v'h =d'y'qg = dybg. Since d#0, u'h =ypg, so bxpg
= cypg = cu'h = ¢'v'h = ¢'y'qg = b'x'qg. Siﬁce g#0, bxp= b'x'q; s0 bxpk = b'x’gk
=b'vi = bul. Since b#0, x'pk= ul. Then ax'pk = aul = a'vl = a'x'gk. Since k#0,
axp = a'x'q, so e is well-defined,

In [5].. pp. 20 it was shown that (K*, ) is & grbup with [(a,a)] and [(0,a)]
as the identity and multiplicative zero respectively, and [(b,a)] as the inverse of
[(a,b)] for all a,b e S\{0}. |

- Leta, p € K. Define + on K in the following way: (a,b) € o and (c,d) € B.
There exist x,y € S\{ 0} such that bx =dy. Define o+ B =[ (ax + cy,bx) 1.

To show that +_is well-defined, let (a,b), (a.b"), (c.d), (c'.d") € K be such that
(ab)~ (a'.b’) and (c,d) ~ (c’.d’). Then there exist x,x’,y,y € S\{0} such that
bx =dy and b'x’ =d'y". We must show that (ax +cy,bx) ~ (a'x’ + ¢'y',b'x’).

Since (a,b) ~ (a’,b"), there exist u,v € S\{ 0} such that au=a'v and bu=b'v.
By (c.d) ~ (c",@"), there exist u’,v' € S{ 0} such that cu’ =c'v' and du’ = d'v".
Since bx, b’x’ € S\{0}, there exist p, q € S{ 0} such that bxp = b'x'q. We must
show that (ax +cy)p = (é’x’ ¥c’y')q. Sincg x'q,v e SY{ 0}, there exist g,h € S\{0}
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such that x'qg =vh. Since y'q, v'p € S{ 0}, there exist k,| € S\{ 0 } such that
y'gk = v'pl. Therefore buh = b’vh = b'x'qg = bxpg. Since b # 0, uh =xpg, so axpg
= auh = a'vh = a'x'qg. Since g#0, axp =a'x'q. Since dy=bx, dyp =bxp =b'x'q
= d'y'q. Therefore dypk = d'y'qk = d'v'pl = du’pl. Since d#0, ypk =u'pl’, so cypk
= cu'pl = ¢'v'pl = ¢’'y'qk. Since k=0, cyp =c'y'q, so (ax+cy)p =(a'x' +c'y)a.
Therefore + is well-defined.

In [5), pp. 21. it was shown that + is associative and e is distributive over
+ in K, hence K is a skewsemifield.

Let c e S\{ 0}, define i:S— K by i(x) =[(xc,c)], for every x € S.

In [5], pp. 23. it was shown that i is a right quotients embedding of S into

K. Therefore K is a skewsemifield of a right quotients of 8.,

Proposition_1.32, ({5]) Let S be an M.C. semiring with multiplicative zero 0
satisfying right [ left] Ore condition. Then S x (SY 0} )/ is the smallest
skewsemifield containing S up to isomorphism where ~ is the equivalence

relation given in the proof of Theorem 1.31.
Proof See [5], pp. 26.,

Refinition 1.33. Let K be a s‘kewsemiﬁeld. A subset C of K is called a normal
subset of K if and only if for every x € K, xC = Cx.

Remark 1.34, Let K be a skewsemifield and C a normal subset of K Then the
following statements are equivalent :

1) for all a,b e C and a, B e K, e+ B =1 implies that aa + Bb € C.

2) forall a,beC and a,PeK a+p=1 implies that aa + bp € C.

3) for alt a,beC and a,Be K a+p =1 implies that ad+Bb eC.

4) for all 8,be C and o, e K, + =1 implies that act + bp € C.
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Definition 1,35, Let K be a skewsemifield. A subset C of K is called an

algebraically convex subset of K if and only if for all x,ye C and a,beK
such that a+b=1, ax+bye C.

From now on we shall call an algebraically convex subset an a-convex

subset.

Proposition 1.36. Let K be a skewsemifield and C a subset of K. Then C is an

a-convex subset of K if and only if for all &, b € K, aC + bC = (a+ b)C.

Proof Assume that C is an a-convex set of K. Let a,b e K. If a=0 then
done. So suppose that a=0. Let c,c’ € C. Since (a+b)'a+(a+b)'b
=(a+b)'(a+b)=1 and by assumption, (a+b )"1éc +(a+b)'ac’ € C, so
there exists a ¢” € C such that (a+b)"ac + (a+b)"ac’ = c¢” Therefore
éc+bc'=(a+b)c" €(a+b)C. Thus aC+bCc(a+b)C.

Clearly, (a+b)CcaC+bC, Hence aC+bC=(a+b)C.

Conversely, assurﬁe that for all a,Be K, aC+BC=(a+B)C. Let x,yeC

and a,b € K be such that a+b =1, Then ax+bye aC+bC=(a+b)C=C.

Hence C is an a-convex subset of K.,

Remark 1.37, Let K be a skewsemifield.

1) The intersection of a family of a-convex subsets of K is an a-convex
subset of K and the union of an increasing chain of a-convex subsets of K is
an a-convex subset of K.

2) If A, B are a-convex subsets of K then AB is an a-convex subset of K
where AB={ ab/aecA and beB ).

3) Let C be an a-convex subset of K. Then for all ne€ 2°, a,,....a, € K,

XX, €C, X 8 =1 implies that £ ax e C.

=1 =1

4) Let C be a subset of K, the smallest a-convex normal subset of K
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n n
containing C is { T afxc(x)'1/ ne2’, ceC, a, x € K" such that £ a =1

I=1 =1

for every i€ {1,...n}}

Proof 1) Clear.
2) Let k, k' € K and x € kAB + k’AB. Then there exist a,a’ € A and

b,b’ € B such that x = kab + k'a’b’ € kaB + k'a'B. By Proposition 1.36.,
kaB + k'a’'B = (ka + k'a")B, so there exits a b’ € B such that x = (ka + k'a’)b"’.
By Proposition 1.36., ka + k'a’ € kA + K'A=(k+ k')A, so there exits an a'’ € A
such that ka + k'a’ = (K +k')a”. Then x = (k +k' )a"b" & (k +k')AB.
Therefore kAB +k’AB = (k + k’)AB. Hence AB is an a-convex set.
3) If n=2 then done. Let n€ Z° be such that n>2. Suppose that 3)

is true for the case n—1. Let x,,....x, € C and a,....a, € K be such that £ a =1.

=1

Let a',,=a,,+a, By Proposition 1.36., (&, )(x.,) +{a.Xx,) € (a,,)C + (a)C

=(a,, +a,)C, so there exists an x € C such that (a_)x,,) +(a)x)
n—2

= (a,, + a,)x = (a’,_)x. Then Z ax=(Z ax+(@ J)x)eC.
=1 =1

4 Let B={ T alxex) 1/ neZ, ¢eC, a, x € K* such that

i=1

Z a =1, forall ie{1,..,n}}. To show that B is a normal subset of K, let b

= Zn: al[x,c,(xl)'1] € B and t € K*. Then tbt” =t(% a|[><,c,(>nc,)'1])t‘1

=1

=3 tafxex) D" = > tat” (xc(x) "1t = 5 taf "T(bx)c,(tx)™"]). Since

=1 =1 =1

T t@)t =T a)t' =1, tbi" e B. Next, to show the a-convexity of B, let

=1 i=t

2 afxc,(x)™, Z blyk(y)"] € B and let o, B € K be such that o+ B =1. Since.

=1

5 aa,+Z Bb, = o> a,)"'B(Z b)=a-+p =1,

=1 =1 =1

o3 alxc0)™) + B blyk(y)') = X aa.[x.c.(xo“] + 3 Bblyk(y)'l € B.

=1 i=1 i=1 i=1

Clearly, B contains C, so B is an a-convex normal subset of K containing C.,
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Definition 1.38. A subset C of a skewsemifieid K is called a normal subgroup of

K if and only if C is a multiplicative normal subgroup of K*.

Remark 1,39, Let K be a skewsemifield.

1) {1} and K* are trivial a-convex normal subgroups.

2) The intersection of a family of a-convex normal subgroups of K is
an a-convex normal subgroup. Also the union of an increasing chain of
a-convex subgroups is an a-convex normal subgroup.

3) If A and B are a-convex normal subgroups of K then AB is

an a-convex normal subgroup of K.

Proposition_1,40, Let K be a skewsemifield and C a multiplicative normal
subgroup of K. Then the following statements are equivalent.

1) C is an a-convex set.

2) For all x,yeC and aeK, (x+a) (y+a)eC.

3) For all x,y e C and a € K, (:-<+a)(y+a)'1 eC.

4) For alt xe C and a,b € K such that a+b=1, ax+beC.

5) For ali x,y € C and a,b € K such that a+b € C, ax + by € C.

6) For all xe C anda,b € K such that a+b e C, ax+b e C.

Proof 4):»2) Let x,y € C Then xy'1 € C. Let a € K. Then
(x + a)'1(y +a)=(x + a)'1y +(x+a)'a=(x+ a)"x(x"y) +(x+8a)aeC
2)=>1) Let x,y € C. Then y'1x € C. Let a,b € K be such that
a+b=1.I1f a=0 then done. So suppose that a=0. Then y'(ax + by)
=(y'a)la'(ax+by)]=@"y [aax+by)1=[y+a'by][x+a'by] e C.
1)=>5) Let x,y € C and a,b € K such that a+ b € C. Then there
-exists a c € C such that a+b=c. Then c'a+cb=c"@a+b)=1,
By 1), ¢”'ax+ ¢"by € C. Then ax + by = ¢{c 'ax + ¢ 'by) € C.
8)=>1) Let x,ye C and a,b € K such that a+ b € C. Then
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xy' € C. By 6), axy +b e C. Then ax+by= (axy”" + by € C.
3) =2) Let x,ye C and a € K. By 3), (y+a)x+a)" P,
Since C is a normal set, (x+a) (y+a)=(x+ a) (y + a)(x + a) ' (x +a) € C.
2) = 3) Dually, 3) = 2).

The remaining cases are clearly seen to be true.

Letl C be the set of all a-convex normal subgroups of a skewsemifield K
Let C,C' € C. Then CvC'=CC’ and CAC'=CAC’, so C is a lattice.
Morever, C is modular.

To prove this, let C,C’,C"" € C be such that Cc C"”. Let x € CC'C".
| rTherll there exist ¢ € C, ¢’ € C' such that x = cc’ and x € C". Then ¢’ =¢ x € C",
s0 ¢' € C' " C". Therefore x = cc’ € C(C' A C"). Then CC' N C" c C(C' N C").
Since Cc C”, CIC'NC")cCC'NC” s0o Cv(C'AC")=C([C'nC")=CC'NC"
=(CvC)aC"

-Remark 1,41, Let f:K—> M be a nonzero homomorphism of skewsemifields. Then
_'tho following statements hoid :

1) f(0) =0 if and only if x=0 for every x € K,

2) <) = (fx))™" for every x € K",

3) m-kerf is an a-convex normal subgroup of K.

4) If C' is an a-convex normal subgroup of M then f'(C’) is an a-convex
oonnai subgroup of K containing m-kerf.

5) If f is onto and C an a-convex normal sbbgroup of K then f(C) is

an a-convex normal subgroup of M.

In our thesis, we shall study only.nonzero homomorphism. So from now on

we shé_n use the word homomorphism for nonzero homomorphism.
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We shall now give an example of a-convex normal subgroup of a

skéwsemiﬁeld.

Example 1.42. Let K be a skewsemifield. Then K*x K* L {(0,0)} is
a skewsemifield. Define f: K* x K* w {(0,0) } & K by f(x,y) = x for every

(xy) € K*x K*u{(0,0)}. It easy to show that f is a homomorphism and
m-kerf={(1,x) / x € K*}. By remark 1.41., 2), {(1x) / x € K*} is an a-convex

normal subgroup of K*x K* U {(0,0) ].

Proposition 1.43. Let f:K—M be an epimorphism of skewsemifields. Let A be
the set of all a-convex normal subgroups of K containing kerf and B the set of
all a-convex normal subgroups of M. Then there exists an order isomorphism

" from A onto B.

Proof Define @ : A — B by o(A) = f(A) for all Ae A and v:B - A by
w(B) =f'(B) for all B e B. To show that g oy =Idg, let B € B. Then ¢ y(B)
= o(y(B)) = o(f '(B)) = #F"'(B)). Since f is onto, {F'(B) =B, so ¢ w(B)=B.
T.herefore @ oy =Ildp To show that yo@ =Idp, let A€ A. Then y e p(A)
= w(p(A) = W(f(A)) = F'(f(A)). We must to show that f'(f(A)) = A. Clearly,
Acf#A). Let xef 1(f(.ﬂ\)). Then f(x) e f(A), so there exists an a € A such that
f(x) = f(a). Therefore f(xa™") = f0)(fa) " =1, so xa' e ker fc A. Then
x =(xa)aeA, sof (f(A)) < A._ Therefore wo¢(A)=A, s0- @ is a bijection.

Clearly, ¢ and wy are isotone. Hence ¢ is an order isomorphism from A onto B.

Definition 1.44. Let K be a skewsemifield and p an equivalence relation on K.
p is calied a congruence on K if for all x,y,z € K,

1) xp 0 if and only if x=0,

2) xpy implies that (xz) p (yz) and (2x) p (zy), and

3) xpy implies that (x+2z)p(y+2) and (z+x)p(z +Y).
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Remark 1.45. 1) The intersection of a family of congruences on a skewsemifield

K is a congruence on K.

'2) xpy implies that X' py” for all x, y € K*.

Let p be a congruence on a skewsemifield K. We shall show that
[1o={xeK/xp1}is an a-convex normal subgroup of K.

Since 1p1, 1€[t), so [11,#D. Let x,y € [1],. Then xp1 and 1py.
Therefore xpy. Thus xy_ p1, so xy € [1}. Hence [1], is a muitiplicative
subgroup of K. Next, to show that [1], is an a-convex normal set, let x € [1],.
Then xp1. Let y € K*. Then xy" py ", so yxy” p1. Then yxy' € [1]p. Next, let
a8,b e K* be such that a+b =1, Since xp1, axpa, so (ax+b)p(a+bhb).
Therefore ax + b € [1],. Hence [1], is an a-convex normal subgroup of K.

Let C be the set of all congruence on a skewsemiﬁeld K. Let p,p’' € C.
Clearly, pap' =pnp'.

Define x p*y if and only if there exists a u € [1], such that x p’ uy, for all
X,y € K. To show that p* is an equivalent relation, let x € K. Let u=1. Then
u € [1), and x=ux. Since p' is reflexive, x p’ ux, so xp*x. Then p* is reflexive.
Let x,y € K be such that x p*y. Then there exists a u € [1], such that xp'y.
Thus u™'xp'y and so yp'u”x. Then yp*x, hence p* is anti-symmetric. Let
% Y.z € K be such that xp*y and y p* z. Then there exist u,v & [1], such that
xp'uy and yp'vz, so uyp*uvz The.refore x p'uvz, s0 X p*z and hence p*is
transitive,

Next, to show that p* is a congruence, let x,y & K be such that x p*y. Then
there exists @ u € [1], such that xp’ uy. Let z € K,

Case 1, z=0, Then x+z=x=z+y, y+z=y=z+y, zx=0=2zy and xz=0=yz
Therefore zx p* zy, xzp*yz, (x+2z)p*(y+2) and (z+x) p* (z+y).

Case 2, z#0. Then xz p’ uyz and thus xz p* yz. Since x p'uy, zx p’ zuy, so

= p’ (zuz'1)zy. Since zuz "' € [1],. zxp* zy. By xp'uy, (x+z)p' (uy +z). By
Proposition 1.36., uy +z € ([1lp)y + ([1]p)z = ([1J,)(y + 2). so there exists a u’ & [1],
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such that uy + z=u'(y + z). Then (x +z) p’ u'(y + 2), so (x+2z)p"*(y+2z). We can
prdve similarly that (z + x) p* (z +y). Hence p* & C.

Next, to show that p*<p'ep, let x,y € K be such that x p*y. Then there
exists a u € [1], such that x p’ uy. Then uypy, so x(p'ep)y énd thus
p*cp'ep. Next, let x,y € K be such that x (p’ e p) y. Then there exists a ze K
such that xp'z and zpy. If z=0 then x=0=y, soxpy. Suppose that z=0.
Then yz"' p1, so yz' € [1),. Thus zy” =(yz™)" € [1], and zp’' (zy )y, so
xp' (zy )y and therefore x p*y, so p'spcp*. Hence p*=p'ep, so for all
p.peC, pep=pvp'=p'vp=pep’. Hence (C,e) is a commutative
semigroup.

Next, to show that pvp'=p*, let x,y € K be such that xpy. If y=0 then
x=0. So suppose that y#0. Then xy p1 and x=(xy )y. Then x p' (xy )y, so
x p*y. Therefore p < p*. Clearly p' < p”.

Let pc p'” and p'cp”. Let x,y € K be such that x p*y. Then there exists
a u e [1], such that x p"uy. If y=0 then x=0. Suppose that y#0. Then up 1
and xy  p'u. Since pcCp” and p'cp”, up”1 and xy p”1, so xy" p" 1.
Therefore x p” y. Hence p*cp”, so pvp'=p =p'ep. Then C is a lattice.
Morever, we shall show that C is modular.

To prove this, let p, p'.p* € C be such that pcp*. Let x, y‘e K be such
that x [(p* m p') e ply. Then there exists a z € K such that x(p' mp*)z and zpy, '
so xp'z and xp*z Then x(p'=p)y. Since pSp*, zpy, $0 xp*y. Therefore
x[(p'ep)p*ly, hence (p' np*)op S (p'op)p*. Next, let x, y € K be such
that x [(p’ o p) M p*]y. Then x (p' o p)y and x p*y. Therefore there exists a z € K
such that xp'z and zpy. Since pCp*, zp*y, s0 yp*z. Then x(p’ A p)y, so
x[(p" M p*}oply. Therefore (p’=p) N p* < (P’ Np*)ep, so pv(p'Ap*)
=P’ npep=(pep)npt=(pvp)aph

Let C be an a-convex normal subgroup a skewsemifield K. The relation p,

on K given by xp.y if and only if xy‘1 €Cor x=y=0, for all x,y €K, clearly



p. is a congruence on K and [x],. = xC.
Let Kz, be the set of all equivalence classes of K with respect to p, we
shall use the notation Ko instead of Kjp.

Define + and e on Ko as follows : let xC, yC € Ky, let xC +yC=(x+y)C

and (xC)(yC) = (xy)C.

To show that + and e are well-defined, let xC, yC € Ky3. Choose a € xC
and b e yC. Then xa~ € C or x=a=0 and yb' €C or y=b=0. If x=a=0
or y=b=0 then ab=0=xy and a+b=x+y, so (ab)C = (xy)C and
(a+ b)C =(x + y)C. Suppose that a,b #0. Then xa ", yb'1 € C. Since C is
a normal subset of K, alyb™)a ' € C, so (xy)(ab)" =xyb'a"
= (xa'1)(ayb'1a'1) € C. Therefore (xy)C = (ab)C, so e is well-defined. By the
a-convexity of C, (x + y)(a + b)"'= (xa ")a(a + b) "1+ (yo™)[bla + b)"] € C. Then
(x +y)C=(a+b)C, hence + is weli-defined. Then we have that (Ko, +,e) is

a skewsemifield.

Proposition 1,46, Let K be a skewsemifiled, A the set of all congruences on K
and B the set of all a-convex normal subgroups of K. Then there exists an

order isomorphism from A onto B.

Proof Define ¢ : A > B by ¢(p) =[1], for all pe A. To show that
@ is an injection, let p,p’ € A be such that [1], = ¢(p) = o{p”) =[1],. Let
X,y € K be such that xpy. If y=0 then x=0, so xp'y. Suppose that y=0.
Then xy” p1, so xy e [1]p =[1]p’. Thersfore xy ' p'1, so xp'y. Thus pcp’
Similarly p’ < p.Then p=p’, so ¢ is an injection. Next, to show that ¢ is onto,
let C € B. The.n p. € A. Let x € [1],.. Then xp.1, so x € C. Then [1]p.cC. Let
x € C. Then xp.1, so x € [1],.. Then Cc[1lp,, so @{p.) =[1] = C. Therefore
¢ is a bijection. Clearly, ¢ is isotone and for all C,C' € B, Cc C’ impliss that

¢ (C)=p. S ps=0¢7(C"). Then ¢ is isotone, so ¢ is an order isomorphism
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from A onto B.,

Coroliary 1.47. Let K be a skewsemifield and C an a-convex normal subgroup

of K. Let A be the set of all a-convex normal subgroups of Ko except {C}

and B the set of all a-convex subgroups of K such that strictty contain C. Then

there exists an order isomorphism from A onto B.

Proof Claim that for every D e A, WD is an a-convex subgroup of K which
strictly contains C. To prove this, let x, y € UD. Then there exiét o, B e D such
that x e ¢ and ye B. Thus xy € aff and af € D, so xy e UD. Since D is a

-subgroup of Kyc, there exists an o' € D such that o't =C. Since 1 € C,

there exist u € o and v € a such that uv=1. Since x,v € &, xC = =vC, $0

v €C. Then x' = ulvx™) e uC = = UD. Next, let z € K*. Then

2z € (x2)C. Since (22 C = ZC)a(zC) ' € D, we get that 2z e UD.

Let a,b € K be such that a+b=1. Then aC+ bC=(a+b)C=C, so (ax + by)C

= (aC)(xC) + (bC)(yC) € D and thus ax + by € UD. Since D={C}, theré exists

an ye D such that y=C, and so there exists an X € y such that x ¢ C. Hence

D is an a-convex subgroup of K which strictly contains C, so we have claim. .
 Define @:A—B by ¢(D)=UD for all De A and ¥: B > A by

Y({D)=TKD) for all De B wh‘efe IT is the projection map of K onto K.

To show that @ oy =Idp, let B € B. Then ¢ > y(B) = o(w(B)) = ¢(I(B)) = T(B)).
To show that «(I1B) = B, let b € B. Since b € bC=TI(d), so d e W(I(B)) and _
thus B < \A(TIB). Next, let x € \(TT(B)). Then thére exists a b € B such that
x € TI{b) =bC, s0 xb™" € CCB. Thus x = (xb™b € B, so (I1B) = B and
therefore \(I1B) =B, so @ oy = Idp.

To show that ye@ =lida, let D € A. Then we @(D) = w(e(D)) = w(UD)
=1'[.(UID). We mqst to show that TI(WD)=D. Let ¢ € D and let x € oc. Then
o =xC =Ti(x} € IT(wD), so DcI(uD). Next, let B & TI(UD). Then there exists

an x € UD such that I1(x) = B, so there exits an o € D such that x € o



Therefore B=TI(x) =xC=a € D, so 1(wD) < D. Hence (WD) =D, so
e =Ida. Thus ¢ is a bijection. Clearly, ¢ and (p'1 are isotone, hence @ is

an order isomorphism from A onto B.,

Proposifion 1.48. Let K be a skewsemifield and C < K*. Then C is an a-convex
normal subgroup of K if and only if C is the multiplicatively kemel of some

epimorphism.

Proof Assume that C is an a-convex normal subgroup of K. Define
M:K—=>Ke .'by IT(x) = xC, for every x € K. Then TI is an epimorphism and
m-ker IT = C.

The converse follows from Remark 1.41., 2).,

The-map IT1: K— Kz given in Proposition 1.48. is called the canonical

orojection of K onto K/c.

Proposition 1.49. lLet C be an a-convex normal subgroup of a skewsemifield K.
Then Ky is a right [left] additively canceilative skewsemifield if and only if for
all x,a, peK, a+B=1 and ax+ B e C imply that xe C [a+B =1 and
o+ Bx € C imply that x € CJ.

Proof Let x, a, B € K* be such that a+B =1 and ax+p € C. Then
oxC + BC = (ax + B)C =C = (a. + B)C = aC + BC. Therefore axC =aC, so
x = o (o) € C.
Conversely, assume that for all x,c, B € K*, oo+ B =1 and ax+ B e C imply
that x € C. Let x,y,z € K be such that xC + zC =yC + zC.
Case 1: x=0. Then zC = (y + z)C. Suppose that y=0. Then
(+y' YO+ (1 +y 2y 2= (1 +y" 2y 2= [y(1 +y 2]z

={y+ zy'z e C. By assumption, 0 = y'1(0) < C which is a contradiction. Then
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y =10, so xC =yC.

Case 2: x#0. Then (x +2)C=(y +2)C, s0 (1 +x"'2)"'x'y + (1 +x'2)"x 'z
A+xX 2y + "D = (1 +y' 2 Xy +2)=(x+2) Uy + 2) € C. By
assumption, X'y € C, so XC=yC.

Hence Kjc is a right additively cancellative skewsemifield. ,

T 151, (First | hism Tt )
Let f: K—M be a homomorphism of skewsemifields. Then Ky.kgrf=Imf.

Hence if f is onto then K/mkerf= M.

Proof By Remark 1.41., 2), m-kerf is an a-convex normmal subgroup of K.

Define ¢ : Kim-kerf—> Imf as follows . let & € Kyp-karf- Lot x € o, define ¢(x)

=f(x). To show that ¢ is well-defined, let x,y € K be such that x(m-ker f)
= y{m-ker f). Then there exists an a € m-kerf such that x =ya, so @(x(m-ker f))
= f(x) = f(ya) = f(y)f(a) = y) = @(y{m-ker f)). Then ¢ is weii-defined and ¢(0) = f(0)

=0. Cléarly. @ is a bijection and a homomorphism. Hence Kim-ker f= Imf. ,

Lemma 1.82. Let H be a subskewsemifield of a skewsemifield K and C
an a-convex normal subgroup of K. Then H~C is an a-convex normal

subgroup of H and HC is a subskewsemifield of K.

Proof Clearly, H m C is a multiplicative normal subgroup of H. Let xe HNC
and a,b € H be such that a+b=1. Then ax+b € H. Since C is an a-convex
. normal set of K, ax+b €C, so ax+b e HnC. Threfore HC is an a-convex
normal subgroup of H.

Since 1eH and 1€ C, 1eHC, so HC#J. Let a, b € (HC)*. Then there
exist u,veH" and x,y € C such that a=ux and b=vy. Since C is a normal

set, ab™ = (ux){vy) ' =uxy v = (v )vixy W] € HC. By Proposition 1.38.,



24

a+b=ux+vyeuC+vC=(u+v)CcHC. Hence HC is a subskewsemifieid. ,

Theorem_ 1.53. (Second lsomorphism Theorem }.
Let H be a subskewsemifield of a skewsemiflteld K and C an a-convex

normat subgroup of K. Then My ~c =HC,c.

Proof Define ¢ : H—> HCjc by ¢(x) =xC, for every x € H. Then ¢ is

an epimorphism. Since for every x € H, xC=(x)=C if and only if x € C,
]

m-ker@ =H N C. Then HH ~ c=HC/C. ,

Lemma 154, Let D and H be a-convex normal subgroups of a skewsemifield K

such that Hc D. Then Dy is an a-convex normal subgroup of K.

Prof Clearly, Dyy is a multiplicative normal subgroup of K. To show the
a-convexity, let x,y € D and oH, BH € Kyq be such that (a0 + B)H = aH + pH =H.

Then oo+ B € H, so there exist ae o, b € B and h € H such that a+ b =h. Thus
ah” +bh" =(@+bh’' =1, By the a-convexity of D, (ah™)x + (bh'1)y eD, so
(aH)OxH) + (BH)(yH) = (ah™'x + bh™'y)H € K. Therefore D/4 is an a-convex

normal subgroup of K.,

I 155, (Third | hism. Tt \

Let K be a skewsemifield, D and H a-convex normal subgroups of K such

Hc D, Then K/HIDIH =Kp.

Proof Define @ : Kyy — K/p by @(xH) =xD, for every x € K. Then ¢ is

an epimorphism. Since for évery aekK, aD=¢(aH)=D if and only if a € D,

m-ker @ = Dyy. Then K/H/D/H ZKD «



Proposition 1.56. Let f: K —M be an epimorphism of skewsemifields. If

C’ is an a-convex normal subgroup of M then Kg'(cry=Mcr.

Proof By Remark 1.41., 3), f Y(C") is an a-convex normal subgroup of M.
Define ¢ : K = My by o(x) =f(x)C', for every x € K. Then ¢ is an epimorphism.
Let x € m-ker ¢, then H(x)C' = w) = C', so0 f(x) € C'. Therefore x € "(C’). Hence
m-ker ¢ = (C’). Similarly, f Y(C) = m-ker o, sof (C") = m-ker ¢. By Theorem
1.51., Ke'(ch =M -

Lemma_1.57 Let A and B be subskewsemifields of a skewsemifield K,
A, and B, a-convex normal subgroups of A and B, respectively. Then
(A, "BXANB,) is an a-convex normal subgroup of A B and

(AN B)A, and (A B)B, ara subskewsemifields of K.

Proof Clearly, A B is a subskewsemifield of A. Since A, is an a-convex
normal subgroup of A and (by Lemma 1.53.), (AnB)A, is a subskewsemifield of
A, s0 (ANB)A, is also a subskewsemifield of K. Similarly, (Aﬁé)B1 is
a subskewsemifield of K. By Lemma 1.52., (A, nB) = A, n (AN B) which is
an a-convex normal subgroup of (A~ B). Similarly, A B, is ‘an a-convex normal
subgroup of Am B, By Remark 1.39,, 3), (A, " B)}Am B,) is an a-convex normal
subgroup of (ANB).,

Proposition 1,58, Let A and B be subskewsemifields of a skewsemifield K,

A, and B, a-convex normal subgroups of A and B, respectively. Then

(ANBAYAAB)A S(AN B)Bi(A, A B)B,-

Proof Define f: (A B)A, o (A B)i(A, ~B)(A ~ B,) as follows : let

ceAnB,a, €A, define flca,) =cl[(A, "B)}ANB,)]. To show that f is



well-defined, let c,,c, € (AN B) and a,, a,, € A, be such that c,a,, = c,a,,. Then
(c,)'c,=a,(a,)" e (AnB)NA,=A NBCc (A NB)YAAB,). Therefore
f(c,a,,) = ¢,[(A, " BYA N B,)] = ¢ [(A, " BYAB,)] =f(c,a,,). Therefore f is
well-defined. Clearly, f is an epimorphism.

To show that (A~ B)A, =m-kerf, let ce AnB, and a € A,. Then
(A, N B)(A n B,) =f(a) = c[(A, N B)(An B,)]. Therefore (A B,)A, € m-kerf.

Next, let c € AnB and a € A, be such that c[(A, "B}{ANB,)I= f(éa)
=(A, "BXANB,). Then c € (A, "B)}ANB,), so there exist x € A, B and
y € An B, such that c =xy. Then ca =xya. Since A, is a normal set of A, there
exists a z € A, rsuch that xy =yz, so ca=xya= yzé € (AN B)A,. Then m-kerf
c (AnB)A, and hence (A B)A, = m-kerf. By Theorem 1.51., we get that
(AN BA A AB)A, E(ANB)A ~B)AAB,) Simiary, we get that

(AN B)B,,r(A1 A B)B, & (Anm B)/(A1 ~B)ANB,) Hence

(ANBA YA ~B)A, = (ANBB (A, ~ BB, +

Definition 1.59. Let {K /ie€!l} be a family of skewsemifields. The direct product

of the family {K, / i€}, denoted by IIK, is the set of all elements (x),¢, in
€l

the cartesian product of the family {K* /iel} {0} where 0=(0),., together

with operations + and e defined as usual, that is for all (x),¢,. (y) e, € TTK,
€1

(et W)ye = (X +Y) e, and
(%) e;®(¥) e, = (X¥) e

Then we have that I1 K is a skewsemifield.
1el

Proposition 1.60, Let {K, /i€ l} be a family of skewsemifields. Then the

following statements hold :

1) for each i €|, the canonical projection I1,: II K — K, given by
i€l -

I{(x) e, ) =x, is an epimorphism.

2) if 1,+1,=1,for every i € | then for each k €| the canonical injection
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I, : K, =TI K given by I(x) = (x),e, where x, =1, for i# k, and [,{0)=0 is a
(€)

monomorphism of skewsemifields.

Progf Obvious. ,

Proposition 1.61. Let {K;/ i€ 1} be a family of skewsemifields and C, an

a-convex normal subgroup of K, for every i €|, Then II C, is an a-convex
i€l

normal subgroup of TI K and N K/I ¢ = I (Kyg).
| €1 1€l i€l ' 1€l

Proof Define ¢ Iani —)IHI(KUCI) by @((x),e,) = ((XC),e,). for every
= €

(xi) e, € IT K. Then ¢ is an epimorphism.
1€

To show that m-ker ¢ = I1 C, let (x) ¢, € m-ker ¢. Then ((XC) e, = @(x) ¢,

i€l
=(C) ey 50 x,=C, for all i el Therefore x,€ C, for all i €, s0 (x),e, eIZIIC,.
and hence m-kerwc;irellc,. CIeaﬁy.II;IICl;m-ker ¢, SO m-ker @ =|1;IIC,. By
Remark 1.42., we get that aE:C' is an a-convex normal subgroup of II K, and
I €l
by Theorem 1.51., T K/l ¢ = TI (Kyc). ,
i€l 1€l L€l

Definition 1.62. Let L be a subskewsemifield of a direct product of a family
skewsemifields {K, / i€ l}. L is said to be a subdirect product of {K /iel}
if and only if for every k € |, TT1{L) = K, where TI, is the projection map.

Definition 1.63. Let {K, /i€ l} be a family of skewsemifieids and L a

skewsemifield. Let g:L — IT K, be a homomorphism. Then g is said to be a
€l

representation of L as a subdirect product of {K /ie |} if and only if Img

is a subdirect product of {K, /ie€l}.
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Definition 1,64, Let K be a skewsemifield. K is said to be subdirectly
irreducible if and only if for every family {K /i€ l} of skewsemifields and for

every injective representation f: K — II K, there exists a k € | such that
i€l

I, f is an isomorphism.

if a skewsemifield K is-not subdirectly irreducible, we shall say that K is

Ineorem 165, Let g:L— II K be a representation of L as a subdirect
¥l

product of {K, /iel}. Then Img =L/N m-kermce g-

Proof Define @ :L—Img by ¢(x) =g(x) for every x € L. Then ¢ is
an epimorphism. To show that m-ker ¢ = [ m-ker [, o g, let x € L be such that
KE | .
g(x) =@(x) = (1) ,a,. Then (IT,2g)x) =1, for all k € |, s0 x € m-ker[1 o g for all
k€l Thus x € N m-ker [T, °g, so m-ker@ < [} m-kerIT, ° g.
K€ | k€ |

Next, let x € ) m-ker[1 = g. Then (I1, = g}x) =1, for all k € |. Therefore
kE |

g(x) =(1) e, Since @(x) =g(x) =1, x € m-ker ¢. Hence (] m-ker[], e g < m-ker ¢,
kE !

so m-ker @ = [} m-kerIl,e g. By Theorem. 1.51.; Im g =Ly~ m-ker i o g s
kE ! -

Corollary 1.66. Let g:L— IT K, be an injective represéntation of L as a
el

subdirect product of {K, / iel}. Then [ m-kerIl,eg={1}, hence img =L.
KE |

Proof To show that ) m-kerT,eg={1}, let xe€ [ m-ker], °g. Then
kE | kE 1

(I, > @)x) =1, for ail k €1, so g(x) = (1) e, Since g is a monomorpr]isni, x=1.

Therefore (1 m-kerTl, eg={1}.,
kE |



Proposition 1.67. Let L be a skewsemifield and C={C, / C, is an a-convex

normal subgroup of L for all i €}. Define fc:L—II (Lig) by fe() = (xC) e,
i€l

for all x e L. Then fc is a representation of L as a subdirect product of

{L/C| /i €l}. Furthermore, if M C,={11} then fc is an injective representation
i€l

of L.

Proof Clearly, fc is a homomorphism of L. To show that Imfe is a subdirect
product, let k € | and x € L. Then [T, ° fo(x) = IT{(fe(x))) =TT,{(x),e,) = xC, € Lic,

so I(Imfc) S Lyc,. Next, let x € L. Then xC, € Ly, s0 fc(x) € I (Lic) and
1el

M ((fe(x)) = xC, € [ (Im fc). Therefore Lic, € Mim fe), so (IT, = fe)k) = I (Im fc)
=Lyc, Hence fc is a representation of L as a subdirect product of {L,c /i€ l).

Assume that N C,={1}. To show that fc is an injection, let x € L be such
| €t

that (x), e, =fclx) =(C},e,. Hence x € C, for all i € I. By assumption, x =1,

so fe is an injection. Hence fc is an injective representation of L.,

Proposition 1,68, Let K be a skewsemifield and C the set of all a-convex
normal subgroups of K except {1}. Then K is a subdirectly irreducible

skewsemifields if and only if C has a minimum element.

Proof Assume that K is a subdirectly irmeducible skewsemifield. Suppose
that C has no minimum element. Then ~C ={1}. By Proposition 1.68.,

fc: K= II {(Kio) defined by fe(x) = (xC) c«c is an injective representation of L as
i€l

a subdirect product of {K,c / C € C}. By assumption, there exists a C' € C

such that [T, °fc is an isomorphism of L. To show that C'c {1}, let x € C'.
Then T ° fo(x) = A((fe(x)) =T{(xC) e c) = xC’ and x € [Ny o fc. Since My efc is
an injection, x =1, so C' = {1} which is a contradiction since C' € C. Therefore

C has a minimum element.



Conversely, assume that C has a minimum element, say C,_. Let {K /iel}

be a family of skewsemifields and f:L —» II K an injective representation of K as
‘ i €1

a subdirect product of {K, / i €1}. By Remark 1.42, 2) { m-kerIl,of /i€l}

is a set of a-convex nommal subgroup of K. Since f is an injection,

N m-kerIT,e g ={1}. Suppose that for every i € |, m-kerIT,=f={1}. Then
lel

{ mkerIiof/iel}cC, so C,c N mkerl=g={1} which is a contradiction.
' el

Hence there exists a k € | such that m-ker[T,ef={1}, so I of is an injection.

Therefore [, of is an isomorphism, so K is a subdirectly irreducible

skewsemifield. ,

Next, we want to show that every skewsemifield is a subdirect product of

subdirectly irreducible skewsemifields. First, we need three lemmas.

Lemma 169, Let K be a skewsemifieid and x,y € K* distinct. Let C={C / C is
an a-convex normal subgroup of K and xy" & C}. Then C has a maximal

element.

Proof Since {1} C, C=@. Let D be a nonempty chain of C. Then UD is
an upper bound of D and WD € C. By Zom's Lemma, C has a maximal

element. ,

Lemma 1.70. Using the same assumptions of Lemma 1.69., let M be a maximal
element in C, Let A={C / C is an a-convex normal subgroup of K and

McC} Then A has a minimum element.

Proof Since K* € A, A= @. If there exists a C € A such that xy™ & C then
it contradicts to the maximality of M. Then for every Ce A, xy"' € C, so ~A is

an a-convex normal subgroup of K which is the minimum eiement of A.,,
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Lemma 1.71, Using the same assumptions of Lemma 1.69., let M be a maximal

element in C. Ky is a subdirectly irreducible skewsemifietd.

Proof Let D be the set of all a-convex normat subgroups of K/m except

{M}. By Corollary 1.47., D is isomorphic to the set for all a-convex normal
subgroups of K strictly containing M. By Lemma 1.70., D has a minimum

element. By Proposition 1.68., Ky is a subdirectly irreducible skewsemifield. ,

Theorem 1.72. Let K be a skewsemifield. Then K is a subdirect product of

‘subdirectly irreducible skewsemifisids.

Proof If ]K_l =2 then done. Suppose that K| > 2. By Lemma 1.89., there
~exists an a-convex normal subgroup C,, of K such that xy'1 ¢ C,, for all

X,y € K* where x=y. By Lemma 1.71,, K/ny is a subdirectly irreducible

skewsemifield for all x,y € K* such that x#vy.
Let C={C, /x yeK* and x#y}. Let xe NC. If x#1 then x ¢ C,, which
is a contradiction since x € ~C. Hence ~C ={1}. By Proposition 1.67.,

fc:K— l'IC K/c is an injective representation of K as a subdircet product of
Ce€ .

{Kic / C € C}). Therefore fe(K) is a subdirect product of {Kc/CeCl.

By Kzfe(K), K is a subdirect product of subdirectly irreducible skewsemifields. “

We cannot generalize the last theorem to positively ordered skewsemifields.
It has been done for semifeilds ( i.e. both multiplication and addition are
assumed to be commutative ) in [3]. We proved it here because we feit that it

is interesting in the theory of skewsemifields.
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