CHAPTER 11
REGRESSIVE TRANSFORMATION SEMIGROUPS
Throughout this chapter, let X denqte a partiaily ordered set.
2.1 Regular Elem'ents of Regressive Transformation Semigroups

In this section, we show that every regular element of a regressive
transformation semigroup § on X is an'idempotent of S and then a necessary
and sufficient condition for an element of S to be an idempotent is given. The
regularity of each of PTge(X), Tpe(X), Ize(X), Upg(X), Vee(X) and Wpo(X)

is also characterized in term of X.

Theorem 2.1.1. Let S be a regressive transformation semigroup on X . Then every

regular element of § is an idempotent.

Proof. Let ¢ €S be a regular element of S. Then there exists an element

BeS such that a=afa. Let xeda. Since @ and B are regressive ,
xa=xofa<xaf <xa. This implies that xa =xaf, so xa =xefa = %7:)%%
=(xa)x =xa*. This proves that dac 4a® and xa =xa’ for all xe 4a. But

Aa® < Aa,s0 a=a’. Hence « is an idempotentof S. O

Theorem 2.1.2. Let S be a regressive transformation semigroupon X and e S .

Then & is an idempotent of S if and only if for every a & Ver, @ =min (aa'l).

Proof. Assume that & is an idempotent of S. Then Va < A and xa = x for all

xeVa. LetaeVa. Then aa=a,so acag™’. If xeaa™, then a=xa, so
. - i' . - - .
a=xa<x since a is regressive. This proves that a is the minimum element

of aa™.



Conversely, assume that a =min(aa"') for all ae Va. Then for every

aeVa, acaa~ c da. Thus Va ¢ Aa. Since for every aeVa, aesaa™t, we

have that aa = a for all a € V. Hence ¢ is an idempotent of §, as required. [/

Corollary 2.1.3. Let S be a regressive transformation semigroupon X and ¢ € S.

Then ¢ is a regular element of S if and oﬁly if for every ae Va, a=min (aa“ )

Proof, It follows from Theorem 2.1.1 and Theorem 2.1.2. T

Lemma 2.1.4. Let S be a regressive transformation semigroupon X and ae€S.

If xe Ac is a minimal element of X, then xa =x.

Proof. Since @ is regressive, xa <x. But x is a minimal element of X', so

xa=x. 0

Lemma 2.1.5. Let S be a regressive transformation semigroup on X . If X is
isolated, then for every @ €S, a=1,,.

Hence if X is isolated, then S is a regular semigroup.

Proof. Let a € S. Since X is isolated, every element of X is a minimal element of

X .ByLemma?2.14, xa=x forall xe 4a.Thena=1,,.

Theorem 2.1.6. Let S be PTpe(X), Ipe(X), Uge{X) or Wpz(X). Then S is

a regular semigroup if and only if X is isolated.

Proof. If X is isolated, then by Lemma 2.1.5, S is a regular semigroup.
. Suppose that X is not isolated. Then there exist a,b € X suchthat a <b.

Define the partial transformation @ of X by Aa={b} and Va={a}. ThenaeS§.
Since Va ¢ Aa, « is not anidempotent of §. By Theorem2.1.1, & is not a regular

element of S. Hence S is not a regular semigroup. [



Theorem 2.1.7. Let S be Tz (X) or Vzz(X). Then S is aregular semigroup if and
only if for every chain C of X, |C[<2.

Proof. Assume that X contains a chain of three elements. Then X has elements
a,b and ¢ suchthat <b<c. Define a:X > X by ac=ba=a, ca=b and

xa = x forallx € X \{a,b,c}. Then a €S .SincebeVa and ba=a=b, it follows

that & is not an idempotent of S. By Theorem 2.1.1, & is not a regular element of S
Therefore S is not a regular semigroup,

Conversely, assume that every chain C of X, |C| <2. Then for a,b,ce X,
a<b<cimpliesthata=b orb=c. Let @ €S and xe X . Since « is regressive,
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xa® <xa<x. Then xa*=xa or xa=x which implies that xa® =xa. This

proves that a*= a, so « is regular. Hence S is a regular semigroup. [
2.2 Eventual Regularity of PT,(X), Tr-(X) and Ip(X)

In this section, we prove that the condition of having a positive integer n such

that |C| <n for everychain C of X is a necessary and sufficient condition for §

to be eventually regular where § is PTgz(X), Tas(X) or Ip:(X).

Theorem 2.2.1. If X contains a sequence of disjoint finite chains C,,C,,C,;,... such
that |G| <|Cy|<|Cy|<..., then PTag(X), Tre(X) and Ipe(X) are not eventually

regular.

Proof. For each i €N, let

C = {x,l,x,z,...,xm} where x; <x;; <..<Xy,.
Without loss of generality, we may assume that |C,|>1, otherwise we consider the
sequence C,,C5,Cy,... instead. Define the partial transformation & of X by

xyax=x,,, forallieNand je {23,..k}.



Then @« is oneto-one and regressive, so @ € PTpe(X) and Jp:(X).
We also have that

| forall n, i €N, n <k, implies that x, @" =x,4_, ....(*)

. Define @: X > X by

7 xa if x=x; Jor someie N and j € {2,3,...,k, },
X = ‘
x otherwise.

Since « is regressive, & is regressive. Thus & € Ty, (x).

Let S be PTgg(X), Tpe(X) or Tps(X) and let

fa - if 8 =PTpe{X) or Igg(X),
PP f s=Tp(@)

- Let meN. Since (k,,kz,k:,,,.'..) is a strictly increasing sequence of positive integers,
k;>2m for some jeN. By (*) and the definition of 8, we have that

" o_ m _ ] 2m _ 2m :
xjkjﬁ = X, Q" = X m and xjkjﬂ = X, @7 = Xjpome Since

ky—m#k,=2m, X4 m# Xk am: Then B™ # A*™. This proves that 8" is not
~ an idempotent of S for every neN. By Theorem 2.1.1, £" is not regularin S for

every ne N, Hence f is not eventually regularin S,and so S is not an eventually

regular semigroup. 7

Lemma 2.2.2. If X contains an infinite chain, then there exists a sequence of

disjoint finite chains C;,Cy,Cs,w. of X such that C,| <|C;|<|Cs | <....

Proof. Let Y be an infinite chain of X. Let x;; €Y and C, ={x;,}. Since Y is
infinite, Y\C, is infinite. Then there exist x, and x,, in Y\C, such that
X5, # X5p. Since Y isachain, we may assumethat x), <x,. Let C, = {x5;,%5}.
Then C,NC, =@ and [C,|<|C,|. Again, since ¥ is infinite, ¥\(C, U C,) is
infinite. Then Y\(C, UC,) contains distinct elements x;,,x;, and x;;. We may

assume that x,; < X3, < X3 since Y is achain. Therefore we have the disjoint finite



chains C,,C, and C, such that |C)|<|C,|<|C;|. By this process, we obtaina
sequence of disjoint finite chains Cy,C,,Cj,... such that |C||<|Cy|<|Cy| <..., as

required. 7

Theorem 2.2.3. If X contains an infinite chain, then PTgz(X), Tae(X) and

I (X) are not eventually regular.
Proof. It follows from Theorem 2.2.1 and Lemma 2.2.2. J

Theorem 2.2.4. Let S be PTpz(X), Toz(X) or Ipz(X). Then § is eventually
regular if and only if there exists a positive integer n suchthat |C|<n for every
chain C of X .

Proof. First, assume that there exists a positive integer n such that |C| <n forevery
chain C of X . To show that S is eventually regular, let @€ S. Let xe da”. Then

xeda' forall ie{l,2,..,n}. Since a is regressive, x 2 xa >xa’2..2xa". Then

{x,xa,.,xa"} is & chain of X. By assumption, |{x,xa,...,xa"} <n. Then

xa’! =xa’" for some je{0,],.,n-1} where xa’=x. This implies that

! = xa". Since xe da”, xa"' € da,s0 xa" € Aa. Then (xa"")a:(xa"}z.

xa””
Therefore xa" =xa™!, so we have that xe da™'. But 4a™ c da”, so
Aa" = Aa™. This proves that Aa”" = Aa™ and xa" = xa™' for all xeda”.

Hence a" =a™!. Consequently, a” is anidempotent of S, so a is an eventually

regular element of S. Therefore S is an eventually regular semigroup.

Conversely, suppose that there is no positive integer n such that |C| <n for
every chain C of X. Then for each neN, there exists a chain C of X such that
|C| > n. Let C, be a finite chain of X . If X \C, does not contain a finite chain C of

X such that |C|>|C,|, then for every finite chain C of X,

C|<2|C,| which is



a contradiction. Let C, € X \C, be a finite chain of X and |C,|>|Cy|. Then C,
and C, are disjoint. If X \(C,uC,) does not contain a finite chain C of X such
that |C| >|C2| , then for every chain C of X, ]C| <3|C2[, a contradiction. Hence
by this inductive construction, we have ‘a sequence of disjoint finite chains
C,,C;,C;,... of X such that |Cl|<|C2|<|C3|<.... By Theorem 2.2.1, S is not

eventually regular. [

Example. Let X be 2 nonempty subset of R. If X is finite, then PTy; (X ),
Tre(X) and Ipg (X) are finite, so they are all eventually regular. If X is infinite, by
Theorem 2.2.3, each of PTyz(X), Tre (X) and Ig (X) is not eventually regular.

Example. Let 4 be a nonempty subset of R. Let X =Ax4 and let < be the
dictionary partiat order on X, that s, for a,b,c,d € 4,
(a,b) <(¢,d) ifand only if (i) a<c or
- (i) a=cand bsd.
Then (X,<) is a chain. Hence PTpg (X), Toe(X) and I #z(X) are eventually regular
if and only if 4 is finite by Theorem 2.2.3 and the fact that every finite semigroup is

eventually regular.

Example. Let X be the set of all sequences (x,,)"e » Of positive integers. Then

X is infinite. Define a partial order € on X by

(x,)<(v,) if and only if x, <y, foralt neN.
Then (X,<) is an infinite partially ordered set. The elements (1,2,2,2,.) and
(2,L,1,1,..) belong to X which are not comparable. Then (X,<) is not a chain. For

each i eN, let a") be the element (x, ), of X defined by

. = 2 if nefl2,...,i},
"l ifne{i+li+2,..).
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Then a' <a® <a® <.., so {a,2®,a®,..} is an infinite chain of X.

By Theorem 2.2.3, each of PTp-(X), Tr(X) and Irz(X) is not eventually rﬁgular.

Example. Let X ={(x,y) eNxN/x < y}. Define a partially order < on X by
(a,b)<(c,d) ifandonlyif a<c and b=d. ....(*)
Since (1,2),(2,3) € X,(1,2) £(2,3) and (2,3) £(},2), X is an infinite partially ordered
set which is not a chain. Let C be a chain of X . By(»), there exists a positive integer
m such that for (a,b) e C, b=m. Again by (), C < {(1,m),(2,m),...,(m,m)} . Hence
C is finite. This proves that X' does not contain an infinite chain. For n €N, let
C, ={(L,1),(2,1),.ncs (M)}

Then for every neN, C, isachainof X and |C,|=n. Thus for every neN, C,,, is
achain of X such that |C,|=n+1>n. By Theorem 2.2.4, all of PT,.(X), Tpe(X)
and J gz (X) are not eventually regular,

In fact, the partiaily ordered set (X ,S) can be shown by the following diagram:

(4.4)

(3.3) (3,4)

2.2) (2,3) (2.4)

(1,1 (1,2) (1,3) (1,4)

Example. Let meN\{l} and X the set of all sequences (xﬂ)ne » Such that
x, €{}2,...,m} forall n € N. Define a partial order < on X' by
(%p)ren < (V) ifand only if (i) x, <y, forall neN and
| (ii) x, =y, forall n2m
Since (LLL,..), (2,2,2,.)€ X and they are not comparable, (X ,S) is an infinite
partially ordered set which is not a chain. |
Let # =m™", Claim that for every chain C of X, ]C] <m.LetCbe a

chainof X' and let (a,,)ne ~ €C. By (*), for every (%, )”€ v €C, x, =a, forall



nzm. Then C is a subset of {(x,),y €X/x,=a, forall n>m}. But
H{Gn)pew € X | %0 =a, for all nzmj| = m™' = m, so |C|<i. Hence by

Theorem 2.2.4, all of PTxg(X), Tee(X)and I (X) are eventually regular semigroups.
2.3 Eventual Regularity of Up-(X), ¥z (X) and Wy (X)

We show in this section that a regressive transformation semigroup on X in
which each element is almost identical i1s eventually regular, and then we have

that all of U gg(X), Vez(X) and Wep(X) are always eventually regular.

Lemma 2.3.1. Let S be a regressive transformation semigroup on X such that for

every a € S, « is almost identical. Then § is eventually regular.

Proof. Let aeS. Since @ is almost identical, s(a) is finite. Let n=|s(a)|. Let

n+l—i 0

for all ie{0],.,n} where xa" =x. Since

n+l
.

x € da Then xa' e Ada
da™ < Aa forall ie{0]},.,n}, wehave that x,xa, xc?,...,xa" € Aa. Since a
isregressive, x2xa2xa’=..2xa"zxa™ . If x>xa>xa’>..>xa" >xa™,

then l{x,xa,...,xa"} =n+1 and {r, xa,...xa" }g s(a) which is a contradiction since
|s(@)|=n. Then xa' = xa*" for some i € {1,2,...,n} which implies that xa" = xa"™"'.

Since xa"eda; xa™ eda © and so xa™ =xa™. This proves that

da™ < da™? and xa™ =xa™? for all xeda™'. But d4a"? < da™!, so

!

a™! =g™? Hence o™ is an idempotent of S. Thus & is eventually regular.

Therefore S is an eventually regular semigroup.

Theorem 2.3.2. The regressive transformation semigroups Uge{X), Ve (X) and

W (X) are eventually regular.

Proof. It follows directly from Lemma 2.3.1. 7



i8

2.4 Eventual Regularity of M (X) and £p;(X)

In this section, the condition that every chain of X' has a minimum element is
a necessary and sufficient condition for M;(X) to be eventually regular and
it implies that Mp(X)={ly}. Also, we show that a necessary and sufficient
condition for Ege(X) to be eventually regular is that every chain of X has

a maximum element and this forces E,-(X) to be trivial.

Lemma 2.4.1. (1) If X is a chain without a minimum element, then X has a chain of

the form
{x,/neZ”} where x, >x,_, forall ieZ".
(2) If X is a chain without maximum element, then X has a chain of
the form

{x,/neN} where x,,, >x, forall ieN.

Proof. (1) Assume that X isachain and X has no minimum element. Let x €X.
Then x_, is not a minimum element of X, so there exists an element x_, € X \{x_}
such that x_; £ x_,. Since X isachain, x_; <x_;. Again, by assumption, x_, is not
a minimum element of X, so there exists an element x_; € X\{x_,} such that
x4 £x. Since X is a chain, x_;<x,. Now, we have x_, <x_, <x_. By
continuing this process inductively, we obtain a chain {x,/neZ~} of X where
x, > x,, forall ieZ", as required.

(2) The proof of (2) can be given similarly to that of (1). =

Lemma24.2.(1)If X ={x,/neZ”) where x,>x,, forall icZ  anda: X > X

is defined by x,a=x,, forall ieZ™, then a e Mz (X) and a” = " forall neN.
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@QIf X={x,/neN} where x,,>x, forall ieNanda:X > X

is defined by xy@=x, and x, @ =x, forall ieN, then ae Eg(X)and a" = o

forall n eN,

Proof, (1) Assume that X and « satisfy the assumption of (1). It is clear that
@ € Mgg(X). Wehave that for neNand ieZ", x,&" =x,_,.Since x,_, # x,_,, for

all ieZ~ and neN, it follows that a” # " forall neN,

(2) Assume that X and o satisfy the assumption of (2). Then «
belongs to Ep(X) and xa=x_, for all ieN\{l}, Then xa"=x_, for

all ie{n+1,n+2,n+3,.} and neN. It follows that @” = a?" forall neN. [

Theorem 2.4.3. The following statements are equivalent.
(1) Every chain of X has a minimum element.
(@) Mg (X)={l}.
(3) Mpe(X) is regular.
(4) Mgz (X) is eventually regular.

Proof. (1)=>(2). Assume that (1) holds. Let a € Mp:(X) and xe X . Since « is

regressive, x2xa2xa’>... Then {xa"/ne N } is a chain of X . By assumption,

there exists a positive integer & such that xa* = min{xa"/neN}, Since

b=yt = (xa)a" .But &* is one-to-one, so we have thatxa = x.

xa* 2 xa*"! xa
This proves that @ =1, . Then (2) is obtained.

@2)=>(3). Trivial.

(3)=>(4). Trivial,

(4)=(1). Suppose that (1) is not true. Then there exists a chain ¥ of X such

that ¥ has no minimum element. By Lemma 2.4.1.(1), there exists a chain
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C={x,/neZ” }of ¥ with x, >x,_, forall ieZ™.Define a:C—C by x,a=x_,
forall ieZ~. By Lemma 2.4.2.(1), @ € Mp;(C) and @" # @*" on C forall » eN.
Extend  to §:X — X by defining £ as follows :

xa if xeC,
x if xeX\C.

xf=
Since « is one-to-one and regressive, A is aiso one-to-one and regressive. Then
f € Mg (X). Since o™ #a® on C forevery neNand «a is the restriction of 8 to
C, wehavethat 8" = %" on X forall neN. Hence f" isnot anidempotent for

every neN. By Theorem2.1.1, 8" is not regular forall neN. Hence # isnot
an eventually regular element of M 4;(X), so (4) is not true.

Theorem 2.4.4. The following statements are equivalent,

(1) Every chain of X has a maximum element.
@) Eps(X)={lx}

3) Exe (X ) is regular.

(4) Epe(X) is eventually regular,

Proof. (1)=(2). Assume that every chainof X has a maximum element. To show

that Epe(X)={l,}, let a €Epg(X) and xeX.Let x, =x. Since « is onto, there
exists an element x, e X suchthat xya=x;. Since a is regressive, x; = x,r <x,.
Since o is onto, there exists an element x; e X such that x;a=x,. Since « is
regressive, X, =X;@ £Xx;. Then wehave that x; <x; <x3, xya=x and x;a =x,.
By this inductive process, we obtain a sequence x;,x,,¥;,.. of X such that
X] £x9 <x3 <. and x,,;a = x, for all neN. It follows by induction that
xppa” =x forevery neN ..... ®

Since {x,/neN} is a chainof X, by assumption, there exists a positive integer m
such that x, <x,, forall neN. Then x, =x,, forall n2m. In particular, x_,, =x,,.

Therefore x,, = x,,,1& = x,,a& which implies by induction that



xa" =x, forallneN ..... (*#)
If m=1, then xja=x;. If m>1, then by (*) and by (**), xi=xpa™" =x,, so
X0 =X, since x,o .=x,,, . Hence xa = x. This proves that a=1y.

(2)= (3). Trivial.

(3)= (4). Trivial.

(4)=(1). Assume that (1) is not true. Then there exists a chain ¥ of X such
that ¥ has no maximum element. By Lemma 2.4.1.(2), there cxists a chain
C={x,/neN}of Y with x, <x,, forall ieN. Define @:C — C by xja=x and
x;qa@=x; forall ieN. By Lemma2.4.2.(2), € E 22(C) and " = a*" on C forall
neN.Extend @ to §: X > X by

xa if xeC,
xf =
x if xeX\C.

Since @ is regressive and Va=C, VA=X and f is regressive. Then 8 € Ere(X).
Since a" #a* on C forevery neN and « is the restriction of g to C, we have
that A" # 82" on X for all neN. Hence #" is not anidempotent for every neN.

By Theorem 2.1.1, 8" is not aregular element of Ep (X) for every ne N. Hence §

is not eventually regular. Therefore (4) is not true.

Example. By Theorem 2.4.3, Mz (N) ={l,} but Mp:(Z7) and Mz (Z) are not
eventually regular,

By Theorem 2.4.4, Ege(Z7) ={1,.} but Ep;(N) and Ep-(Z)are not
eventually regular.

Example. Let a,b €R be such that a<b. Let I be the interval (a,d), [a,b), (a,b]
or [a,b]. Then (a,b) is a chainof / and (a,b) has neither a maximum element nor
a minimum element. Then by Theorem 2.4.3 and Tﬁeorem 2.4.4, both Mg ()
and Epc(I) are not eventually regular. '
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