
¡ÒÃ¨íÒá¹¡ÊˆÇ¹»ÃÐ¡Íºâ´ÂàÁ·ÃÔ¡«Œ¤ÇÒÁ¾Ã‰ÍÁà¾ÃÕÂ§

¹ÒÂ ªÑªÇÔ·ÂŒ ÍÒÀÃ³Œà·ÇÑ

ÇÔ·ÂÒ¹Ô¾¹¸Œ¹Õéà»“¹ÊˆÇ¹Ë¹Öè§¢Í§¡ÒÃÈÖ¡ÉÒµÒÁËÅÑ¡ÊÙµÃ»ÃÔÒÇÔÈÇ¡ÃÃÁÈÒÊµÃ´ØÉ®ÕºÑ³±Ôµ
ÊÒ¢ÒÇÔªÒÇÔÈÇ¡ÃÃÁ¤ÍÁ¾ÔÇàµÍÃŒ ÀÒ¤ÇÔªÒÇÔÈÇ¡ÃÃÁ¤ÍÁ¾ÔÇàµÍÃŒ

¤³ÐÇÔÈÇ¡ÃÃÁÈÒÊµÃŒ ¨ØÌÒÅ§¡Ã³ŒÁËÒÇÔ·ÂÒÅÑÂ
»•¡ÒÃÈÖ¡ÉÒ 2547

ISBN 974-17-4574-5

ÅÔ¢ÊÔ·¸Ôì¢Í§¨ØÌÒÅ§¡Ã³ŒÁËÒÇÔ·ÂÒÅÑÂ

BUILDING-BLOCK IDENTIFICATION BY SIMULTANEITY MATRIX

MR. CHATCHAWIT APORNTEWAN

A Dissertation Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Engineering in Computer Engineering

Department of Computer Engineering

Faculty of Engineering

Chulalongkorn University

Academic Year 2004

ISBN 974-17-4574-5

Thesis title Building-block Identification by Simultaneity Matrix

By Chatchawit Aporntewan

Field of Study Computer Engineering

Thesis Advisor Associate Professor Prabhas Chongstitvatana, Ph.D.

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial Ful-

fillment of the Requirements for the Doctor’s Degree

. Dean of Faculty of Engineering

(Professor Direk Lavansiri, Ph.D.)

THESIS COMMITTEE

. Chairman

(Professor Chidchanok Lursinsap, Ph.D.)

. Thesis Advisor

(Associate Professor Prabhas Chongstitvatana, Ph.D.)

. Member

(Associate Professor Somchai Prasitjutrakul, Ph.D.)

. Member

(Assistant Professor Boonserm Kijsirikul, Ph.D.)

. Member

(Assistant Professor Sanya Mitaim, Ph.D.)

iv

ªÑªÇÔ·ÂŒ ÍÒÀÃ³Œà·ÇÑ : ¡ÒÃ¨íÒá¹¡ÊˆÇ¹»ÃÐ¡Íºâ´ÂàÁ·ÃÔ¡«Œ¤ÇÒÁ¾Ã‰ÍÁà¾ÃÕÂ§ (Building-

block Identification by Simultaneity Matrix). ÍÒ¨ÒÃÂŒ·Õè»ÃÖ¡ÉÒ : ÃÈ. ´Ã. »ÃÐÀÒÈ ¨§
Ê¶ÔµÂŒÇÑ²¹Ò, 77 Ë¹‰Ò. ISBN 974-17-4574-5

àÁ·ÃÔ¡«Œ¤ÇÒÁ¾Ã‰ÍÁà¾ÃÕÂ§¤×ÍàÁ·ÃÔ¡«Œ¢Í§µÑÇàÅ¢¢¹Ò´ ����� àÁ·ÃÔ¡«Œ¶Ù¡ÊÃ‰Ò§¢Öé¹ÁÒ¨Ò¡
à«µ¢Í§¤íÒµÍº·ÕèÁÕ¤ÇÒÁÂÒÇ � ºÔ· ÊÁÒªÔ¡¢Í§àÁ·ÃÔ¡«Œ (�����) áÊ´§¤ˆÒ¤ÇÒÁÊÑÁ¾Ñ¹¸ŒÃÐËÇˆÒ§
ºÔ··ÕèµíÒáË¹ˆ§ 	 áÅÐºÔ··ÕèµíÒáË¹ˆ§
 àÃÒáºˆ§¾ÒÃŒ·ÔªÑ¹¢Í§ ����������� ������� â´ÂãÊˆ 	 áÅÐ
 äÇ‰
ã¹¾ÒÃŒ·ÔªÑ¹ÊÑºà«ç·à´ÕÂÇ¡Ñ¹ ¶‰Ò ����� ÁÕ¤ˆÒÁÒ¡ ¾ÒÃŒ·ÔªÑ¹¨Ð¶Ù¡ãª‰ã¹¡ÒÃ¼ÊÁ¤íÒµÍº à¾×èÍ·ÕèÇˆÒºÔ·
·ÕèÍÂÙˆã¹¾ÒÃŒ·ÔªÑ¹ÊÑºà«ç·à´ÕÂÇ¡Ñ¹¨ÐµÔ´ä»´‰ÇÂ¡Ñ¹ ¡ÒÃãª‰àÁ·ÃÔ¡«Œ¤ÇÒÁ¾Ã‰ÍÁà¾ÃÕÂ§·íÒãË‰ËÒ¼Å
à©ÅÂ·Õè´Õ·ÕèÊØ´¢Í§ Additively Decomposable Functions (ADFs) áÅÐ Hierarchically De-

composable Functions (HDFs) ä´‰â´Âãª‰¨íÒ¹Ç¹¤ÃÑé§ã¹¡ÒÃ¤íÒ¹Ç³¿’§¡ŒªÑ¹à¾ÔèÁ¢Öé¹áºº¾ËØ
¹ÒÁµÒÁ¢¹Ò´¢Í§»’ËÒ ¡ÒÃà»ÃÕÂºà·ÕÂº¡Ñº hierarchical Bayesian Optimization Algo-

rithm (hBOA) áÊ´§ãË‰àËç¹ÇˆÒ hBOA ¤íÒ¹Ç³¤ˆÒ¿’§¡ŒªÑ¹à»“¹¨íÒ¹Ç¹¤ÃÑé§¹‰ÍÂ¡ÇˆÒ áµˆ¡ÒÃ¤íÒ
¹Ç³àÁ·ÃÔ¡«Œà·ÕÂº¡Ñº¡ÒÃÊÃ‰Ò§â¤Ã§¢ˆÒÂ¢Í§àºÂŒ ãª‰àÇÅÒ¹‰ÍÂ¡ÇˆÒ 10 à·ˆÒ áÅÐãª‰Ë¹ˆÇÂ¤ÇÒÁ
¨íÒ¹‰ÍÂ¡ÇˆÒ 10 à·ˆÒ

ÀÒ¤ÇÔªÒ ÇÔÈÇ¡ÃÃÁ¤ÍÁ¾ÔÇàµÍÃŒ ÅÒÂÁ×Íª×èÍ¹ÔÊÔµ .

ÊÒ¢ÒÇÔªÒ ÇÔÈÇ¡ÃÃÁ¤ÍÁ¾ÔÇàµÍÃŒ ÅÒÂÁ×Íª×èÍÍÒ¨ÒÃÂŒ·Õè»ÃÖ¡ÉÒ

»•¡ÒÃÈÖ¡ÉÒ 2547 ÅÒÂÁ×Íª×èÍÍÒ¨ÒÃÂŒ·Õè»ÃÖ¡ÉÒÃˆÇÁ

v

##4371804321 : MAJOR COMPUTER SCIENCE

KEYWORDS : GENETIC ALGORITHMS, BUILDING-BLOCK IDENTIFICATION,

LINKAGE LEARNING, SIMULTANEITY MATRIX

CHATCHAWIT APORNTEWAN : BUILDING-BLOCK IDENTIFICATION BY

SIMULTANEITY MATRIX. THESIS ADVISOR : ASSOC. PROF. PRABHAS

CHONGSTITVATANA, Ph.D., 77 pp. ISBN 974-17-4574-5

The simultaneity matrix is an ����� matrix of numbers. The matrix is constructed

according to a set of � -bit solutions. The matrix element � ��� is the degree of linkage be-

tween bit positions � and � . We partition �! �"$#$#�#%"&�('*),+ by putting � and � in the same

partition subset if � ��� is significantly high. The partition represents the bit positions of

building blocks. The partition is exploited in solution recombination so that the bits gov-

erned by the same partition subset are passed together. It can be shown that identifying

building blocks by the simultaneity matrix can solve the additively decomposable func-

tions (ADFs) and hierarchically decomposable functions (HDFs) in a polynomial relation-

ship between the number of function evaluations required to reach the optimum and the

problem size. A comparison to the hierarchical Bayesian optimization algorithm (hBOA)

is made. The hBOA uses less number of function evaluations than that of our algorithm.

However, computing the matrix is 10 times faster and uses 10 times less memory than

constructing Bayesian network.

Department Computer Engineering Student’s signature .

Field of study Computer Engineering Advisor’s signature .

Academic year 2004 Co-advisor’s signature

vi

Acknowledgements

I used to think about so many things that I plan to write here, but I forgot it. Some-

body said “Ph.D. stands for Permanent Head Damage.” I begin to agree with him. In the

first year, there are a lot of questions stuck in my mind. Why do I study in Ph.D. program?

What do I study for???? Now I stop thinking about those questions. Do I grow

up or give up to the destiny?

I would like to express my gratitude to my advisor, Assoc. Prof. Prabhas Chongstit-

vatana, for his valuable advice and continuous support. Many times that we have to stay

over night. The funniest project is the IC design contest in 2000-2001. He endorsed our

teams about fifty thousand baht. I worried about paying the money back to him. However,

the teams can make a small profit. If we were able to forget the sufferings about quali-

fication exam, finding a thesis topic, being unable to put the work forward, and rejected

papers, Ph.D. life is not too bad.

I would like to thank many people, my grand mother, my parents, Assoc. Prof.

David Ruffolo (for the name simultaneity matrix), Prof. Phillip Rogaway (for the parti-

tioning algorithm), Dr. Athasit Surarerk (for the correctness proofs). I am being supported

by Chulalongkorn university’s scholarship given in the occasion of the Sixth-Cycle (-�. nd)

Birthday Anniversary of His Majesty King Bhumibol Adulyadej.

Chatchawit Aporntewan

March 18, 2004

Contents

Page

Abstract (Thai) . iv

Abstract (English) . v

Acknowledgements . vi

Contents . vii

List of Tables . ix

List of Figures . x

Chapter

1 Motivation . 2

1.1 Introduction to Genetic Algorithms . 2

1.2 Schema Theorem . 3

1.3 Inductive Bias in Genetic Algorithms . 4

1.4 Trap Functions . 6

1.5 The Purpose of the Study . 7

2 Literature Reviews . 11

2.1 Test Functions . 12

2.1.1 / -trap functions . 13

2.1.2 �0�21 -trap functions . 13

2.1.3 HIFF Functions . 14

2.1.4 HTrap1 Functions . 15

2.1.5 HTrap2 Functions . 15

2.2 Approaches for Identifying Building Blocks 16

2.2.1 Inversion operator . 16

2.2.2 Messy Genetic Algorithms . 17

2.2.3 Learning Linkage . 18

2.2.4 Non-monotonicity Detection . 19

viii

Contents (cont.)

Page

2.2.5 Walsh’s coefficients . 20

2.3 Probabilistic Model-Building Genetic Algorithms 21

2.3.1 Population-based incremental learning (PBIL) 22

2.3.2 Bivariate marginal distribution algorithm (BMDA) 22

2.3.3 Extended compact genetic algorithm (ECGA) 24

2.3.4 Bayesian optimization algorithm (BOA) 26

2.3.5 Hierarchical BOA . 28

3 An Observation of the Compact Genetic Algorithm 30

4 The Algorithm . 34

4.1 Simultaneity-Matrix-Construction (SMC) Algorithm 34

4.2 Partitioning (PAR) Algorithm . 36

4.3 Correctness Proofs . 39

5 Performance Comparisons . 46

5.1 Methodology . 46

5.2 A Visualization of the Simultaneity Matrix 46

5.3 A Comparison to the BOA . 48

5.4 A Comparison to the hBOA . 51

6 Conclusions . 56

References . 59

Biography . 67

ix

List of Tables

Page

1.1 A population of highly-fit individuals . 5

2.1 A nonuniform distribution . 25

3.1 Simultaneity matrix produced by repeating the compact GA 31

4.1 Simultaneity matrix produced by SMC algorithm 39

4.2 A trace of the PAR algorithm . 41

x

List of Figures

Page

2.1 5-trap function . 13

2.2 Interpreting the solution as a binary tree . 14

2.3 Interpreting the solution as a 3-branch tree . 15

2.4 Inversion operator . 17

2.5 Learning linkage . 18

2.6 Linkage identification by non-monotonicity detection (LIMD) 20

2.7 Pseudocode of the compact GA . 23

2.8 Construction of the dependency graph . 24

2.9 Creating a new individual . 24

2.10 Bayesian network . 26

2.11 The network structure for �0�43 -trap functions 27

4.1 Simultaneity-Matrix-Construction (SMC) algorithm 35

4.2 The PAR algorithm . 40

5.1 Matrix adaptation (additively decomposable functions) 47

5.2 Matrix adaptation (hierarchically decomposable functions) 48

5.3 Performance comparison between the BOA and BISM (onemax functions) . . . 50

5.4 Performance comparison between the BOA and BISM (�0�65 functions) 50

5.5 Performance comparison between the BOA and BISM (�0�27 functions) 50

5.6 Elapsed time required to construct Bayesian network (in BOA) and matrix . . . 51

5.7 Performance comparison between the hBOA and BISM (HIFF functions) 53

5.8 Performance comparison between the hBOA and BISM (HTrap1 functions) . . 53

5.9 Performance comparison between the hBOA and BISM (HTrap2 functions) . . 53

5.10 Elapsed time required to construct Bayesian network (in hBOA) and matrix . . 54

5.11 Memory usage required to construct Bayesian network (in hBOA) and matrix . 54

I shall strive to the end, but whether gain or loss is beyond my powers to foresee.

(Chuko Liang, Romance of the Three Kingdoms)

CHAPTER I

Motivation

1.1 Introduction to Genetic Algorithms

Genetic Algorithms (GAs), proposed by J. H. Holland in 1975, is an algorithm

which simulates natural evolution [34]. Holland’s motivation is to study the behavior of

complex and adaptive systems. GAs are later popularized by D. E. Goldberg as it is a

robust optimization algorithm [19, 45]. The robustness means that GAs can be applied

to a wide range of optimization problems. The behavior of the simple GA on several

functions (famously known as De Jong’s test suite) is shown elsewhere [14]. For an intro-

duction to the subject, “A Genetic Algorithm Tutorial” is recommended [78] (download

at http://www.cs.colostate.edu/˜genitor/MiscPubs/tutorial.ps.gz). The simple GA consists

of a population of individuals [19]. An individual, 8 , is defined as:

8:9<;�=>#�#$#?;&@BADC"E; �>F �! �"�),+ (1.1)

A population at time G , HJIKG&L , is defined as:

HNMO9P��84M= "$#$#$#%"Q84MR ADC + (1.2)

Usually, / is an even number. A pair of individuals is the result of previous population.

��84M� "Q84M�TS C +(9VU IXWYIKZ�IKHNM ADC L[L&L"E�>9\]"^.]"$#$#�#%"?/_'`. (1.3)

The operators, Z , W , and U , are called selection, crossover, and mutation, respectively.

The three operators are defined as:

Z(IaH M L49b��8 M� "Q8 M� + with probability
c Id8 M� Le R ADCf?g = c IT8 Mf L �

c IT8 M� Le R ADCf�g = c Id8 Mf L (1.4)

In GAs literature,
cih 8:j k S is called fitness function. The crossover is defined as:

W4Il��8EC"Q8nm�+oL49 prq$sutwvOxzy(v|{w}~s�t���x��Jy�v|{l�&s�twv�x��_y�vl{�}�sut��Ex�y(v&{��
with probability ���q�twv?��t����
with probability �������

(1.5)

3

where �zC is an � -bit binary number and �iC is randomly chosen from �����?��9\. f '_)�"4)��1��*��'V),+ . The symbols &, � , and � denotes the logical AND, logical EXCLUSIVE,

and logical NOT, respectively. The mutation is defined as:

U IB��8EC^"Q8nm�+oL49b�o��IT8EC|L"4��IT8nm^L^+ (1.6)

��IT82L4908����_m (1.7)

where �_m�9\;�=O#$#$#[;&@BADC"�; � 9 p with probability)�'� ¢¡) with probability ¢¡ (1.8)

It should be noted that �zC and �_m are reproduced every time performing W and � , but ¤£
and ¢¡ are constant values. Let H = be generated at random. Consequently, H M "[G¦¥§) are

obtained by the definition.

1.2 Schema Theorem

The schema theorem explains the behavior of the simple GA. A schema (a set of

individuals), ¨ , is defined as:

¨©9\ªD=O#$#�#�ª¢«TADC�"4ª �>F �! �"$)�"%¬�+ (1.9)

Let an individual 89§;=O#$#�#?;�«TADC"2; ��F �! �"$),+ . 8 F ¨ if and only if for all �["2; � 9§ª � orª � 9P¬ . Let �®IK¨�"[G&L be the number of individuals in H M which belong to ¨ . The order of

a schema, ¯]IK¨°L , is defined as:

¯]IK¨°L49 «dADC± � g =6² IQª � L^" ² I³ª � L49
p ´ if ª � 9*¬) ´ otherwise

(1.10)

The defining length of a schema, µ]IK¨°L , is defined as:

µ�Ia¨°L49 max��¶E· IK�BLE' min��¶E· IK�BL^"¹¸ 9P��J�$ª �»º9b¬�+ (1.11)

The schema theorem is shown in Equation 1.12 [34, 19].

�®IK¨�"&G�¼½)¾L�¥ �®IK¨�"[G&L c IK¨°Lc¾¿|ÀlÁ Â)Ã'° D£ µ�Ia¨°LÄ '�) '� ¢¡2¯�Ia¨°L&Å (1.12)

4

where
c IK¨°L =

eÆ ¶%Ç c IT82L�È��®Ia¨�"[G&L and
c¾¿|ÀlÁ

=
eÆ ¶�ÉËÊ c Id8�L�ÈÌ/ (/ denotes the population

size). Let ² 9ÎÍ�Ï Ç�ÐÍÒÑBÓ³Ô°Õ)�'z D£�Ö|Ï Ç�Ð«dADC 'z ¢¡2¯�Ia¨°L&× . Hence,

�®IK¨�"[G&L�¥��®IK¨�"? �L ² M (1.13)

The above-average, low-order, short-defining length schema results in ²ÌØ) . Therefore,�®Ia¨�"[G&L grows exponentially with G . This satisfies Holland’s motivation, that is explain-

ing the behavior of the simple GA [15]. However, the schema theorem shows the weak-

ness if we consider GAs as an optimization algorithm. The simple GA performs badly

when highly-fit individuals are not in the above-average, low-order, short-defining length

schemata. Recent advancement of the schema theorem is shown elsewhere [3, 7, 73, 74].

1.3 Inductive Bias in Genetic Algorithms

No Free Lunch (NFL) theorem states that the performance of any optimization al-

gorithms, averaged on all possible optimization functions, is identical [83, 84]. In other

words, GAs are as good as a random search. The random search is defined as:

H M 9P��8 M + (1.14)

where 8 M is drawn from a distribution, Ù M . In the random search, Ù M is a uniform dis-

tribution for all G . If Ù M is not a uniform distribution, it is said there is an inductive

bias. Most optimization algorithms infer the distribution Ù M from the past information,c Id8 = L"$#$#�#�" c Id8 M ADC L . The NFL theorem averages the performance of an optimization algo-

rithm on all possible functions including the functions in which no optimization algorithm

can gain the benefit of the past information. Such a function is rarely found in scientific

and engineering applications.

Certainly, there is an inductive bias in the simple GA because the population is not

random. An individual in the current population is a recombination of individuals in the

previous population. The preceding individuals are selected proportionally to their fitness

5

(see Equation 1.4). Informally speaking, the inductive bias is to explore an individual that

is a recombination of highly-fit individuals. The inductive bias in GAs is referred to as

building-block hypothesis – the highly-fit individuals are composed of building blocks.

Building block is what you infer from a set of highly-fit individuals [23, pp. 60–

61]. Most people infer from Table 1.1 that the highly-fit individuals are composed of

“00000” and “11111.” The dependency between variables ; � "?; �dS C^"�; �TS m�"�; �TS¢Ú "?; �dS�Û where��9©]"^7]"$)�]"$)¾7]"^.o �"^.�7]"?5� �"�5�7w"?3� �"&3�7 is recognized by means of a statistical method, for

example, Pearson’s chi-square (pp. 23). The dependent variables are put in the same par-

tition subset. We write only subscript letters. Hence,

���! �"$)�"^.w"�5�"?3�+�"�#$#$#�"��¾3�7w"?3�Ü�"?3�-]"?3�Ý�"[3�Þ]+�+ (1.15)

The partition shown in Equation 1.15 are bit positions of the building blocks. The bit val-

ues correspond to the population of highly-fit individuals. In the simple GA, the crossover

operator plays an important role in mixing building blocks. The crossover operator recom-

bines and also disrupts the building blocks because it does not consider the dependency

between variables.

Table 1.1: A population of highly-fit individuals;�=O#$#$#[; Ûlß
11111 11111 11111 11111 00000 11111 11111 11111 00000 00000

11111 00000 00000 11111 00000 00000 00000 11111 00000 11111

00000 00000 11111 00000 00000 11111 11111 11111 11111 00000

11111 11111 11111 00000 11111 11111 00000 11111 11111 11111

00000 11111 00000 00000 00000 00000 00000 11111 00000 11111

11111 00000 11111 00000 00000 00000 00000 00000 11111 00000

11111 00000 00000 11111 11111 00000 00000 00000 11111 00000

Michalski (2000) showed that the rule-based learning is able to learn the attributes

of highly-fit individuals [44]. In Michalski’s paper, it is clear what is an inductive bias

because the rule-based learning is a learning algorithm in Machine Learning (ML) [46].

6

The GAs are robust because its inductive bias is general for many optimization problems.

In contrast, a heuristic search is specifically designed to fit a problem. The heuristic search

cannot be effectively used with another problem. However, with the current understanding

of the simple GA, we can design a test function in which the simple GA performs badly.

The test functions give the clear weakness of the simple GA. The test functions also

provide an insight for improving the inductive bias of the simple GA. The next section

introduces deceptive functions also called trap functions [1, 12].

1.4 Trap Functions

In this section, trap functions show the case in which the building blocks are more

likely to be disrupted [1, 12]. A more general definition of trap functions will be shown

in Section 2.1. The 5-bit trap function, àEá , is defined as:

à>á!IÒ;�=^;$C&;�m^; Ú ; Û L49 p 7 ; âJ973�'ãâ ; otherwise,
âJ9 Û± � g = ; � "�; ��F �! �"$)o+ (1.16)

An additively decomposable function (ADF), à6CÒ=ä,á , is defined as:

à�CÒ=ä,á!I³;�=O#$#$#?; Ûlß L�9 ß± � g = à�á!I³;�á � ;�á �TS C&;�á �TS m^;�á �TS¢Ú ;�á �TS�Û L (1.17)

The ADF fools the simple GA to favor substring “00000” while the highly-fit individuals

are composed of “11111.”

The defining length of a schema varies with its ordering. For example, the same

function, à4CÒ=ä,á , is rewritten as:

à4CÒ=ä,áoI³;�=O#$#$#[; Ûlß LY9 ß± � g = à>á!I³; � ; �dS CÒ=^; �dS mB=^; �dS¢Ú =^; �dS�Û =�L (1.18)

With the ordering in Equation 1.17, a schema ª�C�9
“),)�)�)�)2¬�¬Ã¬Ã¬Ã¬�¬¦¬�¬Ã¬�¬Ã¬Ã¬�¬¦¬�¬Ã¬�¬Ã¬Ã¬�¬¦¬�¬Ã¬�¬¦¬�¬�¬¦¬�¬Ã¬�¬¦¬�¬�¬¦¬�¬Ã¬�¬¦¬�¬Ã¬Ã¬�¬Ã¬�¬ .”
With the ordering in Equation 1.18, ªnC denoted by ªDm�9
“)Y¬å¬�¬å¬å¬�¬å¬å¬�¬Ã)4¬å¬å¬�¬å¬å¬�¬å¬å¬�)6¬2¬å¬å¬�¬å¬å¬�¬å¬�)6¬å¬2¬å¬å¬�¬å¬å¬�¬Ã)Y¬å¬å¬2¬å¬å¬�¬å¬�¬ .”

7

µ]IQª¤C[LN9æ3 and µ�I³ªDmLN9æ3� . The schema ª¹C is identical to ªDm , but µ]IQª¢mL Ø µ]IQª¤C&L . Long

defining length causes ²�ç) in Equation 1.13. Consequently, the number of solutions that

match schema ªDm decreases exponentially.

Thierens raised the scalability issue of the simple GA [71, 72]. He used the uniform

crossover so that the building blocks are randomly mixed (the uniform crossover is de-

fined by randomly choosing mask bits, �iC , from ������)è�<���\. « '`.w+ [70]). The fitness

function is the �0�67 -trap function. The analysis shows that either the computational time

grows exponentially with the number of 7 -bit trap functions or the population size must be

exponentially increased. It is clear that scaling up the problem size requires information

about the building blocks so that the solutions are efficiently mixed. In addition, the per-

formance of simple GAs relies on the ordering of solution bits. The ordering may not pack

the dependent bits close together. Such an ordering results in poor building-block mixing.

Therefore the building blocks need to be identified to improve the scalability issue.

The building-block identification is sometimes referred to as ordering problem or

linkage learning. The word “linkage” is borrowed from biology. In its biological mean-

ing, linkage is the tendency for alleles of different genes to be passed together from one

generation to the next [82]. A gene is analogous to a bit position. An allele is analogous to

to a bit value. We prefer to avoid the word “linkage” because it may confuses biologists.

1.5 The Purpose of the Study

People are fascinated by GAs’ magic – a wide range of problems are applicable,

only fitness function is required, and prior information is optional. Such an algorithm

which satisfies these properties is referred to as blackbox optimization algorithms, for

example, simulated annealing (SA) [42]. It is clear that an optimization algorithm cannot

solve all problems effectively [83, 84]. While most blackbox optimization algorithms

exploit gradients, building blocks distinguish GAs from the others. A goal of current

8

research is to develop GAs to be an algorithm that is good at composing building blocks.

The problems that should be effectively solved by GAs are narrowed to problems that can

be solved by composing building blocks of order bounded by a constant.

The test functions described in Section 2.1 are accepted as a loosely agreed guide-

line for GA designers. The test functions resist gradient-based algorithms, but they can

be solved by identifying and composing building blocks. The test functions serve as a

candidate of functions that we are interested in. Choosing a test function is based on

the distribution of functions that will be observed in application domain. Usually, func-

tions that will be frequently observed are preferable. Using a test suite (or benchmark) is

common in particular disciplines, for example, computer architecture [32] and data com-

pression [66]. In computer architecture, benchmark is widely accepted in both academic

and commercial institutes (see http://www.specbench.org).

The main reason for using benchmark is that a number of disciplines falls in No

Free Lunch (NFL) theorem [83, 84]. Data compression is an obvious case for NFL the-

orem. You can safely say that no compression algorithm is able to compress all files of

which the size is less than 1 bytes (all compressed files must be smaller than the origi-

nals). The proof is omitted because it is trivial. An approach for compression is to assume

the input distribution, and therefore compression techniques are separated for text, image,

voice, etc. Similarly, blackbox optimizations are separated in many categories: Evolution-

ary Programming (EP) [17, 18], Evolution Strategies (ES) [6, 81], Genetic Algorithms

(GA) [19, 34], and Genetic Programming (GP) [43]. Each of them is efficient for a partic-

ular problem domain (finite-state machine, vector of real numbers, binary string, program

tree). Certainly, an algorithm that is good at all problem domains is impossible due to

NFL theorem. Thus, the test suite is indispensable and it must be predefined.

9

The test suite is a set of functions that can be solved by considering building blocks

of order bounded by a constant 1 . The difficulty arises when 1 is large [24]. Current re-

search studies the case 1 ç)� . Without building-block identification, the complexity of

the functions described in Chapter 2 grows exponentially. We aims to improve the perfor-

mance of GAs so that the problems of bounded difficulty can be solved in a polynomial

time. The core of our algorithm is the part that identifying building blocks. In brief, the

building-block identification algorithm takes input that is a set of � -bit binary strings. The

output is a partition of �! �"$#$#�#%"&�é'�),+ where � is the number of solution bits. A comparison

between the building-block identification algorithms will be made.

Anyone who conducts an argument by appealing to authority

is not using his intelligence, he is just using his memory.

(Leonado da Vinci)

CHAPTER II

Literature Reviews

Many strategies in the literature use the bit-reordering approach to pack the depen-

dent bits close together, for example, inversion operator [19], messy GAs [20], symbiotic

evolution [54], recombination strategy adaptation [68], adaptive linkage crossover [65],

and linkage learning GA [26, 27]. The bit-reordering approach does not explicitly identify

building blocks, but it successfully delivers the optimal solution. Several works explicitly

identify building blocks [37, 39, 53]. An approach is to find a partition of bit positions

[29, 38, 41, 50]. For instance, Table 1.1 infers the partition:

���! �"$)�"^.w"�5�"?3�+�"�#$#$#�"��¾3�7w"?3�Ü�"?3�-]"?3�Ý�"[3�Þ]+�+ (2.1)

In the case of nonoverlapped building blocks, partition is a clear representation. Note that

Kargupta [41] computes Walsh’s coefficients which imply the partition. The bits governed

by the same partition subset are passed together to prevent building block disruption.

Identifying building blocks is somewhat related to building a distribution of solu-

tions [4, 13, 29, 48, 55, 56]. The basic concept of optimization by building a distribution

is to start with a uniform distribution of solutions. Next, a number of solutions is drawn

according to the distribution. Some good solutions (winners) are selected, and the dis-

tribution is adjusted toward the winners (the winners-like solutions will be drawn with

higher probability in the next iteration). These steps are repeated until the optimal solu-

tion is found or reaching a termination condition. The works in this category are referred

to as probabilistic model-building genetic algorithms (PMBGAs). For a particular form of

distribution used in the extended compact genetic algorithm (ECGA), building the distri-

bution is identical to searching for a partition [29]. The Bayesian optimization algorithm

(BOA) uses Bayesian network to represent a distribution [55]. Pelikan showed that if the

problem is composed of 1 -bit trap functions, the network will be fully connected sets of1 nodes [63, pp. 54]. In addition, Bayesian network is able to represent joint distributions

12

in the case of overlapping building blocks. The hierarchical BOA (hBOA) is the BOA

enhanced with decision tree/graph and a niching method called restricted tournament re-

placement [63]. The hBOA can solve the hierarchically decomposable functions (HDFs)

in a scalable manner. Successful applications of building-block identification are finan-

cial applications [37], distributed data mining [40], cluster optimization [67], maximum

satisfiability of logic formulas (MAXSAT) and Ising spin glass systems [64].

This chapter is organized as follows. The first section describes test functions that

are commonly used. The second section presents the approaches that are used in the liter-

ature. The approaches are considerably different to each other. Some approaches have an

underlying assumption which limits the practical use. Some approaches are able to iden-

tifying building blocks, but the resources they consume grow faster than the polynomial

with the problem size. The third section presents probabilistic model-building genetic al-

gorithms (PMBGAs) that are the main paradigm for building-block identification. The

PMBGAs are scalable. More precisely, the computational time required to reach the opti-

mal solution grows in a polynomial relationship with the problem size.

2.1 Test Functions

Several test functions have been developed [16, 30, 35, 36, 76, 79]. An important

goal of designing a test function is to measure the effectiveness of building-block com-

position. Whitley gave the guidelines of a test function as follows [79]. The test function

should be resistant to hill-climbing, nonlinear, nonseparable, nonsymmetric, scalable, and

have a canonical form. Commonly used test functions are royal road, /��Y5 -trap, /��67 -trap,/2�6Ü -bipolar, hierarchical if-and-only-if (HIFF), hierarchical trap 1 (HTrap1), and hierar-

chical trap 2 (HTrap2) [36, 63]. These functions are used by many researchers, hence it is

possible to compare the results. At present, the number of test functions is small. The test

functions used in the thesis are described in the following subsections.

13

2.1.1 / -trap functions

The / -trap function [1, 12] is defined as:

à R h�ê j kë" ê F �! �"$)o+ R "Ek F0ì �" c¾í � Á|í�î (2.2)

à R I ê L�9 p c!í � Á|í ; if â_9V/c «uïQð_'ñâ ÍQò óÒôR ADC ; otherwise
(2.3)

where â is the number of “1” bits in
ê

. Usually,
c,í � Á&í is set at / and

c «uïQð is set at /°'<) .
The

c!í � Á|í value is usually greater than
c «uïQð in order to deceive an optimization algorithm

to favor “0,” but the optimal solution consists of all “1” bits. The 5-trap function is shown

in Figure 2.1 (
c!í � Á&í 9\7 , c «�ï³ðõ9<3).

F5

u
30

0

2

3

4

1

5

21 4 5

Figure 2.1: 5-trap function

2.1.2 �0�61 -trap functions

The �0�61 -trap function [55, 63] is defined as:

à�¡�ä f h�ê j kë" ê F ê =O#$#�# ê ¡4ADC" ê ��F �! �"�),+ f (2.4)

àO¡åä f I ê =O#$#�# ê ¡4ADC&L49 ¡YADC± � g = à f I ê � L (2.5)

The � and 1 are varied to produce a number of test functions. The �0�61 -trap functions

are often referred to as additively decomposable functions (ADFs). The optimal solution

is composed of all “1” bits.

14

2.1.3 HIFF Functions

The HIFF, HTrap2, and HTrap1 functions are often referred to as hierarchically de-

composable functions (HDFs). To compute the HIFF functions, a solution is interpreted

as a binary tree. An example is shown in Figure 2.2. The solution is an 8-bit string,

“00001101.” It is placed at the leaf nodes of the binary tree. The leaf nodes are inter-

preted as the higher levels of the tree. A pair of zeroes and a pair of ones are interpreted

as zero and one respectively. Otherwise the interpretation result is “-.” The HIFF func-

tion returns the sum of values contributed from each node. The contribution of node � , ² � ,
shown at the upper right of the node, is defined as:

² � 9
p . í ´ if node � is “0” or “1” ´ if node � is “-”

(2.6)

where ª is the height of node � . In the example, the fitness of “00001101” is
e ² � 9�)�Ý .

The HIFF functions do not bias an optimizer to favor zeroes rather than ones or vice

versa. There are two optimal solutions, the string composed of all zeroes and the string

composed of all ones.

0 0 0 0 1 1 0 1

0 0 1 −

−

−

0

h = 0

h = 1

h = 2

h = 3

1 1 1 1 1 1 1 1

2 2 2 0

4 0

0

Figure 2.2: Interpreting the solution as a binary tree

15

2.1.4 HTrap1 Functions

The HTrap1 functions interpret a solution as a tree in which the number of branches

is greater than two. An example is shown in Figure 2.3. The solution is a 9-bit string placed

at the leaf nodes. The leaf nodes do not contribute to the function. The interpretation rule

is similar to that of the HIFF functions. Triple zeroes are interpreted as zero and triple

ones are interpreted as one. Otherwise the interpretation result is “-.” The contribution of

node � , ² � , is defined as:

² � 9
p 5 íÃö à Ú IÒ;^=^;�C&;�mL÷´ if ; �Ìº9 “-” for all ø�0���V. ´ otherwise

(2.7)

whereª is the height of node � ,;^=�"?;$C"?;^m are the interpretations in the left, middle, right children of node � .
At the root node, the 3-trap function’s parameters are

cnùí � Á|í = 1 and
céù«uïQð = 0.9. The

other nodes use
coí � Á|í = 1 and

c «uïQð = 1. In Figure 2.3, the HTrap1 function returns
e ² � =

13.05. The optimal solution is composed of all ones.

1 x 31 1 x 31 1 x 31

h = 0

h = 2

h = 1

0 0 0 0 0 0 1 1 1

0 0 1

−
0.45 x 3 2

Figure 2.3: Interpreting the solution as a 3-branch tree

2.1.5 HTrap2 Functions

The HTrap2 functions are similar to the HTrap1 functions. The only difference is

the 3-trap function’s parameters. In the root node,
c¹ùí � Á|í 9ú) and

céù«uïQð 9r �#�Þ . The other

16

nodes use
c!í � Á|í 9û) and

c «�ï³ð°9P)�¼ =[üýCí where ª is the tree height. The optimal solution is

composed of all ones if the following condition is true.c ùí � Á|í ' c ù«uïQð Ø IQª�'þ)�L�I c «�ï³ð_' c!í � Á|í L (2.8)

The parameter setting I c¤ùí � Á|í 9ÿ)�" cËù«�ï³ð 9]# Þ�" c!í � Á|í 9)�" c «�ï³ðb9ÿ)�¼ =[üýCí L satisfies the

condition. The HTrap2 functions are more deceptive than the HTrap1 functions. Only

root node guides an optimizer to favor ones while the other nodes fool the optimizer to

favor zeroes by setting
c «�ïQð Ø c!í � Á|í .

2.2 Approaches for Identifying Building Blocks

The following subsections summarize the approaches for identifying building

blocks. The approaches are presented chronologically.

2.2.1 Inversion operator

The first attempt to resolve the ordering problem may be the inversion operator [19,

21]. The inversion operator is similar to what happens in natural evolution. An attribute

of a creature is defined by a gene or multiple genes. All genes are located on the long

string called DNA strain. The value of a gene is called allele. The expression of genes are

dependent to their alleles, but the expression are independent to the distance between two

genes. The creature inherits genes from their parents. The gene locations can be changed

by the inversion operator. By means of natural evolution, the interacting genes gradually

become close together. This increases the probability that the attribute, the interaction of

genes, will be inherited to the offspring.

The inversion operator is illustrated in Figure 2.4. First, a chunk of adjacent bits

are randomly selected. Next, the chunk is inversed by left-to-right flipping. The bits are

moved around the string, but the meaning (fitness) of the solution is not changed. Only

the ordering of the structure is greatly affected. For example, the bits at positions 3 and

6 are passed together with a higher probability. The inversion operator alters the solution

17

BIT POSITION 0 1 2 3 4 5 6 7 98

0 1 1 1 0 0 1 0 1 1BIT VALUE

A B

B A

BIT VALUE

BIT POSITION 0 1 2 3 6 5 4 8 97

0 1 1 1 01 0 0 1 1

Figure 2.4: Inversion operator

structure at random. The tight structures (dependent bits being close together) are more

likely to appear in the final generation. The simple GA enhanced with inversion operator

is able to find the optimal solution for additively decomposable functions. In the worst

case, the complexity grows exponentially with the problem size [71, 72].

2.2.2 Messy Genetic Algorithms

The messy GA encodes a solution bit to (�" �) where F �! �"$#$#�#%"&�»'),+ is bit

position and � F �!]"$),+ is bit value. For instance, “0111100011” is encoded as follows.

(0, 0) (1, 1) (2, 1) (3, 1) (4, 1) (5, 0) (6, 0) (7, 0) (8, 1) (9, 1)

The bits are tagged with the position numbers so that they can be moved around with-

out losing the meaning. When the solution is mixed, the mixed solution may be over-

specified or under-specified. The over-specification is having more than one copy for a bit

position. The under-specification is having no copy for a bit position. Several alternatives

are proposed for interpreting over-specified and under-specified solutions. For example,

the over-specification is resolved by majority voting or first-come, first-serve basis. The

under-specification is resolved by means of the competitive templates.

18

The messy GA uses the operators called cut and splice to recombine solutions. The

cut operator cuts the string with a probability that increases with string length. Long over-

specified strings are more likely to be cut. The splice operator joins the head of a string

to the tail of the others with a fixed probability. By cut and splice, the solution structure

can be altered, and therefore forming a tight structure. The messy GA is later developed to

fast messy genetic algorithms (FMGA) [22] and gene messy genetic algorithm (GEMGA)

[38, 40]. Note that GEMGA is the early paper that can find the optimal solution for �0�21 -

trap functions in a polynomial time with the problem size.

2.2.3 Learning Linkage

The learning linkage genetic algorithm (LLGA) encodes � -bit solutions to .¾� dis-

tinct pieces of IT �" � L placed on a circular string where the bit position F �! �"$#$#�#%"&�å'�),+
and the bit value � F �!]"$),+ . The 1-bit solution is encoded as it is shown in Figure 2.5

(left). Interpreting the solution is probabilistic. First, a starting point on the circular string

is chosen. Second, walking clockwise and picking up IT �" � L by first-come, first-serve basis.

For instance, if IÒ �"� �L is encountered first, IÒ �"$)¾L will not be picked up. The 1-bit solution

will be interpreted as I³ �"� �L with probability
�� S � , but the interpretation will be Il)�"$)¾L with

probability
�� S � where

�
and

ê
are distances on the circular string. The interpretation

result depends on the starting point and the distance between genes.

(0, 1)
(0, 0)

(1, 1) (1, 0) (2, 1)
(2, 0)

(3, 0)
(3, 1) (4, 0) (4, 1)

(5, 0)
(5, 1)

(0, 0)

(0, 1)

A

B

Figure 2.5: Learning linkage

19

Mixing solutions is done by cutting a continuous segment from the donor string.

Then the segment is grafted onto the recipient. Over-specified IT n" � L is removed when

interpreting the mixed solution. Similar to the other approaches, the solution structure can

be altered in order to form the tight structure. A final structure shown in Figure 2.5 (right)

is interpreted as “111111” with a high probability. The bits at positions of �! �"�)�"^.w+ and�!5�"[3¢"^7w+ are very likely to be passed together. An analysis is shown in Harik’s dissertation

[27]. The analysis consists of two parts: linkage skew and linkage shift.

2.2.4 Non-monotonicity Detection

The definition of non-monotonicity are developed in a series of papers [49, 50, 51,

52]. The non-monotonicity is defined as:

if (� c � I��¾L Ø and � c � I��¾L Ø) then (� c ��� I��¾L Ø � c � I��!L and � c ��� I��¾L Ø � c � I��¾L)
if (� c � I��¾L ç and � c � I��¾L ç) then (� c ��� I��¾L ç � c � I��!L and � c ��� I��¾L ç � c � I��¾L)

where � c � I��¾L�9 c I|# # # � � # # # LE' c I|# # #	� � # # # L (2.9)� c �ý� I��¾LY9 c I|# # � � # # � � # # LE' c I|# #	� � # #
� � # # L (2.10)c
denotes fitness function. � denotes binary string �!=O#$#$#��%@�ADC , � �>F �! �"$),+ . � � denotes)w'�� � .

Algorithm linkage identification by non-monotonicity (LIMD) is outlined in Figure 2.6.

The motivation is to find which bits should be passed together. That is described by the

data structure called linkage sets denoted by � "N <����� �»') . In the second step, � 9��¾�&+ means all bits are independent. If at least a randomized solution violates the

non-monotonicity on bit positions � and � , the dependency between � and � is expected.

Hence, ��� ��� ��¢+ and ��� ��� �¾�|+ .
There might be overlapping between the linkage sets, for example, 2=�9 �! �"$),+ ,2Cø9 ��),"^.w+ , 4mJ9��o.]"� w+ . It is unclear whether “1” should be passed with “0” or “2”

or the “0, 1, 2” should be passed together. The author proposed tightness detection. The

20

1. Randomize a set of solutions � ;

2. for �>9< to ��'�) do ��� �¾�|+ ;
endfor

3. for �>9< to ��'�) do

for �»9<�é¼V) to ��'�) do

if (for some � F � , /¹¯!/ - ��¯¾/n¯�G|¯¾/¹� ² �³G��¹I���"?�&"B�wL49 c�� Ä ��� then ��� ��� ��¢+ ; ��� ��� �¾�&+ ;
endif

endfor

endfor

Figure 2.6: Linkage identification by non-monotonicity detection (LIMD)

tightness between � and � is defined as:

Gl���¢ª�Gl/�������IK�["B�wL49 G?CG?C�¼0Glm (2.11)

where G�C�9����� f ���¾�&"B�¢+! " f "n ø�V1_� �]'�),+D� and Glm�9~� �� f �%�¾�["B�¢+ º " f "� �V1�� �]'),+D� . If Gl����ª�Gl/#������IÒ�&"B�wL is less than a predefined threshold, �#� ��$ ��¢+ and ��� �%$ �¾�&+ .
As a result, the linkage sets are equivalent to the partition. For instance, the linkage sets�=(9§��)�"^.w+�"�2C�9~�! �"^.�+�"&�m�9~�! �"�),+�"' Ú 9~�¾3¢"^7w+�"� Û 9§�!5�"^7w+�"��á�9~�!5�"?3]+ (when

writing � the member � is omitted) are equivalent to the partition ���! �"$)�"�.w+�"��!5�"?3�"^7w+�+ .
2.2.5 Walsh’s coefficients

An approach for identifying the dependency between variables is to find the Walsh’s

coefficient [41]. Any function can be written in terms of Walsh’s coefficients and Walsh’s

functions. For example,
c Ia�OC^"[�Ëm�"&� Ú L , can be written as:

21c Ia�nC^"[�Ëm�"[� Ú L = (å=4¼(�C*)èC%IK�nC[L>¼(åm+)�m¾IK�ËmL>¼(Ú) Ú IK� Ú L>¼(Û) Û IK�nC"&�ËmLE¼(åá+)�á¾IK�nC"&� Ú LE¼(�,+)-,¾IK�Ëm�"&� Ú LE¼(�./)0.�IK�nC"&�Ëm�"[� Ú L
where(� is Walsh’s coefficient ((��F k)) � is Walsh’s function (

czh kû�ñ#$#�#¢�ikj ��'N)�"$),+).
The main algorithm is to find the Walsh’s coefficients for a set of random solutions. If

we use all . @ solutions, we can reconstruct the function that are being optimized. Using a

small number of solutions is sufficient because we do not actually reconstruct the func-

tion. The non-zero Walsh’s coefficient indicates the dependency between its associated

variables. However, the number of Walsh’s coefficients grows exponentially with vari-

ables. An underlying assumption is that the function has bounded variable interaction of

order- 1 . Subsequently, the Walsh’s coefficients can be calculated in a polynomial time.

2.3 Probabilistic Model-Building Genetic Algorithms

In the early stage, many researchers attacked the ordering problem by designing a

crossover operator which well suits for a particular optimization problem [54, 68, 69, 70].

Such a research faces with scalability issue because its complexity grows exponentially

with the problem size. A revolution brings GA research to a new paradigm – the proba-

bilistic models [23]. The concept of probabilistic models is to represent a population with

a distribution [8, 9, 56, 57]. The distribution could be as simple as a uniform distribution

or it could be as complex as Bayesian network. The following subsections introduce the

milestones in PMBGAs.

22

2.3.1 Population-based incremental learning (PBIL)

The population-based incremental learning (PBIL) uses a uniform distribution to

represent a population [4, 33]. Similar papers that use the uniform distribution are the

univariate marginal distribution algorithm [47], compact GA [28], and selfish-gene algo-

rithm [11]. Only the compact GA will be presented because it will be used later in this

thesis. The pseudocode of the compact GA is presented in Figure 2.7. The compact GA’s

parameters are population size IK/�L and string length Ia�$L . A population is represented by

an � -dimensional probability vector I21 ËL . The � , that is the � M í -element of the probability

vector 1 , is the probability that the � M í -position bit of an individual, randomly picked up

from the population, will be one. First, 1 is initialized to I³]# 7]"�#$#$#�"? �# 7,L . Next, the individ-

uals
�

and ; are generated according to 1 . The fitness values,
c�¿

and
c�3

, are then assigned

to
�

and ; respectively. If
c!¿ ¥ c�3 then the probability vector will be updated towards the

individual
�
. If

� � 9�) and ; � 9P then � will be increased by)¾Èo/ . If
� � 9P and ; � 9�)

then � will be decreased by)�Èo/ . The loop is repeated until each � becomes zero or one.

Finally, 1 presents the final solution.

The compact GA has no implication more than an introduction to probabilistic mod-

els. Because the uniform distribution does not keep the dependency between solution bits,1 J9P�! �# 7]"� �# 7w+ may be a population of � 01, 01, 10, 10 + or � 00, 00, 11, 11 + with an identi-

cal probability. The algorithm presented in the next subsection exploits a distribution that

keeps the dependency between two variables.

2.3.2 Bivariate marginal distribution algorithm (BMDA)

The bivariate marginal distribution algorithm (BMDA) is more complex [58]. It

can keep the dependency between two variables. Given a population, the probability of

observing ; � and ; � of an individual 8`9\;^=O#$#$#?;&@BADC , randomly drawn from the population,

23

for �>9< to ��'þ) do ��� �# 7 ;
repeat

for �E9V to �å'þ) do� �#� p) with probability � otherwise; �#� p) with probability � otherwise

endforc¾¿ � fitness(
�
);c�3 � fitness(;);

for �E9V to �å'þ) do

if
c!¿ ¥ c�3 then

if
� � 9û) and ; � 9\ then ��� min(1, � ¼ CR);

if
� � 9\ and ; � 9û) then ��� max(0, � ' CR);

else

if
� � 9û) and ; � 9\ then ��� max(0, � ' CR);

if
� � 9\ and ; � 9û) then ��� min(1, � ¼ CR);

endif

endfor

until each �OF �! �"$),+
Figure 2.7: Pseudocode of the compact GA

is the conditional probability:

 �I³; � ��; � L49 OI³; � "�; � L �IÒ; � L (2.12)

The dependency between two random variables is identified by the Pearson’s chi-square

statistics which is defined as (/ denotes the population size):4 m 9 ± 36567 398 IÒ/ ö OI³; � "�; � LE'ã/ ö �I³; � L ö �I³; � L[L m/ ö �I³; � L ö OI³; � L (2.13)

With 95% confidence, ; � and ; � are independent if
4 m ç 5�# Ýo3 . Then a dependency acyclic

graph :§9�I�;�"/<�"�k�L is constructed where ; is a set of vertices, < is a set of edges, andk is a set of independent vertices. A vertex one-to-one corresponds to a bit position of an

individual. The dependency-graph-construction algorithm is shown in Figure 2.8.

24

An initial population is random. Next, a dependency graph is constructed. A num-

ber of individuals is created by the algorithm shown in Figure 2.9. Some good individuals

are preserved for the next generation. The process is iterated until for all �&"¤ �IÒ; � L is closer

to 0.0 or 1.0 more than =%"�= Ø . Similar papers that assume the pairwise dependency are

the mutual-information-maximizing input clustering (MIMIC) algorithm [13] and depen-

dency trees [5].

1. ; � �! �"�)�"$#$#$#" Ä '�),+ ;� � ;ø´>< � ? ´�k � ? ´
2. � � any member of

�
;k � k � � � + ;

3.
� � � 'þ� � + ;

4. if I � 9 ? L finish;

5. if I there is no dependency of � and � ù " � F � " � ù F ;\' � L goto 2;

6. � � �A@ �w� � �>I 4 mÀ+7 À�B L" � F � " � ù F ;\' � ;

7. < � < � �]I � " � ù L^+ ;
8. goto 3;

Figure 2.8: Construction of the dependency graph

1. C � ; ;

2. for all
@ F kë"�;�D29 �

according to OI � L" � F �! �"$)o+ ;C � C�'0k ;

3. if I�C 9 ? L finish;

4. choose 1 such that 1 F Cz"41 ù F ;'ECz"åIQ1¤"^1 ù L F < ;

5. ; f � �
according to �I � �$; f B L" � F �! �"�),+ ;

6. C � C ' �o1Ë+ ;
7. goto 3;

Figure 2.9: Creating a new individual

2.3.3 Extended compact genetic algorithm (ECGA)

The extended compact genetic algorithm (ECGA) was proposed by G. Harik [29].

Table 2.1 shows a nonuniform distribution which represents a population of 4-bit individ-

uals. The � 1,2 + , value = “00”, and prob. = 0.5 mean that the first and the second bits of

an individual, randomly picked up from the population, is “00” with probability 0.5. To

25

build the distribution in Table 2.1, we must know the dependency between the first and

the second bit. In the absence of prior information, an alternative distribution should obey

the Occam’s Razor, i.e., the number of bits used to store the distribution is minimal. In ad-

dition, the entropy of the alternative distribution should be minimal. The ECGA chooses

the distribution which minimizes:

log m / ± F .HG Ï F Ð ¼`/ ± F <JI�I F L (2.14)

where / is the population size, J is the partition subset of all bit positions, ��I�J]L is the size

of J , and <�I�I F L is the entropy of the marginal distribution over the subset J .<�I�I F L�9 ± K p 'Y log ; if º9\ ; otherwise,
(2.15)

where is the probability in the marginal distribution over subset J . The base of the log-

arithm in Equation 2.15 is . G Ï F Ð . The ECGA employs a greedy search. Thus, the optimal

distribution is not guaranteed.

Table 2.1: A nonuniform distribution� 1,2 + � 3 + � 4 +
value prob. value prob. value prob.

“00” 0.5 “0” 0.5 “0” 0.6

“01” 0 “1” 0.5 “1” 0.4

“10” 0

“11” 0.5

The initial population is random. The ECGA iteratively

1) select some highly-fit individuals

2) approximate the distribution of the highly-fit individuals

3) draw the next population from the distribution.

The test function is the 10 � 4-trap function. The ECGA converges to the partition���! �"�)�"^.]"�5w+ , #$#�# , �!5,Ü�"�5�-]"?5�Ý�"�5�Þw+�+ . The optimal solution is obtained.

26

2.3.4 Bayesian optimization algorithm (BOA)

The Bayesian optimization algorithm, proposed by M. Pelikan [55, 60, 63], uses

Bayesian network [31, 46] to model a population. Bayesian network is an acyclic directed

graph that encodes joint probabilities:

 �I³;�=�"$#$#�#�"�;�«dADC&L49 «dADCL � g = �IÒ; � �NM �'@ �$/éG%I³; � L&L (2.16)

where ; � denotes the � M í -position bit of an individual, and M �'@ �$/¤G%IÒ; � L denotes the parent

nodes of ; � . A Bayesian network is shown in Figure 2.10. The bit ;%m depends on ;^= and;�C . The tables attached with each node show the probability of being “0” or “1”. Given a

Bayesian network, we can compute the probability of observing an individual, 809\;$=^;�C&;^m .
For instance, OI³;^=^;�C&;�må9 “000” L490 OI³;^=�9 “0” L ö �I³;�C�9 “0” L ö �I³;�m69 “0” ��;�=^;�CY9 “00” L49 �#�Ü �i �#�5ø�� �#�3è9\]# �-,. .

 = 1 0.7

 0.3 = 0

 = 1 0.6

 = 0 0.4 0.9 0.5 0.3

 0.7 0.5 0.1

= 11100100

b2

b1

b2

b0

 = 1 0.4b0

 = 0 0.6b0 b1

b1

b2

b0 b1

Figure 2.10: Bayesian network

The best network is the network that maximally corresponds to a population. For-

mally speaking, we search for the network structure that maximizes the scoring metric:

 OI ê � O_L�9 �I ê L �I�O_L P�Q �I�RË� ê La �I�O®� ê "/R,L*SAR]" (2.17)

where
ê

is the network structure, O is data set, and R is the conditional probabilities in the

network (i.e., the tables in Figure 2.10). Let the number of incoming edges of any node is

27

limited at 1 . Only 1ø9û) there is a polynomial-time algorithm that guarantees the optimal

network. If 1i¥P. , the problem becomes NP-hard. Note that the complexity is measured

in terms of individual length (
Ä
) and population size (/). In practice, a greedy search is

used to construct the network. The greedy search begins with an empty network. The

operators edge addition, edge removal, and edge reversal are performed by picking the

operator which maximizes the scoring metric. The search terminates when no operation

can increase the scoring metric. The number of incoming edges corresponds to the number

of dependent variables. Pelikan showed that if the problem is composed of 1 -bit trap

functions, the network will be fully connected sets of 1 nodes (see Figure 2.11).

Figure 2.11: The network structure for �0�Y3 -trap functions

The initial population is random, the BOA repeatedly

1) select some highly-fit individuals

2) greedy search for a network that maximizing the scoring metric.

3) draw the next population from the network.

The BOA is more powerful than the ECGA because the Bayesian network can express

joint distributions. However, the network complexity is limited by setting the maximum

number of incoming edges. In practice, the maximum number of incoming edges is not

known beforehand.

28

2.3.5 Hierarchical BOA

In the later version of the BOA called hierarchical BOA (hBOA) [62, 63], the � -
vertex network is represented by � decision trees/graphs. This is because the number of

conditional probabilities in the network grows exponentially with the order of interactions

(number of variables that are dependent). Decision trees/graphs are more compact. As a

result, the hBOA is applicable for problems having high order of variable interactions, es-

pecially, the hierarchical problems presented in Chapter 2. The scoring metric often causes

overly complex networks. Therefore the network complexity is limited by the maximum

number of incoming edges. A major improvement of the hBOA is that the difficulty of

predetermining the maximum number of incoming edges is resolved by adding a penalty

term in the scoring metric. The penalty term is the description length of the network pa-

rameters. The decision trees/graphs are constructed in the similar fashion to that of the

BOA. In summary, the hBOA borrows several well-known techniques to enhance the ef-

ficiency of the BOA in order to attack larger problem size. By using an up-to-date PC, the

largest problem size that can be solved is approximately 1,000 bits. The problem size that

is larger than a thousand of bits is limited due to unreasonable amount of execution time

and memory usage.

We have a habit in writing articles published in scientific journals

to make the work as finished as possible, to cover up all the tracks,

to not worry about the blind alleys

or describe how you had the wrong idea first, and so on.

So there isn’t any place to publish, in a dignified manner,

what you actually did in order to get to do the work.

(Richard Feynman, Nobel Lecture, 1966)

CHAPTER III

An Observation of the Compact Genetic Algorithm

A relation between the simultaneously changed variables in the compact GA and

the building blocks is observed. The pseudocode of the compact GA is outlined in Figure

2.7 [28]. Let 1 þ9 IT D=$"$#$#$#%"Q]@BADC|L be an � -dimensional probability vector in the compact

GA where ��F ì]"$) î . In the pseudocode,
� � denotes the � M í -bit of individual

�
. Let a

simultaneity matrix be an ����� matrix of numbers. Let � ��� be the matrix element in row� and column � , ã�©�["B�:�æ��'b) . Then � ��� is the number of times that � and � are

simultaneously updated. The matrix is constructed by the following steps.

1. Initialize all matrix elements to zero.

2. loop I � �TJ�GU� @ do

2.1 Randomize a probability vector 1 �9 Id é=$"$#$#$#%"Q]@BADC|L .
2.2 Execute the repeat-until loop in Figure 2.7 at most I � �V:��$/ iterations. After

each iteration, if � and � (� º9 �) are updated, � �ý� and � �|� will be incremented

by one.

endloop

The fitness function is set at 7¹�Y5 -trap function. With I � �TJ�GU� @ 9)� � , I � �V:��$/r9)� , � , and /®9�)� , , the resulting matrix is shown in Table 3.1. The positions of building

blocks (positions of the 5 -bit trap functions) are that of ���! �"$),"^.w+�"$#$#�#"%��)¾.]"$)�5]"$)$3�+�+ . It is

seen that the vector elements governed by the same partition subset are simultaneously

updated with higher probability (see the shadowed rectangles in Table 3.1). The partition���! �"�)�"^.w+�"$#�#$#^"���)¾.]"$)$5�"$)$3�+�+ is valid for the matrix in Table 3.1. The validity is defined as

follows. Let I 9 IÒ� ��� L be an ����� matrix of numbers, each of whole rows are distinct

numbers, ��½�&"B�J�þ��'�) . Let M be a partition of �! �"$#$#�#%"&��'�),+ . Then M is valid for I
if for all

ê F M , for all ; F ê , the largest � ê ��'<) elements of I ’s row ; are found in

columns of
ê $ �!;$+ .

31

Table 3.1: Simultaneity matrix produced by repeating the compact GA

Row 0

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Row 8

Row 9

Row 10

Row 11

Row 12

Row 13

Row 14

 0 70130 61115 62569 61970 63075 62080 61943 61290 60002 61259 63515 60205 61223

70130 0 62233 63643 62571 64586 64432 64146 61489 61774 61260 63214 61133 62010

61115 62233 0 70999 70172 68228 68722 68782 61817 62222 62241 63219 62016 61715

62569 63643 70999 0 71543 68738 68064 63443 63244 62739 65128 62765 62995

61970 62571 70172 71543 0 68715 68567 68727 62289 62683 62613 63685 62914 62791

63075 64586 68228 68738 68715 0 72764 73739 63571 63877 63976 65485 63230 62969

62080 64432 68722 68474 68567 72764 0 73045 63215 62996 63359 64957 62862 62538

61943 64146 68782 68064 68727 73739 73045 0 63289 63623 63590 66003 63272 63170

61290 61489 61817 63443 62289 63571 63215 63289 0 70259 70527 67390 67794 67619

60002 61774 62222 63244 62683 63877 62996 63623 70259 0 70457 67318 67258 67094

61259 61260 62241 62739 62613 63976 63359 63590 70527 70457 0 67025 67219 67465

63515 63214 63219 65128 63685 65485 64957 66003 67390 67318 67025 0 70316 71092

60205 61133 62016 62765 62914 63230 62862 63272 67794 67258 67219 70316 0 70832

61223 62010 61715 62995 62791 62969 62538 63170 67619 67465 70832 0

68474

67094 71092

70451

61129

61841

62405

63493

61560

63968

60455

61065

60472

62699

60534

60272

Col 1 Col 2 Col 3 Col 4 Col 5 Col 6 Col 7 Col 8 Col 9 Col10 Col11 Col12 Col13 Col14Col 0

70220

70220 70451 61129 61841 62405 63493 61560 63968 60455 61065 60472 62699 60534 60272 0

For example, ���!]"$)�"^.w+�"%�!5�"?3¢"^7�+�"��!Ü�"^-]"?Ý]+�"��¾Þ�"�)�]"$),),+�"���)¾.�"$)�5�"%)$3�+�+ is valid for Ta-

ble 3.1. Consequently, the largest two elements in row are found in columns of ��)�"�.w+
and the largest two elements in row) are found in columns of �!]"^.w+ and the largest two

elements in row . are found in columns of �!]"$),+ and so on. The three bits of each 5 -bit

trap function may not be packed close together. If each bit in the trap function is placed

far away from the others, a valid partition could be ���!]"^7]"$)� w+ , ��)�"?Ü�"$)�),+ , �o.]"^-]"�)¾.w+ ,�!5�"?Ý�"$)�5]+ , �¾3�"�Þ�"$)$3]+�+ . The matrix might be hard to read. The next paragraph will ex-

plain why the vector elements governed by the same partition subset are simultaneously

updated with higher probability.

Every iteration of the compact GA, individual
�

competes with ; . If
� ��º9ú; � and� ��º9 ; � , the matrix element

� �ý� will be incremented by one. All possible values of� � " � � "�; � "?; � that cause the increment are listed as follows.� � � � 9< � ; � ; � 9P),)�" � � � � 9û)�)ñ; � ; � 9V � �"� � � � 9< �)ñ; � ; � 9P)$ �" � � � � 9û)� ; � ; � 9V �)�#
The fitness of individuals

�
and ; are improved every iteration. In the later iterations, the

fitness of
�

and ; is higher. Roughly speaking, the simultaneity matrix records any pair of

2-bits that are complement to each other between two highly-fit individuals drawn at ran-

32

dom. The highly-fit individuals of the �0� 3-trap functions are composed of triple zeroes

and its complement, triple ones. Thus, we observe the simultaneous change between �
and � if the bit positions � and � are governed by the same 5 -bit trap function. All cases

for mixing 2-bit building blocks are enumerated. Mixing � with)�) results in �) and)� .
Mixing �) with)� results in � and)�) . Only mixing in these cases must be done carefully

because the building blocks will be disrupted. Mixing building blocks in the other cases

gives the same building blocks. As a result, it is reasonable to reward a pair of 2-bits that

are complement to each other.

Though the matrix records the relation between two bits, it is possible to recognize

multiple-bit building blocks. We shall begin with 2-bit building blocks. If the matrix el-

ement � �ý� is significantly high, the bits at positions of �¾�&"B�¢+ should be passed together.

The 3-bit building blocks are recognized by inserting 1 to �¾�["B�¢+ . If the matrix elements� ��� , � � f , and � � f are significantly high, �&"B��"^1 should be in the same partition subset.

Longer building blocks can be recognized in the similar fashion. The observation of the

compact GA is the starting point of the thesis. By explanation and generalization of what

we observe, the building blocks can be identified by constructing the simultaneity matrix

and finding a partition for the matrix.

When we write programs that “learn,” it turns out we do and they don’t.

(Anonymous)

CHAPTER IV

The Algorithm

Our algorithm named building-block identification by simultaneity matrix (BISM)

consists of two parts: simultaneity-matrix-construction (SMC) and partitioning (PAR) al-

gorithms. The SMC input is a set of � -bit binary string. The SMC outputs an ����� matrix

of numbers. Next, PAR searches for a partition of �! �"$#$#�#%"&��'þ),+ for the matrix.

4.1 Simultaneity-Matrix-Construction (SMC) Algorithm

SMC input is a set of � -bit binary string denoted by:�ñ9*�2�$=$"$#$#$#%"+� R ADC�+ (4.1)

where � � is the � M í string, þ� �_� /�'P) . The � � � denotes the � M í bit of � � , ����<���') . Algorithm SMC outputs an ����� symmetric matrix of numbers, denoted by I 9IK� ��� L^"� Ì���["B��� �å'�) . A closed form of � ��� is shown in Equation 4.2.

� �ý� 9 p ´ if �>9 �
Count

=B=G IÒ�&"B�wL�� Count
CBCG IK�["B�wL�¼ Count

=[CG IÒ�&"B�wL�� Count
CÒ=G IÒ�&"B�wL ´ otherwise

(4.2)

where Count
¿*3G IK�["B�wLN9 � ��� F �! �"$#�#$#�"?/�'*),+ h � �W 9 �

and � � W 9r;$+D� for all ���["B�ñ���'�)�"åI � "?;%L F �!]"$),+ m .
Algorithm SMC is shown in Figure 4.1. Step 1 constructs only the upper triangle

of the matrix using Equation 4.2. Step 2 copies the upper triangle �¾� ��� ��� ç �¢+ to the

lower triangle �¾� �ý� �]� Ø �D+ . Step 3 returns the simultaneity matrix I 9 IÒ� ��� L . The

time complexity of SMC is XJIX� m /�L . In practice, the matrix is perturbed so that there are

no identical elements. The matrix of which the elements are distinct is greatly helpful in

partitioning. The perturbation techniques can be varied. For instance, we add a small real

random number (ranging between 0 and 1) to the matrix elements. The perturbation does

not totally change the matrix because the real part is small. The perturbation by adding an

35

integer with a real number is practical for a random number generator with a sufficiently

large period because it is hardly possible to produce identical random numbers.

Algorithm SMC(�)

1. for �>9< to �å'�) do� � ��� ;
for �Ì9½�é¼<) to �å'�) do� �ý��� Count

=B=G IK�["B�wL2� Count
CBCG IÒ�&"B�wL�¼ Count

=[CG IK�["B�wL�� Count
CÒ=G IK�["B�wL ;

2. for �>9< to �å'�) do

for �Ì9½�é¼<) to �å'�) do� �l��� � ��� ;
3. return I � IÒ� �ý� L ;

Figure 4.1: Simultaneity-Matrix-Construction (SMC) algorithm

A matrix element � ��� is proportional to the probability that 2-bit building blocks at

bit positions � and � will be disrupted by the uniform crossover. All cases for mixing 2-bit

building blocks are enumerated. Mixing “00” with “11” results in “01” and “10.” Mixing

“01” with “10” results in “00” and “11.” Only mixing in the two cases must be done

carefully because the processing building blocks will be lost. Mixing 2-bit building blocks

in the other cases gives the same building blocks. Therefore SMC algorithm counts a pair

of 2-bit building blocks that are complementary to each other. To exploit the matrix, the

bits at positions � and � are passed together every time performing crossover if the matrix

element � ��� is significantly high. The 3-bit building blocks are identified by inserting 1
to �¾�["B�¢+ . If the matrix elements � ��� , � � f , and � � f are significantly high, �["B��"^1 should be

in the same partition subset. Larger building blocks can be identified in a similar fashion.

The trap functions embedded in the HDFs bias the population to two aligned chunks

of zeroes and ones, that are complementary to each other. Certainly, the dependency be-

tween every pair of bits in a chunk is stored in the matrix. The matrix is not limited to the

cases where the two aligned chunks are complementary to each other. In the other cases,

the matrix does not detect unnecessary dependency. For instance, the bits at positions of

36

�! �"�)�"^.]"�5]"?3�+ are mostly “ ;^=^;�C& � � ” and “ ;�=^;�C)�)�) ” where ; ��F �! �"$),+ . The dependency

among five bits is obvious, but passing the bits governed by �o.]"�5]"?3�+ together it is suffi-

cient to guarantee that “ ;=;�C& � � ” and “ ;^=^;�C)�)�) ” will exist in the next generation with a

high probability. In summary, the matrix records only dependency that is actually neces-

sary for preserving building blocks.

4.2 Partitioning (PAR) Algorithm

The PAR input is an ����� simultaneity matrix. The PAR outputs the partition:M*9P� ê =$"�#$#$#�" ê!Y Z�Y ADC +�" Y Z�Y ADC[� g = ê � 9*�! �"$#$#�#�"&��'þ),+�" ê �]\ ê � 9 ? for all � º9:� (4.3)

To exploit the simultaneity matrix presented in the previous chapter, we have to develop a

partitioning algorithm that takes �¢��� matrix and gives a valid partition of �! �"$#$#�#%"&��'�),+ .
The motivation is to put � and � into the same partition subset if � ��� is high. The number

of ways to divide / objects into � non-empty subsets is called the Sterling number of

the second kind [25]. The Sterling number of the second kind can be calculated from the

recursion: ��IK/E"?�õL49<�^��IÒ/_'�),"?�õL�¼_��IÒ/_')�"?��'�)¾L (4.4)��IK/E"?�õL49)�a` ¡± f�g =cb � 1ed 1 R I|'N)¾L ¡4A f (4.5)

The number of possible partitions is referred to as Bell number. It is the sum of ��IK/E"?�õL
over � . The Bell number grows exponentially. The brute-force technique is impossible

even for small problem size.

Partitioning algorithms have been extensively used in VLSI design [2]. The VLSI

partitioning problem consists of � ICs and the number of wires connected between each

pair of the components. The goal is to search for a partition of components that minimizes

mincut – the number of wires between partition subsets. A pair of components that are

connected together with many wires is likely to be in the same partition subsets (in order

37

to minimize mincut). At the first glance, the VLSI partitioning algorithms may be applied

to our problem. An ����� matrix can be converted to � components where � �ý� is the num-

ber of wires connected between components � and � . In the VLSI partitioning problems

the number of partition subsets is given beforehand. In contrast, partitioning involves in-

ference or induction. We turn to another approach for partitioning. The definition of the

desired partition is developed. Next, we design the algorithm that search for the desired

partition.

There are several definitions of the desired partition, for example, the definitions in

the senses of non-monotonicity [50], GEMGA [38], Walsh coefficients [41], and entropy

measurement [29]. We develop a definition in the sense of simultaneity matrix. Algorithm

PAR searches for the partition M that satisfies the following conditions.

1. M is a partition.

1.1 The members of M are disjoint set.

1.2 The union of all members of M is �! �"$#�#$#%"|�å'�),+ .
2. M º9P���! �"�#$#$#"&�å'þ)o+�+ .
3. For all

ê F M such that � ê � Ø) ,
3.1 for all � F ê , the largest � ê ��'�) matrix elements in row �

are founded in columns of
ê $ �¾�&+ .

4. For all
ê F M such that � ê � Ø) ,

4.1 fë¡ ¿ W 'Efë¡ � R çhg I�fë¡ ¿ W 'i�¡ � R L where Ì� g �*) ,fÌ¡ ¿ W 9<� � �>IB�¾� ��� ��IÒ�&"B�wL F ê � ê "�� º9:�¢+oL ,fÌ¡ � R 9½�_�Q/�IB�¾� ��� ��IÒ�&"B�wL F ê � ê "E� º9 �¢+oL , and�¡ � R 9<�_�³/�IB�¾� ��� ��� F ê "n� F �! �"$#$#�#�"&�2'�),+ $ ê +oL .
5. There are no partition M W such that for some

ê F M , for some
ê W F M W ,M and M W satisfy the first, the second, the third, and the fourth conditions,ê ê W .

38

An example of the simultaneity matrix is shown in Figure 4.1. The perturbation

is omitted because the values of �¾� ��� ��� ç �¢+ are distinct. The first condition is obvi-

ous. The second condition does not allow the coarsest partition because it is not useful

in solution recombination. The third condition makes � and � , in which � ��� is signifi-

cantly high, in the same partition subset. For instance, M2C�9b���! �"$),"^.w+ , �!5�"[3¢"^7w+ , �!Ü]"^-]"�Ý]+ ,�!Þ�"�)� �"$)�)o+ , ��)¾.w"$)�5�"$)�3�+�+ satisfies the third condition because the largest two elements in

row 0 are found in columns of ��)�"^.w+ , the largest two elements in row 1 are found in

columns of �! �"^.�+ , the largest two elements in row 2 are found in columns of �! �"$),+ , and

so on. However, there are many partitions that satisfy the third condition, for example,M�mÌ9 ���! �"$),"^.w+�"��!5�"[3¢"^7]"�Ü]"^-]"�Ý]+�"%�!Þ�"�)�]"$),),+�"%��)¾.]"$)�5�"$)$3w+�+ . There is a dilemma between

choosing the fine partition (MYC) and the coarse partition (MEm). Choosing the fine partition

prevents the emergence of large building blocks, while the coarse partition results in poor

mixing. To overcome the dilemma, the coarse partition will be acceptable if it satisfies the

fourth condition. The fifth condition says choosing the coarsest partition that is consistent

with the first, the second, the third, and the fourth conditions.

By condition 4.1, the partition subset �!5�"?3¢"^7�+ is acceptable because the values of

matrix elements governed by �!5�"[3¢"^7w+ are close together (see Fi gure 4.1). Being close

together is defined by fÌ¡ ¿ W 'jfë¡ � R where fë¡ ¿ W and fë¡ � R is the maximum and the mini-

mum of the nondiagonal matrix elements governed by a partition subset. The f�¡ ¿ W '-fë¡ � R
is a degree of irregularities of the matrix. The main idea is to limit fø¡ ¿ W 'kfÌ¡ � R to

a threshold. The threshold, g I�f ¡ ¿ W 'l�¡ � R L , is defined relatively to the matrix ele-

ments because the threshold cannot be fixed for a problem instance. The partition subset�!5�"[3¢"^7w+ gives fÌ¡ ¿ W 9 -])�7o3�5 , fÌ¡ � R 9 -,])¾-�. , and �¡ � R 9 Ü�)�)�)¾7 . �¡ � R is the mini-

mum of the nondiagonal matrix elements in rows of �!5�"?3¢"�7w+ . The fourth condition limitsfë¡ ¿ W 'kfë¡ � R to)� � z� g percent of the difference between fø¡ ¿ W and �¡ � R . An em-

pirical study showed that g should be set at 0.75 for both ADFs and HDFs. Choosing�!5�"[3¢"^7]"�Ü]"^-]"�Ý]+ yields (fÌ¡ ¿ W 9�-,5�-,5�Þ]"/fë¡ � R 9rÜ,Ý� �Ü,3¢"��¡ � R 9rÜ�),)�)¾7) which does not

39

violate condition 4.1. The fifth condition prefers a coarse partition ���!5�"?3�"^7]"�Ü�"�-]"�Ý]+�"$#�#$#�+
to a fine partition ���!5�"?3�"^7w+�"$#$#�# + so that the partition subsets can be grown to compose

larger building blocks in higher levels.

Row 0

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Row 8

Row 9

Row 10

Row 11

Row 12

Row 13

Row 14

 0 70130 61115 62569 61972 63075 62080 61943 61290 60002 61259 63515 60205 61223

70130 0 62233 63643 64586 64432 64146 61489 61774 61260 63214 61133 62010

61115 62233 0 70999 70172 68228 68722 68782 61817 62222 62241 63219 62016 61715

62569 63643 70999 0 71543 68738 68064 63443 63244 62739 65128 62765 62995

61972 62571 70172 71543 68715 68567 68727 62289 62683 62613 63685 62914 62791

63075 64586 68228 68738 68715 0 72764 73739 63571 63877 63976 65485 63230 62969

62080 64432 68722 68474 68567 72764 0 73045 63215 62996 63359 64957 62862 62538

61943 64146 68782 68064 68727 73739 73045 0 63289 63623 63590 66003 63272 63170

61290 61489 61817 63443 62289 63571 63215 63289 0 70259 70527 62390 62794 62619

60002 61774 62222 63244 62683 63877 62996 63623 70259 0 70457 61318 63258 61094

61259 61260 62241 62739 62613 63976 63359 63590 70527 70457 0 63025 61219 63465

63515 63214 63219 65128 63685 65485 64957 66003 62390 61318 63025 0 70316 71092

60205 61133 62016 62765 62914 63230 62862 63272 62794 63258 61219 70316 0 70832

61223 62010 61715 62995 62791 62969 62538 63170 62619 63465 70832 0

68474

61094 71092

70451

61129

61841

62405

63493

61560

63968

60455

61065

60472

62699

60534

60272

Col 1 Col 2 Col 3 Col 4 Col 5 Col 7 Col 8 Col 9 Col10 Col11 Col12 Col13 Col14Col 0

70220

70220 70451 61129 61841 62405 63493 61560 63968 60455 61065 60472 62699 60534 60272 0

62571

elements governed by {3, 4, 5}

 0

elements governed by {3, 4, 5, 6, 7, 8}
Col 6

Table 4.1: Simultaneity matrix produced by SMC algorithm

Algorithm PAR is shown in Figure 4.2. A trace of the algorithm is shown in

Table 4.2. The outer loop processes row to �õ'©) . In the first step, the columns

of the sorted values in row � are stored in k � 7 = to k � 7 @�ADC . For � 9 , array k � 7 = tok � 7 @BADCz9 �o.]"�)�"�Ý�"�Ü]"$)¾.]"^7w"?3¢"^-]"?5�"$)� �"�)�5�"$)�)o"�Þ�"%)$3¢"� �+ . Next, the inner loop tries a num-

ber of partition subsets by enlarging
�

(
� � � � �!k � 7 � +). If

�
satisfies conditions 3.1

and 4.1,
�

will be saved to
ê

. Finally, M is the partition that satisfies the five conditions.

Checking conditions 3.1 and 4.1 is the most time-consuming section. It can be done inX�Ia� m L . The checking is done at most � m times. Therefore the time complexity of PAR isX�Ia� Û L .
4.3 Correctness Proofs

The following proofs show that the PAR algorithm always returns the partition that

satisfies the five conditions. In addition, the partition that satisfies the five conditions is

unique.

40

Note: I 9 IÒ� ��� L denotes ����� simultaneity matrix, ���&"B��� ��'�) .m � and k � 7 � denote arrays of numbers indexed by ���&"B��� ��'�) .�
and

ê
are partition subsets. M denotes a partition.

Algorithm PAR(I<" g)M � ? ;
for �E9< to �å'�) do // outer loop processing row �

if � ºF ê for all
ê F M thenm � � matrix elements in row � sorted in descending order + ;

for �ë9\ to �å'�) do k � 7 �n� � where � � W 9 m � ;� � �¾�|+ ; ê � �¾�&+ ;
for �ë9\ to �å'05 do // inner loop enlarging

�� � � � �!k � 7 � + ;
if
�

satisfies conditions 3.1 and 4.1 thenê � �
;

endforM � M � � ê + ;
endif

endfor

return M ;

Figure 4.2: The PAR algorithm

Lemma 1: For any two partition subsets
ê C and

ê m that satisfy condition 3.1 andê C \ ê m º9 ? , one must be the subset of the other.

Proof: Let
@

be in
ê C \ ê m . Since

ê C satisfies condition 3.1,
ê C completes all /�Cw'�)

columns containing the maximum values in row
@

if /�C is the number of elements of
ê C .

Similarly for
ê m , ê m completes all /nmË'z) columns containing the maximum values in row@

if /¤m is the number of elements of
ê m . If /OC��b/¹m then

ê Cpo ê m , otherwise
ê m] ê C .

This completes the proof.

Lemma 2: Let �["B� be integers, �~� ç �ñ��/�'½. . In row
@
, � @ � ��') , ifkqD 7 �¦F partition subset

ê
containing

@
and

ê
satisfies condition 3.1 then k0D 7 �OF ê .

41

Table 4.2: A trace of the PAR algorithm� � ê C 5 Dsr cond. 3 M í cond.
ê m

0 0 � 0, 2 + True True � 0, 2 +
0 1 � 0, 2, 1 + True True � 0, 1, 2 +
0 2 � 0, 2, 1, 8 + False False � 0, 1, 2 +
0 3 � 0, 2, 1, 8, 6 + False False � 0, 1, 2 +
0 4 � 0, 2, 1, 8, 6, 12 + False False � 0, 1, 2 +
0 5 � 0, 2, 1, 8, 6, 12, 5 + False False � 0, 1, 2 +
0 6 � 0, 2, 1, 8, 6, 12, 5, 4 + False False � 0, 1, 2 +
0 7 � 0, 2, 1, 8, 6, 12, 5, 4, 7 + False False � 0, 1, 2 +
0 8 � 0, 2, 1, 8, 6, 12, 5, 4, 7, 3 + False False � 0, 1, 2 +
0 9 � 0, 2, 1, 8, 6, 12, 5, 4, 7, 3, 10 + False False � 0, 1, 2 +
0 10 � 0, 2, 1, 8, 6, 12, 5, 4, 7, 3, 10, 13 + False False � 0, 1, 2 +
0 11 � 0, 2, 1, 8, 6, 12, 5, 4, 7, 3, 10, 13, 11 + False False � 0, 1, 2 +
0 12 � 0, 2, 1, 8, 6, 12, 5, 4, 7, 3, 10, 13, 11, 9 + False False � 0, 1, 2 +

Proof: Let ² � 9 kqD 7 � and ² � 9 kqD 7 � . Since � ç � , we have matrix elements �tDB£ 5 Ø�uDB£ 8 . Suppose that ² ��F ê containing
@
, and ² �6ºF ê . Then

ê 9b� @ " ² � "[�Ë=$"�#$#$#�"&� f ADC�+ . Ac-

cording to condition 3.1, 1�¼ã) maximum values in row
@

are in columns ² � "[�Ë=�"$#$#$#%"[� f ADC .
But �uDB£ 5 Ø �uDB£ 8 , and ² �YºF � ² � "[�Ë=$"$#�#$#�"[� f ADC�+ . Thus

ê
does not satisfy condition 3.1. This

contradicts the hypothesis that
ê

satisfies condition 3.1. This completes the proof.

Lemma 3: Let I 9æIK� ��� L be an �¢��� simultaneity matrix satisfying the following

conditions.

1) � �ý� is a positive real number for all ø���&"B���þ�å') .
2) � � � = 0 for all ���Y� ��'�) .
3) � �ý�Ìº9< , � ��� 9½� �|� for all ��� ç �ø� �å'�) .
4) � �ý� are distinct for all Ì��� ç ��� ��'þ) .

There exists a partition M which satisfies the five conditions.

Proof: It is obvious that M 9 ���!]+�"$#$#�#%"��$��'½),+�+ satisfies the first, the second, the

42

third, and the fourth conditions. If the partition M W in the fifth condition does not exist, M
satisfies the five conditions. Otherwise M W satisfies the five conditions. This completes the

proof.

Theorem 1: The problem of finding the partition M that satisfies the five conditions

can be solved by the PAR algorithm.

Proof: Lemma 3 guarantees that M does exist. Next, it will be shown that PAR

returns the partition M which satisfies the five conditions.

Condition 1.1) The members of M are disjoint sets. Let
ê C and

ê m be the members

of M . The
ê C and

ê m are produced when PAR processes rows
@ C and

@ m , respectively

(
@ C ç @ m). ê C and

ê m can be written as follows.ê C49b� @ C^"[�Ë=$"�#$#$#�"&� K ADC?+�" for all ���Y�ñ ø'�)�" @ C º9½� � (4.6)ê m�9b� @ m$"v�,=$"$#�#$#�"��2w&ADC?+�" for all ø���4�yx�'�)," @ m º9z� � (4.7)

The proof is separated in four cases.

Case 1: Suppose
@ C49 @ m . Algorithm PAR processes row

@ m if
@ m ºF ê for all

ê F M .

Hence,
@ C º9 @ m .

Case 2: Suppose for some `� ���{xø'b) , @ Cø9|� � . Then
@ C and

@ m become the

members of the same partition subset
ê m . If

@ m lies between kqDU} 7 = and kqD�} 7 @BA Ú , obviously@ C and
@ m will be members of

ê C . Subsequently,
ê m is not encountered because the row

@ m
is not processed. In the case of

@ må9\kqD�} 7 @BAwm , Lemma 2 said if
@ m is a member of partition

subset
ê

containing
@ C , kqDU} 7 ��F ê for all �`���þ�å'05 is a necessary condition to makeê

satisfying condition 3.1. As a result,
ê

has � elements. By the computation of PAR,

any partition subset has at most �å'�) elements.

Case 3: Suppose for some ��P�Ã�� _'V) , � � 9 @ m . Algorithm PAR processes row

43@ m if
@ m ºF ê for all

ê F M . Hence, � �6º9 @ m for all ø���4�ñ ø'�) .
Case 4: Suppose for some z� ���\ �'<) , for some z�*���~xè'<) , � � 9�� � . Let�>9 �»9\ and

@�� 9V�Ë=29z�o= . According to the condition 3.1,

Case (i) the maximum values in row
@��

are in columns
@ C^"[�nC"$#�#$#�"[� K ADC

Case (ii) the x maximum values in row
@��

are in columns
@ m�"��wC?"$#$#$#%"��Hw|ADC .

In all cases, (i) contradicts (ii).

Condition 1.2) The union of all members of M is �! �"$#$#�#%"&�Ã'½),+ . It is clear that, by

the computation of PAR, M contains all rows.

Condition 2) M º9 ���! �"$#$#$#"&��'),+�+ . This is true since any partition subset has at

most �å'�) elements.

Condition 3) and 4) Algorithm PAR puts only partition subsets that satisfy condi-

tions 3.1 and 4.1 into M . As a result, M satisfies the third and the fourth conditions.

Condition 5) There are no partition M W such that for some
ê F M , for some

ê W FM W , M and M W satisfy the first, the second, the third, and the fourth conditions,
ê ê W

.

Suppose
ê ê W . ê 9P� @ "[�Ë=$"$#�#$#�"[� K ADC�+ (4.8)

ê W 9*� @ "[�Ë=�"$#$#$#%"[� K ADC^"��o=$"$#$#$#"��2w&ADC�+ (4.9)

Algorithm PAR produces
ê

when processing row
@
. Since

ê W
satisfies condition 3.1, the

first ë¼_x elements of k�D 7 = to kqD 7 @BADC contains �Ë=�"$#$#$#%"[� K ADC^"��,=�"$#$#$#"��Hw|ADC . If �¼axÌ� ��'�. ,
obviously

ê W
will be encountered at the time processing row

@
. If �¼�xN9���'ã) , ê W has �

elements, but by the computation of PAR any partition subset has at most �6'`) elements.

This completes the proof.

Theorem 2: The partition M that satisfies the five conditions is unique.

44

Proof: Suppose M and � are partitions that satisfy the five conditions. Since M º9�� ,

there must be a nonempty set �_9b�]I ê Z " ê-� L�� ê Z F Må" ê�� F � " ê Z º9 ê-� " ê Z \ ê-� º9? + . By Lemma 1, if
ê Z \ ê-� º9 ? then

ê Z ê-� or
ê-� ê Z . The proof can be separated

in two cases.

Case 1: for some I ê Z " ê-� L F � ,
ê Z ê�� .

Therefore M does not satisfy the fifth condition.

Case 2: for some I ê Z " ê-� L F � ,
ê-� ê Z .

Therefore � does not satisfy the fifth condition.

All cases contradict to the hypothesis. This completes the proof.

A year spent in artificial intelligence is enough to make one believe in God.

(Anonymous)

CHAPTER V

Performance Comparisons

5.1 Methodology

Most papers report the performance in terms of function evaluations required to

reach the optimum. Such a performance measurement is affected by selection method,

solution recombination, and the other factors. At present, research community does not

provide a formal framework for measuring the effectiveness of a building-block identifi-

cation algorithm regardless of the other factors we have mentioned. Inevitably, we have to

make a comparison in terms of function evaluations. We have presented the building-block

identification by simultaneity matrix (BISM). An optimization algorithm that exploits the

BISM is needed. We customize simple GAs as follows. Every generation, the simultane-

ity matrix is constructed. The PAR algorithm is executed to find a partition. Two parents

are chosen by the roulette-wheel method. The solutions are reproduced by a restricted

uniform crossover – bits governed by the same partition subset must be passed together.

The mutation is turned off. The diversity is maintained by the rank-space method [80,

pp. 520–523]. The population size is determined empirically by the bisection method [63,

pp. 64]. The bisection method performs binary search for the minimal population size.

There might be 10% different between the population size used in the experiments and

the minimal population size that ensures the optimal solution in all independent 10 runs.

5.2 A Visualization of the Simultaneity Matrix

To illustrate how the matrix changes over time, a matrix element is represented by

a square. The square intensity is proportional to the value of matrix element (see Figure

5.1). In the early generation (A), the matrix elements are nearly identical because the

initial population is generated at random. After that (B), the matrix elements become

more distinct. The solution recombination is more speculative. Multiple bits are passed

47

together, and therefore forming larger building blocks. Finally (C), the building blocks are

completely detected. The mixed trap function is additively composed of 5-bit onemax, 3-

trap, 4-trap, 5-trap, 6-trap, and 7-trap functions. Note that the onemax function counts the

number of “1” bits.

(A) 30−bit onemax function (B) 30−bit onemax function (C) 30−bit onemax function

(A) 10x3−trap function (B) 10x3−trap function (C) 10x3−trap function

(A) 6x5−trap function (B) 6x5−trap function (C) 6x5−trap function

(A) mixed−trap function (B) mixed−trap function (C) mixed−trap function

Figure 5.1: Matrix adaptation (additively decomposable functions)

For hierarchical decomposable functions, the matrix is shown in Figure 5.2. In the

48

early generation (A), the matrix elements are nearly identical because the initial popula-

tion is generated at random. After that (B), the matrix elements become more distinct. The

building blocks in the lowest level are detected. The solution recombination is more spec-

ulative. Multiple bits are passed together, and therefore forming larger building blocks. A

few generations later (C), the building blocks in higher levels are revealed. Finally (D),

the population begins to lose diversity. The matrix elements are going to be identical.

Note that the bits governed by the same building blocks do not need to be packed close

together. It is done for the ease of presentation.

32−bit HIFF function (A) 32−bit HIFF function (B) 32−bit HIFF function (C) 32−bit HIFF function (D)

27−bit HTrap1 function (A) 27−bit HTrap1 function (B) 27−bit HTrap1 function (C) 27−bit HTrap1 function (D)

27−bit HTrap2 function (A) 27−bit HTrap2 function (B) 27−bit HTrap2 function (C) 27−bit HTrap2 function (D)

Figure 5.2: Matrix adaptation (hierarchically decomposable functions)

5.3 A Comparison to the BOA

Our algorithm is compared to the BOA [63, pp. 115–117]. Figure 5.3–5.5 shows

the number of function evaluations required to reach the optimal solution. The linear re-

gression in log-scale indicates a polynomial relationship between the number of function

49

evaluations and the problem size. The degree of polynomial can be approximated by the

slope of linear regression. It can be seen that the BOA and BISM can solve ADFs in

a polynomial time. The BOA performs slightly better than BISM. However, the perfor-

mance gap narrows as the problem becomes harder (onemax, �0�Y5 -trap, and �0�27 -trap,

respectively).

We make another comparison in terms of elapsed time. The elapsed time is an exe-

cution time of a call on subroutine constructTheNetwork [59]. The hardware plat-

form is HP NetServer E800, 1GHz Pentium-III, 2GB RAM, and RedHat 8.0 OS. The

parameters of the BOA are set at default. The maximum number of incoming edges, a

parameter of the BOA [59], limits the number of incoming edges for every vertices in the

Bayesian network. The default setting is to set the number of incoming edges to 1('ã) for�0�61 -trap functions. In the absence of prior information, 1 is not known beforehand. Fig-

ure 5.6 shows that the elapsed time required to construct the network increases with the

maximum number of incoming edges, but the computational time of the matrix is fixed

for a problem size. The difficulty of predetermining the maximum number of incoming

edges is resolved in the later version of the BOA, called the hierarchical BOA [61, 63].

50

1e+03

1e+04

1e+05

N
um

be
r

of
 fu

nc
tio

n
ev

al
ua

tio
ns

Problem size (number of bits)

BISM
BOA

150 200 250100

Figure 5.3: Performance comparison between the BOA and BISM (onemax functions)

1e+04

1e+05

1e+06

N
um

be
r

of
 fu

nc
tio

n
ev

al
ua

tio
ns

Problem size (number of bits)

BOA

60 120 180 240

BISM

Figure 5.4: Performance comparison between the BOA and BISM (�0�Y5 functions)

1e+04

1e+05

1e+06

100

N
um

be
r

of
 fu

nc
tio

n
ev

al
ua

tio
ns

Problem size (number of bits)

BISM
BOA

150 200 250

Figure 5.5: Performance comparison between the BOA and BISM (�0�67 functions)

51

BOA
BISM

0

10

20

30

40

2 4 6 10

E
la

pe
d

tim
e

(s
ec

.)

8
Maximum number of incoming edges

Figure 5.6: Elapsed time required to construct Bayesian network (in BOA) and matrix

5.4 A Comparison to the hBOA

Our algorithm is compared to the hBOA [63, pp. 164–165]. Figure 5.7–5.9 shows

the number of function evaluations required to reach the optimal solution. The linear re-

gression in log-scale indicates a polynomial relationship between the number of function

evaluations and the problem size. The degree of polynomial can be approximated by the

slope of linear regression. It can be seen that the hBOA and BISM can solve HDFs in

a polynomial time. The hBOA performs slightly better than BISM. However, the perfor-

mance gap narrows as the problem becomes harder (HIFF, HTrap1, and HTrap2, respec-

tively).

We make another comparison in terms of elapsed time and memory usage. The

elapsed time is an execution time of a call on subroutine constructTheNetwork

[61]. The memory usage is the number of bytes dynamically allocated in the subroutine.

The hardware platform is HP NetServer E800, 1GHz Pentium-III, 2GB RAM, and Win-

dows XP. The memory usage in the hBOA is very large because of inefficient memory

management in constructing Bayesian network. A memory-efficient implementation of

Bayesian network is the WinMine Toolkit [10]. The WinMine is a set of tools that allow

you to build statistical models from data. It constructs Bayesian network with decision

tree that is similar to that of the hBOA. The WinMine’s elapsed time and memory usage

52

are measured by an execution of dnet.exe – a part of the WinMine that constructs the

network. All experiments are done with the same biased population that is composed of

aligned chunks of zeroes and ones. The parameters of the hBOA and WinMine Toolkit

are set at default. The population size is set at three times greater than the problem size.

The elapsed time and memory usage are shown in Figure 5.10–5.11. Bayesian net-

work is a powerful tool that builds a statistical model from data. However, constructing the

network uses more time and more memory than computing the simultaneity matrix. This

is because the network gathers all statistical dependency between bit variables. In con-

trast, the matrix records only dependency between two bits that are likely to be disrupted

in the uniform crossover. Therefore the matrix computation is much faster. The empirical

results show that BISM attains comparable number of function evaluations to that of the

hBOA, but computing the matrix is 10 times faster and uses 10 times less memory than

constructing Bayesian network.

53

1e+03

1e+04

1e+05

1e+06

32 64 128 256

BISM
hBOA

Problem size (number of bits)

N
um

be
r

of
 fu

nc
tio

n
ev

al
ua

tio
ns

Figure 5.7: Performance comparison between the hBOA and BISM (HIFF functions)

1e+04

1e+05

1e+06

N
um

be
r

of
 fu

nc
tio

n
ev

al
ua

tio
ns

Problem size (number of bits)

1e+03
81 24327

hBOA
BISM

Figure 5.8: Performance comparison between the hBOA and BISM (HTrap1 functions)

1e+03

1e+04

1e+05

1e+06

N
um

be
r

of
 fu

nc
tio

n
ev

al
ua

tio
ns

Problem size (number of bits)
27 81 243

hBOA
BISM

Figure 5.9: Performance comparison between the hBOA and BISM (HTrap2 functions)

54

1e+01

1e+03

Problem size (number of bits)

1e+02

E
la

ps
ed

 ti
m

e
(s

ec
.)

384256 512 640 768 896

WinMine
hBOA
BISM

Figure 5.10: Elapsed time required to construct Bayesian network (in hBOA) and matrix

hBOA
BISM

WinMine
1e+05

1e+06

1e+07

1e+08

1e+09

M
em

or
y

us
ag

e
(b

yt
es

)

Problem size (number of bits)

256 384 512 640 768 896

Figure 5.11: Memory usage required to construct Bayesian network (in hBOA) and matrix

The Road goes ever on and on

Down from the door where it began.

Now far ahead the Road has gone,

And I must follow, if I can,

Pursuing it with eager feet,

Until it joins some larger way

Where many paths and errands meet.

And whither then? I cannot say.

(J. R. R. Tolkien)

CHAPTER VI

Conclusions

The current building-block identification research relies on building a distribution

of solutions. The Bayesian network is a powerful representation for the distribution, and

therefore the network is able to identifying building blocks in most cases. Nevertheless,

building the network is time-and-memory consuming. Finding the network that maxi-

mizes a scoring metric is NP-hard. A greedy algorithm is used to search for the network

the maximizes the scoring metric, but the optimal network is not guaranteed. If the prob-

lem size is larger than a thousand of bits, building the network may not be practical.

Eventually, the algorithm must be parallelized to overcome the memory bottleneck.

This thesis presents a distinctive approach for identifying building blocks. We do

not build the distribution of solutions as it is in the current research. The building blocks

are identified by means of the simultaneity matrix. The matrix element � �ý� is the degree

of linkage between bit positions � and � . The time complexity of computing the matrix isX�IÒ/é� m L where / is the number of solutions and � is the solution length. We have shown

that the matrix computation is 10 times faster and uses 10 times less memory than building

the Bayesian network.

To exploit the matrix, partitioning is an alternative. We write a definition of the

desired partition. Consequently, we design an algorithm that searches for the desired par-

tition. The time complexity of partitioning is XJIX� Û L where � is the solution length. The

partitioning algorithm is deterministic. It can be proven that, given a matrix of which the

elements are distinct, the desired partition is unique. The partition is used in the solution

recombination so that the bits governed by the same partition subset are passed together.

We have shown that by exploiting the simultaneity matrix, the additively decom-

posable functions (ADFs) and the hierarchically decomposable functions (HDFs) can be

57

solved in a scalable manner. Empirical results show that the number of function evalu-

ations required to reach the optimum grows in a polynomial relationship with the prob-

lem size. The hierarchical Bayesian optimization algorithm (hBOA) uses less number of

function evaluations than that of our algorithm. However, the matrix computation is much

faster.

The thesis consists of two important parts: 1) simultaneity matrix construction and

2) partitioning. The second part is made in order to show an alternative for exploiting

the matrix. This work could be extended by separately improving the first and the second

parts. First, the matrix definition can be altered. Because the building blocks are inferred,

you might have your own definition that fits your problem. For example, the matrix el-

ement � ��� could be the Pearson’s chi-square – a statistical measurement that indicates

the degree of dependency between bits at positions � and � . Second, the matrix can be

exploited in another way rather than the partitioning. For example, the bits at positions �
and � are passed together with a probability that is proportional to � �ý� . Introducing the

probability is necessary for the cases where the building blocks are overlapped because

the deterministic partitioning always gives the same partition.

We have shown that the matrix is similar to an instance of netlist partitioning prob-

lem. The matrix element � ��� is the number of wires connected between components � and� . The goal of netlist partitioning is to minimize mincut. The number of partition sub-

sets (subcircuits) is given beforehand, but identifying building blocks involves inference

or induction. Showing a relevance between the netlist partitioning and the building-block

identification is an interesting issue in future work.

The goal of genetic algorithms is to implicitly or explicitly infer building blocks, and

therefore composing them. The success of genetic algorithms depends on the hypothesis

that the better solutions are composed of the building blocks. When we are talking about

building blocks, the hypothesis is assumed to be true. The existence of the building blocks

58

in real-world applications is still a controversial issue. Most GA papers aim to solve the

optimization problems and report the performance in terms of solution quality, but few

of them tells how the solution is achieved. The visualization of the simultaneity matrix is

an attempt to validate the building-block hypothesis. Nevertheless, the visualization is for

human reading. Validating the building-block hypothesis should be done systematically

and automatically so that we can validate the hypothesis over a wide range of real-world

applications.

59

References

[1] Ackley, D. H. (1987). A Connectionist Machine for Genetic Hillclimbing. Boston,

MA: Kluwer Academic Publishers.

[2] Alpert, C. J., and Kahng, A. B. (1995). Recent directions in netlist partitioning.

Integration, the VLSI Journal, 19(1-2): 1–81.

[3] Altenberg, L. (1997). The schema theorem and price’s theorem. In Foundation of

Genetic Algorithms 3, pp. 23–49, Sanmateo, CA: Morgan Kaufmann.

[4] Baluja, S. (1994). Population-based incremental learning: A method for integrating

genetic search based function optimization and competitive learning. Technical

Report CMU-CS-94-163, Pittsburgh, PA: Carnegie Mellon University.

[5] Baluja, S., and Davies, S. (1997). Using optimal dependency-trees for combinatorial

optimization: Learning the structure of the search space. In Proceedings of the

14th International Conference on Machine Learning, pp. 30–38.

[6] Bäck, T., Hoffmeister, F., and Schwefel, H. (1991). A Survey of Evolution

Strategies. In Proceedings of the Fourth International Conference on Genetic

Algorithms, pp. 1–5.

[7] Battle, D. L., and Vose, M. D. (1997). Isomorphisms of genetic algorithms. In

Foundation of Genetic Algorithms, pp. 242–251, Sanmateo, CA: Morgan Kauf-

mann.

[8] Bosman, P., and Thierens, D. (1999). Linkage information processing in distribution

estimation algorithms. In Proceedings of Genetic and Evolutionary Computation

Conference, pp. 60–67.

[9] Bosman, P. A. N., and Thierens, D. (2000). Continuous iterated density estimation

evolutionary algorithm within the IDEA framework. In Workshop Proceedings

of Genetic and Evolutionary Computation Conference, pp. 197–200.

[10] Chickering, D. M. (2002). The WinMine Toolkit. Technical Report MSR-TR-2002-

103, Microsoft Research, Redmond, WA.

60

[11] Corno, F., Reorda, M. S., and Squillero, G. (1998). A new evolutionary algorithm

inspired by the selfish gene theory. In Proceedings of Congress on Evolutionary

Computation, pp. 575–580.

[12] Deb, K., and Goldberg, D. E. (1993). Analyzing deception in trap functions. In

Foundation of Genetic Algorithms 2, pp. 93–108, Sanmateo, CA: Morgan Kauf-

mann.

[13] De Bonet, J. S., Isbell, C. L., and Viola, P. (1997). MIMIC: Finding optima by

estimating probability densities. Advances in Neural Information Processing

Systems, 9: 424.

[14] De Jong, K. A. (1975). An analysis of the behavior of a class of genetic adaptive

systems. Doctoral dissertation, University of Michigan, Ann Arbor, Michigan.

[15] De Jong, K. A. (1997). Genetic algorithms are NOT function optimizers. In

Foundation of Genetic Algorithms 2, pp. 5–17, Sanmateo, CA: Morgan Kauf-

mann.

[16] De Jong, K. A., Potter, M. A., and Spears, W. M. (1997). Using problem generators

to explore the effects of epistasis. In Proceedings of the Seventh International

Conference on Genetic Algorithms, pp. 338–345.

[17] Fogel, L. J., Angeline, P. J., and Fogel D. B. (1995). An evolutionary program-

ming approach to self-adaptation on finite state machines. In Proceedings of

Evolutionary Programming, pp. 355–365.

[18] Fogel, D. B. (2001). Evolutionary Computation : The Fossil Record. Piscataway,

NJ: IEEE Press.

[19] Goldberg, D. E. (1989). Genetic Algorithms in Search Optimization and Machine

Learning. Reading, MA: Addison Wesley.

[20] Goldberg, D. E., Korb, B., and Deb, K. (1989). Messy genetic algorithms: Motiva-

tion, analysis and first results. Complex Systems, 3(5): 493–530.

[21] Goldberg, D. E., and Bridges, C. L. (1990). An analysis of a reordering operator on

61

a GA-hard problem. Biological Cybernetics, 62: 397–405.

[22] Goldberg, D. E., Deb, K., Kargupta, H., and Harik, G. (1993). Rapid, accu-

rate optimization of difficult problems using fast messy genetic algorithms. In

Proceedings of the Fifth International Conference on Genetic Algorithms, pp.

56–64.

[23] Goldberg, D. E. (2002). The Design of Innovation: Lessons from and for Competent

Genetic Algorithms. Boston, Kluwer Academic Publishers.

[24] Goldberg, D. E., Sastry, K., and Ohsawa, Y. (2002b). Discovering deep building

blocks for competent genetic algorithms using chance discovery via KeyGraphs.

Technical Report 2002026, Illinois Genetic Algorithms Laboratory, University

of Illinois at Urbana-Champaign, Champaign, IL.

[25] Graham, R. L., Knuth, D. E., and Patashnik, O. (1989). Concrete Mathematics: A

Foundation for Computer Science. Reading, MA: Addison-Wesley.

[26] Harik, G. R. (1997a). Learning linkage. In Foundation of Genetic Algorithms 4, pp.

247–262, Sanmateo, CA: Morgan Kaufmann.

[27] Harik, G. R. (1997b). Learning gene linkage to efficiently solve problems of

bounded difficulty using genetic algorithms. Doctoral dissertation, University of

Michigan, Ann Arbor, Michigan.

[28] Harik, G. R., Lobo, F. G., and Goldberg, D. E. (1999a). The compact genetic algo-

rithm. IEEE Transaction on Evolutionary Computation, 3(4): 287–297.

[29] Harik, G. R. (1999b). Linkage learning via probabilistic modeling in the ECGA.

Technical Report 99010, Illinois Genetic Algorithms Laboratory, University of

Illinois at Urbana-Champaign.

[30] Heckendon, R. B., Rana, S., and Whitley, D. (1997). Test function generators as em-

bedded landscapes. In Foundation of Genetic Algorithms 5, pp. 183–198, San-

mateo, CA: Morgan Kaufmann.

[31] Heckerman, D., Geiger, D., and Chickering, M. (1994). Learning Bayesian networks:

62

The combination of knowledge and statistical data. Technical Report MSR-TR-

94-09, Redmond, MA: Microsoft Research.

[32] Hennessy, J. L., and Patterson, D. A. (1996). Computer Architecture: A Quantitative

Approach. San Franciso, CA: Morgan Kaufmann.

[33] Höhfeld, M., and Rudolph, G. (1997). Towards a theory of population-based in-

cremental learning. In Proceedings of the IEEE conference on Evolutionary

Computation, pp. 1–5.

[34] Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor, MI:

University of Michigan Press.

[35] Holland, J. H. (2000). Building blocks, cohort genetic algorithms, and hyperplane-

defined functions. Evolutionary Computation, 8(4): 373–391.

[36] Jones, T. (1994). A description of Holland’s royal road function. Evolutionary

Computation, 2(4): 409–415.

[37] Kargupta, H. (1995). SEARCH, polynomial complexity, and the fast messy genetic

algorithm. Doctoral dissertation, University of Illinois at Urbana-Champaign,

Urbana, Illinois.

[38] Kargupta, H. (1996). The gene expression messy genetic algorithm. In Proceedings

of Congress on Evolutionary Computation, pp. 814–819.

[39] Kargupta, H., and Goldberg, D. E. (1997). SEARCH, blackbox optimization, and

sample Complexity. In Foundation of Genetic Algorithms 4, pp. 291–324, San-

mateo, CA: Morgan Kaufmann.

[40] Kargupta, H. (1998). Revisiting the GEMGA: Scalable evolutionary optimiza-

tion through linkage learning. In Proceedings of Congress on Evolutionary

Computation, pp. 603–608.

[41] Kargupta, H., and Park, B. (2001). Gene expression and fast construction of dis-

tributed evolutionary representation. Evolutionary Computation, 9(1): 43–69.

[42] Kirkpatrick, S., Gelatt Jr., C. D., and Vecchi, M. P. (1983). Optimization by simu-

63

lated annealing. Science, 220: 671–680.

[43] Koza, J. (1992). Genetic Programming. Cambridge, MA: MIT Press.

[44] Michalski, R. S. (2000). Learnable evolution model: Evolutionary processes guided

by machine learning. Machine Learning, 38: 9–40

[45] Mitchell, M. (1996). Introduction to genetic algorithms. Cambridge, MA: MIT

Press.

[46] Mitchell, T. M. (1997). Machine Learning. Singapore: McGraw-Hill.

[47] Mühlenbein, H., and Paaß, G. (1996). From recombination of genes to the estima-

tion of distributions I. Binary parameters. In Proceedings of Parallel Problem

Solving from Nature, pp. 178–187.

[48] Mühlenbein, H., and Mahnig, T. (1999). FDA – A scalable evolutionary algo-

rithm for the optimization of additively decomposable functions. Evolutionary

Computation, 7(4): 353–376.

[49] Munetomo, M., and Goldberg, D. E. (1998). Identifying linkage by nonlinearity

check. Technical Report 98012, Illinois Genetic Algorithms Laboratory, Univer-

sity of Illinois at Urbana-Champaign.

[50] Munetomo, M., and Goldberg, D. E. (1999a). Linkage identification by non-

monotonicity detection for overlapping functions. Evolutionary Computation,

7(4): 377–398.

[51] Munetomo, M., and Goldberg, D. E. (1999b). A genetic algorithm using link-

age identification by nonlinearity check. In Proceedings of Systems, Man, and

Cybernetics, pp. 595–600.

[52] Munetomo, M. (2002). Linkage identification based on epistasis measures to re-

alize efficient genetic algorithms. In Proceedings of Congress on Evolutionary

Computation, pp. 1332–1337.

[53] Nicolau, M., and Ryan, C. (2002). LINKGAUGE: Tackling hard deceptive prob-

lems with a new linkage learning genetic algorithm. In Proceedings of Genetic

64

and Evolutionary Computation Conference, pp. 488–494.

[54] Paredis, J. (1995). The symbiotic evolution of solutions and their representations.

In Proceedings of the Sixth International Conference on Genetic Algorithms, pp.

359–365.

[55] Pelikan, M., Goldberg, D. E., and Cantú-Paz, E. (1999a). BOA: The Bayesian op-

timization algorithm. In Proceedings of Genetic and Evolutionary Computation

Conference, pp. 525–532.

[56] Pelikan, M., Goldberg, D. E., and Lobo, F. (1999b). A survey of optimization by

building and using probabilistic models. Technical Report 99018, Illinois Ge-

netic Algorithms Laboratory, University of Illinois at Urbana-Champaign.

[57] Pelikan, M., Goldberg, D. E., and Lobo, F. (1999b). A survey of optimization

by building and using probabilistic models. Computational Optimization and

Applications, 21(1): 5–20.

[58] Pelikan, M., and Mühlenbein, H. (1999c). The bivariate marginal distribution algo-

rithm. In Advances in Soft Computing – Engineering Design and Manufacturing,

pp. 521–535. London: Springer-Verlag.

[59] Pelikan, M. (1999). A simple implementation of the Bayesian optimization algorithm

(BOA) in C++ (version 1.0). Technical Report 99011, Illinois Genetic Algo-

rithms Laboratory, University of Illinois at Urbana-Champaign,

[60] Pelikan, M., and Goldberg, D. E. (2000). Hierarchical problem solving by the

Bayesian optimization algorithm. In Proceedings of Genetic and Evolutionary

Computation Conference, pp. 267–274.

[61] Pelikan, M. (2000). A C++ implementation of the Bayesian optimization algorithm

(BOA) with decision graph. Technical Report 2000025, Illinois Genetic Algo-

rithms Laboratory, University of Illinois at Urbana-Champaign.

[62] Pelikan, M., and Goldberg, D. E. (2001). Escaping hierarchical traps with competent

genetic algorithms. Technical Report 2001003, Illinois Genetic Algorithms Lab-

65

oratory, University of Illinois at Urbana-Champaign.

[63] Pelikan, M. (2002). Bayesian optimization algorithm: From single level to hierarchy.

Doctoral dissertation, University of Illinois at Urbana-Champaign, Urbana, Illi-

nois

[64] Pelikan, M., and Goldberg, D. E. (2003). Hierarchical BOA solves Ising Spin

Glasses and MAXSAT. In Proceedings of Genetic and Evolutionary Computation

Conference, pp. 1271–1282.

[65] Salman, A. A., Mehrotra, K., and Mohan, C. K. (2000). Adaptive linkage crossover.

Evolutionary Computation, 8(3): 341–370.

[66] Salomon, D. (2000). Data Compression: The Complete Reference. New York, NY:

Springer-Verlag.

[67] Sastry, K., and Xiao, G. (2001). Cluster optimization using extended compact

genetic algorithm. Technical Report 2001016, Illinois Genetic Algorithms Lab-

oratory, University of Illinois at Urbana-Champaign.

[68] Smith, J., and Fogarty, T. (1996). Recombination strategy adaptation via evolu-

tion of gene linkage. In Proceedings of the IEEE International Conference on

Evolutionary Computation, pp. 826–831.

[69] Spears, W. M., and De Jong, K. A. (1997). An analysis of multi-point crossover. In

Foundation of Genetic Algorithms, pp. 301–315, Sanmateo, CA: Morgan Kauf-

mann.

[70] Syswerda, G. (1989). Uniform crossover in genetic algorithms. In Proceedings of

the Third International Conference on Genetic Algorithms, pp. 2–9.

[71] Thierens, D., and Goldberg, D. E. (1993). Mixing in genetic algorithms. In

Proceedings of the Fifth International Conference on Genetic Algorithms, pp.

38–45.

[72] Thierens, D. (1999). Scalability problems of simple genetic algorithms. Evolutionary

Computation, 7(4): 331–352.

66

[73] Vose, M. D. (1991). Generalizing the notion of schema in genetic algorithms.

Artificial Intelligence, 50(3): 385–396.

[74] Vose, M. D. (1999). The simple genetic algorithm: Foundations and theory. Cam-

bridge, MA: MIT Press.

[75] Watson, R. A., Hornby, G. S., and Pollack, J. B. (1998). Modeling building-block

interdependency. In Proceedings of Parallel Problem Solving from Nature V, pp.

97–106.

[76] Watson, R. A., and Pollack, J. B. (1999a). Hierarchically consistent test prob-

lems for genetic algorithms. In Proceedings of Congress on Evolutionary

Computation, pp. 1406–1413.

[77] Watson, R. A., and Pollack, J. B. (1999b). Incremental commitment in genetic al-

gorithms. In Proceedings of Genetic and Evolutionary Computation Conference,

pp. 710–717.

[78] Whitley, D. (1994). A Genetic Algorithm Tutorial. Statistics and Computing, 4: 65-

85, http://www.cs.colostate.edu/˜genitor/MiscPubs/tutorial.ps.gz.

[79] Whitley, D., Rana, S., Dzubera, J., and Mathias, K. E. (1996). Evaluating evolution-

ary algorithms. Artificial Intelligence, 85: 245–276.

[80] Winston, P. (1992). Artificial Intelligence. Reading, MA: Addison-Wesley.

[81] Winter, G., Periaux, J., and Cuesta, P. (1995). Genetic Algorithms in Engineering

and Computer Science. John Wiley & Sons.

[82] Winter, P. C., Hickey, G. I., and Fletcher, H. L. (1998). Instant Notes in Genetics.

New York: Springer-Verlag

[83] Wolpert, D. H., and Macready, W. G. (1995). No free lunch theorems for search.

Technical Report SFI-TR-95-02-010, Santa Fe, NM: Santa Fe Institute.

[84] Wolpert, D. H., and Macready, W. G. (1997). No free lunch theorem for optimiza-

tion. IEEE Transactions on Evolutionary Computation, 1(1): 67-82.

67

Biography

Chatchawit Aporntewan was born on the)�Þ th of June 1977. My birthplace is Surin,

Thailand. I had studied at my province till the primary school. Then, I had studied at

Triam Udom Suksa School for two years. In 1994, I was a freshman in the Faculty of

Engineering, Chulalongkorn University. Now I am a Ph.D. student in the Department of

Computer Engineering, Chulalongkorn University.

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstarct (English)
	Acknowledgements
	Contents
	Chapter I Motivation
	Chapter II Loterature Reviews
	Chapter III An Observation of the Compact Genetic Algorithm
	Chapter IV The Algorithm
	Chapter V Performance Comparisons
	Chapter VI Conclusions
	References
	Vita

