CHAPTER III
REGRESSIVE GENERALIZED TRANSFORMATION SEMIGROUPS

Let S be a transformation semigroup on a set.and #e€S. To make the
difference between the nthpowerof @€ § in the transformation semigroup S and
the nth power of @ €S in the generalized transformation semigroup (S,8) where
n is a positive integer, we use @" and {@,4)" to denote the nth power of & in S and
(5,6), respectively.

| Through this chapter, let X" denote a partially ordered set.

3.1 Regular Elements of Regressive Generalized Transformation Semigroups

Theorem 3.1.1. Let (S,8) be a regressive generalized transformation semigroup on
X . Then every regular element of (S,6) is an idempotent of (S,6).

Proof. Let e S be a regular element of (S,6). Then there exists an element

ﬂeS such that @fffa=a. Since f8e S, a is a regular element of S§. By

Theorem 2.1.1, a* =a. Let xeda. Then xa=xafffc. Since a, B and 6 are

regressive, xa=xalffa Sxaf <xa. It implies that xa =xad, so we have that

xo=xa’ =xafx. Now we have proved that Aaﬁda&a and xa=xaba for

all xe da. But daba g da, so a=a9a=(a,6)2. Hence o is an idempotent in

$,0. 0

Theorem 3.1.2. Let (§,6) be a regressive generalized transformation semigroup on
X . Then every idempotent of (§,8) is an idempotent of S.

Proof. Let ¢« S be an idempotent of (S,8). Then afx =a. Therefore a is a

regular element of S. By Theorem 2.1.1, & is an idempotentof S. J



——-Y '

e >
LU LT l:mu"mnqy; n:
!nmmmum;umm, 21

Corollary 3.1.3. Let (§,8) be aregressive generalized transformation semigroup on

X . ¥ (S,8) is a regular semigroup, then § is a regular semigroup.

Proof. Assume that (S,8) is a regular semigroup. By Thcomfn 3.1.1, every element
of (S,0) is an idempotent of (5,8). Then by Theorem 3.1.2, every element of § is an

idempotent of S. Hence S is a regular semigroup. [J

Theorem 3.1.4. Let (S,8) be a regressive generalized transformation semigroup on
"X and a € S. Then « is an idempotent of (S,4) if and only if
(@) forevery aeVa, a =min(aa™) and

(ii) Vac 46 and af =a forall aeVa.

Proof. Assume that « is an idempotent of (S,8). By Theorem 3.1.2, « is
an idempotent of S. Then by Theorem 2.1.2, we have that for every aeVa,
a=min(aa™'). Hence (i) holds. To proves (ii), let e Va . Then xa =5 for some
xe da. Since aba=a, xedaBa which implies that xa e A¢. Then be 46.
By (i),b =min(ba!). Since a and @ are regressive, & = xa = xofa = bOx SO < b
which implies that 58 = b. Hence (ii) holds.

Conversely, assume that (i) and (ii) hold. By Theorem 2.1.2 and (i), at=a.
Therefore Vac da and acx=a for all aeVa. Let xe Aa. Then xaeVa, so
by (ii), xa e A8 and xaf = xa which implies that xafa = xa* =xa . This proves
that dac dafo and xa=xaba forall xe Aa. But Adebo c Aa, so a =abe .

Hence a is an idempotent of (5,6). O

Corollary 3.1.5. Let (S,6) be aregressive generalized transformation semigroup on
X and o € S. Then « is a regular element of (S,0) if and only if
(i) for every ae Vo, a=min{aa™") and

(il) Va c A6 and af =a forall ae Ve,



Proof. It follows directly from Theorem 3.1.1 and Theorem 3.1.4. T

Theorem 3.1.6. Let S be PTee(X), Ine(X), Urs(X) or Wee(X). Then (S,6) is
a regular semigroup if and only if

(i) X isisolated and.

(i) 0 =1y.

Proof. Assume that (S,8) is a regular semigroup. By Corollary 3.1.3, § isa regular
semigroup. By Theorem 2.1.6, X is isolated. Hence (i) holds. Since #e S and X
is isolated, by Lemma 2.1.5, 6 =1,,. To show that 8 =1, , suppose not. Then there
exists an element a € X \A6. Let &< PT(X) be such that Ade = {a}=Va. Then
aeS and afa =0=¢a.Thus o is not an idempotent of (5,60). By Theorerh .11,
- ‘@ 'is not a regular element of (S,d) which implies that (S,8) is not a regular
semigroup, a contradiction. Hence & =1y, and so. (ii) holds.

Conversely, assume that (i) and (i) hold. Since X is isolated, by

Lemma 2.1.5, S is aregular semigroup. Since & =1y, we have that (5,8) and S are

the same semigroup. Hence (S,8) is a regular semigroup. [

Theorem 3.1.7. Let S be Tpe(X) or Ves(X ) and 8 €S .Then (5,6) is aregular
semigroup if and only if

(i) for every chain C of X, |C| <2 and

(i) =1y.

Proof. Assume that (S,8) is a regular semigroup. By Corollary 3.1.3, § is aregular
semigroup. By Theorem 2.1.7, (i) holds. To prove that =1y, suppose not. Then
there exists an element aeX such that af<a. Since i,eS and

aly8l, =af <a=aly, we have that 1,61y #1y, so 1y is not an idempotent
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of (5,6). By Theorem 3.1.1, 1, is not a regular element of (S,6) which isa

contradiction,
Conversely, assume that (i) and (ii) hold. By Theorem 2.1.7, § is aregular
semigroup. Since #=1,, we have that (S,8)=5 as semigroups. Hence (S,6) is

a regular semigroup. J
3.2 Eventual Regularity of (PTpz(X).68), (Tos(X)6)and (/- (X)8)

In this section, we give necessary and sufficient conditions for X and & such
that (S,8) is eventually regular where § is PTpz(X), Trp(X) or Ipz(X) and f €S,

We begin this section by giving a general fact of infinite chains which is used

later.

Proposition 3.2.1. If X is an infinite chain, then there exist x,,x;,%;,...in X such
that

X <Xy <Xy <.
or there exist x_j,x_5,%_3,... in X such that

X >X g >X 3>,

Proof. Assume that X is an infinite chain,

Casel: X does not have a maximum element. Let x, € X. Then x, isnot the
maximum element of X, so there exists an element x, in X such that x; <x,. Since
X has no a maximum element, x, is not the maximum element of X. Then x, <x,
for some x; in. X', By conﬁnuing this process inductively, we can obtain x;,x;,x;,...
in X suchthat x; <xy <X <....

Case 2 : X does not have a minimum element. By similar proof to Case 1, we can

get X_;,X_5,%_3,... in X suchthat x_ >x_, >x_3>...
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Case3: X has amaximum element and a minimum element. Let A and m be the
maximum element and the minimum element of X, respectively.

Subcase 3.1 : There exists an element a in X\{M} such that for be X,

a <b implies that a < x < b forsome xe X . Since a <M, there exists an element

x_ € X such that a<x_ <M. By assumption, a<x_, <x_ forsome x_,€X.
Continue this process inductively, we have x_j,x ;,%.,.. in X such that
Xy >X_ 3> %X 3> 0.

Subcase 3.2 : For every ae X \{M}, there exists an element b in X such

that 2 <b and for x€ X, asx < b impliesthat x=a or x=5. Since X is infinite,

me X \{M }. Let x, =m. Then there exists x, € X such that x; <x, and there isno
xe X such that x, <x¥x<x,. Then x, #M since X is infinite. By assumption,
x, <x; for some x;€X such that there is no xe X' with x, <x<x;. Then
{xeX/xsx3}={x,,x2,x3}. Since X is infinite, x; € X \{M}. Again, there exists
an element x, € X such that x;<x, and there is no xe X with x; <x<x,....

By this process, we can obtain x,x,,X,... it X suchthat x, <x, <xy <... O

Lemma 3.2.2. Let 8¢ PTh(X ) have the property that for x,y in the domain of @,
x <y implies x < y@ < y. Then forall x,y,z in the domain of @, x < y <z implies

that x8 < z8.

Proof.let x, y, z € 48 be such that x <y <z. By assumption ,

x0<x<yf@<y<z0<z. Since x<y,wehavethat xd <z8. J

Lemma 3.2.3, Let @ PTpe(X). If C is a finite chain of X contained in the

domain of & such that x< y# <y forall x,y € C with x <y, then |C8[2-Ig.

Proof.let C = {x,%,...,%x,} ad x <x, <...<x,. Then
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x0<x <x,0<$x, S ... $x,0 <x,. Bylemma 3.2.2, %80 < x40 < x50 <...<x,0

if nisodd and x8<x,8<xs0<..<x,,8 if n is even. This proves that

n col»
|{x,9,x26,...,x,,9}|2§-. Hence |C6| 2= 7,
Lemma 3.2.4. Let 6 € PT(X). If x,%,,., %, are in the domain of & such that n>1,
X <Xy <Xy, X0Sx S00Ex, S SX,05x, and x8<x,8<..<x,68, then
the partial transformation @ of X defined by (x,0)x=x_ foralie {2,3,...,1}

belongs to Ipz(X).

Proof. Since x,, <x,; for alli,je {2,3,...,n} such that i< j, wehavethat « is
one-to-one. Since (x@)x=x_, <x6 for al ie {2,3,...,n}, @ is regressive. Hence

aely(X). O

Theorem 3.2.5. Let S be PTp(X), Tre(X) or Ip:(X) and 8 &S . If the domain of
@ contains a sequence of disjoint finite chains C;,C;,C;,... such that

() |c] <ICal <[Cal < s

(ii) for ieNand x,y € C,, x <y implies that x < yf < y and

(iii) fox distinct i, j €N, C,dnC,0 =4,

then (S, 9) is not an eventuzlly regular semigroup.

Proof. We know that if (x,%,,X;,...) is & strictly increasing sequence of positive

integers, then it has a subsequence X ,X;, X, ... such that x, >2 and 2x, <x
forall i eN. Then we may assume that |C)| > 2 and for every i €N, 2|C| <|C,,.{. For

each ieN, let C, ={x,('),x£’),...,x£?} and x{” <x{’ <..<x{). Then n,>2 and

2n, <n,, forall ieN. From (ii) and Lemma3.2.3, we have that forevery i €N,

there exist Ky,kpseskiy in {1,2,..1} such that
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ky <kp <<k,

m,zl%l

and

x0g < x

U] *
o<z <.<xy 8 vee(®)

Since for every ieN, 192’—|Sm,$|C,|<’C’T”i5m,+,S|C,+; , it follows that

(m,my,ms,...) is a strictly increasing sequence of positive integers.
Define the partial transformation a of X by

(x{20)a=x{ | forall ieNand je 2,m;}.

Because of the assumption (iii) and (*), we have that a is well-defined.

It follows from the assumption (i), (*) and Lemma 3.2.4 that

restriction of o to {xg: 9,x§g|9,...,xg)m‘_l @} is one-to-one and regressive. But

(x{08,x) 0,0, %) O)acC; for all ieN and C;,C;,C;,w. ore all disjoint,

s0 & € I gz (X). It is obtained inductively that

forall n,ieN, n<m, and j>n implies that

(0 m_ D
(xkyQXa,B) =Xy ion*
Extend a to &+ X =X by

X@T = ki

xa if x=x@ for someie N and je{2,.,m)},
X otherwise. :

Then & € Tps(X). Let

512 if S = PTpe(X) or Ipg(X),
@ i §=Te(X)

Let neN. Since (m,,m;,m;,...) is a strictly increasing sequence of positive

integers, m, > 2n for some p €N. Then by (**) and the definition of S, we have that

(i, oYoar-{ei, oY s

Pmp-n
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and

(s, oY o =(x, o)merr=s;

kpmp=2n"

- oR () " oy
Since k pmpn * kp,,,,p_z,,, xkp.mp_n # xkp,mp—zn . Then (6,9) # (ﬂ,&) . This proves

that (B,6)" is not an idempotent of (5,8) for every neN. Hence § is not

an eventually regular element of S , and so (S,B) is not an eventually reguiar

semigroup. [J

Lemma 3.2.6. If 6 e PT(X) and the domain of ¢ contains an infinite chain C such
that for x,y e C, x<y implies that x< yf <y, then there exists a sequence of
disjoint finite chains C;,C,;,C;,... such that

) |ci| <|Cal <|C5] < s

(i) for ieNand x,y € C;, x <y implies that x < yf# < y and

(iii) for distinct i, jeN, C;6 N C,8=0.

Proof. By Proposition 3.2.1, there exist x;,x;,%;.... in C such that
X <Xy <Xy <.
or there exist x_;,X_5,%_3,... in C such that
X > X > Xy >
Case 1 : There exist x;,X;,%;,... in C such that x; < x, <x; <.... It follows from the
assumption that
x0Sx Sx,0<x, £x08x;5....

Using Lemma 3.2.2, we get that

X8 <x:8 <x0 <.
For each i €N, let y, =x,,,. Then

y0 <y,8<yf<...

For each i €N, let
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C = {y(i-l)f_H’ y(l‘-l)fﬂs"'! Y-ty :_,} )
2 2 2

that is,
Gy ={n}
Cy ={»2,¥3}
Cs ={V4>)s.¥¢}
Cs ={¥7,¥8:Y9: 10}

--------------------------

Then C;,C,,Cj,... are all disjoint finite chains satisfying (i),(ii) and jii), as required.
Case 2 : There exist x_;,X_,,¥_3,... in C such that x_, >x_, >x_; >.... Then

cxyzx 02zx,2x02x 32X 02,
By Lemma 3.2.2, x_,8 > x_46 > x_0 >....Foreach i €N, let y_, =x_3,, . Then
y,0>y_,0>y_30>.. Foreach ieN, let

.G ={J’(l-i)1 g U=t o Vi :}'
2 2 2

that is,
Ci={y4}
Cy ={y-2,¥.3}
Ca={y_4:Y-5:-¢}
Co={y2,Y8:Y-9,Y_10}

-----------------------------

Then C},C,,Cj,... are all disjoint finite chains which satisfy (i),(ii) and (iii). &7

Theorem 3.2.7. Let § be PTgg(X), Tas(X) or I5(X) and 8 S. If X contains
an infinite chain C such that for x,y e C, x <y implies x < y8 <y, then (S,0) is

not an eventually regular semigroup.

Proof. It follows directly from Theorem 3.2.5 and Lemma 3.2.6. [



Theorem 3.2.8. Let § be PTps(X), Tpg(X) or Ipg(X) and 8&S. Then (S,8) is
an eventually regular semigroup if and only if there exists a positive integer » such

that |Cl<n for every chain C of the domainof & having the property that for

x,yeC, x<y implies xS y8 < y.

Proof. Assume that there exists a positive integer » such that ]C] <n for every chain
C of the domain of & having the property that for x, yeC, x<y implies
xsy8<y. To show that (S,8) is eventually regular, let e S. Let x € A{,6)".
Then x e A(a, 9)’ for all ie {1,2,...,n}. Since @ and @ are regressive,
x 2 x(a,8)2 x(a,8) =...2 x(,8)". Then {x, (a,0)',x(e,6),...x(a, 9)"} is a chain

of X. It follows that {{x,x(a,&)',x(a,@)z,...,x(a,o)"}lSn which implies that

x(@,0) =x(a,8)" for some je{0),.,n~1} where x(a,8)° =x. Consequently,
*(@,0)" = x(@,0f. Since x e d@6)', x@6) e A6). Hence
(x(c:r,t?)""l Ia,&)l = (x(a,e)" Xa,a)l , 50 x(@,0) =x(e,0)""'. Then xe Aa,8)™.
This proves that A(a,8)" c 4(a,8)™ and x(@,8)" = x(a,0)™' for every x € A(a,8)".
But A(e,8)™ < 4(a,8)", so (2,6)" =(2,6)". Hence (,8)" is an idempotent of
(5,8), so a is an eventually regular element of (S,8).

Conversely, suppose that for every positive integer », there exists a chain C in

A8 such that |C|> nandforx,yeC, x <y implies x< yf <y. Let C, be a finite
chain in 40 such that for x,yeC;, x<y implies xSyf<y. Let|C|=F.
If 46\C, does not contain a chain C such that [C]> 3k, and for xyeC, x<y
implies x < y@ < y, then for every chain C of A@ having the property that for
x,yeC, x<y implie§ x<yf< Y ]C] < 4k, which contradicts the assumption.
Then there exists a finite chain 4, in A46\C, such that |4,|>3k and for

x,yed; , x<y implies x<yf<y. let C, ={xed,/xfeC,#} and
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k, =|C;|. By Lemma 323,

(xe 4y /x0€C)| < 2{xe 4,/x6 €C,8}6|. But
{xe 4,/ x6 € C,OY = C\0, 50 |{x € 4, /x0 € C,8}| $2|C,6| S 2Cy| < 2k . Then
|Ca| = |4, \{x € 4, /%6 € C6}]

= |4y|-|fx € 4,/x6 & C,6}|

2 |4y -2k

> 3k -2k,

= k

=y
Then C,~C, =@ and C,ANC,0 =D,

If 46\(C,uC,) does not contain & chain C such that |C|> S5k, and
for x,ye C, x <y implies x< yg <y, then forevery chain C of A0 having the
property that for x,yeC , x<y implies x<yf<y, |C|$5k2+k2+k1 <7k,
which contradicts the assumption. Then there exists a finite chain 4; in
A0\(C,UC,) such that |4y > 5k, and for x,y € 4;, x<y implies
x<y9<y. Let Co={xed/x0eCOUC0} and k; =|C|. By
Lemma 323, |{x&4;/x8eCOUC,H}| < 2{xes/x8eCHUCH0|. But
{xed |x0eCOUC,H}0 cCouCE =(CuC)e , so
[{x € 4;/x6 € G40 C,8) <2|(C, U8 < ¢ UC| < 21C|+2iCy| = 2k, +2k,
< 4k,. Then

|Gyl = |5 \{x € 4, 1x6 € C,8 W C,6)]
= || -l{x € 4, /x6 € CHLC,0)
2 |4y - 4k,
> 5k, —4k,
= kz
= |Cal.
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Then C] (‘\C3 = N C2 ('\C; =®, C]90039=®and CthC39=G.
By continuing this process inductively, we obtain a sequence of disjoint finite

chain C,,C,,C;,...such that
@) & <IC,| <|Cs| <ors
(ii) for ieNand x,y € C;, x <y implies that x < y# < y and
(iii) for distinct i, j €N, CONC,0 =D

Hence by Theorem 3.2.5, (S,6) is not eventualiy regular. (7

Corollary 3.2.9. Let X be a partially ordered setand let S be PTpg(X), Toe(X) or
I5(X) and 8 € S . If V4 is finite, then (S,8) is eventually regular.

Proof. Assume that V@ is finite. Let C be a chain in 48 such that for x,y € C,
x <y implies x < y§ < y. By Lemma3.2.3, |C|£2|C8|. Then |C|<2|V4|. Hence by

Theorem 3.2.8, (S,B) is eventually regular. J

3.3 Eventual Regularity of (U (X)8) (V- (X)8) and (#,:(X),8)

We use Lemma 2.3.1 to show in this section that each of these generalized

transformation semigroups is eventually regular,

Lemma 3.3.1. Let S be a regressive transformation semigroup on X such that for

every a € 8,  is almost identical. Then for 8e S, (S,B) is eventually regular.

Proof. By Lemma 2.3.1, § is an eventually regular semigroup. Let a e S. Then

af €S . Since S is eventually regular, there exists a positive integer » such that
(@6)" =(@8)" . Then (a8)’a =(a8)"a which implies that (,6)™" =(a,8)**"".

Since n+1<2n+1, it follows that (a,B)’" is an idempotent for some positive integer
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m . Hence a is eventually regular in ($,6). Therefore (S,8) is an eventually regular

semigroup. [

Theorem 332 If S is (Uge(X)0)Frs(X)8) or (Wez(X)6) and €S, then

(S,8) is eventually regular.
Proof. It follows from Lemma 3.3.1. [J
3.4 Eventual Regularity of (M z:(X),6) and (Ex:(X),6)

We give necessary and sufficient conditions for these generalized
transformation semigroups to be eventually regular by using the results from

Section 2.4.

Theorem 3.4.1. Let 8 € M :(X). Then the following statements are equivalent.
(1) Every chain of X has a minimum element.
@ Mps(X)={ix}.
(3) (M ge(X),8) is regular.
@) (Mp(X %8) is eventually regular.

Proof. (1)=>(2). Assume (1). By Theorem 2.4.3, Mz (X)={Ly}.

(2)=> (3). Trivial.

(3)=(4). Trivial.

(4)=(1). Assume that (4) holds. Since e M (X}, by Theorem 3.1.1,
(0, is an idempotent of (Mg (X)8) for some positive integer n. Then
(8,6)*" =(6,6)" which implies that 8*"~ = 62", But 4n—-1<2n-1,s0 8™ =£*"
for some positive integer m. Then for every xe X, x8™ =x8*". Since 8 is
regressive, for every xe X,

x2xfzx0*>..2x0™2x8™ > ... x0™"™,
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Since @ is one-to-one, for x € X, x > x@ implies that

x>x0>x60%>..>x0" >x8™ > . > x0™"
which is a contradiction since x8™ =x6*". Then x@=x for all xe X. Hence
6=1y.Then Mp(X) and (M;(X)6) are the same semigroup. Thus M p.(X) is
eventually regular. By Theorem 2.4.3, (1) holds. [J

Theorem 3.4.2. Let 8 € E-(X). Then the following statements afe equivalent.
(1) Every chain of X has a maximum element.
@) Epg(X)={lx}-
(3) (Ege(X).6) is regular.
@) (Epe{X ),8) is eventually regular.

Proof. (1)= (2) follows from Theorem 2.4.4.

(2)=(3). Trivial.

(3)=(4). Trivial.

(4)=>(1). Assume that (4) holds. Since 8 € Ez(X), by Theorem 3.1.1, (9,6)"
is an idempotent of (Ex;(X)#) for some positive integer #. Then (4,6)*" =(8,6)"
which implies that 6™ = 6" some positive integer m. Thus #™ is an idempotent in
Egg(X). Therefore x8™ = x forall xe V8™. But VO™ =X, so 8™ =1,. Then 8
is one-to-one. Now we have that ™ =82" and @ is one-to-one. By the proof of
(4)=(1) of Theorem 3.4.1, we havethat 6 =1, . Hence Epo(X) and (Ep-(X),6)
are the same semigroup. Thus Ep-(X) is eventually regular. By Theorem 2.4.4,

(1) holds. O
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