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CHAPTER I

INTRODUCTION

A random graph is a collection of points, or vertices, with lines, or edges, connecting

pairs of them at random. The notion of a random graph was first introduced in 1947 by

Erdős ([21]) to show the existence of a graph with a certain Ramsey property. A decade

later, the theory of random graph began with the paper entitled On Random Graphs I

by Erdős and Rényi ([22]), and the theory had been developed by a series ([23], [24],

[25], [26], [27]) of papers of them.

The theory of random graphs has developed into one of the mainstays of modern

discrete mathematics, and has produced a prodigious number of results, many of them

highly ingenious, describing statistical properties of graphs, such as distribution of

component sizes, existence and size of a giant component, and typical vertex-vertex

distances, that are of interest to practitioners in the field mentioned above.

Random graphs have been used as models of networks in diverse areas of science,

engineering, and sociology. These include ecological food webs ([17], [60]), epidemiology

([2], [3], [38], [41], [53]) metabolic pathway ([11], [12], [19], [36], [37], [43]), electric

power grids([40]), telephone call network ([1]), networks of social contacts and scientific

collaboration ([29], [30], [48], [59]), and, of particular interest to computer science, the

internet ([4], [13], [18], [28]). Many additional citations to these topics may be found

in ([49]) and the review article ([56]). There are many situations in which the theory

tells us that the distribution of a random variable may be approximated by normal

distribution or Poisson distribution.

In 1972, Stein([54]) introduced a new powerful technique for obtaining the rate

of convergence to the standard normal distribution. His approach was subsequently



2

extended to cover a convergence to Poisson distributions by Chen ([14]). Both meth-

ods were illustrated, in the context of random graph theory, in Barbour ([8]). The

method for proving Poisson convergence has since been widely taken up (Karo ński [34],

Karo ński and Ruci ński [35], Nowicki [50], Janson[32]), but results for random graphs

subsequently obtained by the method for normal convergence seem to be limited to

examples in Barbour and Eagleson ([5], [6]).

Let G(n, p) be a random graph on n labeled vertices {1, 2, . . . , n} where possible

edge {i, j} is present randomly and independently with the probability p , 0 < p < 1.

In our work, we will approximate the distribution functions of the number of vertices

of a fixed degree by normal and Poisson distribution functions.

1.1 Normal approximation

Stein’s method was given by Stein([54]) in 1972. His technique was relied on the

elementary differential equation

f ′(w)− wf(w) = Iz(w)− Φ(z) (1.1)

where Φ(z) =
1√
2π

∫ z

−∞
e−

t2

2 dt and the test function Iz : R → R be defined by

Iz(w) =


1 ;w ≤ z

0 ;w > z.

The unique solution, fz , of the Stein’s equation (1.1) is

fz(w) =


√

2πe
w2

2 Φ(w)[1− Φ(z)] if w ≤ z

√
2πe

w2

2 Φ(z)[1− Φ(w)] if w > z.

(1.2)

Stein’s method was applied to random graphs by Barbour[8] in 1982. In 1989,

Barbour, Karo ński and Ruci ński[9] used Stein’s method to show that the distributions

of the number of vertices of a fixed degree in G(n, p) can be approximated by the

standard normal distribution function. The followings are their results.
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Theorem 1.1. ([9], pp.141)

Let Sn be the number of vertices of a fixed degree, d, in G(n, p). If d ≥ 1 then

there exists a constant C such that

d1

(Sn − ESn√
V arSn

,N (0, 1)
)
≤ C√

V arSn
,

where a metric d1 is defined by, for any random variables X and Y

d1(X, Y ) = sup
{
|Eh(X)− Eh(Y )| : sup

x∈R
|h(x)|+ sup

x∈R
|h′(x)| ≤ 1

for all bounded test functions h with bounded derivative
}

.

Inparticular, if ESn →∞ and log n + d log log n− np →∞ then

sup
z∈R

∣∣∣P(Sn − ESn√
V arSn

≤ z
)
− Φ(z)

∣∣∣ → 0 as n →∞.

A Berry-Esseen bound between distribution functions of Sn and Φ in the form

δn := sup
z∈R

∣∣∣P(Sn − ESn√
V arSn

≤ z
)
−Φ(z)

∣∣∣ and the metric d1 are different (see Barbour and

Hall [10]). In general, δn = O(ε
1
2
n ) where εn is an upper estimate in metric d1 .

In Theorem 1.1 they gave only sufficient conditions in order to the distribution

function of
Sn − ESn√

V arSn
converge to Φ. But, in case of isolated vertices, i.e. d = 0,

Theorem 1.2 gave both necessary and sufficient conditions for the convergence of Sn

but they did not give a Berry-Esseen bound between the normalized Sn and Φ.

Theorem 1.2. ([9], pp.143)

Let Sn be the number of isolated vertices in G(n, p). Then

sup
z∈R

∣∣∣P(Sn − ESn√
V arSn

≤ z
)
− Φ(z)

∣∣∣ → 0

as n →∞ if and only if n2p →∞ and log n− np →∞.

In the work of Barbour, Karo ński and Ruci ński[9], they used the assumption that fz

(in (1.2)) and f ′z can be expanded by Taylor’s formula. In 2003, Martin[44] found that

this fact is not true. He corrected this mistake by using another test function in stead
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of Iz . The new test function used by Martin is Lipschitz test function, Iz,ε : R → R

which is defined by

Iz,ε(w) =



1 ; w < z − ε

− 1
2ε

(w − z − ε) ; z − ε ≤ w < z + ε

0 ; w ≥ z + ε

where ε > 0 is fixed.

In this work we use an idea of Martin to give a uniform bound of the normal

approximation of the number of vertices of a fixed degree in a random graph. The

followings are our main results.

Theorem 1.3. Let Sn be defined as in Theorem 1.1 where d ≥ 1 and p =
1
nγ

where

γ ∈
[
1, 1 +

1
d

)
. Then there exists a constant C(d) such that for 0 < β < 1,

sup
z∈R

|P (Wn ≤ z)− Φ(z)| ≤ C(d)

σβ
n

where Wn :=
Sn − ESn√

V arSn
and σ2

n = V arSn > 0.

Theorem 1.4. Let Wn be defined as in Theorem 1.3 and d = 0. If p =
1
n

, then there

exists a constant C(d) such that for 0 < β < 1,

sup
z∈R

|P (Wn ≤ z)− Φ(z)| ≤ C(d)

σβ
n

.

1.2 Poisson approximation

In 1992, Barbour, Holst and Janson[7] proved that the distribution of W , the number

of vertices of a fixed degree d in G(n, p), can be approximated by Poisson distribution,

Poiλ , with parameter

λ := EW = n

(
n− 1

d

)
pd(1− p)n−1−d

and the uniform bound is given by the following theorems.
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Theorem 1.5. ([7], pp.99)

Let W be the number of vertices of degree d, d ≥ 1, in a random graph G(n, p) and

A ⊆ {0, 1, . . . , n}. Then

sup
A
|P (W ∈ A)− Poiλ(A)| ≤ µ

(
1 + R1 + R2

)
(1.3)

where µ =
(

n− 1
d

)
pd(1− p)n−1−d

R1 =
[ (n− 1− d)
(n− 1)(1− p)

+
d

(n− 1)p

]
E(d− deg(i))+

R2 =
(n− 1− d)

(n− 1)(1− p)

[
1 +

(n− d− 2)p
(d + 1)(1− p)

]
E(deg(i)− d)+ and

deg(i) is the degree of vertex i.

Inparticular, a bound in (1.3) converges to 0 as n →∞ if either

1. np → 0 and d ≥ 2, or

2. np is bounded away from 0 and (np)−
1
2 |d− np| → ∞.

In this work, we give bounds of this approximation of the number of vertices of a

fixed degree d , d ≥ 0 in G(n, p) by using Stein-Chen method. The followings are our

main results.

Theorem 1.6. Let W be the number of vertices of degree d, d ≥ 1, in a random graph

G(n, p) and A ⊆ {0, 1, . . . , n}. Then

1.
∣∣∣P (W ∈ A)− Poiλ(A)

∣∣∣ ≤ C(λ, A)µ(1 + R1 + R2),

2.
∣∣∣P (W ∈ A)− Poiλ(A)

∣∣∣ ≤ (1− e−λ)µ(1 + R1 + R2)

where C(λ, A) is a constant which defined by

C(λ, A) = min
{

1, λ,
∆(λ)

MA + 1

}
,

∆(λ) =


eλ + λ− 1 if λ−1(eλ − 1) ≤ MA,

2(eλ − 1) if λ−1(eλ − 1) > MA,
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MA =


max{w|Cw ⊆ A} if 0 ∈ A,

min{w|w ∈ A} if 0 6∈ A,

and

Cw = {0, 1, . . . , w}.

Furthermore, we know from [46],[57] that

C(λ, {0, 1, . . . , w0}) ≤ (1− e−λ) min
{

1,
eλ

w0 + 1

}
,

where w0 = 0, 1, . . . , n and

C(λ, {w0}) ≤ min
{

1,
λ

w0

}
where w0 = 1, 2, . . . , n.

Corollary 1.7. Let W be the number of vertices of degree d, d ≥ 1, in a random graph

G(n, p) and p =
1
nγ

for any γ ∈ R+ . Then for A ⊆ {0, 1, . . . , n}

1. if δ > 1 then

1.1
∣∣∣P (W ∈ A)− Poiλ(A)

∣∣∣ ≤ C(λ, A, d)
n(γ−1)(d−1)

,

1.2
∣∣∣P (W ∈ A)− Poiλ(A)

∣∣∣ ≤ 6d2

d!qd+3

(1− e−λ)
n(γ−1)(d−1)

,

where C(λ, A, d) =
6d2

d!qd+3
C(λ, A),

2. if 0 < γ < 1 then

2.1
∣∣∣P (W ∈ A)− Poiλ(A)

∣∣∣ ≤ C(λ, A, d)
nd(1−γ)

,

2.2
∣∣∣P (W ∈ A)− Poiλ(A)

∣∣∣ ≤ 6d2(2d + 2)!
d!q3+d

(1− e−λ)
nd(1−γ)

,

where C(λ, A, d) =
6d2(2d + 2)!

d!q3+d
C(λ, A).

Theorem 1.8. Let W be the number of isolated vertices, i.e., d = 0, in a random

graph G(n, p). Then, for A ⊆ {0, 1, 2, . . . , n},

1.
∣∣∣P (W ∈ A)− Poiλ(A)

∣∣∣ ≤ C(λ, A)[(n− 2)p + 1](1− p)n−2

2.
∣∣∣P (W ∈ A)− Poiλ(A)

∣∣∣ ≤ (1− e−λ)[(n− 2)p + 1](1− p)n−2

where Poiλ is a Poisson distribtuion with parameter λ = nqn−1 .
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Using the fact that (1− p) <
1
ep

, we see that the bounds in Theorem 1.8 converge

to 0 when np →∞ , that is p =
1
nγ

for 0 < γ < 1.

Corollary 1.9. Let W be the number of isolated vertices, i.e., d = 0, in a random

graph G(n, p) and p =
1
nγ

for any 0 < γ < 1. Then, for A ⊆ {0, 1, 2, . . . , n},

1.
∣∣∣P (W ∈ A)− Poiλ(A)

∣∣∣ ≤ 3C(λ, A)
q2n1−γ

2.
∣∣∣P (W ∈ A)− Poiλ(A)

∣∣∣ ≤ 3(1− e−λ)
q2n1−γ

.

According to our work, we can conclude as the followings.

1. The number of vertices of a fixed degree d , d ≥ 1, in a random graph G(n, p).

p =
1
nγ

Normal approximation Poisson approximation

0 < γ < 1 X

1 ≤ γ < 1 +
1
d

X X (γ 6= 1)

γ ≥ 1 +
1
d

X

2. The number of isolated vertices in a random graph G(n, p).

p =
1
nγ

Normal approximation Poisson approximation

0 < γ < 1 X

γ = 1 X

γ > 1 open problem

This thesis is organized as follows. Preliminaries are in Chapter 2. In chapter 3

we give a uniform bound of normal approximation of the number of vertices of a fixed

degree in a random graph. While Poisson approximation of the number of vertices of a

fixed degree in a random graph is considered in Chapter 4. In chapter 5, we give an open

problem on normal approximation of the number of isolated tree in a random graph.

Throughout this work, a constant C stands for an absolute constant with possible

different values in different places.



CHAPTER II

PRELIMINARIES

In this chapter, we review some basic knowledges in probability, graph and a model

of random graph which will be used in our work. The proof is omited but can be found

in [20], [42] and [51].

2.1 Probability Space and Random Variables

A probability space is a measure space (Ω,F , P ) for which P (Ω) = 1. The

measure P is called a probability measure. The set Ω will be refered as a sample

space and its elements are called points or elementary events. The elements of F

are called events. For any event A , the value P (A) is called the probabilty of A .

Let (Ω,F , P ) be a probability space. A function X : Ω → R is called a random

variable if for every Borel set B in R , X−1(B) belongs to F . We shall use the notation

P (X ∈ B) in place of P (ω ∈ Ω|X(ω) ∈ B). In the case where B = (−∞, a] or [a, b] ,

P (X ∈ B) is denoted by P (X ≤ a) or P (a ≤ X ≤ b), respectively.

Let X be a random variable. A function F : R → [0, 1] which is defined by

F (x) = P (X ≤ x)

is called the distribution function of X .

A random variable X with the distribution function F is said to be a discrete

random variable if the image of X is countable and it is called a continuous random

variable if F can be written in the form

F (x) =
∫ x

−∞
f(t)dt
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for some nonnegative integrable function f on R .

Now we will give some examples of random variables.

A random variable X , taking on one of the values 0, 1, 2, . . . , is said to be a Poisson

random variable with parameter λ , λ > 0, written as X ∼ Poi(λ), if

P (X = x) =
e−λλx

x!
x = 0, 1, 2, . . . .

We say that X is a normal random variable with parameter µ and σ2 , written as

X ∼ N(µ, σ2), if its probability function is defined by

f(x) =
1√
2π

exp(− 1
2σ2

(x− µ)2).

Moreover, if X ∼ N(0, 1) then X is said to be a standard normal random variable.

2.2 Independence

Let (Ω,F , P ) be a probability space and Fα is a sub-σ algebra of F for every α ∈ Λ.

We say that {Fα|α ∈ Λ} is independent if and only if for any subset J = {1, 2, . . . , k}

of Λ,

P (
k⋂

m=1

Am) =
k∏

m=1

P (Am)

where Am ∈ Fm for m = 1, 2, . . . , k .

Let Eα ⊆ F for all α ∈ Λ. We say that {Eα|α ∈ Λ} is independent if and only if

{σ(Eα)|α ∈ Λ} is independent where σ(Eα) is the smallest σ -algebra with Eα ⊆ σ(Eα).

We say that the set of random variables {Xα|α ∈ Λ} is independent if

{σ(Xα)|α ∈ Λ} is independent, where σ(X) = {X−1(B)|B is a Borel subset of R} .

Theorem 2.1.

Random variables X1, X2, . . . , Xn are independent if for any Borel sets

B1, B2, . . . , Bn , we have

P
( n⋂

i=1

{Xi ∈ Bi}
)

=
n∏

i=1

P (Xi ∈ Bi).
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Proposition 2.2.

If Xij ; i = 1, 2, . . . , n, j = 1, 2, . . . ,mi are independent and fi : Rmi → R are

measurable, then {fi(Xi1, Xi2, . . . , Ximi), i = 1, 2, . . . , n} is independent.

2.3 Expectation, Variance and Conditional Expectation

Let X be any random variable on a probability space (Ω,F , P ). If
∫

Ω
|X|dP < ∞ ,

then we define its expected value to be

E(X) =
∫

Ω
XdP.

Proposition 2.3.

1. If X is a discrete random variable, then E(X) =
∑

x∈ImX

xP (X = x).

2. If X is a continuous random variable with probability function f , then

E(X) =
∫

R
xf(x)dx.

Proposition 2.4.

Let X and Y be random variables such that E(|X|) < ∞ and E(|Y |) < ∞ and

a, b ∈ R. Then we have the followings:

1. E(aX + bY ) = aE(X) + bE(Y ).

2. If X ≤ Y , then E(X) ≤ E(Y ).

3. |E(X)| ≤ E(|X|).

Let X be a random variable which E(|X|k) < ∞ . Then E(|X|k) < ∞ is called the

k -th moment of X about the origin and call E[(X −E(X))k] or E[X −E(X)]k the

k -th moment of X about the mean.

We call the second moment of X about the mean, the variance of X , denoted by

V ar(X). Then

V ar(X) = E[X − E(X)]2.
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We note that

1. V ar(X) = E(X2)− E2(X).

2. If X ∼ N(µ, σ2), then E(X) = µ and V ar(X) = σ2 .

3. If X ∼ Poi(λ), then E(X) = λ and V ar(X) = λ .

Proposition 2.5.

If X1, X2, . . . , Xn are independent and E|Xi| < ∞ for i = 1, 2, . . . , n, then

1. E(X1X2 · · ·Xn) = E(X1)E(X2) · · ·E(Xn),

2. V ar(a1X1 + a2X2 + · · ·+ anXn) = a2
1V ar(X1) + a2

2V ar(X2) + · · ·+ a2
nV ar(Xn) for

any real numbers a1, a2, . . . , an .

The following inequalities are useful in our work.

1. Hölder’s inequality:

E(|XY |) ≤ E
1
p (|X|p)E

1
q (|Y |q)

where 1 ≤ p, q ≤ ∞ ,
1
p

+
1
q

= 1 and E(|X|p) < ∞ , E(|X|q) < ∞ .

2. Chebyshev’s inequality:

P ({|X − E(X)| ≥ ε}) ≤ V ar(X)
ε2

for all ε > 0

where E(X2) < ∞ .

Let X be a random variable on a probability space (Ω,F , P ) such that E|X| < ∞

and D a sub σ -algebra of F . Define a probability measure PD : D → [0, 1] by

PD(E) = P (E)

and a sign-measure QX : D → R by

QX(E) =
∫

E
XdP.

Then, by Radon-Nikodym theorem we have QX � PD and there exists a unique mea-

surable function E(X|D) on (Ω,F , PD) such that∫
E

E(X|D)dPD = QX(E) =
∫

E
XdP for any E ∈ D.
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We call E(X|D) the conditional expectation of X with respect to D .

Moreover, for any random variables X and Y on the same probability space (Ω,F , P )

such that E(|X|) < ∞ , we will denote E(X|σ(Y )) by E(X|Y ).

Theorem 2.6.

Let X be a random variable on a probability space (Ω,F , P ) such that

E(|X|) < ∞, then the followings hold for any sub σ -algebra D of F .

1. If X is a random variable on (Ω,D, PD), then E(X|D) = X a.s. [PD].

2. E(X|F) = X a.s. [P ].

3. If σ(X) and D are independent, then E(X|D) = E(X) a.s. [PD].

2.4 Graph Theory

A graph G consists a non-empty set of elements, called vertices, and a list of

unordered pairs of these distinct elements, called edges. The set of vertices of the

graph G is called the vertex set of G , denoted by V (G), and the set of edges is called

the edge set of G , denoted by E(G). If {v, w} is an edge e , for some vertices v and

w in G then v and w are said to be adjacent or edge e is said to be incident v and

w .

Definition 2.7.

The degree of a vertex v in graph G, denoted by deg(v), is the number of edges

incident to v .

Any vertex of degree zero is called an isolated vertex.

2.5 Models of Random Graphs

The notion of a random graph originated in a paper of Erdős(1947)[21], which is

considered by some as the first conscious application of the probabilistic method. It

was used there to prove the existence of a graph with a specific Ramsey property.
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The model introduced by Erdős is very natural and can be described as choosing

a graph at random, with equal probabilities, from the set of all 2(n
2) graphs whose

vertex set is {1, 2, . . . , n} . In other words, it can be described as the probability space

(Ω,F , P ), where Ω is the set of all graphs with vertex set {1, 2, . . . , n} , F is the family

of all subsets of Ω, and for every ω ∈ Ω

P (ω) = 2−(n
2).

Generally speaking, a random graph is a graph constructed by a random proce-

dure. In accordance with standard definitions in probability theory, this is formalized

by representing the “random procedure” by a probability space (Ω,F , P ) and the “con-

struction” by a function from the probability space into a suitable family of graphs. The

distribution of a random graph is the induced probability distribution on the family of

graphs: for many purpose this is the only relevant feature of the construction and we

usually do not distinguish between different random graphs with the same distribution.

Indeed, it is often convenient to define a random graph by specifying its distribution.

The word “model” is used rather loosely in theory of random graphs. It may refer to

a specific class of random graph, defined as above, or perhaps to a specific distribution.

Nowadays, among several models of random graphs, there are two basic ones, the bino-

mial model and the uniform model, both originating in the simple model introduced by

Erdős(1947).

Given a real number p , 0 ≤ p ≤ 1, the binomial random graph, denoted by G(n, p),

is defined by taking as Ω the set of all graphs on vertex set {1, 2, . . . , n} and setting

P (G) = p|E(G)|(1− p)(
n
2)−|E(G)|,

where |E(G)| stands for the number of edges of a graph G . For p =
1
2

this is the model

of 1947. However, most of the random graph literature is devoted to cases in which

p = p(n) as n →∞ .

Given an integer M , 0 ≤ M ≤
(

n

2

)
, the uniform random graph, denoted by

G(n, M), is defined by taking as Ω the family of all graphs on the vertex set {1, 2, . . . , n}
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with exactly M edges, and the uniform probability on Ω,

P (G) =
((

n
2

)
M

)−1

, G ∈ Ω.

In this work, we are interested in one of two models which is the binomial random

graph, is shorthand for a random graph.



CHAPTER III

NORMAL APPROXIMATION OF THE NUMBER OF

VERTICES OF A FIXED DEGREE IN A RANDOM

GRAPH

In this chapter, we use Stein method to give a uniform bound on normal approxi-

mation of number of vertices of a fixed degree in a random graph with n vertices.

Let G(n, p) be a random graph on n labeled vertices {1, 2, . . . , n} where possible

edge {i, j} is present randomly and independently with the probability p , 0 < p < 1.

Let Sn be the number of vertices of a fixed degree d , where d ≥ 0, in G(n, p). Then

Sn = Y1 + Y2 + · · ·+ Yn where

Yi =


1 if vertex i has degree d in G(n, p),

0 otherwise,

for i = 1, 2, . . . , n .

Note that the expectation of Yi for i = 1, 2, . . . , n is

µ = P (Yi = 1) =
(

n− 1
d

)
pdqn−1−d and E(Sn) = nµ (3.1)

where q = 1− p and

V arSn =
n

n− 1

(
n− 1

d

)2

(d− (n− 1)p)2p2d−1(1− p)2(n−d)−3 + E(Sn)− (E(Sn))2

n

(3.2)

([9], pp.142).

Let

Wn :=
Sn − E(Sn)√

V arSn
.
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In this chapter, we give a uniform bound between P (Wn ≤ z) and Φ(z). The followings

are our main results.

Theorem 3.1. Let p =
1
nγ

where γ ∈
[
1, 1 +

1
d

)
for d ≥ 1. Then there exists a

constant C(d), such that for 0 < β < 1,

sup
z∈R

|P (Wn ≤ z)− Φ(z)| ≤ C(d)

σβ
n

σ2
n = V arSn > 0.

Theorem 3.2. Let d = 0. If p =
1
n

, then there exists a constant C(d), such that for

0 < β < 1,

sup
z∈R

|P (Wn ≤ z)− Φ(z)| ≤ C(d)

σβ
n

.

This chapter is organized as follows. In section 3.1, we prove auxiliary results for

the proof of main results and in section 3.2 we introduce Stein’s method for normal

approximation which is used in the proof of main results in section 3.3.

3.1 Auxiliary Results

In this section, we give auxiliary results for proving Theorem 3.1 and Theorem 3.2.

For each i ∈ {1, 2, . . . , n} , let

Xi =
Yi − E(Yi)√

V arSn
.

Then

E(Xi) = 0, Wn =
n∑

i=1

Xi and E(W 2
n) = 1.

For any Λ ⊂ {1, 2, . . . , n} and i, j ∈ {1, 2, . . . , n} , we define

Y
(Λ)
j =


1 if the vertex j has degree d in G(n, p)− {Λ},

0 otherwise.
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where the random graph G(n, p)−{Λ} is obtained from G(n, p) by removing the vertex

in Λ. For i, j = 1, 2, . . . , n , let

Zij =


1
σn

Yi ; i = j,

1
σn

(Yj − Y
(i)
j ) ; i 6= j,

Zi =
n∑

j=1

Zij , (3.3)

W (i) =
n∑

j=1
j 6=i

1
σn

(Y (i)
j − EY

(i)
j )− E(Zi) = Wn − Zi, (3.4)

Vij =


0 ; i = j,

1
σn

{
Y

(i)
j +

n∑
l=1
l 6=i,j

(Y (i)
l − Y

(i,j)
l )

}
; i 6= j,

Wij =
n∑

l=1
l 6=i,j

1
σn

(Y (i,j)
l − E(Y (i,j)

l ))− E(Vij)− E(Zi),= W (i) − Vij (3.5)

where Y
(i)
j := Y

({i})
j and Y

(i,j)
l := Y

({i,j})
l .

Note that

W (i) is independent of Xi and Wij is independent of the pair (Xi, Zij) (3.6)

([9], pp.137).

Proposition 3.3.

1. For d ≥ 1 and p =
1
nγ

for γ ≥ 1, we have

σ2
n ≥

nµ

2
.

2. For d = 0 and p =
1
n

, we have

σ2
n = nµ.
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Proof. 1. From the fact that q = 1− p <
1
ep

and p =
1
nγ

for γ ≥ 1 we have

µ = P (Yi = 1) =
(

n− 1
d

)
pdqn−1−d

=
(n− 1)(n− 2) · · · (n− d)pd

d!e(n−1−d)p

<
ndpd

d!e(n−1−d)p

≤ 1
d!e

(3.7)

for large n .

Hence by (3.2) and (3.7),

σ2
n = n

(
n− 1

d

)
pdqn−1−d

{ 1
(n− 1)

(
n− 1

d

)
(d− (n− 1)p)2pd−1qn−2−d + 1− E(Sn)

n

}
= nµ

{(
n− 1

d

)
pdqn−1−d (d− (n− 1)p)2

(n− 1)
1
pq

+ 1− nµ

n

}
= nµ

{
µ

(d− (n− 1)p)2

(n− 1)
1
pq

+ 1− µ
}

≥ nµ
{

1− µ
}

≥
(
1− 1

d!e

)
nµ

≥ nµ

2
.

2. For d = 0 and i = 1, 2, . . . , n we have

µ = P (Yi = 1) = qn−1.
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From this fact, (3.2) and p =
1
n

, we have

σ2
n = n(n− 1)pq2n−3 + E(Sn)− (E(Sn))2

n

= n(n− 1)pq2n−3 + nqn−1 − nq2n−2

= nqn−1
{

(n− 1)pqn−2 + 1− qn−1
}

= nqn−1
{

npqn−2 − pqn−2 + 1− qn−2q
}

= nqn−1
{

npqn−2 − qn−2(p + q) + 1
}

= nqn−1
{

npqn−2 − qn−2 + 1
}

= nqn−1
{

1 + nqn−2(p− 1
n

)
}

= nqn−1

= nµ.

Proposition 3.4. Let d ≥ 0 and p =
1
nγ

where γ ≥ 1. For n ≥ 3, r1, r2, r3 ∈ N and

i, j ∈ {1, 2, . . . , n}, there exists a positive constant C1(d, r1, r2, r3) such that

E(|Xr1
i Zr2

i V r3
ij |) ≤

C1(d, r1, r2, r3)µ
σr1+r2+r3

n

where

C1(d, r1, r2, r3) ≤ 2r2− 2(r1+r2)
r1+r2+r3

[
2 +

3r2(r1 + r2 + r3)(d + 2)
r1 + r2

] r1+r2
r1+r2+r3

+ 2r3− 2r3
r1+r2+r3 [4 + 3(r1 + r2 + r3)(d + 4)]

r3
r1+r2+r3 .

Proof. Note that

|Yj − Y
(i)
j | ≤ EijI[deg(j) = d or d + 1] (3.8)

where

Eij =


1 if i and j are adjacent in G(n, p),

0 otherwise
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and deg(j) is a degree of a vertex j for all j ∈ {1, 2, . . . , n} .

Hence, for r1, r2, . . . , rm ∈ N and for distinct j1, j2, . . . , jm which are not equal to i we

have

E(|Yj1 − Y
(i)
j1
|r1 |Yj2 − Y

(i)
j2
|r2 · · · |Yjm − Y

(i)
jm
|rm)

≤ E(Er1
ij1

(I[deg(j1) = d or d + 1])r1Er2
ij2
· · ·Erm

ijm
)

= P (Eij1 = 1, I[deg(j1) = d or d + 1] = 1, Eij2 = 1, . . . , Eijm = 1)

= pm−1
[(n− 2

d− 1

)
pdqn−1−d +

(
n− 2

d

)
pd+1qn−2−d

]
= pm−1

(
n− 1

d

)
pdqn−1−d

[ d

n− 1
+

(n− 1− d)p
(n− 1)q

]
≤ pm−1µ

(n− 1)

[
d +

np

q

]
≤ pm−1µ

n

[ n

(n− 1)

][
d + 2

]
≤ 3(d + 2)

2
pm−1µ

n
(3.9)

where
(

n

k

)
= 0 for any k < 0.

From this fact and np ≤ 1 we have,

E
(∣∣∣ n∑

j=1
j 6=i

(Yj − Y
(i)
j )

∣∣∣r)

≤
n∑

j=1
j 6=i

E(|Yj − Y
(i)
j |r) +

n∑
j1=1
j1 6=i

r1+r2=r

n∑
j2=1

j2 6=i,j1

E(|(Yj1 − Y
(i)
j1

)r1(Yj2 − Y
(i)
j2

)r2 |)

+ · · ·+
n∑

j1=1
j1 6=i

n∑
j2=1

j2 6=i,j2

· · ·
n∑

jr=1
jr 6=i,j1,...,jr−1

E(|(Yj1 − Y
(i)
j1

) · · · (Yjr − Y
(i)
jr

)|)

≤ 3(d + 2)
2

(nµ

n
+

n2pµ

n
+ · · ·+ nrpr−1µ

n

)
≤ 3r(d + 2)

2
µ
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which implies that

E|Zr
i | =

1
σr

n

E
∣∣∣(Yi +

n∑
j=1
j 6=i

(Yj − Y
(i)
j )

)r∣∣∣
≤ 2r−1

σr
n

{
E|Y r

i |+ E
∣∣∣ n∑

j=1
j 6=i

(Yj − Y
(i)
j )

∣∣∣r}

≤ 2r−1

σr
n

(
E(Yi) +

3r(d + 2)
2

µ
)

= 2r−2(2 + 3r(d + 2))
µ

σr
n

. (3.10)

From (3.10) and the fact that

|Xi| =
∣∣∣(Yi − µ)

σn

∣∣∣ ≤ 1
σn

, (3.11)

we have

E|Xr1
i Zr2

i | ≤
1

σr1
n

E|Zr2
i | ≤ 2r2−2(2 + 3r2(d + 2))

µ

σr1+r2
n

. (3.12)

Similarly to (3.8), we observe that

|Y (i)
l − Y

(i,j)
l | ≤ EjlI

(i)[deg(l) = d or d + 1] (3.13)

where

I(i)[deg(l) = d or d + 1] =


1 if deg(l) = d or d + 1 in G(n, p)− {i},

0 otherwise.

From (3.13), for r1, r2, . . . , rm ∈ N and for distinct l1, l2, . . . , lm which are not equal to

i, j we have
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E(|Y (i)
l1
− Y

(i,j)
l1

|r1 |Y (i)
l2
− Y

(i,j)
l2

|r2 · · · |Y (i)
lm
− Y

(i,j)
lm

|rm)

≤ E(Er1
jl1

(I(i)[deg(l1) = d or d + 1])r1Er2
jl2
· · ·Erm

jlm
)

= P (Ejl1 = 1, I(i)[deg(l1) = d or d + 1] = 1, Ejl2 = 1, . . . , Ejlm = 1)

= pm−1
[(n− 3

d− 1

)
pdqn−2−d +

(
n− 3

d

)
pd+1qn−3−d

]
= pm−1

(
n− 1

d

)
pdqn−1−d

[ (n− 1− d)d
(n− 1)(n− 2)

+
(n− 1− d)(n− 2− d)p

(n− 1)(n− 2)q2

]
=

pm−1µ

(n− 1)

[(n− 1− d)d
(n− 2)

+
(n− 1− d)(n− 2− d)p

(n− 2)q2

]
=

pm−1µ

n

[ n

(n− 1)

][(n− 1− d)d
(n− 2)

+
(n− 1− d)(n− 2− d)p

(n− 2)q2

]
≤ 3

2
(d + 4)

pm−1µ

n
(3.14)

and from (3.14) and the fact that np ≤ 1 we have

E
∣∣∣ n∑

l=1
l 6=i,j

(Y (i)
l − Y

(i,j)
l )r

∣∣∣
≤

n∑
l=1
l 6=i,j

E|Y (i)
l − Y

(i,j)
l |r +

n∑
l1=1
l1 6=i,j

r1+r2=r

n∑
l2=1

l2 6=i,j,l1

E|(Y (i)
l1
− Y

(i,j)
l1

)r1(Y (i)
l2
− Y

(i,j)
l2

)r2 |

+ · · ·+
n∑

l1=1
l1 6=i,j

· · ·
n∑

lr=1
lr 6=i,j,l1,...,lr−1

E|(Y (i)
l1
− Y

(i,j)
l1

) · · · (Y (i)
lr
− Y

(i,j)
lr

)|

≤ 3
2
(d + 4)

(nµ

n
+

n2pµ

n
+ · · ·+ nrpr−1µ

n

)
≤ 3r

2
(d + 4)µ.

From this fact and the fact that

E(Y (i)
j ) = P (Y (i)

j = 1) =
(

n− 2
d

)
pdqn−2−d =

(
n− 1

d

)
pdqn−1−d

[(n− 1− d)
(n− 1)q

]
≤ 2µ,
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we have,

E|V r
ij | =

1
σr

n

E
∣∣∣{Y

(i)
j +

n∑
l=1
l 6=i,j

(Y (i)
l − Y

(i,j)
l )

}r∣∣∣
≤ 2r−1

σr
n

{
E|Y (i)

j |r + E
∣∣∣ n∑

l=1
l 6=i,j

(Y (i)
l − Y

(i,j)
l )

∣∣∣r}

≤ 2r−2(4 + 3r(d + 4))
µ

σr
n

(3.15)

for any r ∈ N . Thus, from (3.12) and (3.15), we have

E|Xr1
i Zr2

i V r3
ij | ≤

{
E|Xr1

i Zr2
i |

r1+r2+r3
r1+r2

} r1+r2
r1+r2+r3

{
E|V r3

ij |
r1+r2+r3

r3

} r3
r1+r2+r3

≤
{

2
r2(r1+r2+r3)

r1+r2
−2

[
2 +

3r2(r1 + r2 + r3)(d + 2)
r1 + r2

] µ

σr1+r2+r3
n

} r1+r2
r1+r2+r3

{
2r1+r2+r3−2(4 + 3(r1 + r2 + r3)(d + 4))

µ

σr1+r2+r3
n

} r3
r1+r2+r3

= C1(d, r1, r2, r3)
µ

σr1+r2+r3

where

C1(d, r1, r2, r3) ≤ 2r2− 2(r1+r2)
r1+r2+r3

[
2 +

3r2(r1 + r2 + r3)(d + 2)
r1 + r2

] r1+r2
r1+r2+r3

+ 2r3− 2r3
r1+r2+r3 [4 + 3(r1 + r2 + r3)(d + 4)]

r3
r1+r2+r3

for r1, r2, r3 ∈ N .

Proposition 3.5. Let d ≥ 0 and p =
1
nγ

where γ ≥ 1. For n ≥ 3, r1, r2, r3 ∈ N and

i, j ∈ {1, 2, . . . , n}, there exists a positive constant C2(d, r3) such that

E|Xr1
i Zr2

ij V r3
ij | ≤

C2(d, r3)µ
nσr1+r2+r3

n

where C2(d, r3) = 2r3−2(4 + 3r3(d + 4)).

Proof. Note from (3.8) and (3.13) that, for any i, j ∈ {1, 2, . . . , n}, i 6= j, l1, . . . , lm,∈

{1, 2, . . . , n} − {i, j} and r1, r2, . . . , rm+1 ∈ N ,
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E|(Y (i)
j )r1(Yj − Y

(i)
j )r2 | ≤ E(|Y (i)

j |r1Er2
ij (I[deg(j) = d or d + 1])r2)

= P (Y (i)
j = 1, Eij = 1, I[deg(j) = d or d + 1] = 1)

=
(

n− 2
d

)
pd+1qn−2−d

=
(

n− 1
d

)
pdqn−1−d (n− 1− d)p

(n− 1)q

≤ µ

nq

≤ 2µ

n
(3.16)

and

E|(Yj − Y
(i)
j )r1(Y (i)

l1
− Y

(i,j)
l1

)r2(Y (i)
l2
− Y

(i,j)
l2

)r3 · · · (Y (i)
lm
− Y

(i,j)
lm

)rm+1 |

≤ E(Er1
ij Er2

jl1
(I(i)[deg(l1) = d or d + 1])r2Er3

jl2
· · ·Erm+1

jlm
)

= P (Eij = 1, Ejl1 = 1, I(i)[deg(l1) = d or d + 1] = 1, Ejl2 = 1, . . . , Ejlm = 1)

= ppm−1
[(n− 3

d− 1

)
pdqn−2−d +

(
n− 3

d

)
pd+1qn−3−d

]
= pm

(
n− 1

d

)
pdqn−1−d

[ (n− 1− d)d
(n− 1)(n− 2)

+
(n− 1− d)(n− 2− d)p

(n− 1)(n− 2)q2

]
=

pmµ

(n− 1)

[(n− 1− d)d
(n− 2)

+
(n− 1− d)(n− 2− d)p

(n− 2)q2

]
≤ 3

2
(d + 4)

pmµ

n
. (3.17)

From (3.17) we see that

E
∣∣∣(Yj − Y

(i)
j )r2

[ n∑
l=1
l 6=i,j

(Y (i)
l − Y

(i,j)
l )

]r3
∣∣∣ ≤ 3r3

2
(d + 4)

µ

n
.
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From this fact, (3.11) and (3.16), we have

E|Xr1
i Zr2

ij V r3
ij |

≤ 1
σr1+r2+r3

n
E

∣∣∣(Yj − Y
(i)
j )r2

{
Y

(i)
j +

n∑
l=1
l 6=i,j

(Y (i)
l − Y

(i,j)
l )

}r3
∣∣∣

≤ 2r3−1

σr1+r2+r3

{
E|(Yj − Y

(i)
j )r2(Y (i)

j )r3 |+ E
∣∣∣(Yj − Y

(i)
j )r2

[ n∑
l=1
l 6=i,j

(Y (i)
l − Y

(i,j)
l )

]r3
∣∣∣}

≤ 2r3−2(4 + 3r3(d + 4))
µ

nσr1+r2+r3
.

3.2 Stein’s method for normal approximation

Stein’s method was given by Stein[54] in 1972. His technique was relied on the

elementary differential equation

f ′(w)− wf(w) = h(w)−Nh (3.18)

where f : R → R is a continuous and piecewise continuously differentiable function, h

is a bounded test function with bounded derivative and Nh is defined by

Nh =
1√
2π

∫ ∞

−∞
h(z)e−

1
2
z2

dz.

To use (3.18) to find a bound of normal approximation, many authors([9], [15], [16],

[39], [45]) choose the test function h = Iz where Iz : R → R is defined by

Iz(w) =


1 ;w ≤ z

0 ;w > z.

(3.19)

It is well-known that the solution fz of (3.18) with test function Iz is of the form

fz(w) =


√

2πe
w2

2 Φ(w)[1− Φ(z)] if w ≤ z

√
2πe

w2

2 Φ(z)[1− Φ(w)] if w > z.

(3.20)
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where Φ(z) =
∫ z

−∞

1√
2π

e−
1
2
t2dt([55], pp.22).

Observe that

f ′z(w) =


[1− Φ(z)][1 +

√
2πwe

1
2
w2

Φ(w)] ; w < z

Φ(z)[−1 +
√

2πwe
1
2
w2

(1− Φ(w))] ; w > z

and the first derivative of fz does not exists at w = z . But from (3.18) and (3.20) we

have to define

f ′z(z) = [1− Φ(z)][1 +
√

2πze
1
2
z2

Φ(z)].

Thus

f ′z(w) =


[1− Φ(z)][1 +

√
2πwe

1
2
w2

Φ(w)] ; w ≤ z

Φ(z)[−1 +
√

2πwe
1
2
w2

(1− Φ(w))] ; w > z.

(3.21)

By substituting any random variable W for w in (3.18) with h = Iz , we yields

E[f ′z(W )−Wfz(W )] = P (W ≤ z)− Φ(z).

Hence, to bound |P (W ≤ z)− Φ(z)| , it suffices to bound E[f ′z(W )−Wfz(W )].

Barbour, Karo ński and Ruci ński([9],1989) used Taylor expansion of fz and f ′z to

show that

|P (Wn ≤ z)− Φ(z)| ≤ C

σn

where Wn is the number of vertices of a fixed degree in a random graph. Unfortunately,

since f ′z is not continuous at w = z , we can not use the Taylor’s expansion of f ′z .

In 2003, Martin[14] found that this fact is not true. He corrected this mistake by use

another test function. In this chapter we will correct the idea of Barbour, Karo ński

and Ruci ński by using another test function instead of Iz . The new test function is

Iz,ε : R → R which is defined by

Iz,ε(w) =



1 ; w < z − ε

− 1
2ε

(w − z − ε) ; z − ε ≤ w < z + ε

0 ; w ≥ z + ε

where ε > 0 is fixed. This function is introduced by Martin([44] pp.84, 2003).
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Proposition 3.6. The solution of Stein’s equation

f ′(w)− wf(w) = Iz,ε(w)−N Iz,ε

is of the form

fz,ε =



√
2πe

w2

2 Φ(w)
[
1− 1

2ε

∫ z+ε

z−ε
Φ(t)dt

]
;w < z − ε

1
2ε

√
2πe

w2

2 [1− Φ(w)]
∫ w

z−ε
Φ(t)dt

+
√

2πe
w2

2 Φ(w)
[(z + ε− w)

2ε
− 1

2ε

∫ z+ε

w
Φ(t)dt

]
; z − ε ≤ w < z + ε

1
2ε

√
2πe

w2

2 [1− Φ(w)]
∫ z+ε

z−ε
Φ(t)dt ;w ≥ z + ε.

Proof. Note that

1
2ε

∫ z+ε

z−ε
It(w)dt =

1
2ε

∫ z+ε

z−ε
1dt = 1, for w < z − ε,

1
2ε

∫ z+ε

z−ε
It(w)dt =

1
2ε

∫ w

z−ε
It(w)dt +

1
2ε

∫ z+ε

w
It(w)dt

=
1
2ε

∫ z+ε

w
1dt

= − 1
2ε

(w − z − ε), for z − ε ≤ w < z + ε,

and

1
2ε

∫ z+ε

z−ε
It(w)dt = 0, for w ≥ z + ε.

Hence

Iz,ε(w) =
1
2ε

∫ z+ε

z−ε
It(w)dt (3.22)

for all w ∈ R . From this fact we can see that

N Iz,ε =
1
2ε

∫ z+ε

z−ε
N Itdt =

1
2ε

∫ z+ε

z−ε
Φ(t)dt. (3.23)
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By (3.22), (3.23) and Stein’s equation we have

Iz,ε −N Iz,ε =
1
2ε

∫ z+ε

z−ε
(It(w)− Φ(t))dt

=
1
2ε

∫ z+ε

z−ε
(f ′t(w)− wft(w))dt.

From this fact and (3.18), the solution of Stein equation,

f ′(w)− wf(w) = Iz,ε(w)−N Iz,ε

is fz,ε : R → R which is defined by

fz,ε(w) =
1
2ε

∫ z+ε

z−ε
ft(w)dt. (3.24)

We use (3.20) and (3.24) to give the form of fz,ε .

Case w < z − ε .

fz,ε(w) =
1
2ε

∫ z+ε

z−ε

√
2πe

w2

2 Φ(w)[1− Φ(t)]dt

=
√

2πe
w2

2 Φ(w)
[
1− 1

2ε

∫ z+ε

z−ε
Φ(t)dt

]
.

Case z − ε ≤ w < z + ε .

fz,ε =
1
2ε

∫ w

z−ε
ft(w)dt +

1
2ε

∫ z+ε

w
ft(w)dt

=
1
2ε

∫ w

z−ε

√
2πe

w2

2 Φ(t)[1− Φ(w)]dt +
1
2ε

∫ z+ε

w

√
2πe

w2

2 Φ(w)[1− Φ(t)]dt

=
1
2ε

√
2πe

w2

2 [1− Φ(w)]
∫ w

z−ε
Φ(t)dt

+
√

2πe
w2

2 Φ(w)
[(z + ε− w)

2ε
− 1

2ε

∫ z+ε

w
Φ(t)dt

]
.

Case w ≥ z + ε .

fz,ε(w) =
1
2ε

∫ z+ε

z−ε

√
2πe

w2

2 Φ(t)[1− Φ(w)]dt

=
1
2ε

√
2πe

w2

2 [1− Φ(w)]
∫ z+ε

z−ε
Φ(t)dt.

This completes the proof.

Proposition 3.7. For any z ∈ R and ε > 0, the first derivative of fz,ε exists and is

continuous.
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Proof. First, we will use (3.20) and (3.21) to show that f ′z,ε exists.

Case w < z − ε .

f ′z,ε(w) =
1
2ε

∫ z+ε

z−ε
f ′t(w)dt

=
1
2ε

∫ z+ε

z−ε
[1− Φ(t)][1 +

√
2πwe

w2

2 Φ(w)]dt

=
1
2ε

[1 +
√

2πwe
w2

2 Φ(w)]
{

2ε−
∫ z+ε

z−ε
Φ(t)dt

}
= [1 +

√
2πwe

w2

2 Φ(w)]
[
1− 1

2ε

∫ z+ε

z−ε
Φ(t)dt

]
.

Case z − ε < w < z + ε

f ′z,ε(w) =
1
2ε

∫ w

z−ε
f ′t(w)dt +

1
2ε

∫ z+ε

w
f ′t(w)dt

=
1
2ε

∫ w

z−ε
Φ(t)[−1 +

√
2πwe

1
2
w2

(1− Φ(w))]dt

+
1
2ε

∫ z+ε

w
[1− Φ(t)][1 +

√
2πwe

1
2
w2

Φ(w)]dt

=
1
2ε

[−1 +
√

2πwe
1
2
w2

(1− Φ(w))]
∫ w

z−ε
Φ(t)dt

+
1
2ε

[1 +
√

2πwe
1
2
w2

Φ(w)]
{

(z + ε− w)−
∫ z+ε

w
Φ(t)dt

}
.

Case w > z + ε

f ′z,ε(w) =
1
2ε

∫ z+ε

z−ε
f ′t(w)dt

=
1
2ε

∫ z+ε

z−ε
Φ(t)[−1 +

√
2πwe

1
2
w2

(1− Φ(w))]dt

=
1
2ε

[−1 +
√

2πwe
1
2
w2

(1− Φ(w))]
∫ z+ε

z−ε
Φ(t)dt.

Next, we will find the first derivative of fz,ε(w) at points, w = z− ε and w = z + ε .

To find f ′z,ε(z− ε), we use Proposition 3.6 and L’Hopital’s rule to consider the left and
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the right derivatives of fz,ε(z − ε) as follows.

lim
h→0−

fz,ε(z − ε + h)− fz,ε(z − ε)
h

=
[
1− 1

2ε

∫ z+ε

z−ε
Φ(t)dt

]
lim

h→0−

1
h

{√
2πe

(z−ε+h)2

2 Φ(z − ε + h)−
√

2πe
(z−ε)2

2 Φ(z − ε)
}

=
[
1− 1

2ε

∫ z+ε

z−ε
Φ(t)dt

]
lim

h→0−

√
2π

[ 1√
2π

+ (z − ε + h)Φ(z − ε + h)e
(z−ε+h)2

2

]
=

[
1− 1

2ε

∫ z+ε

z−ε
Φ(t)dt

][
1 +

√
2π(z − ε)Φ(z − ε)e

(z−ε)2

2

]
and

lim
h→0+

fz,ε(z − ε + h)− fz,ε(z − ε)
h

= lim
h→0+

1
h

{ 1
2ε

√
2πe

(z−ε+h)2

2 [1− Φ(z − ε + h)]
∫ z−ε+h

z−ε
Φ(t)dt

+
√

2πe
(z−ε+h)2

2 Φ(z − ε + h)
[
1− h

2ε
− 1

2ε

∫ z+ε

z−ε+h
Φ(t)dt

]
−
√

2πe
(z−ε)2

2 Φ(z − ε)
[
1− 1

2ε

∫ z+ε

z−ε
Φ(t)dt

]}
= lim

h→0+

√
2π

2ε

{
e

(z−ε+h)2

2 [1− Φ(z − ε + h)]Φ(z − ε + h)

+
∫ z−ε+h

z−ε
Φ(t)dt

[ −1√
2π

+ [1− Φ(z − ε + h)](z − ε + h)e
(z−ε+h)2

2

]}
+
√

2π
{

e
(z−ε+h)2

2 Φ(z − ε + h)
[−1

2ε
+

1
2ε

Φ(z − ε + h)
]
+

+
[
1− h

2ε
− 1

2ε

∫ z+ε

z−ε+h
Φ(t)dt

][ 1√
2π

+ (z − ε + h)e
(z−ε+h)2

2 Φ(z − ε + h)
]}

=
√

2π

2ε
e

(z−ε)2

2 [1− Φ(z − ε)]Φ(z − ε)−
√

2π

2ε
e

(z−ε)2

2 [1− Φ(z − ε)]Φ(z − ε)

+
[
1− 1

2ε

∫ z+ε

z−ε
Φ(t)dt

][
1 +

√
2π(z − ε)e

(z−ε)2

2 Φ(z − ε)
]

=
[
1− 1

2ε

∫ z+ε

z−ε
Φ(t)dt

][
1 +

√
2π(z − ε)e

(z−ε)2

2 Φ(z − ε)
]
.

Thus

f ′z,ε(z − ε) =
[
1− 1

2ε

∫ z+ε

z−ε
Φ(t)dt

][
1 +

√
2π(z − ε)e

(z−ε)2

2 Φ(z − ε)
]
.

Similarly to f ′z,ε(z − ε), we have

f ′z,ε(z + ε) =
1
2ε

∫ z+ε

z−ε
Φ(t)dt

[
− 1 +

√
2π(1− Φ(z + ε))(z + ε)e

(z+ε)2

2

]
.
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Thus we have

f ′z,ε(w)

=



[1 +
√

2πwe
w2

2 Φ(w)]− 1
2ε

[1 +
√

2πwe
w2

2 Φ(w)]
∫ z+ε

z−ε
Φ(t)dt ; w ≤ z − ε

1
2ε

[−1 +
√

2πwe
1
2
w2

(1− Φ(w))]
∫ w

z−ε
Φ(t)dt

+
1
2ε

[1 +
√

2πwe
1
2
w2

Φ(w)]
{

(z + ε− w)−
∫ z+ε

w
Φ(t)dt

}
; z − ε ≤ w ≤ z + ε

1
2ε

[−1 +
√

2πwe
1
2
w2

(1− Φ(w))]
∫ z+ε

z−ε
Φ(t)dt ;w ≥ z + ε.

Observe that f ′z,ε is continuous.

Remark. The idea of the proof of Proposition 3.6 and Proposition 3.7 is introduced

by Martin.

Proposition 3.8. For the function fz,ε defined in Proposition 3.6 we have

1. sup
x∈R
ε>0

|fz,ε(x)| ≤
√

2π

4

2. sup
x,y∈R
x6=y
ε>0

∣∣∣fz,ε(x)− fz,ε(y)
x− y

∣∣∣ ≤ 1

3. Iz,ε(x)− Iz,ε(y) =
y − x

2ε

∫ 1

0
I[z−ε≤(1−θ)x+θy≤z+ε]dθ for every x, y ∈ R

where

IA(w) =


1 ; w ∈ A

0 otherwise

where A ⊆ R

Proof. See Lemma 2 in Chapter II of Stein([55], 1986) for the proof of (1) and (2). The

proof of (3), see page 86 of Martin([44],2003).

Theorem 3.9 is one of the main results in [44] that we will apply in our work.
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Theorem 3.9. Let Wn be a decomposed random variable defined by

Wn =
∑
i∈I

Xi

E(Xi) = 0,i ∈ I; E(W 2
n) = 1;

Wn = W (i) + Zi,i ∈ I, where W (i) is independent of Xi;

Zi =
∑
j∈Ki

Zij , i ∈ I, Ki ⊂ I;

W (i) = W ij + Vij , i ∈ I, j ∈ Ki,

where Wij is independent of the pair (Xi, Zij).

Suppose that

|Xi| ≤ Ai, |Zik| ≤ Bik, |Vik| ≤ Cik, |Zi + Vik| ≤ C ′
ik

for some constants Ai , Bik , Cik and C ′
ik . Then

sup
z∈R

|P (Wn ≤ z)− Φ(z)| ≤ 13.7
∑
i∈I

AiB
2
i +

∑
i∈I

∑
k∈Ki

AiBik(6.8Cik + 9.3C ′
ik)

where Bi :=
∑
k∈Ki

Bik .

To prove this theorem, Martin showed that for all ε > 0

|P (Wn ≤ z)− Φ(z)| ≤ A1(ε) + A2(ε) + A3(ε) + B1(ε) + B2(ε) + B3(ε) +
ε√
2π

, (3.25)

where

A1(ε) :=
∑
i∈I

E(|gz,ε(W (i) + θ1Zi)− gz,ε(W (i))||XiZi|)

A2(ε) :=
∑
i∈I

∑
k∈Ki

E(|gz,ε(W (i))− gz,ε(Wik)||XiZik|)

A3(ε) :=
∑
i∈I

∑
k∈Ki

E(|gz,ε(Wn)− gz,ε(Wik)|)E(|XiZik|)

B1(ε) :=
∑
i∈I

E(|Iz,ε(W (i))− Iz,ε(W (i) + θ1Zi)||XiZi|)

B2(ε) :=
∑
i∈I

∑
k∈Ki

E(|Iz,ε(Wij)− Iz,ε(Wij + Vij)||XiZij |)

B3(ε) :=
∑
i∈I

∑
k∈Ki

E(|Iz,ε(Wn)− Iz,ε(Wij)|)E(|XiZij |)
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and

gz,ε(x) = fz,ε(x)x, (3.26)

θ1 ∈ [0, 1] ([44], pp.84-86).

Then he used the boundedness of Xi, Zik, Vik and Zi + Vik to bound every term on the

right handside of (3.25). In fact we can not apply Theorem 3.9 to our work, since our

random variable Zi =
n∑

j=1

1
σn

{
Yi + (Yj − Y

(i)
j )

}
is not bounded. But in our work, we

also prove our result by using equation (3.25).

3.3 Proof of main results

In this section, we give the proof of Theorem 3.1 and Theorem 3.2.

Proof of Theorem 3.1. In Theorem 3.1 we need to find δ where

δ := sup
z∈R

|P (Wn ≤ z)− Φ(z)|.

We note that for any a, b ∈ R ,

P (a ≤ Wn ≤ b) = P (Wn ≤ b)− P (W < a)− Φ(b) + Φ(a) + Φ(b)− Φ(a)

= [P (Wn ≤ b)− Φ(b)]− [P (W < a)− Φ(a)] + Φ(b)− Φ(a)

≤ [P (Wn ≤ b)− Φ(b)] + [P (Wn ≤ a)− Φ(a)] + Φ(b)− Φ(a)

≤ 2δ +
b− a√

2π
. (3.27)

To find δ , we divide the proof into 4 steps as follows.

Step 1. We will show that

A1(ε) + A2(ε) + A3(ε) ≤
C

σn

for every ε > 0.

From (3.4), (3.6), (3.10), (3.12) and the fact that

E(X2
i ) =

1
σ2

n

E((Yi − µ)2) ≤ µ

σ2
n
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we have

E(|WnXi|Z2
i ) = E(|(W (i) + Zi)Xi|Z2

i )

= E(|W (i)Xi|Z2
i ) + E(|XiZ

3
i |)

≤
{

E((W (i))2X2
i )

} 1
2
{

E(Z4
i )

} 1
2 +

Cµ

σ4
n

=
{

E((W (i))2)E(X2
i )

} 1
2
{

E(Z4
i )

} 1
2 +

Cµ

σ4
n

≤ C
{

E(W 2
n + Z2

i )E(X2
i )

} 1
2
{

E(Z4
i )

} 1
2 +

Cµ

σ4
n

≤ C
{

2E(X2
i )

} 1
2
{

E(Z4
i )

} 1
2 +

Cµ

σ4
n

≤ Cµ

σ3
n

. (3.28)

From (3.10) and (3.15) we have

E|Wij | = E
∣∣∣ n∑

l=1
l 6=i,j

1
σn

(Y (i,j)
l − EY

(i,j)
l )− E(Vij)− E(Zi)

∣∣∣ ≤ E|Vij |+ E|Zi| ≤
C

σn

(3.29)

and from (3.9) we have

E|XiZij | ≤
1
σ2

n

E|Yj − Y
(i)
j | ≤ 3(d + 2)µ

2nσ2
n

. (3.30)
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From Proposition 3.3, Proposition 3.8, (3.12), (3.26) and (3.28) we have

A1(ε) =
n∑

i=1

E(|gz,ε(W (i) + θ1Zi)− gz,ε(W (i))||XiZi|)

=
n∑

i=1

E(|fz,ε(W (i) + θ1Zi)(W (i) + θ1Zi −Wn)− fz,ε(W (i))(W (i) −Wn)

+ (fz,ε(W (i) + θ1Zi)− fz,ε(W (i)))Wn||XiZi|)

=
n∑

i=1

E(|fz,ε(W (i) + θ1Zi)(θ1 − 1)Zi − fz,ε(W (i))Zi)

+
(fz,ε(W (i) + θ1Zi)− fz,ε(W (i))

θ1Zi

)
θ1ZiWn||XiZi|)

≤
n∑

i=1

{
E(|fz,ε(W (i) + θ1Zi)||Xi|Z2

i ) + E(|fz,ε(W (i))||Xi|Z2
i )

+ E(
∣∣∣fz,ε(W (i) + θ1Zi)− fz,ε(W (i))

θ1Zi

∣∣∣|WnXi|Z2
i )

}
≤

n∑
i=1

{√2π

4
E(|Xi|Z2

i ) +
√

2π

4
E(|Xi|Z2

i ) + E(|WnXi|Z2
i )

}
=

n∑
i=1

{√2π

2
E(|Xi|Z2

i ) + E(|WnXi|Z2
i )

}
≤ C

{nµ

σ3
n

}
≤ C

σn
. (3.31)
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From Proposition 3.3, Proposition 3.5, Proposition 3.8, (3.4), (3.5), (3.6), (3.26), (3.29)

and (3.30), we have

A2(ε) =
n∑

i=1

n∑
j=1
j 6=i

E(|gz,ε(W (i))− gz,ε(Wij)||XiZij |)

=
n∑

i=1

n∑
j=1
j 6=i

E(|fz,ε(W (i))(W (i) −Wn)− fz,ε(Wij)(Wij −Wn)

+ (fz,ε(W (i))− fz,ε(Wij))Wn||XiZij |)

=
n∑

i=1

n∑
j=1
j 6=i

E(|fz,ε(W (i))W (i) − fz,ε(W (i))(Wij + Vij + Zi)− fz,ε(Wij)Wij

+ fz,ε(Wij)(W (i) + Zi) + fz,ε(W (i))Wn − fz,ε(Wij)Wn||XiZij |)

=
n∑

i=1

n∑
j=1
j 6=i

E(|[fz,ε(W (i)) + fz,ε(Wij)](W (i) −Wij)− fz,ε(W (i))Vij − fz,ε(W (i))Zi

+ fz,ε(Wij)Zi + fz,ε(W (i))Wn − fz,ε(Wij)Wn||XiZij |)

=
n∑

i=1

n∑
j=1
j 6=i

E(|[fz,ε(W (i)) + fz,ε(Wij)]Vij − fz,ε(W (i))Vij + fz,ε(W (i))[Wn − Zi]

− fz,ε(Wij)[Wn − Zi]||XiZij |)

=
n∑

i=1

n∑
j=1
j 6=i

E(|[fz,ε(W (i)) + fz,ε(Wij)]Vij − fz,ε(W (i))Vij + fz,ε(W (i))[Wij + Vij ]

− fz,ε(Wij)[Wij + Vij ]||XiZij |)

≤
n∑

i=1

n∑
j=1
j 6=i

5
√

2π

4
E|XiZijVij |+

√
2π

2
E|WijXiZij |

≤
n∑

i=1

n∑
j=1
j 6=i

5
√

2π

4
E|XiZijVij |+

√
2π

2
E|Wij |E|XiZij |

≤ C
{n2µ

nσ3
n

+
n2µ

nσ3
n

}
≤ C

σn
. (3.32)
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From EWn = 0, Proposition 3.8, (3.10), (3.15), (3.26) and (3.30), we have

A3(ε) =
n∑

i=1

n∑
j=1
j 6=i

E|gz,ε(Wn)− gz,ε(Wij)|E|XiZij |

=
n∑

i=1

n∑
j=1
j 6=i

E|fz,ε(Wn)(Wn −Wn)− fz,ε(Wij)(Wij −Wn)

+ (fz,ε(Wn)− fz,ε(Wij))Wn|E|XiZij |

≤
n∑

i=1

n∑
j=1
j 6=i

E|fz,ε(Wij)(Zi + Vij)|E|XiZij |+ E|(fz,ε(Wn)− fz,ε(Wij))Wn||E|XiZij |

≤
n∑

i=1

n∑
j=1
j 6=i

√
2π

4
E|Zi + Vij |E|XiZij |+

√
2π

2
E|Wn||E|XiZij |

≤ Cn2µ

nσ3
n

≤ C

σn
. (3.33)

Therefore, from (3.31), (3.32) and (3.33),

A1(ε) + A2(ε) + A3(ε) ≤
C

σn
.

To proof step 2 - 4 we let

ε = 6
[2(2 + 6(d + 2))

σβ
n

+
3(d + 2)

σβ
n

+
3(d + 2)

σβ
n

]
. (3.34)

Step 2. We will show that, for 0 < β < 1

B1(ε) ≤
δ

6
+

C(d)

σβ
n

.
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From Proposition 3.8 (3) we have for 0 < β < 1

B1(ε) =
n∑

i=1

E(|Iz,ε(W (i))− Iz,ε(W (i) + θ1Zi)||XiZi|)

≤ 1
2ε

n∑
i=1

E(
∣∣∣ ∫ 1

0
I[z−ε≤W (i)+θθ1Zi≤z+ε]dθ

∣∣∣|XiZ
2
i |)

≤ 1
2ε

n∑
i=1

E(|XiZ
2
i |

∣∣∣ ∫ 1

0
I[z−ε≤W (i)+θθ1Zi≤z+ε,|Vij |> 1

σ
β
n

]dθ
∣∣∣)

+
1
2ε

n∑
i=1

E(|XiZ
2
i |

∣∣∣ ∫ 1

0
I[z−ε≤W (i)+θθ1Zi≤z+ε,|Vij |≤ 1

σ
β
n

]dθ
∣∣∣)

:= B11(ε) + B12(ε).

By Proposition 3.4 we have

B11(ε) ≤
σrβ

n

2ε

n∑
i=1

E(|XiZ
2
i V r

ij |
∣∣∣ ∫ 1

0
I[z−ε≤W (i)+θθ1Zi≤z+ε,|Vij |> 1

σ
β
n

]dθ
∣∣∣)

≤ σrβ
n

2ε

n∑
i=1

E|XiZ
2
i V r

ij |

≤ Cnµ

εσ
r(1−β)+3
n

(3.35)

for every r > 0.

We will use (3.27) to bound B12(ε). Note that from (3.4), (3.5), (3.27) and Chebyshev’s

inequality we have

P (a ≤ Wij ≤ b) = P (a ≤ Wn − (Zi + Vij) ≤ b, |Zi + Vij | ≤
1

σβ
n

)

+ P (a ≤ Wn − (Zi + Vij) ≤ b, |Zi + Vij | >
1

σβ
n

)

≤ P (a− 1

σβ
n

≤ Wn ≤ b +
1

σβ
n

) + P (|Zi + Vij | >
1

σβ
n

)

≤ 2δ +
b− a√

2π
+

2
√

2πσβ
n

+ P (|Zi + Vij | >
1

σβ
n

)

≤ 2δ +
b− a√

2π
+

2
√

2πσβ
n

+ E|Zi + Vij |sσsβ
n (3.36)

for any s > 0.
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From (3.6), (3.10), (3.12), (3.15) and (3.36)(for s =
β

1− β
) we have

B12(ε) =
1
2ε

n∑
i=1

E(|XiZ
2
i |

∣∣∣ ∫ 1

0
I[z−ε≤Wij+Vij+θθ1Zi≤z+ε,|Zi|≤ 1

σ
β
n

,|Vij |≤ 1

σ
β
n

]dθ

+
∫ 1

0
I[z−ε≤Wij+Vij+θθ1Zi≤z+ε,|Zi|> 1

σ
β
n

,|Vij |≤ 1

σ
β
n

]dθ
∣∣∣)

≤ 1
2ε

n∑
i=1

E(|XiZ
2
i |

∫ 1

0
I[z−ε− 2

σ
β
n

≤Wij≤z+ε+ 2

σ
β
n

]dθ) +
σrβ

n

2ε

n∑
i=1

E|XiZ
r+2
i |

=
1
2ε

n∑
i=1

E(|XiZ
2
i |

∫ 1

0
P

(
z − ε− 2

σβ
n

≤ Wij ≤ z + ε +
2

σβ
n

)
dθ) +

Cσrβ
n nµ

εσr+3
n

≤ (2 + 6(d + 2))nµ

2εσ3
n

[
2δ +

2ε√
2π

+
6

√
2πσβ

n

]
+

(2 + 6(d + 2))nµ

2εσ3
n

E|Zi + Vij |
β

1−β σ
β( β

1−β
)

n +
Cnµ

εσ
r(1−β)+3
n

≤ (2 + 6(d + 2))nµ

2εσ3
n

[
2δ +

2ε√
2π

+
6

√
2πσβ

n

]
+

Cnµ

εσ3
n

[σ
β2

1−β
n

σ
β

1−β
n

]
+

Cnµ

εσ
r(1−β)+3
n

.

(3.37)

Thus by Proposition 3.3, (3.34), (3.35), (3.37) we can choose r > 0 be such that

r(1− β) + 1− β > 1 where 0 < β < 1 so

B1(ε) ≤
C

εσ
r(1−β)+1
n

+
(2 + 6(d + 2))

εσn

[
2δ +

2ε√
2π

+
6

√
2πσβ

n

]
+

C

εσ
1+β−β2

1−β
n

=
C

εσ
r(1−β)+1
n

+
2(2 + 6(d + 2))δ

εσn
+

2(2 + 6(d + 2))√
2πσn

+
6(2 + 6(d + 2))

εσnσβ
n

√
2π

+
C

εσ1+β
n

≤ C

σ
r(1−β)+1−β
n

+
2(2 + 6(d + 2))δσβ

n

σβ
n6[2(2 + 6(d + 1))]

+
C

σβ
n

≤ δ

6
+

C(d)

σβ
n

for 0 < β < 1.

Step 3. We will show that there exists a constant C > 0, for 0 < β < 1

B2(ε) ≤
δ

6
+

C(d)

σβ
n

.

By using Proposition 3.8(3), Proposition 3.3, Proposition 3.5, (3.6), (3.10), (3.15),

(3.30) and (3.36) (for s =
1

1− β
) we have for r > 0 and 0 < β < 1
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B2(ε) =
n∑

i=1

n∑
j=1
j 6=i

E(|Iz,ε(Wij)− Iz,ε(Wij + Vij)||XiZij |)

≤ 1
2ε

n∑
i=1

n∑
j=1
j 6=i

E(|XiZijVij |
∫ 1

0
I[z−ε≤Wij+θVij≤z+ε]dθ)

≤ 1
2ε

n∑
i=1

n∑
j=1
j 6=i

E(|XiZijVij |
∫ 1

0
I[z−ε≤Wij+θVij≤z+ε,|Vij |> 1

σ
β
n

]dθ)

+
1
2ε

n∑
i=1

n∑
j=1
j 6=i

E(|XiZijVij |
∫ 1

0
I[z−ε≤Wij+θVij≤z+ε,|Vij |≤ 1

σ
β
n

]dθ)

≤ σrβ
n

2ε

n∑
i=1

n∑
j=1
j 6=i

E|XiZijV
r+1
ij |

+
1

2εσβ
n

n∑
i=1

n∑
j=1
j 6=i

E(|XiZij |
∫ 1

0
I[z−ε− 1

σ
β
n

≤Wij≤z+ε+ 1

σ
β
n

]dθ)

=
Cσrβ

n n2µ

2εnσr+3
n

+
1

2εσβ
n

n∑
i=1

n∑
j=1
j 6=i

E(|XiZij |P
(
z − ε− 1

σβ
n

≤ Wij ≤ z + ε +
1

σβ
n

)
)

≤ Cnµ

εσ
r(1−β)+3
n

+
3(d + 2)n2µ

4εnσβ+2
n

[
2δ +

2ε√
2π

+
4

√
2πσβ

n

]
+

Cn2µ

εnσβ+2
n

E|Zi + Vij |
1

1−β σ
β 1

1−β
n

≤ C

εσ
r(1−β)+1
n

+
3(d + 2)

2εσβ
n

[
2δ +

2ε√
2π

+
4

√
2πσβ

n

]
+

C

εσβ
n

[σ
β

1−β
n

σ
1

1−β
n

]
≤ C

εσ
r(1−β)+1
n

+
3(d + 2)

2εσβ
n

[
2δ +

2ε√
2π

+
4

√
2πσβ

n

]
+

C

εσβ+1
n

.

From (3.34) we can choose r be such that

B2(ε) ≤
3(d + 2)δ

εσβ
n

+
C

σβ
n

≤ δ

6
+

C(d)

σβ
n

.

Step 4. We will show that for 0 < β < 1,

B3(ε) = ≤ δ

6
+

C(d)

σβ
n

.
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From (3.30) and Proposition 3.3 we have

n∑
i=1

n∑
j=1
j 6=i

E|XiZij | ≤
3(d + 2)n2µ

2nσ2
n

≤ 3(d + 2). (3.38)

By Proposition 3.8(3), (3.10), (3.15) and (3.27) we have

E|Iz,ε(Wn)− Iz,ε(Wij)| ≤
1
2ε

E(|Zi + Vij |
∫ 1

0
I[z−ε≤Wn−θ(Zi+Vij)≤z+ε]dθ)

≤ 1
2ε

E(|Zi + Vij |
∫ 1

0
I[z−ε≤Wn−θ(Zi+Vij)≤z+ε,|Zi+Vij |≤ 1

σ
β
n

]dθ)

+
1
2ε

E(|Zi + Vij |
∫ 1

0
I[z−ε≤Wn−θ(Zi+Vij)≤z+ε,|Zi+Vij |> 1

σ
β
n

]dθ)

≤ 1

2εσβ
n

E(
∫ 1

0
I[z−ε− 1

σ
β
n

≤Wn≤z+ε+ 1

σ
β
n

]dθ) +
σrβ

n

2ε
E|Zi + Vij |r+1

=
1

2εσβ
n

P
(
z − ε− 1

σβ
n

≤ Wn ≤ z + ε +
1

σβ
n

)
+

Cσrβ
n

εσr+1
n

≤ 1

2εσβ
n

[
2δ +

2ε√
2π

+
2

√
2πσβ

n

]
+

C

εσ
r(1−β)+1
n

.

From this fact, (3.34) and (3.38) we can choose r be such that

B3(ε) ≤
3(d + 2)

2εσβ
n

[
2δ +

2ε√
2π

+
2

√
2πσβ

n

]
+

C

εσ
r(1−β)+1
n

≤ 3(d + 2)δ

εσβ
n

+
C

σβ
n

≤ δ

6
+

C(d)

σβ
n

.

Therefore by (3.25), step 1 - step 4 and (3.34) we have

δ ≤ C(d)
σn

+
C(d)

σβ
n

+
δ

2

≤ C(d)

σβ
n

+
δ

2
.

Therefore, there exists a constant C(d) > 0 such that for 0 < β < 1

sup
z∈R

∣∣∣P (Wn ≤ z)− Φ(z)
∣∣∣ ≤ C(d)

σβ
n

.

2

Remark.

We can use the same argument of Theorem 3.1 in proving Theorem 3.2.



CHAPTER IV

POISSON APPROXIMATION OF THE NUMBER OF

VERTICES OF A FIXED DEGREE IN A RANDOM

GRAPH

In this chapter, we give bounds in Poisson approximation of number of vertices of a

fixed degree in a random graph with n vertices.

Let G(n, p) be a random graph on n labeled vertices {1, 2, . . . , n} where possible

edge {i, j} is present randomly and independently with the probability p , 0 < p < 1.

For each i ∈ {1, 2, . . . , n} , we define the indicator random variable Xi , as follows:

Xi =


1 if vertex i has degree d in G(n, p),

0 otherwise.

Then W :=
n∑

i=1

Xi is the number of vertices of degree d in G(n, p).

In 1992, Barbour, Holst and Janson[7] proved that the distribution of W can be

approximated by Poisson distribution with parameter

λ := E(W ) = nP (Xi = 1) = n

(
n− 1

d

)
pdqn−1−d (4.1)

where q = 1−p and d = 1, 2, . . . ,

(
n

2

)
, and the uniform bound is given by the following.

Theorem 4.1. Let W be the number of vertices of degree d, d ≥ 1, in a random graph

G(n, p) and A ⊆ {0, 1, . . . , n}. Then

sup
A
|P (W ∈ A)− Poiλ(A)| ≤ µ

(
1 + R1 + R2

)
(4.2)

where Poiλ is a Poisson distribution with parameter λ, i.e., Poiλ(A) =
∑
k∈A

e−λλk

k!
,
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and

µ = P (Xi = 1),

R1 =
[ (n− 1− d)
(n− 1)(1− p)

+
d

(n− 1)p

]
E(d− deg(i))+,

R2 =
(n− 1− d)

(n− 1)(1− p)

[
1 +

(n− d− 2)p
(d + 1)(1− p)

]
E(deg(i)− d)+

where deg(i) is degree of a vertex i. In particular, a bound in (4.2) converges to 0 as

n →∞ if either

1. np → 0 and d ≥ 2 ;

2. np is bounded away from 0 and (np)−
1
2 |d− np| → ∞.

In this chapter, we used the result from Barbour, Holst, Janson([7],1992) and San-

tiwipanont, Teerapabolarn([52],2006) to give non-uniform and uniform bounds of this

approximation for a fixed d = 0, 1, 2, . . . ,

(
n

2

)
by using Stein-Chen method. The fol-

lowings are our main results.

Theorem 4.2. Let W be the number of vertices of degree d, d ≥ 1, in a random graph

G(n, p) and A ⊆ {0, 1, . . . , n}. Then

1.
∣∣∣P (W ∈ A)− Poiλ(A)

∣∣∣ ≤ C(λ, A)µ(1 + R1 + R2),

2.
∣∣∣P (W ∈ A)− Poiλ(A)

∣∣∣ ≤ (1− e−λ)µ(1 + R1 + R2)

where C(λ, A) is a constant defined by

C(λ, A) = min
{

1, λ,
∆(λ)

MA + 1

}
,

∆(λ) =


eλ + λ− 1 if λ−1(eλ − 1) ≤ MA,

2(eλ − 1) if λ−1(eλ − 1) > MA,

MA =


max{w|Cw ⊆ A} if 0 ∈ A,

min{w|w ∈ A} if 0 6∈ A,

and

Cw = {0, 1, . . . , w}.
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Furthermore, we know from ([46],[57]) that

C(λ, {0, 1, . . . , w0}) ≤ (1− e−λ) min
{

1,
eλ

w0 + 1

}
,

where w0 = 0, 1, . . . , n and

C(λ, {w0}) ≤ min
{

1,
λ

w0

}
where w0 = 1, 2, . . . , n.

Corollary 4.3. Let W be the number of vertices of degree d, d ≥ 1, in a random graph

G(n, p) and p =
1
nγ

for any γ ∈ R+ . Then for A ⊆ {0, 1, . . . , n}

1. if γ > 1 then

1.1
∣∣∣P (W ∈ A)− Poiλ(A)

∣∣∣ ≤ C(λ, A, d)
n(γ−1)(d−1)

,

1.2
∣∣∣P (W ∈ A)− Poiλ(A)

∣∣∣ ≤ 6d2

d!qd+3

(1− e−λ)
n(γ−1)(d−1)

,

where C(λ, A, d) =
6d2

d!qd+3
C(λ, A),

2. if 0 < γ < 1 then

2.1
∣∣∣P (W ∈ A)− Poiλ(A)

∣∣∣ ≤ C(λ, A, d)
nd(1−γ)

,

2.2
∣∣∣P (W ∈ A)− Poiλ(A)

∣∣∣ ≤ 6d2(2d + 2)!
d!q3+d

(1− e−λ)
nd(1−γ)

,

where C(λ, A, d) =
6d2(2d + 2)!

d!q3+d
C(λ, A).

Theorem 4.4. Let W be the number of isolated vertices, i.e., d = 0, in a random

graph G(n, p). Then, for A ⊆ {0, 1, 2, . . . , n},

1.
∣∣∣P (W ∈ A)− Poiλ(A)

∣∣∣ ≤ C(λ, A)[(n− 2)p + 1](1− p)n−2 (4.3)

2.
∣∣∣P (W ∈ A)− Poiλ(A)

∣∣∣ ≤ (1− e−λ)[(n− 2)p + 1](1− p)n−2 (4.4)

where Poiλ is a Poisson distribtuion with parameter λ = nqn−1 .

Using the fact that (1− p) <
1
ep

, we see that the bounds in Theorem 4.4 converge

to 0 when np →∞ , that is p =
1
nγ

for 0 < γ < 1.
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Corollary 4.5. Let W be the number of isolated vertices, i.e., d = 0, in a random

graph G(n, p) and p =
1
nγ

for any 0 < γ < 1. Then, for A ⊆ {0, 1, 2, . . . , n},

1.
∣∣∣P (W ∈ A)− Poiλ(A)

∣∣∣ ≤ 3C(λ, A)
q2n1−γ

2.
∣∣∣P (W ∈ A)− Poiλ(A)

∣∣∣ ≤ 3(1− e−λ)
q2n1−γ

.

This chapter is organized as follows. In section 4.1, we introduce Stein-Chen and

coupling methods which are used in our work. In section 4.2 we give the proof of

Theorem 4.2 while the proof of Corollary 4.3 is given in section 4.3. The proof of

Theorem 4.4 and Corollary 4.5 are given in section 4.4 and section 4.5, respectively.

4.1 Stein-Chen and coupling methods

In 1972, Stein[54] gave a new technique to find a bound in the normal approximation

to a distribution of a sum of dependent random variables. His technique was relied

instead on the elementary differential equation, and in 1975, Chen[14] applied Stein’s

idea to the Poisson case. The central idea of the Stein-Chen method is the difference

equation

IA(j)− Poiλ(A) = λgλ,A(j + 1)− jgλ,A(j), j ∈ N ∪ {0} (4.5)

where λ > 0 and A ⊆ N ∪ {0} and IA : N ∪ {0} → R be defined by

IA(w) =


1 if w ∈ A,

0 if w 6∈ A.

We always call equation (4.5) that Stein’s equation for Poisson distribution function

and it is well-known that the solution gλ,A of (4.5) is of the form,

gλ,A(w) =


(w − 1)!λ−weλ[Pλ(IA∩Cw−1)− Pλ(IA)Pλ(ICw−1)] if w ≥ 1,

0 if w = 0
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where

Pλ(IA) = e−λ
∞∑
l=0

IA(l)
λl

l!
,

and

Cw−1 = {0, 1, . . . , w − 1}

([7], p.7, 1992).

By substituting j and λ in (4.5) by any integer-valued random variable W and λ = E(W ),

we have

P (W ∈ A)− Poiλ(A) = E(λgλ,A(W + 1))− E(Wgλ,A(W )). (4.6)

So far W could be
n∑

i=1

Xi and λ = E(W ) =
n∑

i=1

pi where pi = E(Xi) = P (Xi = 1).

Barbour, Holst and Janson([7],1992) used Stein-Chen method and construct cou-

pling random variable Wi to find the bound in Poisson approximation. He assumed

that for each i we can construct a random variable Wi , on the same probability space

as W , such that the distribution L (Wi) of Wi equals the conditional distribution

L (W −Xi|Xi = 1). Hence, for each i ∈ {1, 2, . . . , n} ,

E(Xigλ,A(W )) = E(E(Xigλ,A(W )|Xi))

= E(Xigλ,A(W )|Xi = 0)P (Xi = 0) + E(Xigλ,A(W )|Xi = 1)P (Xi = 1)

= E(gλ,A(W )|Xi = 1)P (Xi = 1)

= piE(gλ,A(Wi + 1)). (4.7)

Then by (4.6) and (4.7), we have

∣∣∣P (W ∈ A)− Poiλ(A)
∣∣∣ =

∣∣∣E(λgλ,A(W + 1))− E(Wgλ,A(W ))
∣∣∣

=
∣∣∣λE(gλ,A(W + 1))−

n∑
i=1

E(Xigλ,A(W ))
∣∣∣

=
∣∣∣ n∑

i=1

piE(gλ,A(W + 1))−
n∑

i=1

piE(gλ,A(Wi + 1))
∣∣∣

≤
n∑

i=1

piE(|gλ,A(W + 1)− gλ,A(Wi + 1)|)
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≤
n∑

i=1

piE(| sup
w

[gλ,A(w + 1)− gλ,A(w)][(W + 1)− (Wi + 1)]|)

≤ sup
w

[gλ,A(w + 1)− gλ,A(w)]
n∑

i=1

piE(|W −Wi|).

From the estimates above, we arrive at our fundamental result.

Theorem 4.6. If W and Wi are defined as above, then

|P (W ∈ A)− Poiλ(A)| ≤ ||∆g(λ, A)||
n∑

i=1

piE(|W −Wi|) (4.8)

where ||∆g(λ, A)|| := sup
w

[gλ,A(w + 1)− gλ,A(w)].

In order to justify the Poisson approximation we therefore only have to

1. bound ||∆g(λ, A)|| and

2. find couplings (W,Wi) which made E(|W −Wi|) small.

Many authors would like to determine a bound of ||∆g(λ, A)|| . For A ⊆ N∪{0} , Chen

([14],1975) proved that

||∆g(λ, A)|| ≤ min{1, λ−1}

and Janson([33],1994) showed that

||∆g(λ, A)|| ≤ λ−1(1− e−λ). (4.9)

In case of non-uniform bound, Neammanee([46],2003) showed that

||∆g(λ, {w0})|| ≤ min
{ 1

w0
, λ−1

}
(4.10)

and Teerapabolarn and Neammanee([57],2005) gave a bound of ||∆g(λ, A)|| where

A = {0, 1, . . . , w0} in the terms of

||∆g(λ, {0, 1, . . . , w0})|| ≤ λ−1(1− e−λ) min
{

1,
eλ

w0 + 1

}
. (4.11)

In general case for any subset A of {0, 1, . . . , n} , Santiwipanont and Teerapabolarn

([52],2006) gave a bound in the form of

||∆g(λ, A)|| ≤ λ−1 min
{

1, λ,
∆(λ)

MA + 1

}
(4.12)
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where

∆(λ) =


eλ + λ− 1 if λ−1(eλ − 1) ≤ MA,

2(eλ − 1) if λ−1(eλ − 1) > MA,

and

MA =


max{w|Cw ⊆ A} if 0 ∈ A,

min{w|w ∈ A} if 0 6∈ A.

The difficult part in applying Theorem 4.6 is to find Wi which make E(|W − Wi|)

small enough. This is not the solution in general. For the case of X1, X2, . . . , Xn are

independent, we let Wi = W −Xi . Then E(|W −Wi|) = pi and, from (4.8), we have

|P (W ∈ A)− Poiλ(A)| ≤ ||∆g(λ, A)||
n∑

i=1

p2
i .

The problem of the construction of Wi is difficult in the case of dependent indicator

summands. In this case Wi is vary and depends on Xi , see examples in [52] (p.17-24).

In section 4.2, we will use Theorem 4.6 to prove our main result by constructing the

random variable Wi which make E|W −Wi| small.

4.2 Proof of Theorem 4.2

By (4.8) and (4.12), it suffices to bound E(|W−Wi|) for any i ∈ {1, 2, . . . , n} where

Wi ∼ (W − Xi)| Xi = 1. Barbour, Holst and Janson([7],1992) constructed a random

variable Wi as follows.

Let G = {Elj : l, j ∈ {1, 2, . . . , n}} be a sampled graph in G(n, p) and deg(i) be

degree of a vertex i . To determine Wi , construct a new graph G′ = {E′
lj : l, j ∈

{1, 2, . . . , n}} where E′
lj = Elj for all l, j 6= i . In case l = i or j = i we define E′

lj as

follows:

1. If deg(i) = d then we define E′
ij = Eij for j 6= i .

2. If deg(i) < d then we will choose d − deg(i) vertices from all vertex j such that

Eij = 0. For all j which are chosen we define E′
ij = 1 and defind E′

ij = Eij for all other j .
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3. If deg(i) > d then we will choose deg(i) − d vertices from each vertex j such that

Eij = 1. For all j which are chosen we define E′
ij = 0 and defind E′

ij = Eij for all

other j .

Let Wi = W ′−1, where W ′ is the number of vertices of degree d obtained from G′ .

Then Barbour, Holst and Janson showed in [7](pp.99) that the distribution L (Wi+1) =

L (W |Xi = 1) which implied that for any k ∈ N

P (Wi + 1 = k) = P (W = k|Xi = 1)

P (Wi = k − 1) = P (W −Xi = k − 1|Xi = 1)

P (Wi = k) = P (W −Xi = k|Xi = 1)

that is Wi ∼ (W − Xi)| Xi = 1. By Barbour, Holst and Janson([7],1992), (p.100),

showed that

E(|W −Wi|) ≤ µ
(
1 + R1 + R2

)
(4.13)

where R1 =
[ (n− 1− d)
(n− 1)(1− p)

+
d

(n− 1)p

]
E(d− deg(i))+ , and

R2 =
(n− 1− d)

(n− 1)(1− p)

[
1 +

(n− d− 2)p
(d + 1)(1− p)

]
E(deg(i)− d)+ .

Then by (4.8), (4.9), (4.12) and (4.13) we have

∣∣∣P (W ∈ A)− Poiλ(A)
∣∣∣ ≤ C(λ, A)µ(1 + R1 + R2) and∣∣∣P (W ∈ A)− Poiλ(A)
∣∣∣ ≤ (1− e−λ)µ(1 + R1 + R2)

where C(λ, A) is a constant which defined by

C(λ, A) = min
{

1, λ,
∆(λ)

MA + 1

}
.

Furthermore, we know from (4.10) and (4.11) that

C(λ, {0, 1, . . . , w0}) ≤ (1− e−λ) min
{

1,
eλ

w0 + 1

}
,

where w0 = 0, 1, . . . , n and

C(λ, {w0}) ≤ min
{

1,
λ

w0

}
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where w0 = 1, 2, . . . , n .

This completes the proof of Theorem 4.2. 2

Remark. We observe that the uniform bound of Theorem 4.2 is better than the bound

by Barbour, Holst and Janson(1992), since 1− e−λ < 1 for λ = n

(
n− 1

d

)
pdqn−1−d .

4.3 Proof of Corollary 4.3

For the asymtotic results, we note that, from 1− p ≤ 1
ep

,

µ = P (Xi = 1) =
(

n− 1
d

)
pd(1− p)n−1−d ≤ (np)d

d!q1+denp
. (4.14)

By [7], pp.100, we have

E(d− deg(i))+ ≤ d and E(deg(i)− d)+ =
n∑

j=1
j 6=i

EI[E′
ij<Eij ] = (n− 1)p ≤ np

where (d−deg(i))+ = max{d−deg(i), 0} and (deg(i)−d)+ = max{deg(i)−d, 0} . Then

from (4.13) and (4.14), we have

E(|W −Wi|) ≤
(np)d

d!q1+denp

{
1 +

[ (n− 1− d)
(n− 1)(1− p)

+
d

(n− 1)p

]
E(d− deg(i))+

+
(n− 1− d)

(n− 1)(1− p)

[
1 +

(n− d− 2)p
(d + 1)(1− p)

]
E(deg(i)− d)+

}
≤ (np)d

d!q1+denp

{d

q
+

[1
q

+
(
1 +

1
n− 1

) d

np

]
d +

[1
q

+
np

(d + 1)q2

]
np

}
≤ (np)d

d!q1+denp

{[2
q

+
2d

np

]
d +

[np

q
+

(np)2

(d + 1)q2

]}
. (4.15)

We suppose that p =
1
nγ

for any γ ∈ R+ .

1. If γ > 1 then we observe that

E(|W −Wi|) ≤
(np)d

d!q1+denp

{[2
q

+
2d

np

]
d +

[np

q
+

(np)2

(d + 1)q2

]}
≤ (np)d+2

d!q1+denp

{[ 2d

q(np)2
+

2d2

(np)3
]

+
[ 1
qnp

+
1

dq2

]}
≤ (np)d+2

d!q1+denp

{ 6d2

q2(np)3
}

≤ 6d2(np)d−1

d!q3+d

=
6d2

d!q3+d

1
n(γ−1)(d−1)

. (4.16)
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From (4.8), (4.9), (4.12) and (4.16) we have∣∣∣P (W ∈ A)− Poiλ(A)
∣∣∣ ≤ C(λ, A, d)

n(γ−1)(d−1)
and∣∣∣P (W ∈ A)− Poiλ(A)

∣∣∣ ≤ 6d2

d!qd+3

(1− e−λ)
n(γ−1)(d−1)

,

where C(λ, A, d) =
6d2

d!qd+3
C(λ, A).

2. If γ < 1. From (4.15), we observe that

E(|W −Wi|) ≤
(np)d

d!q1+denp

{[2
q

+
2d

np

]
d +

[np

q
+

(np)2

(d + 1)q2

]}
≤ (np)d

d!q1+denp

[2d

q
+

2d2(np)2

q2
+

(np)2

q
+

(np)2

dq2

]
≤ (np)d

d!q1+denp

[2d2(np)2

q2
+

2d2(np)2

q2
+

d2(np)2

q2
+

d2(np)2

q2

]
=

6d2(np)d+2

d!q3+denp

≤ 6d2(2d + 2)!(np)d+2

d!q3+d(np)2d+2

=
6d2(2d + 2)!

d!q3+d

1
nd(1−γ)

. (4.17)

From (4.8), (4.9), (4.12) and (4.17) we have∣∣∣P (W ∈ A)− Poiλ(A)
∣∣∣ ≤ C(λ, A, d)

nd(1−γ)
and∣∣∣P (W ∈ A)− Poiλ(A)

∣∣∣ ≤ 6d2(2d + 2)!
d!q3+d

(1− e−λ)
nd(1−γ)

,

where C(λ, A, d) =
6d2(2d + 2)!

d!q3+d
C(λ, A).

This complete the proof of Corollary 4.3. 2

4.4 Proof of Theorem 4.4

A vertex i is an isolated vertex in G(n, p) if the number of edges incident to it is

0. Then in this case, W is the number of isolated vertices in G(n, p) and W =
n∑

i=1

Xi ,

where

Xi =


1 if vertex i is an isolated vertex in G(n, p),

0 otherwise
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and P (Xi = 1) = (1− p)n−1 .

For i, j ∈ {1, 2, . . . n} , we define

X
(i)
j =


1 if vertex j is an isolated vertex in G(n, p)− {i},

0 otherwise.

Let Wi be the number of isolated vertices in a random graph G(n, p) − {i} obtained

from G(n, p) by removing the vertex i and all the edges incident to it. Then the

distribution L (Wi) of Wi equals the conditional distribution L (W −Xi|Xi = 1), that

is for k ∈ {0, 1, . . . , n− 1} ,

P (W −Xi = k|Xi = 1) =
P (W −Xi = k, Xi = 1)

P (Xi = 1)

=
P (W = k + 1, Xi = 1)

P (Xi = 1)

=

(
n− 1

k

)
q(n−2)kqn−1

qn−1

=
(

n− 1
k

)
q(n−2)k

= P (Wi = k).

We observe that in case of Xi = 1,

Wi = W − 1 (4.18)

and in case of Xi = 0,

Wi=W + (the number of vertices of degree 1 in G(n, p) that adjacent to vertex i),

i.e.

Wi = W +
n∑

j=1
j 6=i

EijX
(i)
j (4.19)

where

Eij =


1 if i and j are adjacent in G(n, p),

0 otherwise.
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From (4.18) and (4.19), we have

(W −Wi)+ ≤ Xi and (Wi −W )+ ≤
n∑

j=1
j 6=i

EijX
(i)
j . (4.20)

We know that

|W −Wi| = (W −Wi)+ + (W −Wi)−,

where (W −Wi)+ = max{W −Wi, 0} and (W −Wi)− = −min{W −Wi, 0} .

Since −min{W −Wi, 0} = max{Wi −W, 0} = (Wi −W )+ , we have

E(|W −Wi|) = E(W −Wi)+ + E(Wi −W )+. (4.21)

From the fact that

n∑
j=1
j 6=i

E(EijX
(i)
j ) = (n− 1)P (Eij = 1, X

(i)
j = 1) = (n− 1)p(1− p)n−2,

(4.21) and (1− p) <
1
ep

we have,

E(|W −Wi|) ≤ E(Xi) +
n∑

j=1
j 6=i

E(EijX
(i)
j )

= (1− p)n−1 + (n− 1)p(1− p)n−2

= [(n− 2)p + 1](1− p)n−2. (4.22)

Therefore, by (4.8), (4.12) and (4.22), we have

∣∣∣P (W ∈ A)− Poiλ(A)
∣∣∣ ≤ C(λ, A)[(n− 2)p + 1](1− p)n−2

where

C(λ, A) = min
{

1, λ,
∆(λ)

MA + 1

}
.

In case of uniform bound by (4.8), (4.9) and (4.22), we have

∣∣∣P (W ∈ A)− Poiλ(A)
∣∣∣ ≤ (1− e−λ)[(n− 2)p + 1](1− p)n−2

This completes the proof of Theorem 4.4. 2
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4.5 Proof of Corollary 4.5

By using the fact that (1− p) ≤ 1
ep

and (4.22) we have

E(|W −Wi|) ≤ [(n− 2)p + 1](1− p)n−2

≤ np + 1
q2enp

≤ 1
q2

[ 2np

(np)2
+

1
np

]
=

3
q2n1−δ

(4.23)

where q = 1− p and p =
1
nγ

, 0 < γ < 1.

Then by (4.8), (4.9), (4.12) and (4.23) we obtains Corollary 4.5.

Remark.

In case of non-isolated vertices, (i.e. w = 0). Teerapabolarn, Neammanee and Chongcharoen

([58],2004) gave the approximation in the form of

∣∣∣P (W = 0)− e−λ
∣∣∣ ≤ (λ + e−λ − 1)

[(n− 2)p + 1
n(1− p)

]
where λ = n(1− p)n−1 , i.e.,

∣∣∣P (W = 0)− e−λ
∣∣∣ ≤ 1

λ
(λ + e−λ − 1)[(n− 2)p + 1](1− p)n−2. (4.24)

We note from Theorem 4.4 that C(λ, {0}) = (1− e−λ). By the fact that eλ ≥ 1 + λ we

can show that

1
λ

(λ + e−λ − 1) ≤ C(λ, {0}).

Thus a bound in (4.24) is better than a bound from (4.4).



CHAPTER V

FUTURE RESEARCH

In this chapter, we describe about some future research in normal approximation of

the number of isolated trees in a random graph.

A tree is, by definition, a connected graph containing no cycles and a tree in G(n, p)

is isolated if there is no edge in G(n, p) with one vertex in the tree and the other outside

of the tree.

Let Λ := Λ(n, k) =
{

ī := {i1, i2, . . . , ik}
∣∣∣1 ≤ i1 < i2 < · · · < ik ≤ n

}
be the set of

all possible combinations of k vertices, k > 1. For each ī ∈ Λ, we define

Yī =



1 ; if there is an isolated tree in G(n, p) that spans the vertices

ī = {i1, i2, . . . , ik},

0 ; otherwise,

Let S be the number of isolated trees of a fixed order k , k > 1, in G(n, p). Then

S =
∑
ī∈Λ

Yī .

In 1986, Stein[55] proved that the distribution of S can be approximated by Poisson

distribution with parameter

λ = E(S) =
(

n

k

)
P (Yī = 1) =

(
n

k

)
kk−2pk−1q(

k
2)−(k−1)q(n−k)k

and the uniform bound is given by

|P (S ∈ A)− Poiλ(A)| ≤ C√
k
(1 + cn)e1−cn(cne1−cn)k−1

for all A ⊆ N ∪ {0} , n ∈ N , and k ≤ n , where Poiλ is a Poisson random variable with

parameter λ and cn = −n log(1− p).
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K.Neammanee ([47], 2005) gave a pointwise approximation of S by Poisson distri-

bution as follows:

Theorem 5.1. ([47], pp.90) Suppose 2k < n and w0 6= 0. Then

1.
∣∣∣P (S = w0)−

e−λλw0

w0!

∣∣∣ ≤ λ min
{ 1

w0
,
1
λ

}
min

{
2,

λk2

n

(
1 + cne

k2

n
(cn−1)

)}
, and

2.
∣∣∣P (S = 0)− e−λ

∣∣∣ ≤ min
{

1, λ
}

min
{

2, λ
}

.

If we use the idea in chapter 3 to give a uniform bound between P (W ≤ z) and

Φ(z), the following is our expected result.

Theorem 5.2. Let k ≥ 2 and p =
1
nγ

for a fixed γ ∈
[
1, 1 +

1
k − 1

)
, then there exists

a constant C such that for 0 < β < 1,

|P (W ≤ z)− Φ(z)| ≤ C

σβ
n

.

To proof Theorem 5.2, we define the random variables which the same idea as in

chapter 3.

For each ī ∈ Λ, let

Λī
1 =

{
j̄ ∈ Λ| j̄ ∩ ī = ∅

}
and Λī

2 =
{

j̄ ∈ Λ| j̄ ∩ ī 6= ∅
}

and for j̄, l̄ ∈ Λī
1 , let

Y
(j̄)

ī
=



1 ; if there is an isolated tree in G(n, p)− j̄ which spaned by a

vertices ī = {i1, i2, . . . , ik},

0 ; otherwise,

and

Y
(j̄,l̄)

ī
=



1 ; if there is an isolated tree in G(n, p)− (j̄ ∪ l̄) which spaned by a

vertices ī = {i1, i2, . . . , ik},

0 ; otherwise,
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where a random graph G(n, p) − j̄ and G(n, p) − (j̄ ∪ l̄) obtained from G(n, p) by

removing the vertex in j̄ and vertex in j̄ ∪ l̄ , respectively. For ī ∈ Λ, let

Xī =
Yī − EYī

σ
,

Zīj̄ =


1
σ

Yj̄ ; j̄ ∈ Λī
2

1
σ

(Yj̄ − Y
(̄i)

j̄
), ; j̄ ∈ Λī

1,

Zī =
∑
j̄∈Λ

Zīj̄ =
1
σ

{ ∑
j̄∈Λī

2

Yj̄ +
∑
j̄∈Λī

1

(Yj̄ − Y
(̄i)

j̄
)
}

,

Wī = W − Zī,

Vīj̄ =



0 ; ī = j̄

1
σ

Y
(̄i)

j̄
; ī 6= j̄ and j̄ ∈ Λī

1

1
σ

{ ∑
l̄∈Λī

1∩Λj̄
2

Y
(̄i)
l +

∑
l̄∈Λī

1∩Λj̄
1

(Y (̄i)
l − Y

(̄i,j̄)
l )

}
; ī 6= j̄ and j̄ ∈ Λī

2,

and Wīj̄ =
∑
l̄∈Λ

l̄∩(̄i∪j̄)=∅

1
σ

{
Y

(̄i∪j̄)

l̄
− E(Y (̄i∪j̄)

l )
}
− E(Vīj̄)− E(Zī) = Wī − Vīj̄

where σ2 = VarS .

Note that E(Xī) = 0, W =
∑
ī∈Λ

Xī and V arW = 1. By Cayley’s Theorem(see,

for example, Graver and Watkins [31], p. 322, 1977) there are kk−2 different trees on

k specified vertices. For a given isolated tree on these k vertices it is necessary and

sufficient that the k − 1 connections of the specified tree be made, but none of the(
k

2

)
− (k− 1) other connections among these k vertices, and that none of the (n− k)k

possible connections of these k vertices to vertices outside this set be made. Then we

have the expectation of Yī for ī ∈ Λ

µ = P (Yī = 1) = kk−2pk−1q(
k
2)−(k−1)q(n−k)k ≤ kk−2pk−1 (5.1)

where q = 1− p and k ≥ 2.

Barbour, Karo ński and Ruci ński ([9], 1989) showed that

σ2 ≥
[
1− 1√

2π(k − 1)

]
E(S) (5.2)
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for large n and k > 1.

To prove the main theorem, we need the following properties of Xī, Zī, Zīj̄ and Vīj̄ .

Proposition 5.3. For every ī, j̄ ∈ Λ and for any r, r1, r2 ∈ N.

1. E(|Zr
ī
|) ≤ r2rkr(2k−1) n

k−1pk−1

σr
.

2. E(|Xr1

ī
Zr2

ī
|) ≤

[
2r1+r2r2(1 + kr2(2k−1))

] µ

σr1+r2
.

3. E(|V r
īj̄
|) ≤

[
2rrkr(2k−1) + kk−2

]nk−1pk−1

σr
.

4. E(|XīZīj̄ |) ≤



kk−2µpk

σ2
; j̄ ∈ Λī

1

µ2

σ2
; j̄ ∈ Λī

2 and ī 6= j̄

µ

σ2
; j̄ ∈ Λī

2 and ī = j̄.

Proposition 5.4. Let k > 1 and p =
1
nγ

where γ ≥ 1. For n ≥ 2, r1, r2, r3 ∈ N and

i, j ∈ {1, 2, . . . , n}, there exists a positive constant C such that

E(|Xr1
i Zr2

i V r3
ij |) ≤

Cµ

σr1+r2+r3
.

Proposition 5.5. Let p =
1
nγ

for γ ≥ 1. Then for r1, r2, r3 ∈ N and for every ī, j̄ ∈ Λ,

ī 6= j̄ ,

E(|Xr1

ī
Zr2

īj̄
V r3

īj̄
|) =


C(k, r1)µr1pk

σr1+r2+r3
; j̄ ∈ Λī

1

0 ; j̄ ∈ Λī
2.

where C(k, r1) = 2r1−1kk−22k2+k−1 .

The idea of the proof of Proposition 5.3 - Proposition 5.5 follows directly from

Proposition 3.4 and Proposition 3.5.

By the same argument of Martin([44], 2003) we can show that (3.25) holds and by

using the same technique of chapter 3 we have

A1(ε) ≤
Cn

k−1
2

σ
,

A2(ε) + A3(ε) ≤
C

σ
,

B1(ε) + B2(ε) + B3(ε) ≤
δ

2
+

C

σβ
.
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From (5.1) and (5.2) we can see that σ ∼ Cn
k
2 p

(k−1)
2 , then the bound of A1(ε) is

Cn
k−1
2

σ
∼ Cn

k−1
2

n
k
2
− γ(k−1)

2

=
C

n
1
2
− γ(k−1)

2

6→ 0 as n →∞

when k ≥ 2 and γ ≥ 1.

Hence, to complete Theorem 5.2 it still to improve the bound on A1(ε) only.

2



REFERENCES

[1] Abello J., Buchsbaum A.L., and Westbrook J.R. (1998). A functional approach
to external graph algorithms, In Algprithms-ESA’98 (Venice). Lecture Notes in
Comput. Sci., 1461:332-343.

[2] Anderson R.M. and May R.M. (1995). Susceptible-infectious-recovered epidemic
models with dynamic partnerships. J. Math. Biology, 33:661-675.

[3] Ball F., Mollison and Scalia-Tomba G. (1997). Epidemics with two levels of mixing.
Ann. Appl. Probab., 7:46-89.

[4] Barabási A., Albert R. and Jeong H. (1999). Scale-free characteristics of random
networks: The topology of the world wide web. Physica A, 272:173-187.

[5] Barbour A.D., Eagleson G.K. (1985). Multiple comparisons and sums of dissociated
random variables. Adv. Appl. Probab., 17:147-162.

[6] Barbour A.D., Eagleson G.K. (1986). Random association of symmetric arrays.
Stochastic Anal. Appl., 4:239-281.

[7] Barbour A.D., Holst L. and Janson S. (1992). Poisson approximation. Oxford Stud-
ies in probability 2, Clarendon Press, Oxford.

[8] Barbour A.D. (1982). Poisson convergence and random graphs. Math. Proc. Cam-
bridge Philos. Soc., 92:349-359.
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APPENDIX A

The solution of Stein’s equation f ′(w)− wf(w) = Iz(w)− Φ(z) is of the form

fz(w) =


√

2πe
w2

2 Φ(w)[1− Φ(z)] if w ≤ z

√
2πe

w2

2 Φ(z)[1− Φ(w)] if w > z.

Moreover the first derivative of fz does not exists at w = z .

Proof. From Stein ([55], pp.22) we have

fz(w) =


√

2πe
w2

2 Φ(w)[1− Φ(z)] if w ≤ z

√
2πe

w2

2 Φ(z)[1− Φ(w)] if w > z.

We use this form and L’Hopital’s rule to consider the left and the right derivatives of

fz as follows.

lim
h→0−

fz(z + h)− fz(z)
h

= lim
h→0−

√
2πe

(z+h)2

2 Φ(z + h)[1− Φ(z)]−
√

2πe
z2

2 Φ(z)[1− Φ(z)]
h

=
√

2π[1− Φ(z)] lim
h→0−

e
(z+h)2

2 Φ(z + h)− e
z2

2 Φ(z)
h

=
√

2π[1− Φ(z)] lim
h→0−

[ 1√
2π

+ Φ(z + h)(z + h)e
(z+h)2

2

]
=
√

2π[1− Φ(z)]
[ 1√

2π
+ zΦ(z)e

z2

2

]
= [1− Φ(z)]

[
1 +

√
2πzΦ(z)e

z2

2

]
and

lim
h→0+

fz(z + h)− fz(z)
h

= lim
h→0+

√
2πe

(z+h)2

2 Φ(z)[1− Φ(z + h)]−
√

2πe
z2

2 Φ(z)[1− Φ(z)]
h

=
√

2πΦ(z) lim
h→0+

e
(z+h)2

2 [1− Φ(z + h)]− e
z2

2 [1− Φ(z)]
h

=
√

2πΦ(z) lim
h→0+

[
e

(z+h)2

2 − 1√
2π

+ [1− Φ(z + h)](z + h)e
(z+h)2

2

]
=
√

2πΦ(z)
[
e

z2

2 − 1√
2π

+ [1− Φ(z)]ze
z2

2

]
.

Thus lim
h→0−

fz(z + h)− fz(z)
h

6= lim
h→0+

fz(z + h)− fz(z)
h

, this implies that f ′z(z) does

not exists.
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