CHAPTER III

'FULL MATRIX RINGS OVER kZ,

We have mentioned in Chapter I that any ring of the following rings has
the intersection property of quasi-ideals.

- (1) Commutative rings.

(2) Rings with identity.

(3) Regular rings.
Note that every quasi-ideal in a commutative ring is an ideal.

Let k,m and n be positive integers, The ring kZ, need not have an

identity and need not be regular. The ring 2Z,, is an example. Since for every
xeZ 12122x-1), 2%)2 % Z in Z;, for all x e Z. Then 2Z,, has no identity.

" Since 1242(4x—1) for all x € Z, 2 = 2(2%)2 in Zy, for all x € Z. Then 2Z,,
is not regular.

If KZ,, is a zero ring, then M,(kZ,) is a zero ring. If ¥Z, has an identity,
then the identity #n x n matrix over kZ, is the identity of M,(kZ,). If kZ,, is
regular, then by Theorem 1.2, M,(kZ,) is regular. Hence the ring M, (kZ,) has
the intersection property of quasi-ideals if kZ, is a zero ring, has an identity or is
a regular ring.

The, aim-of this, chapter is to give some sufficient conditions of k¥ and m

such that M,(kZ,) has the intersection property of quasi-ideals. These sufficient
conditions of £ and m are given such that ¥Z,, is a zero. ring, has an identity or
is a regular ring,

Let (k, m) denote the greatest common divisor of 4 and m. We remark that
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kZm = {6, (k, M), 2(k, M), cer g (W - ](k, M)} = (k, M)Zm

. We have that #Z,, = (k, "')((Tk_m")'zm) < (k,mZ,,. Since

m

(k, m)
(k, m) is the greatest common divisor of k and m, (k, m) = xk+ym for some x,y

€ Z Then (k, m)Z, = (xk+ymZ, < k(xZ,) +ymZ,) c kZ,+ (0} = kZ,.

and |¥Z, | =

Hence kZ,, = (k, m)Z,,. It remains to show that

Kz, c {6,. (k, m), 2(k, m), ..., [&—% -1](!:, m)} and for i,j e {0, 1,2, ...,

(kmm) -1}, i(k, m) = j(k, m) implies that /=,. Let a € Z. Then there exist q

and r in Z such that ak = gm+r and 0< r<m. Then r = ak-qgm. Since

k | & m)|r AW r m
(,m)lk and (k,m)|m, we have ( ,m)|r Then & ) eZ 0< ) < W m

and in Z,,

=
S )

- gm ro
= ((k, - + . m))(k, m)

~

k, m)
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&, m) (k, m) + __(k, - (k, m)

e r

= 0+ ) (k, m)
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which is an element of {5, (k, m), 2(k, m), ..., ['('}m_m) - lj(k, m) } Néxt, let s,

m
1 —_— - =
€ {0, 1, ?, o T m) 1} be such that s<¢ and s(k, m) = t(k, m).
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m m .
-5 < 1 — s)(k, m). Therefore f—s). Since 0 <
Then 0 < t-5 &, m) and ml( sKk, m) re | (k,m)|( )
I—S<(k%nj, t—s=0, SO-'S=f.
Some examples of the previous remark are
823 = 4Zy = (0,4,8, 12, 16, 20, 24, 28, 32},
' 36
= — = 9
|SZ‘§6| 4 L]
125215 = 52[5 T {6, g, 1_0},
15
125z = =2 = 3
5
122y = Zjy
and
l122,,,] = 121

First, we give a necessary and sufficient condition of ¥ and m such that
KL, is a zero ring.

Theorem 3.1, Let &k and m be a positive integer. Then KZ, is a zero ring if

and only if m | k2. Hence if m | k2, then Jor every positive integer n, M, (¥Z,) has

the intersection property of quasi-ideals.

Proof. Assume that kZ, is a zero ring. Then kk=10 in kZ, which .
implies ‘that m | £2,

Conversely, if m|#2, then (ky2=0 in Z,. Thus for x,yelZ, (k¥)ky) =
(k’%y = 0 in kZ,,. Hence KZ, is a zero ring. [
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From Theorem 3.1, we have as examples that 6Z, and 48Z;, which are
32y, and 16Z¢,, respectively are both zero rings, and hence for every positive
integer 1, M, (6Z,) and M, (48Z¢,) have the intersection property of quasi-ideals.

| If k is a positive integer, then 2k|k? if and only if 2|k Hence the next
corollary is obtained directly from Theorem 3.1,

Corollary 3.2. Let k be a positive integer. Then kZ,, is a zero ring if and only
if k is even. Hence if k is even, then for every positive integer n, M,(kZy,) -has

the intersection property of quasi-ideals.

In the next theorem, a necessary and sufficient condition for positive

integers £ and m such that #Z, has an identity is given.

* Theorem 3.3. Let k and m be positive integers. Then kZ, has an identity if
and only if there exists a € Z such that m|k(ak— 1). If such an a exists, then

ka is the identity of KZ, and M,(kZ,) has the intersection property of quasi-

ideals for every positive integer n.

Proof. Assume that XZ_, has aﬁ identity, say k@ where a € Z. Since k €
KZ,, (k@)k =k . Then m|(#a—k), so m|k(ka~1).

Conversely, let a € Z be such that mlk(ka— 1). Then m =0. It
follows that (k@ )k = k. Thus for all x € Z, (k@ )(k¥)= k%. Hence (k@)(k¥)=
k% for all x € Z. This proves that k@ is the identity of kZ,, . W]

The following theorem is obtained from Theorem 3.3.
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Theorem 3.4. Let k and £ be positive integers and p a prime. Then KL has

an identity if and only if p! k If p[ k, then for every positive integer n,
M,(KZ) has the intersection property of quasi-ideals. |

Proof. Assume that k2,4 has an identity. By Theorem 3.3, there exists a
e Z such that p%|k(ak—1). Then ptl(ak=1), so px = ak—1 for some x € Z. -
Thus pi(-x) + ka =‘ 1. This implies' that p? and k are relatively prime. It follows
that p! k since p is a prime.

Conversely, assume that p! k. Since p is ‘a prime, p¢ and k are relatively
prime. Then ak+bp? = 1 for some a,b € Z. Then ak? +bp’k = k, so (pth)(-b) =

k(ak—1). Therefore pUk| k(ak - 1). By Theorem 3.3, KZ,, has an identity. [

We obtain as examples from Theorem 3.4 that each of 7Z,3 and 4Z,, has

an identity, and hence for every positive integer n, the full # x n matrix rings over
72,5 and 4Z,, have the intersection property of quasi-ideals,
It follows from Corollary 3.2 that for every positive integer k, kZy, is _not'

a zero ring if and only if £ is odd. The next theorem shows that a necessary and

sufficient condition for the regularity of ¥Z,;, where & is a positive integer is that

k is odd.

Theorem 3.5. Let k be a positive integer. Then kZ,, is a regular ring if and
only if k is odd. |
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Proof. Assume that ¥Zy, is a regular ring. Since kZy, = {0,k) and k =
O, FEKE =k = 0. It follows that £k = 0. Then kZ is not a zero ring. By

Corollary 3.2, % is odd.

Conversely, assume that &k is odd. By Corollary 3.2, kZ;; is not a zero
ring. Since ¥Zy = {0, k}, kk # 0. Thus kk =k and so kkk = k. Hence
kZ,;, is regular, o

If k is an even positive integer, then by Corollary 3.2, kZ,; is a zero ring
and hence M, (KZy;,) is a zero ring for every positive integer n. If k£ is an odd
positive integer, then by Theorem 3.5, kZ,, is a regular ring and hence by
Theorem 1.2, M, (kZ,;) is regular for all positive integers n. Since every zero ring

and every regular ring has the intersection property of quasi-ideals, we have the
- following theorem.

Theorem 3.6. For any positive integers n and k, M,(kZy,) has the intersection

property of gquasi-ideals.

The next theorem gives some sufficient conditions for a positive integer m
such that kZ_ is a regular ring for every positive integer &k, The following three

lemmas are proved first.

Lemma 3.7. For any positive integer m and integer x,
mlx(xﬁ Nx~-2)..(x-m+1).

Proof. Let m be a positive integer and x € Z. Then there exist ¢, r € Z

such that x = gm+r and 0<r<m. Then m|(x—r)‘ which implies that
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m|x(x—1)(x—2)...(x-m+ 1) since re {0,1,2,...,m-1}. 0O

Lemma 3.8. Let m be an odd positive integer.
(1) If mz2, then 2|(x"' —Xx) for every integer x..
(2 If mz3, then 3 | (x™ —x) for every integer x.

Proof. Let x be an integer. If m =2, then x" -x = x(x-1), so
Zl(x"‘—x) by Lemma 3.7. Assume that m > 2. Since m is odd, m-2 is an
odd positive integer. Then

X" —x

i

x(xm=1— 1)

= x(x-DEm2+xm3+ +x+1)

= x(o— {2+ xm=3) + (x4 x0m-5) o+ L+ (x+ 1)]
= x(x - Dxm3+ 1) +xm=S5x+ 1)+ ..+ (x+ 1)]

= (= 1)+ )3+ am-S 1), |

" By Lemma 3.7, 2|x(x-— 1) and 3|x(x— 1)(x + 1). Hence Zl(x"'—x) and
3lem-x). O

Lemma 3.9, Let p be a prime. Then the following statements hold.
(1) If p>2, then for every x € Z, (Y = % in Zy,.

(2) If p>3, then for every xeZ, (XY =X in Zy,.

Proof. Let x € Z. By Fermat’s Theorem, x? = x(mod p). Then p|(xP—x).

(1) Assume that p > 2. Then. 2 and p are relatively prime, By Lemma
38, 2|(Jd’—x). Since p|(xP—x), 2p|(xP—-x). Then (E) =X in Z,,.

(2) Assume that p>3. Then 3 and p are relatively prime. Since
3 |(xP—x) by Lemma 3.7, 3p|(.1d’—x). Hence (X =% in Z,,. a
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Theorem 3.10. (1) Let k be a positive integer and p a prime such that p > 2.
Then kZ,, is a regular ring. Hence for every positive integer n, M, (KZ,,) has
the intersection property of quasi-ideals.

(2) Let k be a positive integer and p a prime such that p>3.
Then k&, is a regular ring. Hence for every positive integer n, M,(kZy,) has

the intersection property of quasi-ideals.

Proof. (1) By Lemma 3.9(1), for every x € Z, (kX ) = kX in Zy, and
so (kX )(kX Y-2(kx) = kX in Z,,. This proves that kZ,, is a regular ring,
(2) If xe Z, then by Lemma 3.9(2), (4x)F = kX in Z3, and so

(k% )kxy2kx) = k¥ in Z;,. Hence kZ;, is a regular ring, 0

We give as examples that 6Z,, and 9Z,, are regular rings by Theorem
3.10. Hence for every positive integer n, M, (6Z,,) and M, (9Z,,) have the

intersection property of quasi-ideals.

We give a remark about all possible rings given in Theorem 3.10.

Remark. Let % be a positive integer and p a prime,
(1) Assume that P>2.

(1.1)"f 2|k and plk, then kZ,,= {0).

(1.2) If 2|k and plk, then kZ,,=22Z,,= {0, 3, ..., (p—1)Z} which
is isomorphic to the field Z,.

(13) Xt 21k and plk, then kZ,, = pZ,, = {0, p} which is
isomorphic to the field Z, . .l '

(1.4) I 20k and plk, then kZ,,= Z,,.

(2) Assume that p >3,
(21) I 3|k and plk, then ¥Z;,= (D).
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(2.2) 1 3|k and plk, then kZy= 3Z;,= (7,3, ..., (p-1)3} which
is isomorphic to the field Z,.

(23) 1f 3/k and plk, then kZy,= pZ,,= {0, p,2p) which is
isomorphic to the field Z, .

(24) 1t 31k and plk, then k23, = Z,,.

Proof. (1.1) If 2|k and p|k, then 2p|k since 2 and p are relatively
prime which implies that £Z,,= {0}.

(1.2) Assume that 2% and p[ k. Since 2 and p are relatively prime,
2p and k& are relatlvely prime. Then Koy = 2,,.

(1.3) Assume that 2|k and pl& Then (2p, %) =2, so kZ,,=2Z,,=
(0,2,...,(p-1)2} and |kZ,,| =p. To show that the ring kZ,, is a field
" of order P, it suffices to show that 2Z,, has no zero divisor. Let x,y € Z be
such that 2¥)27)=0 in Z,,. Then 2pl4xy. Thus p|2xy. Since 2 and p
are relatively prime, p]xy. Then p[x or p| y since p is a prime. Hence 2p|2x
or 2p|2y. Consequently, 2¥ =0 or 27 =0 in 4, . Therefore 2Z,, has no
zero divisor. Then kZ,, is a field of order p, so it is isomorphic to Z,.

(1.4) Assume 2% and plk. Then (2p, k) =p, so KLy, = Py, = {0, p)
and |kZ,,| =2. 1f 2p|p2, then 2

p, a contradiction, Thus Fp # 0 in 2y, .
Therefore £Z,, has no zero divisor, It follows that the ring kZQP is-isomorphic

to the field Z, .

(2.1) If 3|k and plk, then 3p|k since 3 and p are relatively prime
which implies that ks, = {0).

(2.2) Assume that 3/% and p! k. Since 3 and p are relatively prime,
3p and k are relatively prime. Then kLy,= Zs,.
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(2.3) Assume that .3lk. and pl k. Then (3p, k) =3, so ki3p= 32, =
{0,3,..,@-1)3} and |kZ3p| =p. To show that the ring 3Z;, has no
zero divisor, let x,y € Z be such that (3¥)(3¥)=0 in Zy, . Then 3p|9xy, 80
p|3xy. Since 3 and p are relatively prime, p|xy. Then p|x or pl y.. Then
3p'3x or 3p|3y. It follows that 3¥ =0 or 3y =0 in Z,, . Therefore the

ring ¥Zy, is isomorphic to the field Z, .

(2.4) Assume 3[4k and p|k. Then (3p, k) =p. Therefore kZ;,= pZ,, =
{0, 'p',Zﬁ}l'and lkZ3p| = 3. Since 3p!p2, 3p!2p2 and '3p14pz, it follows
that Fp =0, F2p)=0 and 27)25) =0 in Z,, .l This proves that ¥Zs,

has no zero divisor. Hence the ring kZ;, is isomorphic to the field Z;. O

Observe from the remarks that the rings in Theorem 3.10(1) and 3.10(2)
always have an identity. Then without referring their regularity, we can obtain
that for any positive integer », the full » x n matrix rings over each of those

rings has the intersection property of gquasi-ideals. However, Theorem 3.10

shows that those rings are also regular.
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