### CHAPTER III

#### REGRESSIVE GENERALIZED TRANSFORMATION SEMIGROUPS

Let S be a transformation semigroup on a set and  $\theta \in S$ . To make the difference between the nth power of  $\alpha \in S$  in the transformation semigroup S and the nth power of  $\alpha \in S$  in the generalized transformation semigroup  $(S, \theta)$  where n is a positive integer, we use  $\alpha^n$  and  $(\alpha, \theta)^n$  to denote the nth power of  $\alpha$  in S and  $(S, \theta)$ , respectively.

Through this chapter, let X denote a partially ordered set.

## 3.1 Regular Elements of Regressive Generalized Transformation Semigroups

Theorem 3.1.1. Let  $(S,\theta)$  be a regressive generalized transformation semigroup on X. Then every regular element of  $(S,\theta)$  is an idempotent of  $(S,\theta)$ .

**Proof.** Let  $\alpha \in S$  be a regular element of  $(S,\theta)$ . Then there exists an element  $\beta \in S$  such that  $\alpha\theta\beta\theta\alpha = \alpha$ . Since  $\theta\beta\theta \in S$ ,  $\alpha$  is a regular element of S. By Theorem 2.1.1,  $\alpha^2 = \alpha$ . Let  $x \in \Delta\alpha$ . Then  $x\alpha = x\alpha\theta\beta\theta\alpha$ . Since  $\alpha$ ,  $\beta$  and  $\theta$  are regressive,  $x\alpha = x\alpha\theta\beta\theta\alpha \le x\alpha\theta \le x\alpha$ . It implies that  $x\alpha = x\alpha\theta$ , so we have that  $x\alpha = x\alpha^2 = x\alpha\theta\alpha$ . Now we have proved that  $\Delta\alpha \subseteq \Delta\alpha\theta\alpha$  and  $\alpha = \alpha\alpha\theta\alpha$  for all  $\alpha \in \Delta\alpha$ . But  $\alpha \in \Delta\alpha$ , so  $\alpha = \alpha\theta\alpha = (\alpha, \theta)^2$ . Hence  $\alpha$  is an idempotent in  $\alpha \in \Delta\alpha$ .

**Theorem 3.1.2.** Let  $(S,\theta)$  be a regressive generalized transformation semigroup on X. Then every idempotent of  $(S,\theta)$  is an idempotent of S.

**Proof.** Let  $\alpha \in S$  be an idempotent of  $(S, \theta)$ . Then  $\alpha \theta \alpha = \alpha$ . Therefore  $\alpha$  is a regular element of S. By Theorem 2.1.1,  $\alpha$  is an idempotent of S.  $\square$ 

Corollary 3.1.3. Let  $(S, \theta)$  be a regressive generalized transformation semigroup on X. If  $(S, \theta)$  is a regular semigroup, then S is a regular semigroup.

**Proof.** Assume that  $(S,\theta)$  is a regular semigroup. By Theorem 3.1.1, every element of  $(S,\theta)$  is an idempotent of  $(S,\theta)$ . Then by Theorem 3.1.2, every element of S is an idempotent of S. Hence S is a regular semigroup.  $\Box$ 

Theorem 3.1.4. Let  $(S, \theta)$  be a regressive generalized transformation semigroup on X and  $\alpha \in S$ . Then  $\alpha$  is an idempotent of  $(S, \theta)$  if and only if

- (i) for every  $a \in \nabla \alpha$ ,  $a = \min(a\alpha^{-1})$  and
- (ii)  $\nabla \alpha \subseteq \Delta \theta$  and  $\alpha \theta = a$  for all  $\alpha \in \nabla \alpha$ .

**Proof.** Assume that  $\alpha$  is an idempotent of  $(S,\theta)$ . By Theorem 3.1.2,  $\alpha$  is an idempotent of S. Then by Theorem 2.1.2, we have that for every  $a \in \nabla \alpha$ ,  $a = \min(a\alpha^{-1})$ . Hence (i) holds. To proves (ii), let  $b \in \nabla \alpha$ . Then  $x\alpha = b$  for some  $x \in \Delta \alpha$ . Since  $\alpha \theta \alpha = \alpha$ ,  $x \in \Delta \alpha \theta \alpha$  which implies that  $x\alpha \in \Delta \theta$ . Then  $b \in \Delta \theta$ . By (i),  $b = \min(b\alpha^{-1})$ . Since  $\alpha$  and  $\theta$  are regressive,  $b = x\alpha = x\alpha\theta\alpha = b\theta\alpha \le b\theta \le b$  which implies that  $b\theta = b$ . Hence (ii) holds.

Conversely, assume that (i) and (ii) hold. By Theorem 2.1.2 and (i),  $\alpha^2 = \alpha$ . Therefore  $\nabla \alpha \subseteq \Delta \alpha$  and  $\alpha \alpha = a$  for all  $\alpha \in \nabla \alpha$ . Let  $x \in \Delta \alpha$ . Then  $x \alpha \in \nabla \alpha$ , so by (ii),  $x \alpha \in \Delta \theta$  and  $x \alpha \theta = x \alpha$  which implies that  $x \alpha \theta \alpha = x \alpha^2 = x \alpha$ . This proves that  $\Delta \alpha \subseteq \Delta \alpha \theta \alpha$  and  $x \alpha = x \alpha \theta \alpha$  for all  $x \in \Delta \alpha$ . But  $\Delta \alpha \theta \alpha \subseteq \Delta \alpha$ , so  $\alpha = \alpha \theta \alpha$ . Hence  $\alpha$  is an idempotent of  $(S, \theta)$ .  $\square$ 

Corollary 3.1.5. Let  $(S, \theta)$  be a regressive generalized transformation semigroup on X and  $\alpha \in S$ . Then  $\alpha$  is a regular element of  $(S, \theta)$  if and only if

- (i) for every  $a \in \nabla \alpha$ ,  $a = \min(a\alpha^{-1})$  and
- (ii)  $\nabla \alpha \subseteq \Delta \theta$  and  $\alpha \theta = a$  for all  $\alpha \in \nabla \alpha$ .

**Proof.** It follows directly from Theorem 3.1.1 and Theorem 3.1.4.  $\square$ 

**Theorem 3.1.6.** Let S be  $PT_{RE}(X)$ ,  $I_{RE}(X)$ ,  $U_{RE}(X)$  or  $W_{RE}(X)$ . Then  $(S,\theta)$  is a regular semigroup if and only if

- (i) X is isolated and
- (ii)  $\theta = 1_X$ .

**Proof.** Assume that  $(S,\theta)$  is a regular semigroup. By Corollary 3.1.3, S is a regular semigroup. By Theorem 2.1.6, X is isolated. Hence (i) holds. Since  $\theta \in S$  and X is isolated, by Lemma 2.1.5,  $\theta = 1_{\Delta\theta}$ . To show that  $\theta = 1_X$ , suppose not. Then there exists an element  $\alpha \in X \setminus \Delta\theta$ . Let  $\alpha \in PT(X)$  be such that  $\Delta\alpha = \{a\} = \nabla\alpha$ . Then  $\alpha \in S$  and  $\alpha\theta\alpha = 0 \neq \alpha$ . Thus  $\alpha$  is not an idempotent of  $(S,\theta)$ . By Theorem 3.1.1,  $\alpha$  is not a regular element of  $(S,\theta)$  which implies that  $(S,\theta)$  is not a regular semigroup, a contradiction. Hence  $\theta = 1_X$ , and so (ii) holds.

Conversely, assume that (i) and (ii) hold. Since X is isolated, by Lemma 2.1.5, S is a regular semigroup. Since  $\theta = 1_X$ , we have that  $(S, \theta)$  and S are the same semigroup. Hence  $(S, \theta)$  is a regular semigroup.  $\square$ 

**Theorem 3.1.7.** Let S be  $T_{RE}(X)$  or  $V_{RE}(X)$  and  $\theta \in S$ . Then  $(S, \theta)$  is a regular semigroup if and only if

- (i) for every chain C of X,  $|C| \le 2$  and
- (ii)  $\theta = 1_X$ .

**Proof.** Assume that  $(S,\theta)$  is a regular semigroup. By Corollary 3.1.3, S is a regular semigroup. By Theorem 2.1.7, (i) holds. To prove that  $\theta = 1_X$ , suppose not. Then there exists an element  $a \in X$  such that  $a\theta < a$ . Since  $1_X \in S$  and  $a1_X\theta1_X = a\theta < a = a1_X$ , we have that  $1_X\theta1_X \neq 1_X$ , so  $1_X$  is not an idempotent

of  $(S,\theta)$ . By Theorem 3.1.1,  $1_X$  is not a regular element of  $(S,\theta)$  which is a contradiction.

Conversely, assume that (i) and (ii) hold. By Theorem 2.1.7, S is a regular semigroup. Since  $\theta = 1_X$ , we have that  $(S, \theta) = S$  as semigroups. Hence  $(S, \theta)$  is a regular semigroup.  $\square$ 

# 3.2 Eventual Regularity of $(PT_{RE}(X), \theta)$ , $(T_{RE}(X), \theta)$ and $(I_{RE}(X), \theta)$

In this section, we give necessary and sufficient conditions for X and  $\theta$  such that  $(S,\theta)$  is eventually regular where S is  $PT_{RE}(X)$ ,  $T_{RE}(X)$  or  $I_{RE}(X)$  and  $\theta \in S$ .

We begin this section by giving a general fact of infinite chains which is used later.

**Proposition 3.2.1.** If X is an infinite chain, then there exist  $x_1, x_2, x_3,...$  in X such that

$$x_1 < x_2 < x_3 < \dots$$

or there exist  $x_{-1}, x_{-2}, x_{-3},...$  in X such that

$$x_{-1} > x_{-2} > x_{-3} > \dots$$

**Proof.** Assume that X is an infinite chain.

Case 1: X does not have a maximum element. Let  $x_1 \in X$ . Then  $x_1$  is not the maximum element of X, so there exists an element  $x_2$  in X such that  $x_1 < x_2$ . Since X has no a maximum element,  $x_2$  is not the maximum element of X. Then  $x_2 < x_3$  for some  $x_3$  in X. By continuing this process inductively, we can obtain  $x_1, x_2, x_3, \ldots$  in X such that  $x_1 < x_2 < x_3 < \ldots$ 

Case 2: X does not have a minimum element. By similar proof to Case 1, we can get  $x_{-1}, x_{-2}, x_{-3},...$  in X such that  $x_{-1} > x_{-2} > x_{-3} > ...$ .

Case 3: X has a maximum element and a minimum element. Let M and m be the maximum element and the minimum element of X, respectively.

Subcase 3.1: There exists an element a in  $X \setminus \{M\}$  such that for  $b \in X$ , a < b implies that a < x < b for some  $x \in X$ . Since a < M, there exists an element  $x_{-1} \in X$  such that  $a < x_{-1} < M$ . By assumption,  $a < x_{-2} < x_{-1}$  for some  $x_{-2} \in X$ . Continue this process inductively, we have  $x_{-1}, x_{-2}, x_{-3}, \ldots$  in X such that  $x_{-1} > x_{-2} > x_{-3} > \ldots$ .

Subcase 3.2: For every  $a \in X \setminus \{M\}$ , there exists an element b in X such that a < b and for  $x \in X$ ,  $a \le x \le b$  implies that x = a or x = b. Since X is infinite,  $m \in X \setminus \{M\}$ . Let  $x_1 = m$ . Then there exists  $x_2 \in X$  such that  $x_1 < x_2$  and there is no  $x \in X$  such that  $x_1 < x < x_2$ . Then  $x_2 \ne M$  since X is infinite. By assumption,  $x_2 < x_3$  for some  $x_3 \in X$  such that there is no  $x \in X$  with  $x_2 < x < x_3$ . Then  $\{x \in X \mid x \le x_3\} = \{x_1, x_2, x_3\}$ . Since X is infinite,  $x_3 \in X \setminus \{M\}$ . Again, there exists an element  $x_4 \in X$  such that  $x_3 < x_4$  and there is no  $x \in X$  with  $x_3 < x < x_4$ .... By this process, we can obtain  $x_1, x_2, x_3, ...$  in X such that  $x_1 < x_2 < x_3 < ...$ 

**Lemma 3.2.2.** Let  $\theta \in PT_{RE}(X)$  have the property that for x, y in the domain of  $\theta$ , x < y implies  $x \le y\theta \le y$ . Then for all x, y, z in the domain of  $\theta$ , x < y < z implies that  $x\theta < z\theta$ .

**Proof.** Let x, y,  $z \in \Delta\theta$  be such that x < y < z. By assumption,  $x\theta \le x \le y\theta \le y \le z\theta \le z$ . Since x < y, we have that  $x\theta < z\theta$ .  $\square$ 

Lemma 3.2.3. Let  $\theta \in PT_{RE}(X)$ . If C is a finite chain of X contained in the domain of  $\theta$  such that  $x \le y\theta \le y$  for all  $x, y \in C$  with x < y, then  $|C\theta| \ge \frac{|C|}{2}$ .

**Proof.** Let  $C = \{x_1, x_2, \ldots, x_n\}$  and  $x_1 < x_2 < \ldots < x_n$ . Then

 $x_1\theta \le x_1 \le x_2\theta \le x_2 \le \ldots \le x_n\theta \le x_n$ . By Lemma 3.2.2,  $x_1\theta < x_3\theta < x_5\theta < \ldots < x_n\theta$  if n is odd and  $x_1\theta < x_3\theta < x_5\theta < \ldots < x_{n-1}\theta$  if n is even. This proves that  $|\{x_1\theta, x_2\theta, \ldots, x_n\theta\}| \ge \frac{n}{2}$ . Hence  $|C\theta| \ge \frac{|C|}{2}$ .  $\Box$ 

Lemma 3.2.4. Let  $\theta \in PT(X)$ . If  $x_1, x_2, ..., x_n$  are in the domain of  $\theta$  such that n > 1,  $x_1 < x_2 < ... < x_n$ ,  $x_1 \theta \le x_1 \le x_2 \theta \le x_2 \le ... \le x_n \theta \le x_n$  and  $x_1 \theta < x_2 \theta < ... < x_n \theta$ , then the partial transformation  $\alpha$  of X defined by  $(x_i \theta)\alpha = x_{i-1}$  for all  $i \in \{2,3,...,n\}$  belongs to  $I_{RE}(X)$ .

**Proof.** Since  $x_{i-1} < x_{j-1}$  for all  $i, j \in \{2,3,...,n\}$  such that i < j, we have that  $\alpha$  is one-to-one. Since  $(x_i\theta)\alpha = x_{i-1} \le x_i\theta$  for all  $i \in \{2,3,...,n\}$ ,  $\alpha$  is regressive. Hence  $\alpha \in I_{RE}(X)$ .  $\square$ 

Theorem 3.2.5. Let S be  $PT_{RE}(X)$ ,  $T_{RE}(X)$  or  $I_{RE}(X)$  and  $\theta \in S$ . If the domain of  $\theta$  contains a sequence of disjoint finite chains  $C_1, C_2, C_3, \dots$  such that

(i) 
$$|C_1| < |C_2| < |C_3| < ...$$

- (ii) for  $i \in \mathbb{N}$  and  $x, y \in C_i$ , x < y implies that  $x \le y\theta \le y$  and
- (iii) for distinct  $i, j \in \mathbb{N}$ ,  $C_i \theta \cap C_j \theta = \emptyset$ ,

then  $(S,\theta)$  is not an eventually regular semigroup.

**Proof.** We know that if  $(x_1, x_2, x_3, ...)$  is a strictly increasing sequence of positive integers, then it has a subsequence  $x_{k_1}, x_{k_2}, x_{k_3}, ...$  such that  $x_{k_1} > 2$  and  $2x_{k_i} < x_{k_{i+1}}$  for all  $i \in \mathbb{N}$ . Then we may assume that  $|C_1| > 2$  and for every  $i \in \mathbb{N}$ ,  $2|C_i| < |C_{i+1}|$ . For each  $i \in \mathbb{N}$ , let  $C_i = \left\{x_1^{(i)}, x_2^{(i)}, ..., x_{n_i}^{(i)}\right\}$  and  $x_1^{(i)} < x_2^{(i)} < ... < x_{n_i}^{(i)}$ . Then  $n_1 > 2$  and  $2n_i < n_{i+1}$  for all  $i \in \mathbb{N}$ . From (ii) and Lemma 3.2.3, we have that for every  $i \in \mathbb{N}$ , there exist  $k_{i1}, k_{i2}, ..., k_{im_i}$  in  $\{1, 2, ..., n_i\}$  such that

$$k_{i1} < k_{i2} < \dots < k_{im_i},$$

$$m_i \ge \frac{|C_i|}{2}$$

and

$$x_{k_{i1}}^{(l)}\theta < x_{k_{i2}}^{(l)}\theta < ... < x_{k_{im_i}}^{(l)}\theta \quad .....$$
 (\*)

Since for every  $i \in \mathbb{N}$ ,  $\frac{|C_i|}{2} \le m_i \le |C_i| < \frac{|C_{i+1}|}{2} \le m_{i+1} \le |C_{i+1}|$ , it follows that  $(m_1, m_2, m_3, ...)$  is a strictly increasing sequence of positive integers.

Define the partial transformation  $\alpha$  of X by

$$(x_{k_i}^{(i)}\theta)\alpha = x_{k_i,j-1}^{(i)}$$
 for all  $i \in \mathbb{N}$  and  $j \in \{2,...,m_i\}$ .

Because of the assumption (iii) and (\*), we have that  $\alpha$  is well-defined. It follows from the assumption (ii), (\*) and Lemma 3.2.4 that restriction of  $\alpha$  to  $\{x_{k_{i1}}^{(i)}\theta,x_{k_{i2}}^{(i)}\theta,...,x_{k_{i,m_{i}-1}}^{(i)}\theta\}$  is one-to-one and regressive. But  $\{x_{k_{i1}}^{(i)}\theta,x_{k_{i2}}^{(i)}\theta,...,x_{k_{i,m_{i}-1}}^{(i)}\theta\}\alpha\subseteq C_{i}$  for all  $i\in\mathbb{N}$  and  $C_{1},C_{2},C_{3},...$  are all disjoint, so  $\alpha\in I_{RE}(X)$ . It is obtained inductively that

for all 
$$n, i \in \mathbb{N}$$
,  $n < m_i$  and  $j > n$  implies that 
$$(x_{ki}^{(i)}\theta)(\alpha, \theta)^n = x_{ki, j-n}^{(i)}.$$
 ....  $(**)$ 

Extend  $\alpha$  to  $\overline{\alpha}: X \to X$  by

$$x\overline{\alpha} = \begin{cases} x\alpha & \text{if } x = x_{ky}^{(i)}\theta \text{ for some } i \in \mathbb{N} \text{ and } j \in \{2,...,m_i\}, \\ x & \text{otherwise.} \end{cases}$$

Then  $\overline{\alpha} \in T_{RE}(X)$ . Let

$$\beta = \begin{cases} \alpha & \text{if } S = PT_{RE}(X) \text{ or } I_{RE}(X), \\ \overline{\alpha} & \text{if } S = T_{RE}(X). \end{cases}$$

Let  $n \in \mathbb{N}$ . Since  $(m_1, m_2, m_3, ...)$  is a strictly increasing sequence of positive integers,  $m_p > 2n$  for some  $p \in \mathbb{N}$ . Then by (\*\*) and the definition of  $\beta$ , we have that

$$\left(x_{k_{pm_p}}^{(p)}\theta\right)(\beta,\theta)^n = \left(x_{k_{pm_p}}^{(p)}\theta\right)(\alpha,\theta)^n = x_{k_{p,m_p-n}}^{(p)}$$

and

$$\left( x_{k_{pm_p}}^{(p)} \theta \right) \! (\beta, \theta)^{2n} = \! \left( x_{k_{pm_p}}^{(p)} \theta \right) \! (\alpha, \theta)^{2n} = \! x_{k_{p,m_p}-2n}^{(p)} .$$

Since  $k_{p,m_p-n} \neq k_{p,m_p-2n}$ ,  $x_{k_p,m_p-n}^{(p)} \neq x_{k_p,m_p-2n}^{(p)}$ . Then  $(\beta,\theta)^n \neq (\beta,\theta)^{2n}$ . This proves that  $(\beta,\theta)^n$  is not an idempotent of  $(S,\theta)$  for every  $n \in \mathbb{N}$ . Hence  $\beta$  is not an eventually regular element of S, and so  $(S,\theta)$  is not an eventually regular semigroup.  $\square$ 

Lemma 3.2.6. If  $\theta \in PT(X)$  and the domain of  $\theta$  contains an infinite chain C such that for  $x, y \in C$ , x < y implies that  $x \le y\theta \le y$ , then there exists a sequence of disjoint finite chains  $C_1, C_2, C_3, ...$  such that

(i) 
$$|C_1| < |C_2| < |C_3| < ...,$$

- (ii) for  $i \in \mathbb{N}$  and  $x, y \in C_i$ , x < y implies that  $x \le y\theta \le y$  and
- (iii) for distinct  $i, j \in \mathbb{N}$ ,  $C_i \theta \cap C_j \theta = \emptyset$ .

**Proof.** By Proposition 3.2.1, there exist  $x_1, x_2, x_3,...$  in C such that

$$x_1 < x_2 < x_3 < \dots$$

or there exist  $x_{-1}, x_{-2}, x_{-3},...$  in C such that

$$x_{-1} > x_{-2} > x_{-3} > \dots$$

Case 1: There exist  $x_1, x_2, x_3,...$  in C such that  $x_1 < x_2 < x_3 < ...$  It follows from the assumption that

$$x_1 \theta \le x_1 \le x_2 \theta \le x_2 \le x_3 \theta \le x_3 \le \dots$$

Using Lemma 3.2.2, we get that

$$x_1\theta < x_3\theta < x_5\theta < \dots$$

For each  $i \in \mathbb{N}$ , let  $y_i = x_{2i-1}$ . Then

$$y_1 \theta < y_2 \theta < y_3 \theta < \dots$$

For each  $i \in \mathbb{N}$ , let

$$C_{i} = \left\{ y_{\underbrace{(i-1)i}_{2}+1}, y_{\underbrace{(i-1)i}_{2}+2}, \dots, y_{\underbrace{(i-1)i}_{2}+i} \right\},\,$$

that is,

$$C_1 = \{y_1\}$$

$$C_2 = \{y_2, y_3\}$$

$$C_3 = \{y_4, y_5, y_6\}$$

$$C_4 = \{y_7, y_8, y_9, y_{10}\}$$

Then  $C_1, C_2, C_3,...$  are all disjoint finite chains satisfying (i),(ii) and (iii), as required.

Case 2: There exist  $x_{-1}, x_{-2}, x_{-3},...$  in C such that  $x_{-1} > x_{-2} > x_{-3} > ...$ . Then

$$x_{-1} \ge x_{-1}\theta \ge x_{-2} \ge x_{-2}\theta \ge x_{-3} \ge x_{-3}\theta \ge \dots$$

By Lemma 3.2.2,  $x_{-1}\theta > x_{-3}\theta > x_{-5}\theta > \dots$  For each  $i \in \mathbb{N}$ , let  $y_{-i} = x_{-2i+1}$ . Then  $y_{-1}\theta > y_{-2}\theta > y_{-3}\theta > \dots$  For each  $i \in \mathbb{N}$ , let

$$C_{i} = \left\{ y_{\underbrace{(1-i)i}_{2}}, y_{\underbrace{(1-i)i}_{2}}, \dots, y_{\underbrace{(1-i)i}_{2}}_{i} \right\},\,$$

that is,

$$C_1 = \{y_{-1}\}$$

$$C_2 = \{y_{-2}, y_{-3}\}$$

$$C_3 = \{y_{-4}, y_{-5}, y_{-6}\}$$

$$C_4 = \{y_{-7}, y_{-8}, y_{-9}, y_{-10}\}$$

Then  $C_1, C_2, C_3,...$  are all disjoint finite chains which satisfy (i),(ii) and (iii).  $\square$ 

**Theorem 3.2.7.** Let S be  $PT_{RE}(X)$ ,  $T_{RE}(X)$  or  $I_{RE}(X)$  and  $\theta \in S$ . If X contains an infinite chain C such that for  $x, y \in C$ , x < y implies  $x \le y\theta \le y$ , then  $(S, \theta)$  is not an eventually regular semigroup.

**Proof.** It follows directly from Theorem 3.2.5 and Lemma 3.2.6.  $\square$ 

Theorem 3.2.8. Let S be  $PT_{RE}(X)$ ,  $T_{RE}(X)$  or  $I_{RE}(X)$  and  $\theta \in S$ . Then  $(S, \theta)$  is an eventually regular semigroup if and only if there exists a positive integer n such that  $|C| \le n$  for every chain C of the domain of  $\theta$  having the property that for  $x, y \in C$ , x < y implies  $x \le y\theta \le y$ .

**Proof.** Assume that there exists a positive integer n such that  $|C| \le n$  for every chain C of the domain of  $\theta$  having the property that for  $x, y \in C$ , x < y implies  $x \le y\theta \le y$ . To show that  $(S,\theta)$  is eventually regular, let  $\alpha \in S$ . Let  $x \in \Delta(\alpha,\theta)^n$ . Then  $x \in \Delta(\alpha,\theta)^i$  for all  $i \in \{1,2,...,n\}$ . Since  $\alpha$  and  $\theta$  are regressive,  $x \ge x(\alpha,\theta) \ge x(\alpha,\theta)^2 \ge ... \ge x(\alpha,\theta)^n$ . Then  $\{x,x(\alpha,\theta)^1,x(\alpha,\theta)^2,...,x(\alpha,\theta)^n\}$  is a chain of X. It follows that  $|\{x,x(\alpha,\theta)^1,x(\alpha,\theta)^2,...,x(\alpha,\theta)^n\}| \le n$  which implies that  $x(\alpha,\theta)^i = x(\alpha,\theta)^{i+1}$  for some  $j \in \{0,1,...,n-1\}$  where  $x(\alpha,\theta)^0 = x$ . Consequently,  $x(\alpha,\theta)^{n-1} = x(\alpha,\theta)^n$ . Since  $x \in \Delta(\alpha,\theta)^n$ ,  $x(\alpha,\theta)^n = x(\alpha,\theta)^{n-1} \in \Delta(\alpha,\theta)^1$ . Hence  $(x(\alpha,\theta)^{n-1})(\alpha,\theta)^1 = (x(\alpha,\theta)^n)(\alpha,\theta)^1$ , so  $x(\alpha,\theta)^n = x(\alpha,\theta)^{n+1}$ . Then  $x \in \Delta(\alpha,\theta)^n$ . This proves that  $\Delta(\alpha,\theta)^n \subseteq \Delta(\alpha,\theta)^{n+1}$  and  $x(\alpha,\theta)^n = x(\alpha,\theta)^{n+1}$  for every  $x \in \Delta(\alpha,\theta)^n$ . But  $\Delta(\alpha,\theta)^{n+1} \subseteq \Delta(\alpha,\theta)^n$ , so  $(\alpha,\theta)^{n+1} = (\alpha,\theta)^n$ . Hence  $(x,\theta)^n$  is an idempotent of  $(x,\theta)^n$ , so  $x(x,\theta)^n$  is an eventually regular element of  $x(x,\theta)^n$ .

Conversely, suppose that for every positive integer n, there exists a chain C in  $\Delta\theta$  such that |C|>n and for  $x,y\in C$ , x< y implies  $x\leq y\theta\leq y$ . Let  $C_1$  be a finite chain in  $\Delta\theta$  such that for  $x,y\in C_1$ , x< y implies  $x\leq y\theta\leq y$ . Let  $|C_1|=k_1$ . If  $\Delta\theta\setminus C_1$  does not contain a chain C such that  $|C|>3k_1$  and for  $x,y\in C$ , x< y implies  $x\leq y\theta\leq y$ , then for every chain C of  $\Delta\theta$  having the property that for  $x,y\in C$ , x< y implies  $x\leq y\theta\leq y$ , implies  $x\leq y\theta\leq y$ ,  $|C|\leq 4k_1$  which contradicts the assumption. Then there exists a finite chain  $A_2$  in  $\Delta\theta\setminus C_1$  such that  $|A_2|>3k_1$  and for  $x,y\in A_2$ , x< y implies  $x\leq y\theta\leq y$ . Let  $C_2=\{x\in A_2/x\theta\notin C_1\theta\}$  and

 $\begin{aligned} k_2 &= \left| C_2 \right|. \quad \text{By Lemma 3.2.3} \;, \quad \left| \left\{ x \in A_2 \, / \, x\theta \in C_1\theta \right\} \right| \leq 2 \left| \left\{ x \in A_2 \, / \, x\theta \in C_1\theta \right\} \theta \right|. \quad \text{But} \\ \left\{ x \in A_2 \, / \, x\theta \in C_1\theta \right\} \theta \subseteq C_1\theta \;, \; \text{so} \; \left| \left\{ x \in A_2 \, / \, x\theta \in C_1\theta \right\} \right| \leq 2 \left| C_1\theta \right| \leq 2 \left| C_1 \right| \leq 2 k_1 \;. \; \text{Then} \end{aligned}$ 

$$\begin{aligned} |C_2| &= |A_2 \setminus \{x \in A_2 / x\theta \in C_1\theta\}| \\ &= |A_2| - |\{x \in A_2 / x\theta \in C_1\theta\}| \\ &\geq |A_2| - 2k_1 \\ &> 3k_1 - 2k_1 \\ &= k_1 \\ &= |C_1|. \end{aligned}$$

Then  $C_1 \cap C_2 = \emptyset$  and  $C_1 \theta \cap C_2 \theta = \emptyset$ .

If  $\Delta\theta \setminus (C_1 \cup C_2)$  does not contain a chain C such that  $|C| > 5k_2$  and for  $x, y \in C$ , x < y implies  $x \le y\theta \le y$ , then for every chain C of  $\Delta\theta$  having the property that for  $x, y \in C$ , x < y implies  $x \le y\theta \le y$ ,  $|C| \le 5k_2 + k_2 + k_1 < 7k_2$  which contradicts the assumption. Then there exists a finite chain  $A_3$  in  $\Delta\theta \setminus (C_1 \cup C_2)$  such that  $|A_3| > 5k_2$  and for  $x, y \in A_3$ , x < y implies  $x \le y\theta \le y$ . Let  $C_3 = \{x \in A_3 / x\theta \notin C_1\theta \cup C_2\theta\}$  and  $k_3 = |C_3|$ . By Lemma 3.2.3,  $|\{x \in A_3 / x\theta \in C_1\theta \cup C_2\theta\}| \le 2|\{x \in A_3 / x\theta \in C_1\theta \cup C_2\theta\}\theta|$ . But  $\{x \in A_3 / x\theta \in C_1\theta \cup C_2\theta\}\} \in C_1\theta \cup C_2\theta\} = (C_1 \cup C_2)\theta$ , so  $|\{x \in A_3 / x\theta \in C_1\theta \cup C_2\theta\}| \le 2|(C_1 \cup C_2)\theta| \le 2|C_1 \cup C_2| \le 2|C_1| + 2|C_2| = 2k_1 + 2k_2 < 4k_2$ . Then

$$\begin{aligned} |C_3| &= |A_3 \setminus \{x \in A_3 / x\theta \in C_1\theta \cup C_2\theta\}| \\ &= |A_3| - |\{x \in A_3 / x\theta \in C_1\theta \cup C_2\theta\}| \\ &\geq |A_3| - 4k_2 \\ &> 5k_2 - 4k_2 \\ &= k_2 \\ &= |C_2|. \end{aligned}$$

Then  $C_1 \cap C_3 = \emptyset$ ,  $C_2 \cap C_3 = \emptyset$ ,  $C_1 \theta \cap C_3 \theta = \emptyset$  and  $C_2 \theta \cap C_3 \theta = \emptyset$ .

By continuing this process inductively, we obtain a sequence of disjoint finite chain  $C_1, C_2, C_3, \dots$  such that

(i) 
$$|C_1| < |C_2| < |C_3| < \dots$$

- (ii) for  $i \in \mathbb{N}$  and  $x, y \in C_i$ , x < y implies that  $x \le y\theta \le y$  and
- (iii) for distinct  $i, j \in \mathbb{N}$ ,  $C_i \theta \cap C_j \theta = \emptyset$ .

Hence by Theorem 3.2.5,  $(S, \theta)$  is not eventually regular.  $\square$ 

Corollary 3.2.9. Let X be a partially ordered set and let S be  $PT_{RE}(X)$ ,  $T_{RE}(X)$  or  $I_{RE}(X)$  and  $\theta \in S$ . If  $\nabla \theta$  is finite, then  $(S, \theta)$  is eventually regular.

**Proof.** Assume that  $\nabla \theta$  is finite. Let C be a chain in  $\Delta \theta$  such that for  $x, y \in C$ , x < y implies  $x \le y\theta \le y$ . By Lemma 3.2.3,  $|C| \le 2|C\theta|$ . Then  $|C| \le 2|\nabla \theta|$ . Hence by Theorem 3.2.8,  $(S, \theta)$  is eventually regular.  $\Box$ 

3.3 Eventual Regularity of 
$$(U_{RE}(X),\theta),(V_{RE}(X),\theta)$$
 and  $(W_{RE}(X),\theta)$ 

We use Lemma 2.3.1 to show in this section that each of these generalized transformation semigroups is eventually regular.

**Lemma 3.3.1.** Let S be a regressive transformation semigroup on X such that for every  $\alpha \in S$ ,  $\alpha$  is almost identical. Then for  $\theta \in S$ ,  $(S, \theta)$  is eventually regular.

**Proof.** By Lemma 2.3.1, S is an eventually regular semigroup. Let  $\alpha \in S$ . Then  $\alpha \theta \in S$ . Since S is eventually regular, there exists a positive integer n such that  $(\alpha \theta)^n = (\alpha \theta)^{2n}$ . Then  $(\alpha \theta)^n \alpha = (\alpha \theta)^{2n} \alpha$  which implies that  $(\alpha, \theta)^{n+1} = (\alpha, \theta)^{2n+1}$ . Since n+1 < 2n+1, it follows that  $(\alpha, \theta)^m$  is an idempotent for some positive integer

m. Hence  $\alpha$  is eventually regular in  $(S,\theta)$ . Therefore  $(S,\theta)$  is an eventually regular semigroup.  $\square$ 

Theorem 3.3.2. If S is  $(U_{RE}(X),\theta),(V_{RE}(X),\theta)$  or  $(W_{RE}(X),\theta)$  and  $\theta \in S$ , then  $(S,\theta)$  is eventually regular.

**Proof.** It follows from Lemma 3.3.1.

## 3.4 Eventual Regularity of $(M_{RE}(X), \theta)$ and $(E_{RE}(X), \theta)$

We give necessary and sufficient conditions for these generalized transformation semigroups to be eventually regular by using the results from Section 2.4.

Theorem 3.4.1. Let  $\theta \in M_{RE}(X)$ . Then the following statements are equivalent.

- (1) Every chain of X has a minimum element.
- (2)  $M_{RE}(X) = \{1_X\}.$
- (3)  $(M_{RE}(X), \theta)$  is regular.
- (4)  $(M_{RE}(X), \theta)$  is eventually regular.

**Proof.** (1)  $\Rightarrow$  (2). Assume (1). By Theorem 2.4.3,  $M_{RE}(X) = \{1_X\}$ .

- $(2) \Rightarrow (3)$ . Trivial.
- $(3) \Rightarrow (4)$ . Trivial.
- $(4) \Rightarrow (1)$ . Assume that (4) holds. Since  $\theta \in M_{RE}(X)$ , by Theorem 3.1.1,  $(\theta, \theta)^n$  is an idempotent of  $(M_{RE}(X), \theta)$  for some positive integer n. Then  $(\theta, \theta)^{2n} = (\theta, \theta)^n$  which implies that  $\theta^{4n-1} = \theta^{2n-1}$ . But 4n-1 < 2n-1, so  $\theta^m = \theta^{2m}$  for some positive integer m. Then for every  $x \in X$ ,  $x\theta^m = x\theta^{2m}$ . Since  $\theta$  is regressive, for every  $x \in X$ ,

$$x \ge x\theta \ge x\theta^2 \ge ... \ge x\theta^m \ge x\theta^{m+1} \ge ... \ge x\theta^{2m}$$
.

Since  $\theta$  is one-to-one, for  $x \in X$ ,  $x > x\theta$  implies that

$$x > x\theta > x\theta^2 > \dots > x\theta^m > x\theta^{m+1} > \dots > x\theta^{2m}$$

which is a contradiction since  $x\theta^m = x\theta^{2m}$ . Then  $x\theta = x$  for all  $x \in X$ . Hence  $\theta = 1_X$ . Then  $M_{RE}(X)$  and  $(M_{RE}(X), \theta)$  are the same semigroup. Thus  $M_{RE}(X)$  is eventually regular. By Theorem 2.4.3, (1) holds.  $\Box$ 

**Theorem 3.4.2.** Let  $\theta \in E_{RE}(X)$ . Then the following statements are equivalent.

- (1) Every chain of X has a maximum element.
- (2)  $E_{RE}(X) = \{1_X\}.$
- (3)  $(E_{RE}(X), \theta)$  is regular.
- (4)  $(E_{RE}(X), \theta)$  is eventually regular.

**Proof.** (1) $\Rightarrow$ (2) follows from Theorem 2.4.4.

- $(2) \Rightarrow (3)$ . Trivial.
- $(3) \Rightarrow (4)$ . Trivial.
- (4)  $\Rightarrow$  (1). Assume that (4) holds. Since  $\theta \in E_{RE}(X)$ , by Theorem 3.1.1,  $(\theta, \theta)^n$  is an idempotent of  $(E_{RE}(X), \theta)$  for some positive integer n. Then  $(\theta, \theta)^{2n} = (\theta, \theta)^n$  which implies that  $\theta^m = \theta^{2m}$  some positive integer m. Thus  $\theta^m$  is an idempotent in  $E_{RE}(X)$ . Therefore  $x\theta^m = x$  for all  $x \in \nabla \theta^m$ . But  $\nabla \theta^m = X$ , so  $\theta^m = 1_X$ . Then  $\theta$  is one-to-one. Now we have that  $\theta^m = \theta^{2m}$  and  $\theta$  is one-to-one. By the proof of  $(4) \Rightarrow (1)$  of Theorem 3.4.1, we have that  $\theta = 1_X$ . Hence  $E_{RE}(X)$  and  $(E_{RE}(X), \theta)$  are the same semigroup. Thus  $E_{RE}(X)$  is eventually regular. By Theorem 2.4.4, (1) holds.  $\Box$