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CHAPTER 1

INTRODUCTION

With the advance of the fabrication technology and the marketing demand, the

complexity of Very Large Scale Integration (VLSI) is increasing everyday. Computer-

aided design (CAD) tools play an important role in today’s design process. Without

these tools it is not possible to complete the design nor to meet today’s time-to-market.

While performance is the critical issue in the general purposed systems such as per-

sonal computers. The designers of embedded systems have to face many other issues.

Power requirement, reliability, size, and integration are some of the examples. These

requirements lead to the new research area called Hardware-Software Co-design (S.

Parameswaran 1998), which aims to synthesis the target system on one or a few chips

from the system description. The tools have to consider the cost of implementing each

part of the system in both hardware and software to optimize them within the target

contraints.

Digital signal processing (DSP) is one of widely applied technology, it will reside

in almost every electronic equipment in the near future. Some of the applications which

we can instantly think of are telecommunication, multimedia, information retrieval, and

human interface. Most of DSP algorithms require many of add and multiply operations,

they are the computation intensive algorithms. The common way to implement a DSP

algorithm is composed of three steps. First, the critically computational loops are

synthesized into hardware modules. Second, the remaining computations are compiled

into software modules, which will be executed by an embedded processor. Then the

flexibility of software is used to concert these modules together.

In this research we target the basic building block of the over all design process,

the hardware implementation of the inner loop of the DSP algorithm. This topic is still

interested by some researchers, the recent publication (E. Torbey and J. P. Knight 1999)

is an example. While we focus on this basic building block the proposed algorithm is

aimed for the integration of the whole process in mind.

In hardware synthesis, usually the algorithm or behavior of the target system will

be described in a high-level language such as VHDL or Verilog. This description will

be transformed into a control data flow graph (CDFG). Then a batch of algorithms will
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transfer this CDFG into register-transfer level (RTL), consisted of a data path and a

control unit. This process, as explained in (M. C. McFarland, A. C. Parker, and R.

Camposano 1990), is called High-Level Synthesis (HLS). The objective of this research

is to propose an algorithm to synthesize the data path. This problem is known to be

a NP-Hard problem as stated in (M. C. McFarland, A. C. Parker, and R. Camposano

1990; C. H. Gebotys and M. I. Elmasry 1992), and (M.R. Gary and D.S. Johnson 1979).

The main contribution of our work is that the proposed algorithm makes use

of many sources of existing knowledge in terms of algorithms and design rules and

integrates them in a flexible way to solve hard real-world problems. We demonstrate

its strength by solving a High-Level Synthesis problem.

In the next chapter, High-Level Synthesis is reviewed, followed by an overview

of Ant Algorithms. Then the AOT algorithm is introduced. The experiments are

described and the results are reported. An improvement of the algorithm by using the

Fixed-Resource Mobility is demonstrated. Finally, the algorithm is summarized and

discussed in the last chapter.



CHAPTER 2

HIGH-LEVEL SYNTHESIS

2.1 Overview

A High-Level Synthesis (M. C. McFarland, A. C. Parker, and R. Camposano

1990) is a process that consists of many steps. A behavioral description of the target

system is successively transformed into a data path and a control unit.

Many algorithms were proposed to solve each synthesis step as can be found in

the literature, such as (D. D. Gajski, N. D. Dutt, A. C.-H. Wu, and S. Y.-L. Lin 1992;

P. Michel, U. Lauther, and P. Duzy 1992), and (G. De Micheli 1994). Most of them

are heuristic algorithms and cannot guarantee to find the optimum solution. Even if we

can get an optimum solution of each step, combining them together may not give us the

optimum result. Some of these heuristic algorithms, from (A. Kumar, A. Kumar, and

M. Balakrishnan 1995; A. Sharma and R. Jain 1993; A. Sharma and R. Jain 1994; S.

Y. Ohm, F. J. Kurdahi, and N. D. Dutt 1997; J. M. Rabaey and M. Potkonjak 1994),

(P. G. Paulin and J. P. Knight 1989b; W. F. J. Verhaegh, P. E. R. Lippens, E. H. L.

Aarts, J. H. M. Korst, J. L. Van Meerbergen, and A. Van Der Werf 1995), and (F. J.

Kurdahi and A. C. Parker 1987), will be reviewed in the next section. Integer Linear

Programming (ILP) (C. H. Gebotys and M. I. Elmasry 1992), (M. Rim and R. Jain

1994; M. Langevin and E. Cerny 1993), and (S. Chaudhuri and R. A. Walker 1996) was

applied to search for the optimal solution, but this requires exponential computation

time. Genetic Algorithms (GA) (M. J. M. Heijligers and J. A. G. Jess 1995; M. K.

Dhodhi, F. H. Hielscher, R. H. Storer, and J. Bhasker 1995), and (E. Torbey and J.

P. Knight 1999) were applied to trade off between the quality of the solution and the

computation time. These works will be reviewed in the following sections.

2.2 Heuristic Algorithms

Many algorithms were proposed to solve each synthesis step as can be found in

various literatures such as (D. D. Gajski, N. D. Dutt, A. C.-H. Wu, and S. Y.-L. Lin

1992; P. Michel, U. Lauther, and P. Duzy 1992), and (G. De Micheli 1994). Most of

them are heuristic algorithms and can not guarantee the optimum solution. If we can

3
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get an optimum solution for each step, combining these together may not give us the

optimum data path.

High-level synthesis is a process which consists of many design steps. The list of

common synthesis steps are as follows:

1. Resources Approximation by Lower-Bound determination.

2. Scheduling.

3. Functional unit Allocation and Assignment.

4. Register Allocation and Assignment.

5. Bus Allocation and Assignment.

The next subsections are organized as follows. The differential equation solver

algorithm which is used as an example is presented in section 2.2.1. The As Soon As

Possible (ASAP), As Late As Possible (ALAP), and Mobility are presented in section

2.2.2. Then the synthesis steps which were described previously are reviewed in more

details in section 2.2.3, 2.2.4, 2.2.5, 2.2.6, and 2.2.7.

2.2.1 Differential Equation Example

y''+3xy'+3y = 0

While (x<a) repeat:

x1= x+dx;

u1= u-(3*x*u*dx)-(3*y*dx);

y1= y+(u*dx);

x = x1; y = y1; u = u1;

end;

Figure 2.1: Differential Equation.

In this paper the Differential Equation is used as an example. It was also used in

many papers. Fig. 2.1 shows the equation and the algorithm to solve it. Fig. 2.2 shows

the control data flow graph (CDFG) of the inner loop of the algorithm.

This CDFG has 5 multiply operations, 2 add operations, 2 subtract operations,

and 1 compare operation. It also has 9 variables, 3 of them (x, y, and u) are used to
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Figure 2.2: Differential Equation CDFG.

keep values for the next loop. The constant values 3, a, and dx are shown in the dashed

boxes. For multiply operations they were assigned to use multi-cycle multipliers with

execution time equal to two cycles. For other operations they were assigned with the

functional units with one execution cycle. In this example the target execution time is

7 control steps.

2.2.2 As Soon As Possible (ASAP), As Late As Possible (ALAP), and

Mobility

+
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Figure 2.3: ASAP Scheduling of the differential equation.

ASAP and ALAP are the earliest and the latest time-step of an operation to be

scheduled. These values were computed from the critical path of each operation by
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Figure 2.5: Mobility of the differential equation.

assuming that there were unlimited resources. ASAP and ALAP are very useful, it is a

fundamental step in many synthesis algorithms. Fig. 2.3 and Fig. 2.4 show the exmaple

of ASAP and ALAP scheduling.

Mobility of an operation is a number of cycles between ASAP and ALAP as shown

in Fig. 2.5. Mobilities are used in many scheduling algorithms. They can be used to

approximate the search space.

2.2.3 Lower Bound Algorithms

In the synthesis algorithms, we use lower bounds to reduce the search space.

These include the lower bounds on number of time-steps for execution, the number of

FUs, the number of registers, and the number of buses. There are many algorithms

which were developed for finding lower bounds. Most of the algorithms were based on

the time-frame and the list scheduling algorithms. Time-frame is a range of time-step.

Since the lower bounds are computed before the scheduling process, we do not know

the exact time-step of each operation. One way to solve this problem is to average the
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resources on all possible time-frames from the first time-step to the maximum time-

step. A resource will be counted in a time-frame if it is guaranteed by the mobility of

the operation (range from ASAP to ALAP). Algorithms based on time-frame will have

complexity at least equal to the square of the number of time-steps, because all possible

time-frames have to be considered. The algorithms that fall in to this category are (A.

Kumar, A. Kumar, and M. Balakrishnan 1995; A. Sharma and R. Jain 1993; A. Sharma

and R. Jain 1994), and (S. Y. Ohm, F. J. Kurdahi, and N. D. Dutt 1997).

For the algorithms, which based on list scheduling, the priority functions are an

important issue. The common priority functions are mobility and ALAP of operations.

The algorithms that fall in to this category are (M. Rim and R. Jain 1994) and (M.

Langevin and E. Cerny 1993).

Another way to compute the lower bound is to formulate the problem into in-

teger linear programming (ILP) problem. After that, some constraints (usually the

precedence constraints) were relaxed. Then the relaxed ILP problem will be solved by

some polynomial time algorithms. The algorithms that fall in to this category are (M.

Rim and R. Jain 1994; M. Langevin and E. Cerny 1993), and (S. Chaudhuri and R. A.

Walker 1996).

In some cases, we can estimate a lower bound from some simple features of the

problem. For example the number of registers must be at least equal to the number of

loop variables, or the number of buses must be at least equal to the number of inputs

and outputs of the FUs which must be transfered in the same time-step of the same

type (C. H. Gebotys and M. I. Elmasry 1992).

Algorithms in (S. Y. Ohm, F. J. Kurdahi, and N. D. Dutt 1997) and (J. M.

Rabaey and M. Potkonjak 1994) can compute lower bound for all type of resources

(FU, register, and bus or interconnection), which are very useful for this research.

2.2.4 Scheduling

Scheduling is a process that assigns each operation in the CDFG to a time-step.

There are many algorithms proposed for this design step and it is the most critical

step in the synthesis process. Most of the remaining steps will be directly effected by

the result from scheduling. Two main types of scheduling are the time- constrained

scheduling and resource-constrained scheduling. The time-constrained scheduling tries
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to minimize the resoureces used within fixed execution cycles. While the resource-

constrained scheduling tries to minimize the execution cycles for the fixed resources.

Next some of the well-known algorithms will be briefly review as follows.

1. List Scheduling Algorithm.

2. Force-Directed Scheduling (FDS) Algorithm.

3. Force-Directed List Scheduling (FDLS) Algorithm.

4. Branch and Bound Algorithm.

List Scheduling

List Scheduling is a resource-constrained scheduling. The first step of List Schedul-

ing is to specify the hardware constraints, which usually are the number of functional

units for the simple case. Then from the first time-step the ready operations will be

assigned, and the process is repeated until all operations were assigned. If in any time-

step there are more ready operations than the available hardware reources, we have to

decide to defer some operations. Which operations to defer depends on the priority of

each operation. The process of list scheduling is as follows.

1. Assign current time-step, Ts = 1.

2. For each resource type t

(a) Determine the list of ready operations of type t, R.

(b) Determine amount of avaiable resources of type t, n.

(c) if |R| ≤ n assign all the operations in the list R to the time-step Ts.

(d) else select n operations from the list R and assign them to the time-step

Ts.

3. Ts = Ts + 1.

4. Repeat step 2 until all operations were assigned.

The priorities to select n operations from the list R can be calculated from mobil-

ity or ALAP value of the operation. Fig. 2.6 shows the result from list scheduling with

two multipliers, one adder, one subtracter, and one comparator. In the first time-step,
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we can see that there are three multiply operations were ready to be scheduled, as in the

ASAP scheduling (Fig. 2.3). But we have to schedule them with only two multipliers.

So we have to select only two of them. In this case, if we use the mobilities of the

operations as the priorities, the operation v3 will be deferred, and we will get the result

as in the Fig. 2.6. Otherwise, we will not be able to schedule the CDFG in 7 time-steps.

+

-
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-
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Step 1

Step 6

Step 5

Step 4

Step 3

Step 2

Step 7

Figure 2.6: List Scheduling of the differential equation.

Force-Directed Scheduling

The Force-Directed Scheduling was introduced in (P. G. Paulin and J. P. Knight

1989b) and (P. G. Paulin and J. P. Knight 1989a). This algorithm was refined later by

Verhaegh et al. in (W. F. J. Verhaegh, P. E. R. Lippens, E. H. L. Aarts, J. H. M. Korst,

J. L. Van Meerbergen, and A. Van Der Werf 1995). As stated in (P. G. Paulin and J. P.

Knight 1989b) that the intent of this algorithm is to reduce the hardware resources by

balancing the concurrency of the operations assigned to them but without lengthening

the total execution time. It is a time-constrained scheduling.

This algorithm is an iterative algorithm. Each iteration composes of three steps.

First step is to evaluate the time-frame for each operation by ASAP and ALAP. Next

step is to calculate the distribution graphs (DG), which is the summation of the propa-

bilities for each type of operation for each time-step. The DGs indicate the concurrency

of similar operations.

DG(i) =
∑

Opntype

Prob(Opn, i). (2.1)

In this Eq. 2.1, i indicates a time-step, Prob(Opn, i) is the probability of an operation

in the time-step i.

The third step is to calculate the Forces. Forces is the change of the average

of the distribution graphs in the time-frame, which were effected by the scheduling
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assignment. Suppose the time-frame was changed from [t, b] to [nt, nb], Force(nt, nb)

could be calculated as in the Eq. 2.2.

Force(nt, nb) =
nb∑

i=nt

[DG(i)/nb − nt + 1)]−
b∑

i=t

[DG(i)/b − t + 1)]. (2.2)

If there is an assignment of an operation to a time-step, the time-frame of the

operation will be reduced to 1, we called this a self-Force. For the predecessors and

the successors of the scheduled operation, their time-frames may be effected by this

scheduling. These forces were called precessor Forces and successor Forces. The total

Force of a scheduling assignment is the summation of self-Force, predecessor Forces, and

successor Forces.

The assignment which has the lowest Force will be selected. The process of Force-

Directed Scheduling is as follows.

1. Evaluate time-frames.

(a) Find ASAP.

(b) Find ALAP.

2. Update distribution graphs.

3. For each operation and its feasible time-step.

(a) Calculate self-Force.

(b) If there are predecessor operations, add predecessor Forces.

(c) If there are successor operations, add successor Forces.

4. Schedule the operation to the time-step with the lowest force.

5. Repeat step 1 until all operations were scheduled.

The detail of this algorithm can be found in (P. G. Paulin and J. P. Knight 1989b).

Force-Directed List Scheduling

This scheduling algorithm is based on list scheduling algorithm. In this algorithm

the force, as in Force-Directed Scheduling, is used as a priority function. So when there
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are more ready operations than the available resources, the algorithm will defer the

operations which will produce the lowest Force.

Branch and Bound Scheduling

Branch and bound technique is used in many scheduling algorithms, (S. Y. Ohm

and C. S. Jhon 1992) and (P.-Y. Hsiao, G.-M. Wu, and J. Y. Su 1998) are the examples.

For the Lower bound directed Scheduling (LBS) algorithm in (S. Y. Ohm and

C. S. Jhon 1992), the initial node of the decision tree is the ASAP scheduling. Each

branched-off node will have an operation defers its scheduling time-step by one. For each

node, two values have to be computed. The first value is the cost of the scheduling. The

second value is the lower-bound cost of its branch. This lower-bound can be computed

by using the time-frame technique as mentioned before. While traversing in the decision

tree, the algorithm will keep track of the best explored schedule, the lowest cost. If the

lower-bound cost of any node is equal to or greater than the best scheduling, it will be

pruned off.

This algorithm uses the depth-first search strategy. It selects the next node to

be explored by using the branch candidate set (BCS). The BCS is the list of operations

in a time-step with the most concurrency for each operator type. The process of this

algorithm is as follows.

LBS

1. Initialize initial state, I = ASAP scheduling.

2. Initialize minimum cost state, M = I.

3. Findbest(I).

Findbest(S)

1. If cost(S) = LBcost(M) optimum solution found terminate.

2. If LBcost(S) ≥ cost(M) pruned this node.

3. If cost(S) < cost(M) M = S.

4. Construct BCS
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5. For each operation in BCS

(a) N = S which having the selected operation deferred by one time-step.

(b) Findbest(N)

In (P.-Y. Hsiao, G.-M. Wu, and J. Y. Su 1998), the MPT-based branch-and-

bound algorithm, each node represents the schedule assignment of an operation. Each

node in the same level of the tree will represent the assignment of the same operation.

The sequence of operations for scheduling is started from the critical path, follows by

the paths related to the critical path and the rest of paths. In each path the leaf node

is scheduling first.

To select a node for exploring, the algorithm uses six priority rules as follows.

1. Precedence constraint.

2. Lowest cost matrix among the current candidates.

3. Minimum value of MPT items.

4. Backtrack among ancestor, until the lowest-cost ancestor matrix can be found.

5. Backtrack among ancestor, until the lowest MPT value can be found.

6. Latest time-step.

The first rule is obvious, since we need the solution which does not violated the

precedence constraint.

Mi,j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m11 m21 · · mk1

m12 m22 · · mk2

· · · · ·
m1n m2n · · mkn

Mopn(1) Mopn(2) · · Mopn(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.3)

The cost matrix could be described as in Eq. 2.3. In this equation k is the

total number of types of all operations. n is the maximum number of time-step. mij

indicates amount of type i operations already assigned to the time-step j. Mopn(i) is

the maximum number of mij in the i column. The last row of the matrix Mi,j indicates
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the cost of the current scheduling.

Mopn(i) =
n

max
j=1

mij (2.4)

MPTopn(type)(j) =
∑

opn(type)

Poss(opn, j) (2.5)

Poss(opn, j) =

⎧⎪⎨
⎪⎩

1 the mobility of opn involves time-step j

0 otherwise
(2.6)

The third value is the MPT value. It can be described as in Eq. 2.6. It is used to

find the best time-step for scheduling. If these priorities could not select a node from

the curent candidates to explore, the algorithm backtracks and compares the priorities

values of their ancestors. When the above five priorities is not work , the last thing to

do is to explore the latest time-step.

2.2.5 Functional Unit Allocation and Assignment

Functional unit allocation and assignment is a process that allocates and assigns

each operation in the CDFG to the allocated functional units. If it is a resource-

constrained scheduling then functional units are allocated before scheduling. For time-

constrained scheduling, after the scheduling, we will know the assigned time-step of each

operation as in Fig. 2.3, 2.4, and 2.6 then the number of functional units for each type

can be directly counted. If there is any case that one operation can be mapped to more

than one operators, we need an algorithm for functional unit assignment. For example,

an assignment can be done in a sequence from the earliest to the latest time-step to

reduce the infeasible search. All assignments (functional unit, register, and bus) are

closely related to each other. Optimum solution in one area may not be an overall

optimum solution. We can transform these problems into clique partitioning problems,

but clique partitioning problem itself is an NP-Completed problem.

2.2.6 Register Allocation and Assignment

Register allocation and assignment is a process that allocates enough registers and

assigns each variable in the CDFG to allocated registers. From the scheduled operations
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we can form the variable lifetime table as in Fig. 2.7, 2.8, and 2.9. The lower-bound

on number of registers can be determined by the maximum number of overlap variable

register lifetimes, for example the ASAP Scheduling will required as least 6 registers as

we can see from Fig. 2.7 in control step number 3. Kurdahi et al. (F. J. Kurdahi and

A. C. Parker 1987) shows how to adopt the Left-Edge algorithm, which was invented for

the channel routing in VLSI design, to this problem. But this polynomial time algorithm

can not give us an optimum solution in some case. The loop variable is an example that

the Left-Edge algorithm can not be applied. This problem can be transformed in to the

clique partitioning problem (C. J. Tseng and D. P. Siewiorek 1983) by forming a graph,

which vertices are the set of variables and each pair of the vertices will be connected by

an edge if their lifetimes do not overlap. But this clique partitioning problem has an

exponential time complexity.

A problem as in (L. Stok 1992) which should be mentioned here is about the

overlap of the lifetime between the old loop variable an the new generated loop variable.

If the scheduled CDFG produces a new loop value before its last used of old value,

the new loop value can not be kept in the same register. For example in the ASAP

Scheduling as in Fig. 2.7, this problem occurs with the old loop variable x and the

new loop variable x1. The x variable is needed in control step 2 but the x1 variable

is defined in the same step as marked by the dashed lines. So the x1 value will have

to be stored in another register and later transfers to the old loop register for the next

execution loop.
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Figure 2.7: Variable lifetimes of the ASAP Scheduling.

2.2.7 Bus Allocation and Assignment

Bus allocation and assignment is a process that allocates buses and assigns each

data transfer in the CDFG to the allocated buses. From the scheduled CDFG we can
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Figure 2.8: Variable lifetimes of the ALAP Scheduling.
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Figure 2.9: Variable lifetimes of the List Scheduling.

form the data transfer table as in Fig. 2.10, 2.11, and 2.12. The lower-bound on number

of buses can be determined by the maximum number of parallel data transfers for all

control steps , for example the ASAP Scheduling will required as least 10 buses as in

Fig. 2.10 in control step number 2. As in (C. J. Tseng and D. P. Siewiorek 1983),

this problem can be transformed in to the clique partitioning problem by forming a

graph, which vertices are the set of data transfers and each pair of the vertices will be

connected by an edge if both transfers are in the different control step or have the same

data source.

The problem about the overlapped loop variable lifetime can be solved by assign-

ing the new value data transfer in the same or after the last use control step of old

value. As in Fig. 2.10 and 2.12 the x1 value can be transferred to the old loop register

in the same last use control step, and shares the bus with the feeding of x1 value to the

comparator. For the case of y variable in Fig. 2.9, another data transfer is required as

shown in Fig. 2.12 as a separate transfer in step 4.
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Figure 2.10: Data transfer of the ASAP Scheduling.
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Figure 2.11: Data transfer of the ALAP Scheduling.
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Figure 2.12: Data transfer of the List Scheduling.
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2.3 Integer Linear Programming

An important technique that should be mentioned here is an integer linear pro-

gramming (ILP) technique. In this technique, the constraints in the problem have to

be formulated into equations, then these equations will be solved by the algorithms for

solving the integer linear programming problem. Normally, these techniques still require

an exponential computation time. Many papers (C. H. Gebotys and M. I. Elmasry 1992;

C. H. Gebotys and M. I. Elmasry 1993; C. H. Gebotys and M. I. Elmasry 1991) and

(C. H. Gebotys and M. I. Elmasry 1990) were published by Gebotys et al. and they are

very wellknown, Some of them are used as a target references.

An example of these techniques (C. H. Gebotys and M. I. Elmasry 1992) is pre-

sented here. In this section the following terminology is used:

k a code operation.

k1 ≺ k2 represents the partial order between k1 and k2.

xj,k = 1 represents the assignment of operation k to the time-step j (j ∈ Z, set of

intergers).

In(k) number of distinct inputs (≥ 1) to k.

Out(k) number of distinct outputs (= 1).

jz = R(kz) means that asap(kz) ≤ jz ≤ alap(kz).

kz ∈ op(Cz, Lz) means that operation kz requires Cz time-steps to produce an output

data value and can accept a new input data every Lz time-steps.

The number of functional unit of type i = Ii. k ∈ i means that code operation k is

implementable by the functional unit type i (or i ∈ op(C,L)).

R number of registers (R ∈ Z).

B number of buses (B ∈ Z).

The first constraint is the assignment constraint. This equation (2.7) ensures that

each operation will be assigned once.

∑
j∈R(k)

xj,k = 1, ∀k (2.7)

The second constraint is the precedence constraint. Eq. 2.8 ensures that k2

is scheduling before k1 when k2 ≺ k1. In this equation only one operation could be
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assigned in the overlap mobility region. Since operation k1 has to be assigned after the

completed time of operation k2, so the mobility of k2 has to be biased by its execution

time C2.

∑
j1≤j

j1∈R(k1)

xj1,k1 +
∑

j−(C2−1)≤j2
j2∈R(k2)

xj2,k2 ≤ 1, ∀ k2 ≺ k1, j ∈ R(k1) ∩ (R(k2) + C2 − 1). (2.8)

The third constraint is the functional unit constraint. Eq. 2.9 ensures that no

more than Ii functional units is required. For each time-step j the number of operations

which has the same type i and were assigned in the range [j, j + L− 1] is limited to Ii.

∑
k∈i

j∈R(k)

j1=j+(L−1)∑
j1=j

xj1,k ≤ Ii, ∀ j, i ∈ op(C,L). (2.9)

The fourth constraint is the register constraint. Eq. 2.10 ensures that no more

than R registers is required. The term
∑

j1≤j−(Cn−1), j1∈R(kn) xj1,kn means the operation

is completed before or at j. The term
∑

j2>j, j3∈R(ke), kn≺ke
xj2,ke means the operation

is started after j. The term
∑

j3≤j, j3∈R(ke), kn≺ke
xj3,ke means the operation is started

before or at j. While the term
∑

j4≤j−(Cn−1), j4∈R(kn) xj4,kn means the operation is

completed after j. The number of registers is computed by counting the number of

arcs kn ≺ ke that cross the time-step j. The number of arcs that cross time-step j are

computed by dividing the number of heads and tails of the arcs that cross j by 2. In

the equation, if an arc crosses j then the head and the tail will be counted by two. If

an arc does not cross j then the head and the tail will cancel each other to zero.

∑
kn

⎛
⎜⎜⎜⎜⎝

∑
j1≤j−(Cn−1)

j1∈R(kn)

xj1,kn +
∑
j2>j

j3∈R(ke)
kn≺ke

xj2,ke −
∑
j3≤j

j3∈R(ke)
kn≺ke

xj3,ke −
∑

j4≤j−(Cn−1)
j4∈R(kn)

xj4,kn

⎞
⎟⎟⎟⎟⎠
≤ 2R,

(2.10)

∀ j, and for all maximum sets of arcs (kn ≺ ke) that cross j each with unique heads

(kn).

The fifth constraint is the bus constraint. Eq. 2.11 ensures that no more than B

registers is required. The equation counts the number of inputs and outputs for each
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time-step.

∑
k

j∈R(k)

(In(k))xj,k +
∑

k1∈R(j1)
j1=j−(C1−1)

(Out(k1))xj1,k1 ≤ B, ∀ j. (2.11)
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2.4 Genetic Algorithms

In 1975, Holland (J. H. Holland 1975) published the concept of Genetic Algo-

rithms (GA). It was successfully applied to many optimization problems. GA optimizes

problems by encoding the problem into strings called chromosomes. The first population

of the chromosomes is randomly generated. The subsequent generations are obtained

by selection, crossover, and mutation.

Selection is a process to select chromosomes. The probabilities of selection bias

by the fitness values, which were computed from a fitness function. The fitness function

is a function to compute the quality of a chromosome. Roulette wheel selection is a

selection, which probability of each chromosome to be selected is a direct proportion of

its fitness value.

Crossover is a process that takes two chromosomes as inputs, and generates two

new chromosomes. It begins by generating a random crossover point, which is a point

where two chromosomes are cut and swaps between each other. For example, if we have

chromosome A = [1, 2, 3, 4, 5, 6] and chromosome B = [a, b, c, d, e, f ]. The crossover

point was randomly selected and equal to 2. The crossover will produce two new chro-

mosome C = [1, 2, c, d, e, f ] and chromosome D = [a, b, 3, 4, 5, 6].

Mutation is a process to perturb each element in the chromosome. The intention

of these crossover and mutation is to generate new promising chromosomes as in the

nature. The process of the Simple Genetic Algorithm (SGA) is as follows.

1. Initialize the population, the first set of chromosomes, P .

2. Set generation, g = 0.

3. g = g + 1.

4. Compute fitness of every chromosome.

5. Q = φ.

6. For |P |/2 loops

(a) Select 2 chromosomes from P , by roulette wheel selection.

(b) Crossover the selected chromosomes.

(c) Mutate the crossovered chromosomes.
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(d) Add the mutated chromosomes to Q.

7. P = Q.

8. repeat step 3 until g ≥ maxgen.

There were many works that use Genetic Algorithm to solve High-Level Synthesis

problems (M. J. M. Heijligers and J. A. G. Jess 1995; M. K. Dhodhi, F. H. Hielscher,

R. H. Storer, and J. Bhasker 1995), and (E. Torbey and J. P. Knight 1999). We will

review each of them in the following paragraphs.

In (M. J. M. Heijligers and J. A. G. Jess 1995), they used a modified version of list

scheduling algorithm. The chromosome is composed of a permutation of operations as

a priority list. To add a resource constraint, outputs from a lower bound algorithm are

used as minimum resources. Then a list of extra resources is added to the chromosome.

So while the algorithm searches for the best priority list, it also searches for a set of

the optimum resources. One problem of this method is that it is possible to have more

than one chromosomes produce the same schedule. This many to one mapping between

chromosomes and the schedule leads to the inefficiency of the search. Another problem

is that the list scheduling algorithm, for transforming from a chromosome to a schedule,

may excluded the optimum solution in some case. They created a new algorithm called

Topological Sorted Scheduling to overcome this problem.

In (M. K. Dhodhi, F. H. Hielscher, R. H. Storer, and J. Bhasker 1995), the

chromosome encoding has almost the same concept as in (M. J. M. Heijligers and J. A.

G. Jess 1995). A chromosome is composed of work remaining number for each operation

and the number of functional units for each type. The work remaining number is the

worst case delay on the longest path of the node to the output. These values were

initialised in the chromosomes and then perturbed by a random value. They were used

as a priority in the list-scheduling-like algorithm called Most-Work-Remaining (MWR)

heuristic algorithm. About the number of functional units, in this algorithm they use

absoulute numbers of resources encode in the chromosomes, instead of the numbers,

which were biased from the lower bound solution.

Knight et al., the authors of Force-Directed Scheduling (P. G. Paulin and J. P.

Knight 1989b), were also interested in GA, and they had done some researches on this

topic (E. Torbey and J. P. Knight 1999; E. Torbey and J. P. Knight 1998) and (R. S.
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Martin and J. P. Knight 1994). In (E. Torbey and J. P. Knight 1999), a chromosome

is composed of the number of functional units for each type and the relative time-step

to the mobility range of each operation. The storage is handled by inserting a storage

operator into the CDFG at every edge. So the storage can be scheduled and bind at

the same time, also different type of storage units can be included in the optimization

process. This algorithm also reports the fastest execution time on the EWF benchmark.

The main contribution of these people is to find a technique to encode or de-

code the chromosome with feasible solutions, which prevents the GA from wasting the

computation capability in evaluating the infeasible solutions.

2.5 Conclusion

For the Heuristic algorithm, the advantage is the speed of the algorithm, which

usually is in the O(n2) complexity. One of the disadvantages is that it can not guarantee

the optimality of the solution. Many heuristic steps have to be integrated together, for

the High-Level Synthesis process, which may lead to poor solution.

For ILP, the strong point is that it can guarantee the optimal solution. The

disadvantage is that it has exponential time complexity. It is difficult to form the

efficient constrained equations, in order to improve the performance.

For GA, the advantage is that we could trade-off between the quality and pro-

cessing time. To get a good performance algorithm, it requires a good chromosome

encoding, and a good genetic operators.



CHAPTER 3

ANT COLONY OPTIMIZATION ALGORITHMS

3.1 overview

In this section, we give an overview and the development of the Ant Algorithms.

Ant Algorithms were recently developed by Dorigo et al. as in (A. Colorni, M. Dorigo and

V. Maniezzo 1991; M. Dorigo and A. Colorni 1996; L. M. Gambardella and M. Dorigo

1995), and (M. Dorigo and L. M. Gambardella 1997) to solve the travelling salesman

problems (TSP) and later were expanded to solve other problems. The algorithms

are based on the natural behavior of an ant colony, which uses a pheromone as its

communication medium. While travelling, the pheromone is left along the way as a

trail, and ants will use the information (pheromone) as their guidance. By this behavior,

ants can find the shortest path as will be explained as follows:-

A

B

Home
Food

Pheromone

A

B

Home
Food

Pheromone

Figure 3.1: Ants’ behavior.

1. Suppose ants have to travel from home to the food and travel back to their

home as in the Fig. 3.1.

2. When ants get to the decision point, first when there is no pheromone, they

choose the path randomly. As a result the number of ants should divide to path

A and path B equally.

23
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3. Suppose all ants walk at the same speed and they deposite the same amount of

pheromone on the ground.

4. Since path A is shorter than path B, after a while the amount of pheromone on

path A should be higher than path B.

5. More ants prefer path A since there is more pheromone. Then the pheromone

gets even higher.

6. Less ants choose path B and by the evaporation, the pheromone on path B get

even lower.

7. Most ants travel on path A, the shorter path.

Next, an example of applying this behavior to the travelling saleman problem is

explained. The travelling salesman problem is the problem of a salesman who wants to

find a shortest possible path. The path begins from his hometown through a given set

of customer cities and returns back to his home. One of the possible implementations

of the algorithm should be as follows:-

1. Initialize parameters such as the number of ants, pheromone weights, and heuris-

tic weights. In TSP, a heuristic weight is inverse proportion to a distance be-

tween two cities.

2. Each ant constructs a tour by randomly selecting the unvisited cities. The

selection is biased by the pheromone weights and the heuristic weights between

the current city and the next possible cities. It will repeat the selection until

all the cities are visited.

3. To simulate the pheromone evaporation, the pheromone on every path between

any two cities is decreased by a proportion.

4. The distance of each tour is calculated, and the pheromone along the tour is

increased by the inverse proportion of the tour length.

5. Repeat step 2 through step 4 until the termination condition is met.

The termination condition usually is the number of iterations or the CPU-time.

Normally, as the number of iteration is increased, the tour length will be shorter and

the pheromone along the best path will be higher than the pheromone in other paths.
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This algorithm randomly selects the next nodes by the bias from the pheromone

levels. This behavior (step 2) is called the state transition rule. After all tours are

finished, the pheromone on every edge is decreased (step 3) to simulate the pheromone

evaporation. The pheromone along the tour is increased (step 4) to simulate the

pheromone that the ants have deposited along the tour. These behaviors (step 3 and

4) are called the pheromone updating rule. These two rules play an important role in

ACO algorithms.

3.2 Ant System

Ant System (M. Dorigo and A. Colorni 1996) was the first algorithm introduced.

The state transition rule of this algorithm is “make a decision among all possible choices,

choose an action probabilistically proportional to the pheromone level in combination

with the heuristic weights.” The state transition rule of Ant System is as in Eq. (3.1).

pk(r, s) =

⎧⎪⎨
⎪⎩

[τ(r,s)]·[η(r,s)]β∑
u∈Jk(r)[τ(r,u)]·[η(r,u)]β

if s ∈ Jk(r)

0 otherwise.
(3.1)

pk(r, s) is the probability that ant k in node r chooses to move to node s. Jk(r)

is the set of the unvisited nodes by ant k from the node r. η(r, s) is the heuristic weight

on edge (r, s) ,which is set to 1/δ. δ is the distance between node r and node s. τ(r, s)

is the pheromone on edge (r, s). β is a parametrer to emphasize on the better values.

The pheromone updating rule of Ant System is as in Eq. (3.2). All ants are

allowed to update their trails.

τ(r, s)← (1− α) · τ(r, s) +
m∑

k=1

∆τk(r, s) (3.2)

where ∆τk(r, s) =

⎧⎪⎨
⎪⎩

1/Lk if (r, s) ∈ tour done by ant k

0 otherwise.

α is a pheromone decay parameter, it is set to 0 < α < 1. Lk is the length tour

performed by ant k, and m is the number of ants.
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3.3 Ant Colony System and Ant-Q

Ant-Q (L. M. Gambardella and M. Dorigo 1995) and Ant Colony System (ACS)

(M. Dorigo and L. M. Gambardella 1997) are very similar algorithms. Ant-Q algorithm

is inspired by Q-learning, a type of Reinforcement Learning algorithm (L. P. Kaelbling,

M. L. Littman, and A. W. Moore 1996). The ACS is almost the same as Ant-Q but

uses less computation. Their state transition rules are almost the same as in the Ant

System algorithm except that they are heavily biased by the maximum pheromone level

and heuristic weights. The state transition rule is as in Eq. (3.3).

s =

⎧⎪⎨
⎪⎩

arg maxu∈Jk(r){[τ(r, u)] · [η(r, u)]β} if q ≤ q0 (exploitation)

S otherwise (biased exploration)
(3.3)

Where arg max is a function to select the maximum item in the set, q is a random

number uniformly distribute in [0 .. 1], q0 is a parameter (0 ≤ q0 ≤ 1), and S is

a random variable selected according to the probability distribution given in Eq. 3.1.

The parameter q0 determines the relative importance of exploitation versus exploration.

Usually q0 is set to a rather high value. For example, it is set to 0.9. If q is less than or

equal to 0.9, ant chooses exploitation (best edge). If q is higher than 0.9, ant chooses

exploration (random edge).

There are two types of the pheromone updating rules in this algorithm, the

global pheromone updating rule and the local pheromone updating rule. For the global

pheromone updating rule only the best solution is allowed to increase the pheromone

level. The global pheromone updating rule is as in Eq. (3.4).

τ(r, s)← (1− α) · τ(r, s) + α ·∆τgb(r, s) (3.4)

where ∆τgb(r, s) =

⎧⎪⎨
⎪⎩

(Lgb)−1 if (r, s) ∈ global-best-tour

0 otherwise.

For the local pheromone updating rule, every ant will decrease the pheromone

level as it travels. This is done in order to prevent another ant from taking the same

route. The pheromone updating rule is as in Eq. (3.5).
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τ(r, s)← (1− ρ) · τ(r, s) + ρ ·∆τ(r, s) (3.5)

ρ is set in the range 0 < ρ < 1. ∆τ(r, s) is set to a constant parameter τ0 in ACS,

while it is set to a more complicate equation in Ant-Q.

3.4 MAX −MIN Ant System

MAX −MIN Ant System (T. Stützle and H. Hoos 1997) and ACS use the same

state transition rule, as in Eq. 3.3. The main difference between theMAX −MIN Ant

System and ACS is that the pheromone level is controlled in a limited range [τmin, τmax],

or ∀τ(r, s) τmin ≤ τ(r, s) ≤ τmax. The improvement of this algorithm is to prevent ants

from following the same route which caused search stagnation or premature convergence.

The pheromone updating rule is as in Eq. (3.6).

τ(r, s)← (1− α) · τ(r, s) + ∆τbest(r, s) (3.6)

where ∆τbest(r, s) =

⎧⎪⎨
⎪⎩

(Lbest)−1 if (r, s) ∈ best-tour

0 otherwise.

3.5 Conclusion

All the improvements of these algorithms address two issues. First, they try to re-

duce random behavior of the algorithms, by using q0 (ACS, Ant-Q, andMAX −MIN
Ant System) to make the searchs more direct. Second, to avoid premature convergence,

ants are forced to search for new solutions. By decreasing the pheromone level as the

ants travelling (ACS), it will reduce the probability for other ants to follow the same

route. By limit the pheromone level (MAX −MIN Ant System), there is always a

chance for every possible choice. A good review of ACO can be found in (T. Stützle

and M. Dorigo 1999).



CHAPTER 4

ANTS ON A TREE ALGORITHM

4.1 Overview

A solution of a High-Level Synthesis problem is composed of many parts, such

as scheduling of the operations, allocation of functional units, and assignment of the

operations. In normal practice a designer has to use many algorithms to find each part

of the solution. A designer applies algorithms in sequence as shown in Fig. 4.1(a). In

this figure, a circle indicates the problem to be solved, while an arrow indicates the

selected partial solution. This partial solution effects the rest of the problem. Different

partial solutions turn the problem into different problems. A different choice between

alternative partial solutions leads to a different solution as shown in Fig. 4.1(b). Incor-

porating constraints on the solution, a search tree will look like Fig. 4.1(c). A problem

arises as to which alternative we should consider first, since the number of alternatives

grows exponentially with the size of the problem.

Instead of using only one result from each algorithm at each design step, we use

each design algorithm to weight each possible result and an ACO is applied to optimize

for the solution. We call this process the Ants On a Tree (AOT) algorithm.

a cb

Figure 4.1: Search trees composed of partial solutions in AOT.

The fundamental concept in AOT is to use a structure called a decision tree to

keep track of all the problem states that the system had reached. This is similar to the

TOGAPS (C. P. Ravikumar and V. Saxena 1996), which maintains the search space

for GA in a tree structure. There are some researchers who are interested in finding

different structures to generate promising solutions as in (M. Pelikan, D. E. Goldberg,

and E. Cantú-Paz 1999). In AOT, each ant searches for a solution and keeps its trail in

28
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a decision path, which is a path in the decision tree. Next, we define the decision tree

and the decision path.

A decision tree is a structure that represents a decision space for a design problem

(T. M. Mitchell 1997). It keeps track of the knowledge found so far for the problem.

Each node in the tree represents a design problem state. Each edge represents a choice

that has been made. There is one root node, which represents the initial state of the

design problem. A path from the root node to a leaf node is called a decision path. A

decision path is a record of the decisions, which were made for a design.

The first node of the decision path is the starting point of the design process.

From the first node, a decision is made in selecting a choice from all of the possible

choices and the problem state transits to another state (node) in the design problem.

This process is repeated until a complete design is found or the search reaches a dead

end.

AOT is an optimization algorithm. The process of the AOT Algorithm is as

follows:

1. Initialize paths for each ant by an initial design state.

2. For each ant, construct a decision path by means of the state transition rule.

3. Evaluate the cost function of each path. If the cost is satisfactory, then termi-

nate.

4. Decrease the pheromone level of every edge in the tree to simulate the pheromone

evaporation.

5. For each path, update the pheromone level according to the pheromone updating

rule.

6. Prune each subtree that has an infeasible solution.

7. Prune each subtree that has a zero pheromone level.

8. Prune each subtree that has a cost higher than or equal to the best cost.

9. Use the Dynamic Niche Sharing process to find local minima of cost, which are

called peaks.
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10. Initialize the path for each ant in the next iteration by path exploration from

the peaks.

11. Go to step 2.

The key procedures for this algorithm are the decision path construction, state

transition rule, pheromone updating rule, path exploration, dynamic niche algorithm,

and boosting. We will explain each one in turn.

4.2 Construction of a decision path

Construction of a decision path is a process in which a sequence of selections is

made. This process begins from the first node, which is an initial design state. The

possible choices are listed by the synthesis algorithm. Each possible choice is assigned

a heuristic weight and a pheromone weight. A choice is made according to the state

transition rule, which will be described next. Then the algorithm gets to a new state

of the design problem. This process continues until the design is completed. While

constructing the decision path, the decision tree is updated.

4.3 State transition rule

A state transition rule is a rule that is applied in order to advance from one design

step to the next step by selecting a choice from the possible weighted choice list.

If there is any choice left, the next choice will be selected by the probability as in

Eq. (4.1):

p(r, s) =

⎧⎪⎨
⎪⎩

[h(r,s)]∑
u∈U(r)[h(r,u)] if s ∈ U(r)

0 otherwise.
(4.1)

p(r, s) is the probability that an ant in node r chooses to move to node s. h(r, s)

is the heuristic weight on edge (r, s). U(r) is the set of the unvisited next nodes from

the node r.

After all choices have been selected, then a choice will be randomly selected using

the biases from pheromone level as in Eq. (4.2):
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p(r, s) =

⎧⎪⎨
⎪⎩

[τ(r,s)+1]∑
u∈J(r)[τ(r,u)+1] if s ∈ J(r)

0 otherwise.
(4.2)

τ(r, s) is the pheromone on edge (r, s). J(r) is the set of the next nodes, including

the nodes that were pruned by pheromone evaporation, excluding the nodes that were

pruned by the best cost and infeasible solutions, from the node r.

This state transition rule is different from those of ACO algorithms, because in

ACO the selection is based on a linear combination of heuristic weights and pheromone

levels, while in AOT the heuristic weights are used until all choices have been selected

and then the pheromone levels are considered. The advantage of our method is that the

determination of heuristic weights is independent of the pheromone level. This is very

important for a problem such as High-Level Synthesis, which consists of many heuristic

algorithms, while the same pheromone updating rule is used in every state.

Because the pheromone in AOT can be set to zero, the state transition rule is

modified as in Eq. (4.2). Comparing this state transition rule with the state transition

rule in the MAX −MIN Ant System (T. Stützle and H. Hoos 1997), the actual

pheromone level is limited to the range [1, τmax + 1].

Another modification in our algorithm is that the Q0 parameter, which is used in

the ACO state transition rule, was eliminated. This decision is influenced by the path

exploration, which will be explained later.

4.4 Pheromone updating rule

The pheromone updating rule is the rule for calculating the new level of the

pheromone. In this algorithm, we use the technique modified from theMAX −MIN
Ant System (T. Stützle and H. Hoos 1997). The pheromone level is also used to prevent

the algorithm from storage explosion. In each iteration, the pheromone level of every

edge in the tree is decreased by a fixed value α to simulate evaporation as in Eq. 4.3.

Then for each path, the pheromone level will be set to a fixed value τmax as in Eq. 4.4 .

τ(r, s)← τ(r, s)− α (4.3)

τ(r, s)← τmax (4.4)
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The storage explosion problem is eliminated by this pheromone updating rule. In

this algorithm the storage depends on the number of nodes in the decision tree. We

will demonstrate an upper bound on the number of nodes in the tree to prove that

the storage explosion problem is eliminated. In each loop of the algorithm the number

of nodes is increased while each ant is constructing a decision path, and is decreased

when the tree is pruned. The pheromone level on an edge that links to a node controls

the lifetime of that node. Once a new node is created and is added to the tree by the

decision path construction, the pheromone level is set to τmax. In every loop of the

algorithm, the pheromone level is decreased by α until it gets to zero and the node is

pruned, unless the node is selected again. If the node is selected again its pheromone

level is set to τmax.

In the case that while constructing the decision paths, only new nodes are created

and are added to the tree, no old node in the tree is selected, and the maximum number

of nodes in the tree Nmax can be computed as in Eq. (4.5):

Nmax = P · Lmax · τmax

α
, (4.5)

where P is the number of paths in each iteration or loop, which equals the number of

ants. Lmax is the maximum path length, which can be computed for each problem.

The maximum number of nodes generated in each iteration is equal to P · Lmax. The

maximum node lifetime is equal to τmax/α.

For the case that some of the old nodes are selected, the maximum node lifetime

for the selected old nodes is equal to τmax/α. No new node is created for each selected

old node. From these facts, we conclude that Nmax in Eq. (4.5) still holds as an upper

bound. Hence, the number of nodes in the decision tree is bounded and a storage

explosion, as occurs in reinforcement learning (L. P. Kaelbling, M. L. Littman, and A.

W. Moore 1996), is avoided.

If the pheromone evaporation rate α is set to zero the decision tree will continue

to grow and AOT will approximate an exhaustive search algorithm.

4.5 Path exploration

Path exploration is a process to initialize a new path from the selected path.

The process begins by selecting a random exploration point in the path. Then a path
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from the root to the exploration point is copied to a new ant as an initial path. This is

similar to the use of the Q0 parameter in the ACO state transition rule, in which Q0 is a

probability to preserve the maximum pheromone level path. The ACO state transition

rule serves both roles, for exploitation and exploration, but AOT path exploration serves

exploitation while the state transition rule serves exploration.

From the state transition rule in Eq. (4.1), one may think of AOT as an exhaustive

search algorithm, but this is not the case, since some of the unvisited nodes might not

be selected. When an ant randomly selects an exploration point that is located after a

branch of the unvisited nodes, these nodes will not be explored by the ant.

4.6 Dynamic niche algorithm

The dynamic niche algorithm (B. L. Miller and D. E. Goldberg 1996) is an algo-

rithm first applied to genetic algorithms to overcome the premature convergence prob-

lem and to explore the search space for finding niche answers. We applied it to AOT

to prevent search stagnation, which is found in ACO. For each iteration, instead of

exploiting only the global best or the iteration best path, every peak generated by the

niche algorithm is used. In GA, the idea of niche sharing is to the share the fitness (cost)

of chromosomes between their neighborhoods. Two chromosomes are said to be in the

same neighborhood if the distance between them is less than some specific number. In

AOT two paths are said to be in the same neighborhood if they share the same node

within the path length Ldis, which is equal to half of the average path length of each

iteration. The process of the modified Dynamic niche algorithm is as follows.

1. Sort the set of all the decision paths, P , in decreasing order.

2. Initialize the set of peaks, Q = φ.

3. For each decision path, p, from the set P , in the sorting order

(a) if p is not a neighborhood of any path in Q add p into Q.

4.7 Boosting

A boosting algorithm is applied in step 8. The cost of each decision path is

checked against the minimum cost found so far. Any path with higher or equal cost
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will be eliminated. This technique is similar to branch and bound algorithms as used

in (P.-Y. Hsiao, G.-M. Wu, and J. Y. Su 1998) and (S. Y. Ohm and C. S. Jhon 1992).

It reduces the search space and improves the stability of the algorithm. To effectively

prune the tree, it is better to know the cost at an early state of the decision path, so that

the computation effort is not wasted on the subtree, which cannot give a better solution.

This will be an issue that we have to consider when we select the design algorithms.

The synthesis algorithms in the next section will also reflect this idea.

4.8 Conclusion

The AOT is introduced. It is a modified version of ACO. The major change is

that it is applied to search a tree, callled the decision tree. Some of the rules in ACO

algorithm are modified. A newly introduced operator, the path exploration is aimed to

replace q0 which is used in ACS, Ant-Q, andMAX −MIN Ant System) to make the

searchs more direct. The state transition rule is also modified. The biased probabilistic

rule is applied by using the heuristic weights first. The pheromone levels are used after

all the choices are selected. It was modified in this way because the heuristic weights may

be the resultes from many heuristic algorihtms. The main purpose of this pheromone

updating rule is to protect the algorithm from stroage explosion. It was adopted from

the pheromone updating rule ofMAX −MIN Ant System.



CHAPTER 5

HIGH-LEVEL SYNTHESIS BY AOT

5.1 Overview

To apply the AOT to High-Level Synthesis, the synthesis algorithms are inte-

grated into the decision path construction process. At each problem state, the synthesis

algorithm is used to list the possible partial solutions and assign a weight to each of

them. The state transition rule is used to select one of the possible partial solutions.

When the new partial solution is integrated to the old solution, the problem state is

advanced to the next problem state.

In this implementation, for each problem state the algorithm searches a partial

solution for each part of the final solution. The sequence is as follows:

1. Find the number of resources for each type (Allocation).

2. Find a time-step for each operation (Scheduling).

3. Find a functional unit for each operation (Functional unit assignment).

4. Find a register for each operation (Register assignment).

5. Find a bus for each input of the functional unit (Bus assignment).

These are the normal techniques found in various literatures such as (D. D. Gajski,

N. D. Dutt, A. C.-H. Wu, and S. Y.-L. Lin 1992; P. Michel, U. Lauther, and P. Duzy

1992), and (G. De Micheli 1994). Most of them are heuristic algorithms and can not

guarantee the optimum solution. Combining many of them together arbitrarily is un-

likely to get the optimum solution. We had modified them to match with the AOT

algorithm. Whenever a decision has to be made and there is not enough information,

the design algorithm will list the possible choices with heuristic weights and let AOT

selects one of them.

The number of each functional unit type is bounded by a lower bound and upper

bound, which can be assigned by a human to limit the search to be only in the area of

interest. The lower bound numbers from a good algorithm will improve the performance

of the AOT.

35
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Figure 5.1: Applying AOT to High-Level Synthesis.

In the scheduling process, instead of using normal ASAP and ALAP time-steps to

bound the possible time-steps, the constraints on the resources are combined and fixed

before scheduling process. For example, while the ASAP time-step of an operation is

computed, the required functional unit for this operation is checked for availability. If

it is not available the next possible time-step is considered.

The possible hardware components to be assigned are listed from the available

hardware components. These hardware components must be available in the appropriate

time-step, which is consistent with the scheduling time-step.

The heuristics for weighted assignment are as follows:

1. Prefer the time-step that has fewer operations and less data transfer.

2. Prefer the register that connects to the same functional unit output.

3. Prefer the bus that connects to the same functional unit output.

One may notice that some of these heuristics are inspired by (P. G. Paulin and J. P.
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Knight 1989b).

Next, we will explain in more details for each synthesis algorithm.

5.2 Resource Allocation

The resource allocation process could be explained as follows:-

1. Execution time allocation.

List the possible number of time-steps.

(a) Check the list with the lower bound algorithm.

(b) Use AOT to select the number of time-step.

2. Functional unit (FU) allocation.

For each operation type:

(a) List the possible number of FUs.

(b) Use AOT to select the number of FU

3. Register allocation.

List the possible number of registers.

(a) Check the list with the lower bound algorithm.

(b) Use AOT to select the number of register.

4. Bus allocation.

List the possible number of buses.

(a) Check the list with the lower bound algorithm.

(b) Use AOT to select the number of bus.

Resource allocation is a process that allocates a number of resources, which will

be used in the later process to construct the register transfer level design. This process

starts from allocation of the number of functional units for each operation type. After

all the functional units were allocated, the number of time-steps for execution will be

allocated. Then the number of registers and buses will be allocated. In allocation

process we used some lower bound algorithms, as will be explained in the later section,

to reduce the search space.
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At the end of this step, all of the resources were allocated, this means that AOT

will know the cost for each design whether it is feasible or not. The cost information

will help AOT to prune the decision tree after it found a feasible solution. The next

steps are scheduling and assignment which function as verifying the feasibility of the

already allocated resources. After completing these steps a complete RTL circuit is

generated. Pruning the decision tree at the earlier decision step will reduce the search

space dramatically.

5.3 Scheduling

The scheduling process could be explained as follows:-

1. Find the ASAP (as soon as possible time-step) and ALAP (as late as possible

time-step) of each operation.

2. Find the least mobility operation (computed from ASAP and ALAP).

3. Find the heuristic value for each time-step in the mobility range.

4. Use AOT to select a time-step in the range ASAP to ALAP.

5. Repeat the first step until all the operations were scheduled.

Scheduling is a process that assigns each operation in the CDFG to a time-step.

At each step, the algorithm will check for mobility of each operation. Then the least

mobility operation will be selected for scheduling first. AOT will assign this operation

to a time-step in the mobility range. A heuristic behind this is to reduce the search

space by testing the critical operation first. If it is an infeasible design the decision tree

will be pruned.

The heuristic value of assigning an operation k to the time-step i is as in the Eq.

5.1.

h(r, s) =
(1.2 · Cmax − Ci)2∑

j∈Rk
(1.2 · Cmax − Cj)2

. (5.1)

Where Ci is the number of operations which were already assigned to the time-

step i. Cmax is the maximum number of operations for all the time-steps in the ASAP

and ALAP range. Rk is the list of time-steps in mobility range of the operation k. h(r, s)
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is the heuristic weight on edge (r, s) of the decision tree, while the r is the current node

and s is the node after operation k was assigned to time-step i.

The number of functional units, which were fixed in the alllcation process, could

be used to tighten the mobility.

5.4 Functional unit assignment

The functional unit assignment process could be explained as follows:-

1. Sort the operations in the ascending order of the scheduled time-steps.

2. For each operation:

(a) Find the list of available FUs.

(b) Use AOT to assign the operation to a FU.

Functional unit assignment is a process that assigns each operation in the CDFG

to the allocated functional units. After the scheduling, we will know the assigned time-

step of each operation. The assignment will be done in a sequence from the earliest to

the latest time-step to reduce the infeasible search.

5.5 Register assignment

The register assignment process could be explained as follows:-

1. Sort the operations (each output of an operation will be associated with a

variable) in the descending order of the longest to the shortest variable life. If

there are operations with equal variable life cycles, sort the earlier operation

first.

2. For each operation:

(a) Find the list of available registers.

(b) Use AOT to assign the operation to a register.

Register assignment is a process that assigns each operation in the CDFG to

allocated registers. By giving a priority to the longer variable life, the assignment has

a chance to work on the critical variable first (as in the scheduling process).
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5.6 Bus assignment

The bus assignment process could be explained as follows:-

1. Find the maximum parallel data transfer time-step.

2. Assign each input of FUs and registers, which is active in that time-step, to a

bus.

3. For each first input of FUs, which is not assigned:

(a) Find the list of available buses.

(b) Use AOT to assign the input to a bus.

4. For each second input of FUs, which is not assigned:

(a) Find the list of available buses.

(b) Use AOT to assign the input to a bus.

5. For each input of registers, which is not assigned:

(a) Find the list of available buses.

(b) Use AOT to assign the input to a bus.

Bus assignment is a process that assign each operation in the CDFG to the

allocated buses. Since the target datapath architecture allows only one bus per input

(will be explained in later section), we will work in sequence for each input of each

FU (each FU has two inputs) and then the input of each register. By checking for

the maximum parallel data transfer time-step, we assign a bus for each input, which is

active in that time-step first. Since all of them are active in the same time-step they

can not share the same bus.

5.7 Scheduling Example

Next, an application of AOT to scheduling process is demonstrated. Only the

construction of a decision path is explained, because the other steps in AOT are not

effected if the application is changed. The CDFG in Fig. 5.2 is used as an example.

In this CDFG, it consists of 3 operations of the same functional unit type and it is

constrained to be scheduling in 3 time-steps. In scheduling process, each operation will
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Figure 5.2: Example CDFG.

A B

C

A B

C

BA

C

C

BA

C

BA

B

A

C

A

B

C

A

C

B

A

B

C

A

C

B

C

A B

C

B

A

1

2 3

4 5 6 7

8 9 10 11 12

Figure 5.3: Decision tree of the scheduling process.

be assigned to a time-step in the ASAP and ALAP range as the first node in the Fig.

5.3.

If the operation A was assigned to the first time-step, then the state of scheduling

process will be as in the node 2 of the Fig. 5.3. At this state, there are two choices

to assign operation B, which are the first time-step (node 4) and the second time-step

(node 5). For simplicity, the heuristic weight Eq. 5.1 was modified to Eq. 5.2

h(r, s) = (Cmax − Ci) · a + b. (5.2)

Where Ci is the number of operations which were already assigned to the time-

step i. Cmax is the maximum number of operations for all the time-steps in the ASAP

and ALAP range. a is a factor to bias for the less assigned time-step. b is a constant to

give a chance for the highest assigned time-step. For this experiment, we choose a = 2

and b = 1.

In this case, for the first time-step Ci is equal to 1 and for the second time-step
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Ci is equal to 0, then Cmax is equal to 1. The heuristic weight for assigning operation

B to the first time-step (h(2, 4)) is (1 − 1) ∗ 2 + 1 = 1, and the heuristic weight for

assigning operation B to the second time-step (h(2, 5)) is (1− 0) ∗ 2+ 1 = 3. According

to the state transition rule, the probability to assign to the first time-step (p(2, 4))

is 1/(1 + 3) = 0.25, and the probability to assign to the second time-step (p(2, 5)) is

3/(1 + 3) = 0.75. So there is a higher probability to select the second time-step, which

is according to the heuristic in the previous paragraph. Since this is the first decision

path so the heuristic weights are used to select the next node, but in other situations

the pheromone weights may be used as in the state transition rule.

This process is repeated until all the operations are assigned or there is an in-

feasible assignment. Then the construction of a decision path in the AOT algorithm is

completed.

5.8 Conclusion

This chapter explains how to synthesis a data-path by AOT. A normal synthesis

process is used. It is composed of resource allocation, scheduling, functional unit assign-

ment, register assignment, and bus assignment. Sequence of decisions in the systhesis

problem are arranged into the decision tree. The procedure of AOT is applied to search

for the solutions. Some heuristic knowledge is converted to the heuristic weights. They

are used to bias in the state transition rule.



CHAPTER 6

EXPERIMENTS

6.1 Overview

In these experiments, we use the target architecture as in (P. Michel, U. Lauther,

and P. Duzy 1992), which consists of combinational functional units (except the pipeline

functional unit), distributed registers, multiplexers or unidirectional buses. All registers

use the same clock edge. We also place the constraint that each register or functional

unit has only one bus per input as in (C. H. Gebotys and M. I. Elmasry 1992). This

means that even a connection from an output to an input will be counted as a bus

because it has to be routed in a channel (D. D. Gajski, N. D. Dutt, A. C.-H. Wu, and

S. Y.-L. Lin 1992). For loop registers, we ensure that the input loop registers will be

valid until their last use. The output loop registers will be valid until the end of the

loop. The input loop register is the same register as the output loop register for the

same variable as mentioned in (L. Stok 1992).

The experiments were carried out on a personal computer with the Athlon pro-

cessor running at 850 MHz and 256 Mbytes of memory.

6.2 Differential Equation

y''+3xy'+3y = 0

While (x<a) repeat:

x1= x+dx;

u1= u-(3*x*u*dx)-(3*y*dx);

y1= y+(u*dx);

x = x1; y = y1; u = u1;

end;

Figure 6.1: Differential Equation.

The Differential Equation, which is used as the example in the previous chapter,

is used in this experiment. The equation (Fig. 6.1) and the control data flow graph

(Fig. 6.2) are repeated here for convenience. This CDFG has 5 multiply operations, 2

43
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Figure 6.2: Differential Equation CDFG.

add operations, 2 subtract operations, and 1 compare operation. It also has 9 variables,

3 of them (x, y, and u) are used to keep values for the next loop. The constant values

3, a, and dx are shown in the dashed boxes.

The optimum solutions from the paper (M. K. Dhodhi, F. H. Hielscher, R. H.

Storer, and J. Bhasker 1995) are shown in the Table 6.1.

Table 6.1: Optimum solutions of Differential Equation Solver.
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6.2.1 Setup

In this experiment, the same set of functional units as in (M. K. Dhodhi, F. H.

Hielscher, R. H. Storer, and J. Bhasker 1995) are used, but in this experiment buses are

also generated. We ran 4 experiments with resources as follows:

1. 4 time-steps with adder, subtractor, comparator, and single-cycle multiplier.

2. 6 time-steps with ALU and pipelined multiplier.

3. 7 time-steps with ALU and pipelined multiplier.

4. 7 time-steps with adder, subtractor, comparator, and two-cycle multiplier.

Costs of the resources were obtained from (C. H. Gebotys and M. I. Elmasry

1992). Except the cost of bus, which is reduced to 10, in order to get the same optimum

solutions as in (M. K. Dhodhi, F. H. Hielscher, R. H. Storer, and J. Bhasker 1995).

These are shown in Table 6.2.

Table 6.2: Cost of Resources.

Resources Cost/unit
Time-step 50
Single-cycle adder 50
Single-cycle subtractor 50
Single-cycle comparator 50
Single-cycle ALU 250
Single-cycle multiplier 250
Two-cycle multiplier 250
Pipelined multiplier 250
Register 15
Bus 10

The experiment was carried out with the parameter list in Table 6.3.

Table 6.3: Parameter list.

Number of ants 10
Maximum pheromone level 5.0
Pheromone evaporation rate 0.1
Number of runs 30
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Table 6.4: Experimental results of Differential Equation Solver.
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1 4 1 1 1 2 5 8 15.1 10.34 0.3 0.46
2 6 1 2 5 6 1.77 0.42 0.03 0.18
3 7 1 1 5 6 1.13 0.58 0.03 0.18
4 7 1 1 1 2 5 7 45.43 22.84 1.43 0.88

6.2.2 Result

The result of this experiment is reported in Table 6.4. The optimum solution of

the problem No. 4, which is the example in the chapter 2, is shown in Fig. 6.3, Fig.

6.4, Fig. 6.5, and Fig. 6.6. The optimum data path requires two multipliers, one adder,

one subtracter, one comparator, five registers, and seven buses.
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Figure 6.3: Optimum Scheduling of the differential equation.
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Figure 6.6: Target architecture of the differential equation.
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6.3 Elliptical Wave Filter

The Elliptical Wave Filter is selected as the benchmark for testing in this research.

It was used as a benchmark in many papers (P. Michel, U. Lauther, and P. Duzy 1992;

P. G. Paulin and J. P. Knight 1989b; E. Torbey and J. P. Knight 1999; C. H. Gebotys

and M. I. Elmasry 1992), and (M. K. Dhodhi, F. H. Hielscher, R. H. Storer, and J.

Bhasker 1995).

The algorithm of The Elliptical Wave Filter is presented in Fig. 6.7. The CDFG of

the elliptical wave filter which was scheduled for 19 control steps and pipelined multiplier

is shown in Fig. 6.8. The optimal solutions from (C. H. Gebotys and M. I. Elmasry

1992) are given in the Table. 6.5. While the soultions from (M. K. Dhodhi, F. H.

Hielscher, R. H. Storer, and J. Bhasker 1995) and (E. Torbey and J. P. Knight 1999)

are present in Table 6.6 and Table 6.7.

process elliptic(inp, sv2, sv13, sv18, sv26, sv33,

sv38, sv39, reset, over)

/* State Variables */

inout port inp[SIZE];

inout port sv2[SIZE];

inout port sv13[SIZE];

inout port sv18[SIZE];

inout port sv26[SIZE];

inout port sv33[SIZE];

inout port sv38[SIZE];

inout port sv39[SIZE];

in port reset;

out port over;

[

/* weight registers */

register rega[SIZE] ;

register regb[SIZE] ;

register regc[SIZE] ;

register regd[SIZE] ;

register rege[SIZE] ;

register regf[SIZE] ;

register regg[SIZE] ;

register regh[SIZE] ;

/* internal variables */

boolean inpi[SIZE];

boolean outpi[SIZE];

boolean sv2i[SIZE];

boolean sv13i[SIZE];

boolean sv18i[SIZE];

boolean sv26i[SIZE];

boolean sv33i[SIZE];

boolean sv38i[SIZE];

boolean sv39i[SIZE];

/* Temporary.Results */

boolean op3[SIZE];

boolean op32[SIZE];

boolean op12[SIZE];

boolean op20[SIZE];

boolean op25[SIZE];

boolean op21[SIZE];

boolean op24[SIZE];

boolean op19[SIZE];

boolean op27[SIZE];

boolean op11[SIZE];

boolean op22[SIZE];

boolean op29[SIZE];

boolean op9[SIZE];

boolean op30[SIZE];

boolean op8[SIZE];

boolean op31[SIZE];

boolean op7[SIZE];

boolean op10[SIZE];

boolean op28[SIZE];

boolean op41[SIZE];

boolean op6[SIZE];

boolean op15[SIZE];

boolean op35[SIZE];

boolean op40[SIZE];

boolean op4[SIZE];

boolean op16[SIZE];

boolean op36[SIZE];

/* instruction.Execution */

if (reset) {

load rega=2;

load regb=2;

load regc=2;

load regd=2;

load rege=2;

load regf=2;

load regg=2;

load regh=2;

} else {

inpi = read(inp);

sv2i = read(sv2);

op3 = inpi + sv2i;

sv33i = read(sv33);

sv39i = read(sv39);

op32 = sv33i + sv39i;

sv13i = read(sv13);

op12 = op3 + sv13i;

sv26i = read(sv26);

op20 = op12 + sv26i;

op25 = op20 + op32;

op21 = op25 * rega;

op24 = op25 * regb;

op19 = op12 + op21;

op27 = op24 + op32;

op11 = op12 + op19;

op22 = op19 + op25;

op29 = op27 + op32;

op9 = op11 * regc;

sv26i = op22 + op27;

write sv26 = sv26i;

op30 = op29 * regd;

op8 = op3 + op9;

op31 = op30 + sv39i;

op7 = op3 + op8;

op10 = op8 + op19;

op28 = op27 + op31;

op41 = op31 + sv39i;

op6 = op7 * rege;

sv18i = read(sv18);

op15 = op10 + sv18i;

sv38i = read(sv38);

op35 = sv38i + op28;

outpi = op41 * regf;

op4 = inpi + op6;

op16 = op15 * regg;

op36 = op35 * regh;

sv39i = op31 + outpi;

write sv39 = sv39i;

sv2i = op4 + op8;

write sv2 = sv2i;

sv18i = op16 + sv18i;

write sv18 = sv18i;

sv38i = sv38i + op36;

write sv38 = sv38i;

sv13i = op15 + sv18i;

write sv13 = sv13i;

sv33i = sv38i + op35;

write sv33 = sv33i;

};

write over=1;

write over=0;

]/*elliptic*/

END_OF_FILE

Figure 6.7: Elliptical wave filter.
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Figure 6.8: Elliptical wave filter CDFG.

Table 6.5: EWF Optimal solutions from OASIC.
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1 17 3 3 10 10 30
2 18 2 2 10 8 180
3 21 2 1 9 7 1800
4 17 3 2 10 10 30
5 18 3 1 10 9 180
6 19 2 1 9 7 348

6.3.1 Setup

In this experiment, we use a lower bound of the bus from (C. H. Gebotys and

M. I. Elmasry 1992), which is the number of single-cycle functional units of one type

multiplied by 3. For the lower bound on the number of registers, we use the number of

loop registers. For the upper bound, the resources from the ASAP scheduling are used.
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Table 6.6: EWF solutions from PSGA Synthesis.
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2 18 2+1 2 10 - 10.2
3 21 2 1 9+1 - 10.3
4 17 3 2 10 - 10.0
5 18 3 1 10 - 10.25
6 19 2 1 9 - 10.25

Table 6.7: EWF solutions from GA Synthesis.
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1 17 3 3 10 - 3.6
2 18 2 2 10 - 11.0
3 21 2 1 9 - 66.8
4 17 3 2 10 - -
5 18 3 1 10 - -
6 19 2 1 9 - -

Costs of the resources were obtained from (C. H. Gebotys and M. I. Elmasry

1992). These are shown in Table 6.8.

Table 6.8: Cost of Resources.

Resources Cost/Unit
Time-step 50
Single-cycle adder 50
Two-cycle multiplier 250
Pipelined multiplier 250
Register 15
Bus 100
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The target cost was taken from (C. H. Gebotys and M. I. Elmasry 1992). The

experiment was carried out with the parameter list in Table 6.9.

Table 6.9: Parameter list.

Number of ants 100
Maximum pheromone level 5.0
Pheromone evaporation rate 0.1
Number of runs 30

We ran 6 experiments with resources as follows:

1. 17 time steps with single-cycle adder and two-cycle multiplier.

2. 18 time steps with single-cycle adder and two-cycle multiplier.

3. 21 time steps with single-cycle adder and two-cycle multiplier.

4. 17 time steps with single-cycle adder and pipelined multiplier.

5. 18 time steps with single-cycle adder and pipelined multiplier.

6. 19 time steps with single-cycle adder and pipelined multiplier.

6.3.2 Result

The results of these experiments are reported in Table 6.10. The data-paths of

these results are shown in Fig. 6.9 and Fig. 6.10. If the sysnthesis is used for the Digital

Signal Processor then buses are not required to be systhesized. Because usually in the

processor, only the number of functional units and the number of registers are limited.

Number of buses are available enough for all the maximum possible transfers in one

cycle. For the solutions without buses, the results are reported in Table 6.11. Please

be noted that the CPU times report in these tables are used to show the practicality of

the algorithm for the current technology and to compare between the solutions. Since

the platform is different from the experiments in other papers.
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Table 6.10: Experimental results and timing report.
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1 17 3 3 10 10 1 0 0.27 0.44
2 18 2 2 10 8 3.67 1.11 3.17 1.37
3 21 2 1 9 7 45.67 35.99 57.83 63.55
4 17 3 2 10 10 1 0 0.13 0.34
5 18 3 1 10 9 3.4 2.09 3.33 2.56
6 19 2 1 9 7 20.83 8.31 23.07 9.96

Table 6.11: Experimental results and timing report (without bus).
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3 21 2 1 9 - 4.17 2.07 3.6 2.09
4 17 3 2 10 - 1 0 0.07 0.25
5 18 3 1 10 - 1 0 0.1 0.3
6 19 2 1 9 - 1 0 0.4 0.49
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Figure 6.9: Solutions of the two-cycle multiplier.
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From Table 6.10, the result of 21 time-steps and two-cycle multiplier (problem

No.3) is the slowest to converge. This problem has the highest mobility compared with

other problems. Since the critical path of the CDFG is 17 time-steps, then 21 time-steps

is about 25 % more than the critical path; therefore the search space of this problem

is the largest for these problems. To improve the performance, the experiment was

repeated with the tighter lower bounds from (S. Y. Ohm, F. J. Kurdahi, and N. D.

Dutt 1997). The result is shown in Table 6.12.

Table 6.12: Experimental results of the 21 time-steps and two-cycle multiplier (problem
No.3).

Iteration Time (Sec)
Problem

Mean s.d. Mean s.d.

Result from Table 6.10 45.67 35.99 57.83 63.55
Result with Lower Bound 20.03 8.86 25.3 15.06

Near optimal result 6.27 2.84 6.7 3.3
Near optimul result with Lower Bound 4.93 2.57 5.17 2.73

With the results shown in Table 6.12, we can see that with these lower bounds,

the optimal solution can be found in about half of both iterations and execution time.

In the case where the mobility is high there will be many nodes in the decision tree to

be explored. For a path with high resources the system can find a solution easily. To

improve the performance, lower bounds of resources should be tightened to eliminate

the search among infeasible solutions caused by paths with low resources.

As Torbey and Knight stated in their paper (E. Torbey and J. P. Knight 1999),

“the algorithm does not have to find the optimum, only a good engineering solution.

The optimum requires an exponential search.” To show the efficiency of the algorithm

in finding a near optimal solution, the experiment was carried out with one additional

register solution. The result is reported in Table 6.12, which shows that the number of

iterations and the computational time of the near optimal solution was reduced to less

than one sixth. If the lower bounds (S. Y. Ohm, F. J. Kurdahi, and N. D. Dutt 1997)

were used the result got even better as shown in Table 6.12.
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6.4 Conclusion

AOT can find all of the optimal solutions as in (C. H. Gebotys and M. I. Elmasry

1992). For all the problems, the design with 21 time-steps and two-cycle multiplier

(problem No.3) seems to be hardest problem for all the algorithms (C. H. Gebotys and

M. I. Elmasry 1992) (E. Torbey and J. P. Knight 1999) (AOT). In the next chapter,

the algorithms to address this problem is introduced. Lower bounds should be used to

speed up the algorithm. If the optimum solution is not the goal, a trade-off between

quality and search time could be done.



CHAPTER 7

FIXED-RESOURCE MOBILITY

7.1 Overview

From the observation of all the results presented in the last chapter, one could

easily see a common characteristic of those algorithms. In Table 7.1, results from the

experiments of Gebotys et al. (C. H. Gebotys and M. I. Elmasry 1992), the computa-

tional time is increased as the number of total scheduling time-steps increases. These

happend in both the experiments with two-cycle multiplier and pipelined multiplier.

The results in Table 7.2, from Torbey et al. (E. Torbey and J. P. Knight 1999), and the

results from AOT in Tabel 7.3 and 7.4 also have the same characteristic. Please note

that, the results from Dhodhi et al. (M. K. Dhodhi, F. H. Hielscher, R. H. Storer, and

J. Bhasker 1995) do not show that same characteristic, this may cause from the fact

that these solutions are not the optimal solutions.

When the number of total scheduling time-steps increases, usually the mobilities

of all the operations also increase. If we calculate the size of search space from mobilities

of all operations, then we could understand why these algorithms require more CPU

time. Another related issue to the increasing number of total scheduling time-steps is

that it will require less functional units. In order to reduce the complexity, we fix the

number of resources first and then use it to tighten up the mobilities.

In the next section the Fixed-Resource Mobility is introduced. Then the results

from the experiments on the EWF are reported and compare to the results in the last

chapter. The conclusion is presented in the last section.

7.2 Fixed-Resource Mobility

ASAP (as soon as possible) and ALAP (as late as possible) are the earliest and the

latest time step of an operation to be scheduled. These values were computed from the

critical path of each operation by assuming that there were unlimited resources. ASAP

and ALAP are very useful, it is a fundamental step in many synthesis algorithms. We

develop tighter bounds, the fixed-resource ASAP and fixed-resource ALAP, by including

the resource constraints. These values can be used instead of ASAP and ALAP in most

56
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Table 7.1: EWF Optimal Solutions from OASIC.
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1 17 3 3 10 10 30
2 18 2 2 10 8 180
3 21 2 1 9 7 1800
4 17 3 2 10 10 30
5 18 3 1 10 9 180
6 19 2 1 9 7 348

Table 7.2: EWF Optimal Solutions (without bus) from GA Synthesis.
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1 17 3 3 10 - 3.6
2 18 2 2 10 - 11.0
3 21 2 1 9 - 66.8
4 17 3 2 10 - -
5 18 3 1 10 - -
6 19 2 1 9 - -

cases. Here, we use them to compute a tighter mobility for scheduling. It was mentioned

in (C.-T Hwang, J.-H Lee, and Y.-C Hsu 1991) that the tighter mobility can be computed

by dividing the number of operations of the same type to be executed by the number

of functional units of that type. Our algorithms will be tighter in some cases but also

have more computation complexity.

Next, the algorithms to compute fixed-resource ASAP and fixed-resource ALAP

are explained. These values consider not only the critical path but also the fixed number

of functional units for a CDFG. These algorithms are also applicable to a partially

scheduled CDFG.
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Table 7.3: EWF Optimal Solutions from AOT.
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1 17 3 3 10 10 1 0 0.27 0.44
2 18 2 2 10 8 3.67 1.11 3.17 1.37
3 21 2 1 9 7 45.67 35.99 57.83 63.55
4 17 3 2 10 10 1 0 0.13 0.34
5 18 3 1 10 9 3.4 2.09 3.33 2.56
6 19 2 1 9 7 20.83 8.31 23.07 9.96

Table 7.4: EWF Optimal Solutions (without bus) from AOT.
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1 17 3 3 10 - 1 0 0.2 0.4
2 18 2 2 10 - 1.6 0.61 1.1 0.47
3 21 2 1 9 - 4.17 2.07 3.6 2.09
4 17 3 2 10 - 1 0 0.07 0.25
5 18 3 1 10 - 1 0 0.1 0.3
6 19 2 1 9 - 1 0 0.4 0.49

The algorithm for the fixed-resource ASAP of operation x:

1. Find P , the set of all predecessor operations of operation x, excluding the

scheduled operations.

2. Construct a resource allocation table of all the scheduled operations.

3. Sort the operations in set P in the ascending order of the ASAP time-step of

each operation.

4. For each operation y in set P , by the sorted order, assign it to the earliest
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possible time-step in the resource allocation table. The time-step has to satisfy

both the ASAP time-step of operation y and the resource constraints but ignore

the precedence constraints.

5. The fixed-resource ASAP of operation x is equal to the latest complete time-step

of all the operations in set P plus 1.

The proof of this algorithm is trivial. Since it needs to make sure that the fixed-

resource ASAP is less than or equal to the earliest feasible time-step. By assigning

the operators in the ascending order of ASAP values, the operations of each type will

be packed in the tightest manner. Because the operations of the same type have the

same latency and execution time, so another order of assignment will only extend the

assigned time-steps. If this assignment is feasible, then the fixed-resource ASAP will be

the earliest feasible time-step. If this assignment is not feasible, then the fixed-resource

ASAP will be less than the earliest feasible time-step.

The algorithm for the fixed-resource ALAP of operation x:

1. Find S, the set of all successor operations of operation x, excluding the scheduled

operations.

2. Construct a resource allocation table of all the scheduled operations.

3. Sort the operations in set S in the descending order of the ALAP time-step of

each operation.

4. For each operation y in set S, by the sorted order, assign it to the latest possible

time-step in the resource allocation table. The time-step has to satisfy both the

ALAP time-step of operation y and the resource constraints but ignore the

precedence constraints.

5. The fixed-resource ALAP of operation x is equal to the earliest time-step of all

the operations in set S minus the number of execution time-steps of operation

x.

The complexity of this algorithm is O(n). If we want to compute for all the

operations then it is O(n2). To get the best performance, the algorithms should be

executed in the right order, so the computed time-steps could be used in the next

calculation.
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7.3 An Experiment on EWF

The experiments on EWF are repeated, but this time the fixed-resource mobility

were integrated with AOT algorithm. The results are reported in Table 7.5 and 7.6.

Table 7.5: EWF Optimal solutions from AOT, comparing to the Fixed-Resource Mo-
bility
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1 1 0 0.27 0.44 1 0 0.17 0.37
2 3.67 1.11 3.17 1.37 1.07 0.25 0.4 0.55
3 45.67 35.99 57.83 63.55 13.63 24.08 33.17 65.4
4 1 0 0.13 0.34 1 0 0.2 0.4
5 3.4 2.09 3.33 2.56 2.83 1.07 3.57 1.75
6 20.83 8.31 23.07 9.96 4.7 1.88 6.9 3.51

Table 7.6: EWF Optimal solutions (without bus) from AOT, comparing to the Fixed-
Resource Mobility

Normal Mobility Fixed-Resource Mobility
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1 1 0 0.2 0.4 1 0 0.07 0.25
2 1.6 0.61 1.1 0.47 1 0 0.1 0.3
3 4.17 2.07 3.6 2.09 1.77 0.76 2.43 1.36
4 1 0 0.07 0.25 1 0 0.13 0.34
5 1 0 0.1 0.3 1 0 0.17 0.37
6 1 0 0.4 0.49 1 0 0.37 0.48
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7.4 Conclusion

From the Table 7.5 and Table 7.6, the number of iteration is lower when the fixed-

resource mobility was integrated with AOT. Since the complexity of the fixed-resource

mobility is higher than the normal mobility, so the improvement of the CPU time is not

seen clearly in all solutions, except the solution no. 3 and 6.

From the results, it can be seen that the algorithms can be used to accelerate the

computational time. Usually if the resource is tighter the execution time-step has to be

higher, the mobility will be higher, due to the longer execution time-steps. But with the

Fixed-Resource Mobility, the mobility could be tighten, and the computational time is

reduced. This algorithms should be good for digital signal processor, which usually has

a few functional units.



CHAPTER 8

SUMMARY AND CONCLUSION

In this research an algorithm based on Ant Colony Optimization techniques called

Ants on a Tree (AOT) is introduced. This algorithm can integrate many algorithms

together to solve a single problem. The strength of AOT is demonstrated by solving

a High-Level Synthesis problem. A High-Level Synthesis problem consists of many

design steps and many algorithms to solve each of them. AOT can easily integrate

these algorithms to limit the search space and use them as heuristic weights to guide

the search.

In the chapter 2, the High-Level Synthesis Algorithms are reviewed. The strenght

and weakness for each kind of algorithms is pointed out. For the Heuristic algorithm,

the advantage is the speed of the algorithm, which usually is in the O(n2) complexity.

The weakness is that it can not guarantee the optimality of the solution. With the real

design process, many heuristic algorithms have to be used, and the quality solution is

difficult to achieve. A lot of human interventions are needed. In the case of ILP, the

strong point is that it can guarantee to get the optimal solution. The disadvantage is

that it has exponential time complexity. It is difficult to form the efficient constrained

equations. Another related issue for the ILP is that, when some of the constraints are

relaxed, it could be used as a good bound for the search space. For GA, the advantage

is that the quality and the processing time could be traded off. Good chromosome

encoding and genetic operators are required to get the better performance.

ACO is introduced in chapter 3. The common steps of the algorithm is explained.

Two issues to improve the performance of the algorithm are addressed. First, they try to

reduce random behavior of the algorithms, by using q0 (ACS, Ant-Q, andMAX-MIN

Ant System) to make the search more direct. Second, to avoid premature convergence,

ants are forced to search for new solutions. By decreasing the pheromone level as the

ants travel (ACS), it will reduce the probability for other ants to follow the same route.

By limiting the pheromone level (MAX-MIN Ant System), there is always a chance

for every possible choice.

In chapter 4, AOT is introduced. The major difference from ACO is that it is

applied to search a tree, called the decision tree. Some of the rules in ACO algorithm
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are modified. A newly introduced operator, the path exploration is aimed to replace q0,

which is used in ACS, Ant-Q, and MAX −MIN Ant System. The state transition

rule is also modified. The biased probabilistic rule is applied by using the heuristic

weights first. The pheromone levels are used after all the choices are exhausted. It

was modified in this way because the heuristic weights may be the results from many

heuristic algorihtms. The main purpose of this pheromone updating rule is to protect

the algorithm from storage explosion. It was adopted from the pheromone updating

rule of MAX −MIN Ant System.

The chapter 5 explains how to synthesis a data-path by AOT. A normal synthe-

sis process is used. It is composed of resource allocation, scheduling, functional unit

assignment, register assignment, and bus assignment. Sequence of decisions in the sys-

thesis problem are arranged into the decision tree. The procedures of AOT are applied

to search for the solutions. Some heuristic knowledge are converted to the heuristic

weights. They are used to biased in the state transition rule.

Expriments in chapter 6 show the performance of the algorithm. AOT can find

all of the optimal solutions as in (C. H. Gebotys and M. I. Elmasry 1992). For all the

problems, the design with 21 time-steps and two-cycle multiplier (problem No.3) seems

to be hardest problem for all the algorithms.

To improve the performance of AOT further, in the chapter 7, a new algorithm

is introduced and includes into the AOT algorithm. From the results, the performance

gain could be clearly seen. Usually if the resources is tighter, the mobility will be

higher, due to the longer execution time-steps. But with the Fixed-Resource Mobility,

the mobility could be tighten, and the computational time is reduced. This algorithms

should be applicable for digital signal processor, which usually has a few functional

units.

The contributions of this work are as follows:

1. The main contribution of our work is that the proposed algorithm can make

use of many sources of existing knowledge in terms of algorithms and design

rules and integrates them in a flexible way to solve hard real-world problems in

High-Level Synthesis.

2. The proposed algorithm differs from ILP and other heuristic algorithms that it is

in the class of evolutionary algorithms, therefore it generates multiple solutions
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instead of one solution, it also continuously improves the solutions so the quality

of the solution and the time to find the solution can be trade off. The ability to

trade off quality and time is important for real-world practical design problems.

3. It is easy to include heuristic algorithms into AOT by using the output of

a heuristic as the initial heuristic weights, which is the characteristic of Ant

algorithms.

4. We compare AOT to GA. In GA we have to find good encoding of the solutions

and the proper genetic operators. These steps are not trivial, because improper

encoding method may lead to infeasible solutions (which we have to recognize

them) and to inefficient mapping (many to one). Many people who adopted

the GA have to find the new encoding and new genetic operators as (E. Torbey

and J. P. Knight 1999; M. J. M. Heijligers and J. A. G. Jess 1995), and (M.

K. Dhodhi, F. H. Hielscher, R. H. Storer, and J. Bhasker 1995), and it will be

more difficult if that problem is composed of many steps.
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