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CHAPTER I

INTRODUCTION

Precipitation is one of the climatological key variables that plays an im-
portant role for human being. Water usage or consumption in regions around the
world are related to rainfall in many direct or indirect ways − agricultural, in-
dustrial, ecosystem, transportation, and health. Over the coming decades, climate
change has been recognized as one of the serious environmental issues. Many con-
sequences of climate change are now being observed and investigated. For instance,
rising intensity of rainstorms can increase the risk of flooding and agricultural haz-
ards, while the spread of disease is another indirect-consequence of climate change
on human health. Changes in precipitation are one of the expected impacts of
global warming. Several regional precipitation trends, nowaday, are increasingly
experiencing higher levels of precipitation, and some areas are witnessing reduced
levels of precipitation and becoming arid. Thailand, which is one of the agricultural
countries heavily depending on rains, has experienced flood and drought disaster
for many years. Floods affect the northern and the central, as well as the south-
ern regions of Thailand, while the north-eastern confronts with drought. Among
the natural catastrophes, flooding is the most severe disaster that massively affects
the residents and properties. According to the Royal Thai Government (RTG),
the flooding destroyed homes, roads, bridges, and farmlands and led to the forced
evacuation of more than ten-thousand of people. Among these flooding areas, the
southern part of Thailand is a vulnerable area that has been influenced by uncer-
tainties of tropical cyclones.

Southern Thailand is a tropical climate that is influenced by northeast
and southwest monsoons. Most of the southern provinces experience not only these
traditional monsoon rains but also tropical cyclones, which occasionally produce
large amount of rainfall. According to the past historical records of Thai Mete-
orological Department and Royal Irrigation Department, the south of Thailand
is vulnerable to cyclone disasters (reported in 1952, 1962, 1970, 1989, and 1997
events) with heavy rainfall that caused major flooding [34]. In November 2000, the
eastern coast of southern Thailand was hit by torrential monsoon rains and floods
creating one of the most dramatic natural hazards affecting at least 600,000 peo-
ple in 10 southern provinces. Among these areas, provinces of Chumphon, Surat
thani, Nakhon Si Thammarat, Phatthalung, and Songkhla were severely destroyed
in terms of natural resources, infrastructures, and human lives.

For many decades, the forecasting of rainfall has been investigated in term
of average quantity over some period of time in selected regions. One of the most
important attributes to flood mitigation and water resources management is the
accuracy of rainfall computation over a given area. At present, there have been
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various models for monthly and seasonal rain computations with limited capacity
to give satisfactory daily prediction. Many of these flooding areas are essential
to social and economic growth of Southern Thailand, such as Hatyai district in
Songkla, Muang district in Nakhon Si Thamarat, Kanchanadit district in Surat
Thani, Muang district in Phatthalung, and Tha Sae district in Chumphon province.
All of these areas are prone to flood hazard that requires serious investigation
to prevent future damages and economic hardship of local residents. Therefore,
knowledge of the variations of precipitation is important for water management
application due to the significant effects on flooding.

1.1 Literature review

Rainfall prediction is one of the challenge problems in hydrology due to
meteorological and geographical factors with uncertainties. The sophisticated na-
ture of rainfall behavior makes it difficult to assess. In light of this, several dy-
namical forcings are related to rainfall’s periodicity − climatological, topographical
factors, and others. Therefore, most conventional rainfall modelings usually take
these factors into account. Humidity, minimum and maximum air temperature
were used as a rainfall predictors by many researchers ([20], [31], [25]), while the
studies of Singhrattna et al. [21] and Chantasut [18] emphasized the large-scale
ocean-atmospheric circulation variables − El Niño Southern Oscillation (ENSO),
Sea Surface Temperature (SST), Southern Oscillation Index (SOI), as rainfall pre-
dictors in order to exhibit significant relationship to the climate change. Regard-
less of climatological factors, Toth et al. [10] investigated the capability of ANN
in short-term rainfall forecasting using historical rainfall data as the only input
information.

There has been a number of researches on rainfall forecasting in Thailand
([4], [18], [21], [20], [33], [34] [35]). Most of these studies have been contributed to
the work in the region of central Thailand − Bangkok. Singhrattna, et al. [21] and
Chantasut, et al. [18] contributed their works at stations in the West Central re-
gion and in the Chao Phraya River basin. Traditional linear regression and artificial
neural network are the two significant tools for forecasting the large scale monthly
and seasonal rainfall. For other parts of Thailand, Weesakul and Lowanichchai [35]
employed the Autoregressive Moving Average (ARMA) and Autoregressive Inte-
grated Moving Average(ARIMA) methods to fit the time series of annual rainfall
during 1951 to 1990 of 3l rainfall stations distributed in all regions of Thailand −
Northern, Northeastern, Eastern, Southern, and Central areas. This model was
proposed to predict the annual rainfall for agricultural water allocation planning
management. The results showed that ARIMA and ARMA models were applica-
ble for the purpose of agricultural water allocation planning. Among other parts
of Thailand, Southern, revealed by Weesakul and Lowanichchai [35], provided less
accuracy of forecast due to the influence of uncertain tropical cyclones which are
the dominant cause of rainfall in that area. The influence was shown by the study
of Vongvisessomjai [34], which established significant impacts of Typhoon Vae and
Linda on heavy rainfall in southern Thailand. These cyclone disasters generated
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heavy rainfall causing severe floods, high casualties and damages in many southern
areas.

Reliable and accurate hydrological forecasting plays an important role
in water management and flood warning. Therefore forecasting methods have
been studied deeply in order to provide an efficient model. Both statistical and
mathematical approaches are implemented to obtain such estimation. Most of the
previous hydrological works considered hydrological forecasting as a deterministic
approach. The work of Singhrattna, et al. [21] described the development of a
statistical forecasting method for summer monsoon rainfall over Thailand with a
linear regression and a local polynomial based non-parametric method. Solomatine
et al. [9] indicated a problem of predicting surge water levels by using of linear au-
tocorrelation and ARIMA models and non-linear methods. Among several rainfall
forecasting techniques based on statistical or deterministic methods and computa-
tional approaches, there has been an excess of evidence in literature that artificial
neural networks (ANNs) is incresingly used for hydrological modeling especially
in rainfall prediction ([15], [18], [20], [25], [26], [31]). The ability of representing
non-linear complex relation from a set of known input and output variables is the
significant role of ANNs. Particularly, ANNs are non-linear modeling tools that
do not require an explicit mathematical formulation of the physical relationship
between variables. Among different kinds of ANNs, feedforward backpropagation
has gained popularity in the investigation weather forecasting ([14], [20], [28]).

The majority of studies have proven that artificial neural networks are
able to outperform traditional statistical techniques. Lee et al. [31] predicted
daily rainfall data by employing divide and conquer technique. The whole region
was divided into 4 sub-regions. Precipitation in two larger regions was predicted
by radial basis function neural network, while the other two smaller regions were
carried out by a regression model. The artificial neural networks performed well in
comparison with the linear models. The result of better performance of artificial
neural network over conventional methods has also revealed by many reseachers
([6], [9], [14], [27], [30]). Results from the study of Solomatine et al. [9] revealed
that there was still more local predictive information embedded into the attractor
of the system so that the statistical models could not provide sufficient accuracy. A
comparison between ANN models and traditional models has been made, as well,
by Hsu et al. [11] who stated that the ANN approach would be more effective when
explicit knowledge of the hydrological variables is not required.

Although the expert system of artificial neural network are capable of
modeling non-linear relationships, its successful employment may be restricted due
to the sophisticate nature of non-stationarity and non-linearity in the hydrological
variables. The artificial neural network has been shown in many studies that the
problem of extrapolation has certain limitations. In particular, the models were
unable to estimate the peak signal ([5], [11]).

In recent years, the wavelet transform has been successfully applied to
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data series in order to analyze the stochastic components. Geva [1] reported on an
improvement in the results of multi-scale wavelet decomposition. The prediction
accuracy was improved by using different scales of the time windows and frequencies
bands, which supplied the networks with more information on the past. Soltani
[32] and Renaud et al. [22] also proposed a method of predicting nonlinear time
series with wavelet decomposition. Their works showed that the decomposition
could simplify the main task of predicting a complex behavior. As a result, many
applications of wavelet analysis have been consequently studied. Bi et al. [40]
applied wavelet decomposition in the short-term load forecasting in Queenlands,
Australia. In hydrological approach, many researchers eliminated the nuances of
the series, which are the noise of signal, in order to consider the deterministic part
[33] and enhanced a network learning.

Due to the capability of wavelet decomposition in isolating the periodicity
in a time series, the use of wavelet transform with several technique has been pro-
posed. Both statistics and neural network are applied with wavelet decomposition.
Mabrouk [2] presented wavelet decomposition and autoregression models for time
series prediction. Jayawardena [4] predicted daily rainfall data by using wavelet
technique and hidden markov model in Chao Phraya basin. A hybrid method
which combines a deterministic model with stochastic model also presented by
Cristea [23]. Many techniques with the combination of deterministic and stochastic
model have been proposed. Tong [36] developed the combination of wavelet method,
back-propagation neural network, and autoregressive moving average (ARMA) for
data mining forecasting. All of these studies showed that the use of wavelet de-
composition method could help reduce the empirical task and also improve a model
accuracy.

1.2 The objective

The primary goal of this study is to predict daily rainfall in southern
Thailand. The southern areas that is vulnerable to flood disaster are chosen as
site studies. The selected southern provinces for this study are located in the
eastern coast; Chumphon, Surat thani, Nakhon Si Thammarat, Phatthalung, and
Songkhla. A 3-hourly rainfall and climatological data from monitoring stations in
the given regions in the period of 1995-2006 are used as primary data. A feed-
forward backpropagation ANN is employed to model and forecast southern daily
rainfall data. According to the significant application of wavelet analysis on various
purposes, a combining technique of wavelet decomposition and artificial neural net-
work is proposed in this study to forecast n-day daily rainfall. Overall performance
efficiency of predictions are summarized in terms of coefficient of determination,
correlation coefficient and root mean squared error. Statistical evaluation of the
rainfall models are also presented.

In summary, to fulfill the forecasting in southern part of Thailand, provinces
of Chumphon, Surat thani, Nakhon Si Thammarat, Phatthalung, and Songkhla,
that are vulnerable to flood disaster, are investigated in the study with deterministic
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and stochastic models.

1.3 Outline

The thesis is organized as follows. Chapter II introduces the underlying
theories related to the study − physical concept of precipitation, aritificial neural
network, and discrete wavelet analysis. Chapter III elaborates the relevant method-
ologies. Experimental results and statistical performance of the rainfall models are
presented and discussed in chapter IV. Chapter V concludes the main results of
this research.



CHAPTER II

THEORETICAL BACKGROUND

In this chapter, underlying mathematical concepts and techniques of the
present study are introduced. Physical descriptions of precipitation are first elabo-
rated in section 2.1. In section 2.2, technical overview of artificial neural network is
presented. Wavelet theory, which plays an important role in this work, is described
in the last section of this chapter.

2.1 Physical descriptions of precipitation

Circulation and conservation of water in the hydrological cycle is one of the
vital processes naturally operating within the global system. A major component
of this cycle is the ocean due to its major regulation upon the flow of water in the
system. The oceans influence, in particular, evaporation and the return of water to
the atmosphere, and thereby controlling to a great extent flows of moisture in the
atmosphere and rates of precipitation [3].

2.1.1 The Hydrological cycle

The whole system of water movement has been termed the hydrological
cycle. Fig. 2.1 illustrates main components of the system with inputs, outputs,
flow regulators and storages. The main input to surface hydrological cycle is directly
from precipitation. As a consequence, evaporation and transpiration constitute the
system output. These inputs and outputs are linked by flows in the atmosphere,
the oceans and rivers on the continents [7].

Inputs to the surface hydrological cycle

Precipitation is by far the most important input to the surface hydrolog-
ical system. Precipitation occurs in a variety of forms − hail, snow, and rainfall.
Throughout most of the world, the major input is in the form of rainfall. The
distribution of this input across the world shows a marked relationship to the dis-
tribution of factors influencing precipitation, in particular, the incidence of storms,
the atmospheric moisture content and the oceans. Characteristic of the rainfall
has an important influence on what happens to the water after it has reached the
ground. The effect upon the hydrological cycle, upon geomorphological processes,
and, above all, upon man are almost always greater when precipitation is intense.
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Figure 2.1: Hydrological cycle [38].

Outputs from the surface hydrological system

Evaporation is one of the major outputs from the earth’s surface. The
rate of evaporation depends on various factors for which the supply of energy is
the most important one. Evaporation process involves the conversion of water to
water vapour that requires considerable inputs of energy. Another important factor
is the availability of moisture at the surface. As the surface dries out and moisture
becomes less available, the rates of evaporation tend to decline. In addition, evap-
oration is favoured by a moisture gradient between the surface and the air above,
and thus evaporation rates decline when the atmosphere is moist. Finally, wind
plays another important part by removing the moist air and maintaining a moisture
gradient.

The inputs of moisture to the atmosphere are not everywhere in balance
with outputs by precipitation. Over the oceans, for example, evaporation is high
while precipitation is relatively low; the atmosphere gains more moisture than it
loses. Over the continents, evaporation is less than precipitation, and the atmo-
spheric moisture budget is negative. As with the oceans, therefore, horizontal flows
of moisture must occur to maintain equilibrium.

2.1.2 Climatological Distribution

In order to understand the precipitation process, it is necessary to ap-
preciate the factors affecting it. Intensity precipitation varies in time and over a
catchment area. Wind plays an important effect in bringing moisture which has
evaporated from exposed waters or transpired from surfaces. Wind also causes
clouds to travel across the catchment. Precipitation can be generated if the tem-
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perature of the cloud of water vapour drops below the dew point. Condensation is
followed by precipitation. The cooling action may be caused by rising air; against
mountains (orographic precipitation) due to cold fronts (frontal or cyclonic precipi-
tation) or due to thermal currents (convectional precipitation). The latter gives rise
to thunderstorms, which is an intense form of precipitation but often of relatively
short duration [3].

2.1.3 Formation of precipitation

Precipitation forms differently depending on whether it is generated by
warm or cold clouds. Warm clouds are defined as those that do not extend to
levels where temperatures are below 32◦F (0◦C), while cold clouds exist at least in
part at temperatures below 32◦F (0◦C). The formation of precipitation may occur at
temperatures above or below freezing. Precipitation that is formed in temperatures
entirely above freezing is called warm precipitation; cold precipitation involves ice
at some stage of the process [3].

Warm Precipitation

Nearly all precipitation begins with condensation of water vapor of small
particles in the air which is called cloud condensation nuclei. Condensation may
occur at relative humidities less than 100 % for hygroscopic particles (those having
an affinity for water) or may be delayed until the relative humidity exceeds 100 %
if the particles are hydrophobic (lacking an affinity for water).

Saturation of air occurs when rising air currents cool adiabatically (that
is, without loss of heat) by expansion. Because the saturation vapor pressure of
water decreases exponentially with decreasing temperature , cooling of a moist air
mass by lifting is an efficient mechanism for producing saturation and condensation.

The condensation processes are efficient in producing only cloud drops
that are too small to have an appreciable fall velocity relative to the air. In order
to produce precipitation particles that are heavy enough to fall to the surface, a
cloud must increase its radius and volume. In the clouds with temperatures above
the freezing point, the growth occurs by coalescence, which is simply the merging of
colliding water drops. This merging is facilitated when an electric field is present.

Cold Precipitation

Whereas collision and coalescence are efficient means for producing pre-
cipitation in the warm, humid tropical regions, the formation of precipitation in
middle latitudes usually involves ice. Because the vapor pressure at saturation is
less over ice than over water, ice crystals will grow at the expense of water drops
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when both exist together in a supercooled cloud, which contains liquid drops at
temperatures below the freezing point.

Although most precipitation in the middle latitudes begins as snow at
altitudes above the freezing level, the form of the precipitation reaching the surface
depends on the temperature structure of the atmospheric layers through which the
precipitation falls. If the temperature near the ground is warm enough, the snow
has time to melt and reaches the ground as rain. Hail occurs when alternating
strong updrafts and downdrafts cause ice crystals to pass repeatedly through layers
that contain supercooled water. The frequent passage through these layers allows
the water to freeze around the growing hailstone and to accumulate in one layer
after another.

The distribution of precipitation is not uniform across the earth’s surface,
and varies with time of day, season and year. The lifting and cooling that produces
precipitation can be caused by solar heating of the earth’s surface, or by forced
lifting of air over obstacles or when two different air masses converge. For these
reasons, precipitation is generally heavy in the tropics and on the upwind side of
tall mountain ranges.

2.2 Artificial Neural Network

Artificial Neural Networks (ANNs) is a non-linear mathematical structure
which is capable of representing arbitrarily complex non-linear processes by relating
inputs and outputs of such system. The network consists of three main parts: input
layer, hidden layer and output layer. Each layer consists of neurons. The input layer
constitutes with a set of sensory units. The network can have one or more hidden
layers of computation nodes. Output nodes constitute an output layer [29]. Each
layer is fully connected to the next one with a synaptic weight on each connection.
Its architectural graph of neural network is shown in Fig. 2.2.

There are two major paradigms: supervised and unsupervised neural net-
work.

Supervised Neural Network

The supervised neural network consists of many pairs of input and output training
pattens. The learning of the network benefits from output patterns (target) which
act as assistances of the teacher to produce the estimations as close to the target
as possible by using weight adjustment. Fig. 2.3 illustates a supervised learning.
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Figure 2.2: Architectural graph of a neural network with one hidden layer.

Figure 2.3: A supervised neural network.

Unsupervised Neural Network

For unsupervised learning, the training set consists of input training patterns only.
Therefore, the network is trained without benefit of any teacher. The network
learns to adapt based on the experiences collected through the previous training
patterns. A typical schema of an unsupervised system is shown in Fig. 2.4.

2.2.1 A Multilayer Feedforward Network

A feedforward is a network that the output values of each layer only move
from one layer to the next; no values are fed back to earlier layers (a Recurrent
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Figure 2.4: An unsupervised neural network.

Network allows values to be fed backward). A multilayer network is a class of a
feedforward neural network that has one or more hidden layers.

At a neuron in the input layer in Fig. 2.5, the value from each node xi

is multiplied by a weight wi, and the resulting weighted values are added together
producing a combined value vj =

∑m
i=1 x

iwi. The weighted sum vj is fed into a
transfer function, ϕ, which outputs a value y. The y value is the output of the
network mathematically describes as (2.1).

y = ϕ(vj)

= ϕ(
m∑
i=1

xiwi). (2.1)

Figure 2.5: Architectural graph of a multilayer perceptron with one hidden layer.

2.2.2 Activation function

Activation function or transfer function is a function that introduces non-
linearity into the network. It is possible for neural network to do non-linear mapping
between inputs and outputs. Continuity of the functions implies that there are no
sharp peaks or gaps, so that the function can be differentiated throughout, making it
possible to implement the delta rule to adjust both input-hidden and hidden-output
layer weights in backpropagation errors, this will be discussed later in detail.
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Mathematical functions that are customarily used as activation functions
of the network are the followings.

Linear activation function

Linear function is a transfer function that is suitable for the unbounded output
value. Fig. 2.6 illustrated the linear activation function which can mathematically
describe as

ϕ(v) = av + b. (2.2)

where a is the slope parameter and b is an intersection of y-axis.
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Figure 2.6: Piecewise-linear activation function.

Gaussian activation function

The standard normal curve, shown in Fig. 2.7, has a symmetric bell shape and is
commonly known as standard normal distribution. Its range is [0, 1]. The gaussian
function is normally defined as

ϕ(v) = e−av2 . (2.3)
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Figure 2.7: Gaussian activation function.

Sigmoid activation funcion

The sigmoid function, whose graph is similar to a s-shape, is the most common
form of activation function used in the construction of artificial neural networks
with positive output. An example of the sigmoid function is the logistic function
shown in Fig. 2.8 and defined by

ϕ(v) =
1

1 + exp−av
, (2.4)

where a is the slope parameter of the sigmoid function.

2.2.3 Learning algorithm

Basically, error back-propagation learning consists of two passes through
the different layers of the network: a forward pass and a backward pass. In the
forward pass, an input vector is applied to the sensory nodes of the network in an
input layer, and its affect propagates through the network layer by layer.

In the forward pass, the synaptic weights of each node are adjusted in
accordance with an error-correction rule as follows:
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Figure 2.8: Sigmoid activation function.

E =
1

2

∑
j

(tj − yj)2, (2.5)

where

tj is the target output at unit j,

yj is the predicted output at unit j.

Specifically, the actual response of the network is subtracted from a desired
(target) response to produce against the direction of synaptic connections in the
backward pass. Under the delta rule, the change in weight is

△wi
j(t) = ηEj(t)ϕ

′
j(vj(t))yi(t), (2.6)

where

t represents the number of iteration,

wi
j refer to the weight of input from unit i to unit j,

η is the learning-rate parameter of the back-prop algorithm ,

Ej is the error evaluated at unit j,

ϕ′
j refers to the derivative of the associated activation function at the neuron j .

Thus, the synaptic weights are adjusted to make the actual response of
the network move closer to the desired response in a statistical sense as
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wi
j(t+ 1) = wi

j(t) +△wi
j(t). (2.7)

2.2.4 Resilient backpropagation

The Resilient backpropagation training algorithm (Rprop) has been one
of the advanced batch-training algorithms in weight adjustments for supervised
learning in the field of ANN [17]. It is a well-established modification of the ordinary
gradient descent. The basic idea is to adjust and hence eliminate the influence of
the size of the partial derivative on the weight step. Rprop takes into account
only the sign of the partial derivative over all patterns (not the magnitude), and
acts independently on each weight. Only the sign of the derivative is considered
to indicate the direction of the weight update. The size of the weight change is
determined by a weight-specific,

△wi
j(t) =


−△i

j(t) if ∂E(t)

∂wi
j
> 0

+△i
j(t) if ∂E(t)

∂wi
j
< 0

0 if ∂E(t)

∂wi
j
= 0,

(2.8)

where ∂E(t)

∂wi
j
denoted the partial derivative with respect to each weight which refered

to the sum gradient information over all patterns of the pattern set.

Next, the Rprop learning rules determine the new update value △i
j(t).

This is based on a sign-adaptation process as follows;

△i
j(t) =


η+ ∗ △i

j(t− 1) if ∂E(t−1)

∂wi
j
∗ ∂E(t)

∂wi
j
> 0

η− ∗ △i
j(t− 1) if ∂E(t−1)

∂wi
j
∗ ∂E(t)

∂wi
j
< 0

△i
j(t− 1) if ∂E(t−1)

∂wi
j
∗ ∂E(t)

∂wi
j
= 0,

(2.9)

where 0 < η− < 1 < η+.

2.3 Wavelet transform

Wavelet analysis can be regarded as a transformation of time series from
temporal domain to wavelet domain. The transform is particularly well adapted
to characterize transient phenomena because it decomposes signals into building
blocks that are well localized in space and frequency. There are two catagories
of wavelet transform: continuous wavelet transform (CWT) and discrete wavelet
transform (DWT), which are a set of basis functions in Hilbert space L2(ℜ).
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2.3.1 Discrete wavelet transform

The discrete wavelet transform (DWT) performs on a set of discrete in-
put signal to provide the output of discrete wavelet transform as approximation
coefficients and detail coefficients [13].

This section begins by introducing the definitions of inner product and
discrete wavelet transformation.

Definition 1. Inner product.
Consider real or complex sequences in L2(Z), x(n), n ∈ Z. The inner product is
defined as [24]

⟨a(n), b(n)⟩ =
∑

a(n)b(n). (2.10)

Using the transformation T , the wavelet representation of a function f(x)
can be defined as follows:

Definition 2. Discrete wavelet transform.

f(x) =
∑

(j,k)∈Λ

Cj,kϕj,k(x)

=
∑

(j,k)∈Λ

⟨f, ϕj,k⟩ϕj,k(x), (2.11)

where Λ is the Cartesian product 1
2
Z × Z2. The fuction ϕ(x) enabling this decom-

position is a wavelet and Cj,k are the associated coefficients [24].

2.3.2 Convolution and Filter

Convolution is a mathematical operation on two functions h and g, pro-
ducing a third function that is typically viewed as a modified version of one of the
original functions. The convolution of h and g is denoted by h ∗ g. It is defined as
the summation of the product of the two functions after being reversed and shifted.

Definition 3. Convolution.
Let h and g be two bi-infinite sequences. Then, the convolution product, y, of h and
g, denoted by h ∗ g, is the bi-infinite sequence y = h ∗ g, whose the nth component
is given by [13]

yn =
∞∑

k=−∞

hkgn−k (2.12)

2.3.3 Lowpass filter

Definition 4. Lowpass filter.
Let h be some sequence, H(ω) denote the Fourier series of h, and 0 < ωp ≤ ωs < π.
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Suppose that there exists 0 < δ < 1
2
, with 1 − δ ≤ |H(ω)| ≤ 1 + δ for 0 ≤ ω ≤ ωp

and an 0 < λ < 1
2
, so that for ωs ≤ ω ≤ π, |H(ω)| ≤ λ, then we call h a lowpass

filter [13].

A good working definition is to say that if h is a lowpass filter, then
|H(ω)| ≈ 1 for 0 ≤ ω ≤ ωp for some 0 < ωp < π and H(ω) ≈ 0 for ωs ≤ ω < π
where we require that ωp ≤ ωs ≤ π. That is, the lowpass filter have to satisfy the
following condition:

|H(0)| = 1 and H(π) = 0 (2.13)

2.3.4 Highpass filter

Definition 5. Highpass filter.
Let g be some sequence, G(ω) denote the Fourier series of g, and 0 < ωp ≤ ωs < π.
Suppose that there exists 0 < λ < 1

2
so that |G(ω)| ≤ λ for 0 ≤ ω ≤ ωp and a

0 < δ < 1
2
with 1 − δ ≤ |G(ω)| ≤ 1 + δ for ωs ≤ ω ≤ π, then we call g a highpass

filter [13].

A good working definition is to say that if g is a highpass filter, then
|G(ω)| ≈ 0 for 0 ≤ ω ≤ ωp for some 0 < ωp < π, and |G(ω)| ≈ 1 for ωs ≤ ω ≤ π
where we require that ωp ≤ ωs < π. That is, the highpass filter have to satisfy the
following condition:

G(0) = 0 and |G(π)| = 1. (2.14)

2.3.5 Multiresolution analysis

A multiresolution analysis is an increasing sequence of closed subspaces
{Vj}j∈Z which approximates L2(ℜ)

0→ · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · → L2(ℜ) (2.15)

and satisfies the following properties:

f(x) ∈ Vj ⇐⇒ f(2x) ∈ Vj+1. (2.16)

There exists a function ϕ(x) in V0 such that the set {ϕ(x − k)}k∈Z is an
orthonormal basis of V0. The scaling function ϕ(x) satisfies the well known two-scale
difference equation with scale changes by any power of 2,
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ϕ(x) = 2
i
2

L(i)−1∑
k=0

h(i)(k)ϕ(2ix− k). (2.17)

From (2.11), the functions ϕ(x) and ϕ∗(x) are not only a means for a
wavelets definition. They actually define the multiresolution analysis notions. Con-
sider a family of linear applications (Aj)j∈ 1

2
Z defined by

Aj(f)(x) =
∞∑
−∞

⟨f, ϕ∗
j,k⟩ϕj,k(x). (2.18)

These applications yeild continuous projectors which degrade the infor-
mation contained in f(x) as j decreases, and which provide an increasingly better
approximation of f(x) as j increases. According to the transformation T in (2.11),
Aj(f)(x) can be interpreted as a version of f(x) at the scale of 2j(j ∈ 1

2
Z).

The task of the wavelet transformation is therefore to extract the details
lost between two consecutive scales. For every j in 1

2
Z, we have

Aj+1(f)(x)− Aj(f)(x) =
∞∑
−∞

⟨f, ψ∗
j,k⟩ψj,k(x), (2.19)

where ψ is a wavelet function and we retrieve formula (2.11), which is a consequence
of the fact that the approximation improves as j increases.

The sequence of sampling coefficients {Sj
k}k∈Z = {2 j

2 ⟨f, ϕj
k⟩}k∈Z is the

approximations and {Dj′
k }k∈Z = {2 j′

2 ⟨f, ψj′
k ⟩}k∈Z detail coefficients at lower scales.

The sequence can be computed by using a convolution with the discrete filter ,
hn, followed by a decimation by a factor of two. The filer {hn}n∈Z can have finite
impulsive response as shall be described in the next subsection.

2.3.6 The Daubechies wavelet function

Definition 6. Daubechies wavelet function. Let N be an even positive integer.
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Then we define the daubechies wavelet transformation by the matrix

WN =



h0 h1 · · · hN−1 0 0 · · · 0
0 0 h0 h1 · · · hN−1 · · · 0
...

...
...

...
. . .

...
...

...
h1 · · · hN−1 0 0 · · · 0 h0
g0 g1 · · · gN−1 0 0 · · · 0
0 0 g0 g1 · · · gN−1 · · · 0
...

...
...

...
. . .

...
...

...
g1 · · · gN−1 0 0 · · · 0 g0.


The filter

h = (h0, h1, · · · , hN−1)

is called the daubechies filter (scaling function) and we shall call

g = (g0, g1, · · · , gN−1)

the daubechies wavelet filter [24].

Thus, the daubechies 2 matrix is

W4 =



h0 h1 h2 h3 0 0 0 0
0 0 h0 h1 h2 h3 0 0
0 0 0 0 h0 h1 h2 h3
h2 h3 0 0 0 0 h0 h1
g0 g1 g2 g3 0 0 0 0
0 0 g0 g1 g2 g3 0 0
0 0 0 0 g0 g1 g2 g3
g2 g3 0 0 0 0 g0 g1


where the decomposition of lowpass coefficients is given by

h0 =
1 +
√
3

4
√
2

= 0.48296291314469025

h1 =
3 +
√
3

4
√
2

= 0.83651630373746899

h2 =
3−
√
3

4
√
2

= 0.22414386804185735

h3 =
1−
√
3

4
√
2

= −0.12940952255092145

and the decomposition of highpass coefficients is given by

g0 = h3

g1 = −h2
g2 = h1

g3 = −h0.
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Figures 2.9 and 2.10 illustrate the Daubechies 2 scaling and wavelet func-
tions, respectively.

Figure 2.9: The Daubechies scaling function [37].

Figure 2.10: The Daubechies wavelet function [37].

2.3.7 À trous wavelet transform

À trous wavelet transform is a non-decimated wavelet transform which
decomposes signal into coefficient series with the same length instead of decreasing
by two as in the DWT case [22]. Two sets of wavelet coefficients, approximation and
detail coefficients, can be obtained from the à trous wavelet algorithm as follows.

Given a time signal x(t), the smoothed data or approximations at resolu-
tion level j at position k, cj(k), is given by passing the signal x(t) through a series
of low pass filters h analyzed at each resolution level j at position k as

cj(k) =
N∑
l=0

h(l)cj−1(k + 2j−1l). (2.20)
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x → c1 → c2 → · · · → cn

↘ d1 ↘ d2 ↘ · · · ↘ dn.

Figure 2.11: The recursive decomposition.

x ← c1 ← c2 ← · · · ← cn

↖ d1 ↖ d2 ↖ · · · ↖ dn.

Figure 2.12: The recursive reconstruction.

By recursively decomposed approximation coefficients at the previous level, approx-
imation and detail coefficients at the next level are obtained. Fig. 2.11 illustrates
the recursive decomposition.

The high frequency coefficients or details at resolution level j and at posi-
tion k, wj(k), can be calculated from the difference between consecutive resolutions
of approximation series as

dj(k) = cj−1(k)− cj(k). (2.21)

Finally, the signal can be reconstructed by using the mathematical ex-
pression as

x(k) = cn(k) +
n∑

j=1

dj(k), (2.22)

where n is a number of resolution level. Fig. 2.12 illustrates the recursive recon-
struction. The combination of approximation and detail coefficients at a lowwer
level reconstructs approximation coefficients at a higher level. By recursively re-
construction, the original signal x is obtained.



CHAPTER III

METHODOLOGY

3.1 Study area

The South of Thailand is a peninsula bounded by the Andaman Sea of
the Indian Ocean to the West and the South China Sea of the Pacific Ocean to the
East as shown in Fig. 3.1. Topography of this southern region is the peninsula with
mountainous and basin areas for cultivation. It occupies the area of approximately
70, 715.2 km2. The southern weather regards as a tropical climate with two seasons:
summer and rainny seasons. Most of southern peninsula’s weather is influenced by
seasonal monsoons.

Figure 3.1: The graphical view of southern Thailand [39].

Chumphon, Surat Thani, Nakhon Si Thammarat, Phatthalung and Songkhla
are provinces located in the east coast of the south of Thailand as illustrated in
Fig. 3.2. From the past historical records of Thai Meteorological Department and
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Royal Irrigation Department, these area are vulnerable to flood disaster.

Figure 3.2: Locations of Chumphon, Surat thani, Nakhon Srithamarat,
Phatthalung and Songkhla provinces in Southern Thailand.

Table 3.1 shows the historical records of precipitation in selected provinces.
Futher information indicated that the month of maximum rainfall is November.
Among these areas, the maximum precipitation record is 643.1 mm in Nakhon Si
Thammarat province and the maximum mean number of wet days is 172 days in
Chumphon province.

Certain districts of these provinces are prone to severe flood disaster.
Therefore, 3-hourly rainfall data, together with climatological data of pressure,
cloud density, temperature, humidity, wind speed and direction from the monitoring
stations at HatYai district in Songkhla province and daily rainfall data from Tha Sae
district in Chumphon province, Muang district in Nakhon Si Thammarat province,
Kanchanadit district in Surat Thani province and Muang district in Phatthalung
province during the period of 1995-2006 obtained from the Thai Meteorological
department and the Royal Irrigation department are used as training and testing
sets in this study.
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Table 3.1: Details of rainfall records in selected areas during the years of 1961 and
2006.

Province Area Annual Mean number Maximum
(km2) rainfall of wet days rain in

(mm) (days) November
Chumphon 6,010.85 1961.80 172 380.4
Surat Thani 12,891.47 1635.50 159 331.2
Nakhon Si Thammarat 9,942.5 2381.30 158 643.1
Phatthalung 3,424.47 1895 143 465.8
Songkhla 7,393.89 2035.10 153 587.9

3.2 Data refinement

In this study, the eastern coast of southern rainfall data from the monitor-
ing stations at HatYai district in Songkhla province, Tha Sae district in Chumphon
province, Muang district in Nakhon Si Thammarat province, Kanchanadit district
in Surat Thani province and Muang district in Phatthalung province are obtained
from Thai Meteorological department and the Royal Irrigation department. The
data obtained from Thai Meteorological department were recorded in 3-hourly raw
data as shown in Table 3.2, while the data obtained from the Royal Irrigation de-
partment are in daily format as shown in Table 3.3. According to the daily rainfall
prediction, the 3-hourly rainfall are acumulated into daily rainfall data. Due to
missing records in the original rainfall data, the daily data of the 3-hourly missing
rainfall are marked as missing data.

3.3 Data-preprocessing

Prior to the implementation of an ANN model, some preparation stages
must be completed. These include data-filtering and data-scaling. In wavelet-
transform based technique, rainfall series must be decomposed for filtering, as de-
scribed in 3.3.1, into wavelet coefficients before the preprocessed normalization.
([2], [23], [33], [36]). In a conventional ANN technique, the data were also nor-
malized before feeding to the network, as described in 3.3.2, due to the interval
according to the output of the activation function ([5], [18]).

3.3.1 Wavelet decomposition

The non-decimated wavelet decomposition is performed on the n-length
of rainfall series to obtained n-length coefficients for each of the resolution levels
[1]. The decomposition is accomplished by filtering the desired signal data with the
chosen wavelet function at a number of decomposition level. Results of this filtering
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Table 3.2: An example of 3-hourly raw data in HTML format obtained from the
Thai Meteorological department; temperature data at Hatyai station in the year
1997.
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Table 3.3: An example of daily raw data in .DAT format obtained from the Royal
Irrigation department; rainfall data at Hatyai station in the year 1997.
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stage are the approximation (low frequency information) and detail (high frequency
information) coefficient series for each resolution levels. Therefore, information at
each resolution scale is directly related to each time point [22].

The number of resolution levels is experimentally chosen from the low
frequency coefficient series (approximations) at the level such that the original
data distribution is preserved. In this study, the resolution level is chosen to be 2.
Among various choices of the mother wavelet, the Daubechies 2 wavelet is used in
the present study for simplicity.

3.3.2 Linear Transformation

In the study, linear transformation is used to normalize the given data.
The transformation is performed on both the input vectors and the targets. The
outputs of the normalization corresponding with the logistic-sigmoidal function
are real numbers between 0 and 1. The equation of linear transformation can be
described as follows:

pn = (b− a) p0 − pmin

pmax − pmin

+ a, (3.1)

where p0 is the observed data, pn is the nth scaled data, pmax and pmin are the
maximum and minimum of the observed data, respectively, and [a, b] is the desired
interval.

3.4 Data prediction

3.4.1 Artificial Neural Network

A multilayer feedforward neural network is applied in this study with one
hidden layer. Resilient backpropagation is utilized to perform the weight adjust-
ment, due to its fast and efficient computation [26]. The normalized data obtained
from this linear transformation is then fed to the network in order to predict the
rainfall data for n successive days. A set of feedforward backpropagation neural
network with various activation functions is allocated to forecast the results.

Input node

In the thesis, rainfall data and climatological data of air temperature, humidity,
pressure, wind speed, wind direction, and cloud amount are considered as features
of the input layer. To predict the daily rainfall for n successive days, the number
of preceding daily rainfalls and relevant climatological data are determined to find
the significant correlation. The number of input nodes are, thus, experimentally
found for the best ANN performance.
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Hidden node

Since the hidden layer introduces nonlinearity, the number of neurons in the layer
are very important. If an inadequate number of neurons are used, the network will
be unable to model complex data and the resulting fit will be poor. If too many
neurons are used, the training time may become excessively long, and, worse, the
network may over fit the data. When overfitting occurs, the network will begin to
model random noise in the data. Therefore, the number of hidden nodes must be
explored.

Output node

The objective of the study is to predict the daily rainfall for n consecutive days.
Therefore, n nodes of output are allocated with respect to each n successive days.

The prediction of time series using back-propagation neural network con-
sists of teaching an ANN the historical data in a selected time and applying the
taught information to the future data. Data from the past are provided to the
inputs of neural network and from future to the output as the network prediction
as shown in Fig. 3.3.

Figure 3.3: Artificial neural network related with time series.

By shifting the time-window over time series, the patterns of the network
are made as shown in Fig. 3.4. These patterns can be adjusted for the needs of a
particular neural network.

In this study, the network patterns are randomly separated into two parts;
the training and the testing sets. The training set is used to train the neural network
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Figure 3.4: Creating training and testing set of the network.

model, whilst a testing set is used to verify the accuracy of the trained neural
network model. The training patterns consist of 75% of the total dataset whereas
the testing set consisting of the remaining 25%. The network pattern including the
missing data are discarded.

In order to obtain the desired network, input patterns are feed to ANN
with an appropriated number of input and hidden nodes. Training and learning
functions are required in order to teach the network with a performance criteria.
Training the network with the trainging set provides the desired weight associated
with learning algorithm. Thus, the best ANN model is found for the prediction.

3.5 Data post-processing

In the wavelet-tranform technique, rainfall data is decomposed into wavelet
coefficients. Therefore, the wavelet predictions at different resolution levels obtained
from a feedforward neural network are combined to reconstruct the original rainfall
series. The reconstruction procedure of the original signal data is accomplished by
recursively combining between an associated approximation and detail coefficients
at a number of decomposition level. It reconstructs the original signal of rainfall
series based on the multilevel wavelet decomposition.

The underlying idea of the wavelet-transform based ANN can be illus-
trated by Fig. 3.5.
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Figure 3.5: Diagram of wavelet-transform based artificial neural network.

3.6 Performance criteria

Performance of the network can be evaluated by various statistical mea-
surements such as coefficient of determination (R2), root mean squared error (RMSE),
and correlation coefficient C. The notations used in each statistical formula are
Qsim(m), Qobs(m), m and N , in which, Qsim(m) and Qobs(m) are the simulated
and observed daily rainfall data at point m, respectively. N is the sample size.

3.6.1 Root Mean Squared Error : RMSE

Root mean squared error (RMSE) is a statistical measure of the average
magnitude over the verification sample of the squared values of the differences be-
tween the predictionand the corresponding observation. Since the errors are squared
before averaging, the RMSE gives a relatively high weight to large errors. This im-
plies that the RMSE is most useful when large errors are particularly undesirable.
The formula for RMSE is

RMSE =

√√√√ 1

N

N∑
m=1

(Qobs(m)−Qsim(m))2. (3.2)

The RMSE can range from 0 to ∞. It is a negatively-oriented score −
Lower values are better. The greater value of RMSE, the greater the variance in
the individual errors in the sample. The RMSE is a statistical tool that give no
direction of the prediction − underestimation or overestimation.



31

3.6.2 Coefficient of Determination : R2

R-squared is one of the widely used statistics for the evaluation of model
performance described as (3.3). The R2 ranges from zero to one; with zero indicat-
ing that the proposed model does not improve prediction over the predicted model
and one indicating perfect prediction.

R2 = 1−
∑N

m=1 (Qobs(m)−Qsim(m))2∑N
m=1 (Q̄obs −Qobs(m))2

. (3.3)

Note that, by this definition, the computational value of R2 can yield
negative values which means the model failed to approximate the real data points.

3.6.3 Correlation Coefficient : C

Correlation coefficient measures the strength and the direction of a linear relation-
ship between two variables. The mathematical formula for computing C is

C =
N

∑
Qobs(m)Qsim(m)−

∑
Qobs(m)

∑
Qsim(m)√

N(
∑
Qobs(m)2)− (

∑
Qobs(m))2

√
N(

∑
Qsim(m)2)− (

∑
Qsim(m))2

.

(3.4)

The value of C lies between -1 and +1. The + and − signs are used for
positive linear correlations and negative linear correlations, respectively. Positive
values indicate a relationship between observed and predicted variables such that
as values for observed data increases, values for the predictions also increase. On
the other hands, negative values indicate a relationship such that as values for the
observes increase, values for the predictions decrease. If there is no linear correlation
or a weak linear correlation, C is close to 0.



CHAPTER IV

RESULTS AND DISCUSSION

This chapter will show results from the study. Daily rainfall in eastern
coast of southern Thailand are predicted by two methods: artificial neural network
and wavelet-transform based ANNs. In section 4.1, the predictions are obtained
without any asssistant of wavelet-transform based technique. The section 4.2 of
this chapter shows an improvement of the prediction with wavelet-transform based
artificial neural network. Experimental results and statistical evaluation of the
rainfall models for performance comparison are presented and discussed in the last
section.

4.1 Artificial neural network

Recently artificial neural network (ANN) as a non-linear inter-extrapolator
is extensively used by hydrologists for rainfall modeling as well as other fields of
hydrology ([20], [31]). In this study, a back-propagation ANN was applied in the
prediction which is implemented in MATLAB 2007a. Daily rainfall data in southern
Thailand during the years of 1995-2006 is randomly seperated into training and
testing set. Resillient backpropagation (Rprop) learning algorithm is applied in the
prediction in order to provide weight adjustments. Networks with only three layers
(one hidden layer) were selected for all models.

4.1.1 Input and hidden layer configuration

In this thesis, the input features of an artificial neural network (ANN) are
determined from the available hydrological data − three-hourly rainfall and clima-
tological data; pressure, air temperature, humidity, cloud amount, wind speed, and
wind direction, at Hatyai station obtained from Thai Meteorological Department
and daily rainfall data in Chumphon, Surat Thani, Nakhon Si Thammarat, and
Phatthalung provinces obtained from Thai Royal Irrigation. To consider the ap-
propriate input and hidden dimensions in the prediction, the number of nodes in
the input and hidden layer are experimentally determined.

Improved performance of artificial neural network (ANN) is highly depen-
dent on the selected input dimension. Fig. 4.1 shows the network accuracy of ANN
model determined by using the constructive dimension of input nodes from 1 to 10.
One layer of 200 hidden nodes with the output of next time-step daily rainfall in
southern Thailand is used in the experiment. The graph shows that the network
performance in term of R2 is optimal at 4 input-nodes. Using 9 and 10 input-nodes,
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in this experiment, give negative values of R2. An underlying reason is that these
long-preceding rain events may take into account of overlaping between summer
and rainy months. Different behaviors of rainfall such as the peak or zero precipi-
tation are included in one input pattern which make some difficulties in a network
learning. Therefore, the number of input nodes between 4 and 8 are proved to be
the suitable input dimension in daily rainfall prediction.

1 2 3 4 5 6 7 8 9 10
Number of input nodes

Figure 4.1: Performance of ANN model in terms of R2 with different number of
input nodes of daily rainfall prediction in Southern Thailand with fixed hidden
nodes at 200.

Table 4.1 illustates the ANN performance of daily Southern rainfall in the
selected areas with different number of input nodes and hidden nodes with various
statistical evaluations. The input nodes are experimentally varied between 4 and 8
nodes for which the daily rainfall feature is used as the only predictor. The optimal
size of the hidden node is found by increasing the number of hidden neurons by 100
between 100 and 500 of computation nodes. From the experiments on input and
hidden nodes configuration, Fig. 4.2 shows that 5 computation nodes of input and
200 hidden nodes are suitable for network calibration and verification.

4.1.2 Activation function

In this section, various kind of activation functions are investigated with
the 5-200-1 ANN architecture. Three kinds of activation function − logistic sig-
moid, linear, and gaussian activation functions − are considered in both hidden and
output layers. Before feeding data into the backpropagation neural network, the
data needs to be normalized into the same range of output of the desired activation
function.

From Table 4.2, ANN’s performance on the training set is best when uti-
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Table 4.1: ANN performance of daily Southern rainfall in selected areas with dif-
ferent number of input nodes and hidden nodes with various statistical evaluation.

(a) Root mean squared error: RMSE

Number of Number of hidden nodes
input nodes 100 200 300 400 500

4 10.4800 8.4215 8.4370 11.6410 9.4097
5 10.3840 5.6147 7.7966 11.1920 9.5945
6 8.8343 7.5746 9.9639 10.7457 6.2259
7 9.7059 8.8129 8.9553 11.5114 10.7010
8 8.4664 7.8402 10.1142 9.0798 7.3126

(b) Correlation coefficient: C

Number of Number of hidden nodes
input nodes 100 200 300 400 500

4 0.5004 0.4383 0.6620 0.5779 0.6377
5 0.5135 0.5651 0.6842 0.5371 0.1262
6 0.2746 0.5189 0.3956 0.2774 0.1028
7 0.4773 0.4650 0.6691 0.4052 0.5479
8 0.3888 0.4580 0.3085 0.4662 0.2600

(c) Coefficient of determination: R2

Number of Number of hidden nodes
input nodes 100 200 300 400 500

4 -0.5251 0.1166 0.0116 -0.8817 -0.2294
5 -0.3453 0.2439 0.1824 -0.5626 0.0159
6 0.0754 0.1786 0.1564 -0.1647 -0.1595
7 -0.0664 0.1398 0.0921 -0.5001 -0.2963
8 -0.5776 0.0987 -0.1527 -0.8145 -0.1769
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Figure 4.2: Performance of ANNs in term of RMSE with different number of input
nodes and hidden nodes.

lizing Gaussian function in the hidden layer and linear function in the output layer.
However, it fails to capture rainfall behavior of the testing set as indicated by the
negative coefficient of determination (R2). Applying logistic sigmoid activation
function in both hidden and output layers give satisfactory performance. Although
the model provides less accuracy than the gaussian-linear functions in the network
learning, the performance in the verification stage proves that the activation func-
tion of sigmoid-sigmoid model is capable to forecast the desired daily rainfall in
selected area. Therefore, in this thesis, a back-propagation ANN with logistic sig-
moid activation function in both hidden and output layers are applied for modeling
and forecasting.

Relation between rainfall and climatological characteristics based on the
physical evidence has been studied by some reseachers ([15], [18], [20], and [31]).
Most of the studies could provide rainfall estimation with reasonable accuracy by
taking into account climatological and topographical factors. If hydroclimatolog-
ical characteristics indicate coincidental occurence of rainfall events, the effects of
enabling climatological variables as input features are evaluated in this section.
These climatological variables are air temperature, humidity, pressure, wind speed,
wind direction, and amount of cloud. ANN’s performance of different climatological
variables as rainfall predictors at Hatyai station between the years 1995 and 2006 is
shown in Table 4.3. The model of daily rainfall, temperature and humidity with 15-
100-1 architecture shows better accuracy than the others. The correlations between
weather parameters and rainfall data, from Table 4.3, show that rainfall parameter
exhibits a strong dependence on humidity parameter. The larger absolute value
of significance test, the more relationship with rain the weather parameters are.
Since wind direction variable has a small magnitude of significance, it gives the less
correlation with rainfall data and provide less performance levels in forecasting.



36

50 100 150 200 250 300

Observed 

C=0.7137

(a)

50 100 150 200 250 300

Observed

C=0.7054

(b)

50 100 150 200 250 300

Observed

C=0.4082

(c)

20 40 60 80 100 120

Observed

C=0.1765

(d)

50 100 150 200 250 300

Observed

C=0.3855

(e)

50 100 150 200 250 300

Observed

C=−0.1099

(f)

20 40 60 80 100 120 140

Observed

C=0.8241

(g)

50 100 150 200 250 300

Observed

C=0.7553

(h)

Figure 4.3: Scattered plots between observed and predicted daily rainfall in mm
at Hatyai station with various input features: 4.3(a) using rainfall and humidity as
input dimensions, 4.3(b) using rainfall and temperature as input dimensions, and
4.3(c) using rainfall and cloud amount as input dimensions, 4.3(d) using rainfall
and pressure as input dimensions, 4.3(e) using rainfall and wind speed as input
dimensions, 4.3(f) using rainfall and wind direction as input dimensions, 4.3(g)
using rainfall, humidity and temperature as input dimensions, and 4.3(h) using
rainfall, humidity, temperature, and cloud amount as input dimensions.
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Table 4.2: Different activation function of ANN performance in the eastern coast
of southern areas between the years 1995 and 2006.

Act. function Training set Testing set
in layer of

hidden output RMSE C R2 RMSE C R2

sigmoid sigmoid 5.5782 0.9104 0.8286 5.6147 0.5651 0.2439
gaussian sigmoid 6.5477 0.8882 0.7748 12.5767 0.3171 -2.1878
linear sigmoid 13.5965 0.2252 0.0502 11.6474 0.3881 -1.0266
sigmoid linear 7.2310 0.8761 0.7658 8.8617 0.3626 -0.4498
gaussian linear 3.5366 0.9649 0.9311 10.7170 0.3039 -1.1204
linear linear 12.8623 0.2975 0.0885 9.3376 0.3495 0.0060
sigmoid gaussian 14.6649 -0.0024 -0.1749 8.9181 0.1205 -0.1881
gaussian gaussian 7.2856 0.8861 0.7714 17.5876 0.3304 -5.2341
linear gaussian 15.1991 -0.1889 -0.1869 10.0709 0.0582 -0.1429

Fig. 4.3 illustrates scattered plots between observed and predicted daily
rainfall in mm at Hatyai station with various input features of climatological vari-
ables. For the only rainfall predictor, air temperature and humidity have high
achieved performance levels among others, as indicated by Figs. 4.3(a) and Fig.
4.3(b), respectively. This performance corresponds to the test of variable’s signifi-
cance toward rain events. Humidity and temperature variables produce good cor-
relation coefficients at 0.5002 and -0.4002, respectively. These hydro-climatological
features may link some occurrence in humidity and temperature with rain event.
As shown by Fig. 4.3(g), the performance level is improved from that of Fig. 4.3(a)
and Fig. 4.3(b). Then enabling of temperature and humidity together as part of
the input dimensions results in considerable improvement of performance.

Nevertheless, the ANN model with employed humidity, temperature, and
rainfall as input dimensions is still insufficient for daily rainfall prediction. The
statistical evaluation in term of R2 is quite low although the correlation coefficient,
C, which measuring the degree of correlation, is good at 0.8241. Fig. 4.4 exhibits
the capability in capturing zero precipitation and some peak events. The difficulty
in predicting moderate and heavy rain events, which oftens under and overfitting,
proves to be the failure in this kind of prediction.

4.1.3 Period prediction

Distribution of rainfall in Southern Thailand has been influenced by sea-
sonal monsoons. The Northeast and the Southwest monsoons play an essential role
in generating rainfall in the south of Thailand. The period of October to February
is referred to Northeast Monsoon season over the south peninsular of Thailand,
while the months of June to September are referred to the Southwest monsoon.
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Table 4.3: The ANN performance of different climatological variable as rainfall
predictors at Hatyai station between the years 1995 and 2006.

Input Correlation Architec- Training Testing
features with rain ture RMSE C R2 RMSE C R2

R − 5-200-1 5.5782 0.9104 0.8286 5.6147 0.5651 0.2439
R
H 0.5002 8-200-1 2.5864 0.9755 0.9514 7.3516 0.7137 0.1809
R
T -0.4002 10-200-1 2.6284 0.9798 0.9596 7.7043 0.7054 0.1969
R
C 0.3188 8-100-1 2.6081 0.9752 0.9506 13.7487 0.4082 -0.18648
R
P -0.0467 10-500-1 3.2050 0.9764 0.9533 13.5714 0.1940 -0.1706
R
WS -0.1715 8-200-1 3.7389 0.9484 0.8984 8.7341 0.3855 -0.1561
R
WD -0.0355 10-500-1 3.0222 0.9731 0.9465 9.0571 -0.1099 -0.1765
R
H,T − 15-100-1 3.2939 0.9712 0.9429 4.6727 0.8241 0.6114
R
H,T,C − 16-200-1 2.5152 0.9768 0.9590 6.6164 0.7553 0.3366

Note that:
R refers to rainfall (mm),
H refers to humidity (percentage),
T refers to temperature (celcius),
C refers to cloud amount (deca),
P refers to pressure (hexto-pascal),
WS refers to wind speed (degree),
WD refers to wind direction (mile/hr).
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Figure 4.4: Daily rainfall prediction at Hatyai station using temperature, humidity
and rainfall feature as input predictors.

Therefore, the rainfall distribution can be seperately investigated into two
periods − wet period and dry period, as shown in Fig. 4.5. The wet period is the
period that Northeast and Southwest monsoons affect the southern weather. It
begins in the month of June and end by the month of February. The time interval
between March and May is considered as a dry period.

In the split-data predition, daily rainfall data together with climatological
variables are splitted into wet and dry periods associated with the time-period of
Northeast and Southwest monsoons. The back-propagation ANN with one hid-
den layer is implemented with logistic-sigmoid activation function in both layers.
Resilient backpropagation (Rprop) learning algorithm is involved in the network’s
calibration.

According to Table 4.3, climatological variables of air temperature, hu-
midity, and cloud amount are strongly related to rainfall data. Therefore, input
features will be considered according to these climatological variables and rainfall
data. Table 4.4 elucidates the ANNs’ performance with various rainfall predictors
of air temperature, humidity, and cloud amount in wet period, while those of dry
period are shown in Table 4.5. The models are evaluated at Hatyai station during
the year 1995 and 2006. It is worth seeing that the performances of the network
calibration in both wet and dry periods achieved higher accuracy than that from
models in the previous study. The improved performances prove that these kinds of
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Figure 4.5: Rainfall distribution in Hatyai, Songkhla province.

network are capable of avoiding local extremum. Furthermore, ANN performances
in testing set obtained from wet and dry period show an improvement over that of
non-split model prediction. Using stronger related climatological variables as input
feature, still, provided higher accuracy than weaker ones.

Fig. 4.6 illustrates the scattered plots in wet period prediction between
observed and predicted daily rainfall in mm at Hatyai station with various input
features of air temperature, humidity, cloud amount, and rainfall data itself. The
model of rainfall, air temperature, and humidity shown in Fig. 4.6(e) gives good
accuracy in term of R2 at 0.6295 and RMSE at 5.6443 mm. In dry period predic-
tion, Fig. 4.7(b) shows that the model of rainfall and humidity data with 10-200-1
architecture outperforms from the other models with accuracy in terms of R2 and
RMSE at 0.6075 and 3.7806 mm, respectively.

The daily rainfall at Hatyai station in wet period and that of dry period
shown in Figs. 4.8 and 4.9 indicate that network’s learning can not capture rainfall
distribution in each time-period. The networks give under-estimations at peak
events and over-estimate at some points. Moreover, the fitting graphs do not relate
to the significance of the actual trend line of rainfall. It is possible that uncertainties
monsoon may generate unexpected rain events in the periods. Fig. 4.10 shows that
there are some shifting in rainfall. November usually should be the month that
provide maximum precipitation, however, month of maximum precipitation varies
and, sometimes, occurs in dry period. Therefore, these may be difficulties for
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Figure 4.6: Scattered plots between observed and predicted daily rainfall in mm
at Hatyai station with various input features in wet period: 4.6(a) using rainfall as
the only input dimension, 4.6(b) using rainfall and humidity as input dimensions,
4.6(c) using rainfall and temperature as input dimensions, 4.6(d) using rainfall and
cloud amount as input dimensions, 4.6(e) using rainfall, humidity and temperature
as input dimensions, and 4.6(f) using rainfall, humidity, temperature, and cloud
amount as input dimensions.
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Figure 4.7: Scattered plots between observed and predicted daily rainfall in mm
at Hatyai station with various input features in dry period: 4.7(a) using rainfall as
the only input dimension, 4.7(b) using rainfall and humidity as input dimensions,
4.7(c) using rainfall and temperature as input dimensions, 4.7(d) using rainfall and
cloud amount as input dimensions, 4.7(e) using rainfall, humidity and temperature
as input dimensions, and 4.7(f) using rainfall, humidity, temperature, and cloud
amount as input dimensions.
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Table 4.4: The ANN performance of different climatological variable as rainfall
predictors at Hatyai station in wet period between the years 1995 and 2006.

Input Architecture Training set Testing set
features RMSE C R2 RMSE C R2

R 5-200-1 1.4598 0.9906 0.9811 6.4068 0.6775 0.2780
R,H 12-200-1 0.4559 0.9990 0.9980 6.9682 0.7403 0.5023
R,T 10-100-1 0.7511 0.9973 0.9945 6.5034 0.7273 0.4929
R,C 8-100-1 0.6276 0.9981 0.9962 6.4683 0.6281 0.2558
R,H,T 18-100-1 2.1754 0.9744 0.9579 5.6443 0.8118 0.6295
R,H,T,C 28-100-1 2.0291 0.9884 0.9769 6.0232 0.7049 0.2961

Table 4.5: The ANN performance of different climatological variable as rainfall
predictors at Hatyai station in dry period between the years 1995 and 2006.

Input Architecture Training set Testing set
features RMSE C R2 RMSE C R2

R 6-400-1 1.2159 0.9956 0.9913 6.0487 0.7040 0.1325
R,H 10-200-1 0.5488 0.9987 0.9973 3.7806 0.8344 0.6075
R,T 12-100-1 0.7609 0.9975 0.9950 5.2120 0.7633 0.5173
R,C 14-400-1 1.0038 0.9964 0.9928 5.5197 0.7147 0.3118
R,H,T 18-200-1 0.5468 0.9988 0.9976 3.3118 0.8226 0.5684
R,H,T,C 24-200-1 0.6743 0.9979 0.9959 5.1791 0.6463 0.2096

network learning in split-data prediction.

Based on the results from wet-period and dry-period predictions, the per-
formance of models improves from that of the non-split data prediction. However,
the improved accuracy shows that the models are not capable of forecasting daily
rainfall in both wet period and dry period.

4.2 Wavelet-transform based Artificial neural network

From the previous section, the deterministic model − artificial neural
network, failed to forecast daily rainfall data in the study areas. This may result
from including of stochastic behavior in rainfall event. With the capability of
seperating a deterministic out of a stochastic part of wavelet decomposition, an
artificial neural network is combined with the wavelet decomposition to improve
models accuracy.
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Figure 4.8: Daily rainfall at Hatyai station in wet period using rainfall, humidity
and temperature variables as input features.
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Figure 4.9: Daily rainfall at Hatyai station in dry period using rainfall and humidity
variables as input features.
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Figure 4.10: Graph of maximum-precipitation month at Hatyai station.

In section 4.1, implemented models considered various weather variables
as input predictors in daily rainfall prediction. It might be the dependence of these
factors in rainfall forecasting that affect the the accuracy of the prediction. This
result associated with the study from French et. al [16]. The study concerns the
uncertainties of hydrological variables that could affect the performances of both
stochastic and deterministic rainfall prediction models. Therefore, in this section,
accurate rainfall prediction based only on the collected historical data of rainfall is
proposed.

Daily rainfall data at stations in the eastern coast of southern Thailand
during the period of 1995-2006 are decomposed by the Daubechies 2 wavelet func-
tion at the second resolution level. Thus, two approximation and two detail coeffi-
cients are obtained. Figs 4.11 and 4.12 illustrate approximation and detail coeffi-
cients, respectively. As shown in Fig. 4.12, approximation coefficients at different
level indicate daily rainfall series with different smooth fashion. The more reso-
lution level, the more smoother daily rainfall series is. The wavelet coefficients of
daily rainfall series at different resolution level during the period of 1995-2006 in
southern stations are trained and tested with a number of different nodes of input
and hidden neurons. Each daily rainfall data in the eastern coast of southern sta-
tions of years 1995 through 2003 are chosen to be the training set and those of years
2004 through 2006 are testing set. Before feeding data into this backpropagation
neural network, the data is required to be normalized between 0 and 1 [12].
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Figure 4.11: Detail coefficients of daily rainfall series at different resolution level;
(up) at the first resolution level and (down) at the second resolution level.

4.2.1 One-day forecasting

An artificial neural network with wavelet decomposition is applied on daily
rainfall data from five stations of the eastern coast of southern provinces. Only
rainfall feature is considered as inputs of the network. For one-day forecasting, the
output of the network is the next time-step daily rainfall. The network architecture
of this one-day forecasting is 5−8−1 model which can be described mathematically
as follows:

Rt+1 = f(Rt +Rt−1 +Rt−2 +Rt−3 +Rt−4), (4.1)

where Rt represents daily rainfall of day t.

Table 4.6 shows a performance of wavelet based artificial neural network
at different stations in the selected areas. The results show good accuracy with
average R2 of 0.9946. One thing that should keep in mind is that R2, in this
study, regards as a measurement of a network’s efficiency while RMSE measures a
network’s error. Moreover, performance in terms of R2 and RMSE might not be
correspondent. The weight terms in their formula are responsible for this. RMSE
is obtained from averaging the sum square error with sample size while R2 shows
relative comparison between how far the prediction is from the observe and how far
the observe is from its mean. Therefore, higher R2 could have higher RMSE than
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Figure 4.12: Wavelet decomposition of daily rainfall series at different resolution
level.

lowwer R2.

Table 4.6: One-day forecasting of daily rainfall in
southern provinces.

Station Testing set
RMSE R2

A. Kanchanadit, Surat Thani 0.8898 0.9946
A. Tha Sae, Chumphon 0.7811 0.9939
A. Muang, Nakhon Si Thammarat 1.3964 0.9948
A. Hatyai, Songkhla 0.8625 0.9950
A. Muang, Phatthalung 0.9994 0.9947

An example of scattered plots of the simulation results based on daily
rainfall data from the eastern coast of southern stations is illustrated in Figs. 4.13
and 4.14. Result of one-day daily rainfall output using a 5 − 8 − 1 ANN model
shows that wavelet based artificial neural network is capable of forecasting daily
rainfall at high accuracy with R2 = 0.9950 and RMSE = 0.8625 mm.
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Figure 4.13: Scattered plots between observed and predicted daily rainfall in mm
in the eastern coast of southern provinces for one-day forecasting.
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Figure 4.14: One-day daily rainfall prediction in the eastern coast of southern
provinces.

4.2.2 Many-day forecasting

The capability of forecasting multi-step output of the wavelet-based ar-
tificial neural network is shown in Table 4.7. The daily rainfall forecasting in the



49

eastern coast of southern provinces for 2 and 3 days in advance gives a satisfactory
accuracy. Simulation result of day 2 prediction shows accuracy with R2 = 0.9739
and RMSE = 2.0467 mm while the network performance of day 3 prediction is
R2 = 0.9680 and RMSE = 2.2699 mm. Comparisons between the observed and
simulated results in Fig. 4.15 and Fig. 4.16 show that extreme rainfall events can
be detected for 2- and 3-day daily rainfall forecasting.

160 170 180 190 200 210 220 230 240 250

Time (Day)

Target
Prediction

Figure 4.15: Day 2 rainfall prediction in the eastern coast of southern provinces.

The model can forecast daily rainfall up to 4 successive days with good
accuracy. However, this reasonable fit of day 4 prediction gives the underestimate
values of the peak events as shown in Fig. 4.19. When 5-day or more forecasting
had been attempted, the performance of the network deteriorated as shown in Fig.
4.17.

Table 4.7: The eastern coast of southern-area
average daily rainfall for n days prediction in
selected provinces.

Day Training set Testing set
RMSE R2 RMSE R2

1 1.4319 0.9929 0.9675 0.9942
2 2.7666 0.9737 2.0467 0.9739
3 3.1076 0.9668 2.2699 0.9680
4 5.4174 0.8990 4.2306 0.8887
5 11.1358 0.5735 8.7768 0.5206
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Figure 4.16: Day 3 rainfall prediction in the eastern coast of southern provinces.
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Number of days in advance

A. Muang, Nakhon Si Thammarat
A. Muang, Phatthalung
A. Tha Sae, Chumphon
A. Kanchanadit, Surat
A. Hatyai, Songkhla

Figure 4.17: ANN performance for n−day daily rainfall prediction in the eastern
coast of southern provinces.

Table 4.8 shows the performance of day 4 prediction of daily rainfall in
selected provinces in the eastern coast of southern Thailand. The network achitec-
ture for this 4-day forecasting is 5−19−4. The model input consists of 5 preceding
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daily rainfall data to obtain predicted values of the next four daily rainfall as

(Rt+1, Rt+2, Rt+3, Rt+4) =f(Rt +Rt−1 +Rt−2

+Rt−3 +Rt−4),
(4.2)

where Rt represents daily rainfall of day t.

Table 4.8: Day 4 prediction of daily rainfall in the east-
ern coast of southern provinces.

Station Testing set
RMSE R2

A. Kanchanadit, Surat Thani 4.3135 0.8736
A. Tha Sae, Chumphon 3.4144 0.8728
A. Muang, Nakhon Si Thammarat 6.6796 0.8812
A. Hatyai, Songkhla 4.0671 0.8883
A. Muang, Phatthalung 4.5271 0.8914

Fig. 4.18 shows another example of scattered plots between the observed
and predicted daily rainfall data at the eastern coast of southern stations for day
4 prediction with accuracy of R2 = 0.8883. Four-day daily rainfall forecasted at
Hatyai station with RMSE = 4.0671 mm is illustrated in Fig. 4.19.

10 20 30 40 50 60 70 80 90 100

20 40 60 80 100 120

Observation

R2 = 0.8883

Figure 4.18: Scattered plots between observed and predicted daily rainfall in mm
at the eastern coast of southern stations for day 4 forecasting.
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Figure 4.19: Day 4 daily rainfall prediction in the eastern coast of southern
provinces.

4.3 Discussion

Fig. 4.20 illustrates daily rainfall models for performance comparison
among a conventional ANN model, a split-data ANN model, and wavelet-transform
based ANN model evaluated at selected provinces in the eastern coast of southern
Thailand. Daily rainfall data are obtained by collecting distributed information
in wet time-period. The graphs describe comparisons between observed and pre-
dicted rainfall data from various proposed models. The performance shows that
the wavelet-transform based artificial neural network provides the most satisfac-
tory performance with accuracy of R2 at 0.9948. The split-data model and the
conventional ANN give accuracy of R2 at, approximately, 0.6295 which is insuffi-
cient to perform the southern daily rainfall prediction in this study.

The forecasting capability of wavelet decomposition technique outper-
forms the others. The wavelet based ANN model provides a good fit with the
observed data, in particular for zero precipitation in the summer months, and for
the peaks in the testing set of wet period. These results indicate that wavelet based
ANN model estimations are significantly superior to those obtained by either the
conventional ANN model or the split-data ANN model. Both models of non-wavelet
decomposition technique are trapped in under- and overfitting. Although the split-
data model is merely lightly better than the conventional ANN, all unneccessary
information from summer monsoon uncertainties that may generate unexpected
rain events on dry period is a difficulty in network learning. This shows that the
wavelet transform can exstract the chaotic components well from the original data
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Figure 4.20: Performance comparison of southern daily rainfall among a conven-
tional ANN model, a split-data ANN model, and wavelet-transform based ANN
model.

for network learning.



CHAPTER V

CONCLUDING REMARK

Daily rainfall data obtained from various districts of provinces in the
eastern coast of southern Thailand that are vulnerable to flood disaster: Tha
Sae district in Chumphon province, Kanchanadit district in Surat Thani province,
Muang district in Nakhon Si Thammarat province, Muang district in Phatthalung
province and Hatyai district in Songkhla province, are investigated. A feedforward-
backpropagation artificial neural network is applied to model and forecast southern
daily rainfall data. Two conventional techniques of ANN model, e.g., split-data
ANN model, and wavelet-transform based ANN, have been employed for com-
parison in this study. Statistical evaluation of the rainfall models for performance
comparisons is summarized in terms of the coefficient of determination and the root
mean squared error. Following previous works on forecasting the rainfall based on
climatological variables, data of atmospheric pressure, air temperature, cloud den-
sity, humidity, wind speed, and wind direction are used as daily rainfall predictors
in this thesis for the nondecomposed ANNs. Experimental results for nonsplit-
data show that the 15-100-1 ANN model of rainfall, air temperature, and humidity
variables, which is superior over the other models, is still trapped in under- and
overfitting. The model accuracy in terms of R2 is 0.6114 and RMSE is 4.6727
mm. Split-data for two time-periods of wet and dry models also posssesses some
difficulties in forecasting accurate daily rainfall in southern Thailand. In the split-
data prediction, rainfall data together with climatological variables are splited into
wet and dry periods associated with the time-period of Northeast and Southwest
monsoon in order to implement models for each period. The best split-data model
provides accuracy in term of R2 at 0.6295 and in term of RMSE at 5.6443 mm.
The backpropagation artifitial neural networks with one hidden layer shows that
the models are not capable of forecasting daily rainfall in both wet period and dry
period. It might be the dependence of climatological factors in rainfall forecasting
and the complexity in rainfall behavior that may include some stochastic character-
istics that affect the accuracy of the prediction. A hybrid technique using Wavelet
transform and artificial neural network based only on the collected historical data
of rainfall is proposed in order to predict accurate rainfall. In the wavelet-transform
based ANN technique, prior to feeding input data of rainfall to ANN, information
of rainfall series is extracted into two sets of wavelet coefficients − approximations
and details. Results show that the neural network based on wavelet decomposition
is preferable for daily rainfall prediction in the eastern coast of southern Thailand.
Accuracy of the one-day daily rainfall prediction gives satisfactory prediction with
R2 = 0.9942 and RMSE=0.9675 mm. In addition, the network is also capable of
forecasting up to 4 days in advance with reasonable accuracy of R2 = 0.8887 and
RMSE = 4.2306 mm.

Without a comprehensive technique of wavelet decomposition, the fore-
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casting would not be offered valuable forecasting. For this reason, at the present
time, wavelet decomposition plays an important role in extracting stochastic part
out of deterministic part. Since the rainfall information is extracted when both
high- and low-pass filters are applied at a specific resolution level, approximation
and detail coefficients are the outputs which can be represented as rainfall trend and
unexpected rain events, respectively. Multiresolution analysis allows trend behav-
ior as the filters to extract noisy data in time series for the trained neural network.
Therefore, this thesis demonstrates the crucial role of the wavelet-transform based
artificial neural network as a practical tool for forecasting daily rainfall in the east-
ern coast of southern Thailand.
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APPENDIX

In this study, daily rainfall predictions are implemented in Mat-
Lab 2007a. The set of tools and facilities that help in the prediction are available
in MaTLaB toolboxes. Many of these tools are in Wavelet toolbox and Neural Net-
work toolbox. In Wavelet toolbox, the wavelet decomposition and recombination
are introduced in sections 5.1 and 5.3, respectively. Section 5.2 describes ANNs’
functions utilized in the prediction.

5.1 Wavelet decomposition

The decomposition is accomplished by using the function swt in wavelet
toolbox of MATLAB. Its syntax is given as

[SWA, SWD] = swt(X,N,wname), (5.1)

where

SWA refers to approximation of wavelet coefficients,

SWD refers to detail of wavelet coefficients,

X refers to signal data,

N refers to number of decomposition level,

wname refers to wavelet function.

5.2 ANN implementation

The neural network architecture is implemented via a newff function of
neural network toolbox in MATLAB. Equation (5.2) is a syntax utilized to obtain
the mentioned network.

net = newff(input pattern, [S1 S2], {TF1 TF2}, BTF,BLF, PF ), (5.2)

where

Si refers to number of hidden node in 1st layer and of output node in 2nd layer,

TFi refers to the transfer function for ith layer,

BTF refers to the training function,

BLF refers to the learning function,

PF refers to the performance criteria.

The following syntax describes the train function which used as a network
training,
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[net, tr, output, error] = train(net, Input patterns, Targets). (5.3)

Equation (5.3) gives the trained network according to net.trainParam
which is initially set as follows:

net.trainParam.epochs = 100000,

net.trainParam.goal = 0.000001.

where,

net.trainParam.epoch represents the maximum epochs of the training,

net.trainParam.goal represents the network performance goal in term

of MSE for stopping condition.

The train function provides the following outputs: net,tr,output, and er-
ror, these correspond to the trained network, training information, network outputs,
and network error, respectively.

5.3 Wavelet recombination

In the recombination procedure, the function iswt in wavelet toolbox,
which is a inverse transform of swt, is utilized. The syntax of the function iswt is
described as

X = iswt(SWA, SWD,wname), (5.4)

where,

SWA refers to approximation wavelet coefficients,

SWD refers to detail wavelet coefficients,

X refers to original signal data,

N refers to number of decomposition level,

wname refers to wavelet function.
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