การคณนาได้ไดยแคลคูลัสแลมบ์ดาที่มีแบบรูป

WITH PATTERNS

By Mr. Bodin Skulkiat
Field of Study
Mathematics
Thesis Advisor Assistant Professor Pimpen Vejjajiva, Ph.D.
Thesis Co-Advisor Associate Professor Mark Hall, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

Dean of the Faculty of Science

Chawewon Ratanaprasert External Examiner
(Professor Chaweewan Ratanaprasert, Ph.D.)

บดินทร์ สกุลเกียรติ : การคณนาได้ไดยแคลคูลัสแลมบ์ดาที่มีแบบรูป. (COMPUTABILITY VIA THE LAMBDA-CALCULUS WITH PATTERNS) อ.ที่ปรึกษาวิทยานิพนธ์หลัก : ผศ. ดร. พิมพ์เพ็ญ เวชชาชีวะ อ.ที่ปรึกษาวิทยานิพนธ์ร่วม : ASSOC. PROF. MARK HALL, Ph.D., 72 หน้า.

เรานำเสนอแนวคิดดเรื่อง การคณนนได้สัมพัทธ์กับโครงสร้ง ซึ่งระบุว่าพังก์ชันใดบนโดเมน ของโครงสร้างอันดับที่หนึ่งสามารคคคนม่ได้โดยใช้แคลคูลัสแลมบ่ดาที่มีแบบรูป ในการนี้เรานิยาม การสมภาคในโครงสร้าง $=_{2}$ เพื่อข่งชี่าสองพจน์ใดแทนสมาชิกเดียวกันในโดเมน เราแสดงให้เห็น ว่าถึงแม้เราเพิ่มการสมภาคแบบ่ในม่แต่สมบัต้้ื้้รฐานต่าง ๆของแคลคูลัสแลมบ์ดาที่มีแบบรูปดั้งเดิม ยังคงอยู่ทุกประการ รวมทั้งสอดคล้องอับทถษฎีบทเชอร์ช-รอสเซอร์ด้วย

เพื่อแสดงว่าการใช้คำวา "การารคณเทได้" นั้นสมเหตุผล เราพิสูจน์ว่า ถ้าฟังก์ชันบน \mathbb{N} เป็น ฟังก์ชันเวียนเกิดเสลว ฟังก์ชันนั้มก็จรุณณนทาไดิสมพัทธ์กับ \mathfrak{r} ซึ่งเป็นโครงสร้างมาตรรานของ \mathbb{N} สำหรับบทกลับของทถบฎีบทนี้ เราสร้วงรทหัสเบบบเคอเดิลสำหรับพจน์ต์าง ๆในแคลคูลัสแลมบ์ดาที่ มีแบบรูปพร้อมทั้งศึกษาขันตอหวิวีษมตารลดรูปมจน์ดังเกล่าโดยใช้ฟังก์ชันเวียนเกิด

จุหาลงกรณ์มหาวิทยาลัย

ภาควิชา คณิตศาสตร์
สาขาวิชา คณิตศาสตร์
ปีการศึกษา 2552
 ลายมือชื่ออ.ที่ปรึกษาวิทยานิพนธ์หลัก Tivken....sirisü~ ลายมือชื่ออ.ที่ปรึกษาวิทยานิพนธ์ร่วม ? Morke. ¢: itell .
\# \# 5072332623: MAJOR MATHEMATICS
KEYWORDS: COMPUTABILITY / LAMBDA CALCULUS / LAMBDA CALCULUS WITH PATTERNS / CONGRUENCE RELATIVE TO A STRUCTURE

BODIN SKULKIAT: COMPUTABILITY VIA THE LAMBDACALCULUS WITH PATTERNS. THESIS ADVISOR: ASST. PROF. PIMPEN VEJJAJIVA, Ph.D., THESIS CO-ADVISOR: ASSOC. PROF. MARK HALL, Ph.D., 72 pp.

We introduce a concept of computability relative to a structure, which specifies which functions on the domain of a first-order structure are computable, using the lambda calculus with patterns. In doing so, we add a new congruence, $\equiv_{\mathfrak{A}}$, called a congruence in astrueture to identify two syntactically different terms which represent the same element of the domain. We then show that, with the introduction of the new congrinence, all the basic properties of the original lambda calculus with patterns'still hold, including the Church-Rosser theorem.

To justify the word "commpable", we first prove that if a total function on \mathbb{N} is recursive then it is comptiable relative to \mathfrak{N}, the standard structure for \mathbb{N}. For the converse, we construct a Godel coding for terms in the lambda calculus with patterns rand investigate how to perform various steps in the reduction of an encoded term using recursive functions.
v

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

Department: Mathematics
Field of Study: Mathematics
Academic Year: 2009

Advisor's Signature Pinpen Viärac
Co-Advisor's Signature Ma4k E. Itell.

ACKNOWLEDGEMENTS

I would like to express my deep and sincere gratitude to my advisor, Assistant Professor Dr. Pimpen Vejjajiva, for her guidance and continued support, despite the difficult time.

I am greatly indebted to my co-advisor, Associate Professor Dr. Mark Edwin Hall, for the original idea and numerous advices in preparation of this thesis.

I also owe my gratitude to my dear friend, Assistant Professor Dr. Chariya Uiyyasathian, who introduced me to the beauty of mathematics in the first place.

I would like to thank all those who supported me in any respect during the three years period of this thesis.

Lastly, I am heartily thankful for my wife, whose encouragement and un-

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

CONTENTS

page
ABSTRACT IN THAI iv
ABSTRACT IN ENGLISH v
ACKNOWLEDGMENTS vi
CONTENTS vii
CHAPTER
I INTRODUCTION\% 1
II λ P-TERMS AND PRELIMINARY LEMMAS 5
$2.1 \lambda \mathrm{P}$-terms 5
2.2 Preliminary Leñas from Previous Work 8
III COMPUTABILITY RELATIVE TO A STRUCTURE 10
3.1 Congruenee in a Structure 10
3.2 Contractions and Reductions 22
3.3 Computability Relative to a Structure 30
IV THE CHURCH-ROSSER THEOREM 32
ค) 9.19 Minimal Complete Developments $\mid \cap ?$ 324.2 The Church-Rosser Theorem for $\boldsymbol{\beta} \boldsymbol{\delta}$-Reduction
Iค 9% ค RECURSIVENESS AND COMPUTABILITY RELATIVE TO
A STRUCTURE 48
5.1 Recursive Functions 48
5.2 Recursiveness Implies Computability Relative to \mathfrak{N} 49
page
5.2.1 Initial Functions 49
5.2.2 Composition 50
5.2.3 Primitive Recursion 51
5.2.4 The Restricted Minimization 53
5.2.5 Recursive Functions 55
VI ARITHMETIZAPION 57
6.1 Gödel Coding 57
6.1.1 Symbols 57
6.1.2 Expressions 58
6.1.3 Terms 59
6.1.4 Reductions 1.2 60
6.2 Primitive Recursive Relations and Functions 60
6.2.1 Relations and Functions from Previous Work 60
6.2.2 Auxiliary Retations and Functions 62
6.3 Computability Relative to \mathfrak{N} Implies Recursiveness 68
VIF CONCLUSION 69
REFERENCES 71
VITA b. 72
ศูนยวิทยทรัพยากรจุหาลงกรณ์มหาวิทยาลัย

CHAPTER I

INTRODUCTION

When discussing the computability of a function on \mathbb{N}, the standard definition to use is that of recursiveness, which we will quickly review. We begin with these three initial functions:
i. The zero function: $g(a)=0$ for all $a \in \mathbb{N}$,
ii. The successor function: $g(a) \equiv a+1$ for all $a \in \mathbb{N}$,
iii. The projection function: $-g_{i}^{n}\left(a_{1}, \ldots, a_{n}\right)=a_{i}$ for all $1 \leq i \leq n$ and $a_{1}, \ldots, a_{n} \in \mathbb{N}$,
and the following rules for optaining new functions from given functions:
iv. composition: given functions $h\left(y_{1}, \ldots, y_{m}\right), k_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, k_{m}\left(x_{1}, \ldots, x_{n}\right)$, obtain the function g satisfying

v. primitive recursion: given functions $h\left(x_{1}, \ldots, x_{n}\right)$ and $k\left(x_{1}, \ldots, x_{n+2}\right)$, ob-

vi. restricted minimization: given a function $h\left(x_{1}, \ldots, x_{n}, y\right)$ such that for any x_{1}, \ldots, x_{n} there exists a y such that $h\left(x_{1}, \ldots, x_{n}, y\right)=0$, obtain the function g satisfying

$$
g\left(x_{1}, \ldots, x_{n}\right)=\mu y\left(h\left(x_{1}, \ldots, x_{n}, y\right)=0\right),
$$

where $\mu y\left(h\left(x_{1}, \ldots, x_{n}, y\right)=0\right)$ denote the least y such that $h\left(x_{1}, \ldots, x_{n}, y\right)=$ 0.

A function is said to be recursive if and only if it can be obtained from the initial functions by any finite number of applications of composition, primitive recursion, and minimization.

If we wish to extend this definition of recursiveness, a very general target to consider is to extend it to a first-order structure. Notice that there is no obvious way to do so, since both primitive recursion and restricted minimization depend on certain properties of the natural numbers. Alternatively a computable function is one for which we can write a "program" to compute. A good, mathematically rigorous "programming language" is the lambda calculus. Since the lambda calculus only deals with symbols, without any assumptions about their meanings, it is a good tool to help us extend the concept of computability to functions on an arbitrary first-order structure. To gain greater expressive power, we will use a lambda calculus with patterns, created by Pimpen Vejjajiva_[5][6], which we will briefly describe

Assume there are given an infinite sequence of distinct symbols, called variables, and a set of symbols which are distinct from the variables, called constants. The set of patterns is defined inductively as follows, \approx
P1. Each lvariable and constant is a pattern.
Q2. Tf P_{1} is? pattern which sid not variahle, P_{2} is any pattern, and ho variable

Then, the set of terms is defined inductively as follows.

T1. Each variable and constant is a term, called an atom.

T2. If M and N are any terms, $(M N)$ is a term, called an application.

T3. If P is any pattern and Q is any term, $(\lambda P . Q)$ is a term, called a simple

abstraction.

T4. If P is any pattern, Q is any term, and A is any abstraction, $((\lambda P . Q) \mid A)$ is a term, called a compound abstraction.

An abstraction $(\lambda x, M)$ represents a function $f: x \mapsto M$. For example, ($\lambda x . x$) represents an identity function. An application ($M N$) represents applying a function represented by M to an argument represented by N. For example, if we let $\mathbf{0}$ be a constant representing the natural number $0,((\lambda x . x) \mathbf{0})$ represents applying an identity function to 0,7 which would result in 0 . Avoiding complex technical details for the moment, we will use the symbol \triangleright to represent the idea of "computing". In this notation the preceding example can be written as $((\lambda x . x) \mathbf{0}) \triangleright$ 0. Here is a more involved example. If we let \mathbf{S} be a constant representing the successor function and \bar{a} be a constant representing any natural number a, then $((\lambda \mathbf{0 . 0}) \nmid(\lambda \mathbf{S} x . x))$ represents a predecessor function which maps $0 \mapsto 0$, i.e. $(((\lambda \mathbf{0 . 0}) \mid(\lambda \mathbf{S} x . \bar{x})) \mathbf{0}) \triangleright \mathbf{0}$, and maps $(a+1) \mapsto a$, i.e. $(((\lambda \boldsymbol{0} . \mathbf{0}) \mid(\lambda \mathbf{S} x . x)) \mathbf{S} \bar{a}) \triangleright \bar{a}$.

The general idea of how to extend the concept of computable functions to a first-order structure \mathfrak{A} for a language \mathcal{L} is as follows. For each element $a \in|\mathfrak{A}|$, let \bar{a} be a distinct symbol that does not occur in \mathcal{L}. Define patterns and terms as in the lambda calculus with patterns, using as constants all of the symbols Qin $9 \mathcal{L}$ together with all of the symbols \bar{a} ? Then an n-ary functiong on \mathfrak{A} is
computable relative to \mathfrak{A} if and only if there is a term G such that for all $a_{1}, \ldots, a_{n}, a \in|\mathfrak{A}|$ we have $G \bar{a}_{1} \ldots \bar{a}_{n} \triangleright \bar{a}$, whenever $g\left(a_{1}, \ldots, a_{n}\right)=a$. Informally speaking, a function on $|\mathfrak{A}|$ is computable relative to \mathfrak{A} if and only if it can be represented by a term which captures all its functionalities. The interpretations
of the elements of \mathcal{L} in the structure \mathfrak{A} are captured by adding a new congruence, $\equiv_{\mathfrak{A}}$, called congruence in a structure, to identify two syntactically different terms that represent the same element of the domain $|\mathfrak{A}|$. For example, $\mathbf{S} \overline{0} \equiv_{\mathfrak{A}} \overline{1}$, since they both represent 1 in \mathbb{N}.

The remainder of this thesis is organized as follows. In Chapter II, we begin with definition of λ P-term and preliminary lemmas from previous work. Chapter III concerns definitions of the nevf congruence and the computability relative to a structure, and proofs of all basic properties. Chapter IV shows that our extension satisfies all the basic properties of the original lambda calculus with patterns, including the Church-Rosser theorem. To help justify the word "computable", we will lay the groundwork for a proof that a function on the natural numbers \mathbb{N} is recursive if and only if it is computable relative to \mathfrak{N}, the standard structure for \mathbb{N}. We will show that every recursive total function on \mathbb{N} is computable relative to \mathfrak{N} in Chapter V. In preparation for proving the converse, in Chapter VI, we will construct a Gödel coding for terms in the lambda calculus with patterns and investigate howto perform various steps in the reduction of an encoded term using recursive functions.
-

ศูนย์วิทยทรัพยากร
 จุหาลงกรณ์มหาวิทยาลัย

CHAPTER II

λ P-TERMS AND PRELIMINARY LEMMAS

All definitions in this chapter are based on the lambda calculus with patterns [5][6] with some adjustments. Let \mathcal{L} be a first-order language and \mathfrak{A} a structure for \mathcal{L}. We use $|\mathfrak{A}|$ to denote the domain of \mathfrak{A}.

$2.1 \quad \lambda$ P-terms

Definition 2.1.1. For each element, \bar{a} in $|\mathfrak{A}|$, let \bar{a} be a distinct symbol that is not in \mathcal{L}. We call all the nonlogicall symbols in \mathcal{L} together with all of the symbols \bar{a} and two additional distinct symbols T and F constants. Assume also that an infinite sequence of distinct symbols v_{1}, v_{2}, \ldots, called variables is given. Patterns and $\boldsymbol{\lambda P}$-terms are expressions constructed using these symbols, as follows.

The set of patterns is the smallest set of expressions satisfying the following.

P1. All variables are patterns.
P2. The two constant symbols \mathcal{T} and F, and all constant symbols in \mathcal{L} are pat-

P4. If P is a pattern that is not a variable, Q is any pattern, and no variable occurs in both P and Q, then $(P Q)$ is a pattern.

The set of $\boldsymbol{\lambda P}$-terms is divided into sets of atoms, applications, and abstractions, and is defined to be the smallest set of expressions satisfying the following.

T1. All variables and constants are λ P-terms (these are the atoms).

T2. If P and Q are any $\lambda \mathrm{P}$-terms, then $(P Q)$ is a $\lambda \mathrm{P}$-term (these are the applications).

T3. If P is any pattern and Q is any $\lambda \mathrm{P}$-term, then $(\lambda P . Q)$ is a $\lambda \mathrm{P}$-term (called a simple abstraction)

T4. If P is any pattern, Q is any $\lambda \mathrm{P}$-term, and A is any abstraction, then $((\lambda P . Q) \mid A)$ is a λ P-term (called a compound abstraction).

An abstraction is either a simple abstraction or a compound abstraction.

Notation.

i. Parentheses will be omitted by using the convention of association to the left.
ii. $\lambda P . M N$ will abbreviate $(\lambda P(M N)) \cdot 2$
iii. We may simply write "terms" for " $\lambda \mathrm{P}$-terms"
iv. Syntactic identity of expressions will be denoted by $=$. That is, $M \equiv N$ if and only if \bar{M} is exactly the same string of symbols as N.

Definition 2.1.2. Anfoccurrence of a variable x in a term M is bound if it in a subterm of M of the form $\lambda P: Q$ and it occurs in P; otherwise it is free. If x has at least one free occurence in M, it is called a free variable of M; the set of

Definition 2.1.3. Let M and $\underline{N}=N_{1}, \ldots, N_{k}, k \geq 1$, be terms and $\underline{x}=x_{1}, \ldots, x_{k}$ be distinct variables. The result of substituting N_{i} for all free occurrences of $x_{i}, i=1,2, \ldots, k$, in M, denoted by $\left[N_{1} / x_{1}, \ldots, N_{k} / x_{k}\right] M$ or $[\underline{N} / \underline{x}] M$, is defined as follows.
a. $[\underline{N} / \underline{x}] x_{i} \equiv N_{i}$ for all $1 \leq i \leq k$;
b. $[\underline{N} / \underline{x}] a \equiv a$ for all atoms a such that $a \notin\left\{x_{1}, \ldots, x_{k}\right\}$;
c. $[\underline{N} / \underline{x}](P Q) \equiv([\underline{N} / \underline{x}] P[\underline{N} / \underline{x}] Q)$;
d. $[\underline{N} / \underline{x}](\lambda P . Q)$

$$
Q) \equiv\left\{\begin{array}{l}
\lambda P . Q \quad \text { if }\left\{x_{1}, \ldots, x_{k}\right\} \cap F V(\lambda P \cdot Q)=\varnothing ; \\
\left.\left[N_{i_{1}} / x_{i_{1}}\right), N_{i_{m}} / x_{i_{m}}\right](\lambda P \cdot Q) \\
\text { if }\left\{x_{1}, \ldots, x_{k}\right\} \cap F V(\lambda P \cdot Q)=\left\{x_{i_{1}}, \ldots, x_{i_{m}}\right\} ;
\end{array}\right.
$$

e. $[\underline{N} / \underline{x}](\lambda P . Q) \equiv \lambda P[\underline{N} / \underline{x}] Q$
if $\left\{x_{1}, \ldots, x_{k}\right\} \subseteq F V(\lambda P . Q)$ and $F V(P) \cap F V\left(N_{1} \ldots N_{k}\right)=\varnothing$;
f. $[\underline{N} / \underline{x}](\lambda P . Q) \equiv[\underline{N} / \underline{x}]\left(\lambda[z / y] P_{j}[z / y] Q\right)$
if $\left\{x_{1}, \ldots, x_{k}\right\} \subseteq F V(\lambda P . Q)$ and $F V(P) \cap F V\left(N_{1} \ldots N_{k}\right) \neq \varnothing$, where y is the first variable in $F V(P) \cap F \mathcal{F}\left(\wedge_{1} \ldots N_{k}\right)$ and z is chosen to be the first variable which is not in $F V(P Q N$
g. $[\underline{N} / \underline{x}](\lambda P \cdot Q \mid A) \equiv([\underline{N} / \underline{x}](\lambda P \cdot Q) \mid[\underline{N} / \underline{x}] A)$.

Definition 2.1.4. Let A be an occurrence of a simple abstraction $\lambda P . Q$ in a term M. Let $x \in F V(P)$ and $y \notin F V(P Q)$. The act of replacing A by $\lambda[y / x] P .[y / x] Q$ is called a change of bound variable or añ $\boldsymbol{\alpha}$-step in M.

We say M 1a-converts to term N_{0} denoted by $M==_{1 \alpha} N$, if N is obtained from M by a single-step change of bound variable.
Q 99 We say M is congruent to N, bre M-converts to N, denoted by $M \equiv{ }_{\alpha}$
N, if N is obtained from M by a finite (possibly empty) sequence of changes of bound variables.

2.2 Preliminary Lemmas from Previous Work

The following lemmas and notes are from [5], of which the corresponding result number will be included in brackets for the ease of reading.

Lemma 2.2.1. [Corollary 2.1.12] Let $x=x_{1}, \ldots, x_{k}, k \geq 1$, be distinct variables, $M, \underline{N}=N_{1}, \ldots, N_{k}$ be terms, and $\lambda \overline{P . Q}$ be a simple abstraction.
a. If $\left\{x_{1}, \ldots, x_{k}\right\} \cap F V(M)=\left\{x_{1}, \ldots, x_{i_{m}}\right\}$, then $\left[N_{1} / x_{1}, \ldots, N_{k} / x_{k}\right] M \equiv$ $\left[N_{i_{1}} / x_{i_{1}}, \ldots, N_{i_{m}} / x_{i_{m}}\right] M$
b. If $F V(P) \cap F V\left(x_{1} \ldots x_{k} N_{1} \ldots N_{k}\right)=\varnothing$, then $[\underline{N} / \underline{x}](\lambda P \cdot Q) \equiv \lambda P .[\underline{N} / \underline{x}] Q$.

Lemma 2.2.2. [Lemma 2.2.4] Let M and N be terms such that $M \equiv{ }_{\alpha} N$.
a. If $M \equiv M_{1} M_{2}$, then $N \equiv N_{1} N_{2}$ for some terms N_{1} and N_{2}, where $M_{i} \equiv{ }_{\alpha} N_{i}$, $i=1,2 ;$

b. if $M \equiv \lambda P . Q$, and no variable in P has been changed, then $N \equiv \lambda P \cdot Q^{\prime}$ for some term Q^{\prime} such that $Q \equiv{ }_{\alpha} Q^{\prime}$;
c. if $M \equiv(\lambda P . Q \mid A)$ then $N \equiv\left(\lambda P^{\prime} . Q^{\prime} \mid A^{\prime}\right)$ for some abstractions $\lambda P^{\prime} . Q^{\prime}$ and A^{\prime} where $\lambda P . Q \equiv{ }_{\alpha} \lambda P^{\prime} . Q^{\prime}$ and $A \equiv{ }_{\alpha} A^{\prime}$.

a. For any terms M and N, if $M_{\delta} \equiv_{\alpha} N$, then $F V(M)=F V(N)$.

Q 9 . For any term M, any variables $x_{1}, 98, x_{n}, n \geq 1$, there exists a term M such that $M \equiv{ }_{\alpha} M^{\prime}$ and none of x_{1}, \ldots, x_{n} is bound in M^{\prime}.

Lemma 2.2.4. [Lemma 2.2.6] Let x and v be distinct variables, and V and M be terms. If $v \notin F V(M)$, then $[V / v][v / x] M \equiv_{\alpha}[V / x] M$.

Lemma 2.2.5. [Lemma 2.2.7] Let $\underline{x}=x_{1}, \ldots, x_{k}, k \geq 1$ be distinct variables, and $\underline{N}=N_{1}, \ldots, N_{k}, \underline{N}^{\prime}=N_{1}^{\prime}, \ldots, N_{k}^{\prime}$ be terms such that $N_{i} \equiv_{\alpha} N_{i}^{\prime}$ for all $1 \leq i \leq k$. For any terms M and M^{\prime}, if $M \equiv_{\alpha} M^{\prime}$, then $[\underline{N} / \underline{x}] M \equiv_{\alpha}\left[\underline{N^{\prime}} / \underline{x}\right] M^{\prime}$.

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

CHAPTER III

COMPUTABILITY RELATIVE TO A STRUCTURE

In this chapter, we will define congruence in a structure and computability relative to a structure, and prove all the basic properties.

3.1 Congruence in a Structure

Definition 3.1.1. Single-Step Congruence in \mathfrak{A}, denoted by $\equiv_{1 \mathfrak{A}}$, is defined as follows.

C1. For any constant symbol c in \mathcal{L} and any a in $|\mathfrak{A}|$,

C 2 . For any n-ary function symbol f in \mathcal{L} and any a, a_{1}, \ldots, a_{n} in $|\mathfrak{A}|$,

C3. For any n-ary relation symbol r in \mathcal{L} and any a_{1}, \ldots, a_{n} in $|\mathfrak{A}|$,

$$
M \equiv_{1 \mathfrak{A}} N \text { if } N \equiv_{1 \mathfrak{A}} M \text { by C1, C2, or C3. }
$$

C5. Let P be any pattern; A be any abstraction; and M, N, and Q be any terms such that $M \equiv_{1 \mathfrak{A}} N$. Then
i. $M Q \equiv_{1 \mathfrak{A}} N Q$.
ii. $Q M \equiv_{1 \mathfrak{A}} Q N$.
iii. $\lambda P . M \equiv_{1 \mathfrak{A}} \lambda P . N$.
iv. $(\lambda P . M \mid A) \equiv_{1 \mathfrak{A}}(\lambda P . N \mid A)$.
v. $(\lambda P . Q \mid M) \equiv_{12}(\lambda P . Q \mid N)$ if M and N are abstractions.

For any terms M and N, we write $M \equiv_{121}^{0} N$ if $M \equiv{ }_{12} N$ by C1, C2, C3, or C4.
If L is an occurence of a term M in a term Q and $M \equiv_{1 \mathfrak{A}}^{0} N$, the act of replacing L by N is called a 12 -conversion in Q.

Note 3.1.2.
a. If $M \equiv_{1 \mathfrak{A}} N$ where M and N are terms which are not atomic, then $M \not \equiv_{1 \mathfrak{A}}^{0} N$.
b. If $M \equiv_{1 \mathfrak{A}} N$ and $F V(M) \cup F V(\mathcal{N}) \neq \varnothing$, then $M \not \equiv_{1 \mathfrak{A}}^{0} N$.
c. If $M \equiv_{1 \mathfrak{A}} N$ but $M \equiv_{1 \mathfrak{A}}^{0} N$, then M and N are of the same form.
d. For any variable x and any term $M, x \not \equiv_{12} M$.

Definition 3.1.3. For any terms M and N, we say M is congruent in \mathfrak{A} to N, denoted by $M \equiv_{\mathfrak{A}} N$, if there exists a sequence of terms $M \equiv M_{1}, \ldots, M_{n} \equiv$ $N, n \geq 1$, such that for each $1 \leq i<n, M_{\mathfrak{Q} \equiv 1 \mathfrak{A}} M_{i+1}$.

If P is an occurence of aterm M in a term Q and $M \equiv N$, the act of replacing L with N is called an \mathfrak{A}-conversion in Q.

a. If $M \equiv_{\mathfrak{A}} N$ and M contains an abstraction then M and N are of the same form.
b. If $M_{1} M_{2} \equiv_{\mathfrak{A}} N_{1} N_{2}$ with no $\equiv_{1 \mathfrak{A}}^{0}$ in the sequence of congruences, then $M_{1} \equiv_{\mathfrak{A}} N_{1}$ and $M_{2} \equiv_{\mathfrak{A}} N_{2}$.

Lemma 3.1.5. For any terms M and N, if $M \equiv_{1 \mathfrak{A}} N$, then $N \equiv_{1 \mathfrak{A}} M$.
Proof. Let M and N be terms. We induct on M. From Definition 3.1.1, we can see that $M \equiv_{1 \mathfrak{A}} N$ by C1, C2, or C3 if and only if $N \equiv_{1 \mathfrak{A}} M$ by C4. Thus it remains to show only the induction step. Suppose $M \equiv_{1 \mathfrak{A}} N$ by C5. We will give a proof only for the following case, sinee the remaining are similar. Assume $M \equiv M_{1} Q$ and $N \equiv N_{1} Q$ for some terms M_{1}, N_{1}, and Q such that $M_{1} \equiv_{1 \mathfrak{A}} N_{1}$. By the induction hypothesis we have $N_{1} \equiv_{1 \mathfrak{A}} M_{1}$. So $N \equiv N_{1} Q \equiv_{1 \mathfrak{A}} M_{1} Q \equiv M$.

Corollary 3.1.6. For any terms M and N, if $M=_{\mathfrak{A}} N$ then $N \equiv_{\mathfrak{A}} M$.

Proof. This follows directly from Lemma 3.1.5.
Corollary 3.1.7. The relation \equiv_{2} is an equivalence relation.

Proof. It is clear that $\equiv_{\mathfrak{A}}$ is reflexive and transitive. By Corollary 3.1.6 we have that $\equiv_{\mathfrak{A}}$ is symmetric. Hence $\boldsymbol{E}_{\mathfrak{R}}$ is an equivalence relation.

Remark. Note that \equiv_{12} is symmeric, but neither reflexive nor transitive.

Proposition 3.1.8. If $M \equiv_{12} N, F V(M)=F V(N)$.
Proof. This can be easily proved by induction.
Lemma 3.1.9. Let f be a k-ary function symbol and M_{1}, \ldots, M_{k}, N be terms. If $f M_{1} \ldots M_{k}==_{1 月} N$ but $f M_{1} \cdots M_{k} \#_{12}^{0} N_{0}$ then $N \neq f N_{1} ? \ldots N_{k}$ for some terms N_{i} such that either $M_{i} \equiv N_{i}$ or $M_{i} \equiv_{1 \mathfrak{A}} N_{i}, 1 \leq i \leq k$.
Oproof. Assume $f M_{1} \ldots M_{k} \equiv 1$ and $f M_{1} \ldots M_{k} \not \equiv_{12}^{0} N$ Induct on k. If $k=1$
then $f M_{1} \equiv_{12} N \equiv f N_{1}$ for some term N_{1} such that $M_{1} \equiv_{1 \mathfrak{A}} N_{1}$. Suppose $k>1$.
Then $\left(f M_{1} \ldots M_{k-1}\right) M_{k} \equiv_{1 \mathfrak{A}} N \equiv N^{\prime} N_{k}$ for some terms N^{\prime} and N_{k}.

Case 1. $N^{\prime} \equiv\left(f M_{1} \ldots M_{k-1}\right)$.
Then $M_{k} \equiv_{1 \mathfrak{A}} N_{k}$, so $N \equiv\left(f M_{1} \ldots M_{k-1}\right) N_{k}$.

Case 2. $N_{k} \equiv M_{k}$. Then $f M_{1} \ldots M_{k-1} \equiv_{1 \mathfrak{A}} N^{\prime}$.
By induction, $N^{\prime} \equiv f N_{1} \ldots N_{k-1}$ for some terms N_{i} such that either $M_{i} \equiv N_{i}$ or $M_{i} \equiv_{1 \mathfrak{A}} N_{i}, 1 \leq i \leq k-1$, so $N \equiv f N_{1} \ldots N_{k}$.

Lemma 3.1.10. Let f be a k-ary function symbol and M_{1}, \ldots, M_{k}, N be terms. If $f M_{1} \ldots M_{k} \equiv_{\mathfrak{A}} N$ with no $\equiv_{1 \mathfrak{A}}^{0}$ in the sequence of congruences, then $N \equiv$ $f N_{1} \ldots N_{k}$ for some terms N_{i} such that $M_{i} \equiv_{\mathfrak{A}} N_{i}, 1 \leq i \leq k$.

Proof. This follows directly from Lemma 3.1.9.

Lemma 3.1.11. For any a, b in \mid if $\bar{a} \equiv_{\mathfrak{A}} \bar{b}$ by a sequence of terms $\bar{a} \equiv$ $M_{1}, \ldots, M_{k} \equiv \bar{b}, k \geq 1$, then k is odd.

Proof. We will prove this by contradiction. Let k be the least even number such that $\bar{a} \equiv M_{1}, \ldots, M_{k} \equiv \bar{b}$ for some a, b in $|\mathfrak{A}|$. Consider $M_{k-1} \equiv_{1 \mathfrak{A}} M_{k} \equiv \bar{b}$.

Case 1. $M_{k-1} \equiv c$ for some constant symbol c in \mathcal{L}.
Since $M_{k-1} \equiv c \not \equiv \bar{a}=M_{1}, k-1 \neq 1$. In fact $k>2$. Now consider $M_{k-2}=M_{k-1} \equiv c$. We must have $M_{k-2} \equiv \bar{a}_{1}$ for some a_{1} in $|\mathfrak{A}|$. Thus $\bar{a} \equiv M_{1}, \ldots, M_{k-2} \equiv \bar{a}_{1}$. This contradicts the fact that k is the least such even number.
 Since \bar{a} is not of the same form as $f \bar{b}_{1} \ldots \bar{b}_{n \text { m }}$ by Note 3.1.2, $M_{j} \#_{12 \mathfrak{A}}^{0} M_{j+1}$ Q 9% for some $1 \forall j<k \rightarrow 16$ Let m be the largest such j. Since $M_{m}={ }_{12}^{9} M_{m+1}$ and $M_{m+1} \equiv_{\mathfrak{A}} M_{k-1} \equiv f \bar{b}_{1} \ldots \bar{b}_{n}$ with no $\equiv_{1 \mathfrak{A}}^{0}$ in the sequence of congruence, by Lemma 3.1.10, $M_{m+1} \equiv f \bar{a}_{1} \ldots \bar{a}_{n}$ and $M_{m} \equiv \bar{a}_{0}$ for some $a_{0}, a_{1}, \ldots, a_{n}$ in $|\mathfrak{A}|$ such that $\bar{b}_{i} \equiv_{\mathfrak{A}} \bar{a}_{i}, 1 \leq i \leq n$. Since $\bar{a} \equiv M_{1}, \ldots, M_{m} \equiv \bar{a}_{0}$ and $m<k, m$ must be odd. Let $K_{j} \equiv M_{j+m-1}$ for $1 \leq j \leq k-m+1$. Then
$\bar{a}_{0} \equiv M_{m} \equiv K_{1}, \ldots, K_{k-m+1} \equiv M_{k} \equiv \bar{b} . \quad$ Since $k-m+1$ is even, this contradicts the fact that k is the least such even number.

Lemma 3.1.12. For any a, b in $|\mathfrak{A}|$, if $\bar{a} \equiv_{\mathfrak{A}} \bar{b}$ then $a=b$.

Proof. Let a, b in $|\mathfrak{A}|$ be such that $\bar{a} \equiv_{\mathfrak{A}} \bar{b}$ by a sequence of terms $\bar{a} \equiv M_{1}, \ldots, M_{k} \equiv$ $\bar{b}, k \geq 1$. Induct on k. If $k=1$ then $\bar{a} \equiv M_{1} \equiv \bar{b}$ and we are done. Suppose $k>1$. In fact, by Lemma 3.1.11, $k \geq 3$. Consider $M_{k-1} \equiv_{12} M_{k} \equiv \bar{b}$.

Case 1. $M_{k-1} \equiv c$ for some constant symbol c in \mathcal{L}.
Since $M_{k-2} \equiv 12 M_{k-1} \neq c, M_{k-2} \equiv \bar{a}_{0}$ for some a_{0} in $|\mathfrak{A}|$. Thus $\bar{a} \equiv$ $M_{1}, \ldots, M_{k-2} \equiv \bar{a}_{0} \neq{ }_{12} c \equiv \overline{12} \bar{b}$. By induction we have $a=a_{0}=b$.

Case 2. $M_{k-1} \equiv f \bar{b}_{1} \ldots \bar{b}_{n}$ for some n-ary function symbol f and some b_{1}, \ldots, b_{n} in $|\mathfrak{A}|$. Since \bar{a} is not of the same form as $f \bar{b}_{1} \ldots \bar{b}_{n}$, by Note 3.1.2, $M_{j} \equiv_{1 \mathfrak{A}}^{0} M_{j+1}$ for some $1 \leq j<k$-1. Let m be the largest such j. Since $M_{m} \equiv_{1 \mathfrak{A}}^{0} M_{m+1}$ and $M_{m+1} \equiv_{\mathfrak{A}} M_{k-1} \equiv f \bar{b}_{1, \sigma}, \bar{b}_{n}$ with no $\equiv_{1 \mathfrak{A}}^{0}$ in the sequence of congruence, by Lemma 3.1.10, $M_{m+1} \equiv f \bar{a}_{1} \ldots \bar{a}_{n}$ and $M_{m} \equiv \bar{a}_{0}$ for some $a_{0}, a_{1}, \ldots, a_{n}$ in $|\mathfrak{A}|$ such that $\bar{b}_{i} \equiv_{\mathfrak{A}} \bar{a}_{i}, 1 \leq i \leq n$.
(2.1) $m=1$. Then $\bar{a} \equiv_{12}^{0} f \bar{a}_{1} \ldots \bar{a}_{n} \equiv M_{2}, \ldots M_{k-1} \equiv f \bar{b}_{1} \ldots \bar{b}_{n} \equiv_{1 \mathfrak{A}}^{0} \bar{b}$ with no other $\rho \equiv=_{i n}^{0}$ in the seguence ofcongruence. Since $\left.\bar{a}_{i}\right){ }_{\equiv_{\mathfrak{A}}} \bar{b}_{i}$, by induction we have〇 $a_{i}=b_{i}$ for all $1 \leq i \leq n$, so $a=f^{\mathfrak{N}}\left(a_{1}, \ldots, a_{n}\right)=f^{\mathfrak{A}}\left(b_{1}, \ldots, b_{n}\right)=b$. induction we have $a=a_{0}=b$.

Lemma 3.1.13. Let P be a pattern with $F V(P)=\left\{x_{1}, \ldots, x_{k}\right\}, k \geq 1$, and $\underline{U}=$ $U_{1}, \ldots, U_{k}, \underline{V}=V_{1}, \ldots, V_{k}$ be terms. Let $\underline{x}=x_{1}, \ldots, x_{k}$. If $[\underline{U} / \underline{x}] P \equiv_{\mathfrak{A}}[\underline{V} / \underline{x}] P$,
then $U_{i} \equiv_{\mathfrak{A}} V_{i}$ for all $1 \leq i \leq k$.

Proof. Assume $[\underline{U} / \underline{x}] P \equiv_{\mathfrak{A}}[\underline{V} / \underline{x}] P$. Induct on P.

Case 1. $P \equiv x_{1}$.
Then $U_{1} \equiv\left[U_{1} / x_{1}\right] P \equiv_{\mathfrak{A}}\left[V_{1} / x_{1}\right] P \equiv$

Case 2. $P \equiv P_{1} P_{2}$.
Let $[\underline{U} / \underline{x}] P \equiv \mathfrak{A}[\underline{V} / \underline{x}] P$ by a sequence of terms $[\underline{U} / \underline{x}] P \equiv K_{1}, \ldots, K_{s} \equiv$ $[\underline{V} / \underline{x}] P, s \geq 1$.
(2.1) $K_{i} \not \equiv_{12}^{0} K_{i+1}$ for all $1 \leq i<s$.

By Note 3.1.4(b) $[\underline{U} / \underline{x}] P_{1} \equiv_{\mathfrak{A}}[\underline{V} / \underline{x}] P_{1}$ and $[\underline{U} / \underline{x}] P_{2} \equiv_{\mathfrak{A}}[\underline{V} / \underline{x}] P_{2}$. By induction, $U_{i}=_{\mathfrak{a}} V_{i}$ for all $1 \leq i \leq k$.
(2.2) $K_{i} \equiv_{1 \mathfrak{A}}^{0} K_{i+1}$ for some $1<i<s$.

Let n be the first such i. Since $K_{n} \equiv_{1 \mathfrak{A}}^{0} K_{n+1}, K_{n} \equiv f \bar{a}_{1} \ldots \bar{a}_{q}$ and $K_{n+1} \equiv \bar{a}$ for some function symbol f, and some $a, a_{1}, \ldots, a_{q} \in|\mathfrak{A}|$, $q \geq 1$. Since $K_{n+1} \equiv_{\mathfrak{A}} K_{s} \equiv[\underline{V} / \underline{x}] P$ and K_{n+1} is not of the same form as $[\underline{V} / \underline{x}] P$, by Note 3.1.2 $K_{j} \equiv_{1 \mathfrak{A}}^{0} K_{j+1}$ for some $n+1 \leq j<s$. Let m be the most such j. Then we have $K_{m} \equiv \bar{b}$ and $K_{m+1} \equiv g \bar{b}_{1} \ldots \bar{b}_{r}$ for some function symbol g, and some $b, b_{1}, \ldots, b_{r} \in|\mathfrak{A}|, r \geq 1$. Since a ρ pattern cannot begin with/a variable and $[\underline{U} / r] P \equiv \mathscr{A} K_{n} \equiv f \bar{a}_{1} \ldots \bar{a}_{q}$ Q with $K_{j} \not \equiv_{12}^{0} K_{j+1}$ for all $1 \leq j<n$, by induction on q, the pattern
 $\bar{a} \equiv K_{n+1} \equiv_{\mathfrak{A}} K_{m} \equiv \bar{b} \equiv_{1 \mathfrak{A}}^{0} g \bar{b}_{1} \ldots \bar{b}_{r} \equiv f \bar{b}_{1} \ldots \bar{b}_{r}$, by Lemma 3.1.12, we have $f^{\mathfrak{A}}\left(a_{1}, \ldots, a_{q}\right)=a=b=f^{\mathfrak{A}}\left(b_{1}, \ldots, b_{r}\right)$. Since f is in a pattern,
$f^{\mathfrak{A}}$ is one-to-one, so $q=r$ and $a_{j}=b_{j}$ for all $1 \leq j \leq q$. Then

$$
\begin{aligned}
{[\underline{U} / \underline{x}] P \equiv K_{1} \equiv \mathfrak{A} K_{n} } & \equiv f \bar{a}_{1} \ldots \bar{a}_{q} \\
& \equiv g \vec{b}_{1} \ldots \bar{b}_{r} \equiv K_{m+1} \equiv_{\mathfrak{A}} K_{s} \equiv[\underline{V} / \underline{x}] P
\end{aligned}
$$

with $K_{j} \not \equiv_{1 \mathfrak{A}}^{0} K_{j+1}$ for all $1 \leq j<n$ and $m+1 \leq j<s$. Hence by Case $2.1 U_{i} \equiv_{\mathfrak{A}} V_{i}$ for all $1 \leq i \leq k$.

Lemma 3.1.14. Let Q and Q^{\prime} be terms, x and y be variables. If $y \notin F V(Q)$ and $[y / x] Q \equiv_{1 \mathfrak{A}} Q^{\prime}$, then $Q \equiv_{1 \mathfrak{A}} Q^{\prime \prime}$ for some term $Q^{\prime \prime}$ such that $Q^{\prime \prime} \equiv_{\alpha}[x / y] Q^{\prime}$. Proof. Assume $y \notin F V(Q)$ and $[y / x] Q \equiv{ }_{1 \mathfrak{A}} Q^{\prime}$.

Case 1. $x \notin F V(Q)$.
Since $y \notin F V(Q)$ and $Q \equiv[y \mid x] Q \equiv_{1 \mathfrak{A}} Q^{\prime}$, by Proposition 3.1.8, we have $y \notin F V\left(Q^{\prime}\right)$. Then $Q \equiv|y| x \mid Q \equiv 1 \mathfrak{A} Q^{\prime} \equiv[x / y] Q^{\prime}$.

Case 2. $x \in F V(Q)$.
We will induct on Q.

Since $x \in F V(Q), Q \equiv x$. Then $y \equiv[y / x] x \equiv[y / x] Q \equiv{ }_{1 \mathfrak{A}} Q^{\prime}$, which is impossible. Therefore this case cannot occur.

Then $[y / x] Q_{1}[y / x] Q_{2} \equiv[y / x] Q \equiv_{1 \Omega \in Q^{\prime}}$. Since $x \in F V(Q), y \in$
 induction, $Q_{1} \equiv_{1 \mathfrak{A}} Q_{1}^{\prime \prime} \equiv_{\alpha}[x / y] Q_{1}^{\prime}$ for some term $Q_{1}^{\prime \prime}$. Since $y \notin F V(Q)$,
we have $y \notin F V\left(Q_{2}\right)$.

Then $Q \equiv Q_{1} Q_{2} \equiv_{1 \mathfrak{A}} Q_{1}^{\prime \prime} Q_{2} \equiv_{\alpha}[x / y] Q_{1}^{\prime} Q_{2}$

We are done with $Q^{\prime \prime}=Q_{1}^{\prime \prime} Q_{2}$.
(2.3) $Q \equiv \lambda P . Q_{1}$ for some pattern P and some term Q_{1}.

Since $x \in F V(Q), x \notin F V(P)$ and $x \in F V\left(Q_{1}\right)$. Then $[y / x] Q \equiv$ $[y / x] \lambda P \cdot Q_{1} \equiv \lambda[z / y] P \cdot[y \mid x][z / y] Q_{1}$ where $z \equiv y$ if $y \notin F V(P)$, otherwise z is the first variable not in $F V\left(P Q_{1}\right)$. So $Q^{\prime} \equiv \lambda[z / y] P . Q_{1}^{\prime}$ where $[y / x][z / y] Q_{1} \equiv_{1 \mathfrak{A}} Q_{1}^{\prime} \cdot$ By induction, we have $[z / y] Q_{1} \equiv_{1 \mathfrak{A}} \quad Q_{1}^{\prime \prime} \equiv_{\alpha}$ $[x / y] Q_{1}^{\prime}$ for some term $Q_{1}^{\prime \prime}$ and $Q_{1} \neq 1 \mathfrak{A} Q_{1}^{\prime \prime \prime} \equiv_{\alpha}[y / z] Q_{1}^{\prime \prime}$ for some term $Q_{1}^{\prime \prime}$. Note that $\left.\lambda P \cdot[y /, z] x / y\right] Q_{1}^{\prime} \overline{\bar{F}}_{\alpha} \lambda[z / y] P .[z / y][y / z][x / y] Q_{1}^{\prime}$ because $z \equiv y$ if $y \notin F V(P)$, and otherwise $z \notin F V\left(P[y / Z][x / y] Q_{1}^{\prime}\right)$.

Then $Q \equiv \lambda P \cdot Q_{1}$
$=_{1 \mathfrak{A}} \lambda P . Q_{1}^{\prime \prime \prime}$
ศูนย์วิไญมมมรัพยากร

We are done with $Q^{\prime \prime} \equiv \lambda P . Q_{1}^{\prime \prime \prime}$.
(2.4) $Q \equiv\left(\lambda P . Q_{1} \mid A\right)$ for some pattern P, some term Q_{1}, and some abstraction A.

The proof for this case is similar to Case 2.2.

Lemma 3.1.15. Let M, N, and N^{\prime} be terms. If $M \equiv_{1 \alpha} N \equiv_{1 \mathfrak{A}} N^{\prime}$, then $M \equiv_{1 \mathfrak{A}}$ $M^{\prime} \equiv{ }_{\alpha} N^{\prime}$ for some term M^{\prime}.

Proof. Assume $M \equiv_{1 \alpha} N \equiv_{12} N^{\prime}$. Let $\lambda P . Q$ be the simple abstraction in M which gets replaced by $\lambda[y / x] P \cdot[y / x] Q$ when $M 1 \alpha$-converts to N, where $x \in F V(P)$ and $y \notin F V(P Q)$. We will induct on M. Since M contains a simple abstraction, M cannot be an atom.

Case 1. $M \equiv \lambda P . Q$.
Then $\lambda[y / x] P \cdot[y / x] Q \not N^{\prime}={ }_{12} N^{\prime}$. Thus $N^{\prime} \equiv \lambda[y / x] P . Q^{\prime}$ form some term Q^{\prime} where $[y / x] Q \triangleq 122 Q^{2}$. Note that since $x \in F V(P)$ and $y \notin$ $F V\left(P[x / y] Q^{\prime}\right)$, we have $\lambda P \cdot[x / y] Q^{\prime} \equiv{ }_{1 \alpha} \lambda[y / x] P \cdot[y / x][x / y] Q^{\prime}$. Since $x \notin$ $F V([y / x] Q)$ and $[y / x] Q=1 \mathfrak{1} Q^{\prime}$, by Proposition 3.1.8, we have $x \notin F V\left(Q^{\prime}\right)$. Then by Lemma 2.2.4, $[y / x][x / y] Q^{\prime} \equiv_{\alpha}[y / y] Q^{\prime} \equiv Q^{\prime}$-Since $y \notin F V(Q)$ and $[y / x] Q \equiv_{12} Q^{\prime}$, by Lemma 3.1.14, we have $Q \equiv_{12} Q^{\prime \prime}$ for some term $Q^{\prime \prime}$ such that $Q^{\prime \prime} \equiv_{\alpha}[x / y] Q^{\prime}$. Let $M^{\prime} \equiv \lambda P \cdot Q^{\prime \prime}$. Then $M \equiv X P \cdot Q \equiv_{1 \mathfrak{A}} \lambda P \cdot Q^{\prime \prime} \equiv M^{\prime}$,

 $$
\equiv N^{\prime}
$$

Case $2 . M \equiv \lambda L . M_{1}$ for some pattern L and some term M_{1}.
Since $M \equiv{ }_{1 \alpha} N, N \equiv \lambda L . N_{1}$ for some term N_{1} such that $M_{1} \equiv{ }_{1 \alpha} N_{1}$. Since
$N \equiv \equiv_{1 \mathfrak{A}} N^{\prime}, N^{\prime} \equiv \lambda L . N_{1}^{\prime}$ for some term N_{1}^{\prime} such that $N_{1} \equiv_{1 \mathfrak{A}} N_{1}^{\prime}$. Since $M_{1} \equiv_{1 \alpha} N_{1} \equiv_{1 \mathfrak{A}} N_{1}^{\prime}$, by induction we have $M_{1} \equiv_{1 \mathfrak{A}} M_{1}^{\prime} \equiv_{\alpha} N_{1}^{\prime}$ for some term M_{1}^{\prime}. Then $M \equiv \lambda L \cdot M_{1} \equiv_{1 \mathfrak{1}} \lambda L \cdot M_{1}^{\prime} \equiv_{\alpha} \lambda L \cdot N_{1}^{\prime} \equiv N_{1}^{\prime}$. Choose $M^{\prime} \equiv \lambda L \cdot M_{1}^{\prime}$.

Case 3. $M \equiv M_{1} M_{2}$ for some terms M_{1} and M_{2}.
Without loss of generality, assume $\lambda P . Q$ is in M_{1}. Since $M_{1} M_{2} \equiv M \equiv_{1 \alpha} N$, $N \equiv N_{1} M_{2}$ for some term N_{1} such that $M_{1} \equiv{ }_{1 \alpha} N_{1}$. Note that N_{1} contains an abstraction, hence N does as well, and thus $N \nexists_{1 \mathfrak{A}}^{0} N^{\prime}$. Since $N_{1} M_{2} \equiv$ $N \equiv{ }_{1 \mathfrak{A}} N^{\prime}, N^{\prime}$ can only be one of the two following cases.
(3.1) $N^{\prime} \equiv N_{1}^{\prime} M_{2}$ for some term N_{1}^{\prime} such that $N_{1} \equiv{ }_{1 \mathfrak{A}} N_{1}^{\prime}$. Since $M_{1} \equiv_{1 \alpha} N_{1} \equiv_{12 \mathfrak{A}} N_{\mathrm{i}}^{\prime}$, by induction we have $M_{1} \equiv_{1 \mathfrak{A}} M_{1}^{\prime} \equiv_{\alpha} N_{1}^{\prime}$ for some term M_{1}^{\prime}. Then $M \equiv M_{1} M_{2}{ }_{12}{ }_{12} M_{1}^{\prime} M_{2} \equiv{ }_{\alpha} N_{1}^{\prime} M_{2} \equiv N^{\prime}$. Choose $M^{\prime} \equiv M_{1}^{\prime} M_{2}$.
(3.2) $N^{\prime} \equiv N_{1} M_{2}^{\prime}$ for some term $-M_{2}^{\prime}$ such that $M_{2} \equiv{ }_{1 \mathfrak{A}} M_{2}^{\prime}$.

Then $M \equiv M_{1} M_{2}={ }_{12} M_{1} M_{2}^{\prime} \equiv 1 \alpha N_{1} M_{2}^{\prime} \equiv N^{\prime}$. Choose $M^{\prime} \equiv M_{1} M_{2}^{\prime}$.
Case 4. $M \equiv\left(\lambda L M_{1} \mid A\right)$ for some pattern L, some term M_{1}, and some abstraction A.

This can be proved in the same way as Case 3 .
 $M^{\prime} \equiv{ }_{\alpha} N^{\prime}$ for some term M^{\prime}.

Lemma 3.1.17. Let $\underline{x}=x_{1}, \ldots, x_{k}, k \geq 1$, be distinct variables and M, N, and $\underline{U}=U_{1}, \ldots, U_{k}$ be terms. If $M \equiv_{1 \mathfrak{A}} N$ then $[\underline{U} / \underline{x}] M \equiv_{1 \mathfrak{A}} N^{\prime}$ for some term N^{\prime} such that $N^{\prime} \equiv_{\alpha}[\underline{U} / \underline{x}] N$.

Proof. Assume $M \equiv_{1 \mathfrak{A}} N$. If $\{\underline{x}\} \cap F V(M)=\varnothing$, by Proposition 3.1.8 $\{\underline{x}\} \cap$ $F V(N)=\varnothing$, so $[\underline{U} / \underline{x}] M \equiv M \equiv_{1 \mathfrak{A}} N \equiv[\underline{U} / \underline{x}] N$, and we are finished. Now assume $\{\underline{x}\} \cap F V(M) \neq \varnothing$, and in fact, by Corollary 2.2.1(a) we may assume that $\{\underline{x}\} \subseteq F V(M)$. We will induct on M. Note that since $M \equiv_{1 \mathfrak{A}} N$ and $F V(M) \neq \varnothing$, by Note 3.1.2(d) M is not atomic.

Case 1. $M \equiv \lambda P . M_{1}$ for some pattern \vec{P} and some term M_{1}.
Then $N \equiv \lambda P$. N_{1} for some term N_{1} such that $M_{1} \equiv_{1 \mathfrak{A}} N_{1}$. Then by induction $[\underline{U} / \underline{x}] M_{1} \equiv 12 / N_{1}^{\prime} \equiv_{\alpha}[\underline{U} / \underline{x}] N_{1}$ for some term N_{1}^{\prime}. Let $m=$ $\left|F V(P) \cap F V\left(U_{1} \ldots U_{k}\right)\right|$ and induct on m. If $m=0$, then

Now assume $m>0$. Let y be the first variable in $\underline{F V}(P) \cap F V\left(U_{1} \ldots U_{k}\right)$ and z be the first variable which is not in $F V\left(P M_{1} \underline{U}\right)$. Note that z is also the first variable which is not in $F V\left(P N_{1} \underline{U}\right)$ since $M_{1} \equiv_{1 \mathfrak{A}} N_{1}$, so $F V\left(M_{1}\right)=F V\left(N_{1}\right) \cdot$ By the main induction hypothesis, $[z / y] M_{1} \equiv_{1 \mathfrak{A}}$ $N_{1}^{\prime \prime \prime} \equiv_{\alpha}[z / y] N_{1}$ for some term $N_{1}^{\prime \prime}$. Then by the subsidiary induction hy6 -

N^{\prime}. Hence

Case 2. $M \equiv M_{1} M_{2}$ for some terms M_{1} and M_{2}.
Then $N \equiv N_{1} N_{2}$ for some terms N_{1} and N_{2}. Without loss of generality, assume $M_{1}=_{12} N_{1}$ and $M_{2} \equiv N_{2}$. By induction we have $[\underline{U} / \underline{x}] M_{1} \equiv_{1 \mathfrak{A}}$ $N_{1}^{\prime} \equiv{ }_{\alpha}[\underline{U} / \underline{x}] N_{1}$ for some term A_{1}^{\prime}. Hence

The case where M is acompound abstraction is similar
Corollary 3.1.18. Let $\underline{x}=x_{1}, \ldots, x_{k}, k \geq 1$, be distinct variables and M, N, and

Proof. This follows from Corollary 3.1.16 and Lemma 3.1.17.

3.2 Contractions and Reductions

Most of the definitions and lemmas in this section are based on the lambda calculus with patterns [5] with some adjustments. Most of the lemmas are unaffected by the new congruence $\equiv_{\mathscr{A}}$ and for these proofs will not be given. Only a few need some small changes in the statement or proof; for these we will show the details of those parts that differ. Again, for the ease of reading, the corresponding result number from [5] will be included in brackets.

Definition 3.2.1. For any pattern P with k free variables $\underline{x}=x_{1}, \ldots, x_{k}, k \geq 1$ (respectively P has no free variables), and any term N, if there exist terms $\underline{N}=$ N_{1}, \ldots, N_{k} such that $[N / x] P \triangleq N$ (respectively $\left.P \equiv N\right)$, then for any term Q, $(\lambda P . Q) N$ is called a $\boldsymbol{\beta}$-redex and the corresponding term $[\underline{N} / \underline{x}] Q$ (respectively Q) is called its $\boldsymbol{\beta}$-contractum.

Let R be an occurrence of a β-redex in a term M. If we replace R by its β-contractum, and the resulf is the expression M^{\prime}, then we say $M \boldsymbol{\beta}$-contracts to M^{\prime}, which we denote by $M \triangleright_{1 \beta} M^{\prime}$.

We extend the definitions of reductions by adding the new congruence ' $\equiv_{\mathfrak{A}}$ '.

Definition 3.2.2. For any terms M and M^{\prime}, we say $M \boldsymbol{\beta}$-reduces to M^{\prime}, denoted by $M \curvearrowleft_{\beta} M^{2}$ if there exisfs a sequence of terms $M_{2}=M_{1}, ?, M_{n} \equiv M^{\prime}, n \geq 1$, such that for each $1 \leq i<n, M_{i} \triangleright_{1 \beta} M_{i+1}, M_{i} \equiv_{\alpha} M_{i+1}$, or $M_{i} \equiv_{\mathfrak{A}} M_{i+1}$.

Definition 3.2.3. Let $(\lambda \vec{P} Q \mid A)$ be a compound abstraction and 6 term with m free variables $\underline{y}=y_{1}, \ldots, y_{m}, m \geq 1$ (respectively N has no free variables). We will call $(\lambda P . Q \mid A) N$ a $\boldsymbol{\gamma}$-redex with $\boldsymbol{\gamma}$-contractum S if one of the following two conditions holds:
a. the term $(\lambda P . Q) N$ is a β-redex, in which case $S \equiv(\lambda P . Q) N$; or
b. for all terms $\underline{U}=U_{1}, \ldots, U_{m}$ and all terms N^{\prime} such that $[\underline{U} / \underline{y}] N \triangleright_{\beta} N^{\prime}$ (respectively $\left.N \triangleright_{\beta} N^{\prime}\right)$, the term $(\lambda P . Q) N^{\prime}$ is not a β-redex, in which case $S \equiv A N$.

Let R be an occurrence of a γ-redex in a term M. If we replace R by its γ-contractum, and the result is the expression M^{\prime}, then we say $M \gamma$-contracts to M^{\prime}, which we denote by $M \triangleright_{1 \gamma} M^{\prime}$.

Definition 3.2.4. For any terms M and M^{\prime}, we say $\mathrm{M} \boldsymbol{\beta} \boldsymbol{\gamma}$-reduces to M^{\prime}, denoted by $M \triangleright_{\beta \gamma} M^{\prime}$, if there exists a sequence of terms $M \equiv M_{1}, \ldots, M_{n} \equiv$ $M^{\prime}, n \geq 1$, such that for each $1 \leq i<n, M_{i} \triangleright_{1 \beta} M_{i+1}, M_{i} \triangleright_{1 \gamma} M_{i+1}, M_{i} \equiv_{\alpha} M_{i+1}$, or $M_{i} \equiv_{\mathfrak{A}} M_{i+1}$.

Definition 3.2.5. Let $(\lambda P Q \mid A)$ be a compound abstraction and N a term with m free variables $\underline{y}=y_{1}, \ldots, y_{m}, m \geq 1$ (respectively N has no free variables). We will call $(\lambda P . Q \mid A) N$ a δ-redex with δ-contractum S if one of the following two conditions holds:
a. the term $(\lambda P Q) N$ is a β-redex, in which case $S \equiv(\lambda P . Q) N$; or
b. for all terms $\underline{U}=U_{1}, \ldots, U_{m}$ and all terms N^{\prime} such that $[\underline{U} / \underline{y}] N \triangleright_{\beta \gamma} N^{\prime}$ (respectively $\left.N \triangleright_{\beta \gamma} N^{\prime}\right)$, the term $(\lambda P . Q) N^{\prime}$ is not a β-redex, in which case $S \equiv A N$.
 M^{\prime}, which we denote by $M \triangleright_{1 \delta} M$.

Definition 3.2.6. For any terms M and M^{\prime}, we say $M \boldsymbol{\beta} \delta$-reduces to M^{\prime}, denoted by $M \triangleright_{\beta \delta} M^{\prime}$, if there exists a sequence of terms $M \equiv M_{1}, \ldots, M_{n} \equiv$ $M^{\prime}, n \geq 1$, such that for each $1 \leq i<n, M_{i} \triangleright_{1 \beta} M_{i+1}, M_{i} \triangleright_{1 \delta} M_{i+1}, M_{i} \equiv_{\alpha} M_{i+1}$, or $M_{i} \equiv_{\mathfrak{A}} M_{i+1}$. We call such a sequence of terms a $\boldsymbol{\beta} \boldsymbol{\delta}$-reduction.

Definition 3.2.7. For any abstraction A and any term $N, A N$ is called a potential redex.

Definition 3.2.8. For any potential redex R, R is called a contractible redex if R is either a β-redex or a δ-redex.

Note 3.2.9. For any terms M and M^{\prime}, if $M \triangleright_{\beta \delta} M^{\prime}$ and M contains no abstraction, then $M \equiv_{\mathfrak{A}} M^{\prime}$.

Remark. Unless explicitly specified otherwise, a "reduction" means a" $\beta \delta$-reduction".
Notation. The expression $M \triangleright_{1 \beta 1 \delta} N$ will mean " $M \triangleright_{1 \beta} N$ or $M \triangleright_{1 \delta} N$ ".
Note 3.2.10. [Note 2.3.14] For any terms M and N, if $M \triangleright_{1 \beta 1 \delta} N$ and R is the occurence of a potential redex which is contracted when $M \triangleright_{1 \beta 1 \delta} N$, then
a. if $M \equiv M_{1} M_{2}$ and $M \not \equiv R$ then $N \equiv N_{1} N_{2}$ for some terms N_{1} and N_{2} such that either $M_{1} \triangleright_{1 \beta 1 \delta} N_{1}$ and $M_{2} \equiv N_{2}$ or $M_{1} \equiv N_{1}$ and $M_{2} \triangleright_{1 \beta 1 \delta} N_{2}$;
b. if $M \equiv \lambda P . Q$ then $N \equiv \lambda P . Q^{\prime}$ for some term Q^{\prime} such that $Q \triangleright_{1 \beta 1 \delta} Q^{\prime}$;
c. if $M \equiv(\lambda P \cdot Q \mid A)$ then $N \equiv\left(\lambda P \cdot Q^{\prime} \mid A^{\prime}\right)$ for some term Q^{\prime} and some abstraction A^{\prime} such that either $Q \triangleright_{1 \beta 1 \delta} Q^{\prime}$ and $A \equiv A^{\prime}$ or $Q \equiv Q^{\prime}$ and $A \triangleright_{1 \beta 1 \delta} A^{\prime}$.

Corollary 3.2.11. [Corollary 2.3.15] Forlany term M, if $M \triangleright_{\beta \delta} N$, then N is

a. if $M \equiv M_{1} M_{2}$ and $M \triangleright_{\beta \delta} N$ by a sequence ofterms $M \equiv K_{1}, \ldots$. $K_{n} \equiv N$,
 contracted and $K_{i} \not \equiv_{1 \mathfrak{A}}^{0} K_{i+1}$ then $N \equiv N_{1} N_{2}$ for some terms N_{1} and N_{2} such that $M_{i} \triangleright_{\beta \delta} N_{i}, i=1,2$;
b. if $M \equiv \lambda P . Q$, and no variable in P has been changed when $M \triangleright_{\beta \delta} N$ then $N \equiv \lambda P . Q^{\prime}$ for some term Q^{\prime} such that $Q \triangleright_{\beta \delta} Q^{\prime} ;$
c. if $M \equiv(\lambda P . Q \mid A)$ then $N \equiv\left(\lambda P^{\prime} . Q^{\prime} \mid A^{\prime}\right)$ for some abstractions $\lambda P^{\prime} . Q^{\prime}$ and A^{\prime} such that $\lambda P . Q \triangleright_{\beta \delta} \lambda P^{\prime} . Q^{\prime}$ and $A \triangleright_{\beta \delta} A^{\prime}$.

Proof. This follows from Lemma 2.2.2, Notes 3.1.2, and Notes 3.2.10,

Lemma 3.2.12. [Lemma 3.1.1] Let $\underline{x}-x_{1} \ldots, x_{k}, k \geq 1$, be distinct variables, $\underline{N}=N_{1}, \ldots, N_{k}$ be terms, and P be a pattern. If $[\underline{N} / \underline{x}] P$ is a potential redex, then $P \equiv x_{t}$ for some $1 \leq t \leq k$.

Lemma 3.2.13. Let $\underline{x}=x_{1}, \ldots, x_{k}, k \geq 1$, be distinct variables, $\underline{N}=N_{1}, \ldots, N_{k}$ be terms, P be a pattern, and S be a potential redex. If S is in $[\underline{N} / \underline{x}] P$, then S is in N_{t} for some $1 \leq t \leq k$.

Proof. Assume S is in $[\underline{N} / \underline{x}] P$. We will induct on P. Note that since a pattern cannot contain an abstraction, $\{x\} \cap F V(P) \neq \varnothing$, otherwise S is in $[\underline{N} / \underline{x}] P \equiv P$, a contradiction. In fact, by CoroHary 2.2.1(a) we may assume that $\{\underline{x}\} \subseteq F V(P)$.

Case 1. $P \equiv x_{1}$.
Then $[\underline{N} / \underline{x}] P \equiv N_{1}$. So S is in N_{1} and we are finished.

Case 2. $P \equiv P_{1} P_{2}$.
Then $[\underline{N} / \underline{x}] P \equiv[\underline{N} / \underline{x}] P_{1}[\underline{N} / \underline{x}] P_{2}$. Since P is not a variable, by Lemma 3.2.12 any substitution of P is not a potential redex. Hence S is either in $[\underline{N} / \underline{x}] P_{1}$ or $[\underline{N} / \underline{x}] P_{2}$. In either case, by induction S is in N_{t} for some
$1 \leq t \leq k$.
Lemma 3.2.14. [Lemma 3.1.2] Let $\lambda P Q$ be a simple abstraction with $F V(P)=$ $\left\{x_{1}, \ldots, x_{k}\right\}, k \geq 1$, and N be a term such that $\lambda P . Q \equiv{ }_{\alpha} N$. Then $N \equiv$ $\lambda\left[y_{1} / x_{1}, \ldots, y_{k} / x_{k}\right] P . Q^{\prime}$ for some distinct variables y_{1}, \ldots, y_{k} and some term Q^{\prime} such that $\left\{y_{1}, \ldots, y_{k}\right\} \cap F V(\lambda P . Q)=\varnothing$ and $Q^{\prime} \equiv_{\alpha}\left[y_{1} / x_{1}, \ldots, y_{k} / x_{k}\right] Q$.

Lemma 3.2.15. [Lemma 3.1.4] Let P and P^{\prime} be patterns with $F V(P) \subseteq$ $\left\{x_{1}, \ldots, x_{k}\right\}, k \geq 1$, and $P^{\prime} \equiv\left[y_{1} / x_{1}, \ldots, y_{k} / x_{k}\right] P$ for some distinct variables y_{1}, \ldots, y_{k} and let Q and N be terms. If $(\lambda P . Q) N$ is a β-redex, then $\left(\lambda P^{\prime} . Q^{\prime}\right)\left[U_{1} / u_{1}, \ldots, U_{m} / u_{m}\right] N$ is also a β-redex for any distinct variables u_{1}, \ldots, u_{m}, $m \geq 1$, and any terms $Q^{\prime}, U_{1}, \ldots, U_{m}$.

Lemma 3.2.16. [Lemma 3.1.6] Let $R \equiv(\lambda P . Q) N$ be a β-redex, $\underline{x}=x_{1}, \ldots, x_{k}$, $k \geq 1$, be distinct variables, and $S, U=U_{1}, \ldots, U_{k}$ be terms. If $R \triangleright_{1 \beta} S$, then $[\underline{U} / \underline{x}] R \triangleright_{\beta}[\underline{U} / \underline{x}] S$. To be precise, if $R \triangleright_{1 \beta} S$, then $[\underline{U} / \underline{x}] R \triangleright_{1 \beta} S^{*}$ for some term S^{*}, where $S^{*} \equiv_{\alpha}[\underline{U} / \underline{x}] S$.

Lemma 3.2.17. [Lemma 3.1.7] Let $R \equiv(\lambda P . Q \mid A) N$ be a δ-redex, $\underline{x}=$ $x_{1}, \ldots, x_{k}, k \geq 1$, be distinct variäbles, and $\underline{U}=U_{1}, \ldots, U_{k}$ be terms. If $R \triangleright_{1 \delta} S$, then $[\underline{U} / \underline{x}] R \triangleright_{1 \delta}[\underline{U} / \underline{x}] S$.

Lemma 3.2.18. [Corollary 3.1.8] Let $\underline{x}=x_{1}, \ldots, x_{k}, k \geq 1$, be distinct variables and $M, M^{\prime}, \underline{U}=U_{1}, \ldots, U_{k}$ be terms.
a. If $M \triangleright_{\beta \delta} M^{\prime}$ then $\left.[\underline{U} / \underline{x}] M \triangleright_{\beta \delta} \underline{U} / \underline{x}\right] M^{\prime}$.
b. If R is a contractible redex, then so is $[\underline{U} / \underline{x}] R$.

Lemma 3.2.19. [Lemma 3.1.9] Let A bey an abstraction, A^{\prime} and N be terms such that $A \otimes_{1 \beta 1 \delta} A^{\prime}$. If $A N /$ is Q-contractible redex, then so is $A^{\prime} N$.
Lemma 3.2.20. [Lemma 3.1.10] Let P be a pattern with $F V(P)=\left\{x_{1}, \ldots, x_{k}\right\}$,
 $\mathcal{C} \equiv_{\mathfrak{A}}[\underline{V} / \underline{x}] P$ for some terms $\underline{V}=V_{1}, \ldots, V_{k}$ such that $U_{i} \triangleright_{\beta \delta} V_{i}$ for all $1 \leq i \leq k$.

Proof. Assume $[\underline{U} / \underline{x}] P \triangleright_{\beta \delta} N$. Induct on P.
Case 1. $P \equiv x_{1}$.

$$
\text { Let } V_{1} \equiv N . \text { Then } N \equiv V_{1} \equiv\left[V_{1} / x_{1}\right] P \text { and } U_{1} \equiv\left[U_{1} / x_{1}\right] P \triangleright_{\beta \delta} N \equiv V_{1} .
$$

Case 2. $P \equiv P_{1} P_{2}$.
Let $[\underline{U} / \underline{x}] P \triangleright_{\beta \delta} N$ by a sequence of terms $[\underline{U} / \underline{x}] P \equiv K_{1}, \ldots, K_{n} \equiv N, n \geq 1$.
(2.1) $K_{i} \not \equiv_{1 \mathfrak{A}}^{0} K_{i+1}$ for all $1 \leq i<n$.

By Lemma 3.2.12, any substitution of P is not a potential redex. Since $[\underline{U} / \underline{x}] P_{1}[\underline{U} / \underline{x}] P_{2} \equiv[\underline{U} / \underline{x}] P \triangleright_{\beta \delta} N$, by Corollary 3.2.11, $N \equiv N_{1} N_{2}$ for some terms N_{1} and N_{2}, where $[\underline{U} / \underline{x}] P_{i} \triangleright_{\beta \delta} N_{i}, i=1,2$. Since $F V(P)=$ $\left\{x_{1}, \ldots, x_{k}\right\}, F V\left(P_{1}\right) \neq \varnothing$ or $F V\left(P_{2}\right) \neq \varnothing$. Without loss of generality, assume $F V\left(P_{1}\right) \neq \varnothing$.
(2.1.1) $F V\left(P_{2}\right)=\varnothing$.

Then $F V\left(P_{1}\right) \Rightarrow\left\{x_{1}, \ldots, x_{k}\right\}$. Since $[\underline{U} / \underline{x}] P_{1} \triangleright_{\beta \delta} N_{1}$, by induction $N_{1} \equiv_{\mathfrak{A}}[\underline{V} / x] P_{1}$ for some terms $V=V_{1}, \ldots, V_{k}$, where $U_{i} \triangleright_{\beta \delta} V_{i}$ for all $1 \leq i \leq k$. Since $F V\left(P_{2}\right) \equiv \varnothing, P_{2} \equiv[\underline{U} / \underline{x}] P_{2} \triangleright_{\beta \delta} N_{2}$. In fact $P_{2} \equiv_{\mathfrak{A}} N_{2}$, sinee P_{2}, contains no abstractions. Hence

 $\{1, \ldots, k\}$ and $\left\{i_{1}, \ldots, i_{m}\right\} \cap\left\{j_{1}, \ldots, j_{p}\right\}=\varnothing$. By Corollary 2.2.1(a), $[\underline{U} / \underline{x}] P_{1} \equiv\left[U_{i_{1}} / x_{i_{1}}, \ldots, U_{i_{m}} / x_{i_{m}}\right] P_{1}$ and $[\underline{U} / \underline{x}] P_{2} \equiv$ $\left[U_{j_{1}} / x_{j_{1}}, \ldots, U_{j_{p}} / x_{j_{p}}\right] P_{2}$. By induction, $N_{1} \equiv_{\mathfrak{A}}\left[V_{i_{1}} / x_{i_{1}}, \ldots, V_{i_{m}} / x_{i_{m}}\right] P_{1}$ and $N_{2} \equiv_{\mathfrak{A}}\left[V_{j_{1}} / x_{j_{1}}, \ldots, V_{j_{p}} / x_{j_{p}}\right] P_{2}$ for some terms $V_{i_{1}}, \ldots, V_{i_{m}}$,
$V_{j_{1}}, \ldots, V_{j_{p}}$, where $U_{r} \triangleright_{\beta \delta} V_{r}$ for all $1 \leq r \leq k$. Let $\underline{V}=V_{1}, \ldots, V_{k}$. Hence
(2.2) $K_{i} \equiv_{12}^{0} K_{i+1}$ for some $1 \leq i<n$.

Let k be the first such $\frac{1}{2}$. Then $[\underline{U} / \underline{x}] P \triangleright_{\beta \delta} K_{k}$ with $K_{j} \not \equiv_{1 \mathfrak{A}}^{0} K_{j+1}$ for all $1 \leq j<k$., By (Case 2.1 we have $K_{k} \equiv_{\mathfrak{A}}[\underline{V} / \underline{x}] P$ for some terms $\underline{V}=V_{1}, \ldots, V_{k}$ such that $U_{j} \triangleright_{\beta \delta} V_{j}$ for all $1 \leq j \leq k$. Since $K_{k} \equiv_{1 \mathfrak{A}}^{0} K_{k+1}, K_{k}$ contains, no abstraction. Then, since $K_{k} \triangleright_{\beta \delta} N$, by

Note 3.2.9, $K_{k} \equiv_{\mathfrak{A}} \mathcal{N}$. Hence $N \equiv_{\mathfrak{A}} K_{k} \equiv_{\mathfrak{A}}[\underline{V} / \underline{x}] P$.
Lemma 3.2.21. [Lemma 3.1.12] Let A be an abstraction, and N be a term such that $A N$ is a contractible redex.
a. For any term $=N^{\prime}$ such that $N \equiv{ }_{\alpha} N^{\prime}, A N^{\prime}$ is a contractible redex.
b. For any term N^{\prime} such that $N \triangleright_{1 \beta 1 \delta} N^{\prime}, A N^{\prime}$ is a contractible redex.

Proof. Both are special cases of Lemma 3.1.12 in [5]. ? $?$
Lemma 3.2.22. [Lemma 3.1.12] Let A be an abstraction, and N and N^{\prime} be Oterns such that $N \triangleright N^{\prime}$. If AN is a contractible redex, then there exists a term ${ }^{9 \prime \prime}$ such that $N^{\prime} \equiv_{\mathfrak{A}} N^{\prime \prime}$ and $A N^{\prime \prime}$ is a contractible redex.

Proof. Assume $A N$ is contractible. Let $N \triangleright_{\beta \delta} N^{\prime}$ by a sequence of terms $N \equiv$ $N_{1}, \ldots, N_{k} \equiv N^{\prime}, k \geq 1$. We will induct on k. If $k=1$ then $N \equiv N_{1} \equiv N^{\prime}$, so $A N^{\prime}$ is contractible and we are finished. Now assume $k>1$. Then by induction
there exists a term N_{k-1}^{\prime} such that $N_{k-1} \equiv_{\mathfrak{A}} N_{k-1}^{\prime}$ and $A N_{k-1}^{\prime}$ is a contractible redex.

Case 1. $N_{k-1} \equiv_{\mathfrak{A}} N^{\prime}$.
Since $N_{k-1}^{\prime} \equiv_{\mathfrak{A}} N_{k-1} \equiv_{\mathfrak{A}} N^{\prime}$, and $A N_{k-1}^{\prime}$ is contractible, we are finished with $N^{\prime \prime} \equiv N_{k-1}^{\prime}$.

Case 2. $N_{k-1} \equiv{ }_{\alpha} N^{\prime}$.
Since $N_{k-1}^{\prime} \equiv_{\mathfrak{A}} N_{k-1} \equiv_{\alpha} N^{\prime}$, by Corollary 3.1.16, $N_{k-1}^{\prime} \equiv_{\alpha} N_{k-1}^{\prime \prime} \equiv_{\mathfrak{A}} N^{\prime}$ for some term $N_{k-1}^{\prime \prime}$. Then, since $A N_{k-1}^{\prime}$ is contractible, by Lemma 3.2.21(a), so is $A N_{k-1}^{\prime \prime}$. Thus we are finished with $N^{\prime \prime} \equiv N_{k-1}^{\prime \prime}$.

Case 3. $N_{k-1} \triangleright_{1 \beta 1 \delta} N$
Then N_{k-1} contains an abstraction. Since $N_{k-1} \equiv_{\mathfrak{A}} N_{k-1}^{\prime}$, by Note 3.1.4(a), N_{k-1}^{\prime} also contains an abstraction.
(3.1) $A \equiv \lambda P . Q$. for some pattern P and some term Q.
(3.1.1) $F V(P)=\varnothing$.

Since $(\lambda P . Q) N_{k-1}^{\prime}$ is contractible, $P \equiv N_{k-1}^{\prime}$. This is a contradiction since a pattern cannot contain an abstraction.
(3.1.2) $F V(P)=\left\{x_{1}, \ldots, x_{n}\right\}$ for some variables $\underline{x}=x_{1}, \ldots, x_{n}$.

9 Since $(\lambda P \cdot Q)^{\prime} N_{k}^{\prime} 1$ is contractible, $\left[\frac{U}{\prime} / x\right] P=N_{k-1}^{\prime} \approx$ for some terms $\underline{U}=U_{1}, \ldots, U_{n}$. Since $[\underline{U} / \underline{x}] P \equiv N_{k-1}^{\prime} \equiv_{\mathfrak{A}} N_{k-1} \triangleright_{1 \beta 1 \delta} N^{\prime}$, by
 contractible.
(3.2) $A \equiv(\lambda P . Q \mid B)$ for some pattern P, some term Q, and some abstraction B.

If $A N_{k-1}$ is contractible, since $N_{k-1} \triangleright_{1 \beta 1 \delta} N^{\prime}$, by Lemma 3.2.21(b), $A N^{\prime}$ is contractible and we are finished. Now suppose $(\lambda P . Q \mid B) N_{k-1}$ is not contractible. Then since $N_{k-1}^{\prime} \equiv_{\mathfrak{A}} N_{k-1}$, by Corollary 3.1.18, $(\lambda P . Q \mid B) N_{k-1}^{\prime} \wedge_{1 \delta} B N_{k-1}^{\prime}$. Since $(\lambda P . Q \mid B) N_{k-1}^{\prime}$ is contractible, $(\lambda P . Q) N_{k-1}^{\prime}$ is contractible, and the proof can be finished much like in Case 3.1.

Lemma 3.2.23. [Lemma 3.1.13] Let R be a contractible redex, and R^{\prime} and S be terms such that $R \equiv \equiv_{\alpha}$. If $R \triangleright_{1 \beta} S\left(\right.$ respectively $\left.R \triangleright_{1 \delta} S\right)$, then $R^{\prime} \triangleright_{1 \beta} S^{\prime}$ (respectively $R^{\prime} \triangleright_{1 \delta} S^{\prime}$) for some term S^{\prime}, where $S^{\prime} \equiv_{\alpha} S$.

Proof. We use Lemma 3.2.21(a) instead of Lemma 3.1.12 in the original proof in [5]. The rest of the proof remains unchanged.

Lemma 3.2.24. [Corollary 3.1.14]

a. Let M, M^{\prime}, and N be terms-such that $M \equiv{ }_{\alpha} M^{\prime}$. If $M \triangleright_{1 \beta} N$ (respectively $M \triangleright_{1 \delta} N$), then $M^{\prime} \triangleright_{1 \beta} N^{\prime}\left(\right.$ respectively $\left.M^{\prime} \triangleright_{1 \delta} N^{\prime}\right)$ for some term N^{\prime}, where $N^{\prime} \equiv{ }_{\alpha} N$.
b. If R is a contractible redex and R^{\prime} is a term such that $R \equiv{ }_{\alpha} R^{\prime}$, then R^{\prime} is also a contractible redex.

3.3 Computability Relative to a Structure

relative to \mathfrak{A} if and only if there is a term G, using only variables and symbols in \mathcal{L} together with \mathbf{T} and \mathbf{F}, such that for all $a_{1}, \ldots, a_{n}, a \in|\mathfrak{A}|$, we have

$$
G \bar{a}_{1} \ldots \bar{a}_{n} \triangleright_{\beta \delta} \bar{a}
$$

whenever $g\left(a_{1}, \ldots, a_{n}\right)=a$.

Definition 3.3.2. Let r be an n-ary relation on $|\mathfrak{A}|$. We say r is computable relative to \mathfrak{A} if and only if there is a term R, using only variables and symbols

CHAPTER IV

THE CHURCH-ROSSER THEOREM

4.1 Minimal Complete Developments

The definition for minimal complete development (MCD) is slightly modified from the original one to allow the new congruence \equiv_{2}.

Definition 4.1.1. Let R and S be occurrences of contractible redexes in a term
M. When R is contracted, let M change to M^{\prime}.
The contraction-residuals of S (with respect to R) are occurrences of potential redexes in M^{\prime}, defined as follows.

Case 1. R and S are non-overlapping parts of M.
Then contracting R leaves S unchanged. This unchanged S in M^{\prime} is the contraction-residual of S.

Case 2. $R \equiv S$
Then contracting R is the same as contracting S. We say S has no contraction-

Case 3. R is part of S and $R \not \equiv S$.
 S^{\prime}, where $S^{\prime} \equiv A^{\prime} N^{\prime}$ for some abstraction A^{\prime} and some term N^{\prime} such that either $A \triangleright_{1 \beta 1 \delta} A^{\prime}$ and $N \equiv N^{\prime}$ or $A \equiv A^{\prime}$ and $N \triangleright_{1 \beta 1 \delta} N^{\prime}$. This S^{\prime} is the contraction-residual of S.

Case 4. S is part of R and $S \not \equiv R$.
There are cases and subcases as follows.
(4.1) $R \equiv(\lambda P . Q) N$.
(4.1.1) $F V(P)=\varnothing$.

Since R is a β-redex, $P \equiv N$ and $R \triangleright_{1 \beta} Q$. Since S is a potential redex in R, S is in Q. Since $R \triangleright_{1 \beta} Q$, contracting R leaves S unchanged in M^{\prime}; this is the contraction-residual of S.
(4.1.2)

$$
E V(P)=\left\{x_{1}, \ldots, x_{k}\right\}, k \geq 1
$$

Then $[\underline{N} / \underline{x}] P \equiv N$ for some terms $\underline{N}=N_{1}, \ldots, N_{k}$ and $R \triangleright_{1 \beta}$ $[\underline{N} / x] Q$.
(4.1.2.1) S is in Q.

Then S changes to S^{\prime}, where S^{\prime} is either S or some substitution of S. This S is the contraction-residual of S.
S is in N
Then S is in $[\underline{N} / \underline{x}] P$. By Lemma 3.2.13, S is in N_{t} for some
$1 \leq t \leq k$. Hence there is an occurrence of S in each N_{t} substituted for an occurrence of x_{t} in Q. These are the contractionresiduals of S. (Note that S may have many or no contraction-

If S is in Q or N, then contracting R leaves S unchanged, and this is the contraction-residual of S in M^{\prime}. If S is in A, then S has no contraction-residuals in M^{\prime}.
(4.2.2) $R \triangleright_{1 \delta} A N$.

If S is in A or N, then this unchanged S in A or N is the contractionresidual of S in M^{\prime}. If S is in Q, then S has no contraction-residuals in M^{\prime}.

Note 4.1.2.

a. Except in the Case 4.1.2.2,S has at most one contraction-residual.
b. Each contraction-residual is a contractible redex. (The contraction-residual in Case 3 is contractible by Lemmas 3.2.19 and 3.2.21(b), and the contractionresidual in Case 4.1.2.1 is contractible by Corollary 3.2.18(b)).

Definition 4.1.3. Let R be ant occurrence of a contractible redex in a term M.
The $1 \mathfrak{A}$-conversion-residuals of R (with respect to M) when $M \equiv_{1 \mathfrak{A}} M^{\prime}$ are occurrences of potential redexes, in M^{\prime}, defined inductively as follows. Note that since M contains an abstractions $M \not F_{10}^{0} M^{\prime}$, so M and M^{\prime} are of the same form.

Case 1. $M \equiv R$.

If M^{\prime} is a contractible redex then this M^{\prime} is the 12 -conversion-residual of R, otherwise R has no $1 \mathfrak{A}$-conversion-residuals in M^{\prime}.

Case 2. $M \not \equiv R$.

Then R is in M_{i} for some $i \in\{1,2\}$. The $1 \mathfrak{A}$-conversion-residual of R with respect to M_{i} is the $1 \mathfrak{A}$-conversion-residual of R with respect to M.
(2.2.2) $M \equiv \lambda P . N$ for some pattern P and some term N.

Then R is in N. The $1 \mathfrak{A}$-conversion-residual of R with respect to N is the $1 \mathfrak{A}$-conversion-residual of R with respect to M.
(2.2.3) $M \equiv\left(A_{1} \mid A_{2}\right)$ for some abstractions A_{1} and A_{2}. Then R is in A_{i} for some $i \in\{1,2\}$. The $1 \mathfrak{A}$-conversion-residual

Note 4.1.4. of R with respect to A_{i} is the $1 \mathfrak{A}$-conversion-residual of R with
respect to M.
a. R has at most one 12 -conversion-residual.
b. Each $1 \mathfrak{A}$-conversion-residual is contractible redex.

Remark. We may simply use "residual" to abbreviate either a "contractionresidual" or a " $1 \mathfrak{A}$-conversion-tesidual", where there is no ambiguity.

Definition 4.1.5. If $\mathscr{R}=\left\{R_{i n} \mid \leqslant i \leqslant n\right\}, n \geq 0$, is a set of occurrences of potential redexes in a term M, then an R_{i} is called minimal (with respect to \mathscr{R}) if it properly contains no other $R_{j} \in \mathscr{R}$. (Note that if $n=0$ then $\mathscr{R}=\varnothing$, i.e., M contains no potential redex.)

Let $\mathscr{R}_{M}=\left\{R_{i} \mid 1 \leq i \leq n\right\}, n \geq 0$, be a set of occurrences of contractible redexesin a term M. For any terms M^{*} and $/ M^{\prime}$ such that $M^{*} \equiv_{\mathfrak{A}} M$, we say M^{\prime} is obtained from M^{*} by a minimal complete development (MCD) of

First contract any minimal R_{i}; without loss of generality let $i=1$. By Definition 4.1.1, this leaves $n-1$ contraction-residuals, $R_{2}^{\prime}, R_{3}^{\prime}, \ldots, R_{n}^{\prime}$. Then make as many $1 \mathfrak{A}$-conversions as you like (possibly none), this leaves at most $n-11 \mathfrak{A}$ -conversion-residuals among $R_{2}^{\prime \prime}, R_{3}^{\prime \prime}, \ldots, R_{n}^{\prime \prime}$. Again, contract any minimal $R_{t}^{\prime \prime}$ and
make $1 \mathfrak{A}$-conversions. This leaves at most $n-2$ residuals. Repeat this process until no contraction-residuals are left. Then make as many $1 \mathfrak{A}$-conversions as you like. Finally, make as many α-steps as you like.

Note 4.1.6. [Note 3.2.4]
a. Each MCD is a $\beta \delta$-reduction.
b. For any contractible redex L, if $I \triangleright_{\text {mcd }} M$ of \mathscr{R}_{L}, without α-steps, where $L \notin \mathscr{R}_{L}$, and $M \triangleright_{1 \beta 1 \delta} N$, with M being the potential redex contracted, then $L \triangleright_{\text {mcd }} N$ of $\mathscr{R}_{L} \cup\{L\}$, without α-steps: In fact, for any term L^{\prime} such that $L^{\prime} \equiv_{\mathfrak{A}} L$, $L^{\prime} \triangleright_{\text {mcd }} N$ of $\mathscr{R}_{L} \cup\{L\}$, without α-steps.

Proposition 4.1.7. Let M, N and N^{\prime} be terms. If $M \triangleright_{m c d} N \equiv_{\mathfrak{A}} N^{\prime}$ then $M \triangleright_{m c d}$ N^{\prime}.
aindx

Proof. This follows directly from Corollary 3.1.16.

Lemma 4.1.8. [Lemma 3.2.5] For any term M, if $M \triangleright_{\bmod } N$, then N is a term and
a. if $M \equiv M_{1} \overline{M_{2}}$ and $M \triangleright_{\text {med }} N$ by a sequence of terms $M \equiv K_{1}, \ldots, K_{n} \equiv N$, $n \geq 1$, such that for each $1 \leq i<n, K_{i}$ is not the potential redex which is contracted and $F_{i} \nexists_{12}^{0} N_{i}+$ then $N=N_{1} N_{2}$ fon some terms N_{1} and N_{2} such that $M_{i j} \triangleright_{\text {mcd }} N_{i}, i=1,2$;
c. if $M \equiv(\lambda P . Q \mid A)$ then $N \equiv\left(\lambda P . Q^{\prime} \mid A^{\prime}\right)$ for some abstractions $\lambda P^{\prime} . Q^{\prime}$ and A^{\prime} such that $\lambda P . Q \triangleright_{\text {mcd }} \lambda P^{\prime} . Q^{\prime}$ and $A \triangleright_{\text {mcd }} A^{\prime}$.

Proof. This follows from Notes 3.1.2, 3.2.10, and Lemma 2.2.2.

Lemma 4.1.9. [Lemma 3.2.6] Let P be a pattern with $F V(P)=\left\{x_{1}, \ldots, x_{k}\right\}, k \geq$ 1, and $N, \underline{U}=U_{1}, \ldots, U_{k}$ be terms. Let $\underline{x}=x_{1}, \ldots, x_{k}$. If $[\underline{U} / \underline{x}] P \triangleright_{m c d} N$, then $N \equiv_{\mathfrak{A}}[\underline{V} / \underline{x}] P$ for some terms $\underline{V}=V_{1}, \ldots, V_{k}$ such that $U_{i} \triangleright_{m c d} V_{i}$ for all $1 \leq i \leq k$. Proof. This can be proved in the same way as Lemma 3.2.20.

Lemma 4.1.10. [Lemma 3.2.7] For any terms M, N, and M^{\prime}, if $M \triangleright_{\text {mcd }} N$ and $M \equiv{ }_{\alpha} M^{\prime}$, then $M^{\prime} \triangleright_{\text {mod }} N$.

Lemma 4.1.11. [Lemma 3.2.8] For any distinct variables $\underline{x}=x_{1}, \ldots, x_{k}, k \geq 1$, and any terms $M, N, \underline{U}=U_{1}, \ldots, U_{k}, \underline{V}=V_{1}, \ldots, V_{k}$, if $M \triangleright_{m c d} N$ and $U_{i} \triangleright_{m c d} V_{i}$ for all $1 \leq i \leq k$, then $[\underline{U} / \underline{x}] M \triangleright_{\bmod }[\underline{V} / \underline{x}] N$.

Proof. As in the original proof of these two lemmas (Lemma 3.2.7 and 3.2.8 in [5]), they are proved simultaneously by induction on M, and additionally we may assume that the MCD M dicd N has no α-steps and $\{\underline{x}\} \subseteq F V(M)$. The proof remains unchanged except for the case where $M \equiv M_{1} M_{2}$, which is rewritten as follows. Let $M \triangleright_{\text {mcd }} N$ of \mathscr{R} by a sequence of terms $M \equiv K_{1} \ldots, K_{n} \equiv N, n \geq 1$.

Case 1. $K_{i} \not \equiv_{1 \mathfrak{A}}^{0} K_{i+1}$ for all $1 \leq i<n$.
(1.1) $M \notin \mathscr{R}$.

$$
\begin{aligned}
& \text { This can be proved in the same way as the case when } M \text { is a compound } \\
& \text { abstraction (See Case ini. of the original proof in }[5]) \text {. } \\
& \text { some terms } M_{1}^{0} \text { and } M_{2}^{0} \text { such that } M_{1} \triangleright_{m c d} M_{1}^{0} \text { and } M_{2} \triangleright_{m c d} M_{2}^{0} \text {, both } \\
& \text { without } \alpha \text {-steps, and } M_{1}^{0} M_{2}^{0} \triangleright_{1 \beta 1 \delta} N^{0} \text { with } M_{1}^{0} M_{2}^{0} \text { being the potential } \\
& \text { redex contracted, for some term } N^{0} \text { such that } N^{0} \equiv_{\mathfrak{A}} N \text {. }
\end{aligned}
$$

Proof of 4.1.10.

Since $M \equiv{ }_{\alpha} M^{\prime}$, we have that $M^{\prime} \equiv M_{1}^{\prime} M_{2}^{\prime}$ for some terms M_{1}^{\prime} and M_{2}^{\prime} such that $M_{i}^{\prime} \equiv_{\alpha} M_{i}, i=1,2$. By induction, $M_{i}^{\prime} \triangleright_{m c d} M_{i}^{0}, i=1,2$. Hence $M_{1}^{\prime} \triangleright_{m c d} M_{1}^{*}$ and $M_{2}^{\prime} \triangleright_{m c d} M_{2}^{*}$, both without α-steps, for some terms M_{1}^{*} and M_{2}^{*}, where $M_{i}^{*} \equiv_{\alpha}$ $M_{i}^{0}, i=1,2$. Since $M_{1}^{*} M_{2}^{*} \equiv_{\alpha} M_{1}^{0} M_{2}^{0}$ and $M_{1}^{0} M_{2}^{0} \triangleright_{1 \beta 1 \delta} N^{0}$, by Lemma 3.2.23 $M_{1}^{*} M_{2}^{*} \triangleright_{1 \beta 1 \delta} M^{*}$ for some term M^{*}, where $M^{*} \equiv{ }_{\alpha} N^{0}$. Hence $M^{\prime} \equiv M_{1}^{\prime} M_{2}^{\prime} \triangleright_{\text {med }} M_{1}^{*} M_{2}^{*} \triangleright_{1 \beta 1 \delta} M^{*} \equiv_{\alpha} N^{0}$.

Since $M \equiv \alpha_{2} M^{\prime}$, by Corollary $3.2 .24(\mathrm{~b}) M^{\prime}$ is contractible.
By Note 4.1.6(b), $M^{\prime} \triangleright_{m c d} N^{0}$. Since $N^{0} \equiv_{\mathfrak{A}} N$, by Proposition 4.1.7 $M^{\prime} \triangleright_{\text {mod }} N$

Proof of
Since $M_{1} \triangleright_{\text {med }} M_{1}^{0}$ and $M_{2} \triangleright_{\text {mcd }} M_{2}^{0}$, by induction $[\underline{U} / \underline{x}] M_{i} \triangleright_{\text {mcd }}$
$[\underline{V} / \underline{x}] M_{i}^{0}, i=1,2$. Hence $[\underline{U} / \underline{x}] M_{i} \triangleright_{m c d} M_{i}^{*}$, without α-steps,
for some term M_{i}^{*} such that $M_{i}^{*} \equiv_{\alpha}[\underline{V} / x] M_{i}^{0}, i=1,2$. Since ($M_{1}^{0} M_{2}^{0} \triangleright_{1 \beta 1 \delta} N^{0}$, by Lemmas 3.2.16 and 3.2.17 $[\underline{V} / \underline{x}]\left(M_{1}^{0} M_{2}^{0}\right) \triangleright_{1 \beta 1 \delta}$

낸 N^{*} for some term N^{*}, where $N^{*} \equiv{ }_{\alpha}[\underline{V} / \underline{x}] N^{0}$. Since $M_{1}^{*} M_{2}^{*} \equiv_{\alpha}$
$[\underline{V} / \underline{x}]\left(M_{1}^{0} M_{2}^{0}\right)$, by Lemma 3.2.23 $M_{1}^{*} M_{2}^{*} \triangleright_{1 \beta 1 \delta} M^{*}$ for some

$$
\begin{aligned}
& \equiv_{\alpha} N^{*} \\
& \equiv_{\alpha}[\underline{V} / \underline{x}] N^{0} .
\end{aligned}
$$

Since M is contractible, by Corollary 3.2.18(b), $[\underline{U} / \underline{x}] M$ is
contractible. By Note 4.1.6(b) $[\underline{U} / \underline{x}] M \triangleright_{m c d}[\underline{V} / \underline{x}] N^{0}$. Since $N^{0} \equiv_{\mathfrak{A}} N$, by Proposition 3.1.18 $[\underline{V} / \underline{x}] N^{0} \equiv_{\mathfrak{A}} N^{\prime}$ for some term N^{\prime} such that $N^{\prime} \equiv_{\alpha}[\underline{V} / \underline{x}] N$. Then by Proposition 4.1.7 $[\underline{U} / \underline{x}] M \triangleright_{\text {med }}[\underline{V} / \underline{x}] N$

Case 2. $K_{i} \equiv_{1 \mathfrak{A}}^{0} K_{i+1}$ for some $1 \leq i<n$.
Let k be the first such i. Then $M \triangleright_{m c d} K_{k}$ with $K_{j} \nexists_{12}^{0} K_{j+1}$ for all $1 \leq j<k$. Since $K_{k} \equiv_{1 \mathfrak{A}}^{0} K_{k+1}, K_{k}$ contains no abstractions. Then, since $K_{k} \triangleright_{m c d} N$, it must be that $K_{k} \equiv \mathfrak{A} N$

Proof of 4.1.10.
Since $M \not \equiv_{\alpha} M^{\prime}$, by Case $1 M^{\prime} \triangleright_{m c d} K_{k}$. Then by Proposition 4.1.7 $M^{\prime} \triangleright_{\text {mod }} N$.

Proof of 4.1.11.
By Case 1 we have $[\underline{U} / \underline{x}] M \triangleright_{\text {med }}[\underline{V} / \underline{x}] K_{k}$. Since $K_{k} \equiv_{\mathfrak{A}} N$, by Proposition 3.1,18 $\underline{V / x]} K_{k} \equiv_{\mathscr{A}} N^{\prime}$ for some term N^{\prime} such that

4.2 The Church-Rosser Theorem for $\boldsymbol{\beta} \boldsymbol{\delta}$-Reduction

We first prove the Church-Rosser theoremfor MCD's, where most of the work is done, then use it to prove the Chârch-Rosser theorem for $\beta \delta$-reduction.

Theorem 42.1. (The Church-Rosser Theorem for MCD'sठ ?

For any terms L, M, and N, if $L \triangleright_{m c d} M$ and $L \triangleright_{m c d} N$, then there exists a term T such that $M \triangleright_{m c d} T$ and $N \triangleright_{m c d} T$.

Proof. Let L, M, and N be terms such that $L \triangleright_{m c d} M$ and $L \triangleright_{m c d} N$. Then M (respectively N) is obtained from L by the given MCD of a set \mathscr{R}_{M} (respectively
\mathscr{R}_{N}). By Lemma 4.1.10, it is sufficient to consider the case in which the given MCD's have no α-steps. Induct on L.
i. L is an atom.

Since $L \triangleright_{\text {mcd }} M$ and $L \triangleright_{\text {mcd }} N$, it must be that $M \equiv_{\mathfrak{A}} L \equiv_{\mathfrak{A}} N$ and we are finished by choosing $T \equiv M$.
ii. $L \equiv \lambda P . Q$.

Since $L \triangleright_{\text {mcd }} M$ and $L \triangleright_{\text {med }} N$, both without α-steps, $M \equiv \lambda P . Q^{M}$ and $N \equiv \lambda P . Q^{N}$ for some terms Q^{M} and Q^{N} such that $Q \triangleright_{\text {med }} Q^{M}$ and $Q \triangleright_{m c d} Q^{N}$. By induction, there exists a term Q^{*} such that $Q^{M} \triangleright_{m e d} Q^{*}$ and $Q^{N} \triangleright_{m c d} Q^{*}$. Let $T \equiv \lambda P . Q^{*}$. Then $M \equiv \lambda P . Q^{M} \triangleright_{\text {mod }} \lambda P . Q^{*} \equiv T$ and, similarly, $N \triangleright_{\text {mod }} T$.
iii. $L \equiv(\lambda P \cdot Q \mid A)$

Since $L \triangleright_{\text {mcd }} M$ and $L \triangleright_{\text {med }} N$, both without α-steps, $M \equiv\left(\lambda P \cdot Q^{M} \mid A^{M}\right)$ and $N \equiv\left(\lambda P \cdot Q^{N} \mid A^{N}\right)$ for some terms Q^{M} and Q^{N} and some abstractions A^{M} and A^{N} such that $Q \triangleright_{m c d} Q^{M}, Q \triangleright_{\text {mcd }} Q^{N}, A \triangleright_{\text {mcd }} A^{M}$, and $A \triangleright_{\text {mcd }} A^{N}$. By induction, there exist terms Q^{*} and-such that $Q^{M} \triangleright_{m c d} Q^{*}, Q^{N} \triangleright_{m c d} Q^{*}, A^{M} \triangleright_{m c d} A^{*}$, and $A^{N} \triangleright_{m c d} A^{*}$. By Lemma 4.1.8, A^{*} is also an abstraction. Let $T \equiv\left(\lambda P \cdot Q^{*} \mid A^{*}\right)$. Then $M \equiv\left(\lambda P \cdot Q^{M} \mid A^{M}\right) \triangleright_{m c d}\left(\lambda P \cdot Q^{*} \mid A^{*}\right) \equiv T$ and, similarly, $N \triangleright_{m c d} T$. iv. $L \equiv L_{1} L_{2}$

Case 1. $L \notin \mathscr{R}_{M}$ and $L \notin \mathscr{R}_{N} \cap ?$
 subcases as follows.
(2.1) $L_{1} \equiv \lambda P . Q$.

Since $L \in \mathscr{R}_{M}$ and $(\lambda P . Q) L_{2} \equiv L \triangleright_{m c d} M$, without α-steps, $L \triangleright_{\text {mcd }}$
$\left(\lambda P . Q^{M}\right) L_{2}^{M}$ for some terms Q^{M} and L_{2}^{M} such that $Q \triangleright_{m c d} Q^{M}, L_{2} \triangleright_{\text {mcd }}$ L_{2}^{M}, and $\left(\lambda P . Q^{M}\right) L_{2}^{M} \triangleright_{1 \beta} M^{0} \equiv_{\mathfrak{A}} M$, with $\left(\lambda P . Q^{M}\right) L_{2}^{M}$ being the β redex contracted, for some term M^{0}.
(2.1.1) $L \in \mathscr{R}_{N}$.

Similar to the above, $L \triangleright_{\text {mad }}\left(\lambda P \cdot Q^{N}\right) L_{2}^{N}$ for some terms Q^{N} and L_{2}^{N}, such that $Q \triangleright_{m c d} Q^{N}, L_{2} \triangleright_{\text {mcd }} L_{2}^{N}$, and $\left(\lambda P . Q^{N}\right) L_{2}^{N} \triangleright_{1 \beta} N^{0} \equiv_{\mathfrak{A}} N$, with $\left(\lambda P . Q^{N}\right) I_{2}^{N}$ being the β-redex contracted, for some term N^{0}. By induction, there exist terms Q^{*} and L_{2}^{*} such that $Q^{M} \triangleright_{m c d} Q^{*}$, $Q^{N} \triangleright_{m c d} Q^{*}, L_{2}^{M} \triangleright_{\text {med }} L_{2}^{*}$, and $L_{2}^{N} \triangleright_{m c d} L_{2}^{*}$.
(2.1.1.1) $F V(P)=\varnothing$.

Since $\left(\lambda P \cdot Q^{M}\right) L_{2}^{M} \triangleright_{1 \beta} M^{0}$ and $\left.\left(\lambda P \cdot Q^{N}\right) L_{2}^{N}\right) \triangleright_{1 \beta} N^{0}, M^{0} \equiv Q^{M}$ and $N^{0} \equiv Q^{N}$. Hence $M \equiv_{\mathfrak{A}} M^{0} \equiv Q^{M} \triangleright_{m c d} Q^{*}$. So $M \triangleright_{m c d} Q^{*}$. Similarly for N we have $N \triangleright_{m c d} Q^{*}$. So we are finished with $T \equiv Q^{*}$.
(2.1.1.2) $F V(P)=\left\{x_{1}, \ldots, x_{k}\right\}$.

Since $\left(\lambda P . Q^{M}\right) L_{2}^{M} \triangleright_{1 \beta} M^{0}$ and $\left(\lambda P . Q^{N}\right) L_{2}^{N} \triangleright_{1 \beta} N^{0}$, there exist terms $\underline{U}=U_{1}, \ldots, U_{k}, \underline{V}=V_{1}, \ldots, V_{k}$ such that $[\underline{U} / \underline{x}] P \equiv L_{2}^{M}$, $[\underline{V} / \underline{x}] P \equiv L_{2}^{N}, M^{0} \equiv[\underline{U} / \underline{x}] Q^{M}$, and $N^{0} \equiv[\underline{V} / \underline{x}] Q^{N}$. Since $9910 \underbrace{L_{2}^{M} L_{2}^{*} E_{\mathfrak{A}}\left[\underline{V}_{2}^{*} / \underline{x}\right] P \text { for some ferms } \underline{U}^{\prime}=U_{1}^{\prime}, \ldots, U_{k}^{\prime}, \underline{V}^{\prime}=}_{\text {and }}$
 $1 \leq i \leq k, U_{i}^{\prime} \equiv_{\mathfrak{A}} V_{i}^{\prime}$. Then $U_{i} \triangleright_{m c d} U_{i}^{\prime}$ and since $V_{i} \triangleright_{m c d} V_{i}^{\prime} \equiv_{\mathfrak{A}} U_{i}^{\prime}$,
by Proposition 4.1.7, $V_{i} \triangleright_{m c d} U_{i}^{\prime}$ for all $1 \leq i \leq k$. Let $\underline{W}=$ $U_{1}^{\prime}, \ldots, U_{k}^{\prime}$. Thus by Lemma $4.1 .11 M \equiv_{\mathfrak{A}} M^{0} \equiv[\underline{U} / \underline{x}] Q^{M} \triangleright_{\text {mcd }}$ $[\underline{W} / \underline{x}] Q^{*}$ and $N \equiv_{\mathfrak{A}} N^{0} \equiv[\underline{V} / \underline{x}] Q^{N} \triangleright_{m c d}[\underline{W} / \underline{x}] Q^{*}$. So we are
finished with $T \equiv[\underline{W} / \underline{x}] Q^{*}$.
(2.1.2) $L \notin \mathscr{R}_{N}$.

Since $(\lambda P . Q) L_{2} \equiv D \triangleright_{m c d} N$, without α-steps, $N \equiv_{\mathfrak{A}}\left(\lambda P . Q^{N}\right) L_{2}^{N}$ for some terms Q^{N} and L_{2}^{N} such that $Q \triangleright_{m c d} Q^{N}$ and $L_{2} \triangleright_{m c d} L_{2}^{N}$. By induction, there exist terms Q^{*} and L_{2}^{*} such that $Q^{N} \triangleright_{m c d} Q^{*}$ and $L_{2}^{N} \triangleright_{m c d} L_{2}^{*}$, both without α-steps, and $Q^{M} \triangleright_{m c d} Q^{*}$ and $L_{2}^{M} \triangleright_{m c d} L_{2}^{*}$.

Since $L \equiv(\lambda P \cdot Q) L_{2}$ is contractible, $P \equiv L_{2}$. Then L_{2} contains
no bound variables. Since $L_{2} \triangleright_{\text {mcd }} L_{2}^{N}$, actually $L_{2} \equiv_{\mathfrak{A}} L_{2}^{N}$, and 2) \quad (ढ) $N \equiv_{\mathfrak{A}}\left(\lambda P \cdot Q^{N}\right) L_{2}^{N}$

Since $\left(\lambda P . Q^{N}\right) L_{2}$ is contractible, by Note 4.1.6(b) $N \triangleright_{m c d} Q^{*}$. Also, since $\left(\lambda P . Q^{M}\right) L_{2}^{M} \triangleright_{1 \beta} M^{0}, M \equiv \equiv_{\mathcal{A}} M^{0} \equiv Q^{M} \triangleright_{m c d} Q^{*}$, so we are finished with $T \equiv Q^{*}$.
(2.1.2.2) $E V(P)=\left\{x_{1}, \ldots, x_{k}\right\}$.

 is contractible, there exist terms $\underline{W}=W_{1}, \ldots, W_{k}$ such that $[\underline{W} / \underline{x}] P \equiv L_{2}$. Then since $L_{2} \triangleright_{m c d} L_{2}^{N}$, by Lemma 4.1.9, $L_{2}^{N} \equiv_{\mathfrak{A}}\left[\underline{W^{\prime}} / \underline{x}\right] P$ for some terms $\underline{W}^{\prime}=W_{1}^{\prime}, \ldots, W_{k}^{\prime}$. Again since $L_{2}^{N} \triangleright_{m c d} L_{2}^{*}$, we have $L_{2}^{*} \equiv_{\mathfrak{A}}\left[\underline{W^{\prime \prime}} / \underline{x}\right] P$ for some terms
$\underline{W}^{\prime \prime}=W_{1}^{\prime \prime}, \ldots, W_{k}^{\prime \prime}$ such that $W_{i}^{\prime} \triangleright_{m c d} W_{i}^{\prime \prime}$ for all $1 \leq i \leq k$. Since $\left[\underline{W}^{\prime \prime} / \underline{x}\right] P \equiv_{\mathfrak{A}} L_{2}^{*} \equiv_{\mathfrak{A}}[\underline{V} / \underline{x}] P$, by Lemma 3.1.13, $W_{i}^{\prime \prime} \equiv_{\mathfrak{A}}$ V_{i} for all $1 \leq i \leq k$. Then

Proposition 4.1.7, $N \triangleright_{m c d}[\underline{V} / \underline{x}] Q^{*}$. Also, by Lemma 4.1.11, we have $M \equiv_{\mathfrak{A}} M^{0} \equiv[\underline{U} / \underline{x}] Q^{M} \triangleright_{\text {med }}[\underline{V} / \underline{x}] Q^{*}$, so we are finished with $T \equiv \underline{x} Q^{2}$
$(2.2) L_{1} \equiv(\lambda P . Q \mid A)$
Since $L \in \mathscr{R}_{M}$ and $(\lambda P . Q \mid A) L_{2} \equiv L \triangleright_{\text {mcd }} M$, without α-steps,
$L \square_{m o d}\left(\lambda P \cdot Q^{M} \mid A^{M}\right) L_{2}^{M}$ for some terms Q^{M} and L_{2}^{M} and some abstraction A^{M} such that $Q \triangleright_{m c d} Q^{M}, A \triangleright_{m c d} A^{M}, L_{2} \triangleright_{m c d} L_{2}^{M}$, and $\left(\lambda P \cdot Q^{M}, A^{M}\right) L_{2}^{M} \triangleright_{1 \delta} M^{0} \equiv_{\mathfrak{A}} M$, with $\left(\lambda P \cdot Q^{M} \mid A^{M}\right) L_{2}^{M}$ being the
 $L_{2} \triangleright_{m c d} L_{2}^{N}$, and $\left(\lambda P . Q^{N} \mid A^{N}\right) L_{2}^{N} \triangleright_{1 \delta} N^{0} \equiv_{\mathfrak{A}} N$, with $\left(\lambda P . Q^{N} \mid\right.$ $\left.A^{N}\right) L_{2}^{N}$ being the δ-redex contracted, for some term N^{0}. By induction, there exist terms Q^{*}, A^{*} and L_{2}^{*} such that $Q^{M} \triangleright_{m c d} Q^{*}$, $Q^{N} \triangleright_{m c d} Q^{*}, A^{M} \triangleright_{m c d} A^{*}, A^{N} \triangleright_{m c d} A^{*}, L_{2}^{M} \triangleright_{m c d} L_{2}^{*}$, and $L_{2}^{N} \triangleright_{m c d} L_{2}^{*}$.
(2.2.1.1) $\left(\lambda P . Q^{M} \mid A^{M}\right) L_{2}^{M} \triangleright_{1 \delta}\left(\lambda P . Q^{M}\right) L_{2}^{M}$.

Then $\left(\lambda P . Q^{M}\right) L_{2}^{M}$ is a β-redex and $M^{0} \equiv\left(\lambda P . Q^{M}\right) L_{2}^{M}$. Since $L_{2}^{M} \triangleright_{\text {mcd }} L_{2}^{*}$, by Lemmas 3.2.15 and 3.2.22 and Note 4.1.6(a) there exists a term L_{2}^{0} such that $L_{2}^{*} \equiv_{\mathfrak{A}} L_{2}^{0}$ and $\left(\lambda P . Q^{N}\right) L_{2}^{0}$ is a β-redex. Since $L_{2}^{N} \triangleright_{\text {med }} L_{2}^{*} \equiv_{2} L_{2}^{0}$, we have that $L_{2}^{N} \triangleright_{\beta \delta} L_{2}^{0}$, and so $L_{2}^{N} \triangleright_{\beta \gamma} L_{2}^{0}$. Hence $\left(\lambda P \cdot Q^{N} \mid A^{N}\right) L_{2}^{N} \not \diamond_{1 \delta} A^{N} L_{2}^{N}$. Since $\left(\lambda P \cdot Q^{N} / A^{N}\right) L_{2}^{N} \triangleright_{1 \delta} N^{0}$, it must be that $N^{0} \equiv\left(\lambda P \cdot Q^{N}\right) L_{2}^{N}$. Thus $M \equiv_{\mathfrak{R}}, M^{0} \equiv\left(\lambda P \cdot Q^{M}\right) L_{2}^{M} \triangleright_{\operatorname{mcd}}\left(\lambda P \cdot Q^{*}\right) L_{2}^{*}$ and $N \equiv_{\mathfrak{A}}$ $N^{0} \equiv\left(\lambda P \cdot Q^{N}\right) L_{2}^{N} \triangleright_{m c d}\left(\lambda P \cdot Q^{*}\right) L_{2}^{*}$ so we are finished with $T \equiv$ $\left(\lambda P \cdot Q^{*}\right) L_{2}^{*}$.
(2.2.1.2) $\left(\lambda P . Q^{M} \mid A^{M}\right) L_{2}^{M} \triangleright 1 \delta A^{M} L_{2}^{M}$.

Suppose $\left(\lambda P \cdot Q^{N}\right) L_{2}^{N}$ is a β-redex. Since $L_{2}^{N} \triangleright_{m c d} L_{2}^{*}$, an argument similar to the one above shows that $\left(\lambda P . Q^{M}\right) L_{2}^{0}$ is a β-redex for some term L_{2}^{0} such that $L_{2}^{*} \equiv_{\mathfrak{A}} L_{2}^{0}$. Since $L_{2}^{M} \triangleright_{\text {mcd }}$ $L_{2}^{*} \equiv_{2} L_{2}^{0}$, we have that $L_{2}^{M} \triangleright_{\beta \delta} L_{2}^{0}$, and thus $L_{2}^{M} \triangleright_{\beta \gamma} L_{2}^{0}$. Hence $\left(\lambda P \cdot Q^{M} \not A^{M}\right) L_{2}^{M} \propto_{1 \delta} A^{M} L_{2}^{M}$, a contradiction. So $\left(\lambda P . Q^{N}\right) L_{2}^{N}$ $=$ is not a β-redex. Since $\left(\lambda P . Q^{N} \mid A^{N}\right) L_{2}^{N} \triangleright_{1 \delta} N, N \equiv A^{N} L_{2}^{N}$. Thus $M \equiv A^{M} L_{2}^{M} \triangleright_{m c d} A^{*} L_{2}^{*}$ and $N \equiv A^{N} L_{2}^{N} \triangleright_{m c d} A^{*} L_{2}^{*}$ so we are finished with $T \equiv A^{*} \mathcal{L}_{2}^{*}$.

Since $(\lambda P . Q \mid A) L_{2} \equiv L \triangleright_{m c d} N$, without α-steps, $N \equiv \mathscr{F}\left(\lambda P . Q^{N} \mid\right.$ ค9ค~ $9 A^{N} L_{2}^{N}$ for some terms Q^{N} and L_{2}^{N} and some abstraction A^{N} such
that $Q \triangleright_{m c d} Q^{N}, A \triangleright_{m c d} A^{N}$, and $L_{2} \triangleright_{m c d} L_{2}^{N}$. By induction, there exist terms Q^{*}, A^{*}, and L_{2}^{*}, such that $Q^{N} \triangleright_{m c d} Q^{*}, A^{N} \triangleright_{\text {mcd }} A^{*}$, and $L_{2}^{N} \triangleright_{m c d} L_{2}^{*}$, all without α-steps, and $Q^{M} \triangleright_{m c d} Q^{*}, A^{M} \triangleright_{m c d} A^{*}$, and $L_{2}^{M} \triangleright_{m c d} L_{2}^{*}$. Note that A^{*} is an abstraction by Lemmas 3.2.14 and
4.1.8.
(2.2.2.1) $\left(\lambda P . Q^{M} \mid A^{M}\right) L_{2}^{M} \triangleright_{1 \delta}\left(\lambda P . Q^{M}\right) L_{2}^{M}$.

Then $\left(\lambda P . Q^{M}\right) L_{2}^{M}$ is a β-redex and $M^{0} \equiv\left(\lambda P . Q^{M}\right) L_{2}^{M}$. Since $L_{2}^{M} \triangleright_{m c d} L_{2}^{*}$, there exists a term L_{2}^{0} such that $L_{2}^{*} \equiv_{\mathfrak{A}} L_{2}^{0}$ and $\left(\lambda P \cdot Q^{N}\right) L_{2}^{0}$ is a β-redex. So

Then by Proposition 4.1.7, $M \triangleright_{m c d}\left(\lambda P . Q^{*}\right) L_{2}^{0}$ and $N \triangleright_{m c d}\left(\lambda P . Q^{*}\right) L_{2}^{0}$,
so we are finished with $T \equiv\left(\lambda P . Q^{*}\right) L_{2}^{0}$.
 U_{1}, \ldots, U_{k}. Since $L_{2}^{M} \triangleright_{m c d} L_{2}^{*}$, we have that $L_{2}^{M} \triangleright_{\beta \delta} L_{2}^{*}$. By Corollary 3.2.18(a), $[\underline{U} / \underline{x}] L_{2}^{M} \triangleright_{\beta \delta}[\underline{U} / \underline{x}] L_{2}^{*}$, so $[\underline{U} / \underline{x}] L_{2}^{M} \triangleright_{\beta \gamma}[\underline{U} / \underline{x}] L_{2}^{*}$. Since the relation $\triangleright_{\beta \gamma}$ is transitive, $[\underline{U} / \underline{x}] L_{2}^{M} \triangleright_{\beta \gamma} L_{2}^{+}$. Since $\left(\lambda P . Q^{*}\right) L_{2}^{+}$is a β-redex, $\left(\lambda P . Q^{M}\right) L_{2}^{+}$is also a β-redex. Hence
$\left(\lambda P . Q^{M} \mid A^{M}\right) L_{2}^{M} \not \wp_{1 \delta} A^{M} L_{2}^{M}$, a contradiction. Thus ($\lambda P . Q^{*} \mid$ $\left.A^{*}\right) L_{2}^{*} \triangleright_{1 \delta} A^{*} L_{2}^{*}$. Hence $M \equiv_{\mathfrak{A}} M^{0} \equiv A^{M} L_{2}^{M} \triangleright_{\text {mcd }} A^{*} L_{2}^{*}$ and $N \equiv\left(\lambda P . Q^{N} \mid A^{N}\right) L_{2}^{N} \triangleright_{m c d}\left(\lambda P . Q^{*} \mid A^{*}\right) L_{2}^{*} \triangleright_{1 \delta} A^{*} L_{2}^{*}$ so we are finished with $T \equiv A^{*} L_{2}^{*}$.

Theorem 4.2.2. (The Church-Rosser Theorem for $\boldsymbol{\beta} \delta$-reduction) For any terms L, M, and N, if $L \triangleright_{\beta \delta} M$ and $L \triangleright_{\beta \delta} N$, then there exists a term T such that $M \triangleright_{\beta \delta} T$ and $N \triangleright_{\beta \delta} T$.

Proof. Using the fact that our new $\triangleright_{\beta \delta}$ allows $\equiv_{\mathfrak{A}}$, and a single $\equiv_{\mathfrak{A}}$ is an $\triangleright_{\text {mcd }}$, the proof remains the same as in [5].

$4.3 \quad \beta \delta$-Normal Form and $\beta \delta$-Equality

Definition 4.3.1. For any abstraction A and any term $N, A N$ is called a contractible redex if $A N$ is either a β-redex or a δ-redex.

Definition 4.3.2. A term M which contains no contractible redexes is called a $\boldsymbol{\beta} \boldsymbol{\delta}$-normal form. For any terms M and N, if $M \triangleright_{\beta \delta} N$ and N is a $\beta \delta$-normal form, then N is called a $\boldsymbol{\beta} \boldsymbol{\delta}$-normal form of M.

Lemma 4.3.3. [Lemma 3.1.15] For any- $\beta \delta$-normal form M and any term N, if $M \triangleright_{\beta \delta} N$, then $M \equiv_{2} M^{\prime} \#_{\alpha} N$ for some term M^{\prime}. $\left.?\right\}$
Proof. The essence of the proof remains unchanged. By inducting on the length Oof the sequence of reduction, we show that there is no $\nabla_{1 \beta 1 \delta}$ in the sequence. Then by Corollary 3.1 .16 , we can rearrange $\equiv_{\mathfrak{A}}$'s and \equiv_{α} 's in any order.

Corollary 4.3.4. [Corollary 3.3.3] For any term L, if L has $\beta \delta$-normal forms M and N, then $M \equiv_{\mathfrak{A}} M^{\prime} \equiv_{\alpha} N$ for some term M^{\prime}.

Proof. Let L, M, and N be terms such that $L \triangleright_{\beta \delta} M$ and $L \triangleright_{\beta \delta} N$, and M and N are $\beta \delta$-normal forms. By Theorem 4.2.2, there exists a term T such that $M \triangleright_{\beta \delta} T$ and $N \triangleright_{\beta \delta} T$. Then by Lemma 4.3.3, $M \equiv_{\mathfrak{A}} M^{\prime} \equiv_{\alpha} T \equiv_{\alpha} N^{\prime} \equiv_{\mathfrak{A}} N$ for some terms M^{\prime} and N^{\prime}. So by Corollary 3.1.16, we have $M \equiv_{\mathfrak{A}} T^{\prime} \equiv_{\alpha} N$ for some term T^{\prime}.

All other theorems and Femmas about $\beta \delta$-normal forms and $\beta \delta$-equality in [5] can be stated and proved in a similar fashion, by using the fact that the new $\triangleright_{\beta \delta}$ allows $\equiv_{\mathfrak{A}}$, and a single $\equiv_{\mathfrak{A}}$ is an $\triangleright_{\text {mcd }}$. The proofs may require some minor modifications to accommodate the new congruence $\equiv \mathfrak{A}$.

CHAPTER V

RECURSIVENESS AND COMPUTABILITY RELATIVE TO A STRUCTURE

To justify the word "computable", we need to show that our new computability relative to a structure is equivalent to recursiveness. Given the standard structure $\mathfrak{N}=\left(\mathbb{N},\left\{\mathbf{S}^{\mathfrak{N}}\right\},\left\{\mathbf{0}^{\mathfrak{N}}\right\}\right)$ for the language of natural numbers $\mathcal{L}=\{\mathbf{S}, \mathbf{0}\}$, we will show that every total recursive function on \mathbb{N} is computable relative to \mathfrak{N}. The proof of the converse will be discussed in the next chapter. We begin by first reviewing the definition of recursive function.

5.1 Recursive Functions

The definitions concerning recursive functions in this section are summarized from [3].

Definition 5.1.1. The following functions are called initial functions.
i. The zero function, $g(a)=0$ for all $a \in \mathbb{N}$.
ii. The successor function, $g(a)=a+1$ for all $a \in \mathbb{N}$. $?$

Definition 5.1.2. The function g is said to be obtained by composition from
the functions $h\left(y_{1}, \ldots, y_{m}\right), k_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, k_{m}\left(x_{1}, \ldots, x_{n}\right)$ if

$$
g\left(x_{1}, \ldots, x_{n}\right)=h\left(k_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, k_{m}\left(x_{1}, \ldots, x_{n}\right)\right) .
$$

Definition 5.1.3. The function g is said to be obtained by primitive recursion from the functions $h\left(x_{1}, \ldots, x_{n}\right)$ and $k\left(x_{1}, \ldots, x_{n+2}\right)$ if

$$
\begin{aligned}
g\left(x_{1}, \ldots, x_{n}, 0\right) & =h\left(x_{1}, \ldots, x_{n}\right) \\
g\left(x_{1}, \ldots, x_{n}, y+1\right) & =k\left(x_{1}, \ldots, x_{n}, y, g\left(x_{1}, \ldots, x_{n}, y\right)\right) .
\end{aligned}
$$

Definition 5.1.4. If $h\left(x_{1}, \ldots, x_{n}, y\right)$ is a functions such that for any x_{1}, \ldots, x_{n} there exists a y such that $h\left(x_{1}, f, x_{n}, y\right)=0$, then we denote the least y such that $h\left(x_{1}, \ldots, x_{n}, y\right)=0$ by $\mu y\left(h\left(x_{1}, \ldots, x_{n}, y\right)=0\right)$.

The function g is said to be abtained by restricted minimization from $h\left(x_{1}, \ldots, x_{n}, y\right)$ if $g\left(x_{1}, \ldots, x_{n}\right)=\overline{\mu y}\left(h\left(x_{1}, \ldots, x_{n}, y\right)=0\right)$.

Definition 5.1.5. A function is said to be recursive if and only if can be obtained from the initial functions by any finite number of applications of composition, primitive recursion and restricted minimization.

5.2 Recursiveness Implies Computability Relative to \mathfrak{N}

In order to show that a total recursive function on \mathbb{N} is computable relative to \mathfrak{N}, we will first show that the initial functions on \mathbb{N} are computable relative to \mathfrak{N}, and then that the above rules for obtaining new recursive functions preserve the computability relative to $9 \cap \& 9 \% 9 N ? \cap ?$

i. The zero function, $g(a)=0$ for all $a \in \mathbb{N}$.

Consider the term $G \equiv \lambda x$.0. Since $\mathbf{0}^{\mathfrak{N}}=0$, for any $a \in \mathbb{N}, G \bar{a} \equiv(\lambda x .0) \bar{a} \triangleright_{1 \beta}$ $\mathbf{0} \equiv_{\mathfrak{N}} \overline{0}$, so we have $G \bar{a} \triangleright_{\beta \delta} \overline{0}$. Hence the zero function is computable relative to \mathfrak{N}.
ii. The successor function, $g(a)=a+1$ for all $a \in \mathbb{N}$.

Consider the term \mathbf{S}. Since for any $a \in \mathbb{N}, \mathbf{S}^{\mathfrak{N}}(a)=a+1$, we have that $\mathbf{S} \bar{a} \equiv_{\mathfrak{N}}$ $\overline{a+1}$, and thus $\mathbf{S} \bar{a} \triangleright_{\beta \delta} \overline{a+1}$. Hence the successor function is computable relative to \mathfrak{N}.
iii. The projection function, $g_{i}^{n}\left(a_{1}, \ldots, a_{n}\right)=a_{i}$ for all $a_{1}, \ldots, a_{n} \in \mathbb{N}$.

Consider the term $G \equiv \lambda x_{1} \ldots . \lambda x_{n} . x_{i}$. Since for all $a_{1}, \ldots a_{n} \in \mathbb{N}$,

we have $G \bar{a}_{1} \bar{a}_{2} \ldots \bar{a}_{n} \nabla_{\beta-} a_{i}$. Hence the projection function is computable relative to \mathfrak{N}.

5.2.2 Composition

Let $g\left(x_{1}, \ldots x_{n}\right)$ be a total function on \mathbb{N} obtained by composition from the functions $h\left(y_{1}, \ldots, y_{m}\right)$ and $k_{i}\left(x_{1}, \ldots, x_{n}\right), 1 \leq \imath<m$ as follows,

exist terms H and K_{i} corresponding to the functions h and k_{i} for all $1 \leq i \leq m$ respectively. Let $a_{1}, \ldots, a_{n} \in \mathbb{N}$, and $a=g\left(a_{1}, \ldots, a_{n}\right)$. Then $h\left(k_{1}\left(a_{1}, \ldots, a_{n}\right), \ldots, k_{m}\left(a_{1}, \ldots, a_{n}\right)\right)=a$. Suppose $k_{i}\left(a_{1}, \ldots, a_{n}\right)=b_{i}$ for some $b_{i} \in \mathbb{N}, 1 \leq i \leq m$. Then $K_{i} \bar{a}_{1} \ldots \bar{a}_{n} \triangleright_{\beta \delta} \bar{b}_{i}$ for all $1 \leq i \leq m$. Also we have
$h\left(b_{1}, \ldots, b_{m}\right)=a$, so $H \bar{b}_{1} \ldots \bar{b}_{m} \triangleright_{\beta \delta} \bar{a}$. Now consider the term
$G \equiv \lambda x_{1} \ldots \lambda x_{n} . H\left(K_{1} x_{1} \ldots x_{n}\right) \ldots\left(K_{m} x_{1} \ldots x_{n}\right)$. Since

$$
\begin{aligned}
G \bar{a}_{1} \ldots \bar{a}_{n} & \equiv\left(\lambda x_{1} \ldots \lambda x_{n} \cdot H\left(K_{1} x_{1}, \ldots x_{n}\right) \ldots\left(K_{m} x_{1} \ldots x_{n}\right)\right) \bar{a}_{1} \ldots \bar{a}_{n} \\
& \triangleright_{1 \beta}\left[\bar{a}_{1} / x_{1}\right]\left(\lambda x_{2} \ldots \lambda x_{n} \cdot H\left(K_{1} x_{1} \ldots x_{n}\right) \ldots\left(K_{m} x_{1} \ldots x_{n}\right)\right) \bar{a}_{2} \ldots \bar{a}_{n} \\
& \vdots \\
& \left.\triangleright_{1 \beta}\left[\bar{a}_{n} / x_{n}\right] \ldots \bar{a}_{1} \mid x_{1}\right]\left(H\left(K_{1} x_{1} \ldots x_{n}\right) \ldots\left(K_{m} x_{1} \ldots x_{n}\right)\right) \\
& \equiv H\left(K_{1} \bar{a}_{1} \ldots \bar{a}_{n}\right) \cdots\left(K_{m} \bar{a}_{1} \ldots \bar{a}_{n}\right) \\
& \triangleright_{\beta \delta} H \bar{b}_{1} \ldots \bar{b}_{m} \\
& \triangleright_{\beta \delta} \bar{a},
\end{aligned}
$$

we have $G \bar{a}_{1} \bar{a}_{2} \ldots \bar{a}_{n} \triangleright_{\beta \delta} \bar{a}$. Hence composition preserves computability relative to \mathfrak{N}.

5.2.3 Primitive Recursion

Let $g\left(x_{1}, \ldots, x_{n+1}\right)$ be a total function on \mathbb{N} obtained by primitive recursion from the functions $h\left(x_{1}, \ldots, x_{n}\right)$ and $k\left(x_{1}, \ldots, x_{n+2}\right)$ as follows:

where h and k are computable relative to \mathfrak{N}. Then there exist terms H and K Oconresponding to the functions h and k respectively. qet $a_{1}, \Omega a_{n}, m \in \mathbb{N}$, and $a=g\left(a_{1}, \ldots, a_{n}, m\right)$. Consider the term $G \equiv \mathrm{Y} P$ where Y is a fixed-point combinator* and $P \equiv \lambda f . \lambda x_{1} \ldots \lambda x_{n} .\left(\lambda \mathbf{0} . H x_{1} \ldots x_{n} \mid \lambda \mathbf{S} y . K x_{1} \ldots x_{n} y\left(f x_{1} \ldots x_{n} y\right)\right)$.

[^0]Then for any term M we have

$$
\begin{aligned}
G \bar{a}_{1} \ldots \bar{a}_{n} M \equiv & \mathrm{Y} P \bar{a}_{1} \ldots \bar{a}_{n} M \triangleright_{\beta} P(\mathrm{Y} P) \bar{a}_{1} \ldots \bar{a}_{n} M \equiv P G \bar{a}_{1} \ldots \bar{a}_{n} M \\
\equiv & \left(\lambda f \cdot \lambda x _ { 1 } \ldots \lambda x _ { n } \cdot \left(\lambda \mathbf{0} \cdot H x_{1} \ldots x_{n} \mid\right.\right. \\
& \left.\left.\lambda \mathbf{S} y \cdot K x_{1} \ldots x_{n} y\left(f x_{1} \ldots x_{n} y\right)\right)\right) G \bar{a}_{1} \ldots \bar{a}_{n} M \\
& \triangleright_{\beta}\left[\bar{a}_{n} / x_{n}\right] \ldots\left[\bar{a}_{1} / x_{1}\right][G \mid f]\left(\lambda \mathbf{0} \cdot H x_{1} \ldots x_{n} \mid\right. \\
& \left.\lambda \mathbf{S} y \cdot K x_{1} \ldots x_{n} y\left(f x_{1} \ldots x_{n} y\right)\right) M \\
& \equiv\left(\lambda 0 \cdot H \bar{a}_{1} \ldots \bar{a}_{n} \mid \lambda \mathbf{S} y \cdot K \bar{a}_{1} \ldots \bar{a}_{n} y\left(G \bar{a}_{1} \ldots \bar{a}_{n} y\right)\right) M .
\end{aligned}
$$

If $m=0$, since H corresponds to h and $h\left(a_{1}, \ldots, a_{n}\right)=g\left(a_{1}, \ldots, a_{n}, 0\right)=a$, we have $H \bar{a}_{1} \ldots \bar{a}_{n} \triangleright_{\beta \delta} \bar{a}$. Hence
$G \bar{a}_{1} \ldots \bar{a}_{n} \overline{0} \equiv_{\mathfrak{N}} G \bar{a}_{1} \ldots \bar{a}_{n} 0$
$\nabla_{\beta}\left(\lambda \mathbf{0} H \mu_{1} \ldots \bar{a}_{n} \mid \lambda \mathbf{S} y . K \bar{a}_{1} \ldots \bar{a}_{n} y\left(G \bar{a}_{1} \ldots \bar{a}_{n} y\right)\right) \mathbf{0}$

so we have $G \bar{a}_{1} \ldots . \bar{a}_{n} \overline{0} \triangleright_{\beta \delta} \bar{a}$. Suppose $m=p+1$ for some $p \in \mathbb{N}$. Let $b=$ $g\left(a_{1}, \ldots, a_{n}, p\right)$, so $k\left(a_{1} \ldots, a_{n}, p, b\right)=k\left(a_{1}, . ., a_{n}, p, g\left(a_{1}, \ldots, a_{n}, p\right)\right)=g\left(a_{1}, \ldots, a_{n}, p+\right.$ $1)=a$. Since K corresponds to \bar{k}, we have $K \bar{a}_{1} \cdots \bar{a}_{n} \bar{b} \bar{b} \triangleright \frac{\beta \delta}{\bar{a}}$. Alse, by the inducจุหาลงกรณ์มหาวิทยาลัย
tion hypothesis, we have $G \bar{a}_{1} \ldots \bar{a}_{n} \bar{p} \triangleright_{\beta \delta} \bar{b}$. Now since

$$
\begin{aligned}
G \bar{a}_{1} \ldots \bar{a}_{n} \bar{m} & =G \bar{a}_{1} \ldots \bar{a}_{n} \overline{p+1} \equiv_{\mathfrak{N}} G \bar{a}_{1} \ldots \bar{a}_{n}(\mathbf{S} \bar{p}) \quad\left(\because \mathbf{S}^{\mathfrak{N}}(p)=p+1\right) \\
& \triangleright_{\beta}\left(\lambda \mathbf{0} \cdot H \bar{a}_{1} \ldots \bar{a}_{n} \mid \lambda \mathbf{S} y \cdot K \bar{a}_{1} \ldots \bar{a}_{n} y\left(G \bar{a}_{1} \ldots \bar{a}_{n} y\right)\right)(\mathbf{S} \bar{p}) \\
& \triangleright_{1 \delta}\left(\lambda \mathbf{S} y \cdot K \bar{a}_{1} \ldots \bar{a}_{n} y\left(G \bar{a}_{1} \ldots \bar{a}_{n} y\right)\right)(\mathbf{S} \bar{p}) \\
& \triangleright_{1 \beta}[\bar{p} / y]\left(K \overline { a } _ { 1 } \ldots \overline { a } _ { n } y \left(G \bar{a}_{\left.\left.1 \ldots \bar{a}_{n} y\right)\right)}\right.\right.
\end{aligned}
$$

we have $G \bar{a}_{1} \ldots \bar{a}_{n} \bar{m} \triangleright_{\beta \delta} \bar{a}$. By induction, we conclude that $G \bar{a}_{1} \ldots \bar{a}_{n} \bar{m} \triangleright_{\beta \delta} \bar{a}$ for all m. Hence primitive recursion preserves computability relative to \mathfrak{N}

5.2.4 The Restricted Minimization

Let $g\left(x_{1}, \ldots, x_{n}\right)$ be a total function on \mathbb{N} obtained by restricted minimization

where h is computablerelative to \mathfrak{N}. Then there exists a term H corresponding to the fünction h. Let $a_{1}, \ldots, a_{n} \in \mathbb{N}$. Let $a \neq g\left(a_{1}, \ldots, a_{n}\right)$. Consider the term $G \equiv G^{\prime} \mathbf{0}$ where $G^{\prime} \equiv \mathrm{Y} P$ and

Case 1. $a=0$.
Then $h\left(a_{1}, \ldots, a_{n}, 0\right)=0$. Since H corresponds to h, we have $H \bar{a}_{1} \ldots \bar{a}_{n} \overline{0} \triangleright_{\beta \delta}$
$\overline{0} \equiv_{\mathfrak{N}} \mathbf{0}$. Then

so we have $G \bar{a}_{1} \ldots \bar{a}_{n} \triangleright_{\beta \delta} \bar{a}$.

Case 2. $a \neq 0$.
Then $a=b+1$ for some $b \in \mathbb{N}$. Since $g\left(a_{1}, \ldots, a_{n}\right)=a$, we have $h\left(a_{1}, \ldots, a_{n}, a\right)=$ 0 , and for all $\mathfrak{x} \leq h, h\left(a_{1}, \ldots, a_{n}, x\right) \neq 0$. Since H corresponds to h, we have $H_{1} \bar{a}_{1} \cdot \bar{a}_{n} \bar{a} \otimes_{\beta \delta} 0 \equiv_{n} 0$, and by the Church-Rosser theorem for $\beta \delta$-reduction, จุหาลงกรณ์มหาวิทยาลัย
$H \bar{a}_{1} \ldots \bar{a}_{n} \bar{x} \not \downarrow_{\beta \delta} \overline{0} \equiv_{\mathfrak{N}} \mathbf{0}$ for all $x \leq b$. Then

5.2.5 Recursive Functions

Since the initial functions are all computable relative to \mathfrak{N} and the applications of composition, primitive recursion, and restricted minimization to total functions all
preserve computability relative to \mathfrak{N}, we have that every total recursive function on \mathbb{N} is computable relative to \mathfrak{N}.

CHAPTER VI

ARITHMETIZATION

In the previous chapter, we showed that every total recursive function on \mathbb{N} is computable relative to \mathfrak{N}. Unfortunately, although we believe the converse of the theorem holds, we have not been able to prove it yet. Nevertheless, the proof will most likely employ the technique of arithmetization, i.e., Gödel coding of terms and reductions (as in done in the proof of Gödel's Incompleteness Theorem, see [3]). Therefore, in this chapter, we will construct a Gödel coding for each element of the lambda calculus with patterns and define some auxiliary relations and functions. Then we will show a partial proof of the converse and point out where the problems are. Let $\mathfrak{N} \leq\left(\mathbb{N},\left\{S^{\mathfrak{N}}\right\},\left\{0^{\mathscr{N}}\right\}\right)$ be the standard structure for the language of arithmetic $\mathcal{L}=\{5,0\}$

6.1 Gödel Coding

In order to code reduction sequences, we start by assigning an odd positive integer to each symbol, then code terms and reductions.

6.1.1 Symbols

OFor each symbol u of our λ P-calculus, the code for u is called the Gödel number
of u, represented by $g(u)$.
Case 1. Basic symbols:

$$
g(()=3, g())=5, g(,)=7, g(\cdot)=9, g(\lambda)=11, g(\mid)=13, g(\varnothing)=15 .
$$

Case 2. Contraction symbols:

$$
g\left(\triangleright_{1 \beta}\right)=17, g\left(\triangleright_{1 \gamma}\right)=19, g\left(\triangleright_{1 \delta}\right)=21 .
$$

Case 3. Congruence symbols:

$$
g\left(\equiv_{1 \alpha}\right)=23, g\left(\equiv_{1 \mathfrak{N}}\right)=25 .
$$

Case 4. Constants:
$g(0)=31, g(S)=39, g(T)=47, g(F)=55$,
and $g(\bar{k})=7+8(k+7)=63+8 k$ where $k \geq 0$.
Case 5. Variables: $g\left(v_{k}\right)=5+8(k+2)=21+8 k$ where $k \geq 1$.

Then the Gödel numbers of all symbols are odd positive integers. Moreover, when divided by $8, g(u)$ leaves a remainder of 5 when u is a variable, and a remainder of 7 when u is an individual constant. Note that there is no specific reason for choosing the number 8 other than to follow Gödel's convention. We could have choosen the Gödel numbers of variables and constants such that when divided by 4, $g(u)$ leaves a remainder of 1 when u is a variable, and a remainder of 3 when u is an individual constant, and the essence of the proof remains unaffected.

Also by Gödel's convention, we coded every symbol as an odd positive integer, and will code expressions and sequences of expressions (in our case, reductions) as even positive integers with different exponent of 2 in their prime power factorization to ensure the uniqueness of the code.

We code an expression $M \equiv u_{1} u_{2} \ldots u_{k}$ by

$$
g(M)=2^{g\left(u_{1}\right)} 3^{g\left(u_{2}\right)} \ldots p_{k}^{g\left(u_{k}\right)}
$$

where each u_{i} is a symbol, and p_{k} denotes the $k^{\text {th }}$ prime number. Note that the Gödel number of an expression is an even positive integer and the exponent of 2 in its prime power factorization is odd.

6.1.3 Terms

For convenience in coding terms, we will rearrage the symbols of a term as a rooted binary tree. We first let \varnothing denote an empty tree, then represent a nonempty tree by the expression (M, L, R), where M is its root and L and R are the left and right subtrees of the tree, respectively. Note that a leaf is represented by a tree with empty left and right subtrees, i.e., ($M, \varnothing, \varnothing$).

A term can be represented as follows.

Case 1. Atom: t
Represented by the leaf $(t, \varnothing, \varnothing)$ where t is a variable or a constant.
Case 2. Application: $(M N)$,
Represented by $(. m, n)$ where m and n are the tree representations for the terms M and N respectively.

Case 3. Simple abstraction: $(\lambda P . Q)$
Represented by ($\lambda, p, q)$ wherepp is the tree reprēsentation for the pattern P and q is the tree representation for the term Q. $\|$
 abstraction M and a is the tree representation for the abstraction A.

The Gödel number of a nonempty tree can be defined inductively as follows:

$$
g((u, L, R))=2^{g(u)} 3^{g(L)} 5^{g(R)} .
$$

We then code a term by coding its tree representation. Note that the legal symbols for the root of a non-empty tree are a constant, a variable, \cdot, λ, or \mid.

6.1.4 Reductions

A reduction is a sequence of terms connected by contraction and congruence symbols. We can code a reduction $M_{1} u_{1} M_{2} u_{2} \ldots u_{k-1} M_{k}$ by

where each M_{i} is a term, u_{i} is a contraction or congruence symbol, and p_{k} denotes the $k^{t h}$ prime number. The Gödel number of a reduction is an even positive integer, but unlike for a term, the exponent of 2 in its prime power factorization is even.

6.2 Primitive Recursive Relations and Functions

Using basic arithmetic, propositional connectives, and bounded quantifiers, which are all known to be primitive recursive, we define some auxiliary relations and functions and show that they are also primitive recursive.

6.2.1 Relations and Functions from Previous Work

 Recall that a function ${ }^{\prime}$ s said fo be primitive recursive if and only if it can be obtained from the initial functions by any finite number of applications of if and only if its characteristic function is primitive recursive [3]. Each of the following relations and functions is primitive recursive (see [3] for proofs). We repeat the definitions here for reference.
(a) $x+y$
(b) $x \cdot y$
(c) x^{y}
(d) x !
(e) The bounded $\boldsymbol{\mu}$-operator is defined as follows.

Also, we define $\mu y \leq z R\left(x_{1} \ldots, x_{n}, y\right)$ to be $\mu y<(z+1) R\left(x_{1}, \ldots, x_{n}, y\right)$.
(f) Let $p(x)$ be the $x_{t h}$ prime number in ascending order. We shall write p_{x} instead of $p(x)$. Then $p_{0}=2, p_{1}$ =3, $p_{2}=5$, and so on.
(g) Every positive integer x has a unique factorization into prime powers: $x=p_{0}^{a_{0}} p_{1}^{a_{1}} \ldots p_{k}^{a_{k}}$. Let $(x)_{j}$ denote the exponent a_{j} in this factorization. If $x=1,(x)_{j}=0$ for all j. If $x=0$, we arbitrarily let $(x)_{j}=1$ for all j.
(h) If the number $x=2^{a_{0}} 3^{a_{1}} \ldots p_{k}^{a_{k}}$ is used to represent the sequence of positive integers $a_{0}, a_{1}, \ldots, a_{k}$, and $y=2^{b_{0}} 3^{b_{1}} \ldots p_{m}^{b_{m}}$ represents the sequence of positive

ค 9 represents the new sequence $a_{0}, a_{1}, 9, \%, a_{k}, b_{0}, b_{0}, \%, b_{m}^{9}$ obtained by juxtajuxtaposition function.
(i) Relations obtained from primitive recursive relations by means of the propositional connectives and the bounded quantifiers are also primitive recursive.

6.2.2 Auxiliary Relations and Functions

In this subsection we will define various functions and relations that will ultimately be used to prove that every total function on \mathbb{N} computable relative to \mathfrak{N} is recursive. For that proof we need only one relation, IsRedOf. However, the simplest way to define IsRedOf and prove that it is recursive is to define a sequence of auxiliary functions and relations, each of which is relatively simple to define and easily seen to be recursive. For each function or relation we will give a verbal description, followed by a symbolic definition, from which recursiveness will be clear.
$\operatorname{Is} \operatorname{Var}(\mathrm{x}): x$ is the Gödel number of a variable.

$$
: \exists k<x(x=29+8 k)
$$

IsConst (x): x is the Gödel number of a constant

$$
: \exists k<x(x=31+8 k)
$$

$\operatorname{Num}(\mathrm{x})$: The Gödel number of a constant \bar{x} corresponding to $x \in \mathbb{N}$.

$$
: 71+\delta
$$

$\operatorname{IsSym}(\mathrm{x}): x$ is the Gödel number of a symbol.
$: x=g(() \vee x=g()) \vee x=g(,) \vee x \in g(\cdot) \vee x=g(\lambda) \vee x=g(\mid) \vee x=g(\varnothing)$

$\operatorname{IsROp}(\mathrm{x}): x$ is the Gödel number of a 1α-conversion or a contractionsymbol.

IsTreeRoot (x): x is the Gödel number of a symbol that can be the root of a tree.

$$
: x=g(\cdot) \vee x=g(\lambda) \vee x=g(\mid) \vee \operatorname{Is} \operatorname{Var}(x) \vee \operatorname{IsConst}(x)
$$

IsTree (x): x is the Gödel number of a tree.
$: x=g(\varnothing) \vee \exists u, l, r<x\left(x=2^{u} 3^{l} 5^{r} \wedge \operatorname{IsTreeRoot}(u) \wedge \operatorname{IsTree}(l) \wedge\right.$ IsTree (r))

Root (x): The Gödel number of the root of a tree with Gödel number x.

$$
:(x)_{0}
$$

Remark. If x is \varnothing or x is not a tree, $\operatorname{Root}(\mathrm{x})$ is still defined but its value is of no interest, similarly for $\operatorname{LSubT}(x), \operatorname{RSubT}(x)$, and $\operatorname{Tree}(u, 1, r)$.
$\operatorname{LSubT}(x)$: The Gödel number of the left subtree of a nonempty tree with Gödel number x.
$:(x)_{1}$
$\operatorname{RSubT}(x)$: The Gödel number of the right subtree of a nonempty tree with
Gödel number x.
$:(x)_{2}$
IsLeaf $(\mathrm{x}): x$ is the Gödel number of a leaf.
$: \operatorname{IsTree}(x) \wedge \operatorname{LSubT}(x)=g(\varnothing)=\operatorname{RSubT}(x)$

IsSubT (x, y) : x is the Gödel number of a subtree of a tree with Gödel number y.
$:$ IsTree $(x) \wedge$ IsTree (y)
$\uparrow\{x=y \vee \operatorname{IsSubT}(x, \operatorname{LSubT}(y)) \curlyvee \operatorname{IsSubT}(x, \operatorname{RSubT}(y))] \approx$
Tree ($u, 1, r$): The Gödel number of a tree for which the Gödel numbers of its Q 99 root, eft and right subtrees are 4,9, and respectively.
$: 2^{u} 3^{l} 5^{r}$
$\operatorname{IsVarTerm}(\mathrm{x}): x$ is the Gödel number of a term consisting of a single variable.

$$
: \operatorname{IsLeaf}(x) \wedge \operatorname{IsVar}(\operatorname{Root}(x))
$$

IsConstTerm (x) : x is the Gödel number of a term consisting of a single constant.
$: \operatorname{IsLeaf}(x) \wedge \operatorname{IsConst}(\operatorname{Root}(x))$
$\operatorname{IsAtom}(\mathrm{x}): x$ is the Gödel number of an atomic term.
: IsVarTerm $(x) \vee$ IsConstTerm (x)
$\operatorname{IsVnTree}(\mathrm{x}, \mathrm{y}): x$ is the Gödel number of a variable occuring in a tree with Gödel number y.
$: \operatorname{IsVar}(x) \wedge \operatorname{IsTree}(y)$
$\wedge((\operatorname{IsVarTerm}(y) \wedge \operatorname{Root}(y)=\bar{x}) \vee \exists m<y(\operatorname{IsSubT}(m, y) \wedge \operatorname{IsVnTree}(x, m)))$
$\operatorname{IsPat}(\mathrm{x}): x$ is the Gödel number of a pattern.
: IsAtom (x)
$\vee[\operatorname{IsTree}(x) \wedge \operatorname{Root}(x)=g(\cdot)$
$\wedge \operatorname{IsPat}(\operatorname{LSubT}(x) \wedge$ - $\operatorname{IsVarTerm}(\operatorname{LSubT}(x))$
$\wedge \operatorname{IsPat}(\operatorname{RSubT}(x))$
$\wedge \neg \exists n<x(\operatorname{IsVnTree}(n, \operatorname{LSubT}(x)) \wedge \operatorname{IsVnTree}(n, \operatorname{RSubT}(x)))]$

The relations IsApp, IsSAbst, IsCAbst, and IsTerm are defined recursively and simultaneously as follows.
$\operatorname{IsApp}(\mathrm{x}): x$ is the Gödel number of an application.

$\wedge \operatorname{IsTerm}(\operatorname{LSubT}(x)) \wedge \operatorname{IsTerm}(\operatorname{RSubT}(x))$

IsCAbst(x): x is the Gödel number of a compound abstraction.

$$
: \operatorname{IsTree}(x) \wedge \operatorname{Root}(x)=g(\mid)
$$

$\wedge \operatorname{IsSAbst}(\operatorname{LSubT}(x))$
$\wedge(\operatorname{IsSAbst}(\operatorname{RSubT}(x)) \vee \operatorname{IsCAbst}(\operatorname{RSubT}(x)))$

IsTerm (x): x is the Gödel number of a term.
$: \operatorname{IsAtom}(x) \vee \operatorname{IsApp}(x) \vee \operatorname{IsSAbst}(x) \vee \operatorname{IsCAbst}(x)$

IsAbst(x$): x$ is the Gödel number of an abstraction.
: IsSAbst(x) V IsCAbst (x)
$\operatorname{IsFV}(\mathrm{x}, \mathrm{n}): x$ is the Gödel number of a free variable of a term with
Gödel number n
$: \operatorname{IsVar}(x) \wedge \operatorname{IsTerm}(n)$
$\wedge\{[\operatorname{Root}(n)=x]$
$\vee[\operatorname{IsSAbst}(n) \wedge \Rightarrow \operatorname{IsFV}(x, \operatorname{LSubT}(n)) \wedge \operatorname{IsFV}(x, \operatorname{RSubT}(n))]$
$\vee[(\operatorname{IsApp}(n) \vee \operatorname{IsCAbst}(n))$
$\wedge(\operatorname{IsFV}(x, \operatorname{ISubT}(n)) \vee \operatorname{IsFV}(x, \operatorname{RSubT}(n)))]\}$
IsSubst $(y, n, x, m): y$ is the Gödel number of the result of substituting a term with Gödel number n for all frec occurences of a variable with Gödel number x in a term with Gödel number m. This is done under the assumption that n is free for x in m.

$\vee[\operatorname{IsFV}(x, m) \wedge\{[\operatorname{IsAtom}(m) \wedge y=n]$

$$
\begin{aligned}
& \wedge \operatorname{IsSubst}(\operatorname{LSubT}(y), n, x, \operatorname{\operatorname {LSubT}}(m)) \\
& \wedge \operatorname{IsSubst}(\operatorname{RSubT}(y), n, x, \operatorname{RSubT}(m))]\}]\}
\end{aligned}
$$

Subst ($\mathrm{n}, \mathrm{x}, \mathrm{m}$): The Gödel number of the result of substituting a term with Gödel number n for all free occurences of a variable with Gödel number x in a term
with Gödel number m.

$$
: \mu y<\left(p_{n m}!\right)^{n m}(\text { IsSubst }(y, n, x, m))
$$

IsOneA $(m, n): m$ is the Gödel number of a term which is obtained from a term with Gödel number n by a single α-step.

$$
: \operatorname{IsTerm}(m) \wedge \operatorname{IsTerm}(n) \wedge(\operatorname{Root}(m)=\operatorname{Root}(n))
$$

$\wedge\{[(\operatorname{IsApp}(n) \vee \operatorname{IsCAbst}(n))$

$\wedge(\{\operatorname{LSubT}(m)=\operatorname{LSubT}(n) \wedge \operatorname{IsOneA}(\operatorname{RSubT}(m), \operatorname{RSubT}(n))\}$

IsOneACon (x): x is the Gödel number of a single step α-conversion.

IsOneB $(m, n): m$ is the Gödel number of a term which is obtained from a term

: A definition showing that IsOneB is primitive recursive has not yet been found.

IsOneBCon(x): x is the Gödel number of a β-contraction.

$$
: \exists u, v<x\left(x=2^{u} * 2^{g\left(\triangleright_{1 \beta}\right)} * 2^{v}\right) \wedge \operatorname{IsOneB}(v, u)
$$

$\operatorname{IsOneG}(\mathrm{m}, \mathrm{n}): m$ is the Gödel number of a term which is obtained from a term with Gödel number n by a γ-contraction.
: A definition showing that IsOneG is primitive recursive has not yet been found.

IsOneGCon(x): x is the Gödel number of a γ-contraction.
$: \exists u, v<x\left(x=2^{u} * 2^{g\left(\triangleright_{1}\right)} * 2^{v}\right) \wedge$ IsOneG (v, u)

IsOneD $(m, n): m$ is the Gödel number of a term which is obtained from a term with Gödel number n by a δ-contraction.
: A definition showing that IsOneD is primitive recursive has not yet been found.

IsOneDCon(x): x is the Gödel number of a δ-contraction.

$$
: \exists u, v<x\left(x=2^{u} * 2^{g(\perp)} \times 2^{v}\right) \wedge \operatorname{IsOneD}(v, u)
$$

M66.
$\operatorname{IsOneN}(m, n): m$ is the Gödel number of a term which is obtained from a term with Gödel number n by a single step \mathfrak{N}-conversion.
: A definition showing that IsOneN is primitive recursive has not yet been found.

IsOneNCon $(\mathrm{x}): x$ is the Gödel number of a single step \mathfrak{N}-conversion.

IsOneRed (x): x is the Gödel number of a "single step" reduction.

IsRedOf $(\mathrm{x}, \mathrm{m}, \mathrm{n}): x$ is the Gödel number of a reduction from a term with Gödel number m to a term with Gödel number n.

$$
\begin{aligned}
& : \operatorname{IsTerm}(m) \wedge \operatorname{IsTerm}(n) \\
& \wedge \exists u, y<x\left(x=2^{m} * 2^{u} * y \wedge \operatorname{IsROp}(u)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \wedge\left\{\left[\operatorname{IsOneRed}(x) \wedge y=2^{n}\right]\right. \\
& \left.\left.\qquad \vee\left[\exists k<y\left(\operatorname{IsRedOf}(y, k, n) \wedge \operatorname{IsOneRed}\left(2^{m} * 2^{u} * 2^{k}\right)\right)\right]\right\}\right)
\end{aligned}
$$

6.3 Computability Relative to \mathcal{N} Implies Recursiveness

Notice that definitions showing the recursiveness of some key relations, namely
IsOneB, IsOneG, IsOneD, and IsOneN, are missing in the previous section. Of these, we expect that the ones for γ-contraction and δ-contraction, IsOneG and IsOneD, will be the most challenging to find, but it is likely that they will also be quite similar. If we can find definitions showing that all four of these relations are recursive then we can prove out main theorem, as follows.

Theorem 6.3.1. If an n-ary total function g on \mathbb{N} is computable relative to \mathfrak{N}, then g is recursive.

Proof. Assume that g is computable relative to \mathfrak{N}. Let G be a term representing g and let v be the Gödel number of G. Define the $n+2$-ary relation R_{G} on \mathbb{N} by $R_{G}\left(x_{1}, x_{2}, \ldots, x_{n}, y, z\right)$ iff z is the Gödel number of the reduction $G \bar{x}_{1} \bar{x}_{2} \ldots \bar{x}_{n} \triangleright_{\beta \delta} \bar{y}$. Then
 $R_{G}\left(x_{1}, x_{2}, \ldots, x_{n}, y, z\right) \equiv \operatorname{IsRedOf}\left(z,\left(v * \operatorname{Num}\left(x_{1}\right) * \operatorname{Num}\left(x_{2}\right) * \cdots * \operatorname{Num}\left(x_{n}\right)\right), \operatorname{Num}(y)\right)$, so R_{G} is recursive. Let $u_{1}, u_{2}, \ldots, u_{n} \in \mathbb{N}$. Suppose $g\left(u_{1}, u_{2}, \ldots, u_{n}\right)=u$ for some Qu $u \mathbb{N}$. Since g is computable relative to \mathfrak{N}, we have $G \bar{u}_{1} \hat{u}_{2} \ldots \bar{u}_{n} \nabla_{\beta \delta} \bar{u}$. Let s be the
Gödel number of the above reduction. Then $R_{G}\left(u_{1}, u_{2}, \ldots, u_{n}, u, s\right)$ holds. Hence for any $x_{1}, x_{2}, \ldots, x_{n}$ there exists $y \in \mathbb{N}$ such that $R_{G}\left(x_{1}, x_{2}, \ldots, x_{n},(y)_{0},(y)_{1}\right)$ holds. Since $g\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(\mu y\left[R_{G}\left(x_{1}, x_{2}, \ldots, x_{n},(y)_{0},(y)_{1}\right)\right]\right)_{0}$ and $\mu y\left[R_{G}\left(x_{1}, x_{2}, \ldots, x_{n},(y)_{0},(y)_{1}\right)\right]$ is recursive, we see that g is recursive.

CHAPTER VII

CONCLUSION

We have extended the concept of computability to functions on an arbitrary firstorder structure using the lambda calculus with patterns. In doing so, we added a new congruence, congruence in a structure, which we proved to preserve all the basic properties of the original lambda calculus including the Church-Rosser theorem. It is interesting to notice that, when defining patterns using the non-logical symbols from a language, only the function symbols which represent one-to-one functions are allowed in a pattern. Such a constraint is neccessary for the validity of the Church-Rosser theorem. For example, if we were allowed to use the symbol A. which represents the addition function on the natural numbers, in patterns, then $(\lambda \mathbf{A} x y \cdot x) \overline{2} \equiv_{\mathfrak{A}}(\lambda \mathbf{A} x y, x)(\overline{\mathbf{A} 11}) \triangleright_{\beta} \overline{1}$ and $(\lambda \mathbf{A} x y \cdot x) \overline{2} \equiv_{\mathfrak{A}}(\lambda \mathbf{A} x y \cdot x)(\mathbf{A} \overline{0} \overline{2}) \triangleright_{\beta} \overline{0}$, but $\overline{1}$ and $\overline{0}$ do not reduce to anything in common, so the Church-Rosser theorem would fail to hold.

For the standard structure \mathfrak{N} for the natural numbers, we have shown that every recursive total function on \mathbb{N} is computable relative to \mathfrak{N}, in other words, it can be represented by a λP-term. So a question arises, how do we represent a recursive partial function? One possibility is through definition by cases. Since Qe may add a dummy symbol, say ∞, to the definition of the lambda calculus recursive partial function if at all inputs for which the function value is defined the term applied to those inputs reduces to the corresponding result, and at all inputs for which the function value is not defined the term applied to those inputs reduces to ∞. We can do this by adding the undefined input case as the last case
of a compound abstraction, i.e., $\left(\lambda P_{1} \cdot Q_{1} \mid\left(\lambda P_{2} \cdot Q_{2} \mid\left(\cdots \mid\left(\lambda P_{n} \cdot Q_{n} \mid \lambda x . \infty\right)\right)\right)\right)$. Of course, this idea needs proper definitions and further investigation to verify.

As we have explained in Section 6.3, another challenging task that remains is to find a recursive relation that identifies delta contractions. Suppose we have a compound abstraction $((\lambda P . Q) \mid A)$ and a term M. When trying to decide whether $(\lambda P . Q) M$ reduces to a contractible redex, we must find a way to tell when we can stop and conclude that the compound abstraction reduces to $(A M)$. For example, if we can prove that it is sufficient to try contracting only a finite number of times, for a given potential redex, then we have an upper bound for our search. Such a bound, the maximum number of contractions needed, would surely depend on P and M. Due to the simple structure of patterns and the limited number of non-logical symbels in the language of arithmetic, i.e., only $\mathbf{0}$ and \mathbf{S}, it may be possible to find a formula (to be precise, a recursive function of the Gödel codings of P and M) for calculating such a maximum number. The readers are encouraged to attempt finding this formula, which would enable us to finish the Gödel coding of the delta contraction, which in turn would complete our proof of the equivalence of the recursiveness and computability relative to a structure.
ศูนย์วิทยทรัพยากร
จุหาลงกรณ์มหาวิทยาลัย

REFERENCES

[1] Hindley, J.R., and Seldin, J.P. Introduction to Combinators and λ-calculus. Cambridge: Cambridge University Press, 1986.
[2] Kechris, A.S. Mathematical Logic and Axiomatic Set Theory. (Lecture Notes).
[3] Mendelson, E. Introduction to Mathematical Logic. Florida: Chapman \& Hall/CRC, 1997.
[4] Rogers, H. Theory of Recursive Functions and Effective Computability. New York: McGraw-Hill, 1967.
[5] Vejjajiva, P. A Lambda-Calculus with Patterns. Master's Thesis. Department of Mathematics, Chulalongkorn University, 1997.
[6] Vejjajiva, P., and Hall, M. E. A Lambda-Calculus with Patterns. Proceedings of the International Conference on Algebra and Its Applications (ICAA 2002), 266-277 (2002)

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

VITA

Name: Mr. Bodin Skulkiat

Degree: Bachelor of Engineering in Computer Engineering, 1997
Chulalongkorn University, Bangkok, Thailand.
Master of Science in Electrical and Computer Engineering, 1998 University of Colorado at Boulder, Colorado, USA.

[^0]: *A fixed-point combinator Y is a term such that $\mathrm{Y} X \triangleright_{\beta} X(\mathrm{Y} X)$ for any term X. An example of such term by Alan M. Turing is $\mathrm{Y}_{\text {Turing }}=Z Z$ where $Z \equiv$ $\lambda z x . x(z z x)$. See [1].

