CHAPTER 1l

RINGS OF ALL STRICTLY UPPER TRIANGULAR MATRICES

For a ring R and a positive integer n, let SU,(R) denote the ring of all
strictly upper triangular » x n matrices under the usual addition and
multiplication of matrices.

Let R be a ring and » a positive integer. If n <2, then SU,R) is a
zero ring. It is clearly seen that if IRl >1 and n2 2, SU,R) has no left
identity and no right identity and it is not a regular ring.

Assume R is not a zero ring and n>2. Then there exist a, b € R such

that ab # 0, Define the matrices 4, B & SUL(R) by

0 0 0
0 a 0 0 0 o b
0 0 0 0 :
4 = B =1|0 0 0
0 0 0 0
: 0 0 0 |
Then
0 ¢ ab
0 - 0 0
4B = | L # [0}, xp = BA.
0 0 0

Therefore SU,(R) is not commutative.

We conclude that

(1) if n<2, then SU,(R) is a zero ring, and hence SU,(R) has the
intersection property of quasi-ideals, |

@) if |RI>1 and n22, then SU,(R) has no left identity and no right
identity, ‘

@3) if |R| >1 and #>2, then SU,(R) is not regular and
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(4) if R is not a zero ring and #> 2, then SU,(R) is not commutative.

It seems worthwhile to study the intersection property of quasi-ideals of
SUR) for certain rihgs R. Rings with identity of characteristic # 2, division
rings and the rings Z;Uk for all primes p and positive integers k are rings of
our interest in this chapter.

We show in the following theorem that SU,(R) does not have the

intersection property of quasi-ideals if R has an identity, |R| >1, char(R) = 2
and n=4. |

Theorem 2.1. Let R be a ring with identity, Rl >1 and chdr(R) #2 Ifnis
a positive integer such that SU,(R) has the intersection property of quasi-

ideals, then n<3.

Proof. Let e be the identity of R. Since char(R)=2, 2¢#0 and ~e #e.
Assume that #2>4. Let

[0 ««« 0 e e e | [0 - 0 e —e e |
0 0 0 0 e 0 ««« 0 0 0 2e
4 = 0 -« 0 0 0 e e 0 - 0 0 0 e
0 000 0| ™ "1 000 0 0
[ 0 0 00 0] 000 0 0|
For C, D e SU(R),
y el 0 o (O 78, 7o, cel ]
0. Ca Gz - Gy dVlc) JNC
0 0 G Gn g 000 e
c4 = -
_ 0«00 0 0
0 0 0 Cn—l,n
0 0 0 0
- o000 0|




—0 0 C12+C13-‘
=1 0 « 0 0
0 - 0 0 |
and
_ ' Q0 - 0 e
0 Dy Dy Dy, ] 0 . 0 0
0 O Dy D, R . o o
DB = . 0 0
0 0 0 Dyein
|0 0 0 0 Nowoo
[0 0 2Dy, +Dy3
0 0 Dy3
=1 0 - 0 0 ,
| 0 - 0 0 |
and then
) 0 Cjp+Cy3+2Dy5 +Dy3 ]
0 HOO 0 C23+D23
CA+DB =] 0 - 0 0
|0 0 0 |
For C,D e SU/(R),
) 0-e-e e .
0 C
0 v 0.0 0 e 0.(1)2213_
4 = 0 - 0 0 0 e 23
~ 100000
‘- 0 0 O
0 0 ©
o 00 0 0j-

-¢ e |
0 2e
0 e
0 0O

13
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[0 - 0 C,,_Q.,,..l Cn—2,n+cn-1,n
_ 0 - 0 0 0
i 0 -~ 0 0 0
and
0 0 e —-e e |_ ' -
Dy Dy - Dy,
O - 0 O 0 2e 0 0 D D
sp o | 000 0 2 2
o0 0 0 O
0 0 0 * Dn-ln
| 0 0 0 0
|0+ 0.0 0 0 | i
[0 - O D, 2n1 Dy on=Dyyp
_ 0 s 0 0 0
0 0 0 0
_and then
AC+BD = :
0 e 0 Coop +Dhapt Cuzn +Coatn + Dacan = Doy
0 - 0 0 0
0 .- 0 0 0

From these equalities, we obtain that

(r - h

0 0 x
‘ 0 0 vy
SULRMA, B} = {40+ 0 O lx,y»eRto ~ — e, (a)
(L0 0 0]
and
0 «+ 0 X
0 -0 00 '
{4, B}SUR) = Xy eRr. (b)
0 0 0 O




From (a) and (b),

From (a) and (e), we have

SU(R){4, B} n (Z{4, B} + {4, B}SU(R)) =

o=

0 « 0 =z

<10+ 0 O ||lHeZandzeR }

L - -

and from (c) and (d),

0 0 x ]
‘ 0 - 0 0
SULR4, B} ~ {4, BYSU,® = {| " HxeRp
0 0 0
Since Z{4,B} = (nd+nB | n,n’cZ},
Z{4,B}Y =
0 «r 0 (n+1)e (n—nde (n+nde] )
0 -« 0 0 0 (n+2n')e
0 « 0 it} 0 (n+ne ez b
110 -0 o 0 o ||BTE
0.0 0 0 0o |
Then from (b) and (d),
. Z{A4, B} + {4, B}SU,(R) =
[0 - 0 (n+n)de X+Hn-nde y+n+n)e]
¢ - 0 0 0 (n+2n')e ||~ | 7z
0 v 0 0 0 (n+ne "’"j
0«0 0 0 0 an
......... x¥.y'eR
o0 0 0 o |

15
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Z(4, By + (SU,(R)4, B} ~ {4, B)SU,(®) =

0 - 0 (n+n)e (n=nde (n+nde+x]
0 e 0 0 0 (n+2nl)e ' Z
0 - 0 0 0 (n+n')e n, me
1o« 0 o. o0 0 and C ernenanns ®
xR
K 0 0 0 o ||
From (f), we have that
[0 0 e |
00 /—e
O A 0F 03 PN N el (*) -

| 0« 0 0
is an element of SUR){A, B} n (Z{4, B} + {4, B}SU(R)). We shall show that
. the matrix (*) is not an element of Z{4, B} + (SU,,(R){A, B} n {4, B}SU,,(R)).
Suppose on the contrary that it is. From (g), there exist integers n,n'e Z and

x € R such that

(n+nh)e = 0 ... (D
n-n% =0 ... (2)
n+2nY)e = - . €)]
(n+ndet+x = e Ll (4)

By (1) and (3),
ne =1—-e ;Lo (5)

By (1) ‘and (5),
| ne = e .. (6)

By (2), (5) and (6), we have e = —e which is a contradiction since char(R) #

2. Therefore the matrix (*) is an element of SU,(R){4, B} n (Z{4, B} +
{4, B}SUR)) but not of Z{d, B} + (SUR){4, B} ~ {4,B}SU,(R)). Hence

SU(R){4, B} ~ (Z{A4, B} + {4, B\SUR)) ¢ Z{4,B) +(3U,,(R){A,B} A
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{4, B}SU,,(R)). By Theorem 1.4, SU,(R) does not have thé intersection

property of quasi-ideals. Hence the theorem is proved. (0

We know that for any positive integer m, the characteristic of the ring
Z, is m, Then by Theorem 2.1, we have

Corollary 2.2. If m and n are positive integers, m>2 and n2z= 4, then
SU(Z,,) does not have the intersection property of quasi-ideals.

We shall prove in the next theorem that if R is a division ring, then

every quasi-ideal of SUy(R) is an ideal of SU;(R). The following lemma is

required and it is true for any ring.

Lemma 2.3. Let R be a ring and Q a quasi-ideal of SUs(R). Then the
Jollowing statements hold.

(1) If for every A€ Q, A3 =0, then Q is a right ideal of SUy(R).

(2) If for every 4 € Q, 4y3=0, then Q is a left ideal of SU,(R).

Proof. First, we note that for 4, B e SU(R),

A3 B3

0 | e, *)
o |

AB =

[om I o B e
oo ©

(1) Assume that for every 4 € Q, A;,=0. Then for A e Q and B e
SU(R), by (%), 4B = [0]343 € Q. Hence Q is a right ideal of SU(R).

(2) Assume that for every de Q, Ay3=0. Then by (*), BA = [O]s,3
for all 4 € Q and B € SU;(R). Hence Q is a left ideal of SUR). O
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Theorem 2.4. If R is a division ring, then every quasi-ideal of SUyR) is a
left ideal or a right ideal of SUx(R). Hence for any division ring R, SUy(R)

has the intersection property of quasi-ideals.

Proof. Let R be a division ring and Q a quasi-ideal of SU3(R). If for
every A € O, A1, =0, then by Lemma 2.3(1), Q is a right ideal of SU3(R). If
for every 4 € 0, Ay3=0, then by Lemma 2.3(2), Q is a left ideal of SUj(R).

These both cases imply that O has the intersection property.
Next, assume that there exist A, B € @ such that A;; #0 and By; #0.

Then
0 .0 CaBy3
SUR)B = 0 0 0 C € SU;3(R)
0 0 0 '
. and
00 4G |
: 00 O
0 x ]
Since for every xe R, | 0 0 x | is an element of SUs(R),
00 0
[0 0 xBy,
SUR)B = 00 O x €R
00 0
and
. 0 0 Apx
ASUR) = 00 0 x eR
00 O

Since A3 %0, By3#0 and R is a division ring, it follows that 4;,R = R and

RB,3 = R. Consequently,
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o
o
=

x €R

o
()
<o

SUSRB = 1

o
[=
<

\

and

0 0

0 0
1%

We have that each element of SU;(R)Q and each element of OSU3(R) is of

®

L=/

ASUR) x €R

o

0 0 a
the foom | 0 O O | where a € R. This implies that
0 00
0 0 x
SU;R)Q < 0 0 0lixeRy = SUR)B
000 '
and
0 0O
QSUs(R) < 0 0 0 |jxeR¢ = ASUs(R).
0090
Hence
00 x
SUZR)Q = 0 0O 0 {|xeR;y = OSUR).
' 0 0 0

Since Q is a quasi-ideal, SU;(R)Q ~ QSU3(R) < Q. It follows that SU;(R)Q <
Q and QSU3(R) < Q. Therefore Q is an ideal of SU;(R) and hence QO has the

intersection property. O

Observe from the proof of Theorem 2.4 that if R is a division ring and
O is a quasi-ideal of SU;(R) such that 4, #0 and By; =0 for some 4,8 € 0,
respectively, then Q is an ideal of SU,(R).



20

Since the ring Z,, is a field if m is a prime, by Theorem 2.4, we have

Corollary 2.5, If p is a prime, then every quasi-ideal of SUy(Z,) is a left
ideal or a right ideal of SU3(Z,). Hence for every prime p, SU(Z,) has the

intersection property of quasi-ideals.

From Theorem 2.1 and Theorem 2.4, the two following corollaries are

obtained.

Corollary 2.6. Let F be a field of characteristic + 2. Then for a positive
integer n, SU(F) has the intersection property of quasi-ideals if and only if
n=<3,

Corollary 2.7. Let p be a prime such that p>2. Then for a positive integer
n, SU,;(ZP) has the intersection property of quasi-ideals if and only if n<3.

We have from Corollary 2.5 that every quasi-ideal of SU3(Z,) is a left

ideal or a right ideal if m is a prime. It is natural to ask whether or not this

propérty holds if m is not a prime, The negative answer is given by SUy(Z).
We shall show that there exists a quasi-ideal in SU;(Z¢) which is neither a left
nor a right ideal.

First, we give a general fact of the ring Z,, as follows : If m and » are
integers such that m and n are relatively prime, then in Z_ , Z# ~Z#H =
{0}. To prove this, let x# =yf for some x, yeZ. Then mnl(xm —yn). Then
there exists ze Z sﬁch that mnz = xm—yn, s0 yn=xm—mnz=m(x - nz). Since
Xx—nr e Z, m| yn. Since m and n are relative prirﬁe, mi n, so we have m | y.
Then there exists k € Z such that y =mk. Thus in Z,,, xm =yH = (mk)ii =

k(mn)=T0.
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Example. Let Q be the subset of SU3(Zg) defined by

m2

Q=

o O O

0
0 nm3 [lmneZ
0 0

Then Q is an additive subgroup of SU;(Zs). Since for 4, B € SUs(Zg), m,n €
Z,

0 m2 0 0 0 ndpp3
Alo 0 n3 | =00 0
c 0 0 0 0 0
and
0 m’i 0 00 m,Bza.i
0 0 n3 |B = 0 0 0 .
0 0 0 00 0
it follows that
0 0 n3
SU(Zs)Q0 = 0 0 0 |[[neZ
00 0 \
and
0 0 nm2
OSUs(Zg) = 0 0 O nelZ
(00 0
003 0.0 2
Then [ 0 0 0 [ and | 0 O 0 | are elements of SU;(Ze)Q and OSU3(Zy),
0 0 0O 0 0 0

respectively. But these matrices do not belong to Q, so Q is neither a left nor
a right ideal of QSU;(Z).

let mneZ l_)e such that
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0 0 m 0 0 n2
00 O =100 O
00 0 00 O

Then m3 =n2 € Z2 nZ3 in Z,,;. Since 2 and 3 are relatively prime, Z2
Z3 = {0} which implies that m3 = n2 = 0. Hence SUy(Zg)Q  QSU3(Zy)

={0} < Q. Therefore Q is a quasi-ideal of SU3(Z). O

Observe that 6 is not a prime power. In the next theorem,‘ we shall

show that if p is a prime and » is a positive integer, then SU3(Z,) has the

property that each of its quasi-ideals is a left or a right ideal. The proof of

theorem requires the fact that the ideals of Z, form a chain under set
inclusion,
We note that in a ring Z,, where m is a positive integer, the following

statements hold.

(1) I I is an ideal of Z,,, then /=aZ,, for some a € Z.

(2) If aeZ is such that a and m are relatively prime, then dZ,, =2 .

To prove (1), let 7 be an ideal of Z, and 7 % {0}. We have that
{xel | ¥ 1 and x>0} = @ since for every x € Z, ¥ e/ implies —x e 1.
Let |

a=mn{xeZ| ¥ el and x> 0).

Then @ &1, $0 al,=aZ, c I Let be'Z be such that b eI Then there
exist ¢ and 7 in Z such that » = ga+r, 0 < r<a. Therefore b = ga + 7. |

It foliows that 7 = b —qd e1. By the property of @, #=0. Then b = ga =
ag € ark,, |
Next, we shall prove (2). Since a and m are relatively prime, ax + my = |

1 for some x and y in Z. Then 1 = ax+my =a¥ e oZ,,. Hence aZ,=2Z,,
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Lemma 28. If p is a prime and k is a positive integer, then {H‘an | ke

(0,1, ... ,m}} is the set of all ideals of the ring Zy and PZy 2 PHZy for
all ke {0,1,...,n-1}.

Proof. Let / be an ideal of Z and I {0). Then I = aZ,, for some

aeZ and a>0, Then a = plb for some £, b € Z such that £2 0 and plb.

Therefore p* and b are relatively prime since p is a prime. Consequently, J =

pZ, = p‘(prp) =pZyp. I L2n, then I= {0}, a contradiction. Then £<n,
‘and so we are done. If k & {0, 1, ... ,n-1}, then pH*1Z, = pXpZ,) c P'Z,.
U

Theorem 2.9, Let k be a positive integer and p a prime. Then every quasi-
.ideal of SUy(Zy) is a left ideal or a right ideal. Hence SUy(Z,4) has the

intersection property of quasi-ideals.

Proof. Let O be a quasi-ideal of SUy(Zy). If for every 4 € 0, 4jy =
0, then by Lemma 2.3(1), Q is a right ideal of SUNZy). If for every 4 € Q,
Ay3= 0, then by Lemma 2.3(2), Q is a left ideal of SUS(Zy).

Next, assume that there exist 4,8 € Q such that A;;# 0 and B,y = 0.

Then {er|x>O and X =C), for some Ce 0} = @ and {er|x>0

and ¥ =C,; for some Ce Q) # @. Let

a=min{xeZ| x>0 and X =(Cj, for some C e Q)
and |

b=min{xeZ| x>0 and X =Cy; for some C e Q).
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Then there exist 4, B € Q such that A, =@ and an3 =b. Let CeQ and
let c,d e Z be such that Ciz=C and Cy3=d. Since a,b,¢,deZ, a=0 and
b#0, there exist ¢,7,5,f € Z such that

¢c=gqa+r where 0 <r<a and d=sb+t where 0 <t < b,

Then r=c-ga and ¢t=d - sb which imply that F = 8~¢qa@ and 7 =d—sb.
Since .4, B,Ce Q and O is an addit'ive subgroup of SU(Z,», it follows that
C-gd,C-sB e Q. Buf (C- q2)12=cu— qﬁlz =¢—qd =7 and (C€- 53)23
=Cy3—sBy; =d-sb =, so by the properties of @ and b, r=0 and ¢=0,

Consequently, C); = qﬁlz =ga and Cy = sf?23 =sb. Hence the following
statement is proved.

™ For every C e (, there exist g, s € Z such that

CIZ 3 qa and C23 = Sg.

07 0|
Since for neZ, | 0 0 7 | eSUyZp,
00 0
656 6'6?_?‘23 '6-6"5
00 #A|B=|00 0 =100 0
000 00 0 00 0
and _
_(51'1_6 66212?7 —(5611&"
A0 0 Al =183 0 |=|75 0l
0 0 0 0.0 0 00 0
we have that
: 00 nb
SUZHC 2 310 0 C|lnezZt ... (1)
00 0

and
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2]

nedt.

ol ol

If D e Q, then by (*), Dy, = 4 and D,; = £b for some k, £ ¢ Z and hence

for every E e SUy(Zp),

0 0 (Ej,
ED={00 0

00 ©
This implies that

SUS(Z)Q
and

OSUy(Z,9)
From (1) and (3), we have

SU;(ZH0
and (2) and (4) give

QSUs(zph)

|

and

<o of of ol o) Ol ol o] ©l

ol o <ol

DE

ol @ <ol o o ol ol o ol

ol o) o

Ky

ol ol ol
ol o ol

ol ©l

nh :
0llneZt ... 3)
0

na

OllmezZy. .. 4)
0 _

?Ib—

0llneZ

0

]
(=] = &
| R
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Hence
0 0 bm 00
SUNZHQ = 0 0 OjlneZy = 4|0 0 0 febng
00 O ' 000
.......... ()
and
- . |10 0 ai : 00 ¥
QSU;,(Zpt) = 00 0|lneZ = 0 0 0j|% eaZp,
00 0 000
.......... (6)

By Lemma 2.8, bZ) < aZy or aZy o bZ,. Since Q is a quasiideal of
SUNZ), SUZAQ ~ OSUSZ,) < O.

Case 1: b2, ¢ aZy. By (5) and (6), SUS(2ZN0 < QSU3(Z,). Then
- SUSZAQ = SUNZAQ ~ QSUZ,) < Q. Therefore Q is a left ideal of
SUNZp).

Case2: aZ, < bZy. By (5) and (6), OSUS(Z,) < SUNZNQ, so QSUSZ,)
= SUNZ#Q ~ QSUSZ,) < Q. Therefore Q is a right ideal of SUy(Z,). O
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