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CHAPTER 1

INTRODUCTION

A random graph is a collection of points, or vertices, with lines, or edges, connecting
pairs of them at random. The notion of a random graph was first introduced in 1947 by
Erdés ([21]) to show the existence of a graph with a certain Ramsey property. A decade
later, the theory of random graph began with the paper entitled On Random Graphs I
by Erdés and Rényi ([22]), and the theory had been developed by a series ([23], [24],
[25], [26], [27]) of papers of them.

The theory of random graphs has developed into one of the mainstays of modern
discrete mathematics, and has produced a prodigious number of results, many of them
highly ingenious, describing statistical properties of graphs, such as distribution of
component sizes, existence and size of a giant component, and typical vertex-vertex
distances, that are of interest to practitioners in the field mentioned above.

Random graphs have been used as models of networks in diverse areas of science,
engineering, and sociology. These include ecological food webs ([17], [60]), epidemiology
(2], [3], [38], [41], [53]) metabolic pathway ([11], [12], [19], [36], [37], [43]), electric
power grids([40]), telephone call network ([1]), networks of social contacts and scientific
collaboration ([29], [30], [48], [59]), and, of particular interest to computer science, the
internet ([4], [13], [18], [28]). Many additional citations to these topics may be found
in ([49]) and the review article ([56]). There are many situations in which the theory
tells us that the distribution of a random variable may be approximated by normal
distribution or Poisson distribution.

In 1972, Stein([54]) introduced a new powerful technique for obtaining the rate

of convergence to the standard normal distribution. His approach was subsequently



extended to cover a convergence to Poisson distributions by Chen ([14]). Both meth-
ods were illustrated, in the context of random graph theory, in Barbour ([8]). The
method for proving Poisson convergence has since been widely taken up (Karonski [34],
Karonski and Rucinski [35], Nowicki [50], Janson[32]), but results for random graphs
subsequently obtained by the method for normal convergence seem to be limited to
examples in Barbour and Eagleson ([5], [6]).

Let G(n,p) be a random graph on n labeled vertices {1,2,...,n} where possible
edge {i,j} is present randomly and independently with the probability p, 0 < p < 1.
In our work, we will approximate the distribution functions of the number of vertices

of a fixed degree by normal and Poisson distribution functions.

1.1 Normal approximation

Stein’s method was given by Stein([54]) in 1972. His technique was relied on the

elementary differential equation

fl(w) —wf(w) = L(w) — ®(2) (1.1)

1 # 2
where ®(z) = \/27/ e~z dt and the test function I. : R — R be defined by
T J—o00

The unique solution, f,, of the Stein’s equation (1.1) is

VIt o)l — (2)]  fw< =
fz(w) = , (1.2)
V2re'T ®(2)[1 — ®(w)) if w> z.

Stein’s method was applied to random graphs by Barbour[8] in 1982. In 1989,
Barbour, Karonski and Ruciniski[9] used Stein’s method to show that the distributions

of the number of vertices of a fixed degree in G(n,p) can be approximated by the

standard normal distribution function. The followings are their results.



Theorem 1.1. (][9], pp.141)
Let S,, be the number of vertices of a fixved degree, d, in G(n,p). If d > 1 then

there exists a constant C such that
C

Sn — ESp
NOD) < e,

(S

where a metric di is defined by, for any random variables X and Y
di(X,Y) = sup {\Eh(X) — ER(Y)| : sup |h(z)| + sup | (z)] < 1
T€R z€R
for all bounded test functions h with bounded dem’vative}

Inparticular, if ES, — oo and logn + dloglogn —np — oo then

function of w
vVars,
Theorem 1.2 gave both necessary and sufficient conditions for the convergence of S,

but they did not give a Berry-Esseen bound between the normalized S, and ®.

ilelg P<€;V_Tf§: §z) —<I>(z)‘ — 0 asn— oo.
A Berry-Esseen bound between distribution functions of S, and ® in the form
Op 1= ilellg P(S\';V_TESS: < z) @(z)‘ and the metric d; are different (see Barbour and
Hall [10]). In general, 6, = O(eé) where ¢, is an upper estimate in metric d; .
In Theorem 1.1 they gave only sufficient conditions in order to the distribution
converge to ®. But, in case of isolated vertices, i.e. d = 0,

Theorem 1.2. ([9], pp.143)
Let S, be the number of isolated vertices in G(n,p). Then

(Sn_ESn < z) —@(z)’ —0

vVVarS, —

as n — oo if and only if n?>p — oo and logn — np — 0.

sup | P
z€R

In the work of Barbour, Karonski and Rucinski[9], they used the assumption that f,
(in (1.2)) and f. can be expanded by Taylor’s formula. In 2003, Martin[44] found that

this fact is not true. He corrected this mistake by using another test function in stead



of I,. The new test function used by Martin is Lipschitz test function, I, : R — R

which is defined by

1 s w<z—¢
Le(w)=q 1
ze\W —2—(11)—2—5) jz—e<w<z+e
€
0 s w>z+€

where € > 0 is fixed.
In this work we use an idea of Martin to give a uniform bound of the normal
approximation of the number of vertices of a fixed degree in a random graph. The

followings are our main results.

1
Theorem 1.3. Let S, be defined as in Theorem 1.1 where d > 1 and p = — where
n

1
v € [1, 1+ ﬁ) . Then there exists a constant C(d) such that for 0 < <1,

d
sup |[P(W,, < z) — ®(z)] < 7(5
z€R On

~—

S, —ES,

n
where W,, :=

VVarS,

1
Theorem 1.4. Let W,, be defined as in Theorem 1.3 and d =0. If p= —, then there
n

and (77% =VarS, > 0.

exists a constant C(d) such that for 0 < 3 <1,

Q

()
f

sup |P(W,, < z) — ®(2)| <

z€R (o}

1.2 Poisson approximation

In 1992, Barbour, Holst and Janson[7] proved that the distribution of W, the number
of vertices of a fixed degree d in G(n,p), can be approximated by Poisson distribution,

Poiy, with parameter

-1
Ai=EW = n(n g >pd(1 —pnt-d

and the uniform bound is given by the following theorems.



Theorem 1.5. ([7], pp.99)
Let W be the number of vertices of degree d, d > 1, in a random graph G(n,p) and

AC{0,1,...,n}. Then

sup |P(W € A) — Poix(A)| < u(l + R+ Rg) (1.3)
A

-1
where  p = (nd >pd(1 —p)ni-d

_[(n=-1-4d) d i
Rl_[(nfl)(lfp) (n—l)p}E(d deg(i))

_ (no1=d) R od =2 p i D an
Re= oona—p) L [T g Pestd) = DT and

deg(i) is the degree of vertex 1.
Inparticular, a bound in (1.3) converges to 0 as n — oo if either
1. np—0 and d > 2, or

2. np is bounded away from 0 and (np)7%|d —np| — oo.

In this work, we give bounds of this approximation of the number of vertices of a
fixed degree d, d > 0 in G(n,p) by using Stein-Chen method. The followings are our

main results.

Theorem 1.6. Let W be the number of vertices of degree d, d > 1, in a random graph
G(n,p) and A C{0,1,...,n}. Then

1. ‘P(W € A)— Poi,\(A)’ < O\, A)u(1+ Ry + Ry),

2. ‘P(W €A Poz‘,\(A)‘ <(1—eMu(l+ R+ Reo)

where C(\, A) is a constant which defined by

A
C(\, A) = min {1, A MA(i)l }

A A—1 if ATHed —1) < My,
A(A) =

2(e* — 1) if ATHer = 1) > My,



max{w|C,, C A} if 0¢€ A,
My = and

min{w|w € A} if 0&A,
Cyw={0,1,...,w}.

Furthermore, we know from [46],[57] that

A

COLO 1, wo) < (1= Mmin {1, T
where wo =0,1,...,n and
. A
O\ o)) < min {1, )
wo
where wg =1,2,...,n.

Corollary 1.7. Let W be the number of vertices of degree d, d > 1, in a random graph
1

G(n,p) and p = — for any v € RT. Then for AC {0,1,...,n}
n

1. 9f 6>1 then

C(\, A, d)
n(-D(d-1)

. 6d® (1—e)
1.2 ‘P(W €A) - PO'U\(A)‘ < d!gd+3 p(—1(d-1)’

1.1 ‘P(W € A)— Poi)\(A)‘ <

6d>
where C()\, A, d) = WO(A, A) B

2. if 0<~y<1 then

C(A\ A, d)
6d%(2d +2)! (1 —e™?)
dlg3+d nd1—y) 7

2.1 ‘P(W cA) - PoiA(A)‘ <

2.2 ‘P(W cA) - PoiA(A)‘ <

6d?(2d + 2)!

where C'(\, A,d) = AT

C(\A).
Theorem 1.8. Let W be the number of isolated vertices, i.e., d = 0, in a random
graph G(n,p). Then, for A C{0,1,2,...,n},

1. )P(W e A) - Poi,\(A)‘ < C(\ A)[(n —2)p+1](1 — p)"~?

2. )P(W e A)— Poz')\(A)‘ <(1-eM[(n—2)p+1)(1—p)"2

where Poiy is a Poisson distribtuion with parameter A = ng™ L.



1
Using the fact that (1 —p) < —» We see that the bounds in Theorem 1.8 converge
e

1
to 0 when np—>oo,thatisp:—7 for 0 < v < 1.
n

Corollary 1.9. Let W be the number of isolated vertices, i.e., d = 0, in a random

1
graph G(n,p) omdp:—,y for any 0 <~y < 1. Then, for A C{0,1,2,...,n},
n

. 3C(\, A)
, 3(1—e™)

According to our work, we can conclude as the followings.

1. The number of vertices of a fixed degree d, d > 1, in a random graph G(n,p).

1
p=— Normal approximation | Poisson approximation
n.
0<y<x1 v
1
1§fy<1—|—g v vV (v #£1)
1
>1+ = v

2. The number of isolated vertices in a random graph G(n,p).

p= % Normal approximation | Poisson approximation
0<y<l1 v
v=1 v
v>1 open problem

This thesis is organized as follows. Preliminaries are in Chapter 2. In chapter 3
we give a uniform bound of normal approximation of the number of vertices of a fixed
degree in a random graph. While Poisson approximation of the number of vertices of a
fixed degree in a random graph is considered in Chapter 4. In chapter 5, we give an open
problem on normal approximation of the number of isolated tree in a random graph.
Throughout this work, a constant C' stands for an absolute constant with possible

different values in different places.



CHAPTER II

PRELIMINARIES

In this chapter, we review some basic knowledges in probability, graph and a model
of random graph which will be used in our work. The proof is omited but can be found

in [20], [42] and [51].

2.1 Probability Space and Random Variables

A probability space is a measure space (£, F,P) for which P(Q) = 1. The
measure P is called a probability measure. The set 2 will be refered as a sample
space and its elements are called points or elementary events. The elements of F
are called events. For any event A, the value P(A) is called the probabilty of A.

Let (2, F,P) be a probability space. A function X :  — R is called a random
variable if for every Borel set B in R, X ~!(B) belongs to F. We shall use the notation
P(X € B) in place of P(w € Q|X(w) € B). In the case where B = (—o0,a] or [a,b],
P(X € B) is denoted by P(X < a) or P(a < X <b), respectively.

Let X be a random variable. A function F': R — [0, 1] which is defined by
F(z)=P(X <)

is called the distribution function of X.
A random variable X with the distribution function F' is said to be a discrete
random variable if the image of X is countable and it is called a continuous random

variable if F' can be written in the form

Flz) = /_ "



for some nonnegative integrable function f on R.
Now we will give some examples of random variables.
A random variable X, taking on one of the values 0, 1,2, ..., is said to be a Poisson

random variable with parameter A, A\ > 0, written as X ~ Poi(\), if

—)\Ax
P(X =1)= " r=0,1,2,....
X!

We say that X is a normal random variable with parameter p and o2, written as

X ~ N(u,c?), if its probability function is defined by

1 1

f(@) = ——ewp(— 55 (@~ w?).

Moreover, if X ~ N(0,1) then X is said to be a standard normal random variable.

2.2 Independence

Let (Q, F, P) be a probability space and F, is a sub-o algebra of F for every o € A.
We say that {F,|a € A} is independent if and only if for any subset J = {1,2,...,k}

of A,

where A,, € Fp, for m=1,2,... k.
Let &, C F for all « € A. We say that {€,|a € A} is independent if and only if
{o(Es)|r € A} is independent where o(&,) is the smallest o-algebra with &, C o(&,).
We say that the set of random variables {X,|a € A} is independent if

{o(Xa)|a € A} is independent, where o(X) = {X ~!(B)|B is a Borel subset of R}.

Theorem 2.1.
Random variables X1, Xa,..., X, are independent if for any Borel sets

Bi,Bo,...,B,, we have

n

P( ﬁ{Xi e B}) =[] P(xi € B).

=1 =1
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Proposition 2.2.
If Xi5 5 1=12,...,n, 5 =12,...,m; are independent and f; : R™ — R are

measurable, then {fi(Xi1, Xi2, ..., Xim;), ©=1,2,...,n} is independent.

2.3 Expectation, Variance and Conditional Expectation

Let X be any random variable on a probability space (Q,F,P). If / | X |dP < o0,
Q

then we define its expected value to be

E(X) = /Q XdP.

Proposition 2.3.

1. If X s a discrete random variable, then E(X) = Z zP(X =x).
zelmX

2. If X is a continuous random variable with probability function f, then

E(X):/Ra:f(:c)dx.

Proposition 2.4.
Let X and Y be random variables such that E(|X]|) < co and E(]Y]) < co and

a,b € R. Then we have the followings:
1. E(aX +bY)=aE(X)+bE(Y).
2. If X <Y, then E(X) < E(Y).

3. |[E(X)| < E(|X])-

Let X be a random variable which F(|X|*) < co. Then E(]X|*) < oo is called the
k-th moment of X about the origin and call E[(X — E(X))¥] or E[X — E(X)]* the
k-th moment of X about the mean.

We call the second moment of X about the mean, the variance of X, denoted by
Var(X). Then

Var(X) = E[X — B(X)]%.
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We note that
1. Var(X) = B(X?) — E2(X).
2. If X ~ N(u,0?), then E(X) = p and Var(X) = o2.

3. If X ~ Poi()\), then E(X) =X and Var(X) = \.

Proposition 2.5.

If X1, Xo,...,X,, are independent and E|X;| < co for i =1,2,...,n, then
1. B(X1Xs- - Xn) = E(X1)E(Xs) - E(X»),

2. Var(a1 X1+ asXo + -+ apnXy,) = a2Var(Xy) + a2Var(Xz) + - + a2Var(X,) for

any real numbers ai,as, ..., an.

The following inequalities are useful in our work.

1. Holder’s inequality:
B(IXY]) < E# (I XP)E4 (Y[

1 1

where 1 <p,qg<o0, —+ - =1 and E(|X|P) < o0, E(]X]?) < c0.
p g

2. Chebyshev’s inequality:

Var(X)

PH{|X —EX)|>¢}) < = for alle >0

where E(X?) < .
Let X be a random variable on a probability space (2, F, P) such that F|X| < oo

and D a sub o-algebra of F. Define a probability measure Pp : D — [0, 1] by

and a sign-measure Qx : D — R by

Ox(E) = /EXdP.

Then, by Radon-Nikodym theorem we have Qx < Pp and there exists a unique mea-

surable function E(X|D) on (Q,F, Pp) such that

/ E(X|D)dPp = Qx(F) = / XdP  forany E €D.
E E
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We call E(X|D) the conditional expectation of X with respect to D.
Moreover, for any random variables X and Y on the same probability space (2, F, P)

such that E(]X]) < oo, we will denote E(X|o(Y)) by E(X]|Y).

Theorem 2.6.
Let X be a random wvariable on a probability space (Q,F, P) such that

E(|X|) < oo, then the followings hold for any sub o -algebra D of F.
1. If X is a random variable on (2, D, Pp), then E(X|D) = X a.s.[Pp].
2. E(X|F)=X a.s.[P].

3. If 0(X) and D are independent, then E(X|D) = E(X) a.s.[Pp].

2.4 Graph Theory

A graph G consists a non-empty set of elements, called vertices, and a list of
unordered pairs of these distinct elements, called edges. The set of vertices of the
graph G is called the vertex set of G, denoted by V(G), and the set of edges is called
the edge set of G, denoted by E(G). If {v,w} is an edge e, for some vertices v and
w in G then v and w are said to be adjacent or edge e is said to be incident v and

w.

Definition 2.7.
The degree of a vertex v in graph G, denoted by deg(v), is the number of edges
incident to v.

Any vertex of degree zero is called an isolated vertex.

2.5 Models of Random Graphs

The notion of a random graph originated in a paper of Erdés(1947)[21], which is
considered by some as the first conscious application of the probabilistic method. It

was used there to prove the existence of a graph with a specific Ramsey property.
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The model introduced by Erdés is very natural and can be described as choosing
a graph at random, with equal probabilities, from the set of all 2(3) graphs whose
vertex set is {1,2,...,n}. In other words, it can be described as the probability space
(Q, F, P), where  is the set of all graphs with vertex set {1,2,...,n}, F is the family

of all subsets of 2, and for every w € Q
Pw) =2"0).

Generally speaking, a random graph is a graph constructed by a random proce-
dure. In accordance with standard definitions in probability theory, this is formalized
by representing the “random procedure” by a probability space (€2, F, P) and the “con-
struction” by a function from the probability space into a suitable family of graphs. The
distribution of a random graph is the induced probability distribution on the family of
graphs: for many purpose this is the only relevant feature of the construction and we
usually do not distinguish between different random graphs with the same distribution.
Indeed, it is often convenient to define a random graph by specifying its distribution.

The word “model” is used rather loosely in theory of random graphs. It may refer to
a specific class of random graph, defined as above, or perhaps to a specific distribution.
Nowadays, among several models of random graphs, there are two basic ones, the bino-
mial model and the uniform model, both originating in the simple model introduced by
Erd6s(1947).

Given a real number p, 0 < p < 1, the binomial random graph, denoted by G(n,p),

is defined by taking as € the set of all graphs on vertex set {1,2,...,n} and setting
P(G) = plB@I(1 — p)(5)-1B@)]

where |E(G)| stands for the number of edges of a graph G. For p = % this is the model
of 1947. However, most of the random graph literature is devoted to cases in which
p=p(n) as n — oo.

Given an integer M, 0 < M < (Z), the uniform random graph, denoted by

G(n, M), is defined by taking as € the family of all graphs on the vertex set {1,2,...,n}
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with exactly M edges, and the uniform probability on €2,

()

In this work, we are interested in one of two models which is the binomial random

graph, is shorthand for a random graph.



CHAPTER III
NORMAL APPROXIMATION OF THE NUMBER OF
VERTICES OF A FIXED DEGREE IN A RANDOM

GRAPH

In this chapter, we use Stein method to give a uniform bound on normal approxi-
mation of number of vertices of a fixed degree in a random graph with n vertices.

Let G(n,p) be a random graph on n labeled vertices {1,2,...,n} where possible
edge {i,7} is present randomly and independently with the probability p, 0 < p < 1.
Let S, be the number of vertices of a fixed degree d, where d > 0, in G(n,p). Then

Sn=Y1+Ys+---+Y, where
1 if vertex i has degree d in G(n, p),

0 otherwise,

fori=1,2,...,n.
Note that the expectation of Y; for i =1,2,...,n is

—1
u=PY;=1)= (n d >pdq”_1_d and E(S,) = nu (3.1)

where ¢ =1 —p and

2
VarsS, = nf - (" . 1) (d— (n— 1)p)2p1(1 — p)2n=D=3 4 (g, — L)

([9], pp-142).

Let

Sp — E(Sy)
- VVarS,
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In this chapter, we give a uniform bound between P(W,, < z) and ®(z). The followings

are our main results.

1 1
Theorem 3.1. Let p = — where v € [1,1 + g> for d > 1. Then there exists a
n

constant C(d), such that for 0 < <1,

sup |[P(W,, < z) — ®(z)] < (—g
z€R On

~—

02 =VarS, > 0.

1
Theorem 3.2. Let d = 0. If p = —, then there exists a constant C(d), such that for
n

0<p<1,

Q

sup |P(W, < 2) — d(z)] < Y
z€R On

This chapter is organized as follows. In section 3.1, we prove auxiliary results for
the proof of main results and in section 3.2 we introduce Stein’s method for normal

approximation which is used in the proof of main results in section 3.3.

3.1 Auxiliary Results

In this section, we give auxiliary results for proving Theorem 3.1 and Theorem 3.2.

For each i € {1,2,...,n}, let

Then

E(X;)=0, Wo=> X; and E(W2) =1
=1

For any A C {1,2,...,n} and 4,5 € {1,2,...,n}, we define
1 if the vertex j has degree d in G(n,p) — {A},

A _
v =

0 otherwise.
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where the random graph G(n,p)—{A} is obtained from G(n,p) by removing the vertex

in A. For i,j=1,2,...,n, let

1
7Y; =17
Zij: On
1 i
= -Y) s i#],
Zi =Y Zi,
j=1

J J
j=1""
JF#i
0 1= 7J,
Vij=191 i . i irj S,
e LA DI D) B
" =1
I#i,j
"1 i y ;
Wi = > — ("~ BE) — B(Vy) ~ B(Z), =W v
=1 "
I#i,j

Note that
W is independent of X; and W;j is independent of the pair (Xj, Z;;)

(19], pp-137).

Proposition 3.3.

1
1. Ford>1 (mdp:—,yforwzl,weh(we
n

0’%2%.

1
2. For d=0 and p = —, we have
n

(3.5)

(3.6)



1 1
Proof. 1. From the fact that ¢ =1—p < " and p = — for v > 1 we have
e n

n—1 o

d
(=12 (n—djp’
o dle(n—1—d)p
ndpl
< d!e(nflfd)p
1
— dle

for large n.

Hence by (3.2) and (3.7),

n—1 1 1 n—1 o
0721—”( p >pdq" 1d{(n_1)< g >(d—(n—1)p)2pd Lgm2md - 220/

=nu (n B 1)pdq”1d(d_(n_1)p)2 1 nu}

{ d (n—1) Pq n
2
oufi
> ( — i)n,u
> %

18

(3.7)
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1
From this fact, (3.2) and p = —, we have
n

o2 =n(n—1pg® 3 + E(S,) — (E(in))z
=n(n = pg”" > +ng" " — ng*"~?
=ng" "' (n = 1)pg" 7 +1 qn_l}
= ng" w2~ pg"? 1 - ¢}

O]

1
Proposition 3.4. Let d > 0 and p = — where v > 1. For n >3, r1,79,73 € N and
n

i,7 €{1,2,...,n}, there exists a positive constant Ci(d,r1,r2,73) such that

Ci(d,r1,m2,73) 1t

077;1 +ro+r3

B(1X"Z2Vig']) <

where

T1+79

2(r1+rg)
Ci(d,r1,72,m3) < 27 Faeraers [2 + Sralr TQ;F ra)(d + 2] 75t
rLT T2

27 .
+ 2T 4 4 (11 + 1 + 1) (d + 4)] TR
Proof. Note that
V; = Y?| < EyjIldeg(j) = d or d + 1] (3.8)

where

1 if ¢ and j are adjacent in G(n,p),

0 otherwise
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and deg(j) is a degree of a vertex j for all j € {1,2,...,n}.
Hence, for ri,r9,...,ry, € N and for distinct j1, jo, ..., jm which are not equal to i we
have

B(Y;, =YY, =Yy,

Jm

(’L) ™m
=Y, 0)

< E(E"!

iJ1

(Ildeg(j1) = d or d + 1)) E}?

1j2

:P(Eijl:1,I[deg(j1):d0rd+1]:1,Eij2:1,...,Eijm:1)
Come1[(M =2\ dp1-a, (P2 a4 n—2—di|
=Dp [(d—l)pq +< d )p q

— -l (” - 1>pdqn—1—d|:n i ot (n(;iz)j)z?]

_3d+2)p"u
- 2 n

where <Z> =0 for any k£ < 0.

From this fact and np <1 we have,

E(’jé(yj 0l

J#
ST EW YO+ 3 X B0 - (e - )
Jj=1 Jji=1  jo=1
J# A a7
r1+reo=r
SRR D DI DD DR (G FORNC AR £])
J1=1 ja=1 Jr=1
J17% joF6d2  JrFGdLsedr—1
3(d+2 2 rpr=1
gg(%+w+...+w)
2 n n
< Brd+2)

- 2



which implies that

E|Z| = ;;;E‘ (YZ + zn:(Yj - }/j(i))>7“‘

21

j=1
J#
<Y pyreE Zn:(y. — v }
= i : i
n ]:1
JFi
or—1 3r(d+2)
< . i Sl B’
S (E(Yz) + M)
— 2722 4 3r(d + 2)) = (3.10)
O-TL
From (3.10) and the fact that
Y, — 1
X = ’< ”)( < —, (3.11)
o On
we have
r1 7T 1 T ro— H
E|X['Z?| < T E|Z[*| < 272722+ 3rao(d + 2))W. (3.12)
Similarly to (3.8), we observe that
v, — v < B, 19 [deg(l) = d or d+ 1] (3.13)
where
. 1 if deg(l) =dord+1in G(n,p) — {i},
ID[deg(l) =d or d+ 1] =
0 otherwise.
From (3.13), for r1,79,...,7y € N and for distinct 1,1, ..., 1, which are not equal to

1,7 we have
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(|Y (@ _ lgivj)|r1 DfliZ) _ YESJ)VQ .. |}/l§z) _ }/lgi,j)

)

< BB, (1 ]deg(ly) = d or d + 1)) B - Ejjr )

= P(Ej, = 1,19[deg(ly) =dor d+1]=1,Ej, = 1,...,Ej, = 1)

— 1 [(Z - :1)>>pdqn 2-d <” ; 3>pd+1qn3d}
m_1[m—1 e n—1-d)d n—1-d)(n—2-d)p
- (e e T e
_pm_l,u[(n—l—d)d+(n—l—d)(n—Q—d)p}
N (n—2) (n —2)¢?
Py n—1—-d)}d m—-1-d)(n—2—-d)p
n [( )}{ (n—2) (n —2)qg? }

(3.14)

=1
l#i,5
n
S I Y Y B v vy
=1 l1 1 12 1
l#1,j L#i,j laijh
r1+ro=r
LA DETEED DI S AU RN A0
=1 l=1
l1#1,7 lr#t,5,01 . 0lr—1
3 n TL2 n’ r—1
§7(d+4)<u pu - p M)
2 n n n
3r
< ?(d—l- 4) .

From this fact and the fact that

EY") =Py =1)= (” 4 2>pdq”‘2‘d = <n P 1>pdq"‘1‘d [(n(_l_d)] <2,
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we have,

E|V| = { + Z (v =y

’Vl
l#w

2;: (B + 5 2 )y Gy

l#w

IN

)

<224 4 3r(d + 4)) L (3.15)

r
n

for any r € N. Thus, from (3.12) and (3.15), we have

+ro+r ritry

T 47‘3
E|XZ?V!3| < {E!XHZW‘ Lt }r1+rz+r3 {E\Vrg nitratrs }m+r2+r3
i “i Vgl =

r1+792

< 21”2(7“7}-:?;7“3) -2 2 37"2 (7"1 + 72 + T3)(d + 2) 1% r1+ro+rs
= { 1 |: + " n o :| 0_;;1+7‘2+7“3 }

3
{2T‘1+7‘2+T3—2(4+3(T1 +T2 +T3)(d+4)) H }r1+r2+r3

T T T,
Un1+ 24713

I

oritra+rs

= C1(d,r1,72,73)

where

2(r1+r2) r1+712
Ci(d,r1,7m2,7m3) < 2 R [2 n 3ra(r1 +ro +1r3)(d+2)] riaratrs
r1+ 712

___2r3 ™
27 44 3(ry + 7o 4 r3)(d + 4)]TTF
for r1,7r9,73 € N. O

1
Proposition 3.5. Let d > 0 and p = — where v > 1. Forn >3, r1,r9,73 € N and
n

i,7 €{1,2,...,n}, there exists a positive constant Ca(d,rs) such that

Cz(d T3)

7"1 +ra+r3

E|X['Z2V)] <
where Cy(d,r3) = 2737 2(4 + 3r3(d + 4)).

Proof. Note from (3.8) and (3.13) that, for any 4,j € {1,2,...,n},i # j,l1,...,lm, €

{1,2,....,n} —{i,5} and r1,7re,...,rmt1 €N,
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BV (¥ = ¥})2) < B(Y, | B} (Hdeg(j) = d or d +1])7)

|
A/~ —

(Y,(i) =1,E; =1,1[deg(j) =dord+1] =1)

n=2\ 411 n-2-d
d )P q

<

n—1 1_gn—1—-d

— pdqn 1 d( )p
d (n—1)q

.
=g

2u

nlad 3.16
< (3.16)

E|(Y] _ Yj(i))m (Yi(i) _ YZEZ'J))W (Ylil) - Y(i,j))rs . (Yl(i) _ Yl(i:j))rm+1|

1 12 m m

< B(E]}E}}

"2 (I9]deg(lh) = d or d+ 1)) Ejp - - Ej7)

Jjla Jlm
= P(Ey=1,E, =1,1[deg(ly) =dord+1] =1,Ej, = 1,...,Ej,, = 1)

o omea (= 3\ 4 n-2-4 n—3\ 411 n73fd}
=pp Kd1>pq +< d >p q

:pm<n1>pdqn1d[((nld)d (n—1—d)(n—2—d)p

d n—1)(n—2) (n—1)(n—2)q¢?
_ " [(n—l—d)d+(n—l—d)(n—?—d)p}
(n-1)L (n-2) (n —2)¢°
< %(d+4)pzu. (3.17)

From (3.17) we see that

n

Bl =y o -yt

=1
l#i,j

< %(dﬁ%)

3=
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From this fact, (3.11) and (3.16), we have

E|X] 22V
1 (Dvrs [1r () L N 1) 1o |
—Jr1+r2+r3E‘(YJ_Yj )Q{YJ +IZ:(YZ -y )}
n =1
l#i,5
2rs~1 (D) ra v ()7 (Dvrs [ N 1r (i) 1o i)y ] 73
< | Bl =Y ) 4 B -, >2[ZZ<YZ =y
=1
10,
rg—2 M
<24+ 3ra(d 1)

3.2 Stein’s method for normal approximation

Stein’s method was given by Stein[54] in 1972. His technique was relied on the

elementary differential equation
f(w) —wf(w) = h(w) — Nh (3.18)

where f: R — R is a continuous and piecewise continuously differentiable function, h

is a bounded test function with bounded derivative and N'h is defined by

1 o0
Nh = T /_OO h(z)e_%zzdz.

To use (3.18) to find a bound of normal approximation, many authors([9], [15], [16],

[39], [45]) choose the test function h = I, where I, : R — R is defined by
L(w) = - (3.19)

It is well-known that the solution f, of (3.18) with test function I, is of the form

\/ﬂe”;@(w)[l — ®(2)] if w <z
fz(w) = ; (3.20)
V2re T ®(2)[1 — ®(w)] if w > 2.
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~2 qt([55], pp.22).

where ®(z) :/ !

e
oo V2T
Observe that

) [1— ()|l + V2rwer”’ d(w)] ; w<z
D(2)[~1 + v2rwe2"’ (1 — d(w))] ; w> 2

and the first derivative of f, does not exists at w = z. But from (3.18) and (3.20) we
have to define

Fiz) = [1 = (2)|[1 + V2mze2 " @(2)).
Thus

[1—®(2)][1 + V2rwez d(w)] ; w<2
fo(w) = 1 (3.21)
®(2)[~1 + V2rwez (1 — ®(w))] ; w> 2.

By substituting any random variable W for w in (3.18) with A = I, we yields

EIfz(W) = WL (W) = P(W < z) — ®(2).

z

Hence, to bound |P(W < z) — ®(z)|, it suffices to bound E[fL(W) — W f.(W)].
Barbour, Karo7iski and Ruciriski([9],1989) used Taylor expansion of f, and f. to

show that
<

On

[P(Wy < 2) = ®(2)] <

where W, is the number of vertices of a fixed degree in a random graph. Unfortunately,
since f. is not continuous at w = z, we can not use the Taylor’s expansion of f7.
In 2003, Martin[14] found that this fact is not true. He corrected this mistake by use
another test function. In this chapter we will correct the idea of Barbour, Karonski
and Rucinski by using another test function instead of I,. The new test function is

I..:R — R which is defined by

1 s w< z—¢
L (w) = 1
z,€ —2—(w—z—5) jz—e<w<z+e
€
0 s w>z+e€

where £ > 0 is fixed. This function is introduced by Martin([44] pp.84, 2003).



Proposition 3.6. The solution of Stein’s equation

flw) —wf(w) = L (w)

is of the form

;

Varet o)1 - o [ "o
. %\/%6%2[1 — o(w)] / iv B(t)dt

2e 2e Ju

1 are 1 - b(w)] / - O(t)dt

\ 2e —€

Proof. Note that

Ve B(w) [7(2 te—w) 1 /Z+E

193
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— NI,

yaw<z—¢

iz—efw<z+e¢

cw > 2 +e.

1 z+e

w

forz—e<w< z+e,

forw >z +e.

1 z+e 1 z+e
— I(w)dt = / ldt=1, forw<z—g¢,
28 zZ—E 26 zZ—E
1 z+e 1 w
— I dt = — I dt + —
3 ) Blwldt =5 | L{w)dt+3
1 z+e
= — 1dt
2e Juw
1
= (w—z-2)
and
1 z+e
— I dt =0,
5 | . t(w)
Hence

1 z+e
L (w) = 26/ Ii(w)dt

zZ—€

for all w € R. From this fact we can see that

1 z+e€ 1 z+e€
NI :/ /\/Idt:/ B(t)dt.
. 2e z—€ ! 2e Z—€ ( )

(3.22)

(3.23)



By (3.22), (3.23) and Stein’s equation we have

1 z+e
Lo NL.— / (T(w) — ®(t))dt

2e J,_.
1 z+e
=5 | Uiw) —wh(w)s

From this fact and (3.18), the solution of Stein equation,
fl(w) —wf(w) = Le(w) = N
is f..: R — R which is defined by

1 zte

fre(w) = % /Zs fr(w)dt.
We use (3.20) and (3.24) to give the form of f, ..

Case w < z — €.
1 [t w?
o) = o / Vare's d(w)[l — B (1) dt
Z—&
w2 1 z+e
= V2re's d(w) [1 - 2/ @(t)dt}.

€ Jze

Case z—e<w<z+e.

1 w 1 z+e
Femge [ w5 [

w

28

(3.24)

w ) z+e w2
=50 | VereE el -+ 5 [ VareT o)t - a0l

€ Jw
_ %Jﬂeg[l — o (w)] /w B(t)dt

z—E€

+V2re™ B(w) [M _ 1 /Z+E<I>(t)dt].

2e 2e Jo,

Case w > z + €.

z+e€ 2
foctw) = o [ VERET @01 - D(w)ds
— 2715\/%6%2[1 — O(w)] /Z+E d(t)dt.

zZ—€

This completes the proof.

O]

Proposition 3.7. For any z € R and € > 0, the first derivative of f.. exists and is

continuous.
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Proof. First, we will use (3.20) and (3.21) to show that f] . exists.

Case w < z—¢€.

z+e
fngl/ f1(w)dt

2 /..
1 z+e w2
=5 [1— @)1+ V2rwe 2 (w)]dt
€ —€

= 515[1 + \/ﬂwe%@(w)}{% - /

z—€

z+e

<I>(t)dt}
=1+ \/ﬂwew;q)(w)] [1 _ 1 /i+6 (ID(t)dt].

2e

Case z—e<w<z+e¢

2&_ O(t)[~1 + V2rwez™ (1 — d(w))]dt
+ % Z+€[1 — ®(1)][1 + V2rwes" (w)]dt

_ 2%[_1 +V2rwer™ (1 — d(w))] /Zws O(t)dt
z+e

+ 2%[1 + \/ﬂwe%w2®(w)]{(z+5 —w) — /

w

(I)(t)dt}.

Case w > z+¢

2e
1 z+te

T2

1 z+e
frotw) =g [ sitwds

®(t)[=1 4 V2rwez" (1 — B(w))]dt
- %[—1 +V2rwez’ (1 — ®(w))] /_+ D(t)dt.

Next, we will find the first derivative of f, .(w) at points, w = z—¢ and w = z+¢.

To find f] (2 —¢), we use Proposition 3.6 and L'Hopital’s rule to consider the left and
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the right derivatives of f,.(z —¢) as follows.

lim fre(z—e+h)— f.c(z—¢)
h—0— h
(z—e+h)>

= :1—— @(t)dt_ lim —{\ﬁe 2 (z—e—l—h)—\/%e@@(z—s)}

2e J,_¢ Jh—o-h

- - . 1
=[1-g [ o tim \/27{\/? F(z—e+h)®(z—e+he
(z—e)?

S - o(t)dt] [1 FV2r(z — ) (2 — e)eT]

(z— €+h)2 }

m fzs( 5+h) fz,s(z_s)
h—0t h
1 e 2 z—e+h
— lim { Vare =T 1 - @z — e + )] / O(t)dt
z—e

(z=e+h)? h 1 [*t
P V2me T (2 — e+ h) [1 IR @(t)dt}
25 28 Z—8+h

m @(t)dt} }

(5500 -4 oG —c 4+ h)

2

z—¢ 1
—\/271'6( > (I)(Z—E)[l—/
2e J,
. V2w
= lim

h—0+ 25

+ /;E+h @(t)dt{\;% +[1-®(z-e+h))(z—ec+h)e &} }

+Var{e™ S <I>(z—5+h)[;—1
N

—&

1
(z—e+h)?2

h 1 } +(z—¢e+he

1—- = =
+|: 26 25 Z€+h

- T (e (e — ) - m - e - olet - o)

+ [1 - % /Zig @(t)dt} {1 +V2m(z — 5)6(27;)2 d(z — g)]

<I>(z—€+h)]}

—€

Thus

flelz—e) = [1 -1 / i+6 @(t)dt} [1 F V(s — )T B(x — g)} .

2e

Similarly to f,.(z —¢), we have

1

z+e o)
fielz+e) =52 /_ <I>(t)dt[ —1+V2r(1 - @(2+2))(2 + g)e%}.



31

Thus we have

fre(w)
( w? 1 w? zte
14 Vamwe's @(w)] — (1 + Ve B(u)] / SH)dt ; w <z —=
zZ—€
1 w
polo1+ VEmwe R (1 @(w))]/ B(#)dt
- 1 19 z+€
o[+ Vamue ()] (2 2~ w) - / ()it} ze<w<zte
1 1,2 z+e
2—6[—14—\/271'1062 (1—<I>(w))]/ O(t)dt jw >z + €.
\ zZ—E€
Observe that f; . is continuous. O

Remark. The idea of the proof of Proposition 3.6 and Proposition 3.7 is introduced

by Martin.

Proposition 3.8. For the function f,. defined in Proposition 3.6 we have

where

1 s weEA

0 otherwise

where A C R

Proof. See Lemma 2 in Chapter II of Stein([55], 1986) for the proof of (1) and (2). The

proof of (3), see page 86 of Martin([44],2003). O

Theorem 3.9 is one of the main results in [44] that we will apply in our work.
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Theorem 3.9. Let W, be a decomposed random variable defined by
Wo=> X
i€l
E(X;)=04€el; E(W}) =
W, = w® 4 Z;,i € I, where W s independent of X;;

Zi=> Zyiel K CI
JEK;

W@ =Wy +Vyieljek,

where Wj is independent of the pair (X, Zsj).

Suppose that

|Xs| < A | Zi| < Bik, |Vik| < Ci, | Zi + Vir| < C,

for some constants A;, Bi,, Ci and C},.. Then

sup |[P(Wy, < 2) — @(2)| < 13.7) AiBf +> Y A;iBix(6.8Ciy, + 9.3C})
=€k iel iel keK;

where B; := Z Bi..
keK;

To prove this theorem, Martin showed that for all € > 0

|P(W, < 2) — ®(2)| < A(2) + Az(e) + As(e) + Bi(e) + Ba(e) + Bs(e) + (3.25)

€
V2T ’
where

=" E(lge e (WD +60:2) — g, .(WD)|| X, Z1])

el

A(e) =D E(lgee(WD) = go e (Wi)|| X Zix])
iel keK;

As€) =3 3" B(lge c(Wn) — g=c(Wir) ) E(1X: Zir])
i€l keK;

Bi(e) =Y E(L.(WW) - L. (WY 1 6:2)|X,2))
iel

BQ(E) = Z Z ’Izs Iz,s(Wij + ‘/;J)|’X1ZUD

i€l keK;

Bg(E) = Z Z ’Izs - Iz,E(WZj)|)E(|X7JZUD

i€l keK;
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and

9ze(®) = fre(@)w, (3.26)

01 € [0,1] ([44], pp.84-86).
Then he used the boundedness of X;, Z;., Vir and Z; 4+ Vj; to bound every term on the

right handside of (3.25). In fact we can not apply Theorem 3.9 to our work, since our
n

1
random variable Z; = Z —
j=1
also prove our result by using equation (3.25).

{YZ' +(Y; — Yj(i))} is not bounded. But in our work, we

n

3.3 Proof of main results

In this section, we give the proof of Theorem 3.1 and Theorem 3.2.

Proof of Theorem 3.1. In Theorem 3.1 we need to find § where

J :=sup|P(W, < z)— ®(z)|.
z€R

We note that for any a,b € R,

Pla<W, <b)=P(W, <b)—P(W <a)— &)+ ®(a) + ®(b) — ®(a)
=[P(W, <b)—®(b)] — [P(W < a) — ®(a)] + ®(b) — P(a)
< [P(Wy < b) = B(8)] + [P(Wi < @) — B(a)] + B(b) — D(a)
b—a

<204 —. 3.27
<25+ 225 (3.27)

To find §, we divide the proof into 4 steps as follows.

Step 1. We will show that

for every € > 0.

From (3.4), (3.6), (3.10), (3.12) and the fact that

B(X?) = o B((Yi— ) < Ly

n



34

we have

E(WnX;|22) = E(|((W + 2,)X,]22)

= BE(WWX;|22) + E(|X:Z}))

1 1
L
< {Bworxh}{Bizh} + X
4 3 - Cu
—{B(wWOP B} {B(ZhH} + =F
1 1 n C
<c{ewi+zhEx)} {BEh ) +<F
< clap(x))? B(Z} 2, Cn
< ofemod) {pan) + 2
Cu
<o (3.28)
From (3.10) and (3.15) we have
C
E|Wy| = E| Z ~ BY")) — B(Vyj) - B(Z)| < EVij| + BIZi| < —
l;éz,]
(3.29)
and from (3.9) we have
BIX, 2] < By - Y| < 302k (3.30)

= 2
os 2noz
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From Proposition 3.3, Proposition 3.8, (3.12), (3.26) and (3.28) we have
n . .
Ar(e) = D E(lgse (W +6121) = 9. . (W) Xi Zi])
i=1

= E(lfocWD + 0, Z) (WD + 6.2 = W) — Lo (W)W — W)

+ (fore WD 101Z;) — fo e (WONW,||X,Z5])

(| foe(W W 460,26, —1)Z; — fz,s(W(i))Zi)

(i))
>HIZiWn||XiZiD

91 Zz

2%

( l) +912) fz,z—:(W
Z

=1

{BUfecW O +0,:2)11X122) + E(|f-.(W )| X,1 27)

fze( +HIZ) fza
017Z;

E( ’]WX\ZQ}

SZ{
>

E(1X,|22) + \/;E(|X 122) + B(WaXi|22)}

n

w\s %\9

B(Xi|22) + B(WaXi|Z2) }

IN

fla Q
zqw‘g
——

(3.31)

IN
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From Proposition 3.3, Proposition 3.5, Proposition 3.8, (3.4), (3.5), (3.6), (3.26), (3.29)

and (3.30), we have

ZZE (192, (W) = g2 (W) || XiZsj])

i=1 j=1
J#i

=3 Y E(|foe(WYWD — W) — £, (W) (Wij — W)
i=1 j=1
J#i

+ (foe (WD) = fo e (W)Y Wal | Xi Zi51)

=3 D B feeWOWD — £ (WOYWy + Vig + Z0) = foe(Wip) Wy
T
+ Lo W) (WO + Zi) 4 oe (WEOYW = oo (Wig) Wl | XiZis])

= 3D B0 ) ¢ LWV~ Wi WO — W02,
i=1 j=1
JFi

+ FoeWig) Zi+ fore WOYW, — fo o (Wi W | X Zi5))

—ZZE(\UZ,&(W“))HZ@(W@-)] — o e WOV + fo e (W)W, - 2]

= J2e(Wij) [Wn — Zi]|| XiZij))
—ZZE [fz e (W +fzs( )] — [z e(W )‘/Zj"i‘fzs(W( )[Wij"i_vij]

=1 j=1
i
= [oe(Wij) [Wij + Vigll| XiZij1)

5v2m V2T
SZZ 1 EIXiZijVijl + ——B|WiiXiZj|

i=1 j=1
i
5271 V2T
<ZZ E|XiZijVij| + —~ BIWij| B|Xi Zyj]
=1 j=1
i#i
2 2
<c{ih+ 204
no,  noy
C
<. (3.32)
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From EW,, = 0, Proposition 3.8, (3.10), (3.15), (3.26) and (3.30), we have

A3(e) = ) " Elge(Wn) — g2 (W) | E| X Zi|
=1 j=1
=

=Y Bl fe (W) (Woy = W) = foc (W) (Wiy — W)
i=1 j=1
J#i

+ (foe(Wh) = f2.e(Wi) )W E|X; Zsj|

<Y Bl foe(Wig)(Zi + V)| E|XiZig| + E|(foe(Wa) = foe(Wig)) Wl | E| X Zsj]
=1 j=1
7
D e~ V27 V2T
< ZZ TE|Zi + Vi | B XiZij| + TE|Wn||E\XiZij|

<. (3.33)

Therefore, from (3.31), (3.32) and (3.33),

<

On

Al(E) + A2(5) + A3(€) <

To proof step 2 - 4 we let

526[2(2+6(d+2)) L 3d+2)  3(d+2))

ol ol oh

(3.34)
Step 2. We will show that, for 0 < 8 < 1

Bl (6) <

§  C(d)
=6 ol
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From Proposition 3.8 (3) we have for 0 < § < 1
n

Bi(e) = > E(|L.(W®Y) - LW +0,2)||X: Zi)

i1
1 — 1
= 2e ZE(‘/O I[Z_fgw(i)'F@@lZiSZ—i-s]d‘g ’XZZzQD
: 7,;1 1
= 5 ;E“Xiziz‘ /0 I[z—a<W<i>+eelzi<z+a7vij>glg]d9’)

n

1 2
+ 52 2 Bz
=

/0 I a0 00,201Vl 149))
In

= BH({:‘) + 312(8).
By Proposition 3.4 we have

arﬁ -
Bu(e) < 5= B(XiZ} V|
=1

1
/0 Lo ecW 100, Zi <o, Vi > 15190 )
In

‘ilﬁ iE|XZ-Z~2V’”-\
2¢e — v

IN

Cnu

EOnp

IA

for every r > 0.
We will use (3.27) to bound Bja(e). Note that from (3.4), (3.5), (3.27) and Chebyshev’s
inequality we have

1
Pla < Wy <b) = Pla < Wy = (Zi+ Vi) <b,|Zi + Vij| < —5)
(X

n

1
—i—P(aSWn—(Zi-i-Vij)Sb,‘Zi-i—Vij‘>fﬁ)
o

n

1 1 1
SP(a—7 an§b+—ﬂ)+P(\Z¢+Vm > —ﬁ)
On On on
b—a 2 1
<26+ + + P(|Zi + Vij| > —5)
ous \/27TU£ (12 Y arﬁl
b—a 2
<20+ - + E|Z;i + Vij|*0%8 (3.36)
V2r 2ol i+ Viglo

for any s > 0.
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From (3.6), (3.10), (3.12), (3.15) and (3.36)(for s = 1_%) we have

Bia(e

I[z—agwij+Vij+eolzi§z+a7|zi|siﬁ,\vij\g%]de
on on

1
+/0 I[z—eswijmjwelziswe,Zi|>015,|wjscjglde‘)

1 - ! rﬁ n
< 2% ZE(’XZZE‘/ I[Z—E—%Swij§z+e+%]d9 4+ ZE’X Zr+2|
' " on i=1
; Coflﬁnu
:ZE|XZ|/ z—s——<Ww<z+5+—)d9) L
Un EOp
< (2+6(dt2))w [25 2e 6 }
2800 \ﬁ 27m
2 2 5 o
IR O )L e 5%, Cnp
2e03 ol (1=A)+3
,52
2 d+2 2 6 C -5 c
2e03 V2r o \2rol eop L5 T BT
n
(3.37)

Thus by Proposition 3.3, (3.34), (3.35), (3.37) we can choose r > 0 be such that

r(1—p8)+1—08>1 where 0 < <1 so

C (2+6(d+2)) 2e 6 C
Bi(e) < 20 + +
1( ) 80’n(1 B8)+ oy, [ V2 2770'71 501+511%2
B C 2(24+6(d+2))d N 2(24+6(d+2)) N 6(2+6(d+2)) n C
c U:L(l B)+ oy, V2ro, sonag Vor 80711+B
C 202+ 6(d+2))sol  C
S S A-pTI-p 2 T3
on onb[224+6(d+1))] on
0  C(d)
6 ol
for 0 < g < 1.

Step 3. We will show that there exists a constant C' > 0, for 0 < 8 < 1

B()<2+C(;(§)

By using Proposition 3.8(3), Proposition 3.3, Proposition 3.5, (3.6), (3.10), (3.15),
1

(3.30) and (3.36) (for s = ) we have for r >0 and 0 < < 1

1-p



n

=Y ) B(L(Wi) = L (Wij + Vi) || Xi Zij])
i=1 j=1
I

*ZZE |X ZZ]‘/’LJ‘/ I[z €<WZ]+9VZ]<Z+€]d9)

21]1

| A

| A

*ZZE | X szvw‘/ I[z e<W;;+0V;j<z+e,|Vij|> ﬁ]dé?)
=1 j=1

J?él

+ *ZZE | Xi leva/ Tacswiyvoviy<ote Vigl< ]d9)
=1 j=1

J#i
7"/6 n n
1
) SN

=1 j=1

J#z
E(|X;Z;
oo o S P [Ty )
J#Z
:CU”"é‘ ZZE|XZ,J\P( 5——<sz<z+5+i))
2enant  2e0l =i o o
JF#i
Cnp 3(d + 2)n%u 2 4
< + 26+ =+ —]
col(1=A)+3 denob > V2 2rol
2 ﬁ 1ﬁ
——FE|Z; + V|- 50
B PV Vel
_B_
C 3(d + 2) % 4 C ron”
< + 26+ =+ —| + = [ 2]
gafb(l_ﬁ)ﬂ 250% V2T 27705 603 0%
C 3(d+2) 2e 4 C
< + 26+ 5]
50;(1—/3)4‘1 2e0l \ﬁ om0l riany
From (3.34) we can choose r be such that
3d+2) C o6 C(d
B2(€>§(5)+ﬁ_6+(ﬁ)
EOn On On
Step 4. We will show that for 0 < < 1,
o  C(d)
Bg 6) = S -+ —.
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From (3.30) and Proposition 3.3 we have

AL 3(d + 2)n’u
S Y EIXiZij| € S5 < 3(d+2). (3.38)
i=1 j=1 2nao,

i

By Proposition 3.8(3), (3.10), (3.15) and (3.27) we have

1 1
E|IZ,5(WH) - Iz,S(Wij)| < 27:E(|ZZ + Vlj|/0 I[Z—€SWn_0(Z1}+‘/ij)SZ+€}de)

1
< 5 B2 +Vij|/0 I[zfsgwnfe(zi+1/¢j)gz+e,|zi+vij\gfg]cm)

1 1
+ %E(|Z¢ + V%j\/o I[z—ESWn—e(Zi"FV%j)SZ-FE,\Zr‘rvij|>é}d9)

1 1 7'/6
< 5E(/ I, 5——<W Setet ]dé?) + 7E\Z + Vi
2e0n,
1 1 1 Coll
= ﬂP<Z_5_7I3§Wn§Z+€+7B)+%
2e0), on on E0p
1 2e 2 C
< - [25 n ] + .
2e0l V2 2rol eol(1=A)+1

From this fact, (3.34) and (3.38) we can choose r be such that

3(d +2) 2% 2 C
< N7 7
Bs(e) < 2503 {25 or 27m } 8U:L(1_ﬁ)+1
3(d+2)0 C
_ +

col o
_0_ 0@
=5 o7

IA

Therefore by (3.25), step 1 - step 4 and (3.34) we have

Cd)  Cl) 3

< i S T

0% On Uﬁ 2
_C) 8
o 2

Therefore, there exists a constant C(d) > 0 such that for 0 < 8 < 1

sup |[P(W,, < z) — ®(2)| < &g)
z€R On

Remark.

We can use the same argument of Theorem 3.1 in proving Theorem 3.2.



CHAPTER IV
POISSON APPROXIMATION OF THE NUMBER OF
VERTICES OF A FIXED DEGREE IN A RANDOM

GRAPH

In this chapter, we give bounds in Poisson approximation of number of vertices of a
fixed degree in a random graph with n vertices.
Let G(n,p) be a random graph on n labeled vertices {1,2,...,n} where possible

edge {i,j} is present randomly and independently with the probability p, 0 < p < 1.

For each i € {1,2,...,n}, we define the indicator random variable X;, as follows:
1 if vertex i has degree d in G(n,p),
X, =
0 otherwise.

n
Then W := Z X, is the number of vertices of degree d in G(n,p).
i=1
In 1992, Barbour, Holst and Janson[7] proved that the distribution of W can be

approximated by Poisson distribution with parameter

AN=E(W)=nP(X;=1) = n(n B 1>pdq"1d (4.1)

where g =1—-pand d=1,2,..., (Z) , and the uniform bound is given by the following.

Theorem 4.1. Let W be the number of vertices of degree d, d > 1, in a random graph

G(n,p) and A C{0,1,...,n}. Then

sup [P(W € A) — Poir(4)| < p(1+ Ry + Ry (4.2)
A
e ANk
where Poiy is a Poisson distribution with parameter X, i.e., Poiy(A) = Z B

keA
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and

p=PX;=1),
7 (n—=1-4d) d ~ dea(iN*
Ri= [Gopay + o) Pl e

Ry =

(n—1-4d) (n—d—2)p . i

1 E(deg(i) — d

00 ) [ ) P~

where deg(i) is degree of a vertex i. In particular, a bound in (4.2) converges to 0 as
n — oo if either

1. np—0and d>2 ;

2. np is bounded away from 0 and (np)_%]d — np| — oo.

In this chapter, we used the result from Barbour, Holst, Janson([7],1992) and San-
tiwipanont, Teerapabolarn([52],2006) to give non-uniform and uniform bounds of this
approximation for a fixed d = 0,1,2,..., (Z) by using Stein-Chen method. The fol-

lowings are our main results.

Theorem 4.2. Let W be the number of vertices of degree d, d > 1, in a random graph
G(n,p) and A C{0,1,...,n}. Then

1. ‘P(W e A) - Poz’,\(A)‘ <O\ A)p(l+ Ry + Ry),

2. ‘P(W e A) - Poz',\(A)‘ <(1—eMu(l+ Ry + Ry)

where C'(X\, A) is a constant defined by

A
C(A\, A) = min {1, A, MA()—;—)l },

(

A -1 if A ler —1) < My,

2(et — 1) if ATHer —1) > Ma,

max{w|Cy,, C A} if 0¢€ A,
My = and

min{w|w € A} if 0&A,

Cw=1{0,1,...,w}.
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Furthermore, we know from ([46],[57]) that

A

O {0,1,. . wo}) < (1 — e*A)min{L ﬁ}
where wg =0,1,...,n and
C(A {wo}) §min{1,i}
wo
where wog =1,2,...,n.

Corollary 4.3. Let W be the number of vertices of degree d, d > 1, in a random graph
1

G(n,p) and p = — for any v € RT. Then for AC {0,1,...,n}
n

1. if v>1 then

C(\ A, d)
RO D@1’

, 6d> (1 —e™)
1.2 ‘P(W €A - POZ)\(A)‘ < T3 D@D

1.1 ‘P(W €A)— Poi)\(A)‘ <

6d
where C'(\, A,d) = WC()\,A),

2. 4f 0<~vy <1 then

. C(\ A, d
2.1 ‘P(W €A)— POZA(A)‘ < M,

6d%(2d +2)! (1 —e™?)
dlg3+d nd—y) 7

2.2 ‘P(W cA)— PoiA(A)‘ <

6d>(2d + 2)!

where C(\, A, d) = P

(X, A).
Theorem 4.4. Let W be the number of isolated vertices, i.e., d = 0, in a random
graph G(n,p). Then, for A C {0,1,2,...,n},
1. ‘P(W cA) - Poi,\(A)‘ < O\ A)[(n—2)p+1](1 — p)"2 (4.3)
2. ‘P(W cA)— PoiA(A)’ < (1—eM(n—2)p+1)(1 - p)"2 (4.4)

where Poiy is a Poisson distribtuion with parameter A = ng™ L.

1
Using the fact that (1 —p) < —» We see that the bounds in Theorem 4.4 converge
2

1
to 0 when npﬁoo,thatisp:—v for 0 < v < 1.
n
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Corollary 4.5. Let W be the number of isolated vertices, i.e., d = 0, in a random

1
graph G(n,p) cmdp:—7 forany 0 <~y < 1. Then, for AC{0,1,2,...,n},
n

. 3C(\, A)
. 3(1—e™)
2. ‘P(W e A)— PozA(A)‘ <o

This chapter is organized as follows. In section 4.1, we introduce Stein-Chen and
coupling methods which are used in our work. In section 4.2 we give the proof of
Theorem 4.2 while the proof of Corollary 4.3 is given in section 4.3. The proof of

Theorem 4.4 and Corollary 4.5 are given in section 4.4 and section 4.5, respectively.

4.1 Stein-Chen and coupling methods

In 1972, Stein[54] gave a new technique to find a bound in the normal approximation
to a distribution of a sum of dependent random variables. His technique was relied
instead on the elementary differential equation, and in 1975, Chen[14] applied Stein’s
idea to the Poisson case. The central idea of the Stein-Chen method is the difference

equation
I4(j) — Poin(A) = Agaa(l +1) —jgra(i), 7€ NU{0} (4.5)
where A >0 and A CNU{0} and I4: NU{0} — R be defined by

1 if weA,
IA(U)) =
0 if w¢A.

We always call equation (4.5) that Stein’s equation for Poisson distribution function
and it is well-known that the solution gy 4 of (4.5) is of the form,
(w = DN Pr(Lanc, 1) = Pala)Palle,_,)]  if w>1,

gaa(w) =
0 if w=0
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where
A - )‘l
Pala) =€ ZIA(l)ﬁ,
1=0
and
Cw-—1=10,1,...,w—1}
([7], p.7, 1992).

By substituting j and A in (4.5) by any integer-valued random variable W and A = E(W),

we have
P(W € A) — Poiy(A) = E(Agxa(W +1)) — E(Wgx a(W)). (4.6)

So far W could be zn:Xi and A =E(W) = Zn:p,- where p; = E(X;) = P(X; =1).
Barbour, Holst ;fd Janson([7],1992) usecii:étein—Chen method and construct cou-

pling random variable W; to find the bound in Poisson approximation. He assumed

that for each i we can construct a random variable W;, on the same probability space

as W, such that the distribution .Z(W;) of W; equals the conditional distribution

ZL(W — X;|X; =1). Hence, for each i € {1,2,...,n},

E(Xigrxa(W)) = E(E(Xigx a(W)|X:))
= BE(Xigxa(W)|X; = 0)P(X; = 0) + E(X;gx a(W)[|X; = 1) P(X; = 1)
=E(gpaW)|X; =1)P(X; =1)

= piE(gxa(Wi +1)). (4.7)
Then by (4.6) and (4.7), we have

P(W € A) = Poin(4)| = [EQgr a(W +1)) = EW g a(W)|

= AE(gaa(W +1)) — ZE(XZ'QA,A(W))‘
=1

= > piBE(gaa(W +1)) = piE(gaa(Wi + 1))\
=1 =1

<" BiE(gaa(W + 1) — g a(Wi + 1))
=1
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< piB(]suplgaa(w + 1) — ga a(w)][(W + 1) — (W; + 1)]|)
i=1 w

< suplgaa(w +1) = gaa(w)] Y piE(W = Wi).
w i=1

From the estimates above, we arrive at our fundamental result.
Theorem 4.6. If W and W; are defined as above, then

|P(W € A) = Poir(A)] < ||Ag(\, A)|| Y piBE(W - Wi|) (4.8)
i=1

where [[Ag(A, A)| := sup[gxa(w + 1) — gxa(w)].

In order to justify the Poisson approximation we therefore only have to
1. bound ||Ag(A, A)|| and
2. find couplings (W, W;) which made E(|W — W;|) small.
Many authors would like to determine a bound of ||Ag(A, A)||. For A C NU{0}, Chen

([14],1975) proved that
1Ag(A, A)|| < min{1, A7}
and Janson([33],1994) showed that
[Ag(A, A < ATHL —eH). (4.9)
In case of non-uniform bound, Neammanee([46],2003) showed that
18900 (o)) < min { - A1} (1.10)

and Teerapabolarn and Neammanee([57],2005) gave a bound of ||Ag(), A)|| where
A={0,1,...,wp} in the terms of

A

1Ag(A, {0,1,...,wo )| < A7H(1 — e*k)min{L ﬁ} (4.11)
In general case for any subset A of {0,1,...,n}, Santiwipanont and Teerapabolarn
([52],2006) gave a bound in the form of
N A(N)
Ag(x, A)|] < A7 {1 } 4.12
1A A <A min {1, 572 (112)
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where
A A—1 if A7Mer —1) < My,
AN =
2(e* — 1) if A7ler —1) > My,
and
max{w|C, C A} if 0eA,
My =

min{w|w € A} if 0¢& A.
The difficult part in applying Theorem 4.6 is to find W; which make E(|W — W;|)
small enough. This is not the solution in general. For the case of X1, Xs,...,X,, are
independent, we let W; = W — X;. Then E(|W — W;|) = p; and, from (4.8), we have

[P(W € 4) — Poir(A)] < [|Ag(, A)]| S p2.

i=1
The problem of the construction of W; is difficult in the case of dependent indicator
summands. In this case W; is vary and depends on X, see examples in [52] (p.17-24).
In section 4.2, we will use Theorem 4.6 to prove our main result by constructing the

random variable W; which make E|W — W;| small.

4.2 Proof of Theorem 4.2

By (4.8) and (4.12), it suffices to bound E(|W —W;|) for any i € {1,2,...,n} where
W; ~ (W — X;)| X; = 1. Barbour, Holst and Janson([7],1992) constructed a random
variable W; as follows.

Let G ={E;; : 1,5 € {1,2,...,n}} be a sampled graph in G(n,p) and deg(i) be
degree of a vertex i. To determine W;, construct a new graph G’ = {El’] 21,5 €
{1,2,...,n}} where El’j =FEyj forall [,j #i. Incase [ =i or j =i we define El/j as
follows:

L. If deg(i) = d then we define Ej; = E;; for j #i.
2. If deg(i) < d then we will choose d — deg(i) vertices from all vertex j such that

E;; = 0. For all j which are chosen we define Egj = 1 and defind EZ’»j = Fj; for all other j.
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3. If deg(i) > d then we will choose deg(i) — d vertices from each vertex j such that
E;; = 1. For all j which are chosen we define EZ{]- = 0 and defind EZ{]- = FEj;; for all
other j.

Let W; = W' —1, where W’ is the number of vertices of degree d obtained from G'.
Then Barbour, Holst and Janson showed in [7](pp.99) that the distribution £ (W;+1) =

Z(W|X; = 1) which implied that for any k € N
P(W;+1=k)=P(W =k|X; =1)
PW,=k—-1)=PW-X,=k—-11X;=1)

P(W; =k) = P(W — X; = k|X; = 1)

that is W; ~ (W — X;)| X; = 1. By Barbour, Holst and Janson([7],1992), (p.100),

showed that

BV -1 < {1 1) "
where = (n—1-4d) d — deg(i))*t an
' " =00 " ox 1>Z}E;;l deg(i))*.  and
— n—1- n—d—2)p L
e = (”—1)(1—]9){ (d+ 1)(1_p)}E(d69(1) d)*.

Then by (4.8), (4.9), (4.12) and (4.13) we have

‘P(W € A) - PoiA(A)’ <O\ A)u(l+ Ry +Ry)  and

‘P(W cA)— Poi,\(A)’ <(1—eMu(l+ Ry + Ry)

where C'(A, A) is a constant which defined by

C(\A) = min{l,)\, ]\JAA(i\i—)l}

Furthermore, we know from (4.10) and (4.11) that

A

C(\{0,1,...,wp}) < (1 — G_A)min{L we+ 1}7
0

where wyp =0,1,...,n and

C(A {wp}) < min {1, U/i\o}
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where wo =1,2,...,n.

This completes the proof of Theorem 4.2. O
Remark. We observe that the uniform bound of Theorem 4.2 is better than the bound
by Barbour, Holst and Janson(1992), since 1 —e ™ < 1 for A = n<n ; 1)pdq" 1=d

4.3 Proof of Corollary 4.3

For the asymtotic results, we note that, from 1 —p < —

ep
— o (1) n—1-d (np)*
p=PX;,=1)= ( d )p (1-p) EW. (4.14)
By [7], pp.100, we have
E(d~deg(i))" <d and  E(deg(i) ZEI[E <p,) = (n—1)p <np

J#Z
where (d—deg(i))™ = max{d—deg(i),0} and (deg(i) —d)™ = max{deg(i) —d,0}. Then

from (4.13) and (4.14), we have

(np)" (n—1-4d d :
~ dlgttdenr {1 + [(n —-1)(1-p) * (n— 1)p} B(d — deg(i))*

(n—1-d) [ (n—d-2)p |
tooDasp Lt DA ) Pletd — 4

< gt [ O e al)

R T e 419

E(W —Wi) <

1
We suppose that p = — for any v € RT.
n

1. If v > 1 then we observe that

E(W - W) < [z+2d]d+[”p+(”p)2}}

q (d+1)¢?

{
2
= d!q1+denp{ {q(ij)Q + (ii)s} + [q:Lp + d;?} }
{
1

6d* (np)?~
d!q3+d
6d> 1

= T T (4.16)




ol

From (4.8), (4.9), (4.12) and (4.16) we have
, C(A A, d)

, 6d> (1 —e?)
‘P(W €A) - POZA(A>’ = dlgd+3 (-1 (d-1)

and

d2
where C(}\,A,d) = d|6qd+30<)\,A)

2. If v < 1. From (4.15), we observe that

BQW - Wiy < 0Pl _([2, 2 e, ) )

= dlgitderr Llg — np g (d+1)¢?
(np)? [@ L 2(w)? | (np)? (np)Z}
~ dlgitderr L g q> q dg?
(np)? [2d2(np)2 L 2 w)?  d(p)? d2(np)2}
— d[ql—l-denp q2 q2 q2 q2
_ 6d2(np)d+2
- d!q3+de"p

6d%(2d + 2)!(np)d+2
g+ (np)2d+2
6d*(2d +2)! 1
TR e R (4.17)

From (4.8), (4.9), (4.12) and (4.17) we have

. C(\ A, d)
‘P(WEA)—PO’L)\(A)‘ SW and
. 6d%(2d +2)! (1 — ™)
POV € 4) = Poin(4)] < APt pd0=7)
6d2(2d + 2)!
where C(A, A, d) = WC(A, A) .
This complete the proof of Corollary 4.3. O

4.4 Proof of Theorem 4.4

A vertex ¢ is an isolated vertex in G(n,p) if the number of edges incident to it is

n
0. Then in this case, W is the number of isolated vertices in G(n,p) and W = Z X,

i=1
where

1 if vertex i is an isolated vertex in G(n, p),

0 otherwise
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and P(X; =1) = (1 —p)" L.

For i,7 € {1,2,...n}, we define

1 if vertex j is an isolated vertex in G(n,p) — {i},

@) _
X' =

0 otherwise.

Let W; be the number of isolated vertices in a random graph G(n,p) — {i} obtained
from G(n,p) by removing the vertex ¢ and all the edges incident to it. Then the
distribution .Z(W;) of W; equals the conditional distribution .2 (W — X;|X; = 1), that
is for k € {0,1,...,n— 1},

PW - X, =k Xi=1)
P(X, = 1)
P(X, = 1)

PW - X, =k|X;=1) =

Il
N
S
El
[—
N~
Q/‘\
7
>
ol

We observe that in case of X; =1,
Wi=W -1 (4.18)

and in case of X; =0,
W;=W + (the number of vertices of degree 1 in G(n,p) that adjacent to vertex i),

i.e.

Wi=W+ Y E;X (4.19)
j=1
J#
where

1 if ¢ and j are adjacent in G(n,p),

0 otherwise.



From (4.18) and (4.19), we have

(W —-WwW)t < X; and (W; —W)T < ZEinJ('i)-

..
B

y
We know that

W —W;| =W -W)*t+ W -W;)",

where (W — W;)" = max{W — W;,0} and (W — W;)™ = —min{W — W;,0} .

Since —min{W — W;,0} = max{W; — W, 0} = (W; — W)", we have
E(W —Wi|) = EGW — W) " + E(W; — W)+,
From the fact that

N E(EXT) = (- 1)P(E; =1,X" =1) = (n— 1)p(1 —p)"?,
=1
T

1
(4.21) and (1 —p) < — Wwe have,
e

E(W —W;|) < B(X;) + Y E(E;X\")
=1
2
=[1=p)" '+ (n-1)p1—p)"?
=[(n—2)p+1](1—p)" 2
Therefore, by (4.8), (4.12) and (4.22), we have

P(W € A) ~ Poin(4)| < C(\ A)(n — 2)p+1)(1 - p)" 2

where

C(\, A) = min {1, A, MAA(i)l }

In case of uniform bound by (4.8), (4.9) and (4.22), we have
P(W € 4) = Poir(4)| < (1= ¢™)[(n — 2)p + 1](1 — )"

This completes the proof of Theorem 4.4.

23

(4.20)

(4.21)

(4.22)
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4.5 Proof of Corollary 4.5

1
By using the fact that (1 —p) < — and (4.22) we have
e

E(W —Wi|) < [(n—2)p+1](1—p)"?

np+1
- q26np
171 2np 1
SRR LIS
¢*L(np)*  np
3
= 7(]2”175 (4.23)

1
where g=1—pand p=—, 0 <y < 1.
nYy
Then by (4.8), (4.9), (4.12) and (4.23) we obtains Corollary 4.5.
Remark.
In case of non-isolated vertices, (i.e. w = 0). Teerapabolarn, Neammanee and Chongcharoen

([58],2004) gave the approximation in the form of

B _ _ (n—2)p+1
‘P(W—O)—e A‘g()\—i—e X e
where A =n(1 —p)" 7!, ie.,
P =0) | < SO+ e —Dlm-2p+ U0 -p) 2 (@21)

We note from Theorem 4.4 that C(),{0}) = (1 —e™"). By the fact that e* > 1+ \ we

can show that
1 -
SO+ e = 1) < OO {0},

Thus a bound in (4.24) is better than a bound from (4.4).



CHAPTER V

FUTURE RESEARCH

In this chapter, we describe about some future research in normal approximation of
the number of isolated trees in a random graph.

A tree is, by definition, a connected graph containing no cycles and a tree in G(n, p)
is isolated if there is no edge in G(n,p) with one vertex in the tree and the other outside
of the tree.

Let A := A(n, k) = {5 = {1,802,k |1 <dg <dp < o- < ig < n} be the set of

all possible combinations of k vertices, k > 1. For each i € A, we define

,

1 ; if there is an isolated tree in G(n,p) that spans the vertices
Y; = i={i1,i2,...,ir}
0 ; otherwise,

Let S be the number of isolated trees of a fixed order k, k > 1, in G(n,p). Then

S=)Y.
€A
In 1986, Stein[55] proved that the distribution of S can be approximated by Poisson

distribution with parameter

and the uniform bound is given by

‘P(S e A) _ POZ)\(A)| (1 + Cn)el—Cn(Cnel—Cn)kJ—l

<<
~Vk
for all ACNU{0}, n € N, and k < n, where Poiy is a Poisson random variable with

parameter A and ¢, = —nlog(l —p).
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K.Neammanee ([47], 2005) gave a pointwise approximation of S by Poisson distri-

bution as follows:

Theorem 5.1. ([47], pp.90) Suppose 2k < n and wy # 0. Then

< Amin {;0, %} min {2, /\nkz (1 + cne%(C"_1)> } , and

e A\Wo

’LU()!

2, ’P(S —0) - e_’\’ < min {1, /\} min {2, /\}.

1. ‘P(S = wp) —

If we use the idea in chapter 3 to give a uniform bound between P(W < z) and

®(z), the following is our expected result.

1 1
Theorem 5.2. Let k> 2 and p = — for a fized v € [1, 1+ ﬁ), then there exists
n _

a constant C' such that for 0 < < 1,

[P(W < z) - @(2)] <

SIS

To proof Theorem 5.2, we define the random variables which the same idea as in
chapter 3.
For each i € A, let
Al = {3eA| jrﬁ:@} and Al = {5eA| 3mz7e@}
and for 7,1 € AL, let

1 ; if there is an isolated tree in G(n,p) — j which spaned by a

) _ L= . ,
Y = vertices ¢ = {i1,42,...,1},

0 ; otherwise,
\

and
1 ; if there is an isolated tree in G(n,p) — (j Ul) which spaned by a
= vertices i = {i1,i9,...,1k},

0 ; otherwise,
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where a random graph G(n,p) — j and G(n,p) — (j Ul) obtained from G(n,p) by

removing the vertex in j and vertex in j U1, respectively. For i € A, let

Y — BY;
X; =2 %
g
1 .
77 @ =
;(}?_}%Z)v ;jEAll’
1 @)
Zi=3 Z= A X v+ 2 5=y}
JEA JEAL JEA!
W; =W — Z;,
0 =7
1 (Z) - = = 7
Vi = EY5 ; 1# jand 5 € A}
1 @) @) _ 1) Iy,
~{ X v+ Y @Oy} si#jand e,
{ TeAiNA] TeAinA]

and W= ;{Y,-( W~ By U]))} - E(Vy) - E(Z) = W; =V
_ leA
INGUj)=2
where 02 = Var§.
Note that E(X;) =0, W = ZX; and VarW = 1. By Cayley’s Theorem(see,
i€A
for example, Graver and Watkins [31], p. 322, 1977) there are k*~2 different trees on

k specified vertices. For a given isolated tree on these k vertices it is necessary and

sufficient that the k — 1 connections of the specified tree be made, but none of the
k

(2) — (k—1) other connections among these k vertices, and that none of the (n—k)k

possible connections of these k vertices to vertices outside this set be made. Then we

have the expectation of ¥; for i € A

p=PY:=1)= kk—2pk—1q(§)f(kfl)q(n—k:)k: < fh—2phe1 (5.1)

]

where ¢ =1 —p and k > 2.
Barbour, Karonski and Rucirniski ([9], 1989) showed that

1
N [
2T

= 1)]E(S) (5.2)
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for large n and k > 1.

To prove the main theorem, we need the following properties of X3, Z;, Z;; and Vj;.

Proposition 5.3. For every i,j € A and for any r,r1,r2 € N.

1. B(|Z7)) < r27“k’“<2’f—1>”ﬁ_;fk_1.
2. B(XNZ|) < [2”*'“%2(1 + W(%*U)] Urfim.
r rogr(2k—1) | pk—2 nhlpht
5. B(VE) < |2 T'kkk_g :—k =% :
T,up ; JeN
4. E(|1X;25)) < ’;Z o jeA, andi#£]
\% ; 5€Aéand{:5.

1
Proposition 5.4. Let k> 1 and p = — where v > 1. For n>2, r1,re, 73 € N and
n

i,7 € {1,2,...,n}, there exists a positive constant C such that

Cu
E(X1Z2ViP) <

- gritretrs’

1 _
Proposition 5.5. Let p = — for v > 1. Then for ri,re,r3 € N and for every i,j € A,
n
i
C(k,r1)upk
B(X7 Z2Vrs)) = onFreiT ’
7 ij g B _
0 ;g €A

jel

where C(k,ry) = 2r1— 1 k=29~ +k—1

The idea of the proof of Proposition 5.3 - Proposition 5.5 follows directly from

Proposition 3.4 and Proposition 3.5.

By the same argument of Martin([44], 2003) we can show that (3.25) holds and by

using the same technique of chapter 3 we have

k—1
Cn 2
<

Y



29

(k—

From (5.1) and (5.2) we can see that o ~ C’ngp 7 , then the bound of A;(e) is

k—1 k—1
Cn 2 Cn 2 o
e Y 5y M WS 40 asn— oo
n2 2 nz 2

when k> 2 and v > 1.

Hence, to complete Theorem 5.2 it still to improve the bound on A;(¢) only.
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APPENDIX A

The solution of Stein’s equation f'(w) —wf(w) = I, (w) — ®(z) is of the form

() = \/ﬁew;@(w)[l—i)(z)] ifw<z
Vare T B[ — d(w)]  ifw> .

Moreover the first derivative of f, does not exists at w = z.

Proof. From Stein ([55], pp.22) we have

. VI dw)[l — b(2)]  fw<z
VIre T b1 — dw)] w2

We use this form and L’Hopital’s rule to consider the left and the right derivatives of

f. as follows.

i f(z+ h}i — fo(2) _ Ty, Vare 5 @z 4 )1 @(;)] — V2reT B(2)[1 - b(2)]
Va0 iy g +hh) T d(2)
= V2r[l - ®(2)] lim [\/% +O(z+h)(z + h)e%]
— VZr[l — (2)] UQ? +20(2)e7 ]

—[1- o)1+ \/%zob(z)eé]

and
(z4h)? 22
LG L) VeSS R - a4 b)) Ve T B[ - a(2)
h0+ h h—0+ h
(z+h)? 22
_ \Vard(2) lim e 2z [1-®(z+h)]—e2[l—d(2)]
h—0t+ h
(z+n)? 1 (z+h)?
=V2rd li ——+[1-9 h h
Vare(e) lim [e75 — o+ 1= B( 4 W+ e |
22 1 22
=V2rP(2)|le2 — —+ |1 — P(2)]ze2 |.
VERR(s) e - (1 - 9(2)
. fz(z+h)_fz(z> . fz(z+h)_fz(z) .. . ,
Thus hli,rél— Y # hEIéI+ o , this implies that f.(z) does
not exists.
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