

ขั้นตอนวิธีการเรียนรูแบบไมมีผูสอนสําหรับการเกาะกลุมขอมูลอยางทนทานและ

การประมาณจาํนวนกลุมที่เปนไปได

นางสาวอุรีรัฐ วัฒนชนม

วิทยานพินธนี้เปนสวนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรดุษฎีบัณฑิต

สาขาวิชาวิทยาการคอมพิวเตอร ภาควิชาคณิตศาสตร
คณะวิทยาศาสตร จุฬาลงกรณมหาวิทยาลยั

ปการศึกษา 2549

ISBN 974-14-3425-1

ลิขสิทธิ์ของจุฬาลงกรณมหาวิทยาลัย

AN UNSUPERVISED LEARNING ALGORITHM FOR ROBUST CLUSTERING AND

ESTIMATING THE FEASIBLE NUMBER OF CLUSTERS

Ms. Ureerat Wattanachon

A Dissertation Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy Program in Computer Science

Department of Mathematics

Faculty of Science

Chulalongkorn University

Academic year 2006

ISBN 974-14-3425-1

Copyright of Chulalongkorn University

vi

Acknowledgements

During my years as a Ph.D. student, I have received a lot of tuition, care and friendship

from several people, some of which I wish to thank here.

• First of all I would like to thank Development and Promotion for Science and Tech-

nology talents project (DPST) of Thailand who sponsor the research scholarships.

• During my time as a Ph.D.s student, I am greatful to my supervisor, Prof.Dr.

Chidchanok Lursinsap, to whom with his advice, guidance and care, help me to

overcome the neccessary difficulties of the process of research and make this dis-

sertation possible.

• I would like to thank Dr.Mikael Boden at University of Queensland, Australia,

who gives me a wonderful suggestions in Ph.D. research methodologies.

• My thanks also goes to dissertation committee with their advice and guidance,

help focus my research activities.

• I would also like to thank Supaporn Bunrit, Benjamas Panyangam and all my

colleagues at the Advanced Virtual Intelligent Computing (AVIC) Center, Depart-

ment of Mathematics, Chulalongkorn University, who give me a number of useful

suggestions. Special thanks also goes to Sasithorn Anantasopon, my room-mate,

for her wormest care support.

• Finally, my deepest gratitude goes to Wattanachon’s family, for their sponsor,

love and care and especially Mr.Jakkarin Suksawatchon, for his love, wormest care

support and being patient during my doubtful stage.

vii

Table of Contents

Acknowledgements . vi

Table of Contents . vii

List of Tables . ix

List of Figures . x

1 INTRODUCTION . 1

1.1 Introduction and Problem Review . 1

1.2 Research Objective . 5

1.3 Scopes of the Study . 5

1.4 Research Plans . 6

1.5 Research Advantages . 6

2 LITERATURE REVIEWS . 7

2.1 Hierarchical Clustering Algorithms . 7

2.2 Partitional Clustering Algorithms . 9

2.3 Hybrid Clustering Algorithms . 10

2.4 Self-Organizing Map . 12

2.5 Variants of SOM . 15

3 PROPOSED METHOD . 21

3.1 Phase 1: Self-Partition . 24

3.1.1 Architecture of the DTS-SOM . 24

3.1.2 Training of the DTS-SOM . 25

3.1.3 Data Decomposition . 30

3.2 Phase 2: Noise Removal . 30

3.2.1 Density Computation . 32

3.2.2 Cluster Separation . 34

Administrator
Rectangle

viii

3.2.3 Cluster Verification . 38

3.3 Phase 3: Self-Merging . 39

3.3.1 Neighboring Merging . 40

3.3.2 Local Merging I . 46

3.3.3 Local Merging II . 48

3.3.4 Refinement Merging . 52

3.4 Clustering Example . 54

4 EXPERIMENTAL RESULTS . 59

4.1 Experiment 1 . 60

4.2 Experiment 2 . 60

4.3 Experiment 3 . 61

4.4 Experiment 4 . 66

4.5 Experiment 5 . 69

4.6 Experiment 6 . 70

4.7 Experiment 7 . 71

4.8 Complexity Analysis . 74

5 CONCLUSION . 78

References . 81

Biography . 85

ix

List of Tables

2.1 Types of definition of inter-cluster distance. 9

4.1 Phase 1 parameters. 60

4.2 Details on each data set. 61

4.3 The average of the accuracy of clustering results obtained through the

SPSM algorithm for testing the tolerance to noisy data. 73

4.4 Summary of computational complexity of different algorithms. 76

x

List of Figures

2.1 The hierarchical clustering algorithm for a data set of seven points. (a)

The input data set. (b) A possible dendrogram. 8

2.2 The most common topologies. 13

2.3 Topological map with 10 neurons at certain learning stage. A is the best

matching unit, and B,C,D,E, F , and G are its direct neighbors. 16

2.4 Weight initialization in the CSG algorithm for the two-dimensional input

data. (a) Neuron A is to be split to generate four new neurons on the

topological map. (b) The best matching unit A and the new neurons (1,

2, 3, and 4) in the two-dimensional input space before and after split-

ting. ML,MR,MT , and MB are middle-points between neuron A and

its direct left, right, top and bottom neurons, respectively. Dashed lines

(B1, 1D,D2, 2C,C4, 4E,E3, and 3B) denote the neuron connections af-

ter splitting. (c) New neurons (1, 2, 3, and 4) with new connections after

splitting on the output map. 17

2.5 Learning by CSG algorithm. (a) Output map. (b) Input space with

neuron connections. 18

2.6 Fundamental operations of the ETree. (a) Best matching unit search.

(b) Tree distance. 20

3.1 The overview of the proposed method – SPSM. 21

3.2 An example of a sparse noisy subcluster generated in Phase 1. 23

3.3 The overall steps of Phase 1. 24

xi

3.4 Tree search operation of the DTS-SOM: how the best matching unit is

found. White and black nodes are denoted the internal nodes and the

leaf nodes, respectively. The arrows show tree search path to find the

best matching unit. 26

3.5 An example of the DTS-SOM learning. (a) The tree structure. (b) Input

space with the leaf neuron connections. A number shows the neuron index. 28

3.6 The overall steps of Phase 2. 32

3.7 An example of a point xi is outside the hyperbox. 33

3.8 An example of the density arrangement. (a) Four types of sorted density

values. (b) The elliptic region denoted by dashed line shows the expected

area which may be the noisy subclusters. 36

3.9 The overall steps of Phase 3. 41

3.10 An example of the partial regions (connected regions). (a) The partial

region of non-overlapping subclusters. (b) The partial region of overlap-

ping subclusters. 42

3.11 An example of the ranges of each component for two-dimensional data

space. (a) The minimum and maximum positions of the first component.

(b) The minimum and maximum positions of the second component. . . 43

3.12 An example of the partial region (connected region). The gray dots in

the connected region are used for computing the inter-distance. 45

3.13 An example how the SPSM works. (a) Input data set of three clusters.

(b) The lateral connections among the leaf nodes. A number shows the

node index. (c) The set of 100 subclusters obtained through Phase 1. (d)

The set of 50 dense subclusters. Each subcluster is denoted by a color.

Each star is represented a prototype vector obtained from the DTS-

SOM Training process and each square is represented a subcluster center. 56

xii

4.1 Clustering result on the experiment 1. (a) Data Set 1. (b) SPSM on

Data Set 1 (3 clusters). Each cluster is denoted by a symbol. 62

4.2 Clustering results on the experiment 2 for Data Set 2 and Data Set 3.

Each cluster is denoted by a symbol. The star symbol is represented

noisy data points. 63

4.3 Clustering results on the experiment 2 for Data Set 4. Each cluster is

denoted by a symbol. The star symbol is represented noisy data points. 64

4.4 Clustering results on the experiment 3 produced in SPSM algorithm.

Each cluster is denoted by a symbol. The star symbol is represented

noisy data points. 65

4.5 Clustering results on the experiment 3 produced in SPSM algorithm.

Each cluster is denoted by a symbol. The star symbol is represented

noisy data points. 66

4.6 Clustering results on the experiment 3. (a) and (b) are the final de-

composition of Data Set 6 and Data Set 8 obtained from the single-link

algorithm, respectively. (c) and (d) are the clustering results of Data Set

7 and Data Set 8 acquired from the complete-link algorithm, respectively.

Each cluster is denoted by a symbol. 67

4.7 Clustering results on the experiment 3 obtained through the algorithm

CURE. (a) and (b) are the final decomposition of Data Set 6 and Data

Set 7, respectively. Each cluster is denoted by a symbol. 68

4.8 Clustering results on the experiment 3 produced by the algorithm CSM.

(a) and (b) are the final decomposition of Data Set 7 and Data Set 8,

respectively. Each cluster is denoted by a symbol. 68

4.9 Clustering result on the experiment 4 for Data Set 5. Each cluster is

denoted by a symbol. The star symbol is represented noisy data points. 69

xiii

4.10 Clustering result on the experiment 5 for Data Set 9. Each cluster is

denoted by a symbol. The star symbol is represented noisy data points. 70

4.11 Clustering results on the experiment 6 obtained through the algorithm

SPSM. (a) and (b) are the final decompositions of Data Set 7 with dif-

ferent stopping criteria. Each cluster is denoted by a symbol. 71

4.12 Clustering results on the experiment 6 obtained through the algorithm

SPSM. (a) and (b) are the final decompositions of Data Set 6 and Data

Set 8 with different initialization of the first neuron. Each cluster is

denoted by a symbol. 72

4.13 An example of data set used in the experiment 7. The dots represented

the data points and the stars denoted the noisy data points 73

CHAPTER I

INTRODUCTION

1.1 Introduction and Problem Review

Hugh amounts of data collected and stored in databases will increase the need for effi-

cient and effective analysis methods to make use of the information implicitly contained

in the data for further analysis and management. One of the primary data analysis tasks

is cluster analysis which is intended to help users to understand the natural grouping

or structure in a data set [1, 2]. Therefore, the development of improved clustering

algorithm has received a lot of attentions in the last few years. The goal of clustering

algorithm is to partition data into groups or clusters such that the data points in the

same cluster are as similar as possible and the data points of different clusters are as

dissimilar as possible. In the clustering process, there are no pre-defined classes and

no examples, also known as unsupervised classification, that would show what kind of

desirable relations should be valid among the data [3, 4]. The applications of cluster-

ing algorithm can be found in areas such as grouping, decision-making, and machine

learning, including data mining, document retrieval, image segmentation, and pattern

classification [1, 3, 5, 6, 7].

Many data clustering algorithms have been proposed in the literatures. These al-

gorithms can be categorized into partitional clustering [8, 9], hierarchical clustering

[10, 11, 12], artificial neural networks for clustering [13, 14, 15], statistical clustering al-

gorithms [16, 17], fuzzy clustering [18], density-based clustering algorithms [19, 20, 21],

and so on. In these methods, hierarchical and partitional clustering algorithms are two

2

primary approaches in research communities.

Hierarchical clustering treats each data point as a singleton cluster, and then succes-

sively merges clusters until all points have been merged into a single remaining cluster.

So, hierarchical clustering algorithms organize data into a hierarchical structure accord-

ing to the proximity matrix. The results of hierarchical clustering are usually depicted

by a binary tree or dendrogram. The root node of the dendrogram represents the whole

data set and each leaf node is regarded as a data point. The intermediate nodes describe

the extent that the data are proximal to each other; and the height of the dendrogram

usually expresses the distance between each pair of data points or clusters, or an data

point and a cluster. The ultimate clustering results can be obtained by cutting the

dendrogram at different levels. Therefore, cutting the tree at particular level produces a

partition into g disjoint groups. With hierarchical structure, the different clustering re-

sults can be obtained for different similarity requirements. The well-known hierarchical

clustering algorithms are single-link, complete-link, average-link, and so on. Besides, if

the clusters are close to one another even by noises, or if their shapes and sizes are not hy-

perspherical, the hierarchical clustering algorithms give uncorrectness results. However,

most of the hierarchical clustering algorithms require time complexity of O(N2logN),

where N is the number of input data points.

On the other hand, partitional clustering attempts to break a data set into k clusters

such that the partition optimizes a given criterion [22]. The k-means algorithm is one of

the most famous partitional clustering algorithms [23]. Because the k-means algorithm

is very simple and can be easily implemented. Although widely used, the k-means

algorithm suffers from some drawbacks [7]. There is no efficient method for identifying

the initial partitions and the number of clusters k. It can work very well for compact

and hyperspherical clusters. Moreover, k-means is sensitive to noises. However, most

partitional algorithms have advantage on the execution time which is in linear time.

3

Several clustering methods have been proposed to combine the features of hierarchical

and partitional clustering algorithms. It called the hybrid idea or two-phase clustering

algorithm. In general, these algorithms first partition the input data set into pre-defined

small subclusters instead of using all the data points as the distinct clusters. Then, these

algorithms construct a hierarchical structure based on these small subclusters and these

subclusters are next grouped into larger clusters.

Algorithm Clustering Using Representatives (CURE) is one of the famous two-phase

clustering algorithm [10]. In CURE, instead of using all data points to represent the

clusters, a constant number of well scattered points are chosen to represent a cluster.

Then the chosen scattered points are shrunk towards the center of the cluster by a

shrinking factor in order to eliminate the effects of noise. These scattered points after

shrinking are used as representatives of the cluster. The clusters with the closest pair of

representative points are the clusters that are merged at each step of CURE’s hierarchical

clustering algorithm. A major limitation of the CURE algorithm is that the merging

decisions are based upon input parameters which are a shrinking factor, the number of

representative points, the number of clusters. Thus, these parameters have to carefully

choose.

Another hybrid clustering algorithm has been proposed to remedy the drawbacks

of hierarchical and partitional clustering while combining their advantages [24]. The

new similarity measure between two clusters is proposed, namely, cohesion to measure

the inter-cluster distance. Using cohesion, a two-phase clustering algorithm is presented

called Cohesion-based Self-Merging (CSM). Algorithm CSM starts with partitioning the

input data set into several small subclusters in the first phase and then continuously

merges the subclusters based on cohesion in a hierarchical manner in the second phase.

During merging process, algorithm CSM removes all the subclusters whose sizes are less

than the threshold value. Therefore, algorithm CSM is able to deal with noisy data

4

set. Like CURE, algorithm CSM suffers from parameter settings. Note that the number

of subclusters, the desired number of clusters, the impedance factor, and the threshold

value are parameters specified by users. With proper parameters, algorithm CSM can

give a good results. In practice, it is not easy to choose the suitable parameters.

However, both CURE and CSM algorithms do not produce a suitable estimation

of the number of output clusters by themselves and it has to be provided as an input

parameter. Moreover, these algorithms fail if the choice of parameters is incorrect with

respect to the data set being clustered. To avoid the limitation of parameter settings

and to effectively alleviate the disadvantages of hierarchical and partitional clustering

algorithms, the new hybrid clustering called “Self-Partition and Self-Merging” (abbrevi-

ated as SPSM) is proposed. The SPSM algorithm has been designed into three phases.

In Phase 1, the new partitional clustering is introduced based on a self-creating and

self-organizing algorithm designed to improve SOM algorithm called Dynamic Tree-

Structured Self-Organizing Map (DTS-SOM). Once the DTS-SOM performed, the num-

ber of initial subclusters is automatically obtained. To achieve a better clustering result

and be less affected by noises, the noisy data and the noisy subclusters are removed

by Phase 2. Then, algorithm SPSM performs self-merging process in Phase 3 based

on inter-distance and intra-distance criteria. The SPSM algorithm automatically ob-

tains the final clusters and can identify the noisy data. The main contributions of our

proposed method can be summarized as follows:

• The DTS-SOM is proposed to cope with the initialization of the number of clusters

required in the partitional clustering algorithm. The DTS-SOM is a variant of

SOM which is a self-creating and self-organizing algorithm designed to improve

the SOM algorithm. Using DTS-SOM, it is able to overcome the limitations of

SOM, because the SOM must pre-define the topology structure and the number

of neurons before the training process.

5

• The SPSM algorithm also proposes the noise removal method which can deal with

the noisy data set. So algorithm SPSM is able to not only resist noises, but also

lead to good clustering results.

• The SPSM algorithm is able to cluster the data sets of arbitrary shapes very

efficient and provide better results than the other algorithms.

• The parameter settings of our proposed method are minimum. The parameter

requirements are default used for the DTS-SOM training.

1.2 Research Objective

The objective of this dissertation prospectus is to develop a new unsupervised learning

algorithm that can be robust in three aspects:

(a) Robust to the initialization (the number of clusters),

(b) Robust to cluster shapes (ability to detect arbitrary shapes of clusters), and

(c) Robust to noisy points (ability to tolerate noise).

1.3 Scopes of the Study

In this dissertation, the scope of work is constrained as follows:

1. This proposed algorithm is an unsupervised learning algorithm.

2. The number of dimensions and training data are finite.

3. The performance results from the proposed algorithm are compared with the re-

sults by existing agglomerative clustering techniques.

6

1.4 Research Plans

1. Study related papers and documents to unsupervised learning algorithms.

2. Develop a new unsupervised learning algorithm.

3. Experiment with benchmark data and compare the results with those from the

other algorithms.

4. Analyze the experimental results and conclude the outcomes.

1.5 Research Advantages

It is expected that the new approach and prototype are

1. A new unsupervised method is able to deal with unbalanced and irregular clusters.

2. The number of clusters is automatically derived by the proposed algorithm.

3. This algorithm can be used to solve in clustering problems.

CHAPTER II

LITERATURE REVIEWS

In this chapter, the existing clustering algorithms (hierarchical clustering algorithms,

partitional clustering algorithms, and hybrid clustering algorithms) including Self-Organizing

Map (SOM) and its variants, are briefly revised.

2.1 Hierarchical Clustering Algorithms

Hierarchical clustering begins with each input data point in a distinct (singleton) cluster,

and then successively merges clusters together until a stopping criterion is satisfied that

is all points have been merged into a single remaining cluster. A hierarchical clustering is

often represented as a binary tree or dendrogram [1]. The root node of the dendrogram

represents the whole data set and each leaf node is regarded as a data object. The

intermediate nodes describe the extent that the objects are proximal to each other; and

the height of the dendrogram usually expresses the distance between each pair of objects

or clusters, or an object and a cluster. The ultimate clustering results can be obtained

by cutting the dendrogram at different levels.

The operation of a hierarchical clustering algorithm is illustrated using the two-

dimensional data set in Fig. 2.1(a). This figure depicts seven input data labeled

A,B,C,D,E, F, and G. One possible dendrogram is shown in Fig. 2.1(b). With

the hierarchical structure, the different clustering results can be obtained for different

similarity requirements. As shown in Fig. 2.1(a), if the similarity requirement is set

at level 1, the input data set is partitioned into two clusters, i.e., {A,B,C,D} and

{E,F,G}. However, if the similarity requirement is set at level 2, then the input data

8

A
B

D
C

G

E F

S
im

ila
ri
ty

 S
c
a
le

A B C D F GE

Level 1

Level 2

(a) (b)

Figure 2.1: The hierarchical clustering algorithm for a data set of seven points. (a) The

input data set. (b) A possible dendrogram.

set is partitioned into six clusters, i.e., {A,B}, {C}, {D}, {E}, {F}, and {G}.

Most hierarchical clustering algorithms are variants of the single-link, complete-

link, centroid-link, average-link, and minimum-variance algorithms. The single-link and

complete-link algorithms are most popular. These two algorithms differ in the way they

characterize the similarity between pair of clusters (inter-cluster distance). The widely

used measures of inter-cluster distance in these algorithms are listed in Table 2.1 (mi

is the mean for cluster ci and ni is the number of data points in cluster ci) [25]. In

classical hierarchical clustering, two clusters are merged to form a larger cluster based

on minimum inter-cluster distance criteria.

The hierarchical clustering algorithm can be summarized by the following procedure.

1. Initially, each data point forms a cluster by itself.

2. The inter-cluster distance matrix for all distinct pairs of input data is constructed

as the proximity matrix.

3. The algorithm repeatedly merges the two closest clusters.

4. The output of the algorithm is a hierarchical structure which can be cut at a

9

Table 2.1: Types of definition of inter-cluster distance.

Definition Inter-cluster distance

Single-link dmin(ci, cj) = minxi∈ci, xj∈cj
‖xi − xj‖

Complete-link dmax(ci, cj) = maxxi∈ci, xj∈cj
‖xi − xj‖

Centroid-link dmean(ci, cj) = ‖mi − mj‖

Average-link dave(ci, cj) = 1
(ninj)

∑

xi∈ci

∑

xj∈cj
‖xi − xj‖

Minimum Variance dward(ci, cj) =
√

ninj

ni+nj
‖mi − mj‖

desired similarity requirement forming the partitioned clusters.

However, if the clusters are close to one another because of the noisy data, the

single-link gives uncorrectness result. As well as the complete-link clustering algorithm

has problems in dealing with particular shapes.

2.2 Partitional Clustering Algorithms

Partitional clustering attempts to break a data set into k clusters such that the partition

optimizes a given criterion [22]. The k-means algorithm is the best-known partitional

algorithm for data clustering. It starts with the random initial k partitions and keeps

reassigning the input data to clusters based on the similarity between the data point

and the cluster centers until a convergence criterion is met. The outline of the k-means

algorithm is given as follows:

1. Initially, k centroids are selected arbitrarily for each cluster ci, i ∈ [1, k].

2. Each data point assigns to the cluster whose centroid is closest to the data point.

3. Each cluster center is recalculated.

10

4. Step 2 and Step 3 are repeated until no data points change between clusters.

The k-means algorithm is popular because it is easy to implement. However, a

major problem with this algorithm is that it is sensitive to the selection of the initial

partition and may converge to a local minimum of the criterion function value if the

initial partition is not properly chosen. The k-means algorithm fails for data in which

data points in a given cluster are closer to the center of another cluster than to the

center of their own cluster. This can happen in many natural clusters, for example,

when cluster shapes are convex. Besides, k-means is also sensitive to noise.

2.3 Hybrid Clustering Algorithms

To overcome the problems of hierarchical and partitional clustering algorithms, several

clustering methods have been proposed to combine the features of hierarchical and parti-

tional clustering algorithms. It called the hybrid idea or two-phase clustering algorithm.

In general, these algorithms first partition the input data set into small subclusters

instead of using all the data points as the distinct clusters. Then, these algorithms

construct a hierarchical structure based on these subclusters and these subclusters are

next grouped into larger clusters.

Clustering Using Representatives (CURE) Algorithm

Algorithm CURE [10] is an improvement over the single-link clustering algorithm. In

CURE, instead of using all data points to represent the clusters, a fixed number of

well scattered points are chosen to represent a cluster. The scattered points capture the

shape and extent of the cluster. The chosen scattered points are next shrunk towards the

centroid of the cluster by a shrinking factor. These scattered points after shrinking are

used as representatives of the clusters. The clusters with the closest pair of representative

11

points are the clusters that are merged at each step of CURE’s hierarchical clustering

algorithm. CURE is capable of finding clusters of different shapes and sizes. Shrinking

the scattered points towards the centroid helps CURE in avoiding the problem of noises.

A major limitation of CURE algorithm is that the merging decisions are based upon

pre-defined parameters which are a shrinking factor, the number of representative points,

the number of clusters. CURE algorithm can breakdown if the choice of parameters used

in the merging criteria is incorrect with respect to the data set.

Cohesion-based Self-Merging (CSM) Algorithm

The CSM algorithm [24] is the recent two-phase clustering algorithm. The new similarity

measure between two clusters is proposed, namely, cohesion based on the join ability of

two clusters with density impedance to resist the effects of noises defined as Eq. 2.1.

similarity(ci, cj) =
cohesion(ci, cj)

impedance(ci, cj)α
(2.1)

where α is the impedance factor specified by users.

In the first phase, algorithm CSM adopts the k-means algorithm to divide the input

data set into m subclusters. At the beginning of second phase, it obtains the cohesions

of these m subclusters produced in the first phase. Then algorithm CSM performs

a single-link clustering algorithm based on cohesion to obtain the k clusters. During

merging process, algorithm CSM removes all the subclusters whose sizes are less than

the threshold value. The CSM algorithm is described as follows:

1. The k-means algorithm is applied on the input data set to obtain m subclusters.

2. The single-link clustering algorithm is used on the m subclusters produced in phase

1 with cohesion as the similarity measure by using Eq. 2.1.

3. Phase 2 repetitively merges two subclusters until the g clusters are obtained.

12

4. During phase 2, when those m subclusters are merged into m′ subclusters, algo-

rithm CSM removes all the subclusters whose sizes are less than the threshold

defined as

size ratio × 1
m′

∑ |ci|.

Note that size ratio and m′ are two parameters specified by users.

Like CURE, algorithm CSM is sensitive to parameter settings. It is observed that

when the value of m is too small, the subclusters produced in phase one may not properly

partition the input data set. Thus, algorithm CSM results in an incorrect partition. On

the other hand, if the input data set is partitioned into too many subclusters, algorithm

CSM may also fail to partition the input data set due to the existence of many noisy

subclusters. Those noisy subclusters may form a link and connect two neighboring

subclusters. The impedance factor α also affects the correctness of the clustering results.

This parameter is specified by users to control the effect of impedance. If parameter

α is set too high, the CSM algorithm will make the noisy subclusters harder to join

into normal subclusters. However, this may cause the normal subclusters also harder to

join together. On the other hand, If parameter α is set too low, the noisy subclusters

may be easy to merge into normal subclusters. Thus, algorithm CSM results in an

incorrect clustering results. With proper parameter settings, algorithm CSM may give

the correctness results.

2.4 Self-Organizing Map

Self-Organizing Map (SOM) is one of the most popular neural network models developed

by professor Kohonen [26]. The SOM has been proven useful in many applications

[27] especially data visualization and data clustering. The SOM algorithm is based on

13

unsupervised learning, which means that no human intervention is needed during the

learning. The SOM algorithm is quite a unique kind of neural network in the sense

that it constructs a topology preserving mapping from the high-dimension space onto

map units. Map units, or neurons, usually form a two-dimensional lattice and thus the

mapping is a mapping from high dimension space onto a plane. Thus, the SOM network

architecture is a two-layer neural networks with one input layer and one output layer.

The SOM is a two-dimensional array of P neurons. Every neuron i of the map is

associated with a d-dimensional reference vector (weight vector) wi = (wi1, wi2, . . . , wid)

This has the same dimension as the input data vector. The neurons of the map are

connected to adjacent neurons by a neighborhood relation, which dictates the topology,

or the structure, of the map. The most common topologies in use are rectangular or

hexagonal topology as illustrated in Fig. 2.2. At each training step t, an input data

vector x(t) is randomly chosen from the training set. Distance between x(t) and all

weight vectors are computed. The best matching unit, denoted by c, is the neuron with

the weight vector closest to x(t) such that

‖wc(t) − x(t)‖ ≤ ‖wi(t) − x(t)‖ , i ∈ 1, 2, . . . , P (2.2)

where ‖·‖ is the Euclidean distance.

A set of neighboring neurons of the best matching unit is denoted as Nc, which

decreases its neighboring radius of the best matching unit with time. hic(t) defines as

0

Rectangular Hexagonal

Figure 2.2: The most common topologies.

14

a neighborhood kernel function around the best matching unit c at time t. The kernel

can be taken as a gaussian function,

hic(t) = exp

(−||ri − rc||2
2σ2(t)

)

, i ∈ Nc (2.3)

where ri is the coordinates of neuron i on the topological grid and σ(t) is a kernel width.

After the best matching unit has been found, the weight vectors are updated. The

best matching unit itself as well as its topological neighbors are moved closer to the

input vector in the input space. So the weight update rule is the following

wi(t + 1) = wi(t) + α(t)hic(t)(x(t) − wi(t)), ∀i ∈ Nc (2.4)

wi(t + 1) = wi(t), i /∈ Nc (2.5)

where α(t) is the learning rate at time t. Before the training process, the topology and

the number of neuron must be fixed. The learning process of the SOM is summarized

as follows:

1. The weight vectors of all neurons are initialized in a random manner.

2. One input vector x is randomly chosen from the input data set.

3. Find the best matching unit c at time step t by using the minimum Euclidean

distance criterion as in Eq. 2.2.

4. Update the weight vectors of all neurons by using Eqs. 2.4 and 2.5.

5. Steps 2 to 4 are repeated until no noticeable changes in the feature map are ob-

served.

Once the SOM algorithm has converged, the topological map computed by the algo-

rithm displays important characteristics of the input space.

15

2.5 Variants of SOM

In the classical SOM algorithm, the topological map and the number of neurons are

fixed from the beginning. This may lead to many experiments with different sized maps,

trying to obtain the optimal results. As the number of neurons increases, the time it

takes to do any operations on the map also increases. Several improved SOM and related

algorithms [28, 29, 30] have been proposed in recent years to overcome the basic SOM

problems.

One of the variants of SOM is Cell-Splitting Grid algorithm (CSG) which dynamically

increases neural network [30]. The CSG network architecture is like the two-dimensional

SOM architecture. It is a two-layer neural network with an input layer and an output

layer. The neural weights connecting the input and output layer represent feature vec-

tors. Furthermore, there are lateral connections among neighboring neurons.

The CSG network topological map is constrained in a square of unit length. All

neurons are generated within the square. Each neuron corresponds to a square region

with different size and neighboring neurons connected to form the neighboring relation.

Note that the neighboring neurons also mean the direct left, right, top, bottom, top-

left, bottom-left, top-right, and bottom-right neurons of one neuron. A typical neural

network topological map is shown in Fig. 2.3.

The training process of CSG algorithm is like the SOM. But during the processing in

the CSG algorithm, the network itself determines the growth of new neurons according to

the activation level which tells how many times each neuron has been the best matching

unit during training. When the activation level of the best matching unit decreases to

zero, the CSG algorithm performs the cell-splitting mechanism, i.e., to delete the best

matching unit and then generate four new neurons.

Weight initialization is very important at the time of cell-splitting in order to avoid

16

Figure 2.3: Topological map with 10 neurons at certain learning stage. A is the best

matching unit, and B,C,D,E, F , and G are its direct neighbors.

disorder of topology in the input space. Fig. 2.4 illustrates the weight-endowing process

before and after the splitting in the two-dimensional input data. The following strategy

to create an ordered topology is described.

1. When there is only one neuron at the first stage, four new neurons are generated

after splitting. In order to create weights of new neurons, a vector Random is

introduced such that Random has the same dimension as the weight vector w and

satisfies ‖Random‖ << ‖w‖. Random is divided into two vectors. The first vector

is A. Data in the first [d
2
] dimensions of A are the same as Random ([b] denotes an

maximum integer less than b), but data in the rest dimensions of A is zeros. The

second vector B is opposite, data in the first [d
2
] dimensions are zeros and the data

in the rest dimensions are the same as Random. Hence, Random can be expressed

by Random = A+B. Thus, w +A+B, w +A−B, w−A+B, and w−A−B are

used to represent the new four neurons which lie on the top-right, bottom-right,

top-left, and bottom-left corners in the region of the original neuron.

2. When the number of neurons is larger than 1, the condition is different because the

17

(a) (b) (c)

Figure 2.4: Weight initialization in the CSG algorithm for the two-dimensional input

data. (a) Neuron A is to be split to generate four new neurons on the topological

map. (b) The best matching unit A and the new neurons (1, 2, 3, and 4) in the two-

dimensional input space before and after splitting. ML,MR,MT , and MB are middle-

points between neuron A and its direct left, right, top and bottom neurons, respectively.

Dashed lines (B1, 1D,D2, 2C,C4, 4E,E3, and 3B) denote the neuron connections after

splitting. (c) New neurons (1, 2, 3, and 4) with new connections after splitting on the

output map.

neighboring neurons obtained can be utilized. When a neuron is to be split, firstly

the middle-points ML, MR, MT , and MB are computed between it and its direct

left, right, top, and bottom neurons in the input space as shown in Fig. 2.4(b). If

there are several direct neighbor neurons at the same direction, the middle-points

between the splitting neuron and its direct neighbor neurons at that direction are

averaged. After computing the middle-points, the four new neurons with weights

w1 = ML+MT
2

, w2 = MR+MT
2

, w3 = ML+MB
2

, and w4 = MR+MB
2

are generated.

Fig. 2.5 gives an example result by CSG algorithm for two-dimensional input data.

However, CSG algorithm requires a full-search over the entire set of neurons to find the

best matching unit. Thus, it becomes computationally impractical when the number of

18

neurons also increases.

(a) (b)

Figure 2.5: Learning by CSG algorithm. (a) Output map. (b) Input space with neuron

connections.

The Evolving Tree (ETree) is another variant of SOM which tries to build efficient

search structure to make operation faster [31, 32]. The ETree is a new kind of SOM that

has been designed to scale to very large problems. The basic ETree algorithm is briefly

described. A more detailed description of the basic algorithm can be found in [29]. This

algorithm starts with the small ETree in Fig. 2.6(a). This example tree has a fanout

of 2 for simplicity. In practice larger values are often used. The tree consists of back

leaf nodes and white trunk nodes. Each node has a prototype vector wi, which places

in somewhere in the data space. It also has a counter bi, which tells how many times

it has been the best matching unit. A training set of data vectors are used in training

one by one. Training the tree starts by finding the best matching with a greedy tree

search. For every trainig vector xi, the searching starts at the root node and selects the

child which is closest to the training vector. This node is selected and its children are

examined and until a leaf node is found. This is the best matching unit.

19

When the best matching units has been found, the leaf node locations are updated

by using the Kohonen learning rule.

wi(t + 1) = wi(t) + hic(t)(x(t) − wi(t) (2.6)

The function hic defines the amount of adaptation and is a gaussian function as in

SOM,

hic(t) = α(t)exp

(−||ri − rc||2
2σ2(t)

)

(2.7)

here, α and σ are used to control the width and time decay of the neighborhood function.

The problematic part is the function ||ri − rc||, which tells how far apart the nodes

rc and ri are in the SOM grid. The ETree does not form a grid so some other method is

required. An equivalent metric call the tree distance which can be seen in Fig. 2.6(b).

The idea is to calculate the amount of hops needed to get from one node to the other

along the tree. In this case, five hops are needed to get from A to B. Using this distance

the SOM neighborhood function can be applied.

These two steps – finding the best matching unit and updating leaf nodes – form most

of the training. The third step is growing the tree. Every node has a counter that tells

how many times it has been the best matching unit. When the counter reaches a certain

value, called the splitting threshold, the node is split. That is, it is given some child

nodes, thus becoming a trunk node. The child nodes’ prototype vectors are initialized

to their parent’s value. Now the very simple basic ETree algorithm for a single training

vector can be described in the following.

1. Find the best matching unit using the search tree.

2. Update the leaf node locations using the SOM training formulas substituting tree

distance for grid distance.

20

A

B

(a) (b)

Figure 2.6: Fundamental operations of the ETree. (a) Best matching unit search. (b)

Tree distance.

3. Increment the best matching unit counter.

4. If the counter reaches the splitting threshold, split the node.

This is repeated for every vectors on the training set until the system is deemed good

enough. Usually this means going through the data a pre-specified amount of times.

Although ETree has been designed to make a more flexible topology, and to reduce

the time consuming search for the best matching unit in large maps of the classical

SOM, but ETree does not consider to preserve the correlation between the trunk node

and its children. Therefore, the updating of the trunk nodes at each layer is essential.

Since the search for the best matching unit is performed in the tree search manner, the

neurons are likely to be dragged far away from their parents in the learning process.

That means making the search for best matching units more difficult and incorrectness.

Thus, both the intralayer relationship (the neighborhood relationship) and the interlayer

relationship (the parent-children relationship) should be maintained.

CHAPTER III

PROPOSED METHOD

The goal of this work is to separate a set of finite N input patterns X = {x1, . . . , xi, . . . , xN},

where xi = (xi1, xi2, . . . , xid) ∈ Rd, into the feasible number of clusters K automatically

obtained from our proposed method. The new hybrid system is proposed that tries to

combine the features of hierarchical and partitional clustering algorithms called “Self-

Partition and Self-Merging (SPSM)”. Fig. 3.1 presents the overview of the proposed

method consisted of three sequential phases.

Phase 1:

 Self-Partition

(Figure 3.3)

 Phase 2:

 Noise Removal

 (Figure 3.6)

Phase 3:

 Self-Merging

(Figure 3.9)

Set of

Subclusters SC

 Set of Noisy Data : NX

 Set of Noisy Subclusters : NSC

 Set of Dense Subclusters : DSC

 Set of

 Final Clusters CInput Patterns X

Figure 3.1: The overview of the proposed method – SPSM.

The main task of Phase 1 is to apply the proposed algorithm – Dynamic Tree-

Structured Self-Organizing map (DTS-SOM) for partitioning the input data set to obtain

the set of M subclusters. The DTS-SOM is a variant of SOM which is a self-creating

and self-organizing algorithm designed to improve the SOM algorithm. By using DTS-

SOM, the parameter settings specified by users in partition clustering algorithm e.g.

the number of clusters or initial guesses, can avoid. Once the DTS-SOM performed in

this phase, the number of initial subclusters is automatically obtained. The difference

between the DTS-SOM algorithm and the variants of SOM are the following

22

• Since the network size (the number of nodes) is not pre-specified, DTS-SOM is

either to make a more flexible topology for different input data set, or to reduce

the computational requirements of the SOM especially the time-consuming search

for the best matching unit in large maps. But CSG algorithm requires a full-

search over the entire set of neurons to find the best matching unit, so it becomes

computationally impractical.

• During the weight updating processing, unlike ETree algorithm, the DTS-SOM al-

gorithm not only updates the prototype vector of the best matching unit including

its direct neighbors, but also updates its ancestors to maintain the tree structure.

Because all the operations are performed in the tree search manner. The updating

processing at each layer is necessary. This will lead to the correctness of finding

the best matching unit using the DTS-SOM training is more than the correctness

of finding the best matching unit using the ETree algorithm.

In unsupervised classification problem, most of the input data set always contain

noises. Usually, the presence of noise indicates some sort of problem. This can be a

case which does not fit the model under study, or an error in measurement. Therefore,

noises are those random points that are very different from others and do not belong to

any clusters [24]. Since no priori knowledge is provided in the clustering process, it is

hard to identify which data points are likely to be the noisy data. To remove such noisy

data before performing Phase 1 will cause the correctness of the characteristic of data

set such as shapes of data or the data distribution. Thus, instead of trying to remove

the expected noisy points immediately, algorithm SPSM first partitions the input data

set into several subclusters and identifies the noisy subclusters.

Therefore after Phase 1, it is noticed that some subclusters consist of only noisy data.

Those noisy subclusters will affect the correctness of the subsequent merging. Besides,

23

it is observed that the data points in noisy subclusters are generally sparse compared to

data points in dense subclusters, and the density of noisy subclusters is comparatively

less than the density of dense subclusters. Fig. 3.2 shows an example of the sparse noisy

subclusters that are likely to be merged with others and may become bridges between

subclusters which should be separated. So the main purpose of Phase 2 is to filter out

a majority of the noisy subclusters. After this Phase, the SPSM algorithm obtains the

set of dense subclusters that capture the major distribution pattern in the data, the set

of noisy subclusters, and some of noisy data points.

In the last Phase, an agglomerative clustering algorithm is adapted by applying it di-

rectly to the dense clusters to find the genuine clusters by repeatedly combining together

these similar subclusters. In the proposed agglomerative clustering, inter-distance and

intra-distance are incorporated into merging criteria. The rational using the distances

as the merging criteria is that the noisy subclusters acquired from Phase 2 have been

removed, so the merging problem of the noisy subclusters connected as the bridge be-

tween two subclusters when using the distance criteria, can overcome. After performing

all three phases, the input data set can be extracted the final clusters and identified the

noisy data. Therefore, our proposed method can produce the feasible estimation of the

number of output clusters by itself.

Subcluster A Subcluster BSparse Noises

Figure 3.2: An example of a sparse noisy subcluster generated in Phase 1.

24

3.1 Phase 1: Self-Partition

The objective of this Phase is to partition the input data into small subcluster by using

DTS-SOM algorithm as a partitioning tool. During the DTS-SOM training, the neural

nodes (nodes or neurons) are arranged in a tree topology and allowed to grow when any

given branch receives a lot of times being the best matching unit from the training data

vectors. The search for the best matching unit and its neighbors is conducted along

the tree and is therefore very efficient. The DTS-SOM has adopted technique used in

CSG algorithm for weight vector initialization described in Chapter 2. After DTS-SOM

training, the tree structure of DTS-SOM is produced. In our network, the prototype

vectors of leaf nodes are used as the subcluster centers. For further using the information

of each subcluster, then each data point is assigned to its nearest subcluster center in

the tree search manner. So the process of Phase 1 has been designed into two steps as

shown in Fig. 3.3. The first step applies the DTS-SOM training on the input data set

to obtain the subcluster centers. Then the second step uses to identify the membership

to each data point.

DTS-SOM Training

(Algorithm : DTS-SOM_Training)

Input Patterns X

Data Decomposition

(Subsection 3.1.3)

Set of subclusters SC

Figure 3.3: The overall steps of Phase 1.

3.1.1 Architecture of the DTS-SOM

The DTS-SOM has nodes with prototype vectors, just like the SOM. Let wi ∈ Rd

denote the prototype or weight vector of node i. In addition, each node in the network

has an initial value τi as the activation level τ . This activation level is the counter

which tells how many times each node has been the best matching unit during training.

25

Furthermore, there are lateral connections among neighboring neurons. Note that the

neighboring neurons also mean the direct left, right, top, bottom, top-left, bottom-left,

top-right, and bottom-right neurons of one neuron that is the same definition as the

CSG algorithm.

3.1.2 Training of the DTS-SOM

The DTS-SOM algorithm starts by taking a single neuron and placing it at a suitable

place in the data space. An obvious suitable choice is the center of mass of the data

cloud. Then, the node is split to generate four new neurons and their activation levels are

initialized including the lateral connections. This means that a pre-determined amount

of new nodes is created and then the algorithm marks them as the children of the

split node. The weight vectors are initialized by using the weight initialization method

proposed in the CSG algorithm. For the next training vector, the best matching unit is

chosen among the children nodes in a manner described later. Now a tree structure is

produced with four leaf nodes and one root node as the initialized DTS-SOM network.

Once a leaf node is activated as the best matching unit, the activation level τ of such

neuron decreases by a constant value. This process continues until τ of one leaf node

becomes zero and the neuron is split to generate its four offspring neurons. Then, the

activation levels are set to the new generated neurons. After the initial activation levels

(τi) are given to the new neurons, the activation levels of all neurons are increased

by ∆τ > 0 to slow down the splitting rate. Thus, a tree is formed recursively by the

training algorithm. During the training process, the DTS-SOM forms an elastic network

that folds onto the data cloud. The algorithm controls the network so that it tries to

approximate the density of the data. The neurons drift to the areas where the density

of the input data is high. Eventually, only few neurons lie in the areas where the input

26

data is sparse.

Now the algorithms: how to find the best matching unit in a tree and how to train

the tree structure are described. To illustrate this process, a larger tree structure is

assumed at certain learning stage, which can be seen in Fig. 3.4. In the DTS-SOM,

every internal nodes (white nodes) have four children (black nodes). Finding the best

matching unit is a top-down process. The searching starts with the root node, then its

children are examined. The DTS-SOM finds the node whose prototype vector is closest

to the training vector. If that node is a leaf node, then it is the best matching unit. If

it is not, its children are examined in turn and the closest one of them is chosen. This

is repeated until a leaf node is found. Thus, the DTS-SOM’s internal nodes work as a

hierarchical search tree for the leaf node.

root

Lateral connections

Leaf Nodes

Figure 3.4: Tree search operation of the DTS-SOM: how the best matching unit is found.

White and black nodes are denoted the internal nodes and the leaf nodes, respectively.

The arrows show tree search path to find the best matching unit.

When the best matching unit has been examined, it is time to update the prototype

vector of the best matching unit, but also those of its direct neighbors, towards the

training vector. The Kohonen learning rule [26] is used to update node weights wi(t)

27

towards the training vector xi(t):

wc(t + 1) = wc(t) + α[xi(t) − wc(t + 1)] (3.1)

wb(t + 1) = wb(t) + αhbc[xi(t) − wb(t + 1)] (3.2)

Here, c is the index of the best matching unit and b is index of all the direct neighbor

neurons of the best matching unit c as before mentioned. The function hbc defines the

neighborhood function and a common choice for the neighborhood function is Gaussian

neighborhood as in SOM.

hcb = exp

(−||rc − rb||2
2σ2

)

(3.3)

The vectors rc and rb give the locations of nodes c and b on the SOM regular grid

that has an unit length between each node. The parameter α defines the learning rate,

and σ gives the width of the guassian kernel.

The updating function at each layer is essential. Since all the operations are per-

formed in the tree search manner described above, the neurons are likely to be dragged

far away from their parents in the learning process. If there is no provision to pre-

serve the correlation between the parent and its children neurons, the tree structure

will be destroyed, making the search for best matching units more difficult and the

overall distortion enlarged. Therefore, both the intralayer relationship (the neighbor-

hood relationship) and the interlayer relationship (the parent-children relationship) are

maintained. To keep the neurons of the same family close during the entire training

process, the parent neurons (internal nodes) will only be updated if their children are

also updated with the average value of all their children weight vectors as shown in Eq.

3.4,

wj(t + 1) =
1

ncj

∑

∀k

wk(t) (3.4)

28

where ncj is the number of children of neuron j and k is index of all children of neuron

j. Fig. 3.5 illustrates an example the DTS-SOM learning for the two-dimensional input

data at certain learning stage. Fig. 3.5(b) depicts the dynamic topology of the leaf

neurons in the input space according to the tree structure as shown in 3.5(a).

root

Leaf nodes

8 9 12 13

6 7 10 11

16 17 20 21

14 15 18 19

4 5

2 3

1

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

6 7

8

9

10 11

12

13

14 15

16 17

18
19

20 21

(a) (b)

Figure 3.5: An example of the DTS-SOM learning. (a) The tree structure. (b) Input

space with the leaf neuron connections. A number shows the neuron index.

The overall idea of the DTS-SOM algorithm is shown in Algorithm DTS-SOM

Training. This is repeated for every vector on the training set until the system is

deemed good enough. At the end of each epoch, the size of the tree is examined. So

in our system, the size of the tree nodes in the current and the previous epochs are

compared. If their difference is less than a small threshold value, then the training is

completed.

In our simulations, the DTS-SOM training makes use the following parameters.

• The learning rate α must be rather small, but would not be decreased to zero.

Normally, the learning rate α is set to a value less than 1 and the width of neigh-

borhood function σ is set to a value typically between 0.8-0.99 [26, 33].

29

• The initial activation level τi affects the growing rate of the network. If τi is too

small, the network size increases without learning enough information and finally

will not be able to well represent the topology of the input data. Usually, τi is

chosen to 0.05N ∼ 0.5N , where N is the number of input data.

• At each splitting stage, the activation levels of all neurons are increased by ∆τ .

This causes the splitting rate slower and slower. Usually ∆τ can be set to ∆τ =

(0, 1] of the activation level τi.

• The training is terminated if the tree has grown less than a specified amount such

as the size of the tree nodes in the current is grown slower than 5% of the size of

tree nodes in the previous epochs.

Algorithm DTS-SOM Training

Input: input data xj(t) at time t.

Output: the tree structure of DTS-SOM network.

Begin

1. Initialize the DTS-SOM network as described at the beginning of Sec. 3.1.2.

2. Repeat

3. Select an input datum xj(t) randomly from input space.

4. Find the best matching neuron c using the tree search such that

‖wc(t) − xj(t)‖ ≤ ‖wi(t) − xj(t)‖ ,∀i.

5. Update weight vectors of the best matching unit c using Eq. 3.1,

and neurons in Nc using Eq. 3.2,

where Nc is the set of the direct neighbor neurons of the best matching unit c.

6. Update their parents layer by layer using Eq. 3.4.

7. Decrease the activation level of the best matching unit c by 1.

30

If the activation level of the best matching unit c decreases to zero Then

Generate four new neurons of original neuron c.

10. Initialize the new weights and the activation level of the new generated

neurons.

11. Endif

12. Increase the activation levels of all neurons by ∆τ .

13. Until the tree has grown less than a small threshold value.

End

3.1.3 Data Decomposition

After DTS-SOM training, the tree structure of DTS-SOM network is obtained which

is consisted of the number of leaf nodes and the number of internal nodes. In our

network, the leaf nodes are the most important part because the prototype vectors of

leaf nodes are represented the subcluster centers. Therefore, the number of leaf nodes

is equivalent to the the number of subclusters. Next each data point is mapped to

its nearest subcluster center in the tree search manner, and recalculate the subcluster

centers with the average of all data points in each subcluster. After this stage, the

input data space is partitioned into small subclusters without prior knowledge. The set

of subclusters SC = {sc1, . . . , scj, . . . , scM}, where M is the number of subclusters, is

defined.

3.2 Phase 2: Noise Removal

The purpose of Phase 2 is to identify which subclusters are the core subclusters and

discard the noisy subclusters. As mentioned above, the noisy subclusters will affect

the correctness of the agglomerative clustering algorithm (Phase 3). Note that the

31

data points of noisy subclusters are generally sparse compared to data points in dense

subclusters, and the density of noisy subcluster is comparatively less than the den-

sity of dense subcluster. So, the main task is to find the density threshold for sep-

arating the set of subclusters SC into two groups which are the set of dense sub-

clusters DSC = {dsc1, . . . , dscj, . . . , dscM ′}, and the set of noisy subclusters NSC =

{nsc1, . . . , nsck, . . . , nscM ′′}, where M ′ and M ′′ are the number of dense subclusters and

noisy subclusters, respectively.

In order to quantify the meaning of sparseness, the volume and the density of the

subcluster are introduced. The volume of each subclusters scj is measured as the multiple

of the data eigen-axis length. Since the square roots of eigenvalue of a covariance matrix

can be treated as the radius of a subcluster. So the volume and the density of a subcluster

can be defined as follows:

scj volume =
√

λ1 ×
√

λ2 × . . . ×
√

λd (3.5)

scj density =
|scj|

scj volume
(3.6)

where
√

λ1,
√

λ2, . . . ,
√

λd are the length of each axis in d-dimensional data space.

scj volume and scj density are the volume and the density of any subclusters scj, re-

spectively. |scj| is the number of data points in subcluster scj.

The whole process of noise removal is composed of three steps as shown in Fig. 3.6.

Since the main process is to determine the density threshold for separating the subclus-

ters, the first step is to compute the density of each subclusters. Before processing den-

sity computation, some deviated points of each subcluster are discarded because those

points will affect the correctness of density computation and further merging process.

Next step is used to separate the set of subclusters SC into noisy subcluster set NSC

and dense subcluster set DSC based on the density threshold. In the last step, some

noisy subclusters will be verified because some dense subclusters may be removed too

32

much from the previous step.

Density Computation

(Algorithm : DensityFinding)

Set of dense subclusters DSC

Set of noisy subclusters NSC

Cluster Separation

(Algorithm : ClusterSeparating)

Set of

subclusters SC

Cluster Verification

(Algorithm : ClusterVerification)

Set of noisy

data NX

Figure 3.6: The overall steps of Phase 2.

3.2.1 Density Computation

Before finding the subcluster density, it is observed that the expected dense subclusters

have some deviated points, and such those points will affect the correctness of den-

sity computation. Thus, all the data points in each subcluster are examined. If the

points are outside the hyperbox of eigenvalue side length along the eigenvector direc-

tions centered at the mean of cluster, such points are removed to the set of noisy data

NX = {nx1, . . . , nxi, . . . , nxN ′}, where N ′ is the number of noisy points. Fig. 3.7 shows

an example of a point xi which is outside the hyperbox along the eigenvectors X ′ and Y ′

directions. The square roots of eigenvalues λ1 and λ2 of a covariance matrix are set as

the radii of the data set in the hyperbox, and r is the vector obtained from data vector

xi and the subcluster center X0. So, if the scalar projection of r onto X ′ which is the

length of the segment X0A is greater than
√

λ1, then such data point xi is discarded to

33

the set of noisy data NX. Thus, this process can remove some deviated data points in

the subclusters but also can eliminate some noisy subclusters. So the overall algorithm

of finding subcluster density is described in Algorithm DensityFinding. This stage

produces the set of noisy data NX, the set of new subclusters SC without the deviated

points, and also the densities of new subclusters SC.

Y

X

Y’ X’

rcos

r

xi

2

1

A

X0

Figure 3.7: An example of a point xi is outside the hyperbox.

Algorithm DensityFinding

Input: the set of subclusters SC.

Output: (1) the set of noisy data NX, (2) the set of new subclusters SC without the

deviated points, and (3) density values of new subclusters SC.

Begin

1. For each subcluster scj Do

2. If |scj| is greater than 1 Then

3. Compute the eigenvalues λd and the eigenvectors vd of subcluster scj.

4. Compute the volume of subcluster scj using Eq. 3.5.

5. For each point xi ∈ scj Do

6. Compute r =
∥

∥X0scj
− xi

∥

∥.

7. For each eigenvector vd Do

8. Compute angle θd between the eigenvector vd and the point xi.

34

9. Compute X0scj
A = r × cos(θd).

10. If X0scj
A is greater than

√
λd Then

11. Remove the point xi to the set of noisy data NX.

12. Break.

13. Endif

14. Endfor

15. Endfor

16. If |scj| is greater than 1 Then

17. Compute the density of subcluster scj using Eq. 3.6.

18. Else

19. Remove the point xi to the set of noisy data NX.

20. Set the density of subcluster scj to zero.

21. Endif

22. Else

23. Remove the point xi to the set of noisy data NX.

24. Set the density of subcluster scj to zero.

25. Endif

End

3.2.2 Cluster Separation

The purpose of this stage is to separate the set of subclusters SC without the deviated

data points into two classes which are the set of dense subclusters DSC and the set of

noisy subclusters NSC based on the density threshold value denoted as thresholddensity.

Then the density values of all subclusters are sorted in ascending order and arranged

them by logarithm of density as shown in Fig. 3.8(a). From the result of density

35

arrangement, the density values can be categorized into four types which are type I –

the lowest density, type II – the lower density, type III – the medium density, and type

IV – the high density. In type III, there is the most number of density values. Moreover,

this can guarantee that type I and type IV are actually density of noisy subclusters and

dense subclusters, respectively. So the subclusters scj whose density values are in the

density range of type I, can be set to the set of noisy subclusters NSC. In the same

way, the subclusters scj whose density values are in the density range of type IV, can

be set to the set of dense subclusters DSC. Then, only density values in types II and

III can be used for finding the density threshold value. Fig. 3.8(b) shows the density

values for types II and III.

Thus, the method to determine the density threshold value is introduced based on

the coefficient of variation (CV) which indicates the relative amount of dispersion of the

data [34]. In this dissertation, each subcluster density is used as the interesting data

to compute CV . If σset1 density is the standard deviation of the first set of subcluster

density values and set1 densitymean is its mean, then

CVset1 =
σset1 density

set1 densitymean

(3.7)

From Fig. 3.8(b), it is noticed that the density values in the region expected to be

noisy subclusters rather spread. Since the density values of the noisy subclusters are

varied, so the threshold for separating the density values into two sets is the density such

that the density values of the first set is much varied than another set based on CV .

The density that makes the CV of the first set (CVset1) is greater than the CV of the

second set (CVset2) is set as the density threshold value. Thus, this density threshold

are used to remove the noisy subclusters. But it is possible that the noisy subclusters is

still remaining in the second set. These noisy subclusters need to remove more. Then

the subclusters are cut off when their density values are less than the average of the

36

0.001 0.01 0.1 1 10

0.001 0.01 0.1 1 10

Figure 3.8: An example of the density arrangement. (a) Four types of sorted density

values. (b) The elliptic region denoted by dashed line shows the expected area which

may be the noisy subclusters.

density values with their standard deviation in the second set defined as densitymean

and densitystd, respectively. The overall algorithm is following.

Algorithm ClusterSeparating

Input: (1) the set of subclusters SC without the sparse data and (2) sorted density

values of types II and III.

Output: (1) the set of dense subclusters DSC and (2) the set of noisy subclusters

NSC.

Begin

37

1. Set index to 1.

2. Set density threshold thresholddensity to scindex density.

3. Define set1 = {sci density|i = 1 . . . index}.

3. Define set2 = {scj density|j = index + 1 . . . k},

where k is the number of densities in types II and III.

4. Compute CVset1 and CVset2 using Eq. 3.7.

5. While CVset1 < CVset2 Do

6. Increase index by 1.

7. Set density threshold thresholddensity to scindex density.

8. Define set1 = {sci density|i = 1 . . . index}.

9. Define set2 = {scj density|j = index + 1 . . . k}.

10. Compute CVset1 and CVset2.

11. Endwhile

12. For each subcluster scj Do

13. If scj density is less than thresholddensity Then

14. Set subcluster scj to the set of noisy subclusters NSC.

15. Else Set subcluster scj to the set of dense subclusters DSC.

16. Endif

17. Endfor

18. Compute densitymean and densitystd of the dense subcluster set DSC.

19. For each dense subclusters dscj Do

20. If dscj density is less than (densitymean − densitystd) Then

21. Set subcluster dscj to the set of noisy subclusters NSC.

22. Endif

23. Endfor

38

End

3.2.3 Cluster Verification

As the results of the previous step, it is possible that too many subclusters are removed.

This will affect to the further merging process. So some removed subclusters in NSC

should be recovered back to the set of dense subclusters DSC because the center distance

and the density of some noisy subclusters are near to the dense subclusters. If (1) the

distance between the center of the noisy subcluster nsck and its nearest center of the

dense subcluster dscj is very close, and (2) the density value of the noisy subcluster

nsck is near to the density value of the dense subcluster dscj, such noisy subcluster nsck

is recovered back to be the member of the set of dense subclusters DSC. The center

distance D0 of any two subclusters is defined as in Eq. 3.8.

D0 = ‖X01 − X02‖ (3.8)

where X01 and X02 are the subcluster centers of any first and second subclusters, re-

spectively. The subcluster verification process is as follows:

Algorithm ClusterVerification

Input: (1) the set of dense subclusters DSC and (2) the set of noisy subclusters NSC.

Output: (1) the set of new dense subclusters DSC and (2) the set of new noisy sub-

clusters NSC.

Begin

1. Compute D0 mean and D0 std between each center of dense subclusters dscj

and the centers of its neighboring dense subclusters.

2. Compute densitymean and densitystd of the noisy subcluster set NSC.

3. For each dense subclusters dscj Do

39

4. For each its neighboring noisy subclusters nsck Do

5. Compute center distance D0dscjnsck
between subclusters dscj and nsck.

6. If (D0jk is less than D0 mean − D0 std) and

(nsck.density is greater or equal than densitymean + densitystd) Then

7. Recover nsck to the set of the dense subclusters DSC.

8. Endif

9. Endfor

10. Endfor

End

3.3 Phase 3: Self-Merging

In this section, the details of our Self-Merging process are described. This algorithm has

adapted from an agglomerative clustering algorithm by applying directly to the set of

dense subclusters DSC. This process uses the distance metrics as the merging criteria.

The intra-distances D1 and D2 are measured as the following.

D1 =
1

|dscj|

|dscj |
∑

i=1

(

MIN∀xk∈dscj
‖xi − xk‖

)

(3.9)

D2 = MAX∀xi∈dscj

(

MIN∀xk∈dscj ; xi 6=xk
‖xi − xk‖

)

(3.10)

D1 is the average of the minimum pairwise distances within a subcluster. D2 is the

maximum distance selected from the minimum pairwise distances within a subcluster.

Next between two subclusters, the inter-distances for measuring their closeness are in-

troduced.

D3 = MIN∃xi∈dscj
(MIN∃xk∈dscl

‖xi − xk‖) (3.11)

D4 = MAX∃xi∈dscj
(MIN∃xk∈dscl

‖xi − xk‖) (3.12)

40

D3 is the minimum distance chosen from the minimum pairwise distances between two

subclusters, and D4 is the maximum distance selected from the minimum pairwise dis-

tances between two subclusters. For computing inter-distances in Eqs. 3.11 and 3.12, it

is not necessary to use all the data points of the subcluster. Only the data points in the

partial region connecting between two subclusters can be used.

In this Phase, the algorithm consists of the multiple sequential merging steps as de-

picted in Fig. 3.9. First, it starts to merge between the subclusters and their neighboring

subclusters which are close to each other into the same cluster. So each cluster contains

the set of dense subclusters. In step 2, since the connections of the neighboring sub-

clusters are not reachable to all dense subclusters, there are still some adjacent clusters

which can be joined together. At this stage, all possible adjacent clusters are considered

for merging to form the larger clusters. After performing both steps, there exists some

small clusters not being merged. If the further merging process is performed, it is possi-

ble that those small clusters may be incorrectly merged to one of the large clusters. So

the large clusters will be temporarily removed and then small clusters are considered for

the further merging. The last step is used for refinement the clusters to obtain the final

clusters. The set of clusters C = {c1 . . . , cg, . . . , cK}, where K is the number of clusters,

are automatically produced by our proposed method.

3.3.1 Neighboring Merging

At first, the amount of data points nxi of the dense subclusters dscj are recovered from

the set of noisy data NX. Because all these data points nxi have been removed from

the Phase 2 and they can assist the merging process to satisfy the merging conditions.

So the data points nxi will be recovered in the partial region connecting the two dense

subclusters which are close to each other based on the threshold value. This threshold

41

Neighboring Merging

(Algorithm : PointFilling)

(Algorithm : NeighboringMerging)

Set of dense subclusters DSC

Set of noisy data NX

Local Merging I

(Algorithm : LocalMergingI)

Local Merging II

(Algorithm : PointRecovery)

(Algorithm : TemporaryRemoval)

(Algorithm : LocalMergingII)

Refinement Merging

(Algorithm : RefinementMerging)

(Algorithm : PointAssign)

Set of noisy subclusters

NSC

Set of final clusters C

Set of noisy data NX

Set of noisy data

NX

Figure 3.9: The overall steps of Phase 3.

42

value can be defined as the average center distances between the centers of dense sub-

clusters dscj to all centers of their neighboring dense subclusters denoted by D0 mean

and D0 std as used in Algorithm ClusterVerification. The partial regions are de-

fined as shown in Fig. 3.10. Fig. 3.10(a) occurred when the sides of two subclusters are

not overlapping but either sides of two subclusters in Fig. 3.10(b) are overlapping. The

terms of overlapping sides used in Algorithm PointFilling are categorized into four

cases. First, the notations are defined in the following and Fig. 3.11 shows the locations

Connected Region

xo1

xo2

dsc1

dsc2

X

Xside in Y axis

side in X axis

Connected Regionxo1

xo2

dsc1

dsc2
X

X

side in X axis

side in Y axis

(a) (b)

Figure 3.10: An example of the partial regions (connected regions). (a) The partial

region of non-overlapping subclusters. (b) The partial region of overlapping subclusters.

of the notations.

dscj min : the minimum range of each component of the data points in

subclusters dscj,

where dscj min = {dscj1 min, dscj2 min, . . . , dscjd min}.

dscj max : the maximum range of each component of the data points in

subclusters dscj,

where dscj max = {dscj1 max, dscj2 max, . . . , dscjd max}.

Therefore,

43

dsc1

dsc11.maxxxdsc11.min

dsc1

xdsc12.min

xdsc12.max

(a)

(b)

Figure 3.11: An example of the ranges of each component for two-dimensional data

space. (a) The minimum and maximum positions of the first component. (b) The

minimum and maximum positions of the second component.

case (1) : if [(dscjd min ≥ dscld min) and (dscjd min ≤ dscld max)] and

[(dscjd max ≥ dscld min) and (dscjd max ≤ dscld max)]

case (2) : if [(dscld min ≥ dscjd min) and (dscld min ≤ dscjd max)] and

[(dscld max ≥ dscjd min) and (dscld max ≤ dscjd max)]

case (3) : if [dscld min < dscjd min] and

[(dscld max ≥ dscjd min) and (dscld max < dscjd max)]

case (4) : if [(dscld min > dscjd min) and (dscld min ≤ dscjd max)] and

[dscld max > dscjd max]

44

Algorithm PointFilling

Input: (1) the set of noisy data NX and (2) the set of dense subclusters DSC.

Output: the set of dense subclusters DSC with some filled data points.

Begin

1. For each dense subcluster dscj Do

2. For each neighboring dense subcluster dscl of dense subcluster dscj Do

3. Compute the center distance D0dscjdscl
.

4. If D0dscjdscl
is less than (D0 mean − D0 std) Then

5. For each dimension d Do

6. If case (1) Then overlapRanged = [dscjd min dscjd max].

7. Elseif case (2) Then overlapRanged = [dscld min dscld max].

8. Elseif case (3) Then overlapRanged = [dscjd min dscld max].

9. Elseif case (4) Then overlapRanged = [dscld min dscjd max] .

10. Else

11. If (X0jd < X0ld) Then overlapRanged = [X0jd X0ld].

12. Else overlapRanged = [X0ld X0jd].

13. Endif

14. Endif

15. Endfor

16. Fill points nxi in the range of overlapRange.

17. Endif

18. Endfor

19. Endfor

End

45

Then, the dense subclusters dscj and their neighboring subclusters dscl are merged

if these dense subclusters are close to each other. First, the algorithm chooses one of the

subclusters dscj which has the highest density as the starting seed cluster cg. This seed

grows to merge the neighboring subclusters dscl if the minimum inter-distance D3cgdscl

is in the range of the maximum intra-distance chosen between D2cg
and D2dscl

. This

self-growing process successively merges the neighboring subclusters together until the

stopping rule is satisfied. Only some data points in the partial region of the boundary

subclusters are used for measuring the inter-distance. Fig. 3.12 shows the partial region

denoted as same as in Fig. 3.10. The gray dots in the connected region are used for

computing the inter-distance. The details of neighboring merging are described in the

following.

Connected Regionxo1

xo2

dsc1

dsc2
X

X

Figure 3.12: An example of the partial region (connected region). The gray dots in the

connected region are used for computing the inter-distance.

Algorithm NeighboringMerging

Input: the set of dense subclusters DSC with some filled data points.

Output: the set of clusters C.

Begin

1. Compute intra-distance D2dscj
of each subcluster dscj.

2. Set g = 1.

3. While all subclusters dscj are not merged Do

46

4. Choose the subcluster dscj which is the highest density.

5. Set the subcluster dscj to cluster cg.

6. While the number of subclusters in cg does not changed Do

7. Repeat

8. Compute the center distance D0dscjdscl
between subclusters

dscj and dscl.

9. If D0dscjdscl
is less than (D0 mean − D0 std) Then

10. Compute inter-distance D3cgdscl
using Eq. 3.11.

11. If D3cgdscl
is less or equal than Max(D2cg

, D2dscl
) Then

12. Set dscl to the same cluster cg.

13. Endif

14. Endif

15. Until there are no neighboring subclusters dscl of subclusters dscj

in cg merged.

16. Compute intra-distance D2cg
of cluster cg using Eq. 3.10, ∀xi ∈ cg.

17. Endwhile

18. Increase g by 1.

19. Endwhile

End

3.3.2 Local Merging I

From the merging results in step 1, there exists some clusters not merged together

although such clusters are very close to each other. The reason that any two adja-

cent clusters cannot join together is that there may be no the neighboring connections

among the subclusters between two clusters. Thus, the objective of this stage is to

47

more aggregate the closest clusters based on D1 and D3. This step starts with selecting

the cluster that has the highest number of subclusters as the starting seed cluster cg.

This seed grows to merge the neighboring clusters cl that have similarity distances to

the larger clusters. If the minimum inter-distance D3cgcl
is in the range of the average

intra-distance chosen between D1cg
and D1cl

, then clusters cg and cl are joined together.

Since each cluster consists of the set of subclusters, it is not necessary to use the data

points of all the subclusters for computing the inter-distance. So this distance can be

measured by using only the data points of the boundary subclusters as defined before.

The algorithm of this stage is described below.

Algorithm LocalMergingI

Input: the set of cluster C.

Output: the set of new cluster C.

Begin

1. Compute average intra-distance D1cg
of each cluster cg using Eq. 3.9, ∀xi ∈ cg.

2. Repeat

3. Choose cluster cg which has a highest number of subclusters as

the starting seed.

4. Repeat

5. For each cluster cl Do

6. If g 6= l Then

7. Compute inter-distance D3cgcl
using Eq. 3.11, ∃xi ∈ (cg and cl).

8. If D3cgcl
is less or equal than Max(D1cg

, D1cl
) Then

9. Remove cluster cl to cluster cg.

10. Endif

48

11. Endif

12. Endfor

13. Compute new average intra-distance D1cg
of cluster cg using Eq. 3.9,

∀xi ∈ cg.

14. Until there are no clusters cl merged to cluster cg.

15. Until there are no clusters cg merged.

End

3.3.3 Local Merging II

As before mentioned, there exists some small clusters have not been merged after process

two steps. If the further merging process is performed, it is possible that those small

clusters may be incorrectly merged to one of the large clusters. So the large clusters

will be temporarily discarded and then all possible small clusters are joined together.

The small clusters csmall are defined as the clusters which have the least number of

subclusters in the highest frequency. The Algorithm TemporaryRemoval is used for

temporary removal the large clusters based on the threshold value. Once the number of

data points for each cluster is sorted in descending order, the threshold value can be set

as the number of data points such that the difference between the number of data points

in clusters cg and cg+1 denoted by diffg is maximum. Before performing this algorithm,

some data points nxi which are the member of the set of subcluster DSC are recovered

from the set of noisy data NX. It dues to these points can help the subsequent merging

more correctness. The distance definition is defined for further using.

D5 = MIN∃xj ∈ ∀cg
‖nxi − xj‖ (3.13)

idx = arggMIN∃xj ∈ ∀cg
‖nxi − xj‖ (3.14)

49

D5 is the point inter-distance which is the minimum pairwise distance from any noisy

datum nxi to the nearest data point of all clusters cg. So the recovered points will be

the member of the idxth cluster such that its minimum pairwise distance is not deviated

from the average of pairwise distance in such cluster. Algorithm PointRecovery de-

scribes the process for data point recovery. Besides, Algorithm LocalMergingII uses

to merge all small clusters. The small clusters csmall are joined together with cluster cl

when the minimum inter-distance D3csmallcl
is in the range of the average intra-distance

chosen between D1csmall
and D1cl

. Otherwise, two clusters are joined when the center

distance between the center of cluster csmall and the center of cluster cl is less than the

average center distance of all the clusters without the large clusters. After completing

this stage, the small clusters can be merged to the larger clusters. All algorithms used

in this stage are orderly shown in the following.

Algorithm PointRecovery

Input: (1) the set of noisy data NX and (2) the set of clusters C.

Output: the set of clusters C with recovered points.

Begin

1. Repeat

2. Compute the average intra-distance D1cg
of each cluster cg using Eq. 3.9,

∀xi ∈ cg.

3. Compute the standard deviation intra-distance D1cg
std of each cluster cg.

4. For each noisy datum nxi Do

5. Compute point inter-distance D5nxi
using Eq. 3.13.

7. Get cluster index idx using Eq. 3.14.

8. If D5nxi
is less than D1idx + (3 × D1idx std) Then

50

9. Recover noisy data nxi to cluster cidx.

10. Endif

11. Endfor

12. Until there are no noisy data nxi recovered.

End

Algorithm TemporaryRemoval

Input: the set of clusters C with recovered points.

Output: (1) temporarily removed large clusters and (2) the set of remaining clusters C

without the large clusters.

Begin

1. Compute the number of data points ng of all cluster cg.

2. Sort all of ng in descending order.

3. For each ng Do

4. Compute the difference diffg = ng − ng+1.

5. Endfor

6. Compute cluster index idx = argg Max∀g ; g 6=1(diffg).

7. For each cluster cg Do

8. If ng is greater or equal to nidx Then

9. Temporarily remove cluster cg.

10. Endif

11. Endfor

End

51

Algorithm LocalMergingII

Input: (1) temporarily removed large clusters and (2) the set of remaining clusters C

without the large clusters.

Output: the set of new clusters C.

Begin

1. Compute the average cluster center distance D0 mean of all the remaining

clusters cl.

2. While all small clusters csmall are not merged Do

3. Compute intra-distance D1csmall
using Eq. 3.9, ∀xi ∈ csmall.

4. For each cluster cl Do

5. If small 6= l Then

6. Compute intra-distance D1cl
of cluster cl using Eq. 3.9, ∀xi ∈ cl.

7. Compute inter-distance D3csmallcl
using Eq. 3.11, ∃xi ∈ (csmall and cl).

8. If D3csmallcl
is less or equal than Max(D1csmall

, D1cl
) Then

9. Remove cluster csmall to cluster cl.

10. Elseif D0csmallcl
is less than D0 mean Then

11. Remove cluster csmall to cluster cl.

12. Endif

13. Endif

14. Endfor

15. Endwhile

16. Recover temporarily removed large clusters to the set of new clusters C.

End

52

3.3.4 Refinement Merging

The last step is used for refinement the clusters to obtain the final clusters. The merging

process is like in the second step (Local Merging I). Therefore, this step selects the

cluster that has the highest number of data points as the starting seed cluster. This

seed grows to merge the neighboring clusters that have similarity distances. So two

clusters are joined together when the maximum inter-distance D4cgcl
is in the range of

the maximum intra-distance between D2cg
and D2cl

. This process is shown in Algo-

rithm RefinementMerging. Then, this self-growing process successively merges the

neighboring subclusters together until the stopping rule is satisfied. After the final clus-

ters are obtained, each the remaining noisy data nxi and the data points in the noisy

subclusters nsck are assigned to be the member of the clusters cg such that their mini-

mum pairwise distances are not deviated from the average of pairwise distance in such

clusters. However, there are still some data points which cannot belong to any clusters,

since these points are very different from the others. Thus, these points are set as noise.

Algorithm PointAssign assigns the data points to be the cluster members or noisy

data. The algorithms of this stage are described below.

Algorithm RefinementMerging

Input: the set of clusters C.

Output: the set of new clusters C.

Begin

1. Compute intra-distance D2cg
of each cluster cg using Eq. 3.10, ∀xi ∈ cg.

2. Repeat

3. Choose cluster cg which has a highest number of data points as

the starting seed.

53

4. Repeat

5. For each cluster cl Do

6. If g 6= l Then

7. Compute inter-distance D4cgcl
using Eq. 3.12, ∃xi ∈ (cg and cl).

8. If D4cgcl
is less or equal than

[

2 × Max(D2cg
, D2cl

)
]

Then

9. Remove cluster cl to cluster cg.

10. Endif

11. Endif

12. Endfor

13. Compute new intra-distance D2cg
of cluster cg using Eq. 3.10, ∀xi ∈ cg.

14. Until there are no clusters cl merged to cluster cg.

15. Until there are no clusters cg merged.

End

Algorithm PointAssign

Input: (1) the set of clusters C, (2) the set of noisy data NX, and (3) the set of noisy

subclusters NSC.

Output: (1) the set of final clusters C and (2) the set of remaining noisy data NX.

Begin

1. Transfer the data point in the noisy subclusters nsck to the noisy data nxi.

2. Repeat

3. Compute the intra-distance D2cg
of each cluster cg using Eq. 3.10, ∀xi ∈ cg.

4. For each noisy datum nxi Do

7. Compute point inter-distance D5nxi
using Eq. 3.13.

8. Get cluster index idx using Eq. 3.14.

9. If D5nxi
is less than D2idx Then

54

10. Assign the noisy datum nxi to cluster cidx.

11. Endif

12. Endfor

13. Until there are no noisy data nxi assigned .

End

3.4 Clustering Example

Fig. 3.13 shows an example of how the input data points are delineated. Fig. 3.13(a)

is the bivariate input data set of three clusters. In Phase 1, the SPSM starts with

partitioning the input data set to automatically obtain the set of subclusters based on

the DTS-SOM scheme as shown in 3.13(b) and Fig. 3.13(c). From this result, the DTS-

SOM partition this example into 100 subclusters. All of these subclusters are performed

noise removal process in Phase 2 which produces the set of noisy data, the set of noisy

subclusters, and the set of dense subclusters. Fig. 3.13(d) shows the set of 50 dense

subclusters.

The SPSM algorithm performs the sequential merging steps. First, some data points

must be recovered from the set of noisy data, since such recovered data points can help

the further merging process to satisfy the merging conditions. Next, this step starts

to merge between subclusters and their neighboring subclusters which are close to each

other based on the threshold value. Therefore, two subclusters are merged when the

minimum pairwise distance between subclusters is less or equal than the maximum

pairwise distance within subclusters. The Neighboring Merging stage results in 25

clusters as shown in Fig. 3.13(e). From this result, there exists some adjacent clusters

can be joined together to the larger clusters, since there may be no the neighborhood

connections among those adjacent clusters. For example, in Fig. 3.13(e) considering the

55

cluster c1 and c4 denoted by the numbers 1 and 4, these two clusters are adjacent clusters

but they cannot be merged by the Neighboring Merging step. When considering the

distances, the minimum pairwise distance between clusters is in the range of the average

pairwise distance within clusters. In Local Merging I, these two adjacent clusters can

be merged to the same cluster denoted by c1 as shown in 3.13(f). In the same way, the

cluster c3 and c16 denoted by the numbers 3 and 16 as shown in 3.13(e) are also merged

to form the larger clusters denoted by c3 as shown in 3.13(f).

Before performing the further step, some data points are recovered from the set of

noisy data as depicted in Fig. 3.13(g). Fig. 3.13(h) shows the small clusters and the

remaining clusters after temporary removal the large clusters based on the threshold

value. So in this figure, the cluster c1, c3, and c10 are temporarily discarded. After that,

all possible small clusters are joined together to the larger clusters. Fig. 3.13(i) shows

the merging result after performing the Local Merging II process with recovering the

large clusters. In the Refinement Merging step, all the clusters are merged together

if the maximum pairwise distance between the clusters is less or equal to the twice of the

maximum pairwise distance within clusters. Then, each data point in the set of noisy

data and the data points in the set of noisy subclusters are assigned to be the member of

the cluster. The property of the recovered points are not deviated from the other data

points in such clusters. Otherwise, the deviated data points are assigned as noise. Fig.

3.13(j) illustrates the final clustering result. From this result, this example is extracted

into three clusters which are automatically obtained from the SPSM method.

56

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

22

28

29

30 31

32 33

36
37

38 39

42

4344

46 47

49

53

54
55

56

57

58 59
6061

62 63
64

65

66 67
6869

70 71
72 73

74
7576

77

78 79

80
81

82 83
84 85

8687
8889

90
919293

9495
96

97
98

99

100
101

102103
104105

106

108 109

110

111
112

113

114115

116117

118119
120121

122123
124125

126127
128129

130131132133

134135
136137
138139

140141
142143

144145

(a) (b)

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

0 2 4 6 8 10 12
0

2

4

6

8

10

12

(c) (d)

Figure 3.13: An example how the SPSM works. (a) Input data set of three clusters.

(b) The lateral connections among the leaf nodes. A number shows the node index.

(c) The set of 100 subclusters obtained through Phase 1. (d) The set of 50 dense

subclusters. Each subcluster is denoted by a color. Each star is represented a prototype

vector obtained from the DTS-SOM Training process and each square is represented

a subcluster center.

57

0 2 4 6 8 10 12
0

2

4

6

8

10

12

1 2

3
4

5
6

7

8

9

10

11

12

13
14

15

16

17

18

19

20

21

22

23

24

25

c
4 c

3

c
1

c
16

0 2 4 6 8 10 12
0

2

4

6

8

10

12

1 2

3

4
5

6

7

8

9

10

11

12
13

14

15

16

17

18

19

20

21

22

23

c
1

c
3

(e) (f)

0 2 4 6 8 10 12
0

2

4

6

8

10

12

1 2

3

4
5

6

7

8

9

10

11

12
13

14

15

16

17

18

19

20

21

22

23

c
1

c
3

c
10

0 2 4 6 8 10 12
0

2

4

6

8

10

12

2

4
5

6

7

8

9

11

12
13

14

15

16

17

18

19

20

21

22

23

(g) (h)

(e) The merging result obtained from the Neighboring Merging step (25 clusters). (f)

The cluster merging result obtained through the Local merging I step. (g) The data

point filling result acquired from the Algorithm PointRecovery. (h) The temporarily

removed cluster result.

58

0 2 4 6 8 10 12
1

2

3

4

5

6

7

8

9

10

1 2

3

4

5

6

7

8

0 2 4 6 8 10 12
0

2

4

6

8

10

12

1

2 3

(i) (j)

(i) The cluster merging result obtained through the Local Merging II step. (j) The

final clustering result (3 clusters). Each cluster is denoted by a color and a number.

CHAPTER IV

EXPERIMENTAL RESULTS

The SPSM algorithm has been implemented and tested for correctness and performance

by MATLAB version 7.0. All tests were performed on Sony laptop with 1.6 MHz Pen-

tium IV processor and 1 GB of RAM, running on Microsoft Windows XP. The SPSM

algorithm makes use of the following parameters especially in the Phase 1 as depicted in

Table 4.1. Since the initialization of the DTS-SOM training starts at the center of the

data and all the data set used in our experiments has the large number of data points

which are more than one thousand data points, the activation level should not set too

large. If the activation level is set too large, this will affect the network taking a long

time for learning and being disorderly. Thus, the activation level τi was chosen to 0.05

of the number of input data. At each spitting stage set ∆τ = 0.05τi for all node i.

Besides, the learning rate α should begin with a small value. That means the learning

rate α will set close to 0.1. The width of neighborhood function σ should initially include

the neighboring neurons centered on the best matching unit. So these experiments will

set to 0.99. SPSM algorithm decides to stop the DTS-SOM training when the difference

of the size of tree nodes between the current and the previous epochs is less than 0.005.

All the experiment results described here were obtained with these parameters. The

details of each data set used in this dissertation as shown in Table 4.2. For Data Set 6

to Data Set 8 are reported in [12]. The experimental results are shown in the following

sections.

60

Table 4.1: Phase 1 parameters.

Parameter Ranges

The activation level τi 0.05N -0.5N

Splitting rate ∆τ (0, 1] of the activation level τi

The learning rate α < 1

The width of neighborhood function σ 0.8-0.99

4.1 Experiment 1

The first experiment has tested on data set as shown in Fig. 4.1(a). Data Set 1 is

generated from three normal distributions with covariance I, where I is 2 × 2 identity

matrix and mean vectors (3, 7), (10, 7), and (6.5, 3), respectively. The purpose of this

experiment is to test the performance of the SPSM algorithm which can decompose

the non-linearly separable clusters. After performing SPSM algorithm, 133 nodes are

produced from the DTS-SOM training and the three extracted clusters are depicted in

Fig. 4.1(b).

4.2 Experiment 2

This experiment performed on the data set as shown in Fig. 4.2 and Fig. 4.3. All data

sets are generated from four normal distributions with covariance I. The mean vectors of

Data Set 2 are (3.55, 8.25), (8.5, 8.25), (3.55, 3), and (8.5, 3) as depicted in Fig. 4.2(a).

For Data Set 3, mean vectors are (3.25, 7), (7.25, 7), (3.25, 3), and (7.25, 3) as shown

in Fig 4.2(c). For 4.3(a), the mean vectors of Data Set 4 are (3.5, 7.75), (7.75, 7.75),

(3.5, 3), and (7.75, 3). The clusters in Data Set 3 are closer than the clusters in Data

Set 2. Besides, more data points are added and very close to each other in Data Set

61

Table 4.2: Details on each data set.

The number of input data The desired number of clusters

(N) (K)

Data Set 1 1500 3

Data Set 2 2400 4

Data Set 3 2400 4

Data Set 4 4800 4

Data Set 5 2800 3

Data Set 6 8000 6

Data Set 7 10000 9

Data Set 8 8000 8

Data Set 9 2689 4

4. These data sets are used to test tolerance to noise of the SPSM algorithm. After

completing the DTS-SOM training, the tree nodes are produced into 153, 277 and 241

nodes for Data Set 2, Data Set3 and Data Set 4, respectively. As shown in Figs. 4.2(b),

4.2(d), and 4.3(b), the SPSM algorithm is able to successfully partition these data sets.

Moreover, the number of clusters obtained from the SPSM algorithm as depicted in the

parenthesis, is the same as the desired number of clusters as shown in Table. 4.2.

4.3 Experiment 3

This experiment is used to compare with other clustering algorithms. The data sets used

in this experiment are obtained from [12] which consisted of Data Set 6, Data Set 7,

and Data Set 8. The DTS-SOM training gives the size of tree nodes into 369, 305, and

489 for Data Set 6, Data Set 7, and Data Set 8, respectively. The clustering results of

62

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

(a) (b)

Figure 4.1: Clustering result on the experiment 1. (a) Data Set 1. (b) SPSM on Data

Set 1 (3 clusters). Each cluster is denoted by a symbol.

SPSM algorithm are shown in Fig. 4.4 and Fig. 4.5. From the results, SPSM algorithm

can obtain the correct clustering results and can identify the noisy data. The number of

clusters produced by SPSM algorithm as depicted in the parenthesis is the same as the

desired number of clusters as shown in Table. 4.2. These data sets have been tested with

the other algorithms. The single-link and complete-link algorithms are implemented by

using the Statistics Toolbox in Matlab version 7.0. The program of algorithm CURE is

obtained from public domain at http://www.cs.cas.cz/∼petra/Liter-Odkazy-shluk.html.

Some of unsuccessful clustering results acquired from the single-link and complete-

link algorithms are shown in Fig. 4.6, because these clustering algorithms are sensitive

to noises. Besides, the output of these two clustering algorithms is a hierarchical tree

which can be cut at a desired level forming a clustering result. If this tree is cut at

different levels, the different clustering results can be obtained. The level has been

chosen to obtain the desired number of clusters as depicted in the parenthesis in Fig.

63

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

(a) Data Set 2. (b) SPSM on Data Set 2 (4 clusters).

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

(c) Data Set 3. (d) SPSM on Data Set 3 (4 clusters).

Figure 4.2: Clustering results on the experiment 2 for Data Set 2 and Data Set 3. Each

cluster is denoted by a symbol. The star symbol is represented noisy data points.

64

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

(a) Data Set 4. (b) SPSM on Data Set 4 (4 clusters).

Figure 4.3: Clustering results on the experiment 2 for Data Set 4. Each cluster is denoted

by a symbol. The star symbol is represented noisy data points.

4.6(a)-(d). As well as CURE algorithm, CURE fails on these data sets as illustrated in

Fig. 4.7. Recall, CURE algorithm shrinks the representatives for each cluster toward

the center of cluster in order to eliminate the effects of noise. However, the shrinking

method may cause some clusters to be split. On the other hand, if the shrinking method

is weaken, some clusters will be merged by noise links. So the shrinking parameter

must carefully choose. Fig. 4.8 shows the results of algorithm CSM acquired from

http://arbor.ee.ntu.tw/∼owenlin/tkde csm/. The CSM algorithm may fail to partition

the input data set because of the parameter selection. One of the parameters may affect

the correctness of the partition is that the parameter m (the number of subclusters)

specified by users. From the results, the subclusters produced in phase one may be

too many. So it may cause that the subclusters which should be noisy subclusters will

become the dense subclusters. This will affect the correctness of the further subsequent

merging. On the other hand, when the value of parameter m is too small that means the

number of subclusters obtained from phase one is too low. So many noisy subclusters

65

may be existent. These noisy subclusters may merge with other clusters and affect the

clustering results. Like CURE algorithm, the parameters of CSM algorithm must be

carefully chosen.

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

(a) Data Set 6. (b) SPSM on Data Set 6 (6 clusters).

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

400

450

500

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

400

450

500

(c) Data Set 7. (d) SPSM on Data Set 7 (9 clusters).

Figure 4.4: Clustering results on the experiment 3 produced in SPSM algorithm. Each

cluster is denoted by a symbol. The star symbol is represented noisy data points.

66

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

400

450

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

400

450

(a) Data Set 8. (b) SPSM on Data Set 8 (8 clusters).

Figure 4.5: Clustering results on the experiment 3 produced in SPSM algorithm. Each

cluster is denoted by a symbol. The star symbol is represented noisy data points.

4.4 Experiment 4

In Data Set 5 as depicted in Fig. 4.9(a), there is one large cluster and two small clusters.

This data set is generated from three normal distributions with two different covariances

D1 and D2. D1 is the square diagonal matrix in which the diagonal entries are 6 and 3.5

for the large one. D2 is also the square diagonal matrix in which both diagonal entries

are 2 for the others. The mean vectors are (7, 18), (7, 8) and (20, 12). The purpose of

this experiment is to test the ability to detect different volumes of clusters. The number

of tree nodes is equal to 169 nodes when completing the DTS-SOM training. Fig. 4.9(b)

illustrates this ability which can produce the three identified clusters as depicted in the

parenthesis.

67

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

400

450

(a) Data Set 6 (6 clusters). (b) Data Set 8 (8 clusters).

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

400

450

500

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

400

450

(c) Data Set 7 (9 clusters). (d) Data Set 8 (8 clusters).

Figure 4.6: Clustering results on the experiment 3. (a) and (b) are the final decomposi-

tion of Data Set 6 and Data Set 8 obtained from the single-link algorithm, respectively.

(c) and (d) are the clustering results of Data Set 7 and Data Set 8 acquired from the

complete-link algorithm, respectively. Each cluster is denoted by a symbol.

68

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

400

450

500

(a) Data Set 6 (> 6 clusters). (b) Data Set 7 (> 9 clusters).

Figure 4.7: Clustering results on the experiment 3 obtained through the algorithm

CURE. (a) and (b) are the final decomposition of Data Set 6 and Data Set 7, respectively.

Each cluster is denoted by a symbol.

(a) Data Set 7 (10 clusters). (b) Data Set 8 (9 clusters).

Figure 4.8: Clustering results on the experiment 3 produced by the algorithm CSM. (a)

and (b) are the final decomposition of Data Set 7 and Data Set 8, respectively. Each

cluster is denoted by a symbol.

69

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

(a) Data Set 5. (b) SPSM on Data Set 5 (3 clusters).

Figure 4.9: Clustering result on the experiment 4 for Data Set 5. Each cluster is denoted

by a symbol. The star symbol is represented noisy data points.

4.5 Experiment 5

The purpose of this experiment is to test the ability to detect different density of clusters.

Data Set 9 is generated from four normal distribution with three different density values

as shown in Fig. 4.10(a). The mean vectors are (6, 10), (12, 12), (5, 5) and (11, 6). After

performing the DTS-SOM training, 149 tree nodes are produced. Fig. 4.10(b) illustrates

this ability which can produce the four identified clusters as depicted in the parenthesis.

But the algorithms CURE and CSM fail to find the right clusters. Because the shrinking

method in the CURE algorithm may cause some clusters to be vanished especially the

sparse clusters. Besides, the merging process of the CSM algorithm will merge any two

subclusters together which have the highest density to form the larger clusters. The

CSM algorithm assumed that the number of points in a noisy cluster is much less than

that of a normal cluster. It is possible that the clusters which have the less density may

be considered to be the noisy clusters and such clusters will be removed eventually.

70

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

(a) Data Set 9. (b) SPSM on Data Set 9 (4 clusters).

Figure 4.10: Clustering result on the experiment 5 for Data Set 9. Each cluster is

denoted by a symbol. The star symbol is represented noisy data points.

4.6 Experiment 6

Finally, this experiment is used to test a sensitivity analysis on the parameter settings

especially the threshold value of stopping criterion in DTS-SOM training. With different

values of stopping criterion, the different initial subclusters can be obtained. Fig. 4.11(a)

shows the clustering results when using the stopping criterion as 0.005. The number of

initial subclusters is 221 subclusters. Fig. 4.11(b) shows the results when using the

stopping criterion as 0.0025. The DTS-SOM training produces 239 subclusters. From

these results, the algorithm SPSM is still able to extract to the correctness results which

are 9 clusters, and SPSM algorithm can identify the noisy points.

In addition, another sensitivity analysis on the parameter settings is the initialization

of the first neuron in the DTS-SOM training. The previous experiments start by taking

a single neuron and placing it at the center of mass of the data cloud. Fig. 4.12 shows

the clustering results when selecting the prototype vector of the first neuron from the

available set of input vectors in a random manner. From the results, the algorithm

71

SPSM is able to extract to the right clusters.

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

400

450

500

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

400

450

500

(a) Data Set 7 (9 clusters). (b) Data Set 7 (9 clusters).

Figure 4.11: Clustering results on the experiment 6 obtained through the algorithm

SPSM. (a) and (b) are the final decompositions of Data Set 7 with different stopping

criteria. Each cluster is denoted by a symbol.

4.7 Experiment 7

This experiment is used to test the robustness to noisy data points of the SPSM al-

gorithm according to the objective of this dissertation. The data sets used in this

experiment are generated in arbitrary shape with only one clusters consisted of 1153

data points. In addition to the clustered data points, noise in form of data points uni-

formly distribution throughout the overview of the data sets are added to the data sets.

The parameter p controls the percentage of data points in the data set that are con-

sidered noise. This experiment has tested the sensitivity of the parameter p by using

p = {5%, 10%, 15%, 20%, 25%, 30%}. Five data sets are generated for each parameters

p. Fig. 4.13 shows one of the data set with 5% of noise. Table 4.3 depicts the average of

the accuracy of the clustering results obtained from the SPSM algorithm. The accurary

72

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

400

450

(a) Data Set 6 (6 clusters). (b) Data Set 8 (8 clusters).

Figure 4.12: Clustering results on the experiment 6 obtained through the algorithm

SPSM. (a) and (b) are the final decompositions of Data Set 6 and Data Set 8 with

different initialization of the first neuron. Each cluster is denoted by a symbol.

of the clustering result is measure by using Eq. 4.1,

accuracy (%) =
N − MP

N
× 100 (4.1)

where N is the number of data point and MP is the number of miss-classified data

points. As shown in Table 4.3, the SPSM algorithm gives the high accuracy of the

clustering results when the percentage of noisy data is lower, and the SPSM algorithm

can be robust to noisy data up to 30%. The correctness of clustering results depends on

the percentage of noisy data and the closeness of noisy data to the actual data points.

When the noisy data are more closer to the actual data points, the accuracy of the

clustering results is more less. However, from Table 4.3 can conclude that the SPSM

algorithm can tolerate to the noisy data.

73

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.13: An example of data set used in the experiment 7. The dots represented the

data points and the stars denoted the noisy data points

Table 4.3: The average of the accuracy of clustering results obtained through the SPSM

algorithm for testing the tolerance to noisy data.

Percentage of noisy data The average of the accuracy of clustering results (%)

5 % 99.92 ± 0.0850

10 % 99.78 ± 0.0876

15 % 99.53 ± 0.1354

20 % 99.51 ± 0.0798

25 % 99.38 ± 0.0585

30 % 99.19 ± 0.1688

74

4.8 Complexity Analysis

Since, the SPSM algorithm consists of three phases, the computational complexity is

the sum of three phases. The computational complexity is described in the following.

1. Complexity of Phase 1.

In Phase 1, the SPSM algorithm applies the DTS-SOM on the set of N input data

points to obtain M subclusters. So the computational complexity is the sum of

finding the best matching unit CBMU , updating the neighbors CUDH , and updating

the other internal nodes CUDP .

To find the best matching unit, a vector distance is calculated to b times at every

level of the tree. If h is the height of the tree, the amount of calculations needed

is

CBMU = h · b (4.2)

Updating the neighboring nodes, k nodes are updated. Besides, the leaf nodes are

split when their counters become to zero. The splitting of the leaf nodes happens

on average every 1
β

step.

To update the parent nodes (internal nodes), the parent nodes will only be updated

if their children are also updated. This updating is proceeded layer by layer back

to the root node. So the time calculations is the height of the tree. The amount

of calculations needed for a epoch size N is

Ctot = N(CBMU + CUDH + CUDP) (4.3)

= N(h · b + (k +
1

β
) + h) (4.4)

Note that b is the constant. Since each internal node has four children, so this

variable can be ignored. In during training process, a 4-branch search tree is

75

formed. So h is changed according to log4N . For the amount of updated neighbors

k, at least eight direct neighbor nodes are updated. Then k can approximate to a

constant time and β is a constant as well. The computational complexity of Phase

1 can reduce to O(N · log4N).

2. Complexity of Phase 2.

For Phase 2, the SPSM algorithm will discard the noisy data including the noisy

subclusters from the set of subclusters produced by Phase 1. This process composes

of multiple orderly stages. However, the complexity calculation only depends on

the first step (Algorithm DensityFinding) that discards the sparse data points

and computes the density values for each subcluster. In this process, every data

points for each subcluster are examined. The amount of calculations needed for

every subclusters is

Ctot =
M

∑

j=1

|scj| (4.5)

where, M is the number of subclusters such that M < N . Therefore, the time

complexity of this process is linear to the size of subclusters, that is O(N). The

computational complexity of Phase 2 is also O(N).

3. Complexity of Phase 3.

In Phase 3, algorithm SPSM adapted the agglomerative clustering which is self-

merging process. This phase also consists of multiple orderly stages. The most

time complexity is in the Refinement Merging process. Since some data points

are recovered from the set of noisy data, it takes more times than the other steps for

the intra-distance computation. Then the computational complexity is the sum of

intra-distance computation of each cluster and self-merging process. If each cluster

cj consists of a set of n0 data points, the amount of intra-distance calculation for

76

any clusters cj is

Cintra =
∑

∀i

∑

∀k; i6=k

‖xi − xk‖ = n2
0 (4.6)

The amount of calculations needed for G clusters is G ·n02 such that G < n0 < N .

Then, the computational complexity of intra-distance calculations for G clusters

that approximates to O(N2).

During each self-merging process, some data points of two clusters are used for

computing the inter-distance. So the time computation for inter-distance calcula-

tion is less than that for intra-distance calculation which approximates to O(N2).

Then, the computational complexity of Phase 3 is O(N2 + N2) = O(N2).

Thus, the overall complexity of the SPSM algorithm is O(Phase1 + Phase2 +

Phase3) = O(N · log4N + N + N2) ≈ O(N2).

Table 4.4 shows the time complexity of the SPSM algorithm including the other

algorithms. Note that parameter m for the CSM algorithm is the number of subclusters.

The SPSM algorithm requires more computational time than the CSM algorithm. This

is because the SPSM algorithm takes time to compute the distance criteria. When

compared with the rest algorithms, the time complexity of algorithm SPSM is better

Table 4.4: Summary of computational complexity of different algorithms.

Clustering Algorithm Complexity

Single-link O(N2logN)

Complete-link O(N2logN)

CURE O(N2
samplelogNsample)

SPSM O(N2)

CSM O(mN + m2logm)

77

than that of the rest algorithms. However, from the results, it demonstrated that the

proposed algorithm SPSM is very efficient clustering which is able to the handle noisy

and arbitrary shapes data set.

CHAPTER V

CONCLUSION

Data clustering algorithm attempts to organize unlabeled input data into clusters or

natural groups within a cluster are more similar to each other that data points belonged

to different clusters. The existing clustering algorithms, such as single-link clustering,

complete-link clustering, k-means, CURE, and CSM are designed to find clusters based

on pre-defined parameters. These algorithms fail if the choice of parameters is incorrect

with respect to the data set being clustered. Most of these algorithms work very well

for compact and hyperspherical clusters.

In this dissertation, the new hybrid clustering called Self-Partition and Self-Merging

(SPSM) is proposed. The SPSM algorithm has been designed into three phases. In Phase

1, the new partitional clustering is introduced based on a self-creating and self-organizing

algorithm designed to improve SOM algorithm called Dynamic Tree-Structured Self-

Organizing map (DTS-SOM). After performing the DTS-SOM training, the number of

initial subclusters is automatically obtained. To achieve a better clustering result and

be less affected by noises, the noisy data and the noisy subclusters are removed by

Phase 2. Then, the algorithm SPSM performs self-merging process in Phase 3 based on

inter-distance and intra-distance criteria. The SPSM algorithm automatically obtains

the final clusters and can identify the noisy data.

The time complexity of the SPSM algorithm is O(N2), where N is the number of data

points, as described in Chapter 4. The SPSM algorithm requires more computational

time than the CSM algorithm. This is because the SPSM algorithm takes time to

compute the distance criteria. When compared with the other algorithms, the time

79

complexity of algorithm SPSM is better than that of the other algorithms.

From the experimental results, algorithm SPSM is able to cluster the data sets of

arbitrary shapes very efficiently, tolerate to noise, and provide better clustering results

than the existing clustering algorithms. The main contributions of our proposed method

can be summarized as follows:

• The Dynamic Tree-Structured Self-Organizing map (DTS-SOM) is proposed to

cope with the initialization of the number of clusters required in the partitional

clustering algorithm. The DTS-SOM is a variant of SOM which is a self-creating

and self-organizing algorithm designed to improve SOM algorithm. Using DTS-

SOM, it is able to overcome the limitations of SOM. Since the SOM must pre-define

the topology structure and the number of neurons before the training process.

Moreover, the correctness of finding the best matching unit using the DTS-SOM

training is more than the correctness of finding the best matching unit using the

ETree algorithm.

• The SPSM algorithm also proposes the noise removal method which can deal with

the noisy data set. As the results of all experiments and Table 4.3 used to test the

noise robustness, the algorithm SPSM is able to not only resist noises, but also

lead to good clustering results. Unlike the other algorithms, the SPSM algorithm

can identify which data points is the noisy data.

• The SPSM algorithm is able to cluster the data sets of arbitrary shapes very

efficient and provide better results than the other algorithms. Moreover, the SPSM

algorithm is also capable to detect different density of clusters as shown in Fig.

4.10.

• Our proposed method’s requirements are minimum to determine input parameters.

The parameter requirements are the common parameters which only used for the

80

DTS-SOM training. From the experiment for testing a sensitivity analysis, SPSM

algorithm is still able to extract the correctness number of clusters.

81

References

1. Jain, A.K.; Murty, M.N.; and Flynn, P.J. Data clustering: A review. ACM

Computing Surveys. 31:3(1999): 264 - 323.

2. Ankerst, M.; Breunig, M.M.; Kriegel, H.P. and Sander, J. OPTICS: Ordering

points to identify the clustering structure. Proc. ACM SIGMOD Int. Conf. on

Management of Data. pp. 49 - 60. Philadelphia, Pennsylvania, 1999.

3. Duda, R.O.; Hart, P.E.; and Stork, D.G. Pattern Classificaiton. second ed. Wiley,

2001.

4. Kaufman, L. and Rousseeuw, P.J. Finding Groups in Data: An Introduction to

Cluster Analysis. Wiley, 1990.

5. Berkhin, P. Survey of clustering data mining techniques [Online]. 2001. Avaiable

from: http://www.accrue.com/products/rp clustering review.pdf

6. Kolatch, E. Clustering algorithms for spatial databases: A survey [Online]. 2001.

Avaiable from: http://citeseer.nj.nec.com/436843.html

7. Xu, R. and Wunsch, D. Survey of clustering algorithms. IEEE Trans. Neural

Networks. 16:3(2005): 645-678.

8. Kanungo, T.; Mount, D.; Netanyahu, N.; Piatko, C.; Silverman, R.; and Wu, A.

An efficient K-means clustering algorithm: Analysis and implementaion. IEEE

Trans. Pattern Anal. Mach. Intell. 24:7(2000): 881-892.

9. Su, M. and Chou, C. A modified version of the K-means algorithm with a distance

based on cluster symmetry. IEEE Trans. Pattern Anal. Mach. Intell. 23:6(2001):

674-680.

10. Guha, S.; Rastogi, R.; and Shim, K. CURE: An efficient clustering algorithm for

82

large databases. Proc. ACM SIGMOD Int. Conf. on Management of Data.

1998: 73 - 84.

11. Guha, S.; Rastogi, R.; and Shim, K. ROCK: A robust clustering algorithm for

categorical attributes. Inf. Syst. 25:5(2000): 345-366.

12. Karypis, G.; Han, E.; and Kumar, V. Chameleon: A hierarchical clustering using

dynamic modeling. IEEE Computer. 32:8(1999): 68-75.

13. Hertz, J.; Krogh, A.; and Palmer, R.G. Introduction to the Theory of Neural

Computation. Reading, Mass.:Addison-Wesley, 1990.

14. Pal, N; Bezdek, J.; and Tsao, E. Generalized clustering networks and Kohonen’s

self-organizing scheme. IEEE Trans. Neural Networks. 4:4(1993): 549-557.

15. Zhang, Y. and Liu, Z. Self-splitting competitive learning: A new on-line clustering

paradigm. IEEE Trans. Neural Networks. 13:2(2002): 369-380.

16. Bradley, P.; Fayyad, U.; and Reina, C. Clustering very large databases using EM

mixture models. Proc. 15th Int. Conf. Pattern Recognition. 2(2000): 27-80.

17. Jain, A.K.; Duin, R.; and Mao, J. Stistical pattern recognition: A review. IEEE

Trans. Pattern Anal. Mach. Intell. 22:1(2000): 4-37.

18. Bezdek, J.C. Pattern Recognition with Fuzzy Objective Function Algorithms. New

York: Plenum Press, 1981.

19. Ester, M.; Kriegel, H.; Sander, J; and Xu, X. A density-based algorithm for

discovering clusters in large spatial databases with noise. Proc. 2nd Int. Conf.

Knowledge Discovery and Data Mining (KDD’96). (1996): 226-231.

20. Comaniciu, D. and Meer, P. Distribution free decomposition of multivariate data.

Pattern Analysis and Application. 2(1999): 22-30.

83

21. Yang, M. and Wu, K. A similarity-based robust clustering method. IEEE Trans.

Pattern Anal. Mach. Intell. 26:4(2004): 434-448.

22. Ng, R. and Han, J. Efficient and effective clustering method for spatial data mining.

Proc. 20th VLDB Conference. pp. 144-155. 1994.

23. MacQueen, J. Some methods for classification and analysis of multivariate obser-

vations. Proc. 5th Berkeley Symp. pp. 281-297. 1967.

24. Lin, C. and Chen, M. Combining partitional and hierarchical algorithms for ro-

bust and efficient data clustering with cohesion self-merging. IEEE Trans.

Knowledge and Data Engineering. 17:2(2005): 145-159.

25. Wu, S. and Chow, T.W.S. Self-organizing-map based clustering using a local clus-

tering validity index. Neural Processing Letters. 17(2003): 253-271.

26. Kohonen, T. Self-Organizing Maps. New York: Springer-Verlag, 2001.

27. Kohonen, T.; Oja, E.; Simula, O.; Visa, A.; and Kangas, J. Engineering applica-

tions of the self-organizing map. Proc. of IEEE. 84:10(1996): 1358-1384.

28. Alahakoon, D.; Halgamuge, S.K.; and Srinivasan, B. Dynamic self-organizing maps

with controlled growth for knowledge discovery. IEEE Trans. Neural Networks.

11:3(2000): 601-614.

29. Pakkanen, J; Iivarinen, J; and Oja, E. The evolving tree–a novel self-organizing

network for data analysis. Neural Processing Letters. 20(2004): 199-211.

30. Chow, T.W.S. and Wu, S. Cell-splitting grid: A self-creating and self-organizing

neural network. Neurocomputing. 57(2004): 373-387.

31. Pakkanen, J; Iivarinen, J; and Oja, E. The Evolving Tree, a hierarchical tool for

unsupervised data analysis. Proc. IJCNN 2005. pp. 1395-1399. 2005.

84

32. Pakkanen, J; Iivarinen, J; and Oja, E. The Evolving Tree–analysis and applications.

IEEE Trans. Neural Networks. 17:3(2006): 591-603.

33. Xu, P.; Chang, C; and Paplinski, A. Self-organizing topological tree for online

vector quantization and data clustering. IEEE Trans. Syst., Man, and Cybern.

– Part B. 35:30(2005): 515-526.

34. Weisstein, E.W. Variation Coefficient. [Online]. Avaiable from:

http://mathworld.wolfram.com/VariationCoefficient.html

85

Biography

Name: Ms. Ureerat WATTANACHON.
Date of Birth: 12th June, 1975.
Educations:

• Ph.D., Program in Computer Science, Department of Mathematics, Chulalongkorn
University, Thailand, (October 2001 - October 2006).

• Ph.D. Visiting student, School of Information Technology Electrical and Engi-
neering, University of Queensland, Brisbane, AUSTRALIA (Febuary 2005 - July
2005).

• M.Sc. Program in Computer Science, Faculty of Engineering, Chulalongkorn Uni-
versity, Bangkok, Thailand (June 1997 - March 2001).

• B.Sc. Program in Mathematics, Faculty of Science, Kasetsart University, Bangkok,
Thailand (June 1993 - March 1997).

Publication papers:

• U. Wattanachon and C. Lursinsap. Class-Driven Self-Grouping Learning for Pat-
tern Classification. Proceedings of the 4th International Conference on Intelligent
Technologies, pp. 108-116, 2002.

• U. Wattanachon and C.Lursinsap. Agglomerative Hierarchical Clustering for Non-
linear Data Analysis. IEEE International Conference on Systems, Man, and Cy-
bernetics (SMC 2004), pp. 1420 - 1425, 2004.

Scholarship: The Development and Promotion for Science and Technology Talents
Project (DPST) of Thailand.

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Chapter I Introduction
	1.1 Introduction and Problem Review
	1.2 Research Objective
	1.3 Scopes of the Study
	1.4 Research Plans
	1.5 Research Advantages

	Chapter II Literature Reviews
	2.1 Hierarchical Clustering Algorithms
	2.2 Partitional Clustering Algorithms
	2.3 Hybrid Clustering Algorithms
	2.4 Self-Organizing Map
	2.5 Variants of SOM

	Chapter III Proposed Method
	3.1 Phase 1: Self-Partition
	3.2 Phase 2: Noise Removal
	3.3 Phase 3: Self-Merging
	3.4 Clustering Example

	Chapter IV Experimental Results
	4.1 Experiment 1
	4.2 Experiment 2
	4.3 Experiment 3
	4.4 Experiment 4
	4.5 Experiment 5
	4.6 Experiment 6
	4.7 Experiment 7
	4.8 Complexity Analysis

	Chapter V Conclusion
	References
	Vita

