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CHAPTER I

INTRODUCTION

When discussing the computability of a function on N, the standard definition to

use is that of recursiveness, which we will quickly review. We begin with these

three initial functions:

i. The zero function: g(a) = 0 for all a ∈ N,

ii. The successor function: g(a) = a+ 1 for all a ∈ N,

iii. The projection function: gni (a1, . . . , an) = ai for all 1 ≤ i ≤ n and

a1, . . . , an ∈ N,

and the following rules for obtaining new functions from given functions:

iv. composition: given functions h(y1, . . . , ym), k1(x1, . . . , xn), . . . , km(x1, . . . , xn),

obtain the function g satisfying

g(x1, . . . , xn) = h(k1(x1, . . . , xn), . . . , km(x1, . . . , xn)),

v. primitive recursion: given functions h(x1, . . . , xn) and k(x1, . . . , xn+2), ob-

tain the function g satisfying

g(x1, . . . , xn, 0) = h(x1, . . . , xn)

g(x1, . . . , xn, y + 1) = k(x1, . . . , xn, y, g(x1, . . . , xn, y)),

vi. restricted minimization: given a function h(x1, . . . , xn, y) such that for

any x1, . . . , xn there exists a y such that h(x1, . . . , xn, y) = 0, obtain the

function g satisfying

g(x1, . . . , xn) = µy(h(x1, . . . , xn, y) = 0),
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where µy(h(x1, . . . , xn, y) = 0) denote the least y such that h(x1, . . . , xn, y) =

0.

A function is said to be recursive if and only if it can be obtained from the initial

functions by any finite number of applications of composition, primitive recursion,

and minimization.

If we wish to extend this definition of recursiveness, a very general target to

consider is to extend it to a first-order structure. Notice that there is no obvious

way to do so, since both primitive recursion and restricted minimization depend

on certain properties of the natural numbers. Alternatively a computable function

is one for which we can write a “program” to compute. A good, mathematically

rigorous “programming language” is the lambda calculus. Since the lambda cal-

culus only deals with symbols, without any assumptions about their meanings,

it is a good tool to help us extend the concept of computability to functions on

an arbitrary first-order structure. To gain greater expressive power, we will use a

lambda calculus with patterns, created by Pimpen Vejjajiva [5][6], which we will

briefly describe.

Assume there are given an infinite sequence of distinct symbols, called vari-

ables, and a set of symbols which are distinct from the variables, called con-

stants. The set of patterns is defined inductively as follows.

P1. Each variable and constant is a pattern.

P2. If P1 is a pattern which is not a variable, P2 is any pattern, and no variable

occurs in both P1 and P2, then (P1P2) is a pattern.

Then, the set of terms is defined inductively as follows.

T1. Each variable and constant is a term, called an atom.
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T2. If M and N are any terms, (MN) is a term, called an application.

T3. If P is any pattern and Q is any term, (λP.Q) is a term, called a simple

abstraction.

T4. If P is any pattern, Q is any term, and A is any abstraction, ((λP.Q) | A) is

a term, called a compound abstraction.

An abstraction (λx.M) represents a function f : x 7→ M . For example,

(λx.x) represents an identity function. An application (MN) represents applying

a function represented by M to an argument represented by N . For example, if

we let 0 be a constant representing the natural number 0, ((λx.x)0) represents

applying an identity function to 0, which would result in 0. Avoiding complex

technical details for the moment, we will use the symbol . to represent the idea of

“computing”. In this notation the preceding example can be written as ((λx.x)0).

0. Here is a more involved example. If we let S be a constant representing

the successor function and ā be a constant representing any natural number a,

then ((λ0.0) | (λSx.x)) represents a predecessor function which maps 0 7→ 0, i.e.(
((λ0.0) | (λSx.x))0

)
. 0, and maps (a+ 1) 7→ a, i.e.

(
((λ0.0) | (λSx.x))Sā

)
. ā.

The general idea of how to extend the concept of computable functions to

a first-order structure A for a language L is as follows. For each element a ∈ |A|,

let ā be a distinct symbol that does not occur in L. Define patterns and terms

as in the lambda calculus with patterns, using as constants all of the symbols

in L together with all of the symbols ā. Then an n-ary function g on |A| is

computable relative to A if and only if there is a term G such that for all

a1, . . . , an, a ∈ |A| we have Gā1 . . . ān . ā, whenever g(a1, . . . , an) = a. Informally

speaking, a function on |A| is computable relative to A if and only if it can be

represented by a term which captures all its functionalities. The interpretations
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of the elements of L in the structure A are captured by adding a new congruence,

≡A, called congruence in a structure, to identify two syntactically different terms

that represent the same element of the domain |A|. For example, S0̄ ≡A 1̄, since

they both represent 1 in N.

The remainder of this thesis is organized as follows. In Chapter II, we begin

with definition of λP-term and preliminary lemmas from previous work. Chapter

III concerns definitions of the new congruence and the computability relative to a

structure, and proofs of all basic properties. Chapter IV shows that our extension

satisfies all the basic properties of the original lambda calculus with patterns,

including the Church-Rosser theorem. To help justify the word “computable”, we

will lay the groundwork for a proof that a function on the natural numbers N is

recursive if and only if it is computable relative to N, the standard structure for

N. We will show that every recursive total function on N is computable relative

to N in Chapter V. In preparation for proving the converse, in Chapter VI, we

will construct a Gödel coding for terms in the lambda calculus with patterns and

investigate how to perform various steps in the reduction of an encoded term using

recursive functions.



CHAPTER II

λP-TERMS AND PRELIMINARY LEMMAS

All definitions in this chapter are based on the lambda calculus with patterns

[5][6] with some adjustments. Let L be a first-order language and A a structure

for L. We use |A| to denote the domain of A.

2.1 λP-terms

Definition 2.1.1. For each element a in |A|, let ā be a distinct symbol that is not

in L. We call all the nonlogical symbols in L together with all of the symbols ā and

two additional distinct symbols T and F constants. Assume also that an infinite

sequence of distinct symbols v1, v2, . . . , called variables is given. Patterns and

λP-terms are expressions constructed using these symbols, as follows.

The set of patterns is the smallest set of expressions satisfying the follow-

ing.

P1. All variables are patterns.

P2. The two constant symbols T and F, and all constant symbols in L are pat-

terns.

P3. All function symbols f in L such that fA is one-to-one are patterns.

P4. If P is a pattern that is not a variable, Q is any pattern, and no variable

occurs in both P and Q, then (PQ) is a pattern.

The set of λP-terms is divided into sets of atoms, applications, and abstractions,

and is defined to be the smallest set of expressions satisfying the following.
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T1. All variables and constants are λP-terms (these are the atoms).

T2. If P and Q are any λP-terms, then (PQ) is a λP-term (these are the appli-

cations).

T3. If P is any pattern and Q is any λP-term, then (λP.Q) is a λP-term (called

a simple abstraction).

T4. If P is any pattern, Q is any λP-term, and A is any abstraction, then

((λP.Q) | A) is a λP-term (called a compound abstraction).

An abstraction is either a simple abstraction or a compound abstraction.

Notation.

i. Parentheses will be omitted by using the convention of association to the left.

ii. λP.MN will abbreviate (λP.(MN)).

iii. We may simply write “terms” for “λP-terms”.

iv. Syntactic identity of expressions will be denoted by ≡. That is, M ≡ N if

and only if M is exactly the same string of symbols as N .

Definition 2.1.2. An occurrence of a variable x in a term M is bound if it is in

a subterm of M of the form λP.Q and it occurs in P ; otherwise it is free. If x

has at least one free occurence in M , it is called a free variable of M ; the set of

all such variables is denoted by FV (M).

Definition 2.1.3. LetM andN = N1, . . . , Nk, k ≥ 1, be terms and x = x1, . . . , xk

be distinct variables. The result of substituting Ni for all free occurrences of

xi, i = 1, 2, . . . , k, in M , denoted by [N1/x1, . . . , Nk/xk]M or [N/x]M , is defined

as follows.
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a. [N/x]xi ≡ Ni for all 1 ≤ i ≤ k;

b. [N/x]a ≡ a for all atoms a such that a /∈ {x1, . . . , xk};

c. [N/x](PQ) ≡ ([N/x]P [N/x]Q);

d. [N/x](λP.Q) ≡



λP.Q if {x1, . . . , xk} ∩ FV (λP.Q) = ∅;

[Ni1/xi1 , . . . , Nim/xim ](λP.Q)

if {x1, . . . , xk} ∩ FV (λP.Q) = {xi1 , . . . , xim};

e. [N/x](λP.Q) ≡ λP.[N/x]Q

if {x1, . . . , xk} ⊆ FV (λP.Q) and FV (P ) ∩ FV (N1 . . . Nk) = ∅;

f. [N/x](λP.Q) ≡ [N/x](λ[z/y]P.[z/y]Q)

if {x1, . . . , xk} ⊆ FV (λP.Q) and FV (P ) ∩ FV (N1 . . . Nk) 6= ∅, where y is the

first variable in FV (P )∩FV (N1 . . . Nk) and z is chosen to be the first variable

which is not in FV (PQN1 . . . Nk);

g. [N/x](λP.Q | A) ≡ ([N/x](λP.Q) | [N/x]A).

Definition 2.1.4. Let A be an occurrence of a simple abstraction λP.Q in a term

M . Let x ∈ FV (P ) and y /∈ FV (PQ). The act of replacing A by λ[y/x]P.[y/x]Q

is called a change of bound variable or an α-step in M .

We say M 1α-converts to a term N , denoted by M ≡1α N , if N is obtained

from M by a single-step change of bound variable.

We say M is congruent to N , or M α-converts to N , denoted by M ≡α

N , if N is obtained from M by a finite (possibly empty) sequence of changes of

bound variables.
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2.2 Preliminary Lemmas from Previous Work

The following lemmas and notes are from [5], of which the corresponding result

number will be included in brackets for the ease of reading.

Lemma 2.2.1. [Corollary 2.1.12] Let x = x1, . . . , xk, k ≥ 1, be distinct vari-

ables, M, N = N1, . . . , Nk be terms, and λP.Q be a simple abstraction.

a. If {x1, . . . , xk} ∩ FV (M) = {xi1 , . . . , xim}, then [N1/x1, . . . , Nk/xk]M ≡

[Ni1/xi1 , . . . , Nim/xim ]M .

b. If FV (P ) ∩ FV (x1 . . . xkN1 . . . Nk) = ∅, then [N/x](λP.Q) ≡ λP.[N/x]Q.

Lemma 2.2.2. [Lemma 2.2.4] Let M and N be terms such that M ≡α N .

a. If M ≡ M1M2, then N ≡ N1N2 for some terms N1 and N2, where Mi ≡α Ni,

i = 1, 2;

b. if M ≡ λP.Q, and no variable in P has been changed, then N ≡ λP.Q′ for

some term Q′ such that Q ≡α Q′;

c. if M ≡ (λP.Q | A) then N ≡ (λP ′.Q′ | A′) for some abstractions λP ′.Q′ and

A′ where λP.Q ≡α λP ′.Q′ and A ≡α A′.

Lemma 2.2.3. [Lemma 2.2.5]

a. For any terms M and N , if M ≡α N , then FV (M) = FV (N).

b. For any term M , any variables x1, . . . , xn, n ≥ 1, there exists a term M ′ such

that M ≡α M ′ and none of x1, . . . , xn is bound in M ′.

Lemma 2.2.4. [Lemma 2.2.6] Let x and v be distinct variables, and V and M

be terms. If v /∈ FV (M), then [V/v][v/x]M ≡α [V/x]M .
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Lemma 2.2.5. [Lemma 2.2.7] Let x = x1, . . . , xk, k ≥ 1 be distinct variables,

and N = N1, . . . , Nk, N
′ = N ′1, . . . , N

′
k be terms such that Ni ≡α N ′i for all

1 ≤ i ≤ k. For any terms M and M ′, if M ≡α M ′, then [N/x]M ≡α [N ′/x]M ′.



CHAPTER III

COMPUTABILITY RELATIVE TO A STRUCTURE

In this chapter, we will define congruence in a structure and computability relative

to a structure, and prove all the basic properties.

3.1 Congruence in a Structure

Definition 3.1.1. Single-Step Congruence in A, denoted by ≡1A, is defined

as follows.

C1. For any constant symbol c in L and any a in |A|,

c ≡1A ā if cA = a.

C2. For any n-ary function symbol f in L and any a, a1, . . . , an in |A|,

fā1 . . . ān ≡1A ā if fA(a1, . . . , an) = a.

C3. For any n-ary relation symbol r in L and any a1, . . . , an in |A|,

rā1 . . . ān ≡1A


T if (a1, . . . , an) ∈ rA,

F otherwise.

C4. For any terms M and N ,

M ≡1A N if N ≡1A M by C1, C2, or C3.

C5. Let P be any pattern; A be any abstraction; and M , N , and Q be any terms

such that M ≡1A N . Then
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i. MQ ≡1A NQ.

ii. QM ≡1A QN .

iii. λP.M ≡1A λP.N .

iv. (λP.M | A) ≡1A (λP.N | A).

v. (λP.Q |M) ≡1A (λP.Q | N) if M and N are abstractions.

For any terms M and N , we write M ≡0
1A N if M ≡1A N by C1, C2, C3, or C4.

If L is an occurence of a term M in a term Q and M ≡0
1A N , the act of

replacing L by N is called a 1A-conversion in Q.

Note 3.1.2.

a. If M ≡1A N where M and N are terms which are not atomic, then M 6≡0
1A N .

b. If M ≡1A N and FV (M) ∪ FV (N) 6= ∅, then M 6≡0
1A N .

c. If M ≡1A N but M 6≡0
1A N , then M and N are of the same form.

d. For any variable x and any term M , x 6≡1A M .

Definition 3.1.3. For any terms M and N , we say M is congruent in A to

N , denoted by M ≡A N , if there exists a sequence of terms M ≡ M1, . . . ,Mn ≡

N, n ≥ 1, such that for each 1 ≤ i < n, Mi ≡1A Mi+1.

If L is an occurence of a term M in a term Q and M ≡A N , the act of

replacing L with N is called an A-conversion in Q.

Note 3.1.4.

a. If M ≡A N and M contains an abstraction then M and N are of the same

form.

b. If M1M2 ≡A N1N2 with no ≡0
1A in the sequence of congruences, then M1 ≡A N1

and M2 ≡A N2.
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Lemma 3.1.5. For any terms M and N , if M ≡1A N , then N ≡1A M .

Proof. Let M and N be terms. We induct on M . From Definition 3.1.1, we can

see that M ≡1A N by C1, C2, or C3 if and only if N ≡1A M by C4. Thus it

remains to show only the induction step. Suppose M ≡1A N by C5. We will

give a proof only for the following case, since the remaining are similar. Assume

M ≡M1Q and N ≡ N1Q for some terms M1, N1, and Q such that M1 ≡1A N1. By

the induction hypothesis we have N1 ≡1A M1. So N ≡ N1Q ≡1A M1Q ≡M .

Corollary 3.1.6. For any terms M and N , if M ≡A N then N ≡A M .

Proof. This follows directly from Lemma 3.1.5.

Corollary 3.1.7. The relation ≡A is an equivalence relation.

Proof. It is clear that ≡A is reflexive and transitive. By Corollary 3.1.6 we have

that ≡A is symmetric. Hence ≡A is an equivalence relation.

Remark. Note that ≡1A is symmeric, but neither reflexive nor transitive.

Proposition 3.1.8. If M ≡1A N , FV(M) = FV(N).

Proof. This can be easily proved by induction.

Lemma 3.1.9. Let f be a k-ary function symbol and M1, . . . ,Mk, N be terms. If

fM1 . . .Mk ≡1A N but fM1 . . .Mk 6≡0
1A N , then N ≡ fN1 . . . Nk for some terms

Ni such that either Mi ≡ Ni or Mi ≡1A Ni, 1 ≤ i ≤ k.

Proof. Assume fM1 . . .Mk ≡1A N and fM1 . . .Mk 6≡0
1A N . Induct on k. If k = 1

then fM1 ≡1A N ≡ fN1 for some term N1 such that M1 ≡1A N1. Suppose k > 1.

Then (fM1 . . .Mk−1)Mk ≡1A N ≡ N ′Nk for some terms N ′ and Nk.

Case 1. N ′ ≡ (fM1 . . .Mk−1).

Then Mk ≡1A Nk, so N ≡ (fM1 . . .Mk−1)Nk.
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Case 2. Nk ≡Mk. Then fM1 . . .Mk−1 ≡1A N
′.

By induction, N ′ ≡ fN1 . . . Nk−1 for some terms Ni such that either Mi ≡ Ni

or Mi ≡1A Ni, 1 ≤ i ≤ k − 1, so N ≡ fN1 . . . Nk.

Lemma 3.1.10. Let f be a k-ary function symbol and M1, . . . ,Mk, N be terms.

If fM1 . . .Mk ≡A N with no ≡0
1A in the sequence of congruences, then N ≡

fN1 . . . Nk for some terms Ni such that Mi ≡A Ni, 1 ≤ i ≤ k.

Proof. This follows directly from Lemma 3.1.9.

Lemma 3.1.11. For any a, b in |A|, if ā ≡A b̄ by a sequence of terms ā ≡

M1, . . . ,Mk ≡ b̄, k ≥ 1, then k is odd.

Proof. We will prove this by contradiction. Let k be the least even number such

that ā ≡M1, . . . ,Mk ≡ b̄ for some a, b in |A|. Consider Mk−1 ≡1A Mk ≡ b̄.

Case 1. Mk−1 ≡ c for some constant symbol c in L.

Since Mk−1 ≡ c 6≡ ā ≡ M1, k − 1 6= 1. In fact k > 2. Now consider

Mk−2 ≡1A Mk−1 ≡ c. We must have Mk−2 ≡ ā1 for some a1 in |A|. Thus

ā ≡ M1, . . . ,Mk−2 ≡ ā1. This contradicts the fact that k is the least such

even number.

Case 2. Mk−1 ≡ f b̄1 . . . b̄n for some n-ary function symbol f and some b1, . . . , bn in

|A|.

Since ā is not of the same form as f b̄1 . . . b̄n, by Note 3.1.2, Mj ≡0
1A Mj+1

for some 1 ≤ j < k − 1. Let m be the largest such j. Since Mm ≡0
1A Mm+1

and Mm+1 ≡A Mk−1 ≡ f b̄1 . . . b̄n with no ≡0
1A in the sequence of congruence,

by Lemma 3.1.10, Mm+1 ≡ fā1 . . . ān and Mm ≡ ā0 for some a0, a1, . . . , an

in |A| such that b̄i ≡A āi, 1 ≤ i ≤ n. Since ā ≡ M1, . . . ,Mm ≡ ā0 and

m < k, m must be odd. Let Kj ≡ Mj+m−1 for 1 ≤ j ≤ k −m + 1. Then
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ā0 ≡ Mm ≡ K1, . . . , Kk−m+1 ≡ Mk ≡ b̄. Since k − m + 1 is even, this

contradicts the fact that k is the least such even number.

Lemma 3.1.12. For any a, b in |A|, if ā ≡A b̄ then a = b.

Proof. Let a, b in |A| be such that ā ≡A b̄ by a sequence of terms ā ≡M1, . . . ,Mk ≡

b̄, k ≥ 1. Induct on k. If k = 1 then ā ≡M1 ≡ b̄ and we are done. Suppose k > 1.

In fact, by Lemma 3.1.11, k ≥ 3. Consider Mk−1 ≡1A Mk ≡ b̄.

Case 1. Mk−1 ≡ c for some constant symbol c in L.

Since Mk−2 ≡1A Mk−1 ≡ c, Mk−2 ≡ ā0 for some a0 in |A|. Thus ā ≡

M1, . . . ,Mk−2 ≡ ā0 ≡1A c ≡1A b̄. By induction we have a = a0 = b.

Case 2. Mk−1 ≡ f b̄1 . . . b̄n for some n-ary function symbol f and some b1, . . . , bn in

|A|. Since ā is not of the same form as f b̄1 . . . b̄n, by Note 3.1.2, Mj ≡0
1A Mj+1

for some 1 ≤ j < k − 1. Let m be the largest such j. Since Mm ≡0
1A Mm+1

and Mm+1 ≡A Mk−1 ≡ f b̄1 . . . b̄n with no ≡0
1A in the sequence of congruence,

by Lemma 3.1.10, Mm+1 ≡ fā1 . . . ān and Mm ≡ ā0 for some a0, a1, . . . , an

in |A| such that b̄i ≡A āi, 1 ≤ i ≤ n.

(2.1) m = 1.

Then ā ≡0
1A fā1 . . . ān ≡M2, . . . ,Mk−1 ≡ f b̄1 . . . b̄n ≡0

1A b̄ with no other

≡0
1A in the sequence of congruence. Since āi ≡A b̄i, by induction we have

ai = bi for all 1 ≤ i ≤ n, so a = fA(a1, . . . , an) = fA(b1, . . . , bn) = b.

(2.2) m > 1.

Then ā ≡ M1, . . . ,Mm ≡ ā0 ≡0
1A fā1 . . . ān ≡ Mm+1, . . . ,Mk ≡ b̄. By

induction we have a = a0 = b.

Lemma 3.1.13. Let P be a pattern with FV (P ) = {x1, . . . , xk}, k ≥ 1, and U =

U1, . . . , Uk, V = V1, . . . , Vk be terms. Let x = x1, . . . , xk. If [U/x]P ≡A [V /x]P ,



15

then Ui ≡A Vi for all 1 ≤ i ≤ k.

Proof. Assume [U/x]P ≡A [V /x]P . Induct on P .

Case 1. P ≡ x1.

Then U1 ≡ [U1/x1]P ≡A [V1/x1]P ≡ V1.

Case 2. P ≡ P1P2.

Let [U/x]P ≡A [V /x]P by a sequence of terms [U/x]P ≡ K1, . . . , Ks ≡

[V /x]P , s ≥ 1.

(2.1) Ki 6≡0
1A Ki+1 for all 1 ≤ i < s.

By Note 3.1.4(b) [U/x]P1 ≡A [V /x]P1 and [U/x]P2 ≡A [V /x]P2. By

induction, Ui ≡A Vi for all 1 ≤ i ≤ k.

(2.2) Ki ≡0
1A Ki+1 for some 1 ≤ i < s.

Let n be the first such i. Since Kn ≡0
1A Kn+1, Kn ≡ fā1 . . . āq and

Kn+1 ≡ ā for some function symbol f , and some a, a1, . . . , aq ∈ |A|,

q ≥ 1. Since Kn+1 ≡A Ks ≡ [V /x]P and Kn+1 is not of the same form

as [V /x]P , by Note 3.1.2 Kj ≡0
1A Kj+1 for some n + 1 ≤ j < s. Let

m be the most such j. Then we have Km ≡ b̄ and Km+1 ≡ gb̄1 . . . b̄r

for some function symbol g, and some b, b1, . . . , br ∈ |A|, r ≥ 1. Since a

pattern cannot begin with a variable and [U/x]P ≡A Kn ≡ fā1 . . . āq

with Kj 6≡0
1A Kj+1 for all 1 ≤ j < n, by induction on q, the pattern

P must begin with f . Similarly for gb̄1 . . . b̄r ≡ Km+1 ≡A [V /x]P , the

pattern P must begin with g. Therefore f ≡ g. Since fā1 . . . āq ≡0
1A

ā ≡ Kn+1 ≡A Km ≡ b̄ ≡0
1A gb̄1 . . . b̄r ≡ f b̄1 . . . b̄r, by Lemma 3.1.12, we

have fA(a1, . . . , aq) = a = b = fA(b1, . . . , br). Since f is in a pattern,
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fA is one-to-one, so q = r and aj = bj for all 1 ≤ j ≤ q. Then

[U/x]P ≡ K1 ≡A Kn ≡ fā1 . . . āq

≡ gb̄1 . . . b̄r ≡ Km+1 ≡A Ks ≡ [V /x]P,

with Kj 6≡0
1A Kj+1 for all 1 ≤ j < n and m + 1 ≤ j < s. Hence by

Case 2.1 Ui ≡A Vi for all 1 ≤ i ≤ k.

Lemma 3.1.14. Let Q and Q′ be terms, x and y be variables. If y /∈ FV (Q) and

[y/x]Q ≡1A Q
′, then Q ≡1A Q

′′ for some term Q′′ such that Q′′ ≡α [x/y]Q′.

Proof. Assume y /∈ FV (Q) and [y/x]Q ≡1A Q
′.

Case 1. x /∈ FV (Q).

Since y /∈ FV (Q) and Q ≡ [y/x]Q ≡1A Q′, by Proposition 3.1.8, we have

y /∈ FV (Q′). Then Q ≡ [y/x]Q ≡1A Q
′ ≡ [x/y]Q′.

Case 2. x ∈ FV (Q).

We will induct on Q.

(2.1) Q is atomic.

Since x ∈ FV (Q), Q ≡ x. Then y ≡ [y/x]x ≡ [y/x]Q ≡1A Q
′, which is

impossible. Therefore this case cannot occur.

(2.2) Q ≡ Q1Q2 for some terms Q1 and Q2.

Then [y/x]Q1[y/x]Q2 ≡ [y/x]Q ≡1A Q′. Since x ∈ FV (Q), y ∈

FV ([y/x]Q), so Q′ is not atomic. Without loss of generality, assume

Q′ ≡ Q′1[y/x]Q2 for some term Q′1 such that [y/x]Q1 ≡1A Q
′
1. Then by

induction, Q1 ≡1A Q
′′
1 ≡α [x/y]Q′1 for some term Q′′1. Since y /∈ FV (Q),
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we have y /∈ FV (Q2).

Then Q ≡ Q1Q2 ≡1A Q
′′
1Q2 ≡α [x/y]Q′1Q2

≡α [x/y]Q′1[x/y][y/x]Q2 (by Lemma 2.2.4)

≡ [x/y](Q′1[y/x]Q2)

≡ [x/y]Q′.

We are done with Q′′ ≡ Q′′1Q2.

(2.3) Q ≡ λP.Q1 for some pattern P and some term Q1.

Since x ∈ FV (Q), x /∈ FV (P ) and x ∈ FV (Q1). Then [y/x]Q ≡

[y/x]λP.Q1 ≡ λ[z/y]P.[y/x][z/y]Q1 where z ≡ y if y /∈ FV (P ), other-

wise z is the first variable not in FV (PQ1). So Q′ ≡ λ[z/y]P.Q′1 where

[y/x][z/y]Q1 ≡1A Q′1. By induction, we have [z/y]Q1 ≡1A Q′′1 ≡α

[x/y]Q′1 for some term Q′′1, and Q1 ≡1A Q
′′′
1 ≡α [y/z]Q′′1 for some term

Q′′′1 . Note that λP.[y/z][x/y]Q′1 ≡α λ[z/y]P.[z/y][y/z][x/y]Q′1 because

z ≡ y if y /∈ FV (P ), and otherwise z /∈ FV (P [y/z][x/y]Q′1). (1)

Then Q ≡ λP.Q1

≡1A λP.Q
′′′
1

≡α λP.[y/z]Q′′1

≡α λP.[y/z][x/y]Q′1

≡α λ[z/y]P.[z/y][y/z][x/y]Q′1
(
by (1)

)
≡α λ[z/y]P.[x/y]Q′1 (by Lemma 2.2.4)

≡ [x/y]λ[z/y]P.Q′1
(
since {x, y} ∩ FV ([z/y]P ) = ∅

)
≡ [x/y]Q′

We are done with Q′′ ≡ λP.Q′′′1 .
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(2.4) Q ≡ (λP.Q1 | A) for some pattern P , some term Q1, and some ab-

straction A.

The proof for this case is similar to Case 2.2.

Lemma 3.1.15. Let M,N, and N ′ be terms. If M ≡1α N ≡1A N
′, then M ≡1A

M ′ ≡α N ′ for some term M ′.

Proof. Assume M ≡1α N ≡1A N
′. Let λP.Q be the simple abstraction in M which

gets replaced by λ[y/x]P.[y/x]Q when M 1α-converts to N , where x ∈ FV (P )

and y /∈ FV (PQ). We will induct on M . Since M contains a simple abstraction,

M cannot be an atom.

Case 1. M ≡ λP.Q.

Then λ[y/x]P.[y/x]Q ≡ N ≡1A N ′. Thus N ′ ≡ λ[y/x]P.Q′ form some

term Q′ where [y/x]Q ≡1A Q′. Note that since x ∈ FV (P ) and y /∈

FV (P [x/y]Q′), we have λP.[x/y]Q′ ≡1α λ[y/x]P.[y/x][x/y]Q′. Since x /∈

FV ([y/x]Q) and [y/x]Q ≡1A Q
′, by Proposition 3.1.8, we have x /∈ FV (Q′).

Then by Lemma 2.2.4, [y/x][x/y]Q′ ≡α [y/y]Q′ ≡ Q′. Since y /∈ FV (Q) and

[y/x]Q ≡1A Q
′, by Lemma 3.1.14, we have Q ≡1A Q

′′ for some term Q′′ such

that Q′′ ≡α [x/y]Q′. Let M ′ ≡ λP.Q′′. Then M ≡ λP.Q ≡1A λP.Q
′′ ≡ M ′,

and

M ′ ≡ λP.Q′′ ≡α λP.[x/y]Q′

≡1α λ[y/x]P.[y/x][x/y]Q′

≡α λ[y/x]P.Q′

≡ N ′.

Case 2. M ≡ λL.M1 for some pattern L and some term M1.

Since M ≡1α N , N ≡ λL.N1 for some term N1 such that M1 ≡1α N1. Since
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N ≡1A N ′, N ′ ≡ λL.N ′1 for some term N ′1 such that N1 ≡1A N ′1. Since

M1 ≡1α N1 ≡1A N
′
1, by induction we have M1 ≡1A M

′
1 ≡α N ′1 for some term

M ′
1. Then M ≡ λL.M1 ≡1A λL.M

′
1 ≡α λL.N ′1 ≡ N ′1. Choose M ′ ≡ λL.M ′

1.

Case 3. M ≡M1M2 for some terms M1 and M2.

Without loss of generality, assume λP.Q is in M1. Since M1M2 ≡M ≡1α N ,

N ≡ N1M2 for some term N1 such that M1 ≡1α N1. Note that N1 contains

an abstraction, hence N does as well, and thus N 6≡0
1A N ′. Since N1M2 ≡

N ≡1A N
′, N ′ can only be one of the two following cases.

(3.1) N ′ ≡ N ′1M2 for some term N ′1 such that N1 ≡1A N
′
1.

Since M1 ≡1α N1 ≡1A N
′
1, by induction we have M1 ≡1A M

′
1 ≡α N ′1 for

some term M ′
1. Then M ≡M1M2 ≡1A M

′
1M2 ≡α N ′1M2 ≡ N ′. Choose

M ′ ≡M ′
1M2.

(3.2) N ′ ≡ N1M
′
2 for some term M ′

2 such that M2 ≡1A M
′
2.

Then M ≡M1M2 ≡1A M1M
′
2 ≡1α N1M

′
2 ≡ N ′. Choose M ′ ≡M1M

′
2.

Case 4. M ≡ (λL.M1 | A) for some pattern L, some term M1, and some abstraction

A.

This can be proved in the same way as Case 3.

Corollary 3.1.16. Let M,N, and N ′ be terms. If M ≡α N ≡A N ′ then M ≡A

M ′ ≡α N ′ for some term M ′.

Proof. This follows directly from Lemma 3.1.15.

Lemma 3.1.17. Let x = x1, . . . , xk, k ≥ 1, be distinct variables and M,N, and

U = U1, . . . , Uk be terms. If M ≡1A N then [U/x]M ≡1A N ′ for some term N ′

such that N ′ ≡α [U/x]N .
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Proof. Assume M ≡1A N . If {x} ∩ FV (M) = ∅, by Proposition 3.1.8 {x} ∩

FV (N) = ∅, so [U/x]M ≡ M ≡1A N ≡ [U/x]N , and we are finished. Now

assume {x} ∩ FV (M) 6= ∅, and in fact, by Corollary 2.2.1(a) we may assume

that {x} ⊆ FV (M). We will induct on M . Note that since M ≡1A N and

FV (M) 6= ∅, by Note 3.1.2(d) M is not atomic.

Case 1. M ≡ λP.M1 for some pattern P and some term M1.

Then N ≡ λP.N1 for some term N1 such that M1 ≡1A N1. Then by

induction [U/x]M1 ≡1A N ′1 ≡α [U/x]N1 for some term N ′1. Let m =∣∣FV (P ) ∩ FV (U1 . . . Uk)
∣∣ and induct on m. If m = 0, then

[U/x]M ≡ λP.[U/x]M1

≡1A λP.N
′
1

≡α λP.[U/x]N1

≡ [U/x]λP.N1

≡ [U/x]N.

Now assume m > 0. Let y be the first variable in FV (P ) ∩ FV (U1 . . . Uk)

and z be the first variable which is not in FV (PM1U). Note that z is

also the first variable which is not in FV (PN1U) since M1 ≡1A N1, so

FV (M1) ≡ FV (N1). By the main induction hypothesis, [z/y]M1 ≡1A

N ′′1 ≡α [z/y]N1 for some term N ′′1 . Then by the subsidiary induction hy-

pothesis, [U/x]λ[z/y]P.[z/y]M1 ≡1A N
′ ≡α [U/x]λ[z/y]P.N ′′1 for some term
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N ′. Hence

[U/x]M ≡ [U/x]λ[z/y]P.[z/y]M1

≡1A N
′

≡α [U/x]λ[z/y]P.N ′′1

≡α [U/x]λ[z/y]P.[z/y]N1

≡ [U/x]λP.N1

≡ [U/x]N

Case 2. M ≡M1M2 for some terms M1 and M2.

Then N ≡ N1N2 for some terms N1 and N2. Without loss of generality,

assume M1 ≡1A N1 and M2 ≡ N2. By induction we have [U/x]M1 ≡1A

N ′1 ≡α [U/x]N1 for some term N ′1. Hence

[U/x]M ≡ [U/x]M1[U/x]M2

≡1A N
′
1[U/x]M2

≡α [U/x]N1[U/x]M2

≡ [U/x]N

The case where M is a compound abstraction is similar.

Corollary 3.1.18. Let x = x1, . . . , xk, k ≥ 1, be distinct variables and M,N, and

U = U1, . . . , Uk be terms. If M ≡A N then [U/x]M ≡A N
′ for some term N ′ such

that N ′ ≡α [U/x]N .

Proof. This follows from Corollary 3.1.16 and Lemma 3.1.17.
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3.2 Contractions and Reductions

Most of the definitions and lemmas in this section are based on the lambda calculus

with patterns [5] with some adjustments. Most of the lemmas are unaffected by

the new congruence ≡A and for these proofs will not be given. Only a few need

some small changes in the statement or proof; for these we will show the details

of those parts that differ. Again, for the ease of reading, the corresponding result

number from [5] will be included in brackets.

Definition 3.2.1. For any pattern P with k free variables x = x1, . . . , xk, k ≥ 1

(respectively P has no free variables), and any term N , if there exist terms N =

N1, . . . , Nk such that [N/x]P ≡ N (respectively P ≡ N), then for any term Q,

(λP.Q)N is called a β-redex and the corresponding term [N/x]Q (respectively

Q) is called its β-contractum.

Let R be an occurrence of a β-redex in a term M . If we replace R by its

β-contractum, and the result is the expression M ′, then we say M β-contracts

to M ′, which we denote by M .1β M
′.

We extend the definitions of reductions by adding the new congruence ‘≡A’.

Definition 3.2.2. For any terms M and M ′, we say M β-reduces to M ′, denoted

by M .β M
′, if there exists a sequence of terms M ≡ M1, . . . ,Mn ≡ M ′, n ≥ 1,

such that for each 1 ≤ i < n, Mi .1β Mi+1, Mi ≡α Mi+1, or Mi ≡A Mi+1.

Definition 3.2.3. Let (λP.Q | A) be a compound abstraction and N a term with

m free variables y = y1, . . . , ym,m ≥ 1 (respectively N has no free variables). We

will call (λP.Q | A)N a γ-redex with γ-contractum S if one of the following

two conditions holds:

a. the term (λP.Q)N is a β-redex, in which case S ≡ (λP.Q)N ; or
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b. for all terms U = U1, . . . , Um and all terms N ′ such that [U/y]N .βN
′ (respec-

tively N .β N
′), the term (λP.Q)N ′ is not a β-redex, in which case S ≡ AN .

Let R be an occurrence of a γ-redex in a term M . If we replace R by its

γ-contractum, and the result is the expression M ′, then we say Mγ-contracts to

M ′, which we denote by M .1γ M
′.

Definition 3.2.4. For any terms M and M ′, we say M βγ-reduces to M ′,

denoted by M .βγ M
′, if there exists a sequence of terms M ≡ M1, . . . ,Mn ≡

M ′, n ≥ 1, such that for each 1 ≤ i < n, Mi .1β Mi+1,Mi .1γ Mi+1, Mi ≡α Mi+1,

or Mi ≡A Mi+1.

Definition 3.2.5. Let (λP.Q | A) be a compound abstraction and N a term with

m free variables y = y1, . . . , ym,m ≥ 1 (respectively N has no free variables). We

will call (λP.Q | A)N a δ-redex with δ-contractum S if one of the following

two conditions holds:

a. the term (λP.Q)N is a β-redex, in which case S ≡ (λP.Q)N ; or

b. for all terms U = U1, . . . , Um and all terms N ′ such that [U/y]N .βγN
′ (respec-

tively N .βγ N
′), the term (λP.Q)N ′ is not a β-redex, in which case S ≡ AN .

Let R be an occurrence of a δ-redex in a term M . If we replace R by its

δ-contractum, and the result is the expression M ′, then we say Mδ-contracts to

M ′, which we denote by M .1δ M
′.

Definition 3.2.6. For any terms M and M ′, we say M βδ-reduces to M ′, de-

noted by M .βδ M
′, if there exists a sequence of terms M ≡ M1, . . . ,Mn ≡

M ′, n ≥ 1, such that for each 1 ≤ i < n, Mi .1β Mi+1, Mi .1δ Mi+1, Mi ≡α Mi+1,

or Mi ≡A Mi+1. We call such a sequence of terms a βδ-reduction.
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Definition 3.2.7. For any abstraction A and any term N , AN is called a po-

tential redex.

Definition 3.2.8. For any potential redex R, R is called a contractible redex

if R is either a β-redex or a δ-redex.

Note 3.2.9. For any terms M and M ′, if M .βδM
′ and M contains no abstrac-

tion, then M ≡A M
′.

Remark. Unless explicitly specified otherwise, a “reduction” means a“βδ-reduction”.

Notation. The expression M .1β1δ N will mean “M .1β N or M .1δ N”.

Note 3.2.10. [Note 2.3.14] For any terms M and N , if M .1β1δ N and R is the

occurence of a potential redex which is contracted when M .1β1δ N , then

a. if M ≡ M1M2 and M 6≡ R then N ≡ N1N2 for some terms N1 and N2 such

that either M1 .1β1δ N1 and M2 ≡ N2 or M1 ≡ N1 and M2 .1β1δ N2;

b. if M ≡ λP.Q then N ≡ λP.Q′ for some term Q′ such that Q .1β1δ Q
′;

c. if M ≡ (λP.Q | A) then N ≡ (λP.Q′ | A′) for some term Q′ and some

abstraction A′ such that either Q.1β1δQ
′ and A ≡ A′ or Q ≡ Q′ and A.1β1δA

′.

Corollary 3.2.11. [Corollary 2.3.15] For any term M , if M .βδ N , then N is

a term and

a. if M ≡ M1M2 and M .βδ N by a sequence of terms M ≡ K1, . . . , Kn ≡ N ,

n ≥ 1, such that for each 1 ≤ i < n, Ki is not the potential redex which is

contracted and Ki 6≡0
1A Ki+1 then N ≡ N1N2 for some terms N1 and N2 such

that Mi .βδ Ni, i = 1, 2;

b. if M ≡ λP.Q, and no variable in P has been changed when M .βδ N then

N ≡ λP.Q′ for some term Q′ such that Q .βδ Q
′;



25

c. if M ≡ (λP.Q | A) then N ≡ (λP ′.Q′ | A′) for some abstractions λP ′.Q′ and

A′ such that λP.Q .βδ λP
′.Q′ and A .βδ A

′.

Proof. This follows from Lemma 2.2.2, Notes 3.1.2, and Notes 3.2.10, .

Lemma 3.2.12. [Lemma 3.1.1] Let x = x1, . . . , xk, k ≥ 1, be distinct variables,

N = N1, . . . , Nk be terms, and P be a pattern. If [N/x]P is a potential redex,

then P ≡ xt for some 1 ≤ t ≤ k.

Lemma 3.2.13. Let x = x1, . . . , xk, k ≥ 1, be distinct variables, N = N1, . . . , Nk

be terms, P be a pattern, and S be a potential redex. If S is in [N/x]P , then S is

in Nt for some 1 ≤ t ≤ k.

Proof. Assume S is in [N/x]P . We will induct on P . Note that since a pattern

cannot contain an abstraction, {x}∩FV (P ) 6= ∅, otherwise S is in [N/x]P ≡ P ,

a contradiction. In fact, by Corollary 2.2.1(a) we may assume that {x} ⊆ FV (P ).

Case 1. P ≡ x1.

Then [N/x]P ≡ N1. So S is in N1 and we are finished.

Case 2. P ≡ P1P2.

Then [N/x]P ≡ [N/x]P1[N/x]P2. Since P is not a variable, by Lemma

3.2.12, any substitution of P is not a potential redex. Hence S is either

in [N/x]P1 or [N/x]P2. In either case, by induction S is in Nt for some

1 ≤ t ≤ k.

Lemma 3.2.14. [Lemma 3.1.2] Let λP.Q be a simple abstraction with FV (P ) =

{x1, . . . , xk}, k ≥ 1, and N be a term such that λP.Q ≡α N . Then N ≡

λ[y1/x1, . . . , yk/xk]P.Q
′ for some distinct variables y1, . . . , yk and some term Q′

such that {y1, . . . , yk} ∩ FV (λP.Q) = ∅ and Q′ ≡α [y1/x1, . . . , yk/xk]Q.
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Lemma 3.2.15. [Lemma 3.1.4] Let P and P ′ be patterns with FV (P ) ⊆

{x1, . . . , xk}, k ≥ 1, and P ′ ≡ [y1/x1, . . . , yk/xk]P for some distinct variables

y1, . . . , yk and let Q and N be terms. If (λP.Q)N is a β-redex, then

(λP ′.Q′)[U1/u1, . . . , Um/um]N is also a β-redex for any distinct variables u1, . . . , um,

m ≥ 1, and any terms Q′, U1, . . . , Um.

Lemma 3.2.16. [Lemma 3.1.6] Let R ≡ (λP.Q)N be a β-redex, x = x1, . . . , xk,

k ≥ 1, be distinct variables, and S, U = U1, . . . , Uk be terms. If R .1β S, then

[U/x]R .β [U/x]S. To be precise, if R .1β S, then [U/x]R .1β S
∗ for some term

S∗, where S∗ ≡α [U/x]S.

Lemma 3.2.17. [Lemma 3.1.7] Let R ≡ (λP.Q | A)N be a δ-redex, x =

x1, . . . , xk, k ≥ 1, be distinct variables, and U = U1, . . . , Uk be terms. If R .1δ S,

then [U/x]R .1δ [U/x]S.

Lemma 3.2.18. [Corollary 3.1.8] Let x = x1, . . . , xk, k ≥ 1, be distinct vari-

ables and M,M ′, U = U1, . . . , Uk be terms.

a. If M .βδ M
′, then [U/x]M .βδ [U/x]M ′.

b. If R is a contractible redex, then so is [U/x]R.

Lemma 3.2.19. [Lemma 3.1.9] Let A be an abstraction, A′ and N be terms

such that A .1β1δ A
′. If AN is a contractible redex, then so is A′N .

Lemma 3.2.20. [Lemma 3.1.10] Let P be a pattern with FV (P ) = {x1, . . . , xk},

k ≥ 1, and N,U = U1, . . . , Uk be terms. Let x = x1, . . . , xk. If [U/x]P .βδN , then

N ≡A [V /x]P for some terms V = V1, . . . , Vk such that Ui .βδ Vi for all 1 ≤ i ≤ k.

Proof. Assume [U/x]P .βδ N . Induct on P .

Case 1. P ≡ x1.

Let V1 ≡ N . Then N ≡ V1 ≡ [V1/x1]P and U1 ≡ [U1/x1]P .βδ N ≡ V1.
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Case 2. P ≡ P1P2.

Let [U/x]P .βδN by a sequence of terms [U/x]P ≡ K1, . . . , Kn ≡ N , n ≥ 1.

(2.1) Ki 6≡0
1A Ki+1 for all 1 ≤ i < n.

By Lemma 3.2.12, any substitution of P is not a potential redex. Since

[U/x]P1[U/x]P2 ≡ [U/x]P .βδ N , by Corollary 3.2.11, N ≡ N1N2 for

some terms N1 and N2, where [U/x]Pi .βδ Ni, i = 1, 2. Since FV (P ) =

{x1, . . . , xk}, FV (P1) 6= ∅ or FV (P2) 6= ∅. Without loss of generality,

assume FV (P1) 6= ∅.

(2.1.1) FV (P2) = ∅.

Then FV (P1) = {x1, . . . , xk}. Since [U/x]P1 .βδ N1, by induction

N1 ≡A [V /x]P1 for some terms V = V1, . . . , Vk, where Ui .βδ Vi for

all 1 ≤ i ≤ k. Since FV (P2) ≡ ∅, P2 ≡ [U/x]P2 .βδ N2. In fact

P2 ≡A N2, since P2 contains no abstractions. Hence

N ≡ N1N2

≡A ([V /x]P1)P2

≡ [V /x]P1[V /x]P2

≡ [V /x](P1P2)

≡ [V /x]P.

(2.1.2) FV (P2) = {xj1 , . . . , xjp}.

Since FV (P ) = {x1, . . . , xk} and no variable occurs in both P1 and

P2, FV (P1) = {xi1 , . . . , xim}, where {i1, . . . , im} ∪ {j1, . . . , jp} =

{1, . . . , k} and {i1, . . . , im}∩{j1, . . . , jp} = ∅. By Corollary 2.2.1(a),

[U/x]P1 ≡ [Ui1/xi1 , . . . , Uim/xim ]P1 and [U/x]P2 ≡

[Uj1/xj1 , . . . , Ujp/xjp ]P2. By induction, N1 ≡A [Vi1/xi1 , . . . , Vim/xim ]P1

and N2 ≡A [Vj1/xj1 , . . . , Vjp/xjp ]P2 for some terms Vi1 , . . . , Vim ,
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Vj1 , . . . , Vjp , where Ur .βδ Vr for all 1 ≤ r ≤ k. Let V = V1, . . . , Vk.

Hence

N ≡ N1N2

≡A [Vi1/xi1 , . . . , Vim/xim ]P1[Vj1/xj1 , . . . , Vjp/xjp ]P2

≡ [V /x]P1[V /x]P2

≡ [V /x]P.

(2.2) Ki ≡0
1A Ki+1 for some 1 ≤ i < n.

Let k be the first such i. Then [U/x]P .βδ Kk with Kj 6≡0
1A Kj+1

for all 1 ≤ j < k. By Case 2.1 we have Kk ≡A [V /x]P for some

terms V = V1, . . . , Vk such that Uj .βδ Vj for all 1 ≤ j ≤ k. Since

Kk ≡0
1A Kk+1, Kk contains no abstraction. Then, since Kk .βδ N , by

Note 3.2.9, Kk ≡A N . Hence N ≡A Kk ≡A [V /x]P .

Lemma 3.2.21. [Lemma 3.1.12] Let A be an abstraction, and N be a term such

that AN is a contractible redex.

a. For any term N ′ such that N ≡α N ′, AN ′ is a contractible redex.

b. For any term N ′ such that N .1β1δ N
′, AN ′ is a contractible redex.

Proof. Both are special cases of Lemma 3.1.12 in [5].

Lemma 3.2.22. [Lemma 3.1.12] Let A be an abstraction, and N and N ′ be

terms such that N .βδ N
′. If AN is a contractible redex, then there exists a term

N ′′ such that N ′ ≡A N
′′ and AN ′′ is a contractible redex.

Proof. Assume AN is contractible. Let N .βδ N
′ by a sequence of terms N ≡

N1, . . . , Nk ≡ N ′, k ≥ 1. We will induct on k. If k = 1 then N ≡ N1 ≡ N ′, so

AN ′ is contractible and we are finished. Now assume k > 1. Then by induction
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there exists a term N ′k−1 such that Nk−1 ≡A N ′k−1 and AN ′k−1 is a contractible

redex.

Case 1. Nk−1 ≡A N
′.

Since N ′k−1 ≡A Nk−1 ≡A N
′, and AN ′k−1 is contractible, we are finished with

N ′′ ≡ N ′k−1.

Case 2. Nk−1 ≡α N ′.

Since N ′k−1 ≡A Nk−1 ≡α N ′, by Corollary 3.1.16, N ′k−1 ≡α N ′′k−1 ≡A N ′ for

some term N ′′k−1. Then, since AN ′k−1 is contractible, by Lemma 3.2.21(a),

so is AN ′′k−1. Thus we are finished with N ′′ ≡ N ′′k−1.

Case 3. Nk−1 .1β1δ N
′.

Then Nk−1 contains an abstraction. Since Nk−1 ≡A N
′
k−1, by Note 3.1.4(a),

N ′k−1 also contains an abstraction.

(3.1) A ≡ λP.Q. for some pattern P and some term Q.

(3.1.1) FV (P ) = ∅.

Since (λP.Q)N ′k−1 is contractible, P ≡ N ′k−1. This is a contradic-

tion since a pattern cannot contain an abstraction.

(3.1.2) FV (P ) = {x1, . . . , xn} for some variables x = x1, . . . , xn.

Since (λP.Q)N ′k−1 is contractible, [U/x]P ≡ N ′k−1 for some terms

U = U1, . . . , Un. Since [U/x]P ≡ N ′k−1 ≡A Nk−1 .1β1δ N
′, by

Lemma 3.2.20 N ′ ≡A [V /x]P for some terms V = V1, . . . , Vn. Let

N ′′ ≡ [V /x]P . Then N ′ ≡A N ′′ and AN ′′ ≡ (λP.Q)([V /x]P ) is

contractible.

(3.2) A ≡ (λP.Q | B) for some pattern P , some term Q, and some abstrac-

tion B.
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If ANk−1 is contractible, since Nk−1 .1β1δN
′, by Lemma 3.2.21(b), AN ′

is contractible and we are finished. Now suppose (λP.Q | B)Nk−1

is not contractible. Then since N ′k−1 ≡A Nk−1, by Corollary 3.1.18,

(λP.Q | B)N ′k−1 6 .1δBN
′
k−1. Since (λP.Q | B)N ′k−1 is contractible,

(λP.Q)N ′k−1 is contractible, and the proof can be finished much like in

Case 3.1.

Lemma 3.2.23. [Lemma 3.1.13] Let R be a contractible redex, and R′ and S

be terms such that R ≡α R′. If R .1β S (respectively R .1δ S), then R′ .1β S
′

(respectively R′ .1δ S
′) for some term S ′, where S ′ ≡α S.

Proof. We use Lemma 3.2.21(a) instead of Lemma 3.1.12 in the original proof in

[5]. The rest of the proof remains unchanged.

Lemma 3.2.24. [Corollary 3.1.14]

a. Let M,M ′, and N be terms such that M ≡α M ′. If M .1β N (respectively

M .1δ N), then M ′ .1β N
′ (respectively M ′ .1δ N

′) for some term N ′, where

N ′ ≡α N .

b. If R is a contractible redex and R′ is a term such that R ≡α R′, then R′ is also

a contractible redex.

3.3 Computability Relative to a Structure

Definition 3.3.1. Let g be an n-ary function on |A|. We say g is computable

relative to A if and only if there is a term G, using only variables and symbols

in L together with T and F, such that for all a1, . . . , an, a ∈ |A|, we have

Gā1 . . . ān .βδ ā

whenever g(a1, . . . , an) = a.
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Definition 3.3.2. Let r be an n-ary relation on |A|. We say r is computable

relative to A if and only if there is a term R, using only variables and symbols

in L together with T and F, such that for all a1, . . . , an ∈ |A|, we have

Rā1 . . . ān .βδ T if (a1, . . . , an) ∈ r, and

Rā1 . . . ān .βδ F otherwise.



CHAPTER IV

THE CHURCH-ROSSER THEOREM

4.1 Minimal Complete Developments

The definition for minimal complete development (MCD) is slightly modified from

the original one to allow the new congruence ≡A.

Definition 4.1.1. Let R and S be occurrences of contractible redexes in a term

M . When R is contracted, let M change to M ′.

The contraction-residuals of S (with respect to R) are occurrences of

potential redexes in M ′, defined as follows.

Case 1. R and S are non-overlapping parts of M .

Then contracting R leaves S unchanged. This unchanged S in M ′ is the

contraction-residual of S.

Case 2. R ≡ S

Then contractingR is the same as contracting S. We say S has no contraction-

residuals in M ′.

Case 3. R is part of S and R 6≡ S.

Since S is a potential redex, S ≡ AN for some abstraction A, and some

term N . So R is either in A or in N . Then contracting R changes S to

S ′, where S ′ ≡ A′N ′ for some abstraction A′ and some term N ′ such that

either A .1β1δ A
′ and N ≡ N ′ or A ≡ A′ and N .1β1δ N

′. This S ′ is the

contraction-residual of S.
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Case 4. S is part of R and S 6≡ R.

There are cases and subcases as follows.

(4.1) R ≡ (λP.Q)N .

(4.1.1) FV (P ) = ∅.

Since R is a β-redex, P ≡ N and R .1β Q. Since S is a potential

redex in R, S is in Q. Since R .1β Q, contracting R leaves S

unchanged in M ′; this is the contraction-residual of S.

(4.1.2) FV (P ) = {x1, . . . , xk}, k ≥ 1.

Then [N/x]P ≡ N for some terms N = N1, . . . , Nk and R .1β

[N/x]Q.

(4.1.2.1) S is in Q.

Then S changes to S ′, where S ′ is either S or some substitution

of S. This S ′ is the contraction-residual of S.

(4.1.2.2) S is in N .

Then S is in [N/x]P . By Lemma 3.2.13, S is in Nt for some

1 ≤ t ≤ k. Hence there is an occurrence of S in each Nt substi-

tuted for an occurrence of xt in Q. These are the contraction-

residuals of S. (Note that S may have many or no contraction-

residuals.)

(4.2) R ≡ (λP.Q | A)N .

(4.2.1) R .1δ (λP.Q)N.

If S is in Q or N , then contracting R leaves S unchanged, and this

is the contraction-residual of S in M ′. If S is in A, then S has no

contraction-residuals in M ′.

(4.2.2) R .1δ AN .
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If S is inA orN , then this unchanged S inA orN is the contraction-

residual of S inM ′. If S is inQ, then S has no contraction-residuals

in M ′.

Note 4.1.2.

a. Except in the Case 4.1.2.2, S has at most one contraction-residual.

b. Each contraction-residual is a contractible redex.
(
The contraction-residual in

Case 3 is contractible by Lemmas 3.2.19 and 3.2.21(b), and the contraction-

residual in Case 4.1.2.1 is contractible by Corollary 3.2.18(b)
)
.

Definition 4.1.3. Let R be an occurrence of a contractible redex in a term M .

The 1A-conversion-residuals of R (with respect to M) when M ≡1A M ′ are

occurrences of potential redexes in M ′, defined inductively as follows. Note that

since M contains an abstraction, M 6≡0
1A M

′, so M and M ′ are of the same form.

Case 1. M ≡ R.

If M ′ is a contractible redex then this M ′ is the 1A-conversion-residual of

R, otherwise R has no 1A-conversion-residuals in M ′.

Case 2. M 6≡ R.

(2.1) R is unchanged in M ′.

This unchanged R is the 1A-conversion-residual of R.

(2.2) R is changed in M ′.

(2.2.1) M ≡M1M2 for some term M1 and M2.

Then R is in Mi for some i ∈ {1, 2}. The 1A-conversion-residual

of R with respect to Mi is the 1A-conversion-residual of R with

respect to M .
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(2.2.2) M ≡ λP.N for some pattern P and some term N .

Then R is in N . The 1A-conversion-residual of R with respect to

N is the 1A-conversion-residual of R with respect to M .

(2.2.3) M ≡ (A1 | A2) for some abstractions A1 and A2.

Then R is in Ai for some i ∈ {1, 2}. The 1A-conversion-residual

of R with respect to Ai is the 1A-conversion-residual of R with

respect to M .

Note 4.1.4.

a. R has at most one 1A-conversion-residual.

b. Each 1A-conversion-residual is a contractible redex.

Remark. We may simply use “residual” to abbreviate either a “contraction-

residual” or a “1A-conversion-residual”, where there is no ambiguity.

Definition 4.1.5. If R = {Ri | 1 ≤ i ≤ n}, n ≥ 0, is a set of occurrences of

potential redexes in a term M , then an Ri is called minimal (with respect to R)

if it properly contains no other Rj ∈ R. (Note that if n = 0 then R = ∅, i.e., M

contains no potential redex.)

Let RM = {Ri | 1 ≤ i ≤ n}, n ≥ 0, be a set of occurrences of contractible

redexes in a term M . For any terms M∗ and M ′ such that M∗ ≡A M , we say

M ′ is obtained from M∗ by a minimal complete development (MCD) of

RM , denoted by M∗ .mcdM
′ (of RM), if M ′ is obtained from M by the following

process.

First contract any minimal Ri; without loss of generality let i = 1. By

Definition 4.1.1, this leaves n−1 contraction-residuals, R′2, R
′
3, . . . , R

′
n. Then make

as many 1A-conversions as you like (possibly none), this leaves at most n− 1 1A-

conversion-residuals among R′′2, R
′′
3, . . . , R

′′
n. Again, contract any minimal R′′t and
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make 1A-conversions. This leaves at most n − 2 residuals. Repeat this process

until no contraction-residuals are left. Then make as many 1A-conversions as you

like. Finally, make as many α-steps as you like.

Note 4.1.6. [Note 3.2.4]

a. Each MCD is a βδ-reduction.

b. For any contractible redex L, if L.mcdM of RL, without α-steps, where L /∈ RL,

and M .1β1δ N , with M being the potential redex contracted, then L .mcd N

of RL ∪ {L}, without α-steps. In fact, for any term L′ such that L′ ≡A L,

L′ .mcd N of RL ∪ {L}, without α-steps.

Proposition 4.1.7. Let M,N and N ′ be terms. If M .mcdN ≡A N
′ then M .mcd

N ′.

Proof. This follows directly from Corollary 3.1.16.

Lemma 4.1.8. [Lemma 3.2.5] For any term M , if M .mcdN , then N is a term

and

a. if M ≡ M1M2 and M .mcd N by a sequence of terms M ≡ K1, . . . , Kn ≡ N ,

n ≥ 1, such that for each 1 ≤ i < n, Ki is not the potential redex which is

contracted and Ki 6≡0
1A Ki+1 then N ≡ N1N2 for some terms N1 and N2 such

that Mi .mcd Ni, i = 1, 2;

b. if M ≡ λP.Q, and no variable in P has been changed when M .mcd N then

N ≡ λP.Q′ for some term Q′ such that Q .mcd Q
′;

c. if M ≡ (λP.Q | A) then N ≡ (λP.Q′ | A′) for some abstractions λP ′.Q′ and A′

such that λP.Q .mcd λP
′.Q′ and A .mcd A

′.

Proof. This follows from Notes 3.1.2, 3.2.10, and Lemma 2.2.2.
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Lemma 4.1.9. [Lemma 3.2.6] Let P be a pattern with FV (P ) = {x1, . . . , xk}, k ≥

1, and N , U = U1, . . . , Uk be terms. Let x = x1, . . . , xk. If [U/x]P .mcd N , then

N ≡A [V /x]P for some terms V = V1, . . . , Vk such that Ui.mcdVi for all 1 ≤ i ≤ k.

Proof. This can be proved in the same way as Lemma 3.2.20.

Lemma 4.1.10. [Lemma 3.2.7] For any terms M,N, and M ′, if M .mcdN and

M ≡α M ′, then M ′ .mcd N .

Lemma 4.1.11. [Lemma 3.2.8] For any distinct variables x = x1, . . . , xk, k ≥ 1,

and any terms M,N, U = U1, . . . , Uk, V = V1, . . . , Vk, if M .mcd N and Ui .mcd Vi

for all 1 ≤ i ≤ k, then [U/x]M .mcd [V /x]N .

Proof. As in the original proof of these two lemmas (Lemma 3.2.7 and 3.2.8 in

[5]), they are proved simultaneously by induction on M , and additionally we may

assume that the MCD M .mcd N has no α-steps and {x} ⊆ FV (M). The proof

remains unchanged except for the case where M ≡ M1M2, which is rewritten as

follows. Let M .mcdN of R by a sequence of terms M ≡ K1, . . . , Kn ≡ N , n ≥ 1.

Case 1. Ki 6≡0
1A Ki+1 for all 1 ≤ i < n.

(1.1) M /∈ R.

This can be proved in the same way as the case when M is a compound

abstraction (See Case iii. of the original proof in [5]).

(1.2) M ∈ R.

Since M ∈ R and M .mcd N , without α-steps, M .mcd M
0
1M

0
2 for

some terms M0
1 and M0

2 such that M1 .mcdM
0
1 and M2 .mcdM

0
2 , both

without α-steps, and M0
1M

0
2 .1β1δ N

0 with M0
1M

0
2 being the potential

redex contracted, for some term N0 such that N0 ≡A N .
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Proof of 4.1.10.

Since M ≡α M ′, we have that M ′ ≡ M ′
1M

′
2 for some terms

M ′
1 and M ′

2 such that M ′
i ≡α Mi, i = 1, 2. By induction,

M ′
i .mcdM

0
i , i = 1, 2. Hence M ′

1.mcdM
∗
1 and M ′

2.mcdM
∗
2 , both

without α-steps, for some terms M∗
1 and M∗

2 , where M∗
i ≡α

M0
i , i = 1, 2. Since M∗

1M
∗
2 ≡α M0

1M
0
2 and M0

1M
0
2 .1β1δ N

0,

by Lemma 3.2.23 M∗
1M

∗
2 .1β1δ M

∗ for some term M∗, where

M∗ ≡α N0. Hence M ′ ≡M ′
1M

′
2 .mcdM

∗
1M

∗
2 .1β1δ M

∗ ≡α N0.

Since M ≡α M ′, by Corollary 3.2.24(b) M ′ is contractible.

By Note 4.1.6(b), M ′.mcdN
0. Since N0 ≡A N , by Proposition

4.1.7 M ′ .mcd N .

Proof of 4.1.11.

Since M1.mcdM
0
1 and M2.mcdM

0
2 , by induction [U/x]Mi.mcd

[V /x]M0
i , i = 1, 2. Hence [U/x]Mi .mcdM

∗
i , without α-steps,

for some term M∗
i such that M∗

i ≡α [V /x]M0
i , i = 1, 2. Since

M0
1M

0
2.1β1δN

0, by Lemmas 3.2.16 and 3.2.17 [V /x](M0
1M

0
2 ).1β1δ

N∗ for some termN∗, whereN∗ ≡α [V /x]N0. SinceM∗
1M

∗
2 ≡α

[V /x](M0
1M

0
2 ), by Lemma 3.2.23 M∗

1M
∗
2 .1β1δ M

∗ for some

term M∗ such that M∗ ≡α N∗.

Hence [U/x]M ≡ [U/x]M1[U/x]M2

.mcdM
∗
1M

∗
2

.1β1δ M
∗

≡α N∗

≡α [V /x]N0.

Since M is contractible, by Corollary 3.2.18(b), [U/x]M is
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contractible. By Note 4.1.6(b) [U/x]M .mcd [V /x]N0. Since

N0 ≡A N , by Proposition 3.1.18 [V /x]N0 ≡A N ′ for some

term N ′ such that N ′ ≡α [V /x]N . Then by Proposition 4.1.7

[U/x]M .mcd [V /x]N .

Case 2. Ki ≡0
1A Ki+1 for some 1 ≤ i < n.

Let k be the first such i. Then M.mcdKk with Kj 6≡0
1A Kj+1 for all 1 ≤ j < k.

Since Kk ≡0
1A Kk+1, Kk contains no abstractions. Then, since Kk .mcdN , it

must be that Kk ≡A N .

Proof of 4.1.10.

Since M ≡α M ′, by Case 1 M ′ .mcdKk. Then by Proposition 4.1.7

M ′ .mcd N .

Proof of 4.1.11.

By Case 1 we have [U/x]M .mcd [V /x]Kk. Since Kk ≡A N , by

Proposition 3.1.18 [V /x]Kk ≡A N ′ for some term N ′ such that

N ′ ≡α [V /x]N . Then by Proposition 4.1.7 [U/x]M .mcd [V /x]N .

4.2 The Church-Rosser Theorem for βδ-Reduction

We first prove the Church-Rosser theorem for MCD’s, where most of the work is

done, then use it to prove the Church-Rosser theorem for βδ-reduction.

Theorem 4.2.1. (The Church-Rosser Theorem for MCD’s)

For any terms L,M, and N , if L .mcdM and L .mcd N , then there exists a term

T such that M .mcd T and N .mcd T .

Proof. Let L,M, and N be terms such that L .mcd M and L .mcd N . Then M

(respectively N) is obtained from L by the given MCD of a set RM (respectively
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RN). By Lemma 4.1.10, it is sufficient to consider the case in which the given

MCD’s have no α-steps. Induct on L.

i. L is an atom.

Since L .mcdM and L .mcdN , it must be that M ≡A L ≡A N and we are finished

by choosing T ≡M .

ii. L ≡ λP.Q.

Since L.mcdM and L.mcdN , both without α-steps, M ≡ λP.QM and N ≡ λP.QN

for some terms QM and QN such that Q .mcd Q
M and Q .mcd Q

N . By induction,

there exists a term Q∗ such that QM .mcd Q
∗ and QN .mcd Q

∗. Let T ≡ λP.Q∗.

Then M ≡ λP.QM .mcd λP.Q
∗ ≡ T and, similarly, N .mcd T .

iii. L ≡ (λP.Q | A)

Since L .mcd M and L .mcd N , both without α-steps, M ≡ (λP.QM | AM) and

N ≡ (λP.QN | AN) for some terms QM and QN and some abstractions AM and

AN such that Q .mcd Q
M , Q .mcd Q

N , A .mcd A
M , and A .mcd A

N . By induction,

there exist terms Q∗ and A∗ such that QM .mcd Q
∗, QN .mcd Q

∗, AM .mcd A
∗, and

AN .mcd A
∗. By Lemma 4.1.8, A∗ is also an abstraction. Let T ≡ (λP.Q∗ | A∗).

Then M ≡ (λP.QM | AM) .mcd (λP.Q∗ | A∗) ≡ T and, similarly, N .mcd T .

iv. L ≡ L1L2

Case 1. L /∈ RM and L /∈ RN .

This case can be proved in the same way as (iii).

Case 2. L ∈ RM or L ∈ RN .

Without loss of generality, assume that L ∈ RM . There are cases and

subcases as follows.

(2.1) L1 ≡ λP.Q.

Since L ∈ RM and (λP.Q)L2 ≡ L .mcd M , without α-steps, L .mcd



41

(λP.QM)LM2 for some terms QM and LM2 such that Q.mcdQ
M , L2 .mcd

LM2 , and (λP.QM)LM2 .1β M
0 ≡A M , with (λP.QM)LM2 being the β-

redex contracted, for some term M0.

(2.1.1) L ∈ RN .

Similar to the above, L .mcd (λP.QN)LN2 for some terms QN and

LN2 , such that Q.mcdQ
N , L2.mcdL

N
2 , and (λP.QN)LN2 .1βN

0 ≡A N ,

with (λP.QN)LN2 being the β-redex contracted, for some term N0.

By induction, there exist terms Q∗ and L∗2 such that QM .mcd Q
∗,

QN .mcd Q
∗, LM2 .mcd L

∗
2, and LN2 .mcd L

∗
2.

(2.1.1.1) FV (P ) = ∅.

Since (λP.QM)LM2 .1βM
0 and (λP.QN)LN2 ) .1β N

0, M0 ≡ QM

and N0 ≡ QN . Hence M ≡A M
0 ≡ QM .mcdQ

∗. So M .mcdQ
∗.

Similarly for N , we have N .mcd Q
∗. So we are finished with

T ≡ Q∗.

(2.1.1.2) FV (P ) = {x1, . . . , xk}.

Since (λP.QM)LM2 .1β M
0 and (λP.QN)LN2 .1β N

0, there exist

terms U = U1, . . . , Uk, V = V1, . . . , Vk such that [U/x]P ≡ LM2 ,

[V /x]P ≡ LN2 , M0 ≡ [U/x]QM , and N0 ≡ [V /x]QN . Since

LM2 .mcd L
∗
2 and LN2 .mcd L

∗
2, by Lemma 4.1.9 L∗2 ≡A [U ′/x]P

and L∗2 ≡A [V ′/x]P for some terms U ′ = U ′1, . . . , U
′
k, V

′ =

V ′1 , . . . , V
′
k such that Ui .mcdU

′
i , and Vi .mcdV

′
i for all 1 ≤ i ≤ k.

Since [U ′/x]P ≡A L∗2 ≡A [V ′/x]P , by Lemma 3.1.13, for each

1 ≤ i ≤ k, U ′i ≡A V
′
i . Then Ui.mcdU

′
i and since Vi.mcdV

′
i ≡A U

′
i ,

by Proposition 4.1.7, Vi .mcd U
′
i for all 1 ≤ i ≤ k. Let W =

U ′1, . . . , U
′
k. Thus by Lemma 4.1.11 M ≡A M

0 ≡ [U/x]QM .mcd

[W/x]Q∗ and N ≡A N0 ≡ [V /x]QN .mcd [W/x]Q∗. So we are
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finished with T ≡ [W/x]Q∗.

(2.1.2) L /∈ RN .

Since (λP.Q)L2 ≡ L .mcd N , without α-steps, N ≡A (λP.QN)LN2

for some terms QN and LN2 such that Q.mcdQ
N and L2.mcdL

N
2 . By

induction, there exist terms Q∗ and L∗2 such that QN .mcd Q
∗ and

LN2 .mcdL
∗
2, both without α-steps, and QM .mcdQ

∗ and LM2 .mcdL
∗
2.

(2.1.2.1) FV (P ) = ∅.

Since L ≡ (λP.Q)L2 is contractible, P ≡ L2. Then L2 contains

no bound variables. Since L2 .mcd L
N
2 , actually L2 ≡A L

N
2 , and

N ≡A (λP.QN)LN2

≡A (λP.QN)L2

.mcd (λP.Q∗)L2

.1β Q
∗.

Since (λP.QN)L2 is contractible, by Note 4.1.6(b) N .mcd Q
∗.

Also, since (λP.QM)LM2 .1β M
0, M ≡A M0 ≡ QM .mcd Q

∗, so

we are finished with T ≡ Q∗.

(2.1.2.2) FV (P ) = {x1, . . . , xk}.

Since (λP.QM)LM2 .1β M
0, there exist terms U = U1, . . . , Uk

such that [U/x]P ≡ LM2 andM0 ≡ [U/x]QM . Since LM2 .mcdL
∗
2,

by Lemma 4.1.9, L∗2 ≡A [V /x]P for some terms V = V1, . . . , Vk

such that Ui .mcd Vi for all 1 ≤ i ≤ k. Since L ≡ (λP.Q)L2

is contractible, there exist terms W = W1, . . . ,Wk such that

[W/x]P ≡ L2. Then since L2 .mcd L
N
2 , by Lemma 4.1.9,

LN2 ≡A [W ′/x]P for some terms W ′ = W ′
1, . . . ,W

′
k. Again

since LN2 .mcd L
∗
2, we have L∗2 ≡A [W ′′/x]P for some terms
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W ′′ = W ′′
1 , . . . ,W

′′
k such that W ′

i .mcd W
′′
i for all 1 ≤ i ≤ k.

Since [W ′′/x]P ≡A L∗2 ≡A [V /x]P , by Lemma 3.1.13, W ′′
i ≡A

Vi for all 1 ≤ i ≤ k. Then

N ≡ (λP.QN)LN2

≡A (λP.QN)([W ′/x]P )

.mcd (λP.Q∗)([W ′′/x]P )

≡A (λP.Q∗)([V /x]P )

.1β [V /x]Q∗.

Since (λP.QN)([W ′/x]P ) is contractible, by Note 4.1.6(b) and

Proposition 4.1.7, N .mcd [V /x]Q∗. Also, by Lemma 4.1.11, we

have M ≡A M0 ≡ [U/x]QM .mcd [V /x]Q∗, so we are finished

with T ≡ [V /x]Q∗.

(2.2) L1 ≡ (λP.Q | A).

Since L ∈ RM and (λP.Q | A)L2 ≡ L .mcd M , without α-steps,

L .mcd (λP.QM | AM)LM2 for some terms QM and LM2 and some ab-

straction AM such that Q .mcd Q
M , A .mcd A

M , L2 .mcd L
M
2 , and

(λP.QM | AM)LM2 .1δ M
0 ≡A M , with (λP.QM | AM)LM2 being the

δ-redex contracted, for some term M0.

(2.2.1) L ∈ RN .

Similar to the above, L .mcd (λP.QN | AN)LN2 for some terms QN

and LN2 and some abstraction AN such that Q.mcdQ
N , A.mcdA

N ,

L2 .mcd L
N
2 , and (λP.QN | AN)LN2 .1δ N

0 ≡A N , with (λP.QN |

AN)LN2 being the δ-redex contracted, for some term N0. By in-

duction, there exist terms Q∗, A∗ and L∗2 such that QM .mcd Q
∗,

QN .mcdQ
∗, AM .mcd A

∗, AN .mcd A
∗, LM2 .mcd L

∗
2, and LN2 .mcd L

∗
2.
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(2.2.1.1) (λP.QM | AM)LM2 .1δ (λP.QM)LM2 .

Then (λP.QM)LM2 is a β-redex and M0 ≡ (λP.QM)LM2 . Since

LM2 .mcd L
∗
2, by Lemmas 3.2.15 and 3.2.22 and Note 4.1.6(a)

there exists a term L0
2 such that L∗2 ≡A L0

2 and (λP.QN)L0
2 is

a β-redex. Since LN2 .mcd L
∗
2 ≡A L0

2, we have that LN2 .βδ L
0
2,

and so LN2 .βγ L
0
2. Hence (λP.QN | AN)LN2 6 .1δ A

NLN2 . Since

(λP.QN | AN)LN2 .1δ N
0, it must be that N0 ≡ (λP.QN)LN2 .

Thus M ≡A M0 ≡ (λP.QM)LM2 .mcd (λP.Q∗)L∗2 and N ≡A

N0 ≡ (λP.QN)LN2 .mcd (λP.Q∗)L∗2 so we are finished with T ≡

(λP.Q∗)L∗2.

(2.2.1.2) (λP.QM | AM)LM2 .1δ A
MLM2 .

Suppose (λP.QN)LN2 is a β-redex. Since LN2 .mcd L
∗
2, an ar-

gument similar to the one above shows that (λP.QM)L0
2 is a

β-redex for some term L0
2 such that L∗2 ≡A L

0
2. Since LM2 .mcd

L∗2 ≡A L
0
2, we have that LM2 .βδ L

0
2, and thus LM2 .βγ L

0
2. Hence

(λP.QM | AM)LM2 6 .1δA
MLM2 , a contradiction. So (λP.QN)LN2

is not a β-redex. Since (λP.QN | AN)LN2 .1δ N , N ≡ ANLN2 .

Thus M ≡ AMLM2 .mcd A
∗L∗2 and N ≡ ANLN2 .mcd A

∗L∗2 so we

are finished with T ≡ A∗L∗2.

(2.2.2) L /∈ RN .

Since (λP.Q | A)L2 ≡ L .mcd N , without α-steps, N ≡A (λP.QN |

AN)LN2 for some terms QN and LN2 and some abstraction AN such

that Q .mcd Q
N , A .mcd A

N , and L2 .mcd L
N
2 . By induction, there

exist terms Q∗, A∗, and L∗2, such that QN .mcdQ
∗, AN .mcdA

∗, and

LN2 .mcd L
∗
2, all without α-steps, and QM .mcd Q

∗, AM .mcd A
∗, and

LM2 .mcd L
∗
2. Note that A∗ is an abstraction by Lemmas 3.2.14 and
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4.1.8.

(2.2.2.1) (λP.QM | AM)LM2 .1δ (λP.QM)LM2 .

Then (λP.QM)LM2 is a β-redex and M0 ≡ (λP.QM)LM2 . Since

LM2 .mcd L
∗
2, there exists a term L0

2 such that L∗2 ≡A L0
2 and

(λP.QN)L0
2 is a β-redex. So

M ≡A M
0

≡ (λP.QM)LM2

.mcd (λP.Q∗)L∗2

≡A (λP.Q∗)L0
2

and

N ≡A (λP.QN | AN)LN2

.mcd (λP.Q∗ | A∗)L∗2

≡A (λP.Q∗ | A∗)L0
2

.1δ (λP.Q∗)L0
2.

Then by Proposition 4.1.7,M.mcd(λP.Q
∗)L0

2 andN.mcd(λP.Q
∗)L0

2,

so we are finished with T ≡ (λP.Q∗)L0
2.

(2.2.2.2) (λP.QM | AM)LM2 .1δ A
MLM2 .

Suppose (λP.Q∗ | A∗)L∗2 6 .1δA
∗L∗2. Then (λP.Q∗)L+

2 is a β-

redex for some term L+
2 such that [U/x]L∗2 .βγ L

+
2 for some

distinct variables x = x1, . . . , xk, k ≥ 1, and some terms U =

U1, . . . , Uk. Since LM2 .mcdL
∗
2, we have that LM2 .βδL

∗
2. By Corol-

lary 3.2.18(a), [U/x]LM2 .βδ [U/x]L∗2, so [U/x]LM2 .βγ [U/x]L∗2.

Since the relation .βγ is transitive, [U/x]LM2 .βγ L
+
2 . Since

(λP.Q∗)L+
2 is a β-redex, (λP.QM)L+

2 is also a β-redex. Hence
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(λP.QM | AM)LM2 6 .1δ A
MLM2 , a contradiction. Thus (λP.Q∗ |

A∗)L∗2 .1δ A
∗L∗2. Hence M ≡A M0 ≡ AMLM2 .mcd A

∗L∗2 and

N ≡ (λP.QN | AN)LN2 .mcd (λP.Q∗ | A∗)L∗2 .1δ A
∗L∗2 so we are

finished with T ≡ A∗L∗2.

Theorem 4.2.2. (The Church-Rosser Theorem for βδ-reduction)

For any terms L,M, and N , if L .βδ M and L .βδ N , then there exists a term T

such that M .βδ T and N .βδ T .

Proof. Using the fact that our new .βδ allows ≡A, and a single ≡A is an .mcd, the

proof remains the same as in [5].

4.3 βδ-Normal Form and βδ-Equality

Definition 4.3.1. For any abstraction A and any term N , AN is called a con-

tractible redex if AN is either a β-redex or a δ-redex.

Definition 4.3.2. A term M which contains no contractible redexes is called a

βδ-normal form. For any terms M and N , if M .βδ N and N is a βδ-normal

form, then N is called a βδ-normal form of M .

Lemma 4.3.3. [Lemma 3.1.15] For any βδ-normal form M and any term N ,

if M .βδ N , then M ≡A M
′ ≡α N for some term M ′.

Proof. The essence of the proof remains unchanged. By inducting on the length

of the sequence of reduction, we show that there is no .1β1δ in the sequence. Then

by Corollary 3.1.16, we can rearrange ≡A’s and ≡α’s in any order.

Corollary 4.3.4. [Corollary 3.3.3] For any term L, if L has βδ-normal forms

M and N , then M ≡A M
′ ≡α N for some term M ′.
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Proof. Let L, M , and N be terms such that L .βδM and L .βδ N , and M and N

are βδ-normal forms. By Theorem 4.2.2, there exists a term T such that M .βδ T

and N .βδ T . Then by Lemma 4.3.3, M ≡A M ′ ≡α T ≡α N ′ ≡A N for some

terms M ′ and N ′. So by Corollary 3.1.16, we have M ≡A T
′ ≡α N for some term

T ′.

All other theorems and lemmas about βδ-normal forms and βδ-equality in

[5] can be stated and proved in a similar fashion, by using the fact that the new

.βδ allows ≡A, and a single ≡A is an .mcd. The proofs may require some minor

modifications to accommodate the new congruence ≡A.



CHAPTER V

RECURSIVENESS AND COMPUTABILITY

RELATIVE TO A STRUCTURE

To justify the word “computable”, we need to show that our new computability

relative to a structure is equivalent to recursiveness. Given the standard structure

N = (N, {SN}, {0N}) for the language of natural numbers L = {S, 0}, we will

show that every total recursive function on N is computable relative to N.

The proof of the converse will be discussed in the next chapter. We begin by first

reviewing the definition of recursive function.

5.1 Recursive Functions

The definitions concerning recursive functions in this section are summarized from

[3].

Definition 5.1.1. The following functions are called initial functions.

i. The zero function, g(a) = 0 for all a ∈ N.

ii. The successor function, g(a) = a+ 1 for all a ∈ N.

iii. The projection functions, gni (a1, . . . , an) = ai for all 1 ≤ i ≤ n and

a1, . . . , an ∈ N.

Definition 5.1.2. The function g is said to be obtained by composition from

the functions h(y1, . . . , ym), k1(x1, . . . , xn), . . . , km(x1, . . . , xn) if

g(x1, . . . , xn) = h(k1(x1, . . . , xn), . . . , km(x1, . . . , xn)).
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Definition 5.1.3. The function g is said to be obtained by primitive recursion

from the functions h(x1, . . . , xn) and k(x1, . . . , xn+2) if

g(x1, . . . , xn, 0) = h(x1, . . . , xn)

g(x1, . . . , xn, y + 1) = k(x1, . . . , xn, y, g(x1, . . . , xn, y)).

Definition 5.1.4. If h(x1, . . . , xn, y) is a functions such that for any x1, . . . , xn

there exists a y such that h(x1, . . . , xn, y) = 0, then we denote the least y such

that h(x1, . . . , xn, y) = 0 by µy(h(x1, . . . , xn, y) = 0).

The function g is said to be obtained by restricted minimization from

h(x1, . . . , xn, y) if g(x1, . . . , xn) = µy(h(x1, . . . , xn, y) = 0).

Definition 5.1.5. A function is said to be recursive if and only if it can be

obtained from the initial functions by any finite number of applications of com-

position, primitive recursion, and restricted minimization.

5.2 Recursiveness Implies Computability Relative to N

In order to show that a total recursive function on N is computable relative to

N, we will first show that the initial functions on N are computable relative to N,

and then that the above rules for obtaining new recursive functions preserve the

computability relative to N.

5.2.1 Initial Functions

i. The zero function, g(a) = 0 for all a ∈ N.

Consider the term G ≡ λx.0. Since 0N = 0, for any a ∈ N, Gā ≡ (λx.0)ā .1β

0 ≡N 0̄, so we have Gā .βδ 0̄. Hence the zero function is computable relative

to N. �
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ii. The successor function, g(a) = a+ 1 for all a ∈ N.

Consider the term S. Since for any a ∈ N,SN(a) = a+1, we have that Sā ≡N

a+ 1, and thus Sā .βδ a+ 1. Hence the successor function is computable

relative to N. �

iii. The projection function, gni (a1, . . . , an) = ai for all a1, . . . , an ∈ N.

Consider the term G ≡ λx1. . . . λxn.xi. Since for all a1, . . . an ∈ N,

Gā1 . . . ān ≡ (λx1. . . . λxn.xi)ā1 . . . ān

.1β [ā1/x1](λx2. . . . λxn.xi)ā2 . . . ān

...

.1β [ān/xn] . . . [ā1/x1]xi

≡ āi,

we have Gā1ā2 . . . ān .βδ āi. Hence the projection function is computable

relative to N. �

5.2.2 Composition

Let g(x1, . . . xn) be a total function on N obtained by composition from the func-

tions h(y1, . . . , ym) and ki(x1, . . . , xn), 1 ≤ i ≤ m as follows,

g(x1, . . . , xn) = h
(
k1(x1, . . . , xn), . . . , km(x1, . . . , xn)

)
where h and ki are computable relative to N for all 1 ≤ i ≤ m. Then there

exist terms H and Ki corresponding to the functions h and ki for all 1 ≤ i ≤ m

respectively. Let a1, . . . , an ∈ N, and a = g(a1, . . . , an). Then

h
(
k1(a1, . . . , an), . . . , km(a1, . . . , an)

)
= a. Suppose ki(a1, . . . , an) = bi for some

bi ∈ N, 1 ≤ i ≤ m. Then Kiā1 . . . ān .βδ b̄i for all 1 ≤ i ≤ m. Also we have
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h(b1, . . . , bm) = a, so Hb̄1 . . . b̄m .βδ ā. Now consider the term

G ≡ λx1. . . . λxn.H(K1x1 . . . xn) . . . (Kmx1 . . . xn). Since

Gā1 . . . ān ≡
(
λx1. . . . λxn.H(K1x1 . . . xn) . . . (Kmx1 . . . xn)

)
ā1 . . . ān

.1β [ā1/x1]
(
λx2. . . . λxn.H(K1x1 . . . xn) . . . (Kmx1 . . . xn)

)
ā2 . . . ān

...

.1β [ān/xn] . . . [ā1/x1]
(
H(K1x1 . . . xn) . . . (Kmx1 . . . xn)

)
≡ H(K1ā1 . . . ān) . . . (Kmā1 . . . ān)

.βδ Hb̄1 . . . b̄m

.βδ ā,

we have Gā1ā2 . . . ān .βδ ā. Hence composition preserves computability relative to

N. �

5.2.3 Primitive Recursion

Let g(x1, . . . , xn+1) be a total function on N obtained by primitive recursion from

the functions h(x1, . . . , xn) and k(x1, . . . , xn+2) as follows:

g(x1, . . . , xn, 0) = h(x1, . . . , xn)

g(x1, . . . , xn, y + 1) = k(x1, . . . , xn, y, g(x1, . . . , xn, y)),

where h and k are computable relative to N. Then there exist terms H and K

corresponding to the functions h and k respectively. Let a1, . . . , an,m ∈ N, and

a = g(a1, . . . , an,m). Consider the term G ≡ YP where Y is a fixed-point com-

binator∗ and P ≡ λf.λx1. . . . λxn.
(
λ0.Hx1 . . . xn | λSy.Kx1 . . . xny(fx1 . . . xny)

)
.

∗A fixed-point combinator Y is a term such that YX .β X(YX) for any term
X. An example of such term by Alan M. Turing is YTuring = ZZ where Z ≡
λzx.x(zzx). See [1].
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Then for any term M we have

Gā1 . . . ānM ≡ YP ā1 . . . ānM .β P (YP )ā1 . . . ānM ≡ PGā1 . . . ānM

≡
(
λf.λx1. . . . λxn.

(
λ0.Hx1 . . . xn |

λSy.Kx1 . . . xny(fx1 . . . xny)
))
Gā1 . . . ānM

.β [ān/xn] . . . [ā1/x1][G/f ]
(
λ0.Hx1 . . . xn |

λSy.Kx1 . . . xny(fx1 . . . xny)
)
M

≡
(
λ0.Hā1 . . . ān | λSy.Kā1 . . . āny(Gā1 . . . āny)

)
M.

If m = 0, since H corresponds to h and h(a1, . . . , an) = g(a1, . . . , an, 0) = a, we

have Hā1 . . . ān .βδ ā. Hence

Gā1 . . . ān0̄ ≡N Gā1 . . . ān0

.β
(
λ0.Hā1 . . . ān | λSy.Kā1 . . . āny(Gā1 . . . āny)

)
0

.1δ

(
λ0.Hā1 . . . ān

)
0

.1β Hā1 . . . ān

.βδ ā,

so we have Gā1 . . . ān0̄ .βδ ā. Suppose m = p + 1 for some p ∈ N. Let b =

g(a1, . . . , an, p), so k(a1, . . . , an, p, b) = k(a1, . . . , an, p, g(a1, . . . , an, p)) = g(a1, . . . , an, p+

1) = a. Since K corresponds to k, we have Kā1 . . . ānp̄b̄ .βδ ā. Also, by the induc-
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tion hypothesis, we have Gā1 . . . ānp̄ .βδ b̄. Now since

Gā1 . . . ānm̄ = Gā1 . . . ānp+ 1 ≡N Gā1 . . . ān(Sp̄)
(
∵ SN(p) = p+ 1

)
.β
(
λ0.Hā1 . . . ān | λSy.Kā1 . . . āny(Gā1 . . . āny)

)
(Sp̄)

.1δ

(
λSy.Kā1 . . . āny(Gā1 . . . āny)

)
(Sp̄)

.1β [p̄/y]
(
Kā1 . . . āny(Gā1 . . . āny)

)
≡ Kā1 . . . ānp̄(Gā1 . . . ānp̄)

.βδ Kā1 . . . ānp̄b̄

.βδ ā,

we have Gā1 . . . ānm̄ .βδ ā. By induction, we conclude that Gā1 . . . ānm̄ .βδ ā for

all m. Hence primitive recursion preserves computability relative to N �

5.2.4 The Restricted Minimization

Let g(x1, . . . , xn) be a total function on N obtained by restricted minimization

from h(x1, . . . , xn, y) as follows:

g(x1, . . . , xn) = µy(h(x1, . . . , xn, y) = 0),

where h is computable relative to N. Then there exists a term H corresponding

to the function h. Let a1, . . . , an ∈ N. Let a = g(a1, . . . , an). Consider the term

G ≡ G′0 where G′ ≡ YP and

P ≡ λf.λy.λx1. . . . λxn.
(
λ0.y | λz.f(Sy)x1 . . . xn

)(
Hx1 . . . xny

)
.

Case 1. a = 0.

Then h(a1, . . . , an, 0) = 0. Since H corresponds to h, we have Hā1 . . . ān0̄.βδ
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0̄ ≡N 0. Then

Gā1 . . . ān ≡ G′0ā1 . . . ān

≡N G′0̄ā1 . . . ān

≡ YP 0̄ā1 . . . ān .β P (YP )0̄ā1 . . . ān ≡ PG′0̄ā1 . . . ān

≡
(
λf.λy.λx1. . . . λxn.

(
λ0.y |

λz.f(Sy)x1 . . . xn
)(
Hx1 . . . xny

))
G′0̄ā1 . . . ān

.β [ān/xn] . . . [ā1/x1][0̄/y][G′/f ]
((
λ0.y |

λz.f(Sy)x1 . . . xn
)(
Hx1 . . . xny

))
≡
(
λ0.0̄ | λz.G′(S0̄)ā1 . . . ān

)(
Hā1 . . . ān0̄

)
.βδ
(
λ0.0̄ | λz.G′(S0̄)ā1 . . . ān

)
0

.1δ

(
λ0.0̄

)
0

.1β 0̄ = ā,

so we have Gā1 . . . ān .βδ ā.

Case 2. a 6= 0.

Then a = b+1 for some b ∈ N. Since g(a1, . . . , an) = a, we have h(a1, . . . , an, a) =

0, and for all x ≤ b, h(a1, . . . , an, x) 6= 0. Since H corresponds to h, we have

Hā1 . . . ānā .βδ 0̄ ≡N 0, and by the Church-Rosser theorem for βδ-reduction,
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Hā1 . . . ānx̄ 7βδ 0̄ ≡N 0 for all x ≤ b. Then

Gā1 . . . ān ≡ G′0ā1 . . . ān

≡N G′0̄ā1 . . . ān

.β
(
λ0.0̄ | λz.G′(S0̄)ā1 . . . ān

)(
Hā1 . . . ān0̄

)
.1δ

(
λz.G′(S0̄)ā1 . . . ān

)(
Hā1 . . . ān0̄

)
(∵ 0 ≤ b)

.1β G
′(S0̄)ā1 . . . ān

≡N G′1̄ā1 . . . ān

...

.βδ G
′b̄ā1 . . . ān

.β
(
λ0.b̄ | λz.G′(Sb̄)ā1 . . . ān

)(
Hā1 . . . ānb̄

)
.1δ

(
λz.G′(Sb̄)ā1 . . . ān

)(
Hā1 . . . ānb̄

)
(∵ b ≤ b)

.1β G
′(Sb̄)ā1 . . . ān

≡N G′āā1 . . . ān

.β
(
λ0.ā | λz.G′(Sā)ā1 . . . ān

)(
Hā1 . . . ānā

)
.βδ
(
λ0.ā | λz.G′(Sā)ā1 . . . ān

)
0

.1δ

(
λ0.ā

)
0

.1β ā,

so we have Gā1 . . . ān .βδ ā.

Hence restricted minimization preserves computability relative to N. �

5.2.5 Recursive Functions

Since the initial functions are all computable relative to N and the applications of

composition, primitive recursion, and restricted minimization to total functions all
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preserve computability relative to N, we have that every total recursive function

on N is computable relative to N.



CHAPTER VI

ARITHMETIZATION

In the previous chapter, we showed that every total recursive function on N is

computable relative to N. Unfortunately, although we believe the converse

of the theorem holds, we have not been able to prove it yet. Nevertheless, the

proof will most likely employ the technique of arithmetization, i.e., Gödel coding of

terms and reductions (as in done in the proof of Gödel’s Incompleteness Theorem,

see [3]). Therefore, in this chapter, we will construct a Gödel coding for each

element of the lambda calculus with patterns and define some auxiliary relations

and functions. Then we will show a partial proof of the converse and point out

where the problems are. Let N = (N, {SN}, {0N}) be the standard structure for

the language of arithmetic L = {S, 0}.

6.1 Gödel Coding

In order to code reduction sequences, we start by assigning an odd positive integer

to each symbol, then code terms and reductions.

6.1.1 Symbols

For each symbol u of our λP-calculus, the code for u is called the Gödel number

of u, represented by g(u).

Case 1. Basic symbols:

g(() = 3, g()) = 5, g(,) = 7, g(·) = 9, g(λ) = 11, g(|) = 13, g(∅) = 15.
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Case 2. Contraction symbols:

g(.1β) = 17, g(.1γ) = 19, g(.1δ) = 21.

Case 3. Congruence symbols:

g(≡1α) = 23, g(≡1N) = 25.

Case 4. Constants:

g(0) = 31, g(S) = 39, g(T) = 47, g(F) = 55,

and g(k) = 7 + 8(k + 7) = 63 + 8k where k ≥ 0.

Case 5. Variables: g(vk) = 5 + 8(k + 2) = 21 + 8k where k ≥ 1.

Then the Gödel numbers of all symbols are odd positive integers. Moreover, when

divided by 8, g(u) leaves a remainder of 5 when u is a variable, and a remainder

of 7 when u is an individual constant. Note that there is no specific reason for

choosing the number 8 other than to follow Gödel’s convention. We could have

choosen the Gödel numbers of variables and constants such that when divided by

4, g(u) leaves a remainder of 1 when u is a variable, and a remainder of 3 when u

is an individual constant, and the essence of the proof remains unaffected.

Also by Gödel’s convention, we coded every symbol as an odd positive

integer, and will code expressions and sequences of expressions (in our case, re-

ductions) as even positive integers with different exponent of 2 in their prime

power factorization to ensure the uniqueness of the code.

6.1.2 Expressions

We code an expression M ≡ u1u2 . . . uk by

g(M) = 2g(u1)3g(u2) . . . p
g(uk)
k
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where each ui is a symbol, and pk denotes the kth prime number. Note that the

Gödel number of an expression is an even positive integer and the exponent of 2

in its prime power factorization is odd.

6.1.3 Terms

For convenience in coding terms, we will rearrage the symbols of a term as a rooted

binary tree. We first let ∅ denote an empty tree, then represent a nonempty tree

by the expression (M,L,R), where M is its root and L and R are the left and

right subtrees of the tree, respectively. Note that a leaf is represented by a tree

with empty left and right subtrees, i.e., (M,∅,∅).

A term can be represented as follows.

Case 1. Atom: t

Represented by the leaf (t,∅,∅) where t is a variable or a constant.

Case 2. Application: (MN)

Represented by (·,m, n) where m and n are the tree representations for the

terms M and N respectively.

Case 3. Simple abstraction: (λP.Q)

Represented by (λ, p, q) where p is the tree representation for the pattern P

and q is the tree representation for the term Q.

Case 4. Compound abstraction: (M | A)

Represented by (|,m, a) where m is the tree representation for the simple

abstraction M and a is the tree representation for the abstraction A.

The Gödel number of a nonempty tree can be defined inductively as follows:

g((u, L,R)) = 2g(u)3g(L)5g(R).



60

We then code a term by coding its tree representation. Note that the legal symbols

for the root of a non-empty tree are a constant, a variable, ·, λ, or |.

6.1.4 Reductions

A reduction is a sequence of terms connected by contraction and congruence

symbols. We can code a reduction M1u1M2u2 . . . uk−1Mk by

2g(M1)3g(u1)5g(M2)7g(u2) . . . p
g(uk−1)
2k−2 p

g(Mk)
2k−1

where each Mi is a term, ui is a contraction or congruence symbol, and pk denotes

the kth prime number. The Gödel number of a reduction is an even positive

integer, but unlike for a term, the exponent of 2 in its prime power factorization

is even.

6.2 Primitive Recursive Relations and Functions

Using basic arithmetic, propositional connectives, and bounded quantifiers, which

are all known to be primitive recursive, we define some auxiliary relations and

functions and show that they are also primitive recursive.

6.2.1 Relations and Functions from Previous Work

Recall that a function is said to be primitive recursive if and only if it can

be obtained from the initial functions by any finite number of applications of

composition and primitive recursion. A relation is said to be primitive recursive

if and only if its characteristic function is primitive recursive [3]. Each of the

following relations and functions is primitive recursive (see [3] for proofs). We

repeat the definitions here for reference.

(a) x+ y
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(b) x · y

(c) xy

(d) x!

(e) The bounded µ-operator is defined as follows.

µy < zR(x1, . . . , xn, y)

=


the least y < z for which R(x1, . . . , xn, y) holds if such y exists,

z otherwise.

Also, we define µy ≤ zR(x1, . . . , xn, y) to be µy < (z + 1)R(x1, . . . , xn, y).

(f) Let p(x) be the xth prime number in ascending order. We shall write px

instead of p(x). Then p0 = 2, p1 = 3, p2 = 5, and so on.

(g) Every positive integer x has a unique factorization into prime powers:

x = pa0
0 p

a1
1 . . . pakk . Let (x)j denote the exponent aj in this factorization.

If x = 1, (x)j = 0 for all j. If x = 0, we arbitrarily let (x)j = 1 for all j.

(h) If the number x = 2a03a1 . . . pakk is used to represent the sequence of positive

integers a0, a1, . . . , ak, and y = 2b03b1 . . . pbmm represents the sequence of positive

integers b0, b1, . . . , bm then the number

x ∗ y = 2a03a1 . . . pakk p
b0
k+1p

b1
k+2 . . . p

bm
k+1+m

represents the new sequence a0, a1, . . . , ak, b0, b1, . . . , bm obtained by juxta-

posing the two sequences. The function ∗ is primitive recursive, called the

juxtaposition function.

(i) Relations obtained from primitive recursive relations by means of the propo-

sitional connectives and the bounded quantifiers are also primitive recursive.
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6.2.2 Auxiliary Relations and Functions

In this subsection we will define various functions and relations that will ultimately

be used to prove that every total function on N computable relative to N is

recursive. For that proof we need only one relation, IsRedOf. However, the

simplest way to define IsRedOf and prove that it is recursive is to define a sequence

of auxiliary functions and relations, each of which is relatively simple to define

and easily seen to be recursive. For each function or relation we will give a verbal

description, followed by a symbolic definition, from which recursiveness will be

clear.

IsVar(x): x is the Gödel number of a variable.

: ∃k < x(x = 29 + 8k)

IsConst(x): x is the Gödel number of a constant.

: ∃k < x(x = 31 + 8k)

Num(x): The Gödel number of a constant x̄ corresponding to x ∈ N.

: 71 + 8x

IsSym(x): x is the Gödel number of a symbol.

: x = g(()∨ x = g())∨ x = g(,)∨ x = g(·)∨ x = g(λ)∨ x = g(|)∨ x = g(∅)

∨ IsVar(x) ∨ IsConst(x)

IsROp(x): x is the Gödel number of a 1α-conversion or a contraction symbol.

: x = g(≡1α) ∨ x = g(.1β) ∨ x = g(.1γ) ∨ x = g(.1δ).

IsTreeRoot(x): x is the Gödel number of a symbol that can be the root of a

tree.

: x = g(·) ∨ x = g(λ) ∨ x = g(|) ∨ IsVar(x) ∨ IsConst(x)
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IsTree(x): x is the Gödel number of a tree.

: x = g(∅) ∨ ∃u, l, r < x
(
x = 2u3l5r ∧ IsTreeRoot(u) ∧ IsTree(l) ∧

IsTree(r)
)

Root(x): The Gödel number of the root of a tree with Gödel number x.

: (x)0

Remark. If x is ∅ or x is not a tree, Root(x) is still defined but its value

is of no interest, similarly for LSubT(x), RSubT(x), and Tree(u,l,r).

LSubT(x): The Gödel number of the left subtree of a nonempty tree with

Gödel number x.

: (x)1

RSubT(x): The Gödel number of the right subtree of a nonempty tree with

Gödel number x.

: (x)2

IsLeaf(x): x is the Gödel number of a leaf.

: IsTree(x) ∧ LSubT(x) = g(∅) = RSubT(x)

IsSubT(x,y): x is the Gödel number of a subtree of a tree with Gödel number y.

: IsTree(x) ∧ IsTree(y)

∧
[
x = y ∨ IsSubT

(
x, LSubT(y)

)
∨ IsSubT

(
x, RSubT(y)

)]
Tree(u,l,r): The Gödel number of a tree for which the Gödel numbers of its

root, left and right subtrees are u, l, and r respectively.

: 2u3l5r

IsVarTerm(x): x is the Gödel number of a term consisting of a single variable.

: IsLeaf(x) ∧ IsVar(Root(x))
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IsConstTerm(x): x is the Gödel number of a term consisting of a single constant.

: IsLeaf(x) ∧ IsConst(Root(x))

IsAtom(x): x is the Gödel number of an atomic term.

: IsVarTerm(x) ∨ IsConstTerm(x)

IsVnTree(x,y): x is the Gödel number of a variable occuring in a tree with Gödel

number y.

: IsVar(x) ∧ IsTree(y)

∧
((

IsVarTerm(y)∧Root(y) = x
)
∨∃m < y

(
IsSubT(m, y)∧IsVnTree(x,m)

))
IsPat(x): x is the Gödel number of a pattern.

: IsAtom(x)

∨ [IsTree(x) ∧ Root(x) = g(·)

∧ IsPat(LSubT(x)) ∧ ¬IsVarTerm(LSubT(x))

∧ IsPat(RSubT(x))

∧ ¬∃n < x
(
IsVnTree(n, LSubT(x)) ∧ IsVnTree(n, RSubT(x))

)
]

The relations IsApp, IsSAbst, IsCAbst, and IsTerm are defined recur-

sively and simultaneously as follows.

IsApp(x): x is the Gödel number of an application.

: IsTree(x) ∧ Root(x) = g(·)

∧ IsTerm(LSubT(x)) ∧ IsTerm(RSubT(x))

IsSAbst(x): x is the Gödel number of a simple abstraction.

: IsTree(x) ∧ Root(x) = g(λ)

∧ IsPat(LSubT(x)) ∧ IsTerm(RSubT(x))

IsCAbst(x): x is the Gödel number of a compound abstraction.

: IsTree(x) ∧ Root(x) = g(|)
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∧ IsSAbst(LSubT(x))

∧
(
IsSAbst(RSubT(x)) ∨ IsCAbst(RSubT(x))

)
IsTerm(x): x is the Gödel number of a term.

: IsAtom(x) ∨ IsApp(x) ∨ IsSAbst(x) ∨ IsCAbst(x)

IsAbst(x): x is the Gödel number of an abstraction.

: IsSAbst(x) ∨ IsCAbst(x)

IsFV(x,n): x is the Gödel number of a free variable of a term with

Gödel number n.

: IsVar(x) ∧ IsTerm(n)

∧
{

[Root(n) = x]

∨ [IsSAbst(n) ∧ ¬IsFV(x, LSubT(n)) ∧ IsFV(x, RSubT(n))]

∨ [
(
IsApp(n) ∨ IsCAbst(n)

)
∧
(
IsFV(x, LSubT(n)) ∨ IsFV(x, RSubT(n))

)
]
}

IsSubst(y,n,x,m): y is the Gödel number of the result of substituting a term

with Gödel number n for all free occurences of a variable with Gödel number

x in a term with Gödel number m. This is done under the assumption that

n is free for x in m.

: IsTerm(y) ∧ IsTerm(n) ∧ IsVar(x) ∧ IsTerm(m)

∧
{[
¬IsFV(x,m) ∧ y = m

]
∨
[
IsFV(x,m) ∧ {[IsAtom(m) ∧ y = n]

∨ [¬IsAtom(m) ∧ Root(y) = Root(m)

∧ IsSubst(LSubT(y), n, x, LSubT(m)
)

∧ IsSubst(RSubT(y), n, x, RSubT(m)
)
]}
]}

Subst(n,x,m): The Gödel number of the result of substituting a term with Gödel

number n for all free occurences of a variable with Gödel number x in a term
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with Gödel number m.

: µy < (pnm!)nm(IsSubst(y, n, x,m))

IsOneA(m,n): m is the Gödel number of a term which is obtained from a term

with Gödel number n by a single α-step.

: IsTerm(m) ∧ IsTerm(n) ∧ (Root(m) = Root(n))

∧
{[(

IsApp(n) ∨ IsCAbst(n)
)

∧
(
{LSubT(m) = LSubT(n) ∧ IsOneA(RSubT(m), RSubT(n))}

∨ {IsOneA(LSubT(m), LSubT(n)) ∧ RSubT(m) = RSubT(n)}
)]

∨
[
IsSAbst(n)

∧
(
{LSubT(m) = LSubT(n) ∧ IsOneA(RSubT(m), RSubT(n))}

∨ {∃x < n∃y < m[IsFV(x, LSubT(n))

∧ IsVar(y)

∧ ¬IsFV(y, LSubT(n))

∧ ¬IsFV(y, RSubT(n))

∧ IsFreeFor(y, x, RSubT(n))

∧ IsSubst(LSubT(m), y, x, LSubT(n)),

∧IsSubst(RSubT(m), y, x, RSubT(n))]}
)]}

IsOneACon(x): x is the Gödel number of a single step α-conversion.

: ∃u, v < x(x = 2u ∗ 2g(≡1α) ∗ 2v) ∧ IsOneA(v, u)

IsOneB(m,n): m is the Gödel number of a term which is obtained from a term

with Gödel number n by a β-contraction.

: A definition showing that IsOneB is primitive recursive has not yet been

found.

IsOneBCon(x): x is the Gödel number of a β-contraction.

: ∃u, v < x(x = 2u ∗ 2g(.1β) ∗ 2v) ∧ IsOneB(v, u)
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IsOneG(m,n): m is the Gödel number of a term which is obtained from a term

with Gödel number n by a γ-contraction.

: A definition showing that IsOneG is primitive recursive has not yet been

found.

IsOneGCon(x): x is the Gödel number of a γ-contraction.

: ∃u, v < x(x = 2u ∗ 2g(.1γ) ∗ 2v) ∧ IsOneG(v, u)

IsOneD(m,n): m is the Gödel number of a term which is obtained from a term

with Gödel number n by a δ-contraction.

: A definition showing that IsOneD is primitive recursive has not yet been

found.

IsOneDCon(x): x is the Gödel number of a δ-contraction.

: ∃u, v < x(x = 2u ∗ 2g(.1δ) ∗ 2v) ∧ IsOneD(v, u)

IsOneN(m,n): m is the Gödel number of a term which is obtained from a term

with Gödel number n by a single step N-conversion.

: A definition showing that IsOneN is primitive recursive has not yet been

found.

IsOneNCon(x): x is the Gödel number of a single step N-conversion.

: ∃u, v < x(x = 2u ∗ 2g(≡1N) ∗ 2v) ∧ IsOneN(v, u)

IsOneRed(x): x is the Gödel number of a “single step” reduction.

: IsOneACon(x)∨IsOneBCon(x)∨IsOneGCon(x)∨IsOneDCon(x)∨IsOneNCon(x)

IsRedOf(x,m,n): x is the Gödel number of a reduction from a term with Gödel

number m to a term with Gödel number n.

: IsTerm(m) ∧ IsTerm(n)

∧ ∃u, y < x
(
x = 2m ∗ 2u ∗ y ∧ IsROp(u)
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∧ {[IsOneRed(x) ∧ y = 2n]

∨ [∃k < y(IsRedOf(y, k, n) ∧ IsOneRed(2m ∗ 2u ∗ 2k))]}
)

6.3 Computability Relative to N Implies Recursiveness

Notice that definitions showing the recursiveness of some key relations, namely

IsOneB, IsOneG, IsOneD, and IsOneN, are missing in the previous section. Of

these, we expect that the ones for γ-contraction and δ-contraction, IsOneG and

IsOneD, will be the most challenging to find, but it is likely that they will also be

quite similar. If we can find definitions showing that all four of these relations are

recursive then we can prove our main theorem, as follows.

Theorem 6.3.1. If an n-ary total function g on N is computable relative to N,

then g is recursive.

Proof. Assume that g is computable relative to N. Let G be a term representing

g and let v be the Gödel number of G. Define the n+ 2-ary relation RG on N by

RG(x1, x2, . . . , xn, y, z) iff z is the Gödel number of the reduction Gx̄1x̄2 . . . x̄n .βδ ȳ.

Then

RG(x1, x2, . . . , xn, y, z) ≡ IsRedOf
(
z,
(
v∗Num(x1)∗Num(x2)∗· · ·∗Num(xn)

)
, Num(y)

)
,

so RG is recursive. Let u1, u2, . . . , un ∈ N. Suppose g(u1, u2, . . . , un) = u for some

u ∈ N. Since g is computable relative to N, we have Gū1ū2 . . . ūn.βδ ū. Let s be the

Gödel number of the above reduction. Then RG(u1, u2, . . . , un, u, s) holds. Hence

for any x1, x2, . . . , xn there exists y ∈ N such that RG(x1, x2, . . . , xn, (y)0, (y)1)

holds. Since g(x1, x2, . . . , xn) =
(
µy[RG(x1, x2, . . . , xn, (y)0, (y)1)]

)
0

and

µy[RG(x1, x2, . . . , xn, (y)0, (y)1)] is recursive, we see that g is recursive.
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CONCLUSION

We have extended the concept of computability to functions on an arbitrary first-

order structure using the lambda calculus with patterns. In doing so, we added

a new congruence, congruence in a structure, which we proved to preserve all the

basic properties of the original lambda calculus including the Church-Rosser the-

orem. It is interesting to notice that, when defining patterns using the non-logical

symbols from a language, only the function symbols which represent one-to-one

functions are allowed in a pattern. Such a constraint is neccessary for the validity

of the Church-Rosser theorem. For example, if we were allowed to use the symbol

A, which represents the addition function on the natural numbers, in patterns,

then (λAxy.x)2̄ ≡A (λAxy.x)(A1̄1̄) .β 1̄ and (λAxy.x)2̄ ≡A (λAxy.x)(A0̄2̄) .β 0̄,

but 1̄ and 0̄ do not reduce to anything in common, so the Church-Rosser theorem

would fail to hold.

For the standard structure N for the natural numbers, we have shown that

every recursive total function on N is computable relative to N, in other words,

it can be represented by a λP -term. So a question arises, how do we represent a

recursive partial function? One possibility is through definition by cases. Since

we may add a dummy symbol, say ∞, to the definition of the lambda calculus

with patterns by calling it another constant, we can define a term to represent a

recursive partial function if at all inputs for which the function value is defined

the term applied to those inputs reduces to the corresponding result, and at all

inputs for which the function value is not defined the term applied to those inputs

reduces to∞. We can do this by adding the undefined input case as the last case
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of a compound abstraction, i.e., (λP1.Q1 | (λP2.Q2 | (· · · | (λPn.Qn | λx.∞)))).

Of course, this idea needs proper definitions and further investigation to verify.

As we have explained in Section 6.3, another challenging task that remains

is to find a recursive relation that identifies delta contractions. Suppose we have

a compound abstraction
(
(λP.Q) | A

)
and a term M . When trying to decide

whether (λP.Q)M reduces to a contractible redex, we must find a way to tell

when we can stop and conclude that the compound abstraction reduces to (AM).

For example, if we can prove that it is sufficient to try contracting only a finite

number of times, for a given potential redex, then we have an upper bound for

our search. Such a bound, the maximum number of contractions needed, would

surely depend on P and M . Due to the simple structure of patterns and the

limited number of non-logical symbols in the language of arithmetic, i.e., only 0

and S, it may be possible to find a formula (to be precise, a recursive function

of the Gödel codings of P and M) for calculating such a maximum number. The

readers are encouraged to attempt finding this formula, which would enable us to

finish the Gödel coding of the delta contraction, which in turn would complete

our proof of the equivalence of the recursiveness and computability relative to a

structure.
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