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CHAPTER I

INTRODUCTION

Precipitation is one of the climatological key variables that plays an im-
portant role for human being. Water usage,o0r consumption in regions around the
world are related to rainfall in many dircet or indirect ways — agricultural, in-
dustrial, ecosystem, transportation, and health™ Over the coming decades, climate
change has been recognized.asone of the serious environmental issues. Many con-
sequences of climate changesaremiow being observed and investigated. For instance,
rising intensity of raimstorms cau mcrease the risk of flooding and agricultural haz-
ards, while the spread of disease is another indirect-consequence of climate change
on human health. Chaugesfin precipitation are one of the expected impacts of
global warming. Several pegional precipitation trends, nowaday, are increasingly
experiencing higher level§ of precipitation, and some areas are witnessing reduced
levels of precipitation and becoming arids Thailand, which is one of the agricultural
countries heavily depending on’ rains, has experienced flood and drought disaster
for many years. Floods'affect the JnortHérn and the central, as well as the south-
ern regions of Thailand, while- the north—eas}tern confronts with drought. Among
the natural catastrophes, ﬂoodlng is the most severe disaster that massively affects
the residents and properties. ~Actording 6 the Royal Thai Government (RTG),
the flooding destroyed homes, roads, bridges, and farnilands and led to the forced
evacuation of more ﬂralrten—t}musmd—of—peopﬁmeng these flooding areas, the
southern part of Thiailand is a vulnerable area that has been influenced by uncer-
tainties of tropical cyclones.

Southern Thailandis a tropical climate that is influenced by northeast
and southwest monsoons. Most of the southern provinces experience not only these
traditional monsoon rains but alse tropical cyclones, which @cgasionally produce
large amontit ©of rdinfallsy According tolthe past histéricaly rénords of Thai Mete-
orological Departinent and Royal Itrigation' Départment, 'thie south of Thailand
is vulnerable to cyclone disasters (reported in 1952, 1962, 1970, 1989, and 1997
events) with heavy rainfall that caused major flooding [34]. In November 2000, the
eastern coast of southern Thailand was hit by torrential monsoon rains and floods
creating one of the most dramatic natural hazards affecting at least 600,000 peo-
ple in 10 southern provinces. Among these areas, provinces of Chumphon, Surat
thani, Nakhon Si Thammarat, Phatthalung, and Songkhla were severely destroyed
in terms of natural resources, infrastructures, and human lives.

For many decades, the forecasting of rainfall has been investigated in term
of average quantity over some period of time in selected regions. One of the most
important attributes to flood mitigation and water resources management is the
accuracy of rainfall computation over a given area. At present, there have been



various models for monthly and seasonal rain computations with limited capacity
to give satisfactory daily prediction. Many of these flooding areas are essential
to social and economic growth of Southern Thailand, such as Hatyai district in
Songkla, Muang district in Nakhon Si Thamarat, Kanchanadit district in Surat
Thani, Muang district in Phatthalung, and Tha Sae district in Chumphon province.
All of these areas are prone to flood hazard that requires serious investigation
to prevent future damages and economic hardship of local residents. Therefore,
knowledge of the variations of precipitation is important for water management
application due to the significant effects on flooding.

1.1 Literature review

Rainfall prediction isione of ‘the challenge problems in hydrology due to
meteorological and geggraphical factors with uncertainties. The sophisticated na-
ture of rainfall behaviormakes it difficult to assess. In light of this, several dy-
namical forcings are related to rainfall’s periodicity = elimatological, topographical
factors, and others. Therefore; most conventional rainfall modelings usually take
these factors into accetinty Humidity, aminimum and maximum air temperature
were used as a rainfall predictors by many‘researchers ([20], [31], [25]), while the
studies of Singhrattna et al. [21f and Chantasut [18] emphasized the large-scale
ocean-atmospheric circulagion variables = Bl Nifio Southern Oscillation (ENSO),
Sea Surface Temperature (SST5, Southem-@scﬂlatlon Index (SOI), as rainfall pre-
dictors in order to exhibit significant relatlogshlp to the climate change. Regard-
less of climatological, factors, Toth et al. [10] investigated the capability of ANN
in short-term ramfall—forecastmg—xmgﬂﬁstorlcal ramfall data as the only input

information.

There has beeh amumber of reséatches on rainfall forecasting in Thailand
([4], [18], [21]4420], [33]; [34][35]). Most of these studies have been contributed to
the work in the regionof central Thailand — Bangkok." Singhrattna, et al. [21] and
Chantasut, et al. [18] contributedstheir works at stations in the West Central re-
gion and ifi $he Cliap, Phraya-River) basin: (Traditional lingariregregsion and artificial
neural network are the two significant tools for forecasting the'large scale monthly
and seasonal rainfall. For other parts of Thailand, Weesakul and Lowanichchai [35]
employed the Autoregressive Moving Average (ARMA) and Autoregressive Inte-
grated Moving Average(ARIMA) methods to fit the time series of annual rainfall
during 1951 to 1990 of 31 rainfall stations distributed in all regions of Thailand —
Northern, Northeastern, Eastern, Southern, and Central areas. This model was
proposed to predict the annual rainfall for agricultural water allocation planning
management. The results showed that ARIMA and ARMA models were applica-
ble for the purpose of agricultural water allocation planning. Among other parts
of Thailand, Southern, revealed by Weesakul and Lowanichchai [35], provided less
accuracy of forecast due to the influence of uncertain tropical cyclones which are
the dominant cause of rainfall in that area. The influence was shown by the study
of Vongvisessomjai [34], which established significant impacts of Typhoon Vae and
Linda on heavy rainfall in southern Thailand. These cyclone disasters generated



heavy rainfall causing severe floods, high casualties and damages in many southern
areas.

Reliable and accurate hydrological forecasting plays an important role
in water management and flood warning. Therefore forecasting methods have
been studied deeply in order to provide an efficient model. Both statistical and
mathematical approaches are implemented to obtain such estimation. Most of the
previous hydrological works considered hydrological forecasting as a deterministic
approach. The work of Singhrattna, et al. [21] described the development of a
statistical forecasting method for summersmonsoon rainfall over Thailand with a
linear regression and a local pelynomial bascdmon-parametric method. Solomatine
et al. [9] indicated a problem of predicting stitgeswater levels by using of linear au-
tocorrelation and ARIMA™6AGl and notlifiear fethods. Among several rainfall
forecasting techniques based en statistical or deterministic methods and computa-
tional approaches, thezethasdbeen an excess of evidence in literature that artificial
neural networks (ANNg)#is ifi¢resingly used for hydrological modeling especially
in rainfall prediction®([15)¢" I8} [20]. [25]; [26], [31])=" The ability of representing
non-linear complex relation'from a set of known input and output variables is the
significant role of ANNs, Partlculmly,. ANNs are non-linear modeling tools that
do not require an explicit ma’[hematlcél formulation of the physical relationship
between variables. Among dlfferent kmdﬁ of ANNs, feedforward backpropagation
has gained popularity in‘the 1nvest1gdt1g)n Weather forecastlng ([14], [20], [28]).

: ol

The majority of Studles have proven that artificial neural networks are
able to outperform_traditional statistical teclinigues. _Lee et al. [31] predicted
daily rainfall data by employing divide and conquer technique. The whole region
was divided into 4 sub-regions. Precipitation in two larger regions was predicted
by radial basis function neural network, while the other two smaller regions were
carried out by a regression model. The artificial neural networks performed well in
comparison with the limear models. The,result of better performance of artificial
neural network’ ofet €onventiohal niethedsthiasfalsoyrevealed by many reseachers
([6], [9], [14],[27];480]). Results.from!tlie study.of Solomatine et al. [9] revealed
that there was still more local predictive information embedded into the attractor
of the system so that the.statistical maodels could not, provide sufficient accuracy. A
compatison between ANN models and traditional models has'beén made, as well,
by Hsu ét al. [11] who stated that the ANN approach would be more effective when
explicit knowledge of the hydrological variables is not required.

Although the expert system of artificial neural network are capable of
modeling non-linear relationships, its successful employment may be restricted due
to the sophisticate nature of non-stationarity and non-linearity in the hydrological
variables. The artificial neural network has been shown in many studies that the
problem of extrapolation has certain limitations. In particular, the models were
unable to estimate the peak signal ([5], [11]).

In recent years, the wavelet transform has been successfully applied to
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data series in order to analyze the stochastic components. Geva [1] reported on an
improvement in the results of multi-scale wavelet decomposition. The prediction
accuracy was improved by using different scales of the time windows and frequencies
bands, which supplied the networks with more information on the past. Soltani
[32] and Renaud et al. [22] also proposed a method of predicting nonlinear time
series with wavelet decomposition. Their works showed that the decomposition
could simplify the main task of predicting a complex behavior. As a result, many
applications of wavelet analysis have been consequently studied. Bi et al. [40]
applied wavelet decomposition in the short-term load forecasting in Queenlands,
Australia. In hydrological approach, many researchers eliminated the nuances of
the series, which are the noise of signal, iu"order to consider the deterministic part
[33] and enhanced a network learning.

-

Due to the capability oi wavelet decomposition in isolating the periodicity
in a time series, the uses®f wavelet fransform with several technique has been pro-
posed. Both statistics aud netizal network are applied with wavelet decomposition.
Mabrouk [2] presented wavelét decomposition and autoregression models for time
series prediction. Jayawardena (4] pre@i'cted daily rainfall data by using wavelet
technique and hiddeft markev/model in Chao Phraya basin. A hybrid method
which combines a detefminisfic model" Wlth stochastic model also presented by
Cristea [23]. Many technigues with the combmatlon of deterministic and stochastic
model have been proposed. Tong [36] developed the combination of wavelet method,
back-propagation neural network, aid autoregr essive moving average (ARMA) for
data mining forecasting. “All“0f these studies showed that the use of wavelet de-
composition method could help réduce the empirical task and also improve a model
accuracy. e "

1.2 The objective

The primary goal of this study is to predict daily rainfall in southern
Thailand. The southern areas that is vulnerable to flood disaster are chosen as
site studies. The selected southérn provincessfor this studyiéare located in the
easterty coast; Chmnphon, Surat thani, Nakhon St Thammartat, Phatthalung, and
Songkhla. "A" 3-hourly rainfall and’ climatological data™from monitoring stations in
the given regions in the period of 1995-2006 are used as primary data. A feed-
forward backpropagation ANN is employed to model and forecast southern daily
rainfall data. According to the significant application of wavelet analysis on various
purposes, a combining technique of wavelet decomposition and artificial neural net-
work is proposed in this study to forecast n-day daily rainfall. Overall performance
efficiency of predictions are summarized in terms of coefficient of determination,
correlation coefficient and root mean squared error. Statistical evaluation of the
rainfall models are also presented.

In summary, to fulfill the forecasting in southern part of Thailand, provinces
of Chumphon, Surat thani, Nakhon Si Thammarat, Phatthalung, and Songkhla,
that are vulnerable to flood disaster, are investigated in the study with deterministic



and stochastic models.

1.3 Outline

The thesis is organized as follows. Chapter II introduces the underlying
theories related to the study — physical concept of precipitation, aritificial neural
network, and discrete wavelet analysi hapter III elaborates the relevant method-
ologies. Experimental results and statistical performance of the rainfall models are
presented and discussed in c¢hapter Chapter V concludes the main results of
this research. —
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CHAPTER II

THEORETICAL BACKGROUND

In this chapter, underlying mathematical concepts and techniques of the
present study are introduced. Physical descriptions of precipitation are first elabo-
rated in section 2.1. In section 2.2, technical overview of artificial neural network is
presented. Wavelet theory, which plays auimportant role in this work, is described
in the last section of this chapter.

2.1 Physical deseriptions of precipitation

Circulation andé€ouServation of water in the hydrological cycle is one of the
vital processes naturally gperating Wltl’ﬁn the global system. A major component
of this cycle is the oceaud due o itsauajor regulation upon the flow of water in the
system. The oceans influence; in partlcuiar evaporatlon and the return of water to
the atmosphere, and thereby controlhng to a great extent flows of moisture in the
atmosphere and rates of precipitation (3]

A ey

2.1.1 The Hydrologlcal cycle

The whole éystem of water movement has been termed the hydrological
cycle. Fig. 2.1 illustrates main components of theisystem with inputs, outputs,
flow regulators and storages. The main input to surface hydrological cycle is directly
from precipitatiom: Ag a eonsequence,fevaparation and«ranspiration constitute the
system output. | These inputs and outputs are linked by flows in the atmosphere,
the oceans and'rivers on the continents [7].

Inputs to the surface hydrological cycle

Precipitation is by far the most important input to the surface hydrolog-
ical system. Precipitation occurs in a variety of forms — hail, snow, and rainfall.
Throughout most of the world, the major input is in the form of rainfall. The
distribution of this input across the world shows a marked relationship to the dis-
tribution of factors influencing precipitation, in particular, the incidence of storms,
the atmospheric moisture content and the oceans. Characteristic of the rainfall
has an important influence on what happens to the water after it has reached the
ground. The effect upon the hydrological cycle, upon geomorphological processes,
and, above all, upon man are almost always greater when precipitation is intense.



from the earth’s surface. The
rate of evaporation depe “val ctors for which the supply of energy is
5s involves the conversion of water to
water vapour that requires Q@E@a sle inputsof energy. Another important factor
is the avallablhty Qﬁlmsture at the surfa lace dries out and moisture
becomes less .—,—.—--.;-.:-.—.4.—:-—:--,‘—, ———————— ton-tend- to decline. In addition, evap-
oration is favoured by a moisture g he surface and the air above,
and thus evaporation rates de whes ¢ atmosphere is moist. Finally, wind
plays another 1mp0rtant part by removmg the moist air and maintaining a moisture

e ﬂuﬂawﬂwswawni

The mputs of moisture to the atmosphere are not everywhere in balance

with 6'1 Hq ﬂﬁ ej m n‘lT ﬁﬂora‘mon is high
while at 1 t 'Qh Egj oisture than it
loses. dl/er the continents, evaporation is less than precipitation, and the atmo-

spheric moisture budget is negative. As with the oceans, therefore, horizontal flows
of moisture must occur to maintain equilibrium.

2.1.2 Climatological Distribution

In order to understand the precipitation process, it is necessary to ap-
preciate the factors affecting it. Intensity precipitation varies in time and over a
catchment area. Wind plays an important effect in bringing moisture which has
evaporated from exposed waters or transpired from surfaces. Wind also causes
clouds to travel across the catchment. Precipitation can be generated if the tem-



perature of the cloud of water vapour drops below the dew point. Condensation is
followed by precipitation. The cooling action may be caused by rising air; against
mountains (orographic precipitation) due to cold fronts (frontal or cyclonic precipi-
tation) or due to thermal currents (convectional precipitation). The latter gives rise
to thunderstorms, which is an intense form of precipitation but often of relatively
short duration [3].

2.1.3 Formation of precipitation

Precipitation forms differently depénding on whether it is generated by
warm or cold clouds. Warm-clouds are defined as those that do not extend to
levels where temperatures are-below 32°F (0°C), while cold clouds exist at least in
part at temperatures below.82°k(0°C). The formation of precipitation may occur at
temperatures above osbelow freezing. | Precipitation that is formed in temperatures
entirely above freezing 8 called warm precipitation; cold precipitation involves ice
at some stage of the progéss 3. 1+« = &

<1

Warm Precipitation 4

Nearly all precipitation bogm% V\ﬁth condensation of water vapor of small
particles in the air which'is ¢alled cloud Coﬂﬂensatlon nuclei. Condensation may
occur at relative humidities less than 100% for hygroscopic particles (those having
an affinity for wates) or-may be delayed unitil the relative humidity exceeds 100 %

if the particles aredivdrophobic (lacking an affinity igl‘rlwater).

Saturation ef air occurs when rising air currents cool adiabatically (that
is, without loss of heat) by expansion. Because the saturation vapor pressure of
water decreases exponentially with) decreasing|temperatures; cooling of a moist air
mass by lifting is an‘efficient mechanism for producing saturation and condensation.

Thie conadensation processes lare efficient in ‘produgnig only cloud drops
that are-too 'small to have an appreciable'fall velocity relative tothe air. In order
to produce precipitation particles that are heavy enough to fall to the surface, a
cloud must increase its radius and volume. In the clouds with temperatures above
the freezing point, the growth occurs by coalescence, which is simply the merging of
colliding water drops. This merging is facilitated when an electric field is present.

Cold Precipitation

Whereas collision and coalescence are efficient means for producing pre-
cipitation in the warm, humid tropical regions, the formation of precipitation in
middle latitudes usually involves ice. Because the vapor pressure at saturation is
less over ice than over water, ice crystals will grow at the expense of water drops



when both exist together in a supercooled cloud, which contains liquid drops at
temperatures below the freezing point.

Although most precipitation in the middle latitudes begins as snow at
altitudes above the freezing level, the form of the precipitation reaching the surface
depends on the temperature structure of the atmospheric layers through which the
precipitation falls. If the temperature near the ground is warm enough, the snow
has time to melt and reaches the ground as rain. Hail occurs when alternating
strong updrafts and downdrafts cause ige crystals to pass repeatedly through layers
that contain supercooled water. The frequent passage through these layers allows
the water to freeze around the growing hailstone and to accumulate in one layer

after another.
J

The distributiou®f precipitation is not nniform across the earth’s surface,
and varies with time of day, season anc']ll year. The lifting and cooling that produces
precipitation can be_eaused by solar heating of the earth’s surface, or by forced
lifting of air over obstagles o1 when two different air masses converge. For these
reasons, precipitationfis genercxlly heavy in the tropies and on the upwind side of
tall mountain ranges. ; )

d

' 4
2.2 Artificial Neugal Network .,

Artificial Neural' Networks (ANN‘S) is a fion-linear mathematical structure
which is capable of ¥epresenting arbitrarily complex now-Hinear processes by relating
inputs and outputs'ef such system. The network consists of three main parts: input
layer, hidden layer and output layer. Each layer consists of neurons. The input layer
constitutes with a sef”of sensory units. The network ¢an have one or more hidden
layers of computation dodes. Output nodes constitute an output layer [29]. Each
layer is fully cennected to the next one with a'synaptic'weight on each connection.

Its architectural graph-of neural metwork™is shown in' Fig. 2.2.

Thereartitywo fajor paradighisistperyised andtnsiipedvised neural net-
work.

Supervised Neural Network

The supervised neural network consists of many pairs of input and output training
pattens. The learning of the network benefits from output patterns (target) which
act as assistances of the teacher to produce the estimations as close to the target
as possible by using weight adjustment. Fig. 2.3 illustates a supervised learning.
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| Output layer

Figure 2.2: Architectural’grap i - a-teural net ork with one hidden layer.

Adjust weight

Target output
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For unsupervised learning, the training set consists of input training patterns only.
Therefore, the network is trained without benefit of any teacher. The network
learns to adapt based on the experiences collected through the previous training
patterns. A typical schema of an unsupervised system is shown in Fig. 2.4.

2.2.1 A Multilayer Feedforward Network

A feedforward is a network that the output values of each layer only move
from one layer to the next; no values are fed back to earlier layers (a Recurrent
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Training
parameters Adjust weight

h

Input data Neural _

Figure 2.4: An unsupervised neural network.

. A multilayer network is a class of a
re hidden layers.

@, the value from each node z*

ed values are added together
weighted sum v; is fed into a
value is the output of the

Network allows values to be fed back
teedforward neural network \ A

At a neuron i@

is multiplied by a wei "
producing a combined
transfer function, ¢,
network mathematic

(2.1)

Figure 55 Architectural graph of a multilayer perceptron with one hidden layer.

2.2.2 Activation function

Activation function or transfer function is a function that introduces non-
linearity into the network. It is possible for neural network to do non-linear mapping
between inputs and outputs. Continuity of the functions implies that there are no
sharp peaks or gaps, so that the function can be differentiated throughout, making it
possible to implement the delta rule to adjust both input-hidden and hidden-output
layer weights in backpropagation errors, this will be discussed later in detail.
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Mathematical functions that are customarily used as activation functions
of the network are the followings.

Linear activation function

Linear function is a transfer function that is suitable for the unbounded output
value. Fig. 2.6 illustrated the linear activation function which can mathematically

describe as
(v =év 22)

——

ersection of y-axis.

where a is the slope pa bis a

AUEINENINYINT
QN BTN

The standard normal curve, shown in Fig. 2.7, has a symmetric bell shape and is
commonly known as standard normal distribution. Its range is [0, 1]. The gaussian
function is normally defined as

p(v) =e ™. (2.3)
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| function.

Sigmoid activation fun

The sigmoid function s-ghape, is the most common
: : g P e e h .
form of activation fanetion-used=in-tho- of artificial neural networks
LY

with positive output._A iﬁ: on is the logistic function
shown in Fig. 2.8 u“o efined by -

‘o o/
Fj]uﬂ’.] NEYINENT 24
where a is the 5105 parameter of the S%?Oid fanction. v/
|
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2.2.3 Learning algorithm

Basically, error back-propagation learning consists of two passes through
the different layers of the network: a forward pass and a backward pass. In the
forward pass, an input vector is applied to the sensory nodes of the network in an
input layer, and its affect propagates through the network layer by layer.

In the forward pass, the synaptic weights of each node are adjusted in
accordance with an error-correction rule as follows:
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nction.

(2.5)

where

ul U™
il

y' is the predicted output at j.’l it J.

spoffeid &LZJM £ @W R @btrected from a desired

(target) responge to produce against the direction of synaptlc connections in the

A %“ai YT

= 05 () (v; (£))yi (1), (2.6)

where

t represents the number of iteration,
w;~ refer to the weight of input from unit ¢ to unit j,

7 is the learning-rate parameter of the back-prop algorithm |,
E; is the error evaluated at unit j,

gb;- refers to the derivative of the associated activation function at the neuron j .

Thus, the synaptic weights are adjusted to make the actual response of
the network move closer to the desired response in a statistical sense as



15

wi(t + 1) = wi(t) + Awj(t). (2.7)

2.2.4 Resilient backpropagation

The Resilient backpropagation training algorithm (Rprop) has been one
of the advanced batch-training algorithms in weight adjustments for supervised
learning in the field of ANN [17]. It.is a well-established modification of the ordinary
gradient descent. The basic idea is to adjist and hence eliminate the influence of
the size of the partial derivative on thesweight step. Rprop takes into account
only the sign of the partial derivative ovei all‘patterns (not the magnitude), and
acts independently on each weight. Only the sign of the derivative is considered
to indicate the direction ofsthe weight update. The size of the weight change is
determined by a weight-spe¢ifie, \

A‘iﬁt) if 22 ~

— =y

ol £2 LA\ i aEé <0 (2.8)
A if dEé) =0,
— o w?
Where D denoted the partial dcru aﬁvé"fmth respect to each weight which refered

to the sum gradlent informatiéh-over all _paj:f*erns of the pattern set.

".I‘._"
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= o o 2% e

Next, the Bprop learning rules determine the new update value AZ( ).
This is based on a ngn—adaptatlon process as follows

gt ALE— 1), if —8’%2” « 220 >

" - i - OB i oFE
no) 2 AL DY Vi (9(%]1) 2 ijf) <0 (2.9)
i cp OE(t— OF
Nt —1) if 6(;1._1) * awf) =0,

J J

where Q k<7 ‘<) st gt

2.3 Wavelet transform

Wavelet analysis can be regarded as a transformation of time series from
temporal domain to wavelet domain. The transform is particularly well adapted
to characterize transient phenomena because it decomposes signals into building
blocks that are well localized in space and frequency. There are two catagories
of wavelet transform: continuous wavelet transform (CWT) and discrete wavelet
transform (DWT), which are a set of basis functions in Hilbert space L*(®).
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2.3.1 Discrete wavelet transform

The discrete wavelet transform (DWT) performs on a set of discrete in-
put signal to provide the output of discrete wavelet transform as approximation
coeflicients and detail coefficients [13].

This section begins by introducing the definitions of inner product and
discrete wavelet transformation.

Definition 1. Inner product.

Consider real or complex sequences in L°AZ), z(n), n € Z. The inner product is
defined as [24]

Ly, b(n)) = Sealmibln). (2.10)

Using the transformation 7, "ghe wavelet representation of a function f(x)
can be defined as follows:

i -

Definition 2. Discrete wawelet-itransform.

f(f =500, )

vy (jak)EA-'»:_,' ¥
l Z fsdin)@sx(z), o11)
S k) ety

where A is the Cartesian pmd‘uct':%Z H Z? The fuction ¢(x) enabling this decom-
position is a waveletyand Cjy, are the associated coéffigients [24].

2.3.2 Convolution and Filter i

Convolution 1s a mathematical operation on two functions h and g, pro-
ducing a third dunction that is typically viewed as a modified version of one of the
original functions. The convolution of h and ggs denoted by lu#g. It is defined as
the sutnmation of the product of thetwo fuhctions after beihgweversed and shifted.

Definition 3. Convolution.

Let h and g be two bi-infinite sequences. Then, the convolution product, y, of h and
g, denoted by h* g, is the bi-infinite sequence y = h* g, whose the nth component
is given by [15]

Yo=Y higa_r (2.12)

k=—o0

2.3.3 Lowpass filter

Definition 4. Lowpass filter.
Let h be some sequence, H(w) denote the Fourier series of h, and 0 < w, < wy < 7.



17

Suppose that there ewists 0 < 0 < 3, with1 =6 < [H(w)| <146 for 0 < w < w,
and an 0 < X < 1, so that for wy < w < 7, |H(w)| < A, then we call h a lowpass

filter [13].

A good working definition is to say that if h is a lowpass filter, then
|H(w)| = 1 for 0 < w < w, for some 0 < w, < 7mand H(w) ~ 0 for wy <w <7
where we require that w, < w, < 7. That is, the lowpass filter have to satisfy the
following condition:

(2.13)

2.3.4 Highpass

Definition 5. Hig
Let g be some sequenc
Suppose that there
0<d6<iuwithl—4¢
filter [13].

<X for0 <w < w, and a
m, then we call g a highpass

A good workin that if g is a highpass filter, then
|G(w)] = 0 for 0 < w < w, fo < m and |Gw)| =~ 1 forw, <w <7
where we require that w, <wféﬁJ'T 5, the highpass filter have to satisfy the

following condition:

(2.14)

o HEANENINE N3
o Vahigotiioh ‘%@% HIAFR GG Bt st

{V; }]GZ ch approximates L

0—=--CVicVyCcViC---— L*R) (2.15)

and satisfies the following properties:

f(x) € Vy <= f(20) € V. (2.16)

There exists a function ¢(x) in Vj such that the set {¢(x — k) }rez is an
orthonormal basis of V4. The scaling function ¢(z) satisfies the well known two-scale
difference equation with scale changes by any power of 2,
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L®_1

=25 > (k)p(2'w — k). (2.17)

From (2.11), the functions ¢(z) and ¢*(z) are not only a means for a
wavelets definition. They actually define the multiresolution analysis notions. Con-
sider a family of linear applications (A;) jeiz defined by

(2.18)

These applic( ontinuou ors which degrade the infor-
mation contained in S vhich provide an increasingly better

approximation of f(x)
A;(f)(x) can be int

The task of t t L " rmatior S therefore to extract the details
lost between two consécutive cales. Forevery j in 77, we have

of the fact that thd dpproximation-improves-as-j

The sequence of sampling Coefﬁ(nents {Si rez = {22 f ¢7 ) trez is the

approximatio 1 cients at lower scales.
The sequenceﬁaﬂ 55 ﬁﬁ ﬁ%‘h the discrete filter ,
h.,, followed b decnnatlon by a factor of two. hn}nez can have finite
impulsive response as shall be deséribed in th@ext subsection.”

YRIANNIUARTINEINE

2.3.6 The Daubechies wavelet function

Definition 6. Daubechies wavelet function. Let N be an even positive integer.



Then we define the daubechies wavelet transformation by the matrix

ho hy -+ hy.y O 0 .- 0\
0 0 ho hy

hy -+ hyx.y O 0o ... 0 ho

W —
N g g1 - gyv-1 O o - 0

0 O gO gl “ .. gN—]. “ e 0

gl PR | PRI 0 gO')
The filter

1s called the daubechic e shall call

the daubechies wavelet filter i

Thus, the daubg

g1 .92 93

decﬁ“ | ﬁﬁ *W ﬁT ’V kb ERlik
R a@nmx%ﬁlﬂmé’ ¢

3+ V3 = 0.83651630373746899
42
3—+3
hy = V3 = 0.22414386804185735
42
1—+3
hy = V3 = —0.12940952255092145
42
and the decomposition of highpass coefficients is given by
go = hs
g = —hy
g2 = Iy

g3 = —ho.

19
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Figures 2.9 and 2.10 illustrate the Daubechies 2 scaling and wavelet func-
tions, respectively.

Phi(x)

b4
2.5 =
£ l

.‘f diction [37].

1 ]

287 A@M%L’Jﬁél&mﬁm gInN3

oo 11&“3@@?‘15‘%%%%‘% i1 L

by two as in the DWT case [22]. Two sets of wavelet coefficients, approximation and
detail coefficients, can be obtained from the a trous wavelet algorithm as follows.

Given a time signal z(t), the smoothed data or approximations at resolu-
tion level j at position k, ¢;(k), is given by passing the signal z(¢) through a series
of low pass filters h analyzed at each resolution level j at position k as

= h(l)cj-1(k +2710). (2.20)
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Figure 2.11: The recursive decomposition.

T < ClL$Cp4— < Cp

By recursively decom ApPLosimation 8 efficienits at the previous level, approx-
imation and detail coeffi btained. Fig. 2.11 illustrates

¥ @O i e at resolution level j and at posi-
tion k, w;(k), can be" i fron the difference between consecutive resolutions
of approximation seriegfa \\

(2.21)

— s

Finally, the signal-can be rece
pression as

ed by using the mathematical ex-
)

T
. w(k) = ca(k) + > d;(k ‘ (2.22)

F-4 ‘ Q@rf =1
where n is a %&’ @owgl%lﬁw %]JZ illus r%es the recursive recon-
A .

struction. Theql:om ination of approximation and detail coefficients at a lowwer
level reconstructs approximation €oefficients atsa higher levely/By recursively re-

R TRV



CHAPTER I11

METHODOLOGY

3.1 Study area

The South of Thaila
the Indian Ocean to the Wi
East as shown in Fig. 3.

bounded by the Andaman Sea of
a Sea of the Pacific Ocean to the
rn region is the peninsula with

mountainous and basin areas ivation: 1es the area of approximately
70,715.2 km?2. The southew b ya roplcal climate with two seasons:
summer and rainny seasous’ Most rn peninsula’s weather is influenced by
seasonal monsoons. f = \\
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Figure 3.1: The graphical view of southern Thailand [39].

Chumphon, Surat Thani, Nakhon Si Thammarat, Phatthalung and Songkhla
are provinces located in the east coast of the south of Thailand as illustrated in
Fig. 3.2. From the past historical records of Thai Meteorological Department and
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Royal Irrigation Department, these area are vulnerable to flood disaster.

(B

Figure 3.2: Locations Churupt ~Surat thani, Nakhon Srithamarat,
Phatthalung and Songkhla provinces i

ditation in selected provinces.
Futher information indicate of maximum rainfall is November.
Among these areas, the maximum precipitation record is 643.1 mm in Nakhon Si
Thammarat Fﬁvince ahdsthe maximum fiean number of wet days is 172 days in

Chumphon piavitked | ) VI EI VI T WEI T

Y

in distxi . i ar . &asa flood disaster.
T A NADIGGN GEVD 10 WP ERU Bt of prowure
cloud demnsity, temperature, humidity, wind speed and direction from the monitoring
stations at HatYai district in Songkhla province and daily rainfall data from Tha Sae
district in Chumphon province, Muang district in Nakhon Si Thammarat province,
Kanchanadit district in Surat Thani province and Muang district in Phatthalung
province during the period of 1995-2006 obtained from the Thai Meteorological
department and the Royal Irrigation department are used as training and testing
sets in this study.
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Table 3.1: Details of rainfall records in selected areas during the years of 1961 and
2006.

Province Area Annual Mean number Maximum
(km?)  rainfall  of wet days rain in

(mm) (days) November
Chumphon 6,010.85  1961.80 172 380.4
Surat Thani 12,891.47 1635.50 159 331.2
Nakhon Si Thammarat  9,942.5  2381.30 158 643.1
Phatthalung 342447 1895 143 465.8
Songkhla 7.393.89 J 208510 153 587.9

3.2 Data refinement

\

In this studytheastery coast of southern rainfall data from the monitor-
ing stations at HatYai district an Songkhla province, Tha Sae district in Chumphon
province, Muang disi#ict i Nakhon Si Thammarat province, Kanchanadit district
in Surat Thani provincg and Muang dié‘triét in Phatthalung province are obtained
from Thai Meteorologicalddepartment and the Royal Irrigation department. The
data obtained from ThaiMeteorological department were recorded in 3-hourly raw
data as shown in Table 3.2; while*the dafa‘ obtained from the Royal Irrigation de-
partment are in daily format a5 shown in Table 3.3. According to the daily rainfall
prediction, the 3-hourly rainfall are acumulated into daily rainfall data. Due to
missing records in the original rainfall da-f:éu' the daily data of the 3-hourly missing
rainfall are marked:as missing data.

3.3 Data—prepfocessing

Prior ¢o the implementation of an ANN model, some preparation stages
must be completed. These include data-filtering and data-scaling. In wavelet-
transform*based technique, rainfall series must be decompaosed for filtering, as de-
scribed 1n"3:3.1] mto wavelet ‘¢oetficients’ before the preproeessed normalization.
([2], [23]; [33], [36]). In a conventional ANN technique, the data were also nor-
malized before feeding to the network, as described in 3.3.2, due to the interval
according to the output of the activation function ([5], [18]).

3.3.1 Wavelet decomposition

The non-decimated wavelet decomposition is performed on the n-length
of rainfall series to obtained n-length coefficients for each of the resolution levels
[1]. The decomposition is accomplished by filtering the desired signal data with the
chosen wavelet function at a number of decomposition level. Results of this filtering
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Table 3.2: An example of 3-hourly raw data in HTML format obtained from the

Thai Meteorological department; temperature data at Hatyai station in the year

1997.

R ()
RN
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Table 3.3: An example of daily raw data in .DAT format obtained from the Royal
Irrigation department; rainfall data at Hatyai station in the year 1997.

Royal Irrigation Department, Thailand Computer Center
Station - 38210 Khlong Wat, A Hat Yai, Sonzkhla RFLEDAYWY/2.01

at i f‘“ /
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stage are the approximation (low frequency information) and detail (high frequency
information) coefficient series for each resolution levels. Therefore, information at
each resolution scale is directly related to each time point [22].

The number of resolution levels is experimentally chosen from the low
frequency coefficient series (approximations) at the level such that the original
data distribution is preserved. In this study, the resolution level is chosen to be 2.
Among various choices of the mother wavelet, the Daubechies 2 wavelet is used in
the present study for simplicity.

3.3.2 Linear Transformation

il

In the study, lincarteansformation is used to normalize the given data.
The transformation is#perferiued on hoth the input wectors and the targets. The
outputs of the normaligation corresponding with the logistic-sigmoidal function
are real numbers between'0 and 1. “The equation of linear transformation can be
described as follows: —

o 2 (b ) CL) "va;_ Pmin
éznax = DPmin
where pg is the observed: datay p,, ‘s thelnt" scaled data, pme: and pp, are the
maximum and minimum of the opserved data, respectively, and [a, b] is the desired
interval. =

+a, (3.1)

......

3.4 Data prediction

3.4.1 Artificial Neural Network

A multilayer, feedforward neuralmetwork is applied in this study with one
hidden layer. Resilient backpropagation is utilized to perform the weight adjust-
ment, due to, its fast and efficient Computation’f26]. The normalized data obtained
from this linear| transformation is/then fed to the metwork inorder to predict the
rainfall data for n successive days. A set of feedforward backpropagation neural
network with various activation functions is allocated to forecast the results.

Input node

In the thesis, rainfall data and climatological data of air temperature, humidity,
pressure, wind speed, wind direction, and cloud amount are considered as features
of the input layer. To predict the daily rainfall for n successive days, the number
of preceding daily rainfalls and relevant climatological data are determined to find
the significant correlation. The number of input nodes are, thus, experimentally
found for the best ANN performance.
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Hidden node

Since the hidden layer introduces nonlinearity, the number of neurons in the layer
are very important. If an inadequate number of neurons are used, the network will
be unable to model complex data and the resulting fit will be poor. If too many
neurons are used, the training time may become excessively long, and, worse, the
network may over fit the data. When overfitting occurs, the network will begin to
model random noise in the data. Therefore, the number of hidden nodes must be
explored.

Output node

The objective of the studyis 0 predict the daily rainfall for n consecutive days.
Therefore, n nodes of'output are alloc'fxted with respect to each n successive days.

The prediction offime/serics using back-propagation neural network con-
sists of teaching an ANN the historical data in a selected time and applying the
taught information tothe future data.fj.‘ Data from the past are provided to the
inputs of neural network and fromfuture to the output as the network prediction
as shown in Fig. 3.3. ' L

nwey = -
B 7 0V
: ?//_ \ 4 \\/

time series

output
predicted value

inputs neural network
Figure 3.3: Artificial neural network related with time series.
By shifting the time-window over time series, the patterns of the network

are made as shown in Fig. 3.4. These patterns can be adjusted for the needs of a
particular neural network.

In this study, the network patterns are randomly separated into two parts;
the training and the testing sets. The training set is used to train the neural network
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Figure 3.4: Lreating trainir‘lg and testing set of the network.
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model, whilst a testingfset is used to ‘}Vérify the accuracy of the trained neural
network model. The #Faining patteins consist of 75% of the total dataset whereas
the testing set consistingfof the remaining 25%. The network pattern including the
missing data are discarded. ‘4 JN

rad g4

In order to obtain-the desired network, input patterns are feed to ANN
with an appropriated number of input and hidden nodes. Training and learning
functions are required i order to teach the network with a performance criteria.
Training the network-with the trainging set provides tlie desired weight associated
with learning algorithm. Thus, the best ANN model is found for the prediction.

3.5 Data post-processing

In the wavelet-tranform technique, rainfall data is de¢omposed into wavelet
coefficiefits. Therefore, the wavelet predictions at different resolution levels obtained
from a feedforward neural network are combined to reconstruct the original rainfall
series. The reconstruction procedure of the original signal data is accomplished by
recursively combining between an associated approximation and detail coefficients
at a number of decomposition level. It reconstructs the original signal of rainfall
series based on the multilevel wavelet decomposition.

The underlying idea of the wavelet-transform based ANN can be illus-
trated by Fig. 3.5.
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NN 1
Wavelet / \
—|decomposition » NN2 Wavglet_ A
(2 levels) \ recombination
NN 3
Stage 1 Stage 3
Figure 3.5: Diagram wel ' sed artificial neural network.

Performance o ork cal ed by various statistical mea-
surements such as coeffici . inati mean squared error (RMSE),
and correlation coeffici ! of ‘ d in each statistical formula are
Qsim(m), Qops(m), maan . and Qeps(m) are the simulated
and observed daily rainf ively. N is the sample size.

magnitude over the veri _ ‘—Values of the differences be-
tween the predictionﬂi the corresponding observation. Since the errors are squared
before averaging, the R SE gives a relat1vely high weight to large errors. This im-

1%1;1? fgﬁuﬁgeﬁﬁ @ﬁrﬂeﬂ ,ﬂ %’W E‘JQET ﬁ ﬁrtlcularly undesirable.
ANINIDT

(3.2)

The RMSE can range from 0 to oco. It is a negatively-oriented score —
Lower values are better. The greater value of RMSE, the greater the variance in
the individual errors in the sample. The RMSE is a statistical tool that give no
direction of the prediction — underestimation or overestimation.
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3.6.2 Coefficient of Determination : R2

R-squared is one of the widely used statistics for the evaluation of model
performance described as (3.3). The R? ranges from zero to one; with zero indicat-
ing that the proposed model does not improve prediction over the predicted model
and one indicating perfect prediction.

obs( ) Qszm( ))2

ﬁ/} Quns(m))?
t@aﬁomal value of R? can yield

negative values Whlch m oximate the real data points.

(3.3)

Correlation coefficien the!'s irection of a linear relation-
ship between two vari

_ DO 1) =8 Qs (1) T Quim () |
VN Quin (1)) =5 Qo GOV Qi (1)) = (2 Qo)

(3.4)

C and — signs are used for
positive linear correl@ons AT 3 tions, respectively. Positive
values indicate a relationship between observed and predicted variables such that
as values for observed data i increases, valués for the predictions also increase. On
the other ha:ﬁ

G A =
observes incre fo dictio is no linear correlation

or a weak linear correlation, C' is €lose to 0.

Q‘W’lﬂﬁﬂﬁm RNAINYA Y



CHAPTER IV

RESULTS AND DISCUSSION

This chapter will show results from the study. Daily rainfall in eastern
coast of southern Thailand are predicted by two methods: artificial neural network
and wavelet-transform based ANNs. In section 4.1, the predictions are obtained
without any asssistant of wavelet-transforiabased technique. The section 4.2 of
this chapter shows an imprevement of the predietion with wavelet-transform based
artificial neural network. Experimental vesults and statistical evaluation of the
rainfall models for performanee comparison are presented and discussed in the last
section.

4.1 Artificial nedral network

\ A

Recently artificialnenral network (ANN) as a non-linear inter-extrapolator

is extensively used by hydrelogists for rainfall modeling as well as other fields of

hydrology ([20], [31]). In this study, a baek-propagation ANN was applied in the

prediction which is implementedin MATEAB2007a. Daily rainfall data in southern

Thailand during the years of 1995-2006 is randomly seperated into training and

testing set. Resillient backpropagation (Rprop) learning algorithm is applied in the

prediction in order 4o provide weight adjustments. Networks with only three layers
(one hidden layer) yére selected for all models. ;

4.1.1 Input and’hidden layericonfiguration

In this‘thesis, the input features of an artificial neural network (ANN) are
determined from the ayvailable hydrological data. —. three-hourly rainfall and clima-
tological data; pressure, air temperature, hiumidity, cloud amoénnt, wind speed, and
wind direction, at Hatyai station obtained from Thai Meteorological Department
and daily rainfall data in Chumphon, Surat Thani, Nakhon Si Thammarat, and
Phatthalung provinces obtained from Thai Royal Irrigation. To consider the ap-
propriate input and hidden dimensions in the prediction, the number of nodes in
the input and hidden layer are experimentally determined.

Improved performance of artificial neural network (ANN) is highly depen-
dent on the selected input dimension. Fig. 4.1 shows the network accuracy of ANN
model determined by using the constructive dimension of input nodes from 1 to 10.
One layer of 200 hidden nodes with the output of next time-step daily rainfall in
southern Thailand is used in the experiment. The graph shows that the network
performance in term of R? is optimal at 4 input-nodes. Using 9 and 10 input-nodes,
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in this experiment, give negative values of R%. An underlying reason is that these
long-preceding rain events may take into account of overlaping between summer
and rainy months. Different behaviors of rainfall such as the peak or zero precipi-
tation are included in one input pattern which make some difficulties in a network
learning. Therefore, the number of input nodes between 4 and 8 are proved to be
the suitable input dimension in daily rainfall prediction.

4 -

il
\ A
L 1 L | = 1 J L | L L L
1 2 3 4 cdlldlall 6 ! 8 9 10
Number of input nodes
AR g
iy

e )N
Figure 4.1: Performance of ANN model in terms of R® with different number of
input nodes of daily rainfall pIedlctlon—_m—*Southern Thailand with fixed hidden
nodes at 200. L Y e =

| F
- ' -

Table 4.1 ﬂiﬁstates the ANN performance of daily Southern rainfall in the
selected areas with different number of input nodes and hidden nodes with various
statistical evaluations. The input nodes are experimentally varied between 4 and 8
nodes for which,the daily4ainfall feature is‘used as the only predictor. The optimal
size of the hidden node is found by increasing the number ofihidden neurons by 100
between 100 and 500 6f computation nodes. From the experiments on input and
hidden nodes configuration, Fig. 4.2 shows thatsb computation nodes of input and
200 hiddeti nodes‘are ‘Suitable for nétwork éalibration fand vetification.

4.1.2 Activation function

In this section, various kind of activation functions are investigated with
the 5-200-1 ANN architecture. Three kinds of activation function — logistic sig-
moid, linear, and gaussian activation functions — are considered in both hidden and
output layers. Before feeding data into the backpropagation neural network, the
data needs to be normalized into the same range of output of the desired activation
function.

From Table 4.2, ANN’s performance on the training set is best when uti-
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Table 4.1: ANN performance of dail
ferent number of input nodes a

thern rainfall in selected areas with dif-
s with various statistical evaluation.
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Figure 4.2: Performange of ANNS in térm of RMSE with different number of input
nodes and hidden nod// 28

lizing Gaussian functi
However, it fails to capture ramfaﬂ behanr of the testing set as indicated by the
negative coefficient of etaFminabion R?')‘ Applying logistic sigmoid activation
function in both hidden and output layers give satisfactory performance. Although
the model provides less accuracyiﬂlan thﬁ"aussmn—hnear functions in the network
learning, the performance inthe Veuhcatl'dh-étage proves that the activation func-
tion of s1gm01d—81g9191d model is capable to forecast i‘tl}e desired daily rainfall in
selected area. Thetetore, in this thesis, a back-propagation ANN with logistic sig-
moid activation functien in both hidden and output layers are applied for modeling
and forecasting. o ¥

Relation between rainfall and climatolegical characteristics based on the
physical evidenge has been studied by some reseachers ([15], [18], [20], and [31]).
Most of the studies could providefrainfall estimation with reagonable accuracy by
taking ante account chimatolegical and ‘topographical ‘factorss If hydroclimatolog-
ical characteristics indicate coincidental occurence of rainfall“events, the effects of
enabling climatological variables as input features are evaluated in this section.
These climatological variables are air temperature, humidity, pressure, wind speed,
wind direction, and amount of cloud. ANN’s performance of different climatological
variables as rainfall predictors at Hatyai station between the years 1995 and 2006 is
shown in Table 4.3. The model of daily rainfall, temperature and humidity with 15-
100-1 architecture shows better accuracy than the others. The correlations between
weather parameters and rainfall data, from Table 4.3, show that rainfall parameter
exhibits a strong dependence on humidity parameter. The larger absolute value
of significance test, the more relationship with rain the weather parameters are.
Since wind direction variable has a small magnitude of significance, it gives the less
correlation with rainfall data and provide less performance levels in forecasting.
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Figure 4.3: Scattered plots between observed and predicted daily rainfall in mm
at Hatyai station with various input features: 4.3(a) using rainfall and humidity as
input dimensions, 4.3(b) using rainfall and temperature as input dimensions, and
4.3(c) using rainfall and cloud amount as input dimensions, 4.3(d) using rainfall
and pressure as input dimensions, 4.3(e) using rainfall and wind speed as input
dimensions, 4.3(f) using rainfall and wind direction as input dimensions, 4.3(g)
using rainfall, humidity and temperature as input dimensions, and 4.3(h) using
rainfall, humidity, temperature, and cloud amount as input dimensions.
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Table 4.2: Different activation function of ANN performance in the eastern coast
of southern areas between the years 1995 and 2006.

Act. function Training set Testing set
in layer of
hidden  output RMSE C R? RMSE C R?

sigmoid  sigmoid 5.5782  0.9104 0.8286 5.6147 0.5651 0.2439
gaussian  sigmoid 6.5477  0.8882  0.7748 12,5767 0.3171 -2.1878
linear sigmoid 13.5965. + 0.2252 . 0.0502 11.6474 0.3881 -1.0266

sigmoid  linear 7.2310 08761 #0.7658 8.8617 0.3626 -0.4498
gaussian linear 319366. 0.9649.0.0311 10.7170  0.3039 -1.1204
linear linear 12.8623- 0.2075==0.0835 9.3376  0.3495 0.0060

sigmoid  gaussian 1466719, -0.0024 . =0+1749 8.9181 0.1205 -0.1881
gaussian  gaussian #2506 7/,0.8361  0.7%14 17.5876 0.3304 -5.2341
linear gaussian Lo*1991 / £0.1839  -0.1869 10.0709 0.0582 -0.1429

Fig. 4.3 illastrates scattered plots between observed and predicted daily
rainfall in msm at Hatyal station with various input features of climatological vari-
ables. For the only rainfall predictor, air temperature and humidity have high
achieved performance levels among others, as indicated by Figs. 4.3(a) and Fig.
4.3(b), respectively. This performance corresponds to the test of variable’s signifi-
cance toward rain events. Humidity and@mperature variables produce good cor-
relation coefficients at 0.5002.and <0.4002.; respectlvely These hydro-climatological
features may link some occurrence i humldlty and temperature with rain event.
As shown by Fig. 4. Zﬁ(g}#m@@n@nan@ei@x@hs_unprgved from that of Fig. 4.3(a)
and Fig. 4.3(b). Then enabling of temperature and humidity together as part of
the input dimensions results in considerable improvement of performance.

Nevértheless! the ANN finodél with employedhumidity, temperature, and
rainfall as input diimensions is'still insufficient/for daily rainfall prediction. The
statistical evaluation in term of R%is quite low although the correlation coefficient,
C, whieh measuring thesdegree-of correlation, is goodsat 0.8241.4Kig. 4.4 exhibits
the capability in ¢apturing zero,precipitation and some peakievents. The difficulty
in predi¢ting moderate and heavy rain events, which oftens under and overfitting,
proves to be the failure in this kind of prediction.

4.1.3 Period prediction

Distribution of rainfall in Southern Thailand has been influenced by sea-
sonal monsoons. The Northeast and the Southwest monsoons play an essential role
in generating rainfall in the south of Thailand. The period of October to February
is referred to Northeast Monsoon season over the south peninsular of Thailand,
while the months of June to September are referred to the Southwest monsoon.
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Table 4.3: The ANN perfo ce of different elimatological variable as rainfall
predictors at Hatyai st nd 2006.
%\&\\
\

Input Correlatio
features with ram

Testing
RMSE C R?

R 5.6147  0.5651  0.2439
R
H 0.5002 7.3516  0.7137  0.1809
R
T -0.4002 7.7043  0.7054  0.1969
R
C 0.3188 13.7487 04082  -0.18648
R
p -0.0467 135714 01940  -0.1706
R
WS -0.1715 8.7341  0.3855  -0.1561
R
WD -0.0355 9.0571  -0.1099  -0.1765
R
HT - 46727 0.8241  0.6114
R — -
H,T,C s &N .6164 0.7553  0.3366
J
Note that: -

R refers to rainfall ( mn;‘)

e rﬂummmw gINT

C refers to clotid amount (deca)

ARSI Inenat

WD ref@s to wind direction (mile/h
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According to Table 4.3, climatological variables of air temperature, hu-
midity, and cloud amount are strongly related to rainfall data. Therefore, input
features will be considered according to these climatological variables and rainfall
data. Table 4.4 elucidates the ANNSs’ performance with various rainfall predictors
of air temperature, humidity, and cloud amount in wet period, while those of dry
period are shown in Table 4.5. The models are evaluated at Hatyai station during
the year 1995 and 2006. It is worth seeing that the performances of the network
calibration in both wet and dry periods achieved higher accuracy than that from
models in the previous study. The improved performances prove that these kinds of
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Figure 4.5: Rainfall distiibution in Hatyai, Songkhla province.
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network are capable of avmdmg focal extrgfmum Furthermore, ANN performances
in testing set obtained from wét and dry f)erlod show an improvement over that of
non-split model pred.wtlon Using stronger related Chmatologlcal variables as input

feature, still, prov1dod higher accuracy than weaker onss

Fig. 4.6 illustrates the scattered plots in wet period prediction between
observed and ptedicted; daily; rainfall inemmyateHatyaisstation with various input
features of air temperature, humidity, cleud anmiount; and rainfall data itself. The
model of rainfall, air temperature, and humidity shown in Fig. 4.6(e) gives good
accuracy in.term of R? at 0.6295 and RMSE 4t*5.6443 mm. In'dry period predic-
tion, Fig. 4.7(b) shows that the model of rainfall and humidity data with 10-200-1
architecture outperforms from the other models with accuracy in terms of R? and
RMSE at 0.6075 and 3.7806 mm, respectively.

The daily rainfall at Hatyai station in wet period and that of dry period
shown in Figs. 4.8 and 4.9 indicate that network’s learning can not capture rainfall
distribution in each time-period. The networks give under-estimations at peak
events and over-estimate at some points. Moreover, the fitting graphs do not relate
to the significance of the actual trend line of rainfall. It is possible that uncertainties
monsoon may generate unexpected rain events in the periods. Fig. 4.10 shows that
there are some shifting in rainfall. November usually should be the month that
provide maximum precipitation, however, month of maximum precipitation varies
and, sometimes, occurs in dry period. Therefore, these may be difficulties for
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Figure 4.6: Scattered plots between observed and predicted daily rainfall in mm
at Hatyai station with various input features in wet period: 4.6(a) using rainfall as
the only input dimension, 4.6(b) using rainfall and humidity as input dimensions,
4.6(c) using rainfall and temperature as input dimensions, 4.6(d) using rainfall and
cloud amount as input dimensions, 4.6(e) using rainfall, humidity and temperature
as input dimensions, and 4.6(f) using rainfall, humidity, temperature, and cloud
amount as input dimensions.



42

(f)

Figure 4.7: Scattered plots between observed and predicted daily rainfall in mm
at Hatyai station with various input features in dry period: 4.7(a) using rainfall as
the only input dimension, 4.7(b) using rainfall and humidity as input dimensions,
4.7(c) using rainfall and temperature as input dimensions, 4.7(d) using rainfall and
cloud amount as input dimensions, 4.7(e) using rainfall, humidity and temperature
as input dimensions, and 4.7(f) using rainfall, humidity, temperature, and cloud
amount as input dimensions.
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Table 4.4: The ANN performance of different climatological variable as rainfall
predictors at Hatyai station in wet period between the years 1995 and 2006.

Input Architecture Training set Testing set
features RMSE C R? RMSE C R?
R 5-200-1 1.4598 0.9906 0.9811 6.4068 0.6775 0.2780
R,H 12-200-1 0.4559 0.9990 0.9980 6.9682 0.7403 0.5023
R, T 10-100-1 0.7511  0.9973 0.9945 6.5034 0.7273 0.4929
R,C 8-100-1 0.6276  10.9981 0.9962 6.4683 0.6281 0.2558
R,H,T 18-100-1 2.1754 ° 0.9744" ,0.9579 5.6443 0.8118 0.6295

R,H,T,C 28-100-1 2.0291 0:988% 079769 6.0232 0.7049 0.2961

Table 4.5: The ANN_pérformance of different climatological variable as rainfall
predictors at Hatyai stagién it dry petiod between the years 1995 and 2006.

Input Architectuire Training set Testing set
features FMSE- A C" R? RMSE C R?
R 6-400-1 1.2159° ~0.9956 10.9913 6.0487 0.7040 0.1325
R,H 10-200-1 075488 ~0.9987 0.9973 3.7806 0.8344 0.6075
R, T 12-100-1 0.7609 0.99%5 0.9950 5.2120 0.7633 0.5173
R,C 14-400-1 10038 - 0.9964 0.9928 5.5197 0.7147 0.3118
R,H,T 18-200-1 0.5468  0.9988. 0.9976 3.3118 0.8226 0.5684
R,H,T,C 24-200-1 06743 0.9979° 0:9959 5.1791 0.6463 0.2096

network learning in split-data prediction.

Based on the results from wet-period and dry-period predictions, the per-
formance of medels improves from that of the non-split data prediction. However,
the improved accuracy shows thatithe models are not capable,of forecasting daily
rainfall infthath weh périod aiididry period.

4.2 Wavelet-transform based Artificial neural network

From the previous section, the deterministic model — artificial neural
network, failed to forecast daily rainfall data in the study areas. This may result
from including of stochastic behavior in rainfall event. With the capability of
seperating a deterministic out of a stochastic part of wavelet decomposition, an
artificial neural network is combined with the wavelet decomposition to improve
models accuracy.
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Figure 4.8: Daily rainfall at Haf £_ ) et period using rainfall, humidity

and temperature variables
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Figure 4.9: Daily rainfall at Hatyai station in dry period using rainfall and humidity

variables as input features.
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Figure 4.10: Graplyof maxiniii-precipitation month at Hatyai station.
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In section 4.1, implemented mo'(fals_ considered various weather variables
as input predictors in daily rainfall prediction. Itmight.be the dependence of these
factors in rainfall fotecasting that affect the the aceutaey of the prediction. This
result associated with the study from French et. al [L6]. The study concerns the
uncertainties of hydrological variables that could affect the performances of both
stochastic and deterministic rainfall prediction models. Therefore, in this section,
accurate rainfall prediction,based only omthe collected historical data of rainfall is
proposed.

Daily.rainfall data.at_stations.in the eastern coast of*southern Thailand
duringfthe period.of 1995-2006 are¢ decomposed, by the"Daubechies 2 wavelet func-
tion at the second resolution level. Thus, two approximation and two detail coeffi-
cients are obtained. Figs 4.11 and 4.12 illustrate approximation and detail coeffi-
cients, respectively. As shown in Fig. 4.12, approximation coefficients at different
level indicate daily rainfall series with different smooth fashion. The more reso-
lution level, the more smoother daily rainfall series is. The wavelet coefficients of
daily rainfall series at different resolution level during the period of 1995-2006 in
southern stations are trained and tested with a number of different nodes of input
and hidden neurons. Each daily rainfall data in the eastern coast of southern sta-
tions of years 1995 through 2003 are chosen to be the training set and those of years
2004 through 2006 are testing set. Before feeding data into this backpropagation
neural network, the data is required to be normalized between 0 and 1 [12].
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An artificia orposition is applied on daily
rainfall data from five stations o of southern provinces. Only
rainfall feature is consmiered as inputs of the network. For one-day forecasting, the
output of the e network architecture
of this one- daﬁuﬂﬁﬁw 3 wgﬁl‘fﬂ %cribed mathematically

as follows:

L BN ‘;@J ile) (0] § g

where Rt represents daily rainfall of day ¢.

Table 4.6 shows a performance of wavelet based artificial neural network
at different stations in the selected areas. The results show good accuracy with
average R? of 0.9946. One thing that should keep in mind is that R?, in this
study, regards as a measurement of a network’s efficiency while RM S E measures a
network’s error. Moreover, performance in terms of R? and RM SFE might not be
correspondent. The weight terms in their formula are responsible for this. RMSFE
is obtained from averaging the sum square error with sample size while R? shows
relative comparison between how far the prediction is from the observe and how far
the observe is from its mean. Therefore, higher R? could have higher RM SE than
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An example of scattered plots of the simulation results based on daily
rainfall data from the eastern coast of southern stations is illustrated in Figs. 4.13
and 4.14. Result of one-day daily rainfall output using a 5 — 8 — 1 ANN model
shows that wavelet based artificial neural network is capable of forecasting daily
rainfall at high accuracy with R? = 0.9950 and RM SE = 0.8625 mm.
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Figure 4.13: Scattered plots between © d and predicted daily rainfall in mm

in the eastern coast of so L Proving \L \\” forecasting.

—6— Target
*  Prediction

¥
J -

qu‘ﬁwan%’wwm |
AN IUNTITNERY |,

) 160 170 180 190 200 210 220 230 240 250
Time (Day)

Figure 4.14: One-day daily rainfall prediction in the eastern coast of southern
provinces.

4.2.2 Many-day forecasting

The capability of forecasting multi-step output of the wavelet-based ar-
tificial neural network is shown in Table 4.7. The daily rainfall forecasting in the
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eastern coast of southern provinces for 2 and 3 days in advance gives a satisfactory
accuracy. Simulation result of day 2 prediction shows accuracy with R? = 0.9739
and RMSFE = 2.0467 mm while the network performance of day 3 prediction is
R? = 0.9680 and RMSE = 2.2699 mm. Comparisons between the observed and
simulated results in Fig. 4.15 and Fig. 4.16 show that extreme rainfall events can
be detected for 2- and 3-day daily rainfall forecasting.

| o
| S—

Figure 4.15: Day 2 rains 3 {,-‘ of southern provinces.
i r |

- 1
The model 1211 forecast daily rainfall up t0™4 successive days with good
accuracy. However, this reasonable fit ofeday 4 prediction gives the underestimate

values of the u&%mm&m -day or more forecasting

had been att ted, r ce of n rk riorated as shown in Fig.

4.17. g . Y,
ARTAND AU ANEIAE

average daily rainfall for n days prediction in
selected provinces.

Day Training set Testing set
RMSE R? RMSE  R?
1 1.4319  0.9929 0.9675 0.9942
2 2.7666  0.9737 2.0467 0.9739
3 3.1076  0.9668 2.2699 0.9680
4
5

5.4174  0.8990 4.2306 0.8887
11.1358 0.5735 8.7768 0.5206
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Figure 4.17: ANN performance for n—day daily rainfall prediction in the eastern

coast of southern provinces.

Table 4.8 shows the performance of day 4 prediction of daily rainfall in
selected provinces in the eastern coast of southern Thailand. The network achitec-
ture for this 4-day forecasting is 5 —19—4. The model input consists of 5 preceding
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daily rainfall data to obtain predicted values of the next four daily rainfall as

(Rey1, Reqo, Reqs, Reqs) =f(Ry + Ry + Ry
+ Ri_3+ Ri_4),

where R, represents daily rainfall of day ¢.

— Testing set
s RMSE R

43135 0.8736

\ \\ 3.4144  0.8728
ammarat. 6.6796 0.8812

| a4
Fig. 4.18 shows an l?é'r X
and predicted daily rainfall’ data‘at tt
4 prediction with accuracy of/R* = 0.8

- of scattered plots between the observed

ter \ oast of southern stations for day
Four-day daily rainfall forecasted at
illustrated in Fig. 4.19.

ALUARENIHEING oo
: u 1(‘)0 120

i z‘o o == %
RN TUNTTINEAE

10 20 30 40 50 60 70 80 90 100

Figure 4.18: Scattered plots between observed and predicted daily rainfall in mm
at the eastern coast of southern stations for day 4 forecasting.
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Figure 4.19: Day 4 daily rainfall préfgiiétion in the eastern coast of southern
provinces. ] ady &

4.3 Discussion < —

Fig. 4.20 1l - for performance comparison
among a conventioftal ANN model, a split-data ANN medel, and wavelet-transform
based ANN model evaluated at selected proviices in the eastern coast of southern
Thailand. Daily rainfall data are obtained by collecting distributed information
in wet time-period. The‘graphs describe €omparisons between observed and pre-
dicted rainfall®data from various-proposed models. The performance shows that
the wavelet-transform based artificial neural network provides the most satisfac-
tory performance with accuracy 6f R? at 0.9948. The split-data model and the
converitiondll ANN, give ‘acctmaty of 2 i, ‘approximately, 106295 which is insuffi-
cient to perform the southern daily rainfall predictiontin thisstudy.

The forecasting capability of wavelet decomposition technique outper-
forms the others. The wavelet based ANN model provides a good fit with the
observed data, in particular for zero precipitation in the summer months, and for
the peaks in the testing set of wet period. These results indicate that wavelet based
ANN model estimations are significantly superior to those obtained by either the
conventional ANN model or the split-data ANN model. Both models of non-wavelet
decomposition technique are trapped in under- and overfitting. Although the split-
data model is merely lightly better than the conventional ANN, all unneccessary
information from summer monsoon uncertainties that may generate unexpected
rain events on dry period is a difficulty in network learning. This shows that the
wavelet transform can exstract the chaotic components well from the original data
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CHAPTER V

CONCLUDING REMARK

Daily rainfall data obtained from various districts of provinces in the
eastern coast of southern Thailand that®are vulnerable to flood disaster: Tha
Sae district in Chumphon province, Kanchanadit district in Surat Thani province,
Muang district in Nakhon Si“F'hammarat province, Muang district in Phatthalung
province and Hatyai districtimSongkhla province, are investigated. A feedforward-
backpropagation artificial netital network is applied to model and forecast southern
daily rainfall data. #wo genyeutional techniques of ANN model, e.g., split-data
ANN model, and wayelet-iransforn based ANN] have been employed for com-
parison in this study. Statistical evaluation of the rainfall models for performance
comparisons is summagized in/terms.of the coefficient of determination and the root
mean squared error. Following previou% works on forecasting the rainfall based on
climatological variableg, data of atmospheric pressure, air temperature, cloud den-
sity, humidity, wind speed, andwind direetion are used as daily rainfall predictors
in this thesis for the nondecomposed ANNS Experimental results for nonsplit-
data show that the 15-100:1 ANN-model of rﬁlnfall air temperature, and humidity
variables, which is superior over the other models, is still trapped in under- and
overfitting. The model accutaey in terms of 'R? is 0.6114 and RMSE is 4.6727
mm. Split-data for two time-periods of wet and dry models also posssesses some
difficulties in forecasimg—acmate—daﬁy—ramfaﬂ—nrsmthern Thailand. In the split-
data prediction, raiifall data together with climatological variables are splited into
wet and dry periods associated with the time-period of Northeast and Southwest
monsoon in order to implement models for each period. The best split-data model
provides accutacy, in terii.of, R?.at 0,6295 and .in term.of.RMSE at 5.6443 mm.
The backpropagation artifitial neural networks; with one hidden layer shows that
the models aretmot capable of forecasting daily rainfall in both wet period and dry
period. It might be the dependenée of climatological factors ifi.tainfall forecasting
and the comiplexityin tainfall behavior that maylinclude somestochastic character-
istics that affect the accuracy of the prediction.” A hybrid technique using Wavelet
transform and artificial neural network based only on the collected historical data
of rainfall is proposed in order to predict accurate rainfall. In the wavelet-transform
based ANN technique, prior to feeding input data of rainfall to ANN, information
of rainfall series is extracted into two sets of wavelet coefficients — approximations
and details. Results show that the neural network based on wavelet decomposition
is preferable for daily rainfall prediction in the eastern coast of southern Thailand.
Accuracy of the one-day daily rainfall prediction gives satisfactory prediction with
R? = 0.9942 and RMSE=0.9675 mm. In addition, the network is also capable of
forecasting up to 4 days in advance with reasonable accuracy of R? = 0.8887 and
RMSE = 4.2306 mm.

Without a comprehensive technique of wavelet decomposition, the fore-
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casting would not be offered valuable forecasting. For this reason, at the present
time, wavelet decomposition plays an important role in extracting stochastic part
out of deterministic part. Since the rainfall information is extracted when both
high- and low-pass filters are applied at a specific resolution level, approximation
and detail coefficients are the outputs which can be represented as rainfall trend and
unexpected rain events, respectively. Multiresolution analysis allows trend behav-
ior as the filters to extract noisy data in time series for the trained neural network.
Therefore, this thesis demonstrates the crucial role of the wavelet-transform based
artificial neural network as a practical tool for forecasting daily rainfall in the east-
ern coast of southern Thailand.
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APPENDIX

In this study, daily rainfall predictions are implemented in Mat-
Lab 2007a. The set of tools and facilities that help in the prediction are available
in MaTLaB toolboxes. Many of these tools are in Wavelet toolbox and Neural Net-
work toolbox. In Wavelet toolbox, the wavelet decomposition and recombination
are introduced in sections 5.1 and 5.3, respectively. Section 5.2 describes ANNs’
functions utilized in the prediction.

where

N refers tc wmber mposition level,
,Jr- Jr

wnarﬁfi refers t6 v(faﬁelet’

5.2 ANN impﬂmen a

H %ﬂﬂ% ﬂdﬁla a newff function of
neural networ oolbox in uation ) is a syntax utilized to obtain

the mentioned network.

ARIA Sn3n) llsiﬂa%ﬂt’dﬂ Y T

where

S; refers to number of hidden node in 1% layer and of output node in 2"¢ layer,
TF, refers to the transfer function for it layer,
BTF refers to the training function,
BLF refers to the learning function,

PF refers to the performance criteria.

The following syntax describes the train function which used as a network
training,
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[net, tr, output, error] = train(net, Input_patterns, Targets). (5.3)

Equation (5.3) gives the trained network according to net.trainParam
which is initially set as follows:

100000,
0.000001.

where,

net.trainParam.e num epochs of the training,

net.train Param.goa S erformance goal in term

The train functig ovi "" wing outputs: net,tr,output, and er-
ror, these correspond to the AT CtWOr o information, network outputs,
and network error, respectively. M{’* %

¢ "’ }14_,.-:_.1"‘

5.3 Wavelet e
y_.— Y]

In the recoﬂma 0 edt unction zswt in wavelet toolbox,
which is a inverse tranisform of swt, is utlhzed The Syntax of the function iswt is
described as

ﬂ‘UEJ’J‘VIEJVIﬁWEJ\’m‘i

= iswi{SW A, SW D, wname) (5.4)

= HIRINTUUIINIAY

SW A refers to approximation wavelet coefficients,

SW D refers to detail wavelet coefficients,
X refers to original signal data,
N refers to number of decomposition level,

wname refers to wavelet function.
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