CHAPTER II

REGRESSIVE TRANSFORMATION SEMIGROUPS

Throughout this chapter, let X denote a partially ordered set.

2.1 Regular Elements of Regressive Transformation Semigroups

In this section, we show that every regular element of a regressive transformation semigroup S on X is an idempotent of S and then a necessary and sufficient condition for an element of S to be an idempotent is given. The regularity of each of $PT_{RE}(X)$, $T_{RE}(X)$, $T_{RE}(X)$, $T_{RE}(X)$, $T_{RE}(X)$, $T_{RE}(X)$, $T_{RE}(X)$, and $T_{RE}(X)$ is also characterized in term of $T_{RE}(X)$.

Theorem 2.1.1. Let S be a regressive transformation semigroup on X. Then every regular element of S is an idempotent.

Proof. Let $\alpha \in S$ be a regular element of S. Then there exists an element $\beta \in S$ such that $\alpha = \alpha \beta \alpha$. Let $x \in \Delta \alpha$. Since α and β are regressive, $x\alpha = x\alpha\beta\alpha \le x\alpha\beta \le x\alpha$. This implies that $x\alpha = x\alpha\beta$, so $x\alpha = x\alpha\beta\alpha = (x\alpha\beta)\alpha = (x\alpha)\alpha = x\alpha^2$. This proves that $\Delta \alpha \subseteq \Delta \alpha^2$ and $\Delta \alpha = \alpha^2$ for all $\alpha \in \Delta \alpha$. But $\Delta \alpha^2 \subseteq \Delta \alpha$, so $\alpha = \alpha^2$. Hence α is an idempotent of $\alpha \in S$. $\alpha \in S$

Theorem 2.1.2. Let S be a regressive transformation semigroup on X and $\alpha \in S$. Then α is an idempotent of S if and only if for every $a \in \nabla \alpha$, $a = \min(a\alpha^{-1})$.

Proof. Assume that α is an idempotent of S. Then $\nabla \alpha \subseteq \Delta \alpha$ and $x\alpha = x$ for all $x \in \nabla \alpha$. Let $\alpha \in \nabla \alpha$. Then $\alpha \alpha = \alpha$, so $\alpha \in \alpha \alpha^{-1}$. If $x \in \alpha \alpha^{-1}$, then $\alpha = x\alpha$, so $\alpha = x\alpha \le x$ since α is regressive. This proves that α is the minimum element of $\alpha \alpha^{-1}$.

Conversely, assume that $a = \min(a\alpha^{-1})$ for all $a \in \nabla \alpha$. Then for every $a \in \nabla \alpha$, $a \in a\alpha^{-1} \subseteq \Delta \alpha$. Thus $\nabla \alpha \subseteq \Delta \alpha$. Since for every $a \in \nabla \alpha$, $a \in a\alpha^{-1}$, we have that $a\alpha = a$ for all $a \in \nabla \alpha$. Hence α is an idempotent of S, as required. \square

Corollary 2.1.3. Let S be a regressive transformation semigroup on X and $\alpha \in S$. Then α is a regular element of S if and only if for every $a \in \nabla \alpha$, $a = \min(a\alpha^{-1})$.

Proof. It follows from Theorem 2.1.1 and Theorem 2.1.2.

Lemma 2.1.4. Let S be a regressive transformation semigroup on X and $\alpha \in S$. If $x \in \Delta \alpha$ is a minimal element of X, then $x\alpha = x$.

Proof. Since α is regressive, $x\alpha \le x$. But x is a minimal element of X, so $x\alpha = x$. \square

Lemma 2.1.5. Let S be a regressive transformation semigroup on X. If X is isolated, then for every $\alpha \in S$, $\alpha = 1_{\Delta \alpha}$.

Hence if X is isolated, then S is a regular semigroup.

Proof. Let $\alpha \in S$. Since X is isolated, every element of X is a minimal element of X. By Lemma 2.1.4, $x\alpha = x$ for all $x \in \Delta \alpha$. Then $\alpha = 1_{\Delta \alpha}$. \Box

Theorem 2.1.6. Let S be $PT_{RE}(X)$, $I_{RE}(X)$, $U_{RE}(X)$ or $W_{RE}(X)$. Then S is a regular semigroup if and only if X is isolated.

Proof. If X is isolated, then by Lemma 2.1.5, S is a regular semigroup.

Suppose that X is not isolated. Then there exist $a,b \in X$ such that a < b. Define the partial transformation α of X by $\Delta \alpha = \{b\}$ and $\nabla \alpha = \{a\}$. Then $\alpha \in S$. Since $\nabla \alpha \not\subseteq \Delta \alpha$, α is not an idempotent of S. By Theorem2.1.1, α is not a regular element of S. Hence S is not a regular semigroup. \square

Theorem 2.1.7. Let S be $T_{RE}(X)$ or $V_{RE}(X)$. Then S is a regular semigroup if and only if for every chain C of X, $|C| \le 2$.

Proof. Assume that X contains a chain of three elements. Then X has elements a,b and c such that a < b < c. Define $\alpha: X \to X$ by $a\alpha = b\alpha = a$, $c\alpha = b$ and $x\alpha = x$ for all $x \in X \setminus \{a,b,c\}$. Then $\alpha \in S$. Since $b \in \nabla \alpha$ and $b\alpha = a \neq b$, it follows that α is not an idempotent of S. By Theorem 2.1.1, α is not a regular element of S. Therefore S is not a regular semigroup.

Conversely, assume that every chain C of X, $|C| \le 2$. Then for $a,b,c \in X$, $a \le b \le c$ implies that a = b or b = c. Let $\alpha \in S$ and $x \in X$. Since α is regressive, $x\alpha^2 \le x\alpha \le x$. Then $x\alpha^2 = x\alpha$ or $x\alpha = x$ which implies that $x\alpha^2 = x\alpha$. This proves that $\alpha^2 = \alpha$, so α is regular. Hence S is a regular semigroup. \square

2.2 Eventual Regularity of
$$PT_{RE}(X)$$
, $T_{RE}(X)$ and $I_{RE}(X)$

In this section, we prove that the condition of having a positive integer n such that $|C| \le n$ for every chain C of X is a necessary and sufficient condition for S to be eventually regular where S is $PT_{RE}(X)$, $T_{RE}(X)$ or $I_{RE}(X)$.

Theorem 2.2.1. If X contains a sequence of disjoint finite chains $C_1, C_2, C_3, ...$ such that $|C_1| < |C_2| < |C_3| < ...$, then $PT_{RE}(X)$, $T_{RE}(X)$ and $I_{RE}(X)$ are not eventually regular.

Proof. For each $i \in \mathbb{N}$, let

$$C_i = \{x_{i1}, x_{i2}, ..., x_{ik_i}\}$$
 where $x_{i1} < x_{i2} < ... < x_{ik_i}$.

Without loss of generality, we may assume that $|C_1| > 1$, otherwise we consider the sequence $C_2, C_3, C_4,...$ instead. Define the partial transformation α of X by

$$x_{ij}\alpha = x_{i,j-1}$$
 for all $i \in \mathbb{N}$ and $j \in \{2,3,...,k_i\}$.

Then α is one-to-one and regressive, so $\alpha \in PT_{RE}(X)$ and $I_{RE}(X)$. We also have that

for all $n, i \in \mathbb{N}$, $n < k_i$ implies that $x_{ik_i} \alpha^n = x_{i,k_i-n}$ (*)

Define $\overline{\alpha}: X \to X$ by

$$x\overline{\alpha} = \begin{cases} x\alpha & \text{if } x = x_{ij} \text{ for some } i \in \mathbb{N} \text{ and } j \in \{2,3,...,k_i\}, \\ x & \text{otherwise.} \end{cases}$$

Since α is regressive, $\overline{\alpha}$ is regressive. Thus $\overline{\alpha} \in T_{RE}(X)$.

Let S be $PT_{RE}(X)$, $T_{RE}(X)$ or $I_{RE}(X)$ and let

$$\beta = \begin{cases} \alpha & \text{if } S = PT_{RE}(X) \text{ or } I_{RE}(X), \\ \overline{\alpha} & \text{if } S = T_{RE}(X). \end{cases}$$

Let $m \in \mathbb{N}$. Since $(k_1, k_2, k_3, ...)$ is a strictly increasing sequence of positive integers, $k_j > 2m$ for some $j \in \mathbb{N}$. By (*) and the definition of β , we have that $x_{jk_j}\beta^m = x_{jk_j}\alpha^m = x_{j,k_j-m}$ and $x_{jk_j}\beta^{2m} = x_{jk_j}\alpha^{2m} = x_{j,k_j-2m}$. Since $k_j - m \neq k_j - 2m$, $x_{j,k_j-m} \neq x_{j,k_j-2m}$. Then $\beta^m \neq \beta^{2m}$. This proves that β^n is not an idempotent of S for every $n \in \mathbb{N}$. By Theorem 2.1.1, β^n is not regular in S for every $n \in \mathbb{N}$. Hence β is not eventually regular in S, and so S is not an eventually regular semigroup. \square

Lemma 2.2.2. If X contains an infinite chain, then there exists a sequence of disjoint finite chains $C_1, C_2, C_3, ...$ of X such that $|C_1| < |C_2| < |C_3| < ...$

Proof. Let Y be an infinite chain of X. Let $x_{11} \in Y$ and $C_1 = \{x_{11}\}$. Since Y is infinite, $Y \setminus C_1$ is infinite. Then there exist x_{21} and x_{22} in $Y \setminus C_1$ such that $x_{21} \neq x_{22}$. Since Y is a chain, we may assume that $x_{21} < x_{22}$. Let $C_2 = \{x_{21}, x_{22}\}$. Then $C_1 \cap C_2 = \emptyset$ and $|C_1| < |C_2|$. Again, since Y is infinite, $Y \setminus (C_1 \cup C_2)$ is infinite. Then $Y \setminus (C_1 \cup C_2)$ contains distinct elements x_{31}, x_{32} and x_{33} . We may assume that $x_{31} < x_{32} < x_{33}$ since Y is a chain. Therefore we have the disjoint finite

chains C_1, C_2 and C_3 such that $|C_1| < |C_2| < |C_3|$. By this process, we obtain a sequence of disjoint finite chains $C_1, C_2, C_3, ...$ such that $|C_1| < |C_2| < |C_3| < ...$, as required. \square

Theorem 2.2.3. If X contains an infinite chain, then $PT_{RE}(X)$, $T_{RE}(X)$ and $I_{RE}(X)$ are not eventually regular.

Proof. It follows from Theorem 2.2.1 and Lemma 2.2.2.

Theorem 2.2.4. Let S be $PT_{RE}(X)$, $T_{RE}(X)$ or $I_{RE}(X)$. Then S is eventually regular if and only if there exists a positive integer n such that $|C| \le n$ for every chain C of X.

Proof. First, assume that there exists a positive integer n such that $|C| \le n$ for every chain C of X. To show that S is eventually regular, let $\alpha \in S$. Let $x \in \Delta \alpha^n$. Then $x \in \Delta \alpha^i$ for all $i \in \{1,2,...,n\}$. Since α is regressive, $x \ge x\alpha \ge x\alpha^2 \ge ... \ge x\alpha^n$. Then $\{x, x\alpha, ..., x\alpha^n\}$ is a chain of X. By assumption, $|\{x, x\alpha, ..., x\alpha^n\}| \le n$. Then $x\alpha^j = x\alpha^{j+1}$ for some $j \in \{0,1,...,n-1\}$ where $x\alpha^0 = x$. This implies that $x\alpha^{n-1} = x\alpha^n$. Since $x \in \Delta \alpha^n$, $x\alpha^{n-1} \in \Delta \alpha$, so $x\alpha^n \in \Delta \alpha$. Then $(x\alpha^{n-1})\alpha = (x\alpha^n)\alpha$. Therefore $x\alpha^n = x\alpha^{n+1}$, so we have that $x \in \Delta \alpha^{n+1}$. But $\Delta \alpha^{n+1} \subseteq \Delta \alpha^n$, so $\Delta \alpha^n = \Delta \alpha^{n+1}$. This proves that $\Delta \alpha^n = \Delta \alpha^{n+1}$ and $\alpha^n = \alpha^{n+1}$ for all $\alpha \in \Delta \alpha^n$. Hence $\alpha^n = \alpha^{n+1}$. Consequently, α^n is an idempotent of $\alpha^n = \alpha^{n+1}$. Therefore $\alpha^n = \alpha^{n+1}$. Therefore $\alpha^n = \alpha^{n+1}$ is an eventually regular semigroup.

Conversely, suppose that there is no positive integer n such that $|C| \le n$ for every chain C of X. Then for each $n \in \mathbb{N}$, there exists a chain C of X such that |C| > n. Let C_1 be a finite chain of X. If $X \setminus C_1$ does not contain a finite chain C of X such that $|C| > |C_1|$, then for every finite chain C of X, $|C| \le 2|C_1|$ which is

a contradiction. Let $C_2 \subseteq X \setminus C_1$ be a finite chain of X and $|C_2| > |C_1|$. Then C_1 and C_2 are disjoint. If $X \setminus (C_1 \cup C_2)$ does not contain a finite chain C of X such that $|C| > |C_2|$, then for every chain C of X, $|C| < 3|C_2|$, a contradiction. Hence by this inductive construction, we have a sequence of disjoint finite chains C_1, C_2, C_3, \ldots of X such that $|C_1| < |C_2| < |C_3| < \ldots$. By Theorem 2.2.1, S is not eventually regular. \square

Example. Let X be a nonempty subset of R. If X is finite, then $PT_{RE}(X)$, $T_{RE}(X)$ and $I_{RE}(X)$ are finite, so they are all eventually regular. If X is infinite, by Theorem 2.2.3, each of $PT_{RE}(X)$, $T_{RE}(X)$ and $I_{RE}(X)$ is not eventually regular.

Example. Let A be a nonempty subset of R. Let $X = A \times A$ and let \leq be the dictionary partial order on X, that is, for $a,b,c,d \in A$,

$$(a,b) \le (c,d)$$
 if and only if (i) $a < c$ or

(ii)
$$a=c$$
 and $b \le d$.

Then (X, \leq) is a chain. Hence $PT_{RE}(X)$, $T_{RE}(X)$ and $I_{RE}(X)$ are eventually regular if and only if A is finite by Theorem 2.2.3 and the fact that every finite semigroup is eventually regular.

Example. Let X be the set of all sequences $(x_n)_{n\in\mathbb{N}}$ of positive integers. Then X is infinite. Define a partial order \leq on X by

$$(x_n) \le (y_n)$$
 if and only if $x_n \le y_n$ for all $n \in \mathbb{N}$.

Then (X, \leq) is an infinite partially ordered set. The elements (1,2,2,2,...) and (2,1,1,1,...) belong to X which are not comparable. Then (X,\leq) is not a chain. For each $i \in \mathbb{N}$, let $a^{(i)}$ be the element $(x_n)_{n \in \mathbb{N}}$ of X defined by

$$x_n = \begin{cases} 2 & if & n \in \{1, 2, ..., i\}, \\ 1 & if & n \in \{i + 1, i + 2, ...\}. \end{cases}$$

Then $a^{(1)} < a^{(2)} < a^{(3)} < ...$, so $\{a^{(1)}, a^{(2)}, a^{(3)}, ...\}$ is an infinite chain of X. By Theorem 2.2.3, each of $PT_{RE}(X)$, $T_{RE}(X)$ and $I_{RE}(X)$ is not eventually regular.

Example. Let $X = \{(x, y) \in \mathbb{N} \times \mathbb{N} / x \le y\}$. Define a partially order \le on X by $(a,b) \le (c,d)$ if and only if $a \le c$ and b=d.(*)

Since $(1,2),(2,3) \in X$, $(1,2) \nleq (2,3)$ and $(2,3) \nleq (1,2)$, X is an infinite partially ordered set which is not a chain. Let C be a chain of X. By (*), there exists a positive integer m such that for $(a,b) \in C$, b=m. Again by (*), $C \subseteq \{(1,m),(2,m),...,(m,m)\}$. Hence C is finite. This proves that X does not contain an infinite chain. For $n \in \mathbb{N}$, let

$$C_n = \{(1,n),(2,n),...,(n,n)\}.$$

Then for every $n \in \mathbb{N}$, C_n is a chain of X and $|C_n| = n$. Thus for every $n \in \mathbb{N}$, C_{n+1} is a chain of X such that $|C_{n+1}| = n+1 > n$. By Theorem 2.2.4, all of $PT_{RE}(X)$, $T_{RE}(X)$ and $I_{RE}(X)$ are not eventually regular.

In fact, the partially ordered set (X, \leq) can be shown by the following diagram:

$$\begin{pmatrix} (3,3) & (4,4) \\ (3,4) & (3,4) \\ (2,3) & (2,4) \\ (1,4) & \dots \end{pmatrix}$$

Example. Let $m \in \mathbb{N} \setminus \{1\}$ and X the set of all sequences $(x_n)_{n \in \mathbb{N}}$ such that $x_n \in \{1, 2, ..., m\}$ for all $n \in \mathbb{N}$. Define a partial order \leq on X by

$$(x_n)_{n\in\mathbb{N}} \le (y_n)_{n\in\mathbb{N}}$$
 if and only if (i) $x_n \le y_n$ for all $n\in\mathbb{N}$ and (ii) $x_n = y_n$ for all $n\ge m$ (*)

Since (1,1,1,...), $(2,2,2,...) \in X$ and they are not comparable, (X,\leq) is an infinite partially ordered set which is not a chain.

Let $\overline{m} = m^{m-1}$. Claim that for every chain C of X, $|C| \leq \overline{m}$. Let C be a chain of X and let $(a_n)_{n \in N} \in C$. By (*), for every $(x_n)_{n \in N} \in C$, $x_n = a_n$ for all

 $n \ge m$. Then C is a subset of $\{(x_n)_{n \in N} \in X \mid x_n = a_n \text{ for all } n \ge m\}$. But $\left|\{(x_n)_{n \in N} \in X \mid x_n = a_n \text{ for all } n \ge m\}\right| = m^{m-1} = \overline{m}$, so $|C| \le \overline{m}$. Hence by Theorem 2.2.4, all of $PT_{RE}(X)$, $T_{RE}(X)$ and $T_{RE}(X)$ are eventually regular semigroups.

2.3 Eventual Regularity of $U_{RE}(X)$, $V_{RE}(X)$ and $W_{RE}(X)$

We show in this section that a regressive transformation semigroup on X in which each element is almost identical is eventually regular, and then we have that all of $U_{RE}(X)$, $V_{RE}(X)$ and $W_{RE}(X)$ are always eventually regular.

Lemma 2.3.1. Let S be a regressive transformation semigroup on X such that for every $\alpha \in S$, α is almost identical. Then S is eventually regular.

Proof. Let $\alpha \in S$. Since α is almost identical, $s(\alpha)$ is finite. Let $n = |s(\alpha)|$. Let $x \in \Delta \alpha^{n+1}$. Then $x\alpha^i \in \Delta \alpha^{n+1-i}$ for all $i \in \{0,1,...,n\}$ where $x\alpha^0 = x$. Since $\Delta \alpha^{n+1-i} \subseteq \Delta \alpha$ for all $i \in \{0,1,...,n\}$, we have that $x, x\alpha, x\alpha^2, ..., x\alpha^n \in \Delta \alpha$. Since α is regressive, $x \ge x\alpha \ge x\alpha^2 \ge ... \ge x\alpha^n \ge x\alpha^{n+1}$. If $x > x\alpha > x\alpha^2 > ... > x\alpha^n > x\alpha^{n+1}$, then $|\{x, x\alpha, ..., x\alpha^n\}| = n+1$ and $\{x, x\alpha, ..., x\alpha^n\} \subseteq s(\alpha)$ which is a contradiction since $|s(\alpha)| = n$. Then $x\alpha^i = x\alpha^{i+1}$ for some $i \in \{1, 2, ..., n\}$ which implies that $x\alpha^n = x\alpha^{n+1}$. Since $x\alpha^n \in \Delta \alpha$, $x\alpha^{n+1} \in \Delta \alpha$ and so $x\alpha^{n+1} = x\alpha^{n+2}$. This proves that $\Delta \alpha^{n+1} \subseteq \Delta \alpha^{n+2}$ and $x\alpha^{n+1} = x\alpha^{n+2}$ for all $x \in \Delta \alpha^{n+1}$. But $\Delta \alpha^{n+2} \subseteq \Delta \alpha^{n+1}$, so $\alpha^{n+1} = \alpha^{n+2}$. Hence α^{n+1} is an idempotent of S. Thus α is eventually regular. Therefore S is an eventually regular semigroup. \Box

Theorem 2.3.2. The regressive transformation semigroups $U_{RE}(X)$, $V_{RE}(X)$ and $W_{RE}(X)$ are eventually regular.

Proof. It follows directly from Lemma 2.3.1.

2.4 Eventual Regularity of $M_{RE}(X)$ and $E_{RE}(X)$

In this section, the condition that every chain of X has a minimum element is a necessary and sufficient condition for $M_{RE}(X)$ to be eventually regular and it implies that $M_{RE}(X) = \{1_X\}$. Also, we show that a necessary and sufficient condition for $E_{RE}(X)$ to be eventually regular is that every chain of X has a maximum element and this forces $E_{RE}(X)$ to be trivial.

Lemma 2.4.1. (1) If X is a chain without a minimum element, then X has a chain of the form

$$\{x_n/n \in \mathbb{Z}^-\}$$
 where $x_i > x_{i-1}$ for all $i \in \mathbb{Z}^-$.

(2) If X is a chain without maximum element, then X has a chain of the form

$$\{x_n/n \in \mathbb{N}\}\$$
 where $x_{i+1} > x_i$ for all $i \in \mathbb{N}$.

Proof. (1) Assume that X is a chain and X has no minimum element. Let $x_{-1} \in X$. Then x_{-1} is not a minimum element of X, so there exists an element $x_{-2} \in X \setminus \{x_{-1}\}$ such that $x_{-1} \not< x_{-2}$. Since X is a chain, $x_{-2} < x_{-1}$. Again, by assumption, x_{-2} is not a minimum element of X, so there exists an element $x_{-3} \in X \setminus \{x_{-2}\}$ such that $x_{-2} \not< x_{-3}$. Since X is a chain, $x_{-3} < x_{-2}$. Now, we have $x_{-3} < x_{-2} < x_{-1}$. By continuing this process inductively, we obtain a chain $\{x_n / n \in \mathbb{Z}^-\}$ of X where $x_i > x_{i-1}$ for all $i \in \mathbb{Z}^-$, as required.

(2) The proof of (2) can be given similarly to that of (1). \Box

Lemma 2.4.2. (1) If $X = \{x_n / n \in \mathbb{Z}^-\}$ where $x_i > x_{i-1}$ for all $i \in \mathbb{Z}^-$ and $\alpha : X \to X$ is defined by $x_i \alpha = x_{i-1}$ for all $i \in \mathbb{Z}^-$, then $\alpha \in M_{RE}(X)$ and $\alpha^n \neq \alpha^{2n}$ for all $n \in \mathbb{N}$.

(2) If $X = \{x_n / n \in \mathbb{N}\}$ where $x_{i+1} > x_i$ for all $i \in \mathbb{N}$ and $\alpha : X \to X$ is defined by $x_1 \alpha = x_i$ and $x_{i+1} \alpha = x_i$ for all $i \in \mathbb{N}$, then $\alpha \in E_{RE}(X)$ and $\alpha^n \neq \alpha^{2n}$ for all $n \in \mathbb{N}$.

- **Proof.** (1) Assume that X and α satisfy the assumption of (1). It is clear that $\alpha \in M_{RE}(X)$. We have that for $n \in \mathbb{N}$ and $i \in \mathbb{Z}^-$, $x_i \alpha^n = x_{i-n}$. Since $x_{i-n} \neq x_{i-2n}$ for all $i \in \mathbb{Z}^-$ and $n \in \mathbb{N}$, it follows that $\alpha^n \neq \alpha^{2n}$ for all $n \in \mathbb{N}$.
- (2) Assume that X and α satisfy the assumption of (2). Then α belongs to $E_{RE}(X)$ and $x_i\alpha=x_{i-1}$ for all $i\in\mathbb{N}\setminus\{1\}$. Then $x_i\alpha^n=x_{i-n}$ for all $i\in\{n+1,n+2,n+3,...\}$ and $n\in\mathbb{N}$. It follows that $\alpha^n\neq\alpha^{2n}$ for all $n\in\mathbb{N}$. \square

Theorem 2.4.3. The following statements are equivalent.

- (1) Every chain of X has a minimum element.
- (2) $M_{RE}(X) = \{1_X\}.$
- (3) $M_{RE}(X)$ is regular.
- (4) $M_{RE}(X)$ is eventually regular.

Proof. (1) \Rightarrow (2). Assume that (1) holds. Let $\alpha \in M_{RE}(X)$ and $x \in X$. Since α is regressive, $x \ge x\alpha \ge x\alpha^2 \ge ...$. Then $\{x\alpha^n/n \in \mathbb{N}\}$ is a chain of X. By assumption, there exists a positive integer k such that $x\alpha^k = \min\{x\alpha^n/n \in \mathbb{N}\}$. Since $x\alpha^k \ge x\alpha^{k+1}$, $x\alpha^k = x\alpha^{k+1} = (x\alpha)\alpha^k$. But α^k is one-to-one, so we have that $x\alpha = x$. This proves that $\alpha = 1_X$. Then (2) is obtained.

- $(2) \Rightarrow (3)$. Trivial.
- $(3) \Rightarrow (4)$. Trivial.
- $(4) \Rightarrow (1)$. Suppose that (1) is not true. Then there exists a chain Y of X such that Y has no minimum element. By Lemma 2.4.1.(1), there exists a chain

 $C = \{x_n / n \in \mathbb{Z}^-\}$ of Y with $x_i > x_{i-1}$ for all $i \in \mathbb{Z}^-$. Define $\alpha : C \to C$ by $x_i \alpha = x_{i-1}$ for all $i \in \mathbb{Z}^-$. By Lemma 2.4.2.(1), $\alpha \in M_{RE}(C)$ and $\alpha^n \neq \alpha^{2n}$ on C for all $n \in \mathbb{N}$. Extend α to $\beta : X \to X$ by defining β as follows:

$$x\beta = \begin{cases} x\alpha & \text{if } x \in C, \\ x & \text{if } x \in X \setminus C. \end{cases}$$

Since α is one-to-one and regressive, β is also one-to-one and regressive. Then $\beta \in M_{RE}(X)$. Since $\alpha^n \neq \alpha^{2n}$ on C for every $n \in \mathbb{N}$ and α is the restriction of β to C, we have that $\beta^n \neq \beta^{2n}$ on X for all $n \in \mathbb{N}$. Hence β^n is not an idempotent for every $n \in \mathbb{N}$. By Theorem 2.1.1, β^n is not regular for all $n \in \mathbb{N}$. Hence β is not an eventually regular element of $M_{RE}(X)$, so (4) is not true. \square

Theorem 2.4.4. The following statements are equivalent.

- (1) Every chain of X has a maximum element.
- (2) $E_{RE}(X) = \{1_X\}.$
- (3) $E_{RE}(X)$ is regular.
- (4) $E_{RE}(X)$ is eventually regular.

Proof. (1) \Rightarrow (2). Assume that every chain of X has a maximum element. To show that $E_{RE}(X) = \{1_X\}$, let $\alpha \in E_{RE}(X)$ and $x \in X$. Let $x_1 = x$. Since α is onto, there exists an element $x_2 \in X$ such that $x_2\alpha = x_1$. Since α is regressive, $x_1 = x_2\alpha \le x_2$. Since α is onto, there exists an element $x_3 \in X$ such that $x_3\alpha = x_2$. Since α is regressive, $x_2 = x_3\alpha \le x_3$. Then we have that $x_1 \le x_2 \le x_3$, $x_2\alpha = x_1$ and $x_3\alpha = x_2$. By this inductive process, we obtain a sequence x_1, x_2, x_3, \ldots of X such that $x_1 \le x_2 \le x_3 \le \ldots$ and $x_{n+1}\alpha = x_n$ for all $n \in \mathbb{N}$. It follows by induction that

$$x_{n+1}\alpha^n = x_1$$
 for every $n \in \mathbb{N}$ (*)

Since $\{x_n \mid n \in \mathbb{N}\}$ is a chain of X, by assumption, there exists a positive integer m such that $x_n \le x_m$ for all $n \in \mathbb{N}$. Then $x_n = x_m$ for all $n \ge m$. In particular, $x_{m+1} = x_m$. Therefore $x_m = x_{m+1}\alpha = x_m\alpha$ which implies by induction that

$$x_m \alpha^n = x_m$$
 for all $n \in \mathbb{N}$ (**)

If m=1, then $x_1\alpha=x_1$. If m>1, then by (*) and by (**), $x_1=x_m\alpha^{m-1}=x_m$, so $x_1\alpha=x_1$ since $x_m\alpha=x_m$. Hence $x\alpha=x$. This proves that $\alpha=1_X$.

- $(2) \Rightarrow (3)$. Trivial.
- $(3) \Rightarrow (4)$. Trivial.

 $(4) \Rightarrow (1)$. Assume that (1) is not true. Then there exists a chain Y of X such that Y has no maximum element. By Lemma 2.4.1.(2), there exists a chain $C = \{x_n \mid n \in \mathbb{N}\}$ of Y with $x_i < x_{i+1}$ for all $i \in \mathbb{N}$. Define $\alpha : C \to C$ by $x_1 \alpha = x_1$ and $x_{i+1} \alpha = x_i$ for all $i \in \mathbb{N}$. By Lemma 2.4.2.(2), $\alpha \in E_{RE}(C)$ and $\alpha^n \neq \alpha^{2n}$ on C for all $n \in \mathbb{N}$. Extend α to $\beta : X \to X$ by

$$x\beta = \begin{cases} x\alpha & \text{if } x \in C, \\ x & \text{if } x \in X \setminus C. \end{cases}$$

Since α is regressive and $\nabla \alpha = C$, $\nabla \beta = X$ and β is regressive. Then $\beta \in E_{RE}(X)$. Since $\alpha^n \neq \alpha^{2n}$ on C for every $n \in \mathbb{N}$ and α is the restriction of β to C, we have that $\beta^n \neq \beta^{2n}$ on X for all $n \in \mathbb{N}$. Hence β^n is not an idempotent for every $n \in \mathbb{N}$. By Theorem 2.1.1, β^n is not a regular element of $E_{RE}(X)$ for every $n \in \mathbb{N}$. Hence β is not eventually regular. Therefore (4) is not true. \square

Example. By Theorem 2.4.3, $M_{RE}(N) = \{1_N\}$ but $M_{RE}(Z^-)$ and $M_{RE}(Z)$ are not eventually regular.

By Theorem 2.4.4, $E_{RE}(\mathbf{Z}^-) = \{1_{Z^-}\}$ but $E_{RE}(\mathbf{N})$ and $E_{RE}(\mathbf{Z})$ are not eventually regular.

Example. Let $a,b \in \mathbb{R}$ be such that a < b. Let I be the interval (a,b), [a,b), (a,b) or [a,b]. Then (a,b) is a chain of I and (a,b) has neither a maximum element nor a minimum element. Then by Theorem 2.4.3 and Theorem 2.4.4, both $M_{RE}(I)$ and $E_{RE}(I)$ are not eventually regular.