4

JuaouasmiEeuiuuy lulifaoudmsumameznqudoyasdanumuuaz

mstszmnadunguindulyl g

€

¢
AUYUL

e}
anl
n./le

B

UNE

o

%mﬁwuﬁ'ffﬂud’mwﬁwmﬂﬁﬁﬂymmwﬁﬂqﬁiﬂ?ﬂgﬂ;ﬁ%ﬂiﬁﬁ@iﬂﬁﬂﬂacﬁ@
AN IMMIANT AT MIImAdlamans
AULINGINTAT JWIAINTRILIING1AD
Umsfny 2549
ISBN 974-14-3425-1

4
amammm@meﬂmfwnmnaﬂ

AN UNSUPERVISED LEARNING ALGORITHM FOR ROBUST CLUSTERING AND
ESTIMATING THE FEASIBLE NUMBER OF CLUSTERS

Ms. Ureerat Wattanachon

A Dissertation Submitted in Partial Fulfillment-of the Requirements
for the Degree of Doctor of Philosophy Program-in-Computer Science
Department of Mathematics
Faculty of Science
Chulalongkorn University
Academic year 2006
ISBN 974-14-3425-1

Copyright of Chulalongkorn University

Thesis Title AN UNSUPERVISED LEARNING ALGORITHM FOR ROBUST
CLUSTERING AND ESTIMATING THE FEASIBLE NUMBER OF

CLUSTERS
By Ms. Ureerat Wattanachon
Field of Study Computer Science
Thesis Advisor Professor Chidchanok Lursinsap, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial

+r+seeeenrnen. Dean of the Faculty of Science
(Professor Piamsak Menasveta, Ph.D.)

THESIS COMMITTEE
B N .
l_ﬁt’(\“&mﬂ“’er Chairman

T

(Assistant Professar Patlarasinee Bhattarakosol, Ph.D.)

é'-{""lf, Thesis Advisor
(Professor Chidchanok Lursinsap, Ph.D.)

'y i wlk

(Siripun Sanguansintukul, Ph.D.)

...ﬁc...i.L"—.., Member

(Associate Professor Beonserm Kijsirikul, Ph.D.)

g? Member

(Associate Professor Kosin Chamnongthai, Ph.D.)
&) o

veeenenen. Member

(Assistant Professor Thitipong Tanprasert, Ph.D.)

v
935y aunl Funoudmsouduuy lifidaeudmiumanmznguieyandiy
yumuazmsdszinasnaunguiiihel)18 (AN UNSUPERVISED LEARNING
ALGORITHM FOR ROBUST CLUSTERING AND ESTIMATING THE FEASIBLE
NUMBER OF CLUSTERS). 8. finun: 1. a3, Savun mdeduning, 99 wih,

ISBN 974-14-3425-1.

mamengudeyaihiiinsilFlumaninguanvesdeoya Taviiteyaiioglundy
Fuaiussiidnuusindiondaiuas foyaiiegmenquiisziidnuuz fuandafuigafid Ty
1% Fiwunoudsnisimengudeyaiiiiog e1isu single-link, k-mean, CURE uax CSM 18
tmmmu'lﬁﬁm:mianejm’fnqa"iﬁufuaﬁﬁvﬁnmnﬁmafﬁﬁmﬁ‘munlﬂué"ﬁ Sunovins
mfhﬂ"himm:mn.imziu-ﬁ'&qﬁ'lﬁqﬂﬁ'lﬁ']ﬂ'"lmﬁ1ﬁlnu§ﬁﬁnaﬁmun'himu1:ﬂuf'iuﬁ'ﬂum=1m~.‘.
doyafisxiimsiniangu SuneuTstiidnIngfrunsomisndy 1aafudeyaiTanuazns
imzdamo lunguiniuuaziumsanay Fanomninugsadiunniretuneniimame
nfjmmunﬂunmuuuu'lmii’iﬂunh “Self-Partiion and Seli-Merging” Win ipafilemdy
(SPSM) aalumasn Sunerifieafierdussiimsimnguanvedeyaseniungutsudn
q Mawngu yimiluaaensihnsdateyauazngusendn 9 Adudyyiusuniueenl
danluraaungudesidn q Adnuuzmsmsaaveteyaiiniy s wndumaiie
Fofudes a9 Wlnguiiluaii Tasnissaunquesiinennnszozinssninguuas
srozvamolungy VINHANTTNATBIND T supmseaTeaey ihlszaninmlumsians
fudeyaiiddyayimsuniu wenanil sunerdtienfieaBniadnNIninguIsnvedeyaiil
i‘iﬂumzzﬂ:hmm:mmummiu-uaaﬂagnﬁnmnﬁuﬁu ﬂuﬁﬂ’aﬁqﬂqnuﬁnﬂaqaﬁﬂﬁmqm
FUNIU ua:'l'ﬁnanmmzﬂfju'?iﬁﬂ*hm-iLfnznijunnfruﬂuu%‘i'nmm:minﬂu 9 @mANY

i - b P 4 4 e
Fudeuveaah 19usituneuTsieafienion fe O(NT) 1iie N unuinaudeyanimun

. P e il

AN .o ABARIAAT. e awlle¥eudn. ﬂfrj,:’mﬁ-”/
- - A oy

1. INOIMIRBUNINGS............ ﬁ'lUﬁﬂ‘ltlﬂ‘l‘lTStTﬂﬂ"fﬂ'm..,,,,,..,....I;:.'.E.'.M.

Umsfinu 2549

4473861523 : MAJOR COMPUTER SCIENCE

KEY WORD: UNSUPERVISED LEARNING / CLUSTERING.
UREERAT WATTANACHON: AN UNSUPERVISED LEARNING ALGORITHM FOR
ROBUST CLUSTERING AND ESTIMATING THE FEASIBLE NUMBER OF
CLUSTERS. THESIS ADVISOR: PROF. CHIDCHANOK LURSINSAP, Ph.D., 99 pp.
ISBN 974-14-3425-1.

Data clustering is a discovery process that groups a set of data such that the data
points in the same cluster are as similar as possible and the data points of different
clusters are as dissimilar as_pessible. Existing clustering algorithms, such as single-link
clustering, k-means, CURE, and CEM are designed te find clusters based on pre-defined
parameters specified by users. These algorithms can breakdown if the choice of
paramelers is incorrect wilh respect to the data set being clustered. Most of these
algorithms work very well for compact and hyperspherical clusters. In this dissertation, the
new hybrid clustering algorithm called “Self-Partiion and Self-Merging” (SPSM) is
proposed. The SPSM algorithm partilions the iﬁput data set into several subclusters in the
first phase, and then removes the neisy dala and the noisy subclusters in the second
phase. In the third phase, the dense subclusters are continuously merged to form the
larger clusters based on the inter-distance and intra-distance criteria. From the
experimental results, the SPSM algorithm is very efficient to handle the noisy data set.
Moreover, the SPSM algorithm is able to cluster the data sets of arbitrary shapes and
different density very efficiently (loleratecto noise, and pravide better clustering results than
the existing clustering algorithms. The computational complexity of the SPSM algorithm is

O(N), where N is the number of data peints.

Department :Mathematics............... Student's Signature : Q;Ef;r""’)':’*m”f
Field of Study :Computer Science.......... Advisor's Signature : sl
Academic Year : 2006

vi

Acknowledgements

During my years as a Ph.D. student, I have received a lot of tuition, care and friendship

from several people, some of which I wish to thank here.

e First of all I would like to thank Development and Promotion for Science and Tech-

nology talents project (DPST) of Thailand who sponsor the research scholarships.

e During my time as a Ph.D.s student, I am greatful to my supervisor, Prof.Dr.
Chidchanok Lursinsap, to whom with his advice, guidance and care, help me to
overcome the neccessary difficulties of the process of research and make this dis-

sertation possible.

e [would like to thank Dr.Mikael Boden at University of Queensland, Australia,

who gives me a wonderful suggestions in Ph.D. research methodologies.

e My thanks also goes to dissertation committee with their advice and guidance,

help focus my research activities.

e [would also like to thank Supaporn Bunrit, Benjamas Panyangam and all my
colleagues at the Advanced Virtual Intelligent Computing (AVIC) Center, Depart-
ment of Mathematics, Chulalongkorn University, who give me a number of useful
suggestions. Special thanks also goes to Sasithorn Anantasopon, my room-mate,

for her wormest care support.

e Finally, my deepest gratitude goes to Wattanachon’s family, for their sponsor,
love and care and especially Mr.Jakkarin Suksawatchon, for his love, wormest care

support and being patient during my doubtful stage.

Table of Contents

Acknowledgements vi
Table of Contents vii
List of Tables ix
List of Figures X
1 INTRODUCTION .. oo o o it e o e e e e e 1
1.1 Introduction and Problem Review 1
1.2 Research Objective . «)
1.3 Scopesofthe Study 5
1.4 Research Plans L 6
1.5 Research Advantages 6
2 LITERATURE REVIEWS 7
2.1 Hierarchical Clustering Algorithms 7
2.2 Partitional Clustering Algorithms 9
2.3 Hybrid Clustering Algorithms . ..~ 10
2.4 Self-Organizing Map 12
2.5 Variants of SOMo 15
3 PROPOSED METHOD oo 0 . 21
3.1 Phase 1: Self-Partition . . .+ L0 24
3.1.1 Architecture of the DTS-SOM 24

3.1.2 Training of the DTS-SOM 25

3.1.3 Data Decomposition L. 30

3.2 Phase 2: Noise Removal 30
3.2.1 Density Computation 32

3.2.2 Cluster Separation 34

Administrator
Rectangle

3.2.3 Cluster Verification 38

3.3 Phase 3: Selt-Merging L 39
3.3.1 Neighboring Merging 40

3.3.2 Local Merging I 46

3.3.3 Local Merging IT 48

3.3.4 Refinement Merging 0L 52

3.4 Clustering Example o000 54
4 EXPERIMENTAL RESULTS 59
4.1 Experiment 1" . 4 4 FF0F B RSNo 60
4.2 Experiment 2 .4 FEFFLCCSEE NN . - L 60
4.3 Experiment 3 . o . o o 00 0L 61
4.4 Experiment 4. & o i A0 0. . ..o 66
4.5 Experiment 5 . & . Q0SS - . L 69
4.6 Experiment 6 70
4.7 Experiment 7 oL Lo e 71
4.8 Complexity Analysis L 74
5 CONCLUSION . . . 78
References 0o 81

Biography . §iNKI 11 VLA A VIicIi L - ALt 14 ... 85

2.1

4.1

4.2

4.3

4.4

1X

List of Tables

Types of definition of inter-cluster distance. 9
Phase 1 parameters. 60
Details on each dataset. 61

The average of the accuracy of clustering results obtained through the
SPSM algorithm for testing the tolerance to noisy data. 73

Summary of computational complexity of different algorithms. 76

2.1

2.2

2.3

2.4

2.5

2.6

3.1
3.2

3.3

List of Figures

The hierarchical clustering algorithm for a data set of seven points. (a)
The input data set. (b) A possible dendrogram. 8
The most common topologies. 13
Topological map with 10 neurons at certain learning stage. A is the best
matching unit, and B,C, D, E, F, and G are its direct neighbors. 16
Weight initialization in the CSG algorithm for the two-dimensional input
data. (a) Neuron A is to be split to generate four new neurons on the
topological map. (b) The best matching unit A and the new neurons (1,
2, 3, and 4) in the two-dimensional input space before and after split-
ting. ML, MR, MT, and M B are middle-points between neuron A and
its direct left, right, top and bottom neurons, respectively. Dashed lines
(B1,1D, D2,2C,C4,4E; E3, and 3B) denote the neuron connections af-
ter splitting. (¢) New neurons (1, 2, 3, and 4) with new connections after
splitting onthe output map. L. 17
Learning by CSG algorithm. (a) Output map. (b) Input space with
neuron connections. . .o L. L L L 18

Fundamental operations of the ETree. (a) Best matching unit search.

(100 \B2p6 distancer e~ e 1 Q- IGO0 NQAN DI~ O - - - - - 20
The overview of the proposed method — SPSM. 21
An example of a sparse noisy subcluster generated in Phase 1. 23

The overall steps of Phase 1. 24

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

Tree search operation of the DTS-SOM: how the best matching unit is
found. White and black nodes are denoted the internal nodes and the
leaf nodes, respectively. The arrows show tree search path to find the
best matching unit. Lo

An example of the DTS-SOM learning. (a) The tree structure. (b) Input

space with the leaf neuron connections. A number shows the neuron index.

The overall steps of Phase 2.
An example of a point x; is outside the hyperbox.
An example of the density arrangement. (a) Four types of sorted density

values. (b) The elliptic region denoted by dashed line shows the expected

area which may be the noisy subclusters.
The overall steps of Phase 3.
An example of the partial regions (connected regions). (a) The partial

region of non-overlapping subclusters. (b) The partial region of overlap-

ping subclusters. oL oL
An example of the ranges of each component for two-dimensional data

space. (a) The minimum and maximum positions of the first component.

(b) The minimum and maximum positions of the second component.

An example of the partial region (connected region). The gray dots in

the connected region are used for computing the inter-distance.
An example how the SPSM works. (a) Input data set of three clusters.

(b) The lateral connections among the leaf nodes. A number shows the

node index. (c) The set of 100 subclusters obtained through Phase 1. (d)

The set of 50 dense subclusters. Each subcluster is denoted by a color.

Each star is represented a prototype vector obtained from the DTS-

SOM Training process and each square is represented a subcluster center.

x1

26

28

32

33

36

41

42

43

45

56

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

Clustering result on the experiment 1. (a) Data Set 1. (b) SPSM on
Data Set 1 (3 clusters). Each cluster is denoted by a symbol.
Clustering results on the experiment 2 for Data Set 2 and Data Set 3.
Each cluster is denoted by a symbol. The star symbol is represented
noisy data points.
Clustering results on the experiment 2 for Data Set 4. Each cluster is
denoted by a symbol. The star symbol is represented noisy data points.
Clustering results on the experiment 3 produced in SPSM algorithm.
Each cluster is denoted by a symbol. The star symbol is represented
noisy data points.
Clustering results on the experiment 3 produced in SPSM algorithm.
Each cluster is denoted by a symbol. The star symbol is represented
noisy data points. oL
Clustering results on the experiment 3. (a) and (b) are the final de-
composition of Data Set 6 and Data Set 8 obtained from the single-link
algorithm, respectively. (¢) and (d) are the clustering results of Data Set
7 and Data Set 8 acquired from the complete-link algorithm, respectively.
Each cluster is denoted by a symbol.
Clustering results on the experiment 3 obtained through the algorithm
CURE. (a) and (b) are the final decomposition of Data Set 6 and Data
Set 7, respectively. Each clusteris denoted by a symbol.-
Clustering results on the experiment 3 produced by the algorithm CSM.
(a) and (b) are the final decomposition of Data Set 7 and Data Set 8,
respectively. Each cluster is denoted by a symbol.
Clustering result on the experiment 4 for Data Set 5. Each cluster is

denoted by a symbol. The star symbol is represented noisy data points.

xii

64

68

69

4.10

4.11

4.12

4.13

Clustering result on the experiment 5 for Data Set 9. Each cluster is
denoted by a symbol. The star symbol is represented noisy data points.
Clustering results on the experiment 6 obtained through the algorithm
SPSM. (a) and (b) are the final decompositions of Data Set 7 with dif-
ferent stopping criteria. Each cluster is denoted by a symbol.
Clustering results on the experiment 6 obtained through the algorithm
SPSM. (a) and (b) are the final decompositions of Data Set 6 and Data
Set 8 with different initialization of the first neuron. Each cluster is
denoted by a symbol.” . .. Lo 0oL oo
An example of data set used in the experiment 7. The dots represented

the data points and the stars denoted the noisy data points

xiil

70

CHAPTER I

INTRODUCTION

1.1 Introduction and Problem Review

Hugh amounts of data collected and stored in databases will increase the need for effi-
cient and effective analysis methods to make use of the information implicitly contained
in the data for further analysis and management. One of the primary data analysis tasks
is cluster analysis which is intended to help users to understand the natural grouping
or structure in a data set [1, 2]. Therefore, the development of improved clustering
algorithm has received a lot of attentions in the last few years. The goal of clustering
algorithm is to partition data into groups or clusters such that the data points in the
same cluster are as similar as possible and the data points of different clusters are as
dissimilar as possible. In the clustering process. there are no pre-defined classes and
no examples, also known as unsupervised classification, that would show what kind of
desirable relations should be valid among the data [3, 4]. The applications of cluster-
ing algorithm can be found in areas such as grouping, decision-making, and machine
learning, including data mining, document retrieval, image segmentation, and pattern
classification [1, 3, 5, 6, 7]

Many data clustering algorithms have been proposed in the literatures. These al-
gorithms can be categorized into partitional clustering [8, 9], hierarchical clustering
[10, 11, 12}, artificial neural networks for clustering [13, 14, 15], statistical clustering al-
gorithms [16, 17|, fuzzy clustering [18], density-based clustering algorithms [19, 20, 21],

and so on. In these methods, hierarchical and partitional clustering algorithms are two

primary approaches in research communities.

Hierarchical clustering treats each data point as a singleton cluster, and then succes-
sively merges clusters until all points have been merged into a single remaining cluster.
So, hierarchical clustering algorithms organize data into a hierarchical structure accord-
ing to the proximity matrix. The results of hierarchical clustering are usually depicted
by a binary tree or dendrogram. The root node of the dendrogram represents the whole
data set and each leaf node is regarded as a data point. The intermediate nodes describe
the extent that the data are proximal to each other; and the height of the dendrogram
usually expresses the distance between each pair of data points or clusters, or an data
point and a cluster. The ultimate clustering results can be obtained by cutting the
dendrogram at different levels. Therefore, cutting the tree at particular level produces a
partition into g disjoint groups. With hierarchical structure, the different clustering re-
sults can be obtained for different similarity requirements. The well-known hierarchical
clustering algorithms are single-link, complete-link, average-link, and so on. Besides, if
the clusters are close to one another even by noises, or if their shapes and sizes are not hy-
perspherical, the hierarchical clustering algorithms give uncorrectness results. However,
most of the hierarchical clustering algorithms require time complexity of O(N?logN),
where N is the number of input data points.

On the other hand, partitional clustering attempts to break a data set into k clusters
such that the partition optimizes a given criterion {22]. The k-means algorithm is one of
the most famous partitional clustering algorithms [23]. Because the k-means algorithm
is very simple and can be easily implemented. Although widely used, the k-means
algorithm suffers from some drawbacks [7]. There is no efficient method for identifying
the initial partitions and the number of clusters k. It can work very well for compact
and hyperspherical clusters. Moreover, k-means is sensitive to noises. However, most

partitional algorithms have advantage on the execution time which is in linear time.

Several clustering methods have been proposed to combine the features of hierarchical
and partitional clustering algorithms. It called the hybrid idea or two-phase clustering
algorithm. In general, these algorithms first partition the input data set into pre-defined
small subclusters instead of using all the data points as the distinct clusters. Then, these
algorithms construct a hierarchical structure based on these small subclusters and these
subclusters are next grouped into larger clusters.

Algorithm Clustering Using Representatives (CURE) is one of the famous two-phase
clustering algorithm [10]. ITn CURE, instead of using all data points to represent the
clusters, a constant number of well scattered points are chosen to represent a cluster.
Then the chosen scattered points are shrunk towards the center of the cluster by a
shrinking factor in order to eliminate the effects of noise. These scattered points after
shrinking are used as representatives of the cluster. The clusters with the closest pair of
representative points are the clusters that are merged at each step of CURE’s hierarchical
clustering algorithm. A major limitation of the CURE algorithm is that the merging
decisions are based upon input parameters which are a shrinking factor, the number of
representative points, the number of clusters. Thus, these parameters have to carefully
choose.

Another hybrid clustering algorithm has been proposed to remedy the drawbacks
of hierarchical and partitional clustering while combining their advantages [24]. The
new similarity measure between two clusters is proposed, namely, cohesion to measure
the inter-cluster distance. Using cohesion; a two-phase clustering algorithm is presented
called Cohesion-based Self-Merging (CSM). Algorithm CSM starts with partitioning the
input data set into several small subclusters in the first phase and then continuously
merges the subclusters based on cohesion in a hierarchical manner in the second phase.
During merging process, algorithm CSM removes all the subclusters whose sizes are less

than the threshold value. Therefore, algorithm CSM is able to deal with noisy data

set. Like CURE, algorithm CSM suffers from parameter settings. Note that the number
of subclusters, the desired number of clusters, the impedance factor, and the threshold
value are parameters specified by users. With proper parameters, algorithm CSM can
give a good results. In practice, it is not easy to choose the suitable parameters.
However, both CURE and CSM algorithms do not produce a suitable estimation
of the number of output clusters by themselves and it has to be provided as an input
parameter. Moreover, these algorithms fail if the choice of parameters is incorrect with
respect to the data set being clustered. To avoid the limitation of parameter settings
and to effectively alleviate the disadvantages of hierarchical and partitional clustering
algorithms, the new hybrid clustering called “Self-Partition and Self-Merging” (abbrevi-
ated as SPSM) is proposed. The SPSM algorithm has been designed into three phases.
In Phase 1, the new partitional clustering is introduced based on a self-creating and
self-organizing algorithm designed to improve SOM algorithm called Dynamic Tree-
Structured Self-Organizing Map (DTS-SOM). Once the DTS-SOM performed, the num-
ber of initial subclusters is automatically obtained. To achieve a better clustering result
and be less affected by noises, the noisy data and the noisy subclusters are removed
by Phase 2. Then, algorithm SPSM performs self-merging process in Phase 3 based
on inter-distance and intra-distance criteria. The SPSM algorithm automatically ob-
tains the final clusters and can identify the noisy data. The main contributions of our

proposed method can be summarized as follows:

e The DTS-SOM is proposed to cope with the initialization of the number of clusters
required in the partitional clustering algorithm. The DTS-SOM is a variant of
SOM which is a self-creating and self-organizing algorithm designed to improve
the SOM algorithm. Using DTS-SOM, it is able to overcome the limitations of
SOM, because the SOM must pre-define the topology structure and the number

of neurons before the training process.

e The SPSM algorithm also proposes the noise removal method which can deal with
the noisy data set. So algorithm SPSM is able to not only resist noises, but also

lead to good clustering results.

e The SPSM algorithm is able to cluster the data sets of arbitrary shapes very

efficient and provide better results than the other algorithms.

e The parameter settings of our proposed method are minimum. The parameter

requirements are default used for the DTS-SOM training.

1.2 Research Objective

The objective of this dissertation prospectus is to develop a new unsupervised learning
algorithm that can be robust in three aspects:

(a) Robust to the initialization (the number of clusters),

(b) Robust to cluster shapes (ability to detect arbitrary shapes of clusters), and

(c) Robust to noisy points (ability to tolerate noise).

1.3 Scopes of the Study

In this dissertation, the scope of work is constrained as follows:
1. This proposed algorithm is an unsupervised learning algorithm.
2. The number of dimensions and training data are finite.

3. The performance results from the proposed algorithm are compared with the re-

sults by existing agglomerative clustering techniques.

1.4 Research Plans

1. Study related papers and documents to unsupervised learning algorithms.
2. Develop a new unsupervised learning algorithm.

3. Experiment with benchmark data and compare the results with those from the

other algorithms.

4. Analyze the experimental results and conclude the outcomes.

1.5 Research Advantages

It is expected that the new approach and prototype are
1. A new unsupervised method is able to deal with unbalanced and irregular clusters.
2. The number of clusters is automatically derived by the proposed algorithm.

3. This algorithm can be used to solve in clustering problems.

CHAPTER II

LITERATURE REVIEWS

In this chapter, the existing clustering algorithms (hierarchical clustering algorithms,
partitional clustering algorithms, and hybrid clustering algorithms) including Self-Organizing

Map (SOM) and its variants, are briefly revised.

2.1 Hierarchical Clustering Algorithms

Hierarchical clustering begins with each input data point in a distinct (singleton) cluster,
and then successively merges clusters together until a stopping criterion is satisfied that
is all points have been merged into a single remaining cluster. A hierarchical clustering is
often represented as a binary tree or dendrogram [1|. The root node of the dendrogram
represents the whole data set and each leaf node is regarded as a data object. The
intermediate nodes describe the extent that the objects are proximal to each other; and
the height of the dendrogram usually expresses the distance between each pair of objects
or clusters, or an object and a cluster. The ultimate clustering results can be obtained
by cutting the dendrogram at different levels.

The operation of a hierarchical clustering algorithm is illustrated using the two-
dimensional data set in Fig. 2.1(a). This figure depicts seven input data labeled
A,B,C,D,E,F, and G. One possible dendrogram is shown in Fig. 2.1(b). With
the hierarchical structure, the different clustering results can be obtained for different
similarity requirements. As shown in Fig. 2.1(a), if the similarity requirement is set
at level 1, the input data set is partitioned into two clusters, i.e., {A, B,C, D} and

{E, F,G}. However, if the similarity requirement is set at level 2, then the input data

A N
(€ I S U Level 1
E F o L
A° C T {}
c/)__ _____ ____‘ii\———— ———— Level 2
. [
Y A B C D E F G

(a) (b)

Figure 2.1: The hierarchical clustering algorithm for a data set of seven points. (a) The

input data set. (b) A possible dendrogram.

set is partitioned into six clusters, i.e., {A, B}, {C}, {D}, {E£}, {F}, and {G}.

Most hierarchical clustering algorithms are variants of the single-link, complete-
link, centroid-link, average-link, and minimum-variance algorithms. The single-link and
complete-link algorithms are most popular. These two algorithms differ in the way they
characterize the similarity between pair of clusters (inter-cluster distance). The widely
used measures of inter-cluster distance in these algorithms are listed in Table 2.1 (m;
is the mean for cluster ¢; and n; is the number of data points in cluster ¢;) [25]. In
classical hierarchical clustering, two clusters are merged to form a larger cluster based
on minimum inter-cluster distance criteria.

The hierarchical clustering algorithm can be summarized by the following procedure.
1. Initially, each data point forms a cluster by itself.

2. The inter-cluster distance matrix for all distinct pairs of input data is constructed

as the proximity matrix.
3. The algorithm repeatedly merges the two closest clusters.

4. The output of the algorithm is a hierarchical structure which can be cut at a

Table 2.1: Types of definition of inter-cluster distance.

Definition Inter-cluster distance
Single-link Amin(Ci, Cj) = MiNgce,, vjec; ||Ti — 75|
Complete-link Amaz(Ciy Cj) = MATaiec;, z,ec; || T — 25|
Centroid-link Amean(Ci, ¢j) = [|mi — my]|
Average-link due(C;, Yo (Tlnj_) D e 2owsee; 1T — T
Minimum Variance o d (G- T:fé] |m; — my|

desired similarity requirement forming the partitioned clusters.

However, if the clusters are close to one another because of the noisy data, the
single-link gives uncorrectness result. As well as the complete-link clustering algorithm

has problems in dealing with particular shapes.

2.2 Partitional Clustering Algorithms

Partitional clustering attempts to break a data set into %k clusters such that the partition
optimizes a given criterion [22]. The k-means algorithm is the best-known partitional
algorithm for data clustering. It starts with the random initial k& partitions and keeps
reassigning the input data to clusters based on the similarity between the data point
and the cluster centers until a convergence criterion is met. The outline of the k-means

algorithm is given as follows:
1. Initially, k£ centroids are selected arbitrarily for each cluster ¢;, i € [1, k].
2. Each data point assigns to the cluster whose centroid is closest to the data point.

3. Each cluster center is recalculated.

10
4. Step 2 and Step 3 are repeated until no data points change between clusters.

The k-means algorithm is popular because it is easy to implement. However, a
major problem with this algorithm is that it is sensitive to the selection of the initial
partition and may converge to a local minimum of the criterion function value if the
initial partition is not properly chosen. The k-means algorithm fails for data in which
data points in a given cluster are closer to the eenter of another cluster than to the
center of their own cluster. This can happen in many natural clusters, for example,

when cluster shapes are convex. Besides, k-means is also sensitive to noise.

2.3 Hybrid Clustering Algorithms

To overcome the problems of hierarchical and partitional clustering algorithms, several
clustering methods have been proposed to combine the features of hierarchical and parti-
tional clustering algorithms. It called the hybrid idea or two-phase clustering algorithm.
In general, these algorithms first partition the input data set into small subclusters
instead of using all the data points as the distinct clusters. Then, these algorithms
construct a hierarchical structure based on these subclusters and these subclusters are

next grouped into larger clusters.

Clustering Using Representatives' (CURE) Algorithm

Algorithm CURE [10] is an improvement over the single-link clustering algorithm. In
CURE, instead of using all data points to represent the clusters, a fixed number of
well scattered points are chosen to represent a cluster. The scattered points capture the
shape and extent of the cluster. The chosen scattered points are next shrunk towards the
centroid of the cluster by a shrinking factor. These scattered points after shrinking are

used as representatives of the clusters. The clusters with the closest pair of representative

11

points are the clusters that are merged at each step of CURE’s hierarchical clustering
algorithm. CURE is capable of finding clusters of different shapes and sizes. Shrinking
the scattered points towards the centroid helps CURE in avoiding the problem of noises.

A major limitation of CURE algorithm is that the merging decisions are based upon
pre-defined parameters which are a shrinking factor, the number of representative points,
the number of clusters. CURE algorithm can breakdown if the choice of parameters used

in the merging criteria is incorrect with respect to the data set.

Cohesion-based Self-Merging (CSM) Algorithm
The CSM algorithm [24] is the recent two-phase clustering algorithm. The new similarity
measure between two clusters is proposed, namely, cohesion based on the join ability of

two clusters with density impedance to resist the effects of noises defined as Eq. 2.1.

cohesion(c;, ¢;)

stmilarity(e;, c;) = (2.1)

impedance(c;, ¢;)®
where « is the impedance factor specified by users.

In the first phase, algorithm CSM adopts the k-means algorithm to divide the input
data set into m subclusters. At the beginning of second phase, it obtains the cohesions
of these m subclusters produced in the first phase. Then algorithm CSM performs
a single-link clustering algorithm based on cohesion to obtain the k& clusters. During

merging process, algorithm CSM removes all the subclusters whose sizes are less than

the threshold value. The CSM algorithm is described as follows:

1. The k-means algorithm is applied on the input data set to obtain m subclusters.

2. The single-link clustering algorithm is used on the m subclusters produced in phase

1 with cohesion as the similarity measure by using Eq. 2.1.

3. Phase 2 repetitively merges two subclusters until the g clusters are obtained.

12

4. During phase 2, when those m subclusters are merged into m’ subclusters, algo-
rithm CSM removes all the subclusters whose sizes are less than the threshold

defined as
size_ratio X 53 |¢;).

Note that size_ratio and m’ are two parameters specified by users.

Like CURE, algorithm CSM is sensitive to parameter settings. It is observed that
when the value of m is too small, the subclusters produced in phase one may not properly
partition the input data set. Thus, algorithm CSM results in an incorrect partition. On
the other hand, if the input data set is partitioned into too many subclusters, algorithm
CSM may also fail to partition the input data set due to the existence of many noisy
subclusters. Those noisy subclusters may form a link and connect two neighboring
subclusters. The impedance factor a also affects the correctness of the clustering results.
This parameter is specified by users to control the effect of impedance. If parameter
« is set too high, the CSM algorithm will make the noisy subclusters harder to join
into normal subclusters. However, this may cause the normal subclusters also harder to
join together. On the other hand, If parameter « is set too low, the noisy subclusters
may be easy to merge into normal subclusters. Thus, algorithm CSM results in an
incorrect clustering results. With proper parameter settings, algorithm CSM may give

the correctness results.

2.4 Self-Organizing Map

Self-Organizing Map (SOM) is one of the most popular neural network models developed
by professor Kohonen [26]. The SOM has been proven useful in many applications

[27] especially data visualization and data clustering. The SOM algorithm is based on

13

unsupervised learning, which means that no human intervention is needed during the
learning. The SOM algorithm is quite a unique kind of neural network in the sense
that it constructs a topology preserving mapping from the high-dimension space onto
map units. Map units, or neurons, usually form a two-dimensional lattice and thus the
mapping is a mapping from high dimension space onto a plane. Thus, the SOM network
architecture is a two-layer neural networks with one input layer and one output layer.
The SOM is a two-dimensional array of P neurons. Every neuron i of the map is
associated with a d-dimensional reference vector (weight vector) w; = (w1, wig, . . ., Wiq)
This has the same dimension as the input data vector. The neurons of the map are
connected to adjacent neurons by a neighborhood relation, which dictates the topology,
or the structure, of the map. The most common topologies in use are rectangular or
hexagonal topology as illustrated in Fig. 2.2. At each training step ¢, an input data
vector z(t) is randomly chosen from the training set. Distance between z(f) and all
weight vectors are computed. The best matching unit, denoted by c, is the neuron with

the weight vector closest to x(t) such that
lwe(t) = 2@} < lwi®) = 2@, ¢€1,2,.... P (2.2)

where ||-|| is the Euclidean distance.
A set of neighboring neurons ‘of the best matching unit is denoted as N., which

decreases its neighboring radius of the best matching unit with time. h;.(t) defines as

Rectangular Hexagonal

Figure 2.2: The most common topologies.

14

a neighborhood kernel function around the best matching unit ¢ at time ¢. The kernel

can be taken as a gaussian function,

hie(t) = exp (%) L ieN, (2.3)

where 7; is the coordinates of neuron i on the topological grid and o(t) is a kernel width.
After the best matching unit has been found, the weight vectors are updated. The
best matching unit itself as well as its topological neighbors are moved closer to the

input vector in the input space. So the weight update rule is the following

wi(t+1) = wi(t) + alt)hic(t)(x(t) — w;i(t)), Vi e N, (2.4)

wit +1) = awi(t), i &N, (2.5)

where «(t) is the learning rate at time ¢. Before the training process, the topology and
the number of neuron must be fixed. The learning process of the SOM is summarized

as follows:
1. The weight vectors of all neurons are initialized in a random manner.
2. One input vector x is randomly chosen from the input data set.

3. Find the best matching unit ¢ at time step ¢ by using the minimum Fuclidean

distance criterion as in Eq. 2.2.
4. Update the weight vectors of all neurons by using Eqgs. 2.4 and 2.5.

5. Steps 2 to 4 are repeated until no noticeable changes in the feature map are ob-

served.

Once the SOM algorithm has converged, the topological map computed by the algo-

rithm displays important characteristics of the input space.

15

2.5 Variants of SOM

In the classical SOM algorithm, the topological map and the number of neurons are
fixed from the beginning. This may lead to many experiments with different sized maps,
trying to obtain the optimal results. As the number of neurons increases, the time it
takes to do any operations on the map also increases. Several improved SOM and related
algorithms [28, 29, 30] have been proposed in recent years to overcome the basic SOM
problems.

One of the variants of SOM is Cell-Splitting Grid algorithm (CSG) which dynamically
increases neural network [30]. The CSG network architecture is like the two-dimensional
SOM architecture. It is a two-layer neural network with an input layer and an output
layer. The neural weights connecting the input and output layer represent feature vec-
tors. Furthermore, there are lateral connections among neighboring neurons.

The CSG network topological map is constrained in a square of unit length. All
neurons are generated within the square. Each neuron corresponds to a square region
with different size and neighboring neurons connected to form the neighboring relation.
Note that the neighboring neurons also mean the direct left, right, top, bottom, top-
left, bottom-left, top-right, and bottom-right neurons of one neuron. A typical neural
network topological map. is shown in Fig. 2.3.

The training process of CSG algorithm is like the SOM. But during the processing in
the CSG algorithm, the network itself determines the growth of new neurons according to
the activation level which tells how many times each neuron has been the best matching
unit during training. When the activation level of the best matching unit decreases to
zero, the CSG algorithm performs the cell-splitting mechanism, i.e., to delete the best
matching unit and then generate four new neurons.

Weight initialization is very important at the time of cell-splitting in order to avoid

16

I I~ o
08k \ Z .
-’!E
] i\
osf P]
4
% ;I ! l‘-
04l i ! Ay)
Voo S R
\ L}]
3 !
el
02t] 4 !
Pt o
B c
o r
o 02 04 0.6 0.8 1

Figure 2.3: Topological map with 10 neurons at certain learning stage. A is the best

matching unit, and B,C, D, E, F', and G are its direct neighbors.

disorder of topology in the input space. Fig. 2.4 illustrates the weight-endowing process
before and after the splitting in the two-dimensional input data. The following strategy

to create an ordered topology is described.

1. When there is only one neuron at the first stage, four new neurons are generated
after splitting. In order to create weights of new neurons, a vector Random is
introduced such that Random has the same dimension as the weight vector w and
satisfies || Random|| << ||w||. Random is divided into two vectors. The first vector
is A. Datain the first [£] dimensions of A are the same as Random ([b] denotes an
maximum integer less than b), but data in the rest dimensions of A is zeros. The
second vector B is opposite, data in the first [g] dimensions are zeros and the data
in the rest dimensions are the same as Random. Hence, Random can be expressed
by Random = A+ B. Thus, w+ A+ B, w+A— B, w— A+ B, and w— A— B are
used to represent the new four neurons which lie on the top-right, bottom-right,

top-left, and bottom-left corners in the region of the original neuron.

2. When the number of neurons is larger than 1, the condition is different because the

17

L]
I
3
I
I
——— e ————
) =
1
[
[
&

(@) (©) (©

Figure 2.4: Weight initialization in the CSG algorithm for the two-dimensional input
data. (a) Neuron A is to be split to generate four new neurons on the topological
map. (b) The best matching unit A and the new neurons (1, 2, 3, and 4) in the two-
dimensional input space before and after splitting. ML, MR, MT, and M B are middle-
points between neuron A and its direct left, right, top and bottom neurons, respectively.
Dashed lines (B1,1D, D2,2C,C4,4F, E3, and 3B) denote the neuron connections after
splitting. (c) New neurons (1, 2, 3, and 4) with new connections after splitting on the

output map.

neighboring neurons obtained can be utilized. When a neuron is to be split, firstly
the middle-points ML, MR, MT, and M B are computed between it and its direct
left, right, top, and bottom neurons in the input space as shown in Fig. 2.4(b). If
there are several direct neighbor neurons at the same direction; the middle-points
between the splitting neuron and its direct neighbor neurons at that direction are
averaged. After computing the middle-points, the four new neurons with weights

_ ML+MT _ w)

Wy = T Wy =

_ ML+MB
2 o 2

MR+MB
2

w3 , and wy = are generated.

Fig. 2.5 gives an example result by CSG algorithm for two-dimensional input data.
However, CSG algorithm requires a full-search over the entire set of neurons to find the

best matching unit. Thus, it becomes computationally impractical when the number of

18

neurons also increases.

o8

i

o7

06f

05

04F A

oaf it

02p!

0af

0 + - Pk . . /
0 02 04 08 (4] 1 2 -1 0 1 2

Figure 2.5: Learning by CSG algorithm. (a) Output map. (b) Input space with neuron

connections.

The Evolving Tree (ETree) is another variant of SOM which tries to build efficient
search structure to make operation faster [31, 32]. The ETree is a new kind of SOM that
has been designed to scale to very large problems. The basic ETree algorithm is briefly
described. A more detailed description of the basic algorithm can be found in [29]. This
algorithm starts with the small ETree in Fig. 2.6(a). This example tree has a fanout
of 2 for simplicity. In practice larger values are often used. ‘The tree consists of back
leaf nodes and white trunk-nodes.- Each node has-a prototype vector-w;, which places
in somewhere in the data space. It also has a counter b;, which tells how many times
it has been the best matching unit. A training set of data vectors are used in training
one by one. Training the tree starts by finding the best matching with a greedy tree
search. For every trainig vector z;, the searching starts at the root node and selects the
child which is closest to the training vector. This node is selected and its children are

examined and until a leaf node is found. This is the best matching unit.

19

When the best matching units has been found, the leaf node locations are updated

by using the Kohonen learning rule.
wit+1) = wi(t) + hi(t)(z(t) — w;(t) (2.6)

The function h;. defines the amount of adaptation and is a gaussian function as in

SOM,

hio(t) = a(t)eap (%) (2.7)

here, o and ¢ are used to control the width and time decay of the neighborhood function.

The problematic part is the function ||r; — .||, which tells how far apart the nodes
r. and r; are in the SOM grid. The ETree does not form a grid so some other method is
required. An equivalent metric call the tree distance which can be seen in Fig. 2.6(b).
The idea is to calculate the amount of hops needed to get from one node to the other
along the tree. In this case, five hops are needed to get from A to B. Using this distance
the SOM neighborhood function can be applied.

These two steps — finding the best matching unit and updating leaf nodes — form most
of the training. The third step is growing the tree. Every node has a counter that tells
how many times it has been the best matching unit. When the counter reaches a certain
value, called the splitting threshold, the node is split. That is, it is given some child
nodes, thus becoming a trunk node. ‘“The child nodes’ prototype vectors are initialized
to their parent’s value. Now the very simple basic ETree algorithm for a single training

vector can be described in the following.

1. Find the best matching unit using the search tree.

2. Update the leaf node locations using the SOM training formulas substituting tree

distance for grid distance.

20
\‘

S0 do. 4

A

(@) (b)

Figure 2.6: Fundamental operations of the ETree. (a) Best matching unit search. (b)

Tree distance.

3. Increment the best matching unit counter.

4. If the counter reaches the splitting threshold, split the node.

This is repeated for every vectors on the training set until the system is deemed good
enough. Usually this means going through the data a pre-specified amount of times.

Although ETree has been designed to make a more flexible topology, and to reduce
the time consuming search for the best matching unit in large maps of the classical
SOM, but ETree does not consider to preserve the correlation between the trunk node
and its children. Therefore, the updating of the trunk nodes at each layer is essential.
Since the search for the best matching unit is performed in the tree search manner, the
neurons are likely to be dragged far away from their parents in the learning process.
That means making the search for best matching units more difficult and incorrectness.
Thus, both the intralayer relationship (the neighborhood relationship) and the interlayer

relationship (the parent-children relationship) should be maintained.

CHAPTER III

PROPOSED METHOD

The goal of this work is to separate a set of finite N input patterns X = {z1,...,2;,...,2n},
where z; = (241, Ti2, . . ., T4q) € RY, into the feasible number of clusters K automatically
obtained from our proposed method. The new hybrid system is proposed that tries to
combine the features of hierarchical and partitional clustering algorithms called “Self-
Partition and Self-Merging (SPSM)”. Fig. 3.1 presents the overview of the proposed

method consisted of three sequential phases.

Set of
Subclusters SC

T ,

Phase 1: Phase 2: Phase 3: Set of
Input Patterns X —» Self-Partition Noise Removal » Self-Merging | Final Clusters C
(Figure 3.3) (Figure 3.6) (Figure 3.9)
l Y
Set of Noisy Data :NX

Set of Noisy Subclusters : NSC ~————
Set of Dense Subclusters : DSC

Figure 3.1: The overview of the proposed method — SPSM.

The main task of Phase 1-is to apply the proposed algorithm — Dynamic Tree-
Structured Self-Organizing map (DTS-SOM) for partitioning the input-data set to obtain
the set of M subclusters. The DTS-SOM is a variant of SOM which is a self-creating
and self-organizing algorithm designed to improve the SOM algorithm. By using DTS-
SOM, the parameter settings specified by users in partition clustering algorithm e.g.
the number of clusters or initial guesses, can avoid. Once the DTS-SOM performed in
this phase, the number of initial subclusters is automatically obtained. The difference

between the DTS-SOM algorithm and the variants of SOM are the following

22

e Since the network size (the number of nodes) is not pre-specified, DTS-SOM is
either to make a more flexible topology for different input data set, or to reduce
the computational requirements of the SOM especially the time-consuming search
for the best matching unit in large maps. But CSG algorithm requires a full-
search over the entire set of neurons to find the best matching unit, so it becomes

computationally impractical.

e During the weight updating processing, unlike ETree algorithm, the DTS-SOM al-
gorithm not only updates the prototype vector of the best matching unit including
its direct neighbors, but also updates its ancestors to maintain the tree structure.
Because all the operations are performed in the tree search manner. The updating
processing at each layer is necessary. This will lead to the correctness of finding
the best matching unit using the DTS-SOM training is more than the correctness

of finding the best matching unit using the ETree algorithm.

In unsupervised classification problem, most of the input data set always contain
noises. Usually, the presence of noise indicates some sort of problem. This can be a
case which does not fit the model under study, or an error in measurement. Therefore,
noises are those random points that are very different from others and do not belong to
any clusters [24]. Since no priori knowledge is provided in the clustering process, it is
hard to identify which data points are likely to be the noisy data. To remove such noisy
data before performing Phase 1 will cause the correctness of the characteristic of data
set such as shapes of data or the data distribution. Thus, instead of trying to remove
the expected noisy points immediately, algorithm SPSM first partitions the input data
set into several subclusters and identifies the noisy subclusters.

Therefore after Phase 1, it is noticed that some subclusters consist of only noisy data.

Those noisy subclusters will affect the correctness of the subsequent merging. Besides,

23

it is observed that the data points in noisy subclusters are generally sparse compared to
data points in dense subclusters, and the density of noisy subclusters is comparatively
less than the density of dense subclusters. Fig. 3.2 shows an example of the sparse noisy
subclusters that are likely to be merged with others and may become bridges between
subclusters which should be separated. So the main purpose of Phase 2 is to filter out
a majority of the noisy subclusters. After this Phase, the SPSM algorithm obtains the
set of dense subclusters that capture the major distribution pattern in the data, the set
of noisy subclusters, and some of noisy data points.

In the last Phase, an agglomerative clustering algorithm is adapted by applying it di-
rectly to the dense clusters to find the genuine clusters by repeatedly combining together
these similar subclusters. In the proposed agglomerative clustering, inter-distance and
intra-distance are incorporated into merging criteria. The rational using the distances
as the merging criteria is that the noisy subclusters acquired from Phase 2 have been
removed, so the merging problem of the noisy subclusters connected as the bridge be-
tween two subclusters when using the distance criteria, can overcome. After performing
all three phases, the input data set can be extracted the final clusters and identified the
noisy data. Therefore, our proposed method can produce the feasible estimation of the

number of output clusters by itself.

. ™ . “
f/: - : \\ ‘. \
/ e f/ Yes "\
/ . s * \ fle® . \
I. ..‘.n. ‘/' . /s = .id. |
| e " I/ . Noe e . e |
« * " e/ e * | « v * ./
Y, .
‘\ . " / A . . \\' * l' * //
— M /s e

Subcluster A Sparse Noises Subcluster B

Figure 3.2: An example of a sparse noisy subcluster generated in Phase 1.

24

3.1 Phase 1: Self-Partition

The objective of this Phase is to partition the input data into small subcluster by using
DTS-SOM algorithm as a partitioning tool. During the DT'S-SOM training, the neural
nodes (nodes or neurons) are arranged in a tree topology and allowed to grow when any
given branch receives a lot of times being the best matching unit from the training data
vectors. The search for the best matching unit and its neighbors is conducted along
the tree and is therefore very efficient. The DTS-SOM has adopted technique used in
CSG algorithm for weight vector initialization described in Chapter 2. After DTS-SOM
training, the tree structure of DTS-SOM is produced. In our network, the prototype
vectors of leaf nodes are used as the subcluster centers. For further using the information
of each subcluster, then each data point is assigned to its nearest subcluster center in
the tree search manner. So the process of Phase 1 has been designed into two steps as
shown in Fig. 3.3. The first step applies the DTS-SOM training on the input data set
to obtain the subcluster centers. Then the second step uses to identify the membership

to each data point.

DTS-SOM Training Data Decomposition
Input Patterns X —» —>» Set of subclusters SC
(Algorithm : DTS-SOM_Training) (Subsection 3.1.3)

Figure 3.3: The overall steps of Phase 1.

3.1.1 Architecture of the DTS-SOM

The DTS-SOM has nodes with prototype vectors, just like the SOM. Let w; € R¢
denote the prototype or weight vector of node i. In addition, each node in the network
has an initial value 7; as the activation level 7. This activation level is the counter

which tells how many times each node has been the best matching unit during training.

25

Furthermore, there are lateral connections among neighboring neurons. Note that the
neighboring neurons also mean the direct left, right, top, bottom, top-left, bottom-left,
top-right, and bottom-right neurons of one neuron that is the same definition as the

CSG algorithm.

3.1.2 Training of the DTS-SOM

The DTS-SOM algorithm starts by taking a single neuron and placing it at a suitable
place in the data space. An obvious suitable choice is the center of mass of the data
cloud. Then, the node is split to generate four new neurons and their activation levels are
initialized including the lateral connections. This means that a pre-determined amount
of new nodes is created and then the algorithm marks them as the children of the
split node. The weight vectors are initialized by using the weight initialization method
proposed in the CSG algorithm. For the next training vector, the best matching unit is
chosen among the children nodes in a manner described later. Now a tree structure is
produced with four leaf nodes and one root node as the initialized DTS-SOM network.
Once a leaf node is activated as the best matching unit, the activation level 7 of such
neuron decreases by a constant value. This process continues until 7 of one leaf node
becomes zero and the neuron is split to generate its four offspring neurons. Then, the
activation levels are set to the new generated neurons. After the initial activation levels
(1;) are-given to-the new -neurons, the activation-levels of all neurons are increased
by A7 >-0 to slow down the splitting rate. Thus, a tree is formed recursively by the
training algorithm. During the training process, the DTS-SOM forms an elastic network
that folds onto the data cloud. The algorithm controls the network so that it tries to
approximate the density of the data. The neurons drift to the areas where the density

of the input data is high. Eventually, only few neurons lie in the areas where the input

26

data is sparse.

Now the algorithms: how to find the best matching unit in a tree and how to train
the tree structure are described. To illustrate this process, a larger tree structure is
assumed at certain learning stage, which can be seen in Fig. 3.4. In the DTS-SOM,
every internal nodes (white nodes) have four children (black nodes). Finding the best
matching unit is a top-down process. The searching starts with the root node, then its
children are examined. The DTS-SOM finds the node whose prototype vector is closest
to the training vector. If that node is a leaf node, then it is the best matching unit. If
it is not, its children are examined in turn and the closest one of them is chosen. This
is repeated until a leaf node is found. Thus, the DTS-SOM’s internal nodes work as a

hierarchical search tree for the leaf node.

Leaf Nodes

Figure 3.4: Tree search operation of the DTS-SOM: how the best matching unit is found.
White and black nodes are denoted the internal nodes and the leaf nodes, respectively.

The arrows show tree search path to find the bestmatching unit.

When the best matching unit has been examined, it is time to update the prototype
vector of the best matching unit, but also those of its direct neighbors, towards the

training vector. The Kohonen learning rule [26] is used to update node weights w;(t)

27

towards the training vector x;(t):

we(t + 1) = we(t) + afzi(t) — we(t + 1)] (3.1)

wy(t + 1) = wy(t) + ahpe[z;(t) — wy(t + 1)] (3.2)

Here, c is the index of the best matching unit and b is index of all the direct neighbor
neurons of the best matching unit ¢ as before mentioned. The function hy. defines the

neighborhood function and a common choice for the neighborhood function is Gaussian

neighborhood as in SOM.

OREN N e
ha = exp (M) (3.3)

202

The vectors r. and r, give the locations of nodes ¢ and b on the SOM regular grid
that has an unit length between each node. The parameter o defines the learning rate,
and o gives the width of the guassian kernel.

The updating function at each layer is essential. Since all the operations are per-
formed in the tree search manner described above, the neurons are likely to be dragged
far away from their parents in the learning process. If there is no provision to pre-
serve the correlation between the parent and its children neurons, the tree structure
will be destroyed, making the search for best matching units more difficult and the
overall distortion enlarged. Therefore, both the intralayer relationship (the neighbor-
hood relationship) and the interlayer relationship (the parent-children relationship) are
maintained. To keep the neurons of the same family close during the entire training
process, the parent neurons (internal nodes) will only be updated if their children are

also updated with the average value of all their children weight vectors as shown in Eq.

3.4,

wi(t+1) = L > () (3.4)

28

where nc; is the number of children of neuron j and k is index of all children of neuron
j. Fig. 3.5 illustrates an example the DTS-SOM learning for the two-dimensional input
data at certain learning stage. Fig. 3.5(b) depicts the dynamic topology of the leaf

neurons in the input space according to the tree structure as shown in 3.5(a).

25

5 |

/ im\\

//m'ﬂll 70
VA

9

0.5

Leaf nodes

(a) (b)

Figure 3.5: An example of the DTS-SOM learning. (a) The tree structure. (b) Input

space with the leaf neuron connections. A number shows the neuron index.

The overall idea of the DTS-SOM algorithm is shown in Algorithm DTS-SOM_
Training. This is repeated for every vector on the training set until the system is
deemed good enough. At the end of each epoch, the size of the tree is examined. So
in our system, the size of the tree nodes in the current and the previous epochs are
compared. “If their difference is less than a small threshold value, then the training is
completed.

In our simulations, the DTS-SOM training makes use the following parameters.

e The learning rate o must be rather small, but would not be decreased to zero.
Normally, the learning rate « is set to a value less than 1 and the width of neigh-

borhood function o is set to a value typically between 0.8-0.99 [26, 33].

29

e The initial activation level 7; affects the growing rate of the network. If 7; is too
small, the network size increases without learning enough information and finally
will not be able to well represent the topology of the input data. Usually, 7; is

chosen to 0.05N ~ 0.5N, where N is the number of input data.

o At each splitting stage, the activation levels of all neurons are increased by Ar.
This causes the splitting rate slower and slower. Usually A7 can be set to A7 =

(0, 1] of the activation level 7;.

e The training is terminated if the tree has grown less than a specified amount such
as the size of the tree nodes in the current is grown slower than 5% of the size of

tree nodes in the previous epochs.

Algorithm DTS-SOM Training
Input: input data z;(t) at time ¢.
Output: the tree structure of DT'S-SOM network.

Begin

1. Initialize the DTS-SOM network as described at the beginning of Sec. 3.1.2.

2. Repeat
3. Select an input datum ;(¢) randomly from input space.
4. Find the best matching neuron c using the tree search such that

e () — 23 O 'S lwit) =3 @), Vi.
D. Update weight vectors of the best matching unit ¢ using Eq. 3.1,

and neurons in N, using Eq. 3.2,

where N, is the set of the direct neighbor neurons of the best matching unit c.
6. Update their parents layer by layer using Eq. 3.4.

7. Decrease the activation level of the best matching unit ¢ by 1.

30

If the activation level of the best matching unit ¢ decreases to zero Then

Generate four new neurons of original neuron c.

10. Initialize the new weights and the activation level of the new generated
neurons.

11. Endif

12. Increase the activation levels of all neurons by Ar.

13. Until the tree has grown less than a small threshold value.

End

3.1.3 Data Decomposition

After DTS-SOM training, the tree structure of DTS-SOM network is obtained which
is consisted of the number of leaf nodes and the number of internal nodes. In our
network, the leaf nodes are the most important part because the prototype vectors of
leaf nodes are represented the subcluster centers. Therefore, the number of leaf nodes
is equivalent to the the number of subclusters. Next each data point is mapped to
its nearest subcluster center in the tree search manner, and recalculate the subcluster
centers with the average of all data points in each subcluster. After this stage, the
input data space is partitioned into small subclusters without prior knowledge. The set
of subclusters SC' = {scy,...,s¢j, .. yscp}, where M is the number of subclusters, is

defined.

3.2 Phase 2: Noise Removal

The purpose of Phase 2 is to identify which subclusters are the core subclusters and
discard the noisy subclusters. As mentioned above, the noisy subclusters will affect

the correctness of the agglomerative clustering algorithm (Phase 3). Note that the

31

data points of noisy subclusters are generally sparse compared to data points in dense
subclusters, and the density of noisy subcluster is comparatively less than the den-
sity of dense subcluster. So, the main task is to find the density threshold for sep-
arating the set of subclusters SC into two groups which are the set of dense sub-
clusters DSC = {dsci,...,dscj,...,dscyr }, and the set of noisy subclusters NSC =
{nscy,...,nscy,...,nscy}, where M" and M” are the number of dense subclusters and
noisy subclusters, respectively.

In order to quantify the meaning of sparseness, the volume and the density of the
subcluster are introduced. The volume of each subclusters sc; is measured as the multiple
of the data eigen-axis length. Since the square roots of eigenvalue of a covariance matrix
can be treated as the radius of a subcluster. So the volume and the density of a subcluster

can be defined as follows:

scj_volume = \/)_1 X \/)_2 X ... X \/)_d (3.5)

|scy

scj_density = (3.6)

scjvolume

where /A1, VA2, ..., V/Aq are the length of each axis in d-dimensional data space.
scj_volume and scj_density are the volume and the density of any subclusters sc;, re-
spectively. |sc;| is the number of data points in subcluster sc;.

The whole process of noise removal is composed of three steps as shown in Fig. 3.6.
Since the main process is to determine the density threshold for separating the subclus-
ters, the first step is to compute the density of each subclusters.” Before processing den-
sity computation, some deviated points of each subcluster are discarded because those
points will affect the correctness of density computation and further merging process.
Next step is used to separate the set of subclusters SC' into noisy subcluster set NSC
and dense subcluster set DSC' based on the density threshold. In the last step, some

noisy subclusters will be verified because some dense subclusters may be removed too

32

much from the previous step.

Density Computation .
Set of > » Set of noisy
subclusters SC (Algorithm : DensityFinding) data NX

y

Cluster Separation

(Algorithm : ClusterSeparating)

v

Cluster Verification

(Algorithm : Cluster Verification)

v

Set of dense subclusters DSC
Set of noisy subclusters NSC

Figure 3.6: The overall steps of Phase 2.

3.2.1 Density Computation

Before finding the subcluster density, it is observed that the expected dense subclusters
have some deviated points, and such those points will affect the correctness of den-
sity computation. Thus, all the data points in each subcluster are examined. If the
points are outside the hyperbox of eigenvalue side length along the eigenvector direc-
tions centered at the mean of cluster, such points are removed to the set of noisy data
NX = {nxq,...,nz;...,neyn }, where N is the number of noisy points. Fig. 3.7 shows
an example of a point z; which is outside the hyperbox along the eigenvectors X’ and Y’
directions. The square roots of eigenvalues A\; and Ay of a covariance matrix are set as
the radii of the data set in the hyperbox, and r is the vector obtained from data vector
x; and the subcluster center X0. So, if the scalar projection of » onto X’ which is the

length of the segment X0A is greater than /A, then such data point x; is discarded to

33

the set of noisy data NX. Thus, this process can remove some deviated data points in
the subclusters but also can eliminate some noisy subclusters. So the overall algorithm
of finding subcluster density is described in Algorithm DensityFinding. This stage
produces the set of noisy data N X, the set of new subclusters SC' without the deviated

points, and also the densities of new subclusters SC.

Figure 3.7: An example of a point z; is outside the hyperbox.

Algorithm DensityFinding

Input: the set of subclusters SC-.

Output: (1) the set of noisy data N X, (2) the set of new subclusters SC without the
deviated points, and (3) density values of new subclusters SC.

Begin

1. For each subcluster s¢; Do

2. If |sc;| is greater than 1 Then

3. Compute the eigenvalues A\ and the eigenvectors v, of subcluster sc;.
4. Compute the volume of subcluster sc; using Eq. 3.5.

D. For each point z; € sc; Do

6. Compute r = HXOscj - xZ”

7. For each eigenvector vy Do

8. Compute angle 8; between the eigenvector vy and the point z;.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

25.

End

34

Compute X 04, A =17 X cos(04).
If X0, A is greater than VA¢ Then
Remove the point z; to the set of noisy data N.X.
Break.
Endif
Endfor
Endfor
If |sc;| is greater than 1 Then
Compute the density of subcluster sc; using Eq. 3.6.
Else
Remove the point z; to the set of noisy data N X.
Set the density of subcluster se; to zero.
Endif
Else
Remove the point z; to the set of noisy data N X.
Set the density of subcluster sc; to zero.

Endif

3.2.2 . Cluster Separation

The purpose of this stage is to separate the set of subclusters SC without the deviated

data points into two classes which are the set of dense subclusters DSC' and the set of

noisy subclusters N.SC' based on the density threshold value denoted as thresholdgensity-

Then the density values of all subclusters are sorted in ascending order and arranged

them by logarithm of density as shown in Fig. 3.8(a). From the result of density

35

arrangement, the density values can be categorized into four types which are type I —
the lowest density, type II — the lower density, type III — the medium density, and type
IV — the high density. In type III, there is the most number of density values. Moreover,
this can guarantee that type I and type IV are actually density of noisy subclusters and
dense subclusters, respectively. So the subclusters sc; whose density values are in the
density range of type I, can be set to the set of noisy subclusters NSC. In the same
way, the subclusters sc; whose density values are in the density range of type IV, can
be set to the set of dense subclusters DSC'. Then, only density values in types II and
III can be used for finding the density threshold value. Fig. 3.8(b) shows the density
values for types II and III.

Thus, the method to determine the density threshold value is introduced based on
the coefficient of variation (C'V') which indicates the relative amount of dispersion of the
data [34]. In this dissertation, each subcluster density is used as the interesting data
to compute CV. If 0get1 density s the standard deviation of the first set of subcluster

density values and setl_densityeqn is its mean, then

O setl_densit
C"/’Se — e y 3- 7
2 setl_densitymean (37)

From Fig. 3.8(b), it is noticed that the density values in the region expected to be
noisy subclusters rather spread. Since the density values of the noisy subclusters are
varied, so the threshold for separating the density values into two sets is the density such
that the density values of the first set'is much varied than another set based on CV'.
The density that makes the C'V of the first set (CV,e) is greater than the C'V of the
second set (C'Vye2) is set as the density threshold value. Thus, this density threshold
are used to remove the noisy subclusters. But it is possible that the noisy subclusters is
still remaining in the second set. These noisy subclusters need to remove more. Then

the subclusters are cut off when their density values are less than the average of the

36

0.001 0.01 N 0 10

0.001 3 o1 ' 10

may be the noisy su

density values with their Wdard deviation in the second set defined as densityean

o s VSRR
e-AARSDINNYNIVENRY

Input: (1) the set of subclusters SC without the sparse data and (2) sorted density
values of types II and III.

Output: (1) the set of dense subclusters DSC and (2) the set of noisy subclusters
NSC.

Begin

37

1. Set index to 1.
2. Set density threshold thresholdgensity t0 SCindes-density.
3. Define sety; = {sc;_densityli = 1...index}.
3. Define sety = {sc;_density|j = index +1...k},

where k is the number of densities in types II and III.
4. Compute C'Vye1 and C'Viy using Eq. 3.7.

5. While CVypy < CVigo Do

6. Increase index by 1.

7. Set density threshold thresholdgensity 10 SCinges-density.
8. Define set; = {s¢i-densityli =1 ... index}.

9. Define sety = {scj-density|j = index +1...k}.

10. Compute C'Viep and CViys.

11. Endwhile

12. For each subcluster sc; Do

13. If scj_density is less than thresholdgensity Then

14. Set subcluster sc; to the set of noisy subclusters N.SC.
15. Else Set subcluster sc; to the set of dense subclusters DSC.
16. Endif

17. Endfor

18. Compute density,can and-densitysy of the dense subcluster set. DSC.
19. For each dense subclusters dsc; Do

20. If dscj_density is less than (densitymeq, — densitysq) Then
21. Set subcluster dsc; to the set of noisy subclusters NSC'.
22. Endif

23. Endfor

38

End

3.2.3 Cluster Verification

As the results of the previous step, it is possible that too many subclusters are removed.
This will affect to the further merging process. So some removed subclusters in NSC
should be recovered back to the set of dense subelusters DSC because the center distance
and the density of some noisy subclusters are near to the dense subclusters. If (1) the
distance between the center of the noisy subcluster nsc, and its nearest center of the
dense subcluster dsc; is very close, and (2) the density value of the noisy subcluster
nscy, is near to the density value of the dense subcluster dsc;, such noisy subcluster nscy,
is recovered back to be the member of the set of dense subclusters DSC'. The center

distance DO of any two subclusters is defined as in Eq. 3.8.
DO = || X0; — X0 (3.8)

where X0; and X0, are the subcluster centers of any first and second subclusters, re-

spectively. The subcluster verification process is as follows:

Algorithm ClusterVerification

Input: (1) the set of dense subclusters DSC and (2) the set of noisy subclusters NSC.
Output: (1) the set of new dense subclusters DSC' and (2) the set of new noisy sub-
clusters NSC'.

Begin

1. Compute D0_mean and D0_std between each center of dense subclusters dsc;
and the centers of its neighboring dense subclusters.
2. Compute densitymeqan, and densitygy of the noisy subcluster set NSC.

3. For each dense subclusters dsc; Do

39

4. For each its neighboring noisy subclusters nsc, Do
5. Compute center distance D0gsc;nse, between subclusters dsc; and nscy.
6. If (DO, is less than D0_mean — D0_std) and

(nscg.density is greater or equal than densitymean + densitysq) Then

7. Recover nsc, to the set of the dense subclusters DSC.
8. Endif

9. Endfor

10. Endfor

End

3.3 Phase 3: Self-Merging

In this section, the details of our Self-Merging process are described. This algorithm has
adapted from an agglomerative clustering algorithm by applying directly to the set of
dense subclusters DSC'. This process uses the distance metrics as the merging criteria.

The intra-distances D1 and D2 are measured as the following.

[dsc;|
1
Dl = —— Z (MINys, case, |zi — i) (3.9)
|dsc;| —
D2 = MAXVMEdst (MINVIkEdscj?xﬁéxk’ ‘|$Z - ka) (310)

D1 is the average of the minimum pairwise distances within-a subcluster. D2 is the
maximum distance selected from the minimum pairwise distances within a subcluster.
Next between two subclusters, the inter-distances for measuring their closeness are in-

troduced.

D3 = M[Nﬂxiedsq (MINHmkedscl ||5Ez - l’k”) (311)

D4 = MAXﬂxiedsc]' (MINkaEdscl H.’IZ’Z — .CEkH) (312)

40

D3 is the minimum distance chosen from the minimum pairwise distances between two
subclusters, and D4 is the maximum distance selected from the minimum pairwise dis-
tances between two subclusters. For computing inter-distances in Eqgs. 3.11 and 3.12, it
is not necessary to use all the data points of the subcluster. Only the data points in the
partial region connecting between two subclusters can be used.

In this Phase, the algorithm consists of the multiple sequential merging steps as de-
picted in Fig. 3.9. First, it starts to merge between the subclusters and their neighboring
subclusters which are close to each other into the same cluster. So each cluster contains
the set of dense subclusters. In step 2, since the connections of the neighboring sub-
clusters are not reachable to all dense subclusters, there are still some adjacent clusters
which can be joined together. At this stage, all possible adjacent clusters are considered
for merging to form the larger clusters. After performing both steps, there exists some
small clusters not being merged. If the further merging process is performed, it is possi-
ble that those small clusters may be incorrectly merged to one of the large clusters. So
the large clusters will be temporarily removed and then small clusters are considered for
the further merging. The last step is used for refinement the clusters to obtain the final
clusters. The set of clusters C'={c;...,¢,,...,ck}, where K is the number of clusters,

are automatically produced by our proposed method.

3.3.1 Neighboring Merging

At first, the amount of data points nx; of the dense subclusters dsc; are recovered from
the set of noisy data NX. Because all these data points nx; have been removed from
the Phase 2 and they can assist the merging process to satisfy the merging conditions.
So the data points nx; will be recovered in the partial region connecting the two dense

subclusters which are close to each other based on the threshold value. This threshold

Set of noisy data
NX

Set of noisy subclusters
NSC

Set of dense subclusters DSC
Set of noisy data NX

|

Neighboring Merging

(Algorithm : PointFilling)
(Algorithm : NeighboringMerging)

A

Local Merging 1

(Algorithm : LocalMergingl)

!

Local Merging II

(Algorithm : PointRecovery)
(Algorithm : TemporaryRemoval)
(Algorithm : LocalMergingII)

!

R —

Refinement Merging

(Algorithm : RefinementMerging)
(Algorithm : PointAssign)

;

Set of final clusters C
Set of noisy data NX

Figure 3.9: The overall steps of Phase 3.

41

42

value can be defined as the average center distances between the centers of dense sub-
clusters dsc; to all centers of their neighboring dense subclusters denoted by D0_mean
and D0_std as used in Algorithm ClusterVerification. The partial regions are de-
fined as shown in Fig. 3.10. Fig. 3.10(a) occurred when the sides of two subclusters are
not overlapping but either sides of two subclusters in Fig. 3.10(b) are overlapping. The
terms of overlapping sides used in Algorithm PointFilling are categorized into four

cases. First, the notations are defined in the following and Fig. 3.11 shows the locations

o |
| | | .
°,% | Connected Region X0r | i Connected Region
[] | |
{ | f ! le ®
! A N\ loe ®® dsc,
side in X axis e® ° side in Y axis o Xge
o S S
° ..30 ° 0 le 2
0% X0p
dsc, side in X axis

(a) (b)

Figure 3.10: An example of the partial regions (connected regions). (a) The partial

region of non-overlapping subclusters. (b) The partial region of overlapping subclusters.

of the notations.

dscj_min .+ _the minimum range of each component of the data points in
subclusters dsc;,
where ds¢;-min ={dsc;;-min, dsc;s-min, ..., ds¢j-min}.
dscjomazr : the maximum range of each component of the data points in
subclusters dsc;,
where dsc;_max = {dscji-maz, dscjo-maz, ... dscjq-maz}.

Therefore,

43

dscii.min ——p

<4—— dscqi.max

dscip.max —»

[]
dsCio.min ——» k—®

Figure 3.11: An example of the ranges of each component for two-dimensional data
space. (a) The minimum and maximum positions of the first component. (b) The

minimum and maximum positions of the second component.

case (1) : if [(ds¢jg-min > dscg-min) and (dscjq-min < dscig-maz)] and
[(dscjg-max > dscg-min) and (dscjq-mazr < dscjg-max)]

case (2) : if [(dscg-min > dscjg-min)and (dscig-min < dscjq-max)] and
[(dscig-mazx > dscjg-min) and (dscig-maxr < dscjq-max)]

case (3) : if [dscg-min < dscjg-min| and
[(dscig-maz > dscjqg-min) and (dscg-max < dsc;q-max)]

case (4) - if [(dscq-min > dsc;q-min) and (dsca-min < dsc;q-maz)] and

[dscig-max > dscjq-max]

44

Algorithm PointFilling
Input: (1) the set of noisy data NX and (2) the set of dense subclusters DSC.
Output: the set of dense subclusters DSC' with some filled data points.

Begin

1. For each dense subcluster dsc; Do

2. For each neighboring dense subcluster ds¢ of dense subcluster dsc; Do
3. Compute the center distance D0gsc;dse;-

4. If DO0gsc;dsc, is less than (D0_mean — D0_std) Then

D. For each dimension d Do

6. If case (1) Then overlapRangey = [dscjq-min dscjq-maz).

7. Elseif case (2) Then overlapRangey = [dscig-min dscg-mazx).
8. Elseif case (3) Then overlapRange, = [dscjq-min dscig-max].
9. Elseif case (4) Then overlapRangeq = [dscig-min dscjq-maz] .
10. Else

11. If (X0,4 < X0,4) Then overlapRangey = [X0;4 X044].

12. Else overlapRangeq = [X0;q X0;4].

13. Endif

14. Endif

15. Endfor

16. Fill points nx; in the range of overlapRange.

17. Endif

18. Endfor

19. Endfor

End

45

Then, the dense subclusters dsc; and their neighboring subclusters dsc; are merged
if these dense subclusters are close to each other. First, the algorithm chooses one of the
subclusters dsc; which has the highest density as the starting seed cluster ¢,. This seed
grows to merge the neighboring subclusters dsc; if the minimum inter-distance D3, 45,
is in the range of the maximum intra-distance chosen between D2, and D24,. This
self-growing process successively merges the neighboring subclusters together until the
stopping rule is satisfied. Only some data points in the partial region of the boundary
subclusters are used for measuring the inter-distance. Fig. 3.12 shows the partial region
denoted as same as in Fig. 3.10. The gray dots in the connected region are used for
computing the inter-distance. The details of neighboring merging are described in the

following.

Connected Region

dsc,

T XO02

Figure 3.12: An example of the partial region (connected region). The gray dots in the

connected region are used for computing the inter-distance.

Algorithm NeighboringMerging
Input: the set of dense subclusters DSC' with some filled data points.
Output: the set of clusters C.

Begin

1. Compute intra-distance D24, of each subcluster dsc;.
2. Set g =1.

3. While all subclusters dsc; are not merged Do

10.
11.
12.
13.
14.

15.

16.
17.

18.

46

Choose the subcluster dsc; which is the highest density.
Set the subcluster dsc; to cluster c,.
While the number of subclusters in ¢, does not changed Do
Repeat
Compute the center distance D0gsc;as, between subclusters
dsc; and dscy.
If DO0gsc;ase; is less than (D0-mean — D0_std) Then
Compute inter-distance D3, 4., using Eq. 3.11.
If D3¢, 4sc, is less or equal than Max(D2.,, D24.,) Then
Set ds¢ to the same cluster cg.
Endif
Endif
Until there are no neighboring subclusters dsc; of subclusters dsc;
in ¢, merged.
Compute intra-distance D2, of cluster ¢, using Eq. 3.10, Vz; € c,.
Endwhile

Increase g by 1.

19. Endwhile

End

3.3.2 Local Merging 1

From the merging results in step 1, there exists some clusters not merged together

although such clusters are very close to each other. The reason that any two adja-

cent clusters cannot join together is that there may be no the neighboring connections

among the subclusters between two clusters. Thus, the objective of this stage is to

47

more aggregate the closest clusters based on D1 and D3. This step starts with selecting
the cluster that has the highest number of subclusters as the starting seed cluster c,.
This seed grows to merge the neighboring clusters ¢; that have similarity distances to
the larger clusters. If the minimum inter-distance D3, , is in the range of the average
intra-distance chosen between D1., and D1, then clusters ¢, and ¢; are joined together.
Since each cluster consists of the set of subclusters, it is not necessary to use the data
points of all the subclusters for computing the inter-distance. So this distance can be
measured by using only the data points of the boundary subclusters as defined before.

The algorithm of this stage is described below.

Algorithm LocalMergingl
Input: the set of cluster C.
Output: the set of new cluster C.

Begin

1. Compute average intra-distance D1, of each cluster ¢, using Eq. 3.9, Vx; € ¢,.
2. Repeat
3. Choose cluster ¢, which has a highest number of subclusters as

the starting seed.

4. Repeat

5. For cach cluster ¢, Do

6. If g # 1 Then

7. Compute inter-distance D3, ., using Eq. 3.11, Jz; € (¢, and ¢;).
8. If D3, is less or equal than Max(D1,,, D1.) Then

9. Remove cluster ¢; to cluster c,.

10. Endif

48

11. Endif

12. Endfor

13. Compute new average intra-distance D1, of cluster ¢, using Eq. 3.9,
Vx; € cy.

14. Until there are no clusters ¢ merged to cluster c,.

15. Until there are no clusters ¢, merged.

End

3.3.3 Local Merging I1

As before mentioned, there exists some small clusters have not been merged after process
two steps. If the further merging process is performed, it is possible that those small
clusters may be incorrectly merged to one of the large clusters. So the large clusters
will be temporarily discarded and then all possible small clusters are joined together.
The small clusters cg,,.; are defined as the clusters which have the least number of
subclusters in the highest frequency. The Algorithm TemporaryRemoval is used for
temporary removal the large clusters based on the threshold value. Once the number of
data points for each cluster is sorted in descending order, the threshold value can be set
as the number of data points such that the difference between the number of data points
in clusters ¢, and ¢y denoted by di ff, is maximum. Before performing this algorithm,
some data points nx; which are the member of the set of subcluster DSC' are recovered
from the set of noisy data N.X. It dues to these points can help the subsequent merging

more correctness. The distance definition is defined for further using.

D5 = MIN3y, cve, ||nxi — 4] (3.13)

idr = argyM 1INz, eve, |[nz; — 2| (3.14)

49

D5 is the point inter-distance which is the minimum pairwise distance from any noisy
datum nx; to the nearest data point of all clusters ¢,. So the recovered points will be
the member of the idz'" cluster such that its minimum pairwise distance is not deviated
from the average of pairwise distance in such cluster. Algorithm PointRecovery de-
scribes the process for data point recovery. Besides, Algorithm LocalMergingllI uses
to merge all small clusters. The small clusters cs,,.; are joined together with cluster ¢

when the minimum inter-distance D3, is in the range of the average intra-distance

mallCl

chosen between D1, ~and D1.. Otherwise, two clusters are joined when the center

all
distance between the center of cluster cs,,.; and the center of cluster ¢; is less than the
average center distance of all the clusters without the large clusters. After completing

this stage, the small clusters can be merged to the larger clusters. All algorithms used

in this stage are orderly shown in the following.

Algorithm PointRecovery
Input: (1) the set of noisy data NX and (2) the set of clusters C.

Output: the set of clusters C' with recovered points.

Begin

1. Repeat

2. Compute the average intra-distance D1, of each cluster ¢, using Eq. 3.9,
Vi, € ¢y

3. Compute the standard deviation intra-distance D1, _std of each cluster c,.

4. For each noisy datum nx; Do

5. Compute point inter-distance D5,,,, using Eq. 3.13.

7. Get cluster index idx using Eq. 3.14.

8. If D5,,, is less than D14, + (3 X D1;4,_std) Then

50

9. Recover noisy data nx; to cluster c¢;q;.
10. Endif
11. Endfor

12. Until there are no noisy data nx; recovered.

End

Algorithm TemporaryRemoval

Input: the set of clusters C' with recovered points.

Output: (1) temporarily removed large clusters and (2) the set of remaining clusters C
without the large clusters.

Begin

—_

. Compute the number of data points ny of all cluster ¢,.

[\)

. Sort all of n, in descending order.

3. For each ny Do

4. Compute the difference dif f; = ng — ng41.

5. Endfor

6. Compute cluster index idx = arg, Mazy,, g21(dif fy).

7. For each cluster ¢, Do

8. If n, is greater or equal to njs, Then
9. Temporarily remove cluster c,.

10. Endif

11. Endfor

End

ol

Algorithm LocalMerginglI

Input: (1) temporarily removed large clusters and (2) the set of remaining clusters C
without the large clusters.

Output: the set of new clusters C.

Begin

1. Compute the average cluster center distance DO_mean of all the remaining
clusters ¢.

2. While all small clusters ¢, are not merged Do

3. Compute intra-distance D1, using Eq. 3.9, Va; € coman-

4. For each cluster ¢; Do

D. If small # [Then

6. Compute intra-distance D1, of cluster ¢; using Eq. 3.9, Vz; € ¢.
7. Compute inter-distance D3, . using Eq. 3.11, 3x; € (comau and ¢;).
8. If D3, ., is less or equal than Max (D1, ,,D1.) Then

9. Remove cluster cg,,q to cluster ¢.

10. Elseif DO, ¢ is less than D0_mean Then

11. Remove cluster cg,,q to cluster ¢.

12. Endif

13. Endif

14. Endfor

15. Endwhile

16. Recover temporarily removed large clusters to the set of new clusters C'.

End

52

3.3.4 Refinement Merging

The last step is used for refinement the clusters to obtain the final clusters. The merging
process is like in the second step (Local Merging I). Therefore, this step selects the
cluster that has the highest number of data points as the starting seed cluster. This
seed grows to merge the neighboring clusters that have similarity distances. So two
clusters are joined together when the maximum inter-distance D4, , is in the range of
the maximum intra-distance between D2. and D2.. This process is shown in Algo-
rithm RefinementMerging. Then, this self-growing process successively merges the
neighboring subclusters together until the stopping rule is satisfied. After the final clus-
ters are obtained, each the remaining noisy data nx; and the data points in the noisy
subclusters nsc, are assigned to be the member of the clusters ¢, such that their mini-
mum pairwise distances are not deviated from the average of pairwise distance in such
clusters. However, there are still some data points which cannot belong to any clusters,
since these points are very different from the others. Thus, these points are set as noise.
Algorithm PointAssign assigns the data points to be the cluster members or noisy

data. The algorithms of this stage are described below.

Algorithm RefinementMerging
Input: the set of clusters C-.
Output: the set of new clusters C.

Begin

1. Compute intra-distance D2, of each cluster ¢, using Eq. 3.10, Vz; € c,.
2. Repeat
3. Choose cluster ¢, which has a highest number of data points as

the starting seed.

53

4. Repeat

5. For each cluster ¢; Do

6. If g #1 Then

7. Compute inter-distance D4, ., using Eq. 3.12, Jz; € (¢4 and ¢;).
8. If D4.,, is less or equal than [2 x Max(D2.,, DQCZ)] Then

9. Remove cluster ¢; to cluster ¢,.

10. Endif

11. Endif

12. Endfor

13. Compute new intra-distance D2, of cluster ¢, using Eq. 3.10, Vz; € c,.
14. Until there are no clusters ¢; merged to cluster c,.

15. Until there are no clusters ¢, merged.

End

Algorithm Point Assign

Input: (1) the set of clusters C, (2) the set of noisy data N X, and (3) the set of noisy
subclusters NSC.

Output: (1) the set of final clusters C' and (2) the set of remaining noisy data N.X.

Begin

1. Transfer the data point in the noisy subclusters nsc, to the noisy data nx;.

2. Repeat

3. Compute the intra-distance D2, of each cluster ¢, using Eq. 3.10, Vz; € c,.
4. For each noisy datum nx; Do

7. Compute point inter-distance D5,,,, using Eq. 3.13.

8. Get cluster index idz using Eq. 3.14.

9. If D5, is less than D2;;, Then

54

10. Assign the noisy datum nz; to cluster c;g,.
11. Endif
12. Endfor

13. Until there are no noisy data nx; assigned .

End

3.4 Clustering Example

Fig. 3.13 shows an example of how the input data points are delineated. Fig. 3.13(a)
is the bivariate input data set of three clusters. In Phase 1, the SPSM starts with
partitioning the input data set to automatically obtain the set of subclusters based on
the DTS-SOM scheme as shown in 3.13(b) and Fig. 3.13(c). From this result, the DTS-
SOM partition this example into 100 subclusters. All of these subclusters are performed
noise removal process in Phase 2 which produces the set of noisy data, the set of noisy
subclusters, and the set of dense subclusters. Fig. 3.13(d) shows the set of 50 dense
subclusters.

The SPSM algorithm performs the sequential merging steps. First, some data points
must be recovered from the set of noisy data, since such recovered data points can help
the further merging process to satisfy the merging conditions. Next, this step starts
to merge between subclusters and their neighboring subclusters which are close to each
other based on the threshold value. ‘Therefore, two subclusters are merged when the
minimum pairwise distance between subclusters is less or equal than the maximum
pairwise distance within subclusters. The Neighboring Merging stage results in 25
clusters as shown in Fig. 3.13(e). From this result, there exists some adjacent clusters
can be joined together to the larger clusters, since there may be no the neighborhood

connections among those adjacent clusters. For example, in Fig. 3.13(e) considering the

95

cluster ¢; and ¢4 denoted by the numbers 1 and 4, these two clusters are adjacent clusters
but they cannot be merged by the Neighboring Merging step. When considering the
distances, the minimum pairwise distance between clusters is in the range of the average
pairwise distance within clusters. In Local Merging I, these two adjacent clusters can
be merged to the same cluster denoted by ¢; as shown in 3.13(f). In the same way, the
cluster ¢3 and ¢4 denoted by the numbers 3 and 16 as shown in 3.13(e) are also merged
to form the larger clusters denoted by ¢3 as shown in 3.13(f).

Before performing the further step, some data points are recovered from the set of
noisy data as depicted in Fig. 3.13(g). Fig. 3.13(h) shows the small clusters and the
remaining clusters after temporary removal the large clusters based on the threshold
value. So in this figure, the cluster c¢;, c3, and ¢ are temporarily discarded. After that,
all possible small clusters are joined together to the larger clusters. Fig. 3.13(i) shows
the merging result after performing the Local Merging II process with recovering the
large clusters. In the Refinement Merging step, all the clusters are merged together
if the maximum pairwise distance between the clusters is less or equal to the twice of the
maximum pairwise distance within clusters. Then, each data point in the set of noisy
data and the data points in the set of noisy subclusters are assigned to be the member of
the cluster. The property of the recovered points are not deviated from the other data
points in such clusters. Otherwise, the deviated data points are assigned as noise. Fig.
3.13(j) illustrates the final clustering result. From this result, this example is extracted

into three clusters which are automatically obtained from the SPSM method.

o6

12 12

12 : 12
10+ y 1 10f g
8r 8 ot BP Ba |
n o
mc . o, b g
A G
N o
6f 6f Qe
fr
4t 4 I E
(2]
2t 2t g
0 ‘ ‘ ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12

Figure 3.13: An example how the SPSM works. (a) Input data set of three clusters.
(b) The lateral connections among the leaf nodes. A number shows the node index.
(c) The set of 100 subclusters obtained through Phase 1. (d) The set of 50 dense
subclusters. Each subcluster is denoted by a color. Each star is represented a prototype
vector obtained from the DTS-SOM Training process and each square is represented

a subcluster center.

12

10

4 8 3
ne et
Lo
2 5]
0 ‘ ‘ 4
0 2 4 6 8 10

12

12

10

12

12

10F

12

10F

57

\zo
?-“-g;l...?f
Bt —%3
2 ; ?
\Cl 10
,
1
a7, e
R
18 58.
4 6 8 10 12
()
.10
O
o ,‘g‘“‘ 13
".F'gz kY 6
4 6 8 10 12

(e) The merging result obtained from the Neighboring Merging step (25 clusters). (f)

The cluster merging result obtained through the Local merging I step. (g) The data

point filling result acquired from the Algorithm PointRecovery. (h) The temporarily

removed cluster result.

58

S —

I §))

(i) The cluster merging result ob‘ugwd through tahe Local Merging II step. (j) The

final clustering aﬂq&ﬂ%’%wgﬁﬁrﬂeﬁ]ﬁa co:: and a number.
ﬂW’]N\T NIUNB1INEINE

CHAPTER IV

EXPERIMENTAL RESULTS

The SPSM algorithm has been implemented and tested for correctness and performance
by MATLAB version 7.0. All tests were performed on Sony laptop with 1.6 MHz Pen-
tium IV processor and 1 GB of RAM, running on Microsoft Windows XP. The SPSM
algorithm makes use of the following parameters especially in the Phase 1 as depicted in
Table 4.1. Since the initialization of the DTS-SOM training starts at the center of the
data and all the data set used in our experiments has the large number of data points
which are more than one thousand data points, the activation level should not set too
large. If the activation level is set too large, this will affect the network taking a long
time for learning and being disorderly. Thus, the activation level 7; was chosen to 0.05
of the number of input data. At each spitting stage set A7 = 0.057; for all node .
Besides, the learning rate a should begin with a small value. That means the learning
rate a will set close to 0.1. The width of neighborhood function ¢ should initially include
the neighboring neurons centered on the best matching unit. So these experiments will
set to 0.99. SPSM algorithm decides to stop the DTS-SOM training when the difference
of the size of tree nodes between the current and the previous epochs is less than 0.005.
All the experiment results described here were obtained with these parameters. The
details of each data set used in this dissertation as shown in Table 4.2. For Data Set 6
to Data Set 8 are reported in [12]. The experimental results are shown in the following

sections.

60

Table 4.1: Phase 1 parameters.

Parameter Ranges

The activation level 7; 0.05N-0.5N
Splitting rate At (0, 1] of the activation level 7;
The learning rate « <1

The width of neighborhood function o 0.8-0.99

4.1 Experiment 1

The first experiment has tested on data set as shown in Fig. 4.1(a). Data Set 1 is
generated from three normal distributions with covariance I, where [is 2 x 2 identity
matrix and mean vectors (3,7), (10,7), and (6.5,3), respectively. The purpose of this
experiment is to test the performance of the SPSM algorithm which can decompose
the non-linearly separable clusters. After performing SPSM algorithm, 133 nodes are
produced from the DTS-SOM training and the three extracted clusters are depicted in

Fig. 4.1(b).

4.2 Experiment 2

This experiment performed on the data set as shown in Fig. 4.2 and Fig. 4.3. All data
sets are generated from four normal distributions with covariance I. The mean vectors of
Data Set 2 are (3.55,8.25), (8.5,8.25), (3.55,3), and (8.5,3) as depicted in Fig. 4.2(a).
For Data Set 3, mean vectors are (3.25,7), (7.25,7), (3.25,3), and (7.25,3) as shown
in Fig 4.2(c). For 4.3(a), the mean vectors of Data Set 4 are (3.5,7.75), (7.75,7.75),
(3.5,3), and (7.75,3). The clusters in Data Set 3 are closer than the clusters in Data

Set 2. Besides, more data points are added and very close to each other in Data Set

61

Table 4.2: Details on each data set.

The number of input data | The desired number of clusters
() (K)
Data Set 1 1500 3
Data Set 2 2400 4
Data Set 3 2400 4
Data Set 4 4800 4
Data Set 5 2800 3
Data Set 6 8000 6
Data Set 7 10000 9
Data Set 8 8000 8
Data Set 9 2689 4

4. These data sets are used to test tolerance to noise of the SPSM algorithm. After
completing the DTS-SOM training, the tree nodes are produced into 153, 277 and 241
nodes for Data Set 2, Data Set3 and Data Set 4, respectively. As shown in Figs. 4.2(b),
4.2(d), and 4.3(b), the SPSM algorithm is able to successfully partition these data sets.
Moreover, the number of clusters obtained from the-SPSM algorithm as depicted in the

parenthesis, is the same as the desired number of clusters as shown in Table. 4.2.

4.3 Experiment 3

This experiment is used to compare with other clustering algorithms. The data sets used
in this experiment are obtained from [12] which consisted of Data Set 6, Data Set 7,
and Data Set 8. The DTS-SOM training gives the size of tree nodes into 369, 305, and

489 for Data Set 6, Data Set 7, and Data Set 8, respectively. The clustering results of

62

12 12

10

Figure 4.1: Clustering result on the experiment 1. (a) Data Set 1. (b) SPSM on Data

Set 1 (3 clusters). Each cluster is denoted by a symbol.

SPSM algorithm are shown in Fig. 4.4 and Fig. 4.5. From the results, SPSM algorithm
can obtain the correct clustering results and can identify the noisy data. The number of
clusters produced by SPSM algorithm as depicted in the parenthesis is the same as the
desired number of clusters as shown in Table. 4.2. These data sets have been tested with
the other algorithms. The single-link and complete-link algorithms are implemented by
using the Statistics Toolbox in Matlab version 7.0. The program of algorithm CURE is
obtained from public domain at http://www.cs.cas.cz/~petra/Liter-Odkazy-shluk.html.

Some of unsuccessful clustering results acquired from the single-link and complete-
link algorithms are shown in Fig. 4.6, because these clustering algorithms are sensitive
to noises. Besides, the output of these two clustering algorithms is a hierarchical tree
which can be cut at a desired level forming a clustering result. If this tree is cut at
different levels, the different clustering results can be obtained. The level has been

chosen to obtain the desired number of clusters as depicted in the parenthesis in Fig.

63

12

101

12 T 12

101

12 14

(c) Data Set 3. (d) SPSM on Data Set 3 (4 clusters).

Figure 4.2: Clustering results on the experiment 2 for Data Set 2 and Data Set 3. Each

cluster is denoted by a symbol. The star symbol is represented noisy data points.

64

12 T T T T T T 12 T T T P

101

(a) Data Set 4. (b) SPSM on Data Set 4 (4 clusters).

Figure 4.3: Clustering results on the experiment 2 for Data Set 4. Each cluster is denoted

by a symbol. The star symbol is represented noisy data points.

4.6(a)-(d). As well as CURE algorithm, CURE fails on these data sets as illustrated in
Fig. 4.7. Recall, CURE algorithm shrinks the representatives for each cluster toward
the center of cluster in order to eliminate the effects of noise. However, the shrinking
method may cause some clusters to be split. On the other hand, if the shrinking method
is weaken, some clusters will be merged by noise links. So the shrinking parameter
must carefully choose. Fig. 4.8 shows the results of algorithm CSM acquired from
http://arbor.eentu.tw/~owenlin/tkde_csm/. The CSM algorithm may fail to partition
the input data set because of the parameter selection. One of the parameters may affect
the correctness of the partition is that the parameter m (the number of subclusters)
specified by users. From the results, the subclusters produced in phase one may be
too many. So it may cause that the subclusters which should be noisy subclusters will
become the dense subclusters. This will affect the correctness of the further subsequent
merging. On the other hand, when the value of parameter m is too small that means the

number of subclusters obtained from phase one is too low. So many noisy subclusters

65

may be existent. These noisy subclusters may merge with other clusters and affect the

clustering results. Like CURE algorithm, the parameters of CSM algorithm must be

carefully chosen.

350

300F.

250F:"

200

150

100 *

T

. 0
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700

(a) Data Set 6. (b) SPSM on Data Set 6 (6 clusters).

500 ;
3 * %
450 # ﬁi*

400

350

300.

250

200
%

150
100

50

0 0
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700

(c) Data Set 7. (d) SPSM on Data Set 7 (9 clusters).

Figure 4.4: Clustering results on the experiment 3 produced in SPSM algorithm. Each

cluster is denoted by a symbol. The star symbol is represented noisy data points.

66

P S
** Koo *hK * *
035**‘ hi S S

0 100 200 300 400 500

(a) Data Set 8. (b) SPSM on Data Set 8 (8 clusters).

Figure 4.5: Clustering results on the experiment 3 produced in SPSM algorithm. Each

cluster is denoted by a symbol. The star symbol is represented noisy data points.

4.4 Experiment 4

In Data Set 5 as depicted in Fig. 4.9(a), there is one large cluster and two small clusters.
This data set is generated from three normal distributions with two different covariances
Dy and D,. D is the square diagonal matrix in which the diagonal entries are 6 and 3.5
for the large one. Ds is also the square diagonal matrix in which both diagonal entries
are 2 for the others. The mean vectors are (7,18), (7,8) and (20, 12). The purpose of
this experiment is to test the ability to detect different volumes of clusters. The number
of tree nodes is equal to 169 nodes when completing the DTS-SOM training. Fig. 4.9(b)
illustrates this ability which can produce the three identified clusters as depicted in the

parenthesis.

0 I I
0 100 200

I
300

L
400

L
500

(a) Data Set 6 (6 clusters).

700

i

0
0 100 200

300

400

(c) Data Set 7 (9 clusters).

700

450

400

350

300

67

o

294
250F

150

100(-,

0
0

200}

T ok
* FRXK

H1k

Rk oy

(d) Data Set 8 (8 clusters).

200

300

400

500

600

700

Figure 4.6: Clustering results on the experiment 3. (a) and-(b) are the final decomposi-

tion of Data Set 6 and Data Set 8 obtained from the single-link algorithm, respectively.

(c) and (d) are the clustering results of Data Set 7 and Data Set 8 acquired from the

complete-link algorithm, respectively. Each cluster is denoted by a symbol.

68

350 T T T T T T

0 I I I I I 1 0 I I I I I I
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700

(a) Data Set 6 (> 6 clusters). (b) Data Set 7 (> 9 clusters).

Figure 4.7: Clustering results on the experiment 3 obtained through the algorithm
CURE. (a) and (b) are the final decomposition of Data Set 6 and Data Set 7, respectively.

Each cluster is denoted by a symbol.

(a) Data Set 7 (10 clusters). (b) Data Set 8 (9 clusters).

Figure 4.8: Clustering results on the experiment 3 produced by the algorithm CSM. (a)
and (b) are the final decomposition of Data Set 7 and Data Set 8, respectively. Each

cluster is denoted by a symbol.

69

30 T T T T T T T T 30

(a) Data Set 5. (b) SPSM on Data Set 5 (3 clusters).

Figure 4.9: Clustering result on the experiment 4 for Data Set 5. Each cluster is denoted

by a symbol. The star symbol is represented noisy data points.

4.5 Experiment 5

The purpose of this experiment is to test the ability to detect different density of clusters.
Data Set 9 is generated from four normal distribution with three different density values
as shown in Fig. 4.10(a). The mean vectors are (6, 10), (12,12), (5,5) and (11,6). After
performing the DT'S-SOM training, 149 tree nodes are produced. Fig. 4.10(b) illustrates
this ability which can produce the four identified clusters as depicted in the parenthesis.
But the algorithms CURE and CSM fail to find the right clusters. Because the shrinking
method in the CURE algorithm may cause some clusters to be vanished especially the
sparse clusters. Besides, the merging process of the CSM algorithm will merge any two
subclusters together which have the highest density to form the larger clusters. The
CSM algorithm assumed that the number of points in a noisy cluster is much less than
that of a normal cluster. It is possible that the clusters which have the less density may

be considered to be the noisy clusters and such clusters will be removed eventually.

70

16

14t

12

101

(a) Data Set 9. (b) SPSM on Data Set 9 (4 clusters).

Figure 4.10: Clustering result on the experiment 5 for Data Set 9. Each cluster is

denoted by a symbol. The star symbol is represented noisy data points.

4.6 Experiment 6

Finally, this experiment is used to test a sensitivity analysis on the parameter settings
especially the threshold value of stopping criterion in DTS-SOM training. With different
values of stopping criterion, the different initial subclusters can be obtained. Fig. 4.11(a)
shows the clustering results when using the stopping criterion as 0.005. The number of
initial subclusters is 221 subclusters. Fig. 4.11(b) shows the results when using the
stopping criterion as-0.0025.. The DTS-SOM training produces 239 subclusters. From
these results, the algorithm SPSM is still able to extract to the correctness results which
are 9 clusters, and SPSM algorithm can identify the noisy points.

In addition, another sensitivity analysis on the parameter settings is the initialization
of the first neuron in the DTS-SOM training. The previous experiments start by taking
a single neuron and placing it at the center of mass of the data cloud. Fig. 4.12 shows
the clustering results when selecting the prototype vector of the first neuron from the

available set of input vectors in a random manner. From the results, the algorithm

71

SPSM is able to extract to the right clusters.

(a) Data Set 7 (9 clusters). (b) Data Set 7 (9 clusters).

Figure 4.11: Clustering results on the experiment 6 obtained through the algorithm
SPSM. (a) and (b) are the final decompositions of Data Set 7 with different stopping

criteria. Each cluster is denoted by a symbol.

4.7 Experiment 7

This experiment is used to test the robustness to noisy data points of the SPSM al-
gorithm according to the objective of this dissertation. The data sets used in this
experiment are generated in arbitrary shape with only one clusters consisted of 1153
data points. In addition to the clustered data points, noise in form of data points uni-
formly distribution throughout the overview of the data sets are added to the data sets.
The parameter p controls the percentage of data points in the data set that are con-
sidered noise. This experiment has tested the sensitivity of the parameter p by using
p = {5%, 10%, 15%, 20%, 25%, 30%}. Five data sets are generated for each parameters
p. Fig. 4.13 shows one of the data set with 5% of noise. Table 4.3 depicts the average of

the accuracy of the clustering results obtained from the SPSM algorithm. The accurary

72

350 T T T T T T

0 ! (0]
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700

(a) Data Set 6 (6 clusters). (b) Data Set 8 (8 clusters).

Figure 4.12: Clustering results on the experiment 6 obtained through the algorithm
SPSM. (a) and (b) are the final decompositions of Data Set 6 and Data Set 8 with

different initialization of the first neuron. Each cluster is denoted by a symbol.

of the clustering result is measure by using Eq. 4.1,

N-—MP
accuracy (%) = Ta= ~ 100 (4.1)

where N is the number of data point and M P is the number of miss-classified data
points. As shown in Table 4.3, the SPSM algorithm gives the high accuracy of the
clustering results when the percentage of noisy data is lower, and the SPSM algorithm
can be robust to noisy data up to 30%. The correctness of clustering results depends on
the percentage of noisy data and the closeness of noisy data to the actual data points.
When the noisy data are more closer to the actual data points, the accuracy of the
clustering results is more less. However, from Table 4.3 can conclude that the SPSM

algorithm can tolerate to the noisy data.

73

0.9

0.8F

0.7

0.6

0.5F

0.4}

0.3

0.2

Olaf3

Figure 4.13: An example of data set used in the experiment 7. The dots represented the

data points and the stars denoted the noisy data points

Table 4.3: The average of the accuracy of clustering results obtained through the SPSM

algorithm for testing the tolerance to noisy data.

Percentage of noisy data | The average of the accuracy of clustering results (%)
5% 99.92 £ 0.0850
10 % 99.78 £ 0.0876
15 % 99.53 £ 0.1354
20 % 99.51 £ 0.0798
25 % 99.38 £ 0.0585
30 % 99.19 £+ 0.1688

74
4.8 Complexity Analysis

Since, the SPSM algorithm consists of three phases, the computational complexity is

the sum of three phases. The computational complexity is described in the following.

1. Complexity of Phase 1.
In Phase 1, the SPSM algorithm applies the DTS-SOM on the set of N input data
points to obtain M subclusters. So the computational complexity is the sum of
finding the best matching unit C'gysy, updating the neighbors Cypy, and updating

the other internal nodes Cypp.

To find the best matching unit, a vector distance is calculated to b times at every
level of the tree. If A is the height of the tree, the amount of calculations needed

18
Ceyu=h-b (4.2)

Updating the neighboring nodes, k£ nodes are updated. Besides, the leaf nodes are
split when their counters become to zero. The splitting of the leaf nodes happens

on average every é step.

To update the parent nodes (internal nodes), the parent nodes will only be updated
if their children are also updated. This updating is proceeded layer by layer back
to the root node. So the time calculations is the height of the tree. The amount

of calculations needed for a epoch size N is

Cit = N(Cpmu + Cupu + Cupp) (4.3)
= N(h-b+(k+%)+h) (4.4)

Note that b is the constant. Since each internal node has four children, so this

variable can be ignored. In during training process, a 4-branch search tree is

75

formed. So h is changed according to log4N. For the amount of updated neighbors
k, at least eight direct neighbor nodes are updated. Then k can approximate to a

constant time and [is a constant as well. The computational complexity of Phase

1 can reduce to O(N - logyN).

. Complezxity of Phase 2.

For Phase 2, the SPSM algorithm will discard the noisy data including the noisy
subclusters from the set of subclusters produced by Phase 1. This process composes
of multiple orderly stages. However, the complexity calculation only depends on
the first step (Algorithm DensityFinding) that discards the sparse data points
and computes the density values for each subcluster. In this process, every data
points for each subcluster are examined. The amount of calculations needed for

every subclusters is

M
Crot = ¥+ c)] (4.5)

j=1
where, M is the number of subclusters such that M < N. Therefore, the time

complexity of this process is linear to the size of subclusters, that is O(N). The

computational complexity of Phase 2 is also O(N).

. Complezity of Phase 3.

In Phase 3, algorithm SPSM adapted the agglomerative clustering which is self-
merging process. This phase also consists of multiple orderly stages. The most
time complexity is in the Refinement Merging process. Since some data points
are recovered from the set of noisy data, it takes more times than the other steps for
the intra-distance computation. Then the computational complexity is the sum of
intra-distance computation of each cluster and self-merging process. If each cluster

c; consists of a set of ng data points, the amount of intra-distance calculation for

76

any clusters c; is
Cmtra = Z Z sz - l’k” = ng (46)
Vi Vk; itk
The amount of calculations needed for G clusters is G- n0? such that G < n0 < N.
Then, the computational complexity of intra-distance calculations for GG clusters

that approximates to O(N?).

During each self-merging process, some data points of two clusters are used for
computing the inter-distance. So the time computation for inter-distance calcula-
tion is less than that for intra-distance calculation which approximates to O(N?).

Then, the computational complexity of Phase 3 is O(N? + N?) = O(N?).

Thus, the overall complexity of the SPSM algorithm is O(Phasel + Phase2 +

Phase3) = O(N -logsN + N + N?) = O(N?).

Table 4.4 shows the time complexity of the SPSM algorithm including the other

algorithms. Note that parameter m for the CSM algorithm is the number of subclusters.

The SPSM algorithm requires more computational time than the CSM algorithm. This

is because the SPSM algorithm takes time to compute the distance criteria. When

compared with the rest algorithms, the time complexity of algorithm SPSM is better

Table 4.4: Summary of computational complexity of different algorithms.

Clustering Algorithm Complexity
Single-link O(N?logN)
Complete-link O(NZ?logN)
CURE O(N2,31l09 N gt
SPSM O(N?)

CSM O(mN + m*logm)

7

than that of the rest algorithms. However, from the results, it demonstrated that the
proposed algorithm SPSM is very efficient clustering which is able to the handle noisy

and arbitrary shapes data set.

AONUUINYUINNS)
RN ITNINENAY

CHAPTER V

CONCLUSION

Data clustering algorithm attempts to organize unlabeled input data into clusters or
natural groups within a cluster are more similar to each other that data points belonged
to different clusters. The existing clustering algorithms, such as single-link clustering,
complete-link clustering, k-means, CURE, and CSM are designed to find clusters based
on pre-defined parameters. These algorithms fail if the choice of parameters is incorrect
with respect to the data set being clustered. Most of these algorithms work very well
for compact and hyperspherical clusters.

In this dissertation, the new hybrid clustering called Self-Partition and Self-Merging
(SPSM) is proposed. The SPSM algorithm has been designed into three phases. In Phase
1, the new partitional clustering is introduced based on a self-creating and self-organizing
algorithm designed to improve SOM algorithm called Dynamic Tree-Structured Self-
Organizing map (DTS-SOM). After performing the DTS-SOM training, the number of
initial subclusters is automatically obtained. To achieve a better clustering result and
be less affected by noises, the noisy data and the noisy subclusters are removed by
Phase 2. Then, the algorithm SPSM performs self-merging process in Phase 3 based on
inter-distance and intra-distance criteria. The SPSM algorithm automatically obtains
the final clusters and can identify the noisy data.

The time complexity of the SPSM algorithm is O(NN?), where N is the number of data
points, as described in Chapter 4. The SPSM algorithm requires more computational
time than the CSM algorithm. This is because the SPSM algorithm takes time to

compute the distance criteria. When compared with the other algorithms, the time

79

complexity of algorithm SPSM is better than that of the other algorithms.

From the experimental results, algorithm SPSM is able to cluster the data sets of
arbitrary shapes very efficiently, tolerate to noise, and provide better clustering results
than the existing clustering algorithms. The main contributions of our proposed method

can be summarized as follows:

e The Dynamic Tree-Structured Self-Organizing map (DTS-SOM) is proposed to
cope with the initialization of the number of clusters required in the partitional
clustering algorithm. The DTS-SOM is a variant of SOM which is a self-creating
and self-organizing algorithm designed to improve SOM algorithm. Using DTS-
SOM, it is able to overcome the limitations of SOM. Since the SOM must pre-define
the topology structure and the number of neurons before the training process.
Moreover, the correctness of finding the best matching unit using the DTS-SOM
training is more than the correctness of finding the best matching unit using the

ETree algorithm.

e The SPSM algorithm also proposes the noise removal method which can deal with
the noisy data set. As the results of all experiments and Table 4.3 used to test the
noise robustness, the algorithm SPSM is able to not only resist noises, but also
lead to good clustering results. Unlike the other algorithms, the SPSM algorithm

can identify which data points is the noisy data.

e The SPSM algorithm is able to:cluster the data sets of arbitrary shapes very
efficient and provide better results than the other algorithms. Moreover, the SPSM
algorithm is also capable to detect different density of clusters as shown in Fig.

4.10.

e Our proposed method’s requirements are minimum to determine input parameters.

The parameter requirements are the common parameters which only used for the

80

DTS-SOM training. From the experiment for testing a sensitivity analysis, SPSM

algorithm is still able to extract the correctness number of clusters.

AONUUINYUINNS)
RN ITNINENAY

10.

81

References

. Jain, A.K.; Murty, M.N.; and Flynn, P.J. Data clustering: A review. ACM

Computing Surveys. 31:3(1999): 264 - 323.

. Ankerst, M.; Breunig, M.M.; Kriegel, H.P. and Sander, J. OPTICS: Ordering

points to identify the clustering structure. Proc. ACM SIGMOD Int. Conf. on

Management of Data. pp. 49 - 60. Philadelphia, Pennsylvania, 1999.

. Duda, R.O.; Hart, P.E.; and Stork, D.G. Pattern Classificaiton. second ed. Wiley,

2001.

Kaufman, L. and Rousseeuw, P.J. Finding Groups in Data: An Introduction to

Cluster Analysis. Wiley, 1990.

. Berkhin, P. Survey of clustering data mining techniques [Online]. 2001. Avaiable

from: http://www.accrue.com/products/rp_clustering review.pdf

. Kolatch, E. Clustering algorithms for spatial databases: A survey [Online]. 2001.

Avaiable from: http://citeseernj.nec.com/436843.html

Xu, R. and Wunsch, D. Survey of clustering algorithms. IEEE Trans. Neural

Networks. 16:3(2005): 645-678.

. Kanungo, T.; Mount, D.; Netanyahu, N.; Piatko, C.; Silverman, R.; and Wu, A.

An efficient K-means clustering algorithm: Analysis and implementaion. IEEE

Trans. Pattern Anal. Mach. Intell. 24:7(2000): 881-892.

Su, M. and Chou, C. A modified version of the K-means algorithm with a distance

based on cluster symmetry. IEEE Trans. Pattern Anal. Mach. Intell. 23:6(2001):

674-680.

Guha, S.; Rastogi, R.; and Shim, K. CURE: An efficient clustering algorithm for

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

82

large databases. Proc. ACM SIGMOD Int. Conf. on Management of Data.

1998: 73 - 84.

Guha, S.; Rastogi, R.; and Shim, K. ROCK: A robust clustering algorithm for

categorical attributes. Inf. Syst. 25:5(2000): 345-366.

Karypis, G.; Han, E.; and Kumar, V. Chameleon: A hierarchical clustering using

dynamic modeling. IEEE Computer. 32:8(1999): 68-75.

Hertz, J.; Krogh, A.; and Palmer, R.G. Introduction to the Theory of Neural

Computation. Reading, Mass.:Addison-Wesley, 1990.

Pal, N; Bezdek, J.; and Tsao, E. Generalized clustering networks and Kohonen’s

self-organizing scheme. IEEE Trans. Neural Networks. 4:4(1993): 549-557.

Zhang, Y. and Liu, Z. Self-splitting competitive learning: A new on-line clustering

paradigm. IEEE Trans. Neural Networks. 13:2(2002): 369-380.

Bradley, P.; Fayyad, U.; and Reina, C. Clustering very large databases using EM

mixture models. Proc. 15th Int. Conf. Pattern Recognition. 2(2000): 27-80.

Jain, A.K.; Duin, R.; and Mao, J. Stistical pattern recognition: A review. IEEE

Trans. Pattern Anal. Mach. Intell. 22:1(2000): 4-37.

Bezdek, J.C. Pattern Recognition with Fuzzy Objective Function Algorithms. New

York: Plenum Press, 1981.

Ester, M.; Kriegel, H.; Sander, J; and Xu, X. A density-based algorithm for

discovering clusters in large spatial databases with noise. Proc. 2nd Int. Conf.

Knowledge Discovery and Data Mining (KDD’96). (1996): 226-231.

Comaniciu, D. and Meer, P. Distribution free decomposition of multivariate data.

Pattern Analysis and Application. 2(1999): 22-30.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

83

Yang, M. and Wu, K. A similarity-based robust clustering method. IEEE Trans.

Pattern Anal. Mach. Intell. 26:4(2004): 434-448.

Ng, R. and Han, J. Efficient and effective clustering method for spatial data mining.

Proc. 20th VLDB Conference. pp. 144-155. 1994.

MacQueen, J. Some methods for classification and analysis of multivariate obser-

vations. Proc. 5th Berkeley Symp. pp. 281-297. 1967.

Lin, C. and Chen, M. Combining partitional and hierarchical algorithms for ro-
bust and efficient data clustering with cohesion self-merging. IEEE Trans.

Knowledge and Data Engineering. 17:2(2005): 145-159.

Wu, S. and Chow, T.W.S. Self-organizing-map based clustering using a local clus-

tering validity index. Neural Processing Letters. 17(2003): 253-271.

Kohonen, T. Self-Organizing Maps. New York: Springer-Verlag, 2001.

Kohonen, T.; Oja, E.; Simula, O.; Visa, A.; and Kangas, J. Engineering applica-

tions of the self-organizing map. Proc. of IEEE: 84:10(1996): 1358-1384.

Alahakoon, D.; Halgamuge, S.K.; and Srinivasan, B. Dynamic self-organizing maps

with controlled growth for knowledge discovery. IEEE Trans. Neural Networks.

11:3(2000): 601-614.

Pakkanen, J; livarinen, J; and Oja, E. The evolving tree—a novel self-organizing

network for data analysis. Neural Processing Letters. 20(2004): 199-211.

Chow, T.W.S. and Wu, S. Cell-splitting grid: A self-creating and self-organizing

neural network. Neurocomputing. 57(2004): 373-387.

Pakkanen, J; livarinen, J; and Oja, E. The Evolving Tree, a hierarchical tool for

unsupervised data analysis. Proc. IJCNN 2005. pp. 1395-1399. 2005.

84

32. Pakkanen, J; livarinen, J; and Oja, E. The Evolving Tree—analysis and applications.

IEEE Trans. Neural Networks. 17:3(2006): 591-603.

33. Xu, P.; Chang, C; and Paplinski, A. Self-organizing topological tree for online

vector quantization and data clustering. IEEE Trans. Syst., Man, and Cybern.

— Part B. 35:30(2005): 515-526.

34. Weisstein, E.W. Variation Coefficient. [Online]. Avaiable from:

http://mathworld.wolfram.com/VariationCoefficient.html

85
Biography

Name: Ms. Ureerat WATTANACHON.
Date of Birth: 12! June, 1975.
Educations:

e Ph.D., Program in Computer Science, Department of Mathematics, Chulalongkorn
University, Thailand, (October 2001 - October 2006).

e Ph.D. Visiting student, School of Information Technology Electrical and Engi-
neering, University of Queensland, Brisbane, AUSTRALIA (Febuary 2005 - July
2005).

e M.Sc. Program in Computer Science, Faculty of Engineering, Chulalongkorn Uni-
versity, Bangkok, Thailand (June 1997 - March 2001).

e B.Sc. Program in Mathematics, Faculty of Science, Kasetsart University, Bangkok,
Thailand (June 1993 - March 1997).

Publication papers:

e U. Wattanachon and C. Lursinsap. Class-Driven Self-Grouping Learning for Pat-
tern Classification. Proceedings of the 4" International Conference on Intelligent
Technologies, pp. 108-116, 2002.

e U. Wattanachon and C.Lursinsap. Agglomerative Hierarchical Clustering for Non-
linear Data Analysis. IEEFE International Conference on Systems, Man, and Cy-
bernetics (SMC"2004), pp. 1420 - 1425, 2004.

Scholarship: The Development and Promotion for Science and Technology Talents
Project (DPST) of Thailand.

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)

	Acknowledgements

	Contents
	Chapter I Introduction

	1.1 Introduction and Problem Review
	1.2 Research Objective
	1.3 Scopes of the Study
	1.4 Research Plans
	1.5 Research Advantages

	Chapter II Literature Reviews

	2.1 Hierarchical Clustering Algorithms
	2.2 Partitional Clustering Algorithms
	2.3 Hybrid Clustering Algorithms
	2.4 Self-Organizing Map
	2.5 Variants of SOM

	Chapter III Proposed Method

	3.1 Phase 1: Self-Partition
	3.2 Phase 2: Noise Removal
	3.3 Phase 3: Self-Merging
	3.4 Clustering Example

	Chapter IV Experimental Results

	4.1 Experiment 1
	4.2 Experiment 2
	4.3 Experiment 3
	4.4 Experiment 4
	4.5 Experiment 5
	4.6 Experiment 6
	4.7 Experiment 7
	4.8 Complexity Analysis

	Chapter V Conclusion

	References
	Vita

