DESCRIPTORS OF INSOMNIA AMONG PERSONS WITH HEART FAILURE

Miss Janya Chimluang

A Dissertation Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy Program in Nursing Science

Faculty of Nursing
Chulalongkorn University
Academic year 2009

Copyright of Chulalongkorn University
อาการยนไม่เหล็บในผู้ป่วยท้วงใจแล้ว

นางสุทธิพร จิมหลวง

วิทยุพิพิธภัณฑ์เป็นสวนหนึ่งของการศึกษาตามหลักสูตรปริญญาปลายทางศาสตรบัณฑิต

สำนักวิชาภาษาศาสตร์
คณะพยาบาลศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2552

อิทธิพลชัยของจุฬาลงกรณ์มหาวิทยาลัย
Thesis Title

DESCRIPTORS OF INSOMNIA AMONG PERSONS
WITH HEART FAILURE

By

Miss Janya Chimluang

Field of Study

Nursing Science

Thesis Advisor

Associate Professor Pol. Capt. Yupin Aungsuroch, Ph.D.

Thesis Co-Advisor

Assistant Professor Chanokporn Jitpanya, Ph.D.

Accepted by the Faculty of Nursing, Chulalongkorn University in Partial
Fulfillment of the Requirements for the Doctoral Degree

Yupin Aungsuroch

Dean of the Faculty of Nursing

(Associate Professor Pol. Capt. Yupin Aungsuroch, Ph.D.)

THESIS COMMITTEE

Gita Yimtana

Chairman

(Associate Professor Jintana Yunibhand, Ph.D.)

Yupin Aungsuroch

Thesis Advisor

(Associate Professor Pol. Capt. Yupin Aungsuroch, Ph.D.)

Ch. J

Thesis Co-Advisor

(Assistant Professor Chanokporn Jitpanya, Ph.D.)

Waraporn Chaiyawat

Examiner

(Associate Professor Waraporn Chaiyawat, D.N.S.)

Waraporn Chaiyawat

Examiner

(Associate Professor Siridej Sujiva, Ph.D.)

Panwadee Putwatana

External Examiner

(Associate Professor Panwadee Putwatana, D.Sc.)
จริงว่า อิมพอร์ต: อาการนอนไม่หลับในผู้ป่วยหัวใจสั่งเส้น. (DESCRIPTORS OF INSOMNIA AMONG PERSONS WITH HEART FAILURE) ข. ที่ปรึกษา
วิทยาการพัฒนาแพทย. ร.ศ.ศ. มนุษย. การพัฒนา อ. ที่ปรึกษาวิทยาการพัฒนาเด็ก
น.ก. ม. ศ. ชอบ วัฒนาภูญ. 162 หน้า.

การทำงานวิจัยพบว่า 32% ของผู้ป่วยหัวใจสั่งเส้นมีอาการนอนไม่หลับ โดย 23.8% มี
อาการระคายเคืองไม่หลับระดับปานกลาง และ 8.2% มีอาการนอนไม่หลับระดับรุนแรง.

นักศึกษาทำการวิจัยในห้องที่เหมาะกับ เดินทางนอนเส้นเรียก และ ค้นหาทางการค้นหา ต้องการให้สังเกติการส่งผลกระทบต่อได้โดยครั้ง ปัจจัยที่มีความเสี่ยงที่สูงสุด
หลัง คือ ความเครียด ความเครียด สถานะทางการ อาการหายใจลำบาก อาการด้าน
หายใจในนอนหลับ ระดับความรู้สึกในการรักษาทางการ สถานะสมดุลในอาการนอน
หลับ ความเครียด และพัฒนาการที่สอดคล้องกับการนอนหลับ ส่งผลที่สูงสุดที่จะทำให้อาการ
นอนไม่หลับได้คือ ความเครียดสูง ความเครียด สถานะทางการ อาการหายใจลำบาก
และ ความเครียด และพัฒนาการที่สอดคล้องกับการนอน

สาขาวิชา ทหารศาสตร์ อาชีวินิชิตนิติ....จะแจ้ง ในอนาคต
ปีการศึกษา 2552 อาจารย์ฯ อ. ที่ปรึกษาวิทยาการพัฒนาเด็ก
ลายมือชื่อ อ. ที่ปรึกษาวิทยาการพัฒนาเด็ก
This descriptive research was designed to explore the characteristics of insomnia in persons with heart failure and examine the relationships among the predisposing factors, the precipitating factors, the perpetuating factors and insomnia. Three hundred and forty heart failure patients, who were followed-up at heart clinic at 10 tertiary hospitals in Thailand, were selected by multi-stage random sampling. Data were collected during July 2009 – January 2010. Research instrument included demographic questionnaire, state-trait anxiety inventory questionnaire, Center for epidemiologic studies depression scale, dyspnea questionnaire, Berlin questionnaire, New York Heart Association functional classification, sleep hygiene awareness and practice scale, dysfunctional beliefs and attitudes about sleep and insomnia severity index. Data were analyzed by using descriptive statistic, Chi-square test, and logistic regression.

The result of the study revealed that there were thirty-two percent of heart failure patients had insomnia. Twenty-three point eight percent had moderate insomnia and 8.2 % had severe insomnia. The most common type of insomnia was difficulty falling asleep and difficulty staying asleep. Correlated factors of insomnia including the predisposing factors: anxiety and depression, the precipitating factors: marital status, dyspnea, sleep disorder breathing and functional status, and the perpetuating factors: sleep hygiene and dysfunctional beliefs and attitudes about sleep. After using logistic regression analysis found that the predictive factors of insomnia were anxiety, depression, marital status, dyspnea, and dysfunctional beliefs and attitudes about sleep.
ACKNOWLEDGEMENTS

The accomplishment of this dissertation has been made possible because of valuable help and support from many people.

First of all, I would like to express my deepest gratitude to my major advisor, Assoc. Prof. Pol. Capt. Dr. Yupin Aungsuroch and Asst. Prof. Chanokporn Jitpanya for their valuable guidance, thoughtfulness advice and warm support.

My deep appreciation goes to my doctoral committee members, Assoc. Prof. Dr. Jintana Yunibhand, Assoc. Prof. Dr. Sureeporn Thanasilp, Assoc. Prof. Dr. Waraporn Chaiyawat, and Asst. Prof. Dr. Sunida Preechawong for their valuable advice and continuous support. My gratitude is extended to my dissertation committee members, Associate Professor Panwadee Putwatana and Associate Professor Siridej Sujiva for their valuable suggestions.

I would like to express my sincere gratitude and appreciation to Prof. Dr. Stephen Cavanagh, and Assoc. Prof. Jean Davis who gave helpful suggestions and supported me during visiting as a scholar at College of Nursing, Wayne State University.

I am also deeply grateful to all head nurse, physicians and staffs at heart clinics, my research assistants and everybody who supported me in every hospital and I would like to express a special gratitude to Prof. Dr. Yongyuth Sahasakul who helped me during collecting the data at Siriraj Hospital.

I wish to offer special thanks to all doctoral students at Faculty of Nursing, Chulalongkorn University for their help and continue support.

Lastly, I would like to express my deeply thank to my beloved parent, sister, friends for their love, support, and encouragement throughout the study time.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract (Thai)</td>
<td>iv</td>
</tr>
<tr>
<td>Abstract (English)</td>
<td>v</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>vi</td>
</tr>
<tr>
<td>Contents</td>
<td>vii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>ix</td>
</tr>
<tr>
<td>List of Figures</td>
<td>x</td>
</tr>
<tr>
<td>Chapter I</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Background and significance of the study</td>
<td>1</td>
</tr>
<tr>
<td>Purpose of the study</td>
<td>7</td>
</tr>
<tr>
<td>Research hypotheses and rationales</td>
<td>7</td>
</tr>
<tr>
<td>Scope of the study</td>
<td>13</td>
</tr>
<tr>
<td>Definition of term</td>
<td>14</td>
</tr>
<tr>
<td>Expected usefulness of the study</td>
<td>16</td>
</tr>
<tr>
<td>Chapter II</td>
<td></td>
</tr>
<tr>
<td>Literature review</td>
<td>18</td>
</tr>
<tr>
<td>Heart failure</td>
<td>18</td>
</tr>
<tr>
<td>Sleep</td>
<td>23</td>
</tr>
<tr>
<td>Insomnia</td>
<td>25</td>
</tr>
<tr>
<td>Insomnia in patients with heart failure</td>
<td>28</td>
</tr>
<tr>
<td>Negative clinical outcome of insomnia</td>
<td>30</td>
</tr>
<tr>
<td>Assessment of insomnia</td>
<td>31</td>
</tr>
<tr>
<td>The 3P Model of Insomnia</td>
<td>34</td>
</tr>
<tr>
<td>Related factors of insomnia in patients with heart failure</td>
<td>37</td>
</tr>
<tr>
<td>Related researches</td>
<td>48</td>
</tr>
<tr>
<td>Conceptual framework</td>
<td>53</td>
</tr>
<tr>
<td>Chapter III</td>
<td></td>
</tr>
<tr>
<td>Methodology</td>
<td>54</td>
</tr>
<tr>
<td>Research design</td>
<td>54</td>
</tr>
<tr>
<td>Population and sample</td>
<td>54</td>
</tr>
<tr>
<td>Sample size determination</td>
<td>54</td>
</tr>
<tr>
<td>Sampling method</td>
<td>55</td>
</tr>
<tr>
<td>Research instruments</td>
<td>57</td>
</tr>
<tr>
<td>Data collection methods</td>
<td>69</td>
</tr>
<tr>
<td>Data analysis</td>
<td>70</td>
</tr>
<tr>
<td>Human subject protection</td>
<td>71</td>
</tr>
<tr>
<td>Chapter IV</td>
<td></td>
</tr>
<tr>
<td>Results</td>
<td>72</td>
</tr>
<tr>
<td>Characteristic of the patients</td>
<td>73</td>
</tr>
<tr>
<td>Characteristic of insomnia in patients with heart failure</td>
<td>76</td>
</tr>
<tr>
<td>The descriptive of selected factors of insomnia</td>
<td>78</td>
</tr>
<tr>
<td>The relationship between selected factors and insomnia</td>
<td>85</td>
</tr>
<tr>
<td>The predictive factors of insomnia</td>
<td>90</td>
</tr>
<tr>
<td>Chapter V</td>
<td></td>
</tr>
<tr>
<td>Discussion</td>
<td>94</td>
</tr>
<tr>
<td>Discussion of finding</td>
<td>98</td>
</tr>
<tr>
<td>Implication and recommendations</td>
<td>108</td>
</tr>
<tr>
<td>References</td>
<td>111</td>
</tr>
</tbody>
</table>
Appendices.. 127
 Appendix A: Human subject approval......................... 128
 Appendix B: Consent form and the participant............... 138
 Appendix C: Instrument.. 145
 Appendix D: Licensing and permission for using Instrument.. 155
 Appendix E: Result of statistic analysis...................... 158

Biography.. 162
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>New York Heart Association Functional Classification (AHA, 2006)</td>
<td>22</td>
</tr>
<tr>
<td>Table 2</td>
<td>The demographic characteristics of patients were presented by using frequency, percentage, range, mean and standard deviation.</td>
<td>73</td>
</tr>
<tr>
<td>Table 3</td>
<td>The clinical characteristics of subjects were presented by using frequency, percentage, range, mean and standard deviation.</td>
<td>75</td>
</tr>
<tr>
<td>Table 4</td>
<td>Characteristic of Insomnia of patients with heart failure as measured by Insomnia Severity Index (ISI).</td>
<td>76</td>
</tr>
<tr>
<td>Table 5</td>
<td>Frequency and percent of 3 types of insomnia</td>
<td>77</td>
</tr>
<tr>
<td>Table 6</td>
<td>Frequency and percent of 3 types of insomnia and combination type of insomnia</td>
<td>77</td>
</tr>
<tr>
<td>Table 7</td>
<td>Frequency, percentage, mean and standard deviation of anxiety</td>
<td>78</td>
</tr>
<tr>
<td>Table 8</td>
<td>Frequency, percentage, mean and standard deviation of depression</td>
<td>78</td>
</tr>
<tr>
<td>Table 9</td>
<td>Frequency, percentage, mean and standard deviation of dyspnea</td>
<td>79</td>
</tr>
<tr>
<td>Table 10</td>
<td>Frequency, percentage of sleep disorder breathing</td>
<td>79</td>
</tr>
<tr>
<td>Table 11</td>
<td>Mean and standard deviation of sleep hygiene awareness and practice scale</td>
<td>81</td>
</tr>
<tr>
<td>Table 12</td>
<td>Mean, standard deviation of dysfunctional beliefs and attitudes about sleep</td>
<td>83</td>
</tr>
<tr>
<td>Table 13</td>
<td>The relationship between the predisposing factors and insomnia by using Chi-square test</td>
<td>85</td>
</tr>
<tr>
<td>Table 14</td>
<td>The relationship between the precipitating factors and insomnia by using Chi-square test</td>
<td>87</td>
</tr>
<tr>
<td>Table 15</td>
<td>The relationship between the perpetuating factors and insomnia by using Chi-square test</td>
<td>89</td>
</tr>
<tr>
<td>Table 16</td>
<td>The predictive factors of insomnia</td>
<td>90</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>A normal adult sleep cycle</td>
<td>24</td>
</tr>
<tr>
<td>Figure 2</td>
<td>The 3 P model of insomnia</td>
<td>35</td>
</tr>
<tr>
<td>Figure 3</td>
<td>The 3 P model of insomnia</td>
<td>36</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Sampling method</td>
<td>57</td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION

Background and significance of the study

Sleep is very crucial for patients with heart failure whose conditions have worsened in terms of cardiac status. Sleep is an important modulator of cardiovascular function, both in physiological conditions and in disease state (Wolk et al., 2005). Sleep is generally time of cardiovascular relaxation. It consists of 2 distinct stages: non rapid eye movement (NREM) and rapid eye movement (REM). NREM makes up 80% to 85% of total sleep time and has 4 stages, beginning with stage 1 and progressing to the deeper sleep found in stage 3 and stage 4. It is during stages 3 and 4 that parasympathetic tone increases, resulting in reduced heart rate, stroke volume, and blood pressure and concomitant reduction in cardiac output, systemic vasculature resistance, and myocardial oxygen workload. The deepest level of relaxation occurs during REM, which follows NREM sleep. REM sleep is essential to waking up feeling rested and refreshed (Trupp, 2004).

Insomnia is a serious problem in patients with heart failure because insomnia could elevate heart rate, increase heart rate variability suggestive of increased sympathetic and decreased parasympathetic activity, adverse hemodynamic consequences for the failing heart, and also potentially debilitating symptoms of heart failure (Becker, 2006; Hayes et al., 2009; Javaheri, 2008; Thase, 2005).

Unfortunately, the previous research found high prevalence of insomnia in patients with heart failure. Brostrom and Johansson (2005) conducted a secondary analysis from 182 abstracts published during 1989-2004 which was relevant to sleep disturbance in patients with heart failure. The results revealed that approximately
33% of patients had insomnia (Brostrom and Johansson, 2005). Moreover, another study revealed that 31.3% of patients with heart failure reported symptoms suggesting the presence of insomnia in a tertiary care heart failure clinic (Principe-Rodriguez et al., 2005). In Thailand, a study of Phuangphaka Krethong (2007) in patients who followed up at heart clinic found that 64.5% of Thai heart failure patients had sleep problems.

There were various diagnostic criteria and several definitions of insomnia emerging from the research. At present, there was no consensus which definition was the appropriate one. However, according to National Institutes of Health state of the science consensus, insomnia has historically been defined by complaints of disturbed sleep in the presence of adequate opportunity and circumstance for sleep.

The disturbance may consist of one or more of three features: (1) difficulty in initiating sleep; (2) difficulty in maintaining sleep, or (3) waking up too early.

A fourth characteristic, nonrestorative or poor-quality sleep, has frequently been included in the definition, although there is controversy as to whether individuals with this complaint share similar pathophysiologic mechanisms with the others (National Institute of Health [NIH], 2005).

Prior researches in patients with heart failure revealed that difficulty in initiating sleep was reported 19-63% (Erickson et al., 2003; Johansson et al., 2007; Lainscak and Keber, 2003), difficulty in maintaining sleep was reported 23-69%, waking up to early was reported 15-39% (Brostrom et al., 2004; Erickson et al., 2003; Johansson et al., 2007), and also non-restorative sleep was reported 44% (Johansson et al., 2007).

In addition, Erickson et al. (2003) studied about sleep characteristics of heart failure patients, the result found that the mean length of sleep was nearly 8 hours,
however, the mean of the number of daytime naps during the days was 4.2 and 33% reported on using sleeping pills. Moreover, Redeker and Stein (2006) studied insomnia to compare the patients with heart failure and normal population by using actigraph. The result revealed that the patients with heart failure had a significantly higher percentage of wake after sleep onset and more frequent wake bouts when compared with general population (Redeker and Stein, 2006).

From empirical data found that several factors have been correlated with insomnia. According to The 3P Model of insomnia (Glovinsky and Spielman, 2006), which is the most popular framework for understanding insomnia in the community of sleep experts (Glovinsky and Spielman, 2006) and has been tested with several groups of general people and various groups of patients.

This model suggests that three distinct elements account for the onset and course of insomnia: (1) Predisposing characteristics i.e. physiolocal hyperarousal, cognitive hyperarousal, Night Owls and Morning Larks, anxiety and depression. (2) Precipitating events, are often outside the individual’s control, that can trigger sleep disturbance, i.e. family conflicts, work-related stress, health issues, death of a loved one or other loss. (3) Perpetuating attitudes and practices come into play after insomnia has made its appearance i.e. getting into bed early, staying in bed late, spending extra time in bed, napping, caffeine, sleep medication, and worrying about sleep or daytime functioning.

Empirical data from the previous researches which were investigated associated factors of insomnia in general population found that age, married, divorced, separated, or widowed marital status, low monthly income, major life event, depression, poor psychological well-being, poor perceived health or poor self-rated health, sleep apnea and role impairment were associated with insomnia (Cho et al.,
2009; Johansson et al., 2009; Kao et al., 2008; Kawada et al., 2003; Makhlof, Ayoub, and Abdel-Fattah, 2007; Chakrit Sukying, Vandee Bhokakul, and Umaporn Udomsubpayakul, 2003; Thomas et al., 2006; Xiang et al., 2008).

Apart from that, associated factors of insomnia have been studied widely in patients with cancer. The associated factors of insomnia which not included site and treatment of cancer were female sex, widowhood, unemployment, unmet needs in the physical/daily living, anxiety symptoms, depression, dreams, concerns, fatigue, leg restlessness, sick leave, sleep hygiene, maladaptive sleep behaviors, belief about sleep, sedative/hypnotic use (Davidson et al., 2002; Melanie et al., 2009; Nongluk Anunta-ard, 2007; Pattarieya Keawphang, 2004; Savard et al., 2001; Savard et al., 2009).

Moreover, Krakow et al. (2001) who studied in sleep disorder breathing patients, the result found that the sleep disorder breathing patients who had insomnia reported significantly more chief complaints of symptoms of insomnia. Saisunee Tubtintes, Chakrit Sukying, and Somjit Prueksaritanond (2009) studied at out-patient of the family medicine department in Ramathibodi Hospital, the result found that anxiety score, female and perception of their illness and disease were strong factors associated with insomnia. From another research, Griffiths (2005) studied in patients who underwent elective cardiac or orthopedic surgery during a three months period. The result revealed that dysfunctional cognition about sleep is one of the three factors which could predict chronic insomnia.

To the specific on heart failure patients, Erickson and colleagues investigated age, gender, severity of heart failure, etiology, obesity, smoking and use of beta-blocker in 84 heart failure patients. The result found that only male gender was related with trouble returning to sleep but male gender was not a predictive factor of sleep
disturbance in this study (Erickson et al., 2003). Another research studied in 201 patients identified patients with age, gender, paroxysmal nocturnal dyspnea, New York Heart Association (NYHA) functional classification, body mass index (BMI), left ventricular ejection fraction (LVEF), the result found that only paroxysmal nocturnal dyspnea, New York Heart Association status classification were correlated with insomnia (Principe-Rodriguez et al., 2005).

According to the 3P model of insomnia, the empirical data from prior researches, correlated factors of insomnia in patients with heart failure would be as follows: the predisposing factors were age, gender, anxiety, and depression; the precipitating factors were marital status, dyspnea, sleep disorder breathing, functional status; and the perpetuating factors were sleep hygiene, dysfunctional beliefs and attitudes about sleep (Davidson et al., 2002; Glovinsky and Spielman, 2006; Kawada et al., 2003; Melane et al., 2009; Nongluk Anunta-ard, 2007; Pattriya Keawphang, 2004; Principe-Rodriguez et al., 2005; Saisunee Tubimtes et al., 2009; Savard et al., 2009).

Insomnia can impact to physical, psychological, as well as the patients’ health related quality of life. From empirical data found that physical impact including fatigue, tiredness, lethargy, loss of concentration reduction of attention and concentration, listlessness memory lapses, slowed reaction time, poor coordination, increased daytime sleepiness, increase morbidity in terms of health problem (Becker, 2006; Brostrom et al., 2001; Daley et al., 2009; Thase, 2005).

Psychological impact including decreased feelings of well-being during the day, deterioration of mood and motivation, listlessness, loss of temper anxiety or worry about sleep, mental fatigue and depressive mood (American Psychiatric Association, 2000; Becker, 2006; Brostrom et al., 2001; Ohayon and Reynolds, 2009),
as well as reduced health-related quality of life in all dimensions (Brostrom et al., 2004). Moreover, insomnia associated with high healthcare-related financial burden health-care utilization, work absenteeism and reduced productivity, and risk of non-motor-vehicle accidents (Daley et al., 2009; Thase, 2005).

Insomnia is a nursing sensitive outcome which impacts on heart failure patients very negatively. Nurses have to take responsibility for manage insomnia in patients with heart failure who are unable to pump enough blood to any part of their body. Therefore improving these sensitive outcomes, nurses need to understand insomnia and try to correctly respond to it. Knowledge regarding insomnia in patients with heart failure is very important in order to assess insomnia, associated factors and develop appropriate and effective non-pharmacologic intervention to solve this problem so as to reduce sympathetic and increase parasympathetic activity, prevent debilitating symptoms of heart failure, improve their hemodynamic and functional capacity, reduce their suffer and improve their health-related quality of life.

In conclusion, several studies in the western countries have found a high prevalence of insomnia in patients with heart failure. Few characteristic of insomnia were described, only the type of insomnia and some characteristics. There have no study regarding insomnia severity in this population.

Prior research found only three factors including male gender, paroxysmal nocturnal dyspnea and NYHA status classification were correlated factors of insomnia in patients with heart failure in western countries. In Thailand, there has been no study of correlated factors of insomnia in patients with heart failure or patients with cardiac disease. Only two studies have been conducted on the concept of sleep quality in hospitalized heart patients. One was studied about the relationship between uncertainty in illness, event familiarities and sleep quality in hospitalized heart failure
patients (Chopaka Phudphanphaisan, 2001). Another was studied about the correlated factors of sleep quality in hospitalized patients with cardiac disease (Kantaporn Yodchai, 2004).

Thus, the purpose of this study needs to describe the characteristic of insomnia, and examine the relationship of selected factors and insomnia in patients with heart failure at out-patient department in Thailand in order to build up the body of knowledge of insomnia and provide knowledge for further developing intervention to prevent or reduce insomnia in this population.

The purposes of the study

1. Describe the characteristics of insomnia in patients with heart failure.

2. Examine the relationship among the predisposing factors (age, gender, anxiety, depression), the precipitating factors (marital status, dyspnea, sleep disorder breathing, functional status), the perpetuating factors (sleep hygiene, dysfunctional beliefs and attitudes about sleep), and insomnia in patients with heart failure.

Research Hypotheses and Rationales

Selected factor of insomnia in this study was guided by the 3P Model of Insomnia (Glovinsky and Spielman, 2006) and factors from the previous research. The research hypotheses were set in 9 statements as follows:

1. Age would have a positive relationship on insomnia.

 Rationale: Sleep impairment can result from physiological changes that are apparently part of normal aging. Age-related changes in the amount and the pattern of the various stages of sleep and wakefulness (Bliwise, 2000). The elderly spend more time in bed and less time asleep and are more easily aroused from sleep than young people. The most striking changes include a reduction in slow-wave sleep...
(particularly stage 4 sleep), increased nighttime wakefulness, and increased fragmentation of sleep by periods of wakefulness. Less striking age reduction in rapid eye movement (REM) sleep and total nighttime sleep also occur. The age-related impairments in sleep depth and maintenance seem to be accompanied by an age-related increase in sensitivity to environmental stimuli that disturb sleep (Prinz, 2004).

A study in Korean adults reported that insomnia was being higher in those aged 60-69 years than in those aged 20-29 years (odds ratio [OR] = 2.368) (Cho et al., 2009). Another one research, Kappler and Hohagen (2003) studied 2,512 patients in general practice found that age was the most powerful predictors of insomnia. Moreover, Nongluk Anunta-ard (2007) was reported that age had positive relationship with insomnia in hematological malignancies (r = .316). Specific on patient with heart failure found that age was not correlated with sleep disturbance in patients with heart failure. However, this study had small sample size, only 84 patients were included and this study focus on sleep disturbance not focus on insomnia.

2. Gender would have relationship on insomnia

Rationale: Women have more insomnia than men because of normal physiologic periods, including puberty, menstruation, pregnancy, and menopause, which associated with alterations in sleep patterns (Krishnan and Collop, 2006). The most common factors affecting sleep in women are associated with the life cycle of hormone levels, extending from menarche through and after menopause (Miller, 2004).

Prior research found that female was significant correlated with insomnia in hematological malignancies (Nongluk Anunta-ard, 2007). A another one study found that female reported difficulty in initiating and sleep difficulty in maintaining sleep and that early morning awakening more than male. Females were about 1.6 times at
higher risk for insomnia than males (Lia et al., 2002). Moreover, one study at out-patient of the family medicine department, this studied reported that female had strong correlation with insomnia (Saisunee Tubtimtes et al., 2009). Although, one study in patients with heart failure found that male gender was related to trouble returning to sleep but male gender was not a predicter of sleep disturbance (Erickson et al., 2003).

3. Anxiety would have a positive relationship on insomnia

Rationale: Anxiety brings psychophysiological changes that interfere with sleep onset and sleep maintenance. It can inhibit sleep outright through heart racing, muscle tightening, obsessive thinking, or other means. Alternatively, anxiety may allow to succumb to the first hours of sleep, when the drive for deep NREM sleep is the greatest, only to lead to awakenings when that drive has been partially sated (Glovinsky and Spielman, 2006). Anxiety which is common among patients suffering from heart failure, often has a distinctly disturbing effect on sleep (Biliard, 2003).

Brostrom and Johansson (2005) conducted a qualitative research and found that anxiety is one of the causes of insomnia in patients with heart failure. Anxiety was significant correlated with insomnia in patients with cancer (Pattarieya Keawphang, 2004). Moreover, one study at out-patient of the family medicine department, this studied reported that anxiety had strong correlation with insomnia (Saisunee Tubtimtes et al., 2009).

4. Depression would have a positive relationship on insomnia

Rationale: Depression brings about psychophysiological changes that interfere with sleep onset and sleep maintenance. Depression is associated with disruptive changes in sleep architecture. People who are depressed spend more time on awakening at night, whether at the beginning, middle, or end. The accumulate less
of the deepest NREM sleep stages, while greater proportion of total sleep time may be
devoted to REM sleep, often accompanied by vivid, disturbing dreams (Glovinsky
and Speiman, 2006). Studies have shown that depression was a significant positive
correlation with insomnia in cancer patients (Nongluk Anunta-ard, 2007; Pattarieya
Keawphang, 2004). Moreover, previous researches in the community reported that
people with insomnia had greater depression levels than people who had no insomnia
and were 9.82 times more likely to have clinically significant depression (Taylor et
al., 2005).

5. Marital status wound have a relationship on insomnia

Rationale: Complex personal relationships, social stress, the gradual
dissolution of the traditional family structure and marriage-related problems may have
contributed to the higher likelihood of insomnia in the married/divorced/widowed
group (Xiang et al., 2008). Married, separated, divorced and widowed marital status
were factors for all types of insomnia in Chinese people (Xiang et al., 2008). Another
one study in breast cancer patients reported that widowhood significantly associated
with the presence of insomnia symptoms (Savard et al., 2001).

6. Dyspnea would have a positive relationship on insomnia

Rationale: Dyspnea is respiratory distress that occurs as a result of increased
effort in breathing and is the most common symptom of heart failure. Dyspnea led to
difficulties lying flat as well as frequent awakenings, followed by feeling of panic
(Brostrom et al., 2001). From a qualitative study of patients with congestive heart
failure in sleep situations, it was found that dyspnea is one of the symptoms of heart
failure which affected sleep negatively (Brostrom et al., 2001). According to a
research of Principe-Rodriguez et al. (2005), paroxysmal nocturnal dyspnea correlated
with insomnia in patients with heart failure.
7. Sleep disorder breathing would have a relationship on insomnia

Rationale: Sleep disorder breathing, including obstructive sleep apnea (OSA) and central sleep apnea (CSA) with Cheyne–Stokes respiration (CSR), was found to be the most common sleep disorder in patients with heart failure (Brostrom and Johansson, 2005). Obstructive sleep apnea is related to complaints of insomnia and unrefreshing sleep (Sidney and Lichstein, 2005). Moreover, obstructive sleep apnea leads to arousals and awakenings during sleep (Roth and Drake, 2004). Central sleep apnea is usually associated with insomnia complaints of difficulty maintaining sleep. These apnea-related awakenings sometimes begin with a gasp for air and a sensation of choking (Sidney and Lichstein, 2005). Problematic insomnia symptoms were reported by 50% of a representative sample of patients with objectively diagnosed sleep disorder breathing (Krakow et al., 2001). Moreover, the prior research found that the difficulty in initiating sleep correlated significantly with sleep disorder breathing (Johansson et al., 2009).

8. Functional status would have a positive relationship on insomnia

Rationale: Functional status is defined as the conceptual universe through which a person or a population had the ability to undertake activities designed to meet basic needs, fulfill life roles, and maintain health and well-being (Leidy, 1994 cited in Miller-Davis, Marden and Leidy, 2006). The New York Heart Association (NYHA) functional classification is commonly used to indicate functional status in cardiac patients. Functional status limitations will make heart failure patients unable to perform their normal activities (Stewart et al., 2004).

The prior study found that NYHA class II to IV had moderate or major complaints of difficulty initiating sleep in patients with heart failure (Brostrom et al.,
In addition, the previous study found that NYHA was correlated with insomnia in patients with heart failure (Principe-Rodriguez et al., 2005).

9. Sleep hygiene would have a positive relationship on insomnia

Rationale: Sleep hygiene is maladaptive behavior which effects to sleep including irregular schedules, exercise close to bedtime, substance use, worry about ability to sleep and improper sleeping environment. Spending extra time in bed will generally increase night-to-night variability, oversleeping in the morning leading to more difficult falling asleep on subsequent nights and increased anxiety regarding bedtime, perpetuating a vicious cycle. Daytime napping may make it difficult to fall asleep later that night (Glovinsky and Spielman, 2006).

Caffeine and nicotine, both central nervous system stimulants, can impede sleep onset and reduce sleep efficiency and quality. Alcohol consumption prior to bedtime can lead to more fragmented sleep, early morning awakenings, and subsequent difficulty falling back asleep. A vicious cycle can also result when alcohol is explicitly used as a sleeping aid. Regular exercise in late afternoon or early evening can deepen sleep as a result of the subsequent rebound cooling effect. Conversely, exercising too close to bedtime can have a stimulating effect and delay sleep onset. It is important to minimize noise, sleep in a very dark bedroom, avoid excessive temperature in the bedroom (Morin, Daley, and Ouellet, 2001).

Surang Lertkachararn and Somporn Jarutinkorn (2000) studied in sleep hygiene of Thai chronic non-organic insomniacs. The result found that 83% of patients had poor sleep hygiene. Most of the factors of poor sleep hygiene were irregular sleep/wake schedules, spending extended amounts of time in bed awake, engaging in exciting or emotionally upsetting activities close to bedtime, daytime naps, poor sleep environment, routine use of alcohol, caffeine, or nicotine near
bedtime. A study of Nongluk Anunta-ard (2007) study in hematological malignancies patients found that sleep hygiene was significant positive correlations with insomnia.

10. Dysfunctional beliefs and attitudes about sleep would have a positive relationship on insomnia

Rationale: These are alterations in beliefs and attitudes about sleep that in turn affect sleep itself. People that do not sleep well end up doing a lot more thinking about sleep and about themselves as sleepers and much of this extra thinking is decidedly unhelpful. Chiefly, poor sleepers experience an alteration in their self-image. To change this self-image, the experience of insomnia leads to distortions in attitudes and beliefs about sleep itself (Glovinsky and Spielman, 2006). Griffiths (2005) studied in patients who underwent elective cardiac or orthopedic surgery during a three months period. The result revealed that dysfunctional cognition about sleep is one of the three factors which can predict chronic insomnia. Consistency with Pattarieya Keawphang (2004) found that belief about sleep can predict insomnia among cancer patients.

The scope of the study

This study were describe the characteristics of insomnia in patients with heart failure and examine the relationship among the predisposing factors (age, gender, anxiety, depression), the precipitating factors (marital status, dyspnea, sleep disorder breathing, functional status), the perpetuating factors (sleep hygiene, dysfunctional beliefs and attitudes about sleep) and insomnia in patients with heart failure who are 18 years of age and over and had followed-up at a heart clinic out-patient department in Thailand.
Definitions of terms

Insomnia is defined as the symptoms of perceived reduction in the quantity or quality of sleep at least 1 month prior to the study period because of one or more as follows:

1. Difficulty falling asleep, it takes more than 30 minutes trying to fall asleep
2. Difficulty staying asleep with prolonged nocturnal awakenings, It takes more than 15 minutes to resume asleep.
3. Waking up too early with an inability to resume sleep, wake up at least 1 hour earlier without an alarm clock

These symptoms occurred along with clinically significant distress or impairment in social, occupational, or other important areas of functioning. Insomnia was measured by Insomnia Severity Index (Morin, 1993). This instrument was translated into Thai by Pattariyet Keawphang (2004).

The characteristic of insomnia is defined as a type of insomnia, severity of insomnia.

Age is defined as a full year of age of heart failure patients starting from the date of birth and up to the date of the study.

Gender is defined as the sex of heart failure patients, being male and female.

Anxiety is defined as an emotional state, consisting of “unpleasant, consciously perceived feelings of tension and apprehension of patients with heart failure. Anxiety was assessed by using the State-Trait Anxiety Inventory (STAI) of Spielberger et al. (1983). It was translated into Thai by Nittaya Kotchabhakdi, Sairudee Vorakitphokatorn and Malee Nitsaisook (1981), and adapted by Sureeporn Tepa-Amorndech (2003).
Depression is defined as a specific alteration in mood including depressed mood, feelings of guilt and worthlessness, feelings of helplessness and hopelessness, psychomotor retardation, loss of appetite, and sleep disturbance of patients with heart failure. Depression was measured by using the Center for epidemiologic studies depression scale (CES-D Scale) (Radloff, 1977). It was translated into Thai by Tawatchai Worapongsathorn et al. (1990) and adapted to use in heart disease patients by Monruedee Buran (2005).

Marital status is defined as the condition of being single, married, separated, divorced, and widowed.

Dyspnea is defined as a subjective experience of breathing discomfort of patients with heart failure that consists of intensity, timing, distress and quality as measured by the dyspnea questionnaire of Pataraporn Kheawwan (2003) and adapted by Kantaporn Yodchai (2004).

Sleep disorder breathing is defined as a group of disorders characterized by abnormalities in the respiratory pattern (pauses in breathing) or the quantity of ventilation during sleep of patients with heart failure. Sleep disorder breathing was measured by the Berlin questionnaire, this questionnaire was developed by Netzer et al. (1999). The questionnaire was translated by using a back translation technique from Language Institute of Mahasarakham University and reviewing the quality of the translation by Language Institute of Chulalongkorn University.

Functional status is defined as worsening in level of ability to perform an activity of patients with heart failure. Functional status of patients with heart failure was quantified by the subjective New York Heart Association (NYHA) functional classification (AHA, 2006). It was translated into Thai by Phuangphaka Krethong (2007).
Sleep hygiene is defined as improper regular schedules, diet, exercise, substance use, worry about ability to sleep or sleeping environment which affect to poor sleep. Sleep hygiene was measured by the Sleep Hygiene Awareness and Practice scale of Lack and Rotert (1986). This questionnaire was translated by using a back translation technique from Language Institute of Mahasarakham University and reviewing the quality of the translation by Language Institute of Chulalongkorn University.

Dysfunctional beliefs and attitudes about sleep are defined as dysfunctional beliefs and attitudes about sleep on the part of patients with heart failure in the following: (1) perceived consequences of insomnia; (2) worry/helplessness about insomnia; (3) sleep expectations; and (4) beliefs about sleep medication. Dysfunctional beliefs and attitudes about sleep were measured by Dysfunctional Beliefs and Attitudes about sleep (DBAS-16) (Morin, Vallieres, and Ivers, 2007). This questionnaire was translated by using a back translation technique from Language Institute of Mahasarakham University and reviewing the quality of the translation by Language Institute of Chulalongkorn University.

Expected usefulness of the study

1. This study provides a knowledge regarding characteristics of insomnia in patients with heart failure.
2. The finding provides a knowledge regarding correlated factors and predictive factors of insomnia in patients with heart failure.
3. The finding provide evident base to health care providers, policy makers in order to provide effective health service to heart failure patients who have insomnia.

4. The finding provides predictive factors to develop appropriate nursing intervention to prevent insomnia in this population.
CHAPTER II

LITERATURE REVIEW

This chapter presents a literature review of heart failure, sleep, insomnia, insomnia in patients with heart failure, negative impact of insomnia, assessment of insomnia, theory of insomnia, related factors of insomnia and related researches.

2.1 Heart Failure

Heart failure is a major health problem and a serious long-term condition. An estimated 5.7 million Americans are living with heart failure, and 670,000 new cases are diagnosed each year (American Heart Association [AHA], 2009). In Thailand, heart failure is also a major health problem. Cardiovascular disease is top 3 diseases in Thailand (Bureau of Policy and Strategy, 2008) and heart failure is a top three of cardiovascular disease (Department of Medical Services, 2008).

2.1.1 Definition

Heart failure is a chronic, progressive condition in which the heart muscle is unable to pump enough blood through the heart to meet the body’s needs for blood and oxygen. Basically, the heart can’t keep up with its workload.

At first the heart tries to make up for this by:

1. Enlarging, when the heart chamber enlarges, it stretches more and can contract more strongly, so it pumps more blood.

2. Developing more muscle mass, the increase in muscle mass occurs because the contracting cells of the heart get bigger. This lets the heart pump more strongly, at least initially.

3. Pumping faster, this helps to increase the heart’s output.
The body also tries to compensate in other ways:

- The blood vessels narrow to keep blood pressure up, trying to make up for the heart's loss of power.

- The body diverts blood away from less important tissues and organs to maintain flow to the most vital organs, the heart and brain.

These temporary measures mask the problem of heart failure, but they don't solve it. Heart failure continues and worsens until these substitute processes no longer work. Heart failure can involve the heart's left side, right side or both sides. However, it usually affects the left side first.

2.1.2 Type of heart failure

Left-sided heart failure

The heart's pumping action moves oxygen-rich blood travels from the lungs to the left atrium, then on to the left ventricle, which pumps it to the rest of the body. The left ventricle supplies most of the heart's pumping power, so it is larger than the other chambers and essential for normal function. In left-sided or left ventricular (LV) heart failure, the left side of the heart must work harder to pump the same amount of blood. There are two types of left-sided heart failure.

- **Systolic failure:** The left ventricle loses its ability to contract normally. The heart can't pump with enough force to push enough blood into circulation.

- **Diastolic failure:** The left ventricle loses its ability to relax normally (because the muscle has become stiff). The heart can not properly fill with blood during the resting period between each beat.
Right-sided heart failure

The heart's pumping action moves "used" blood that returns to the heart through the veins through the right atrium into the right ventricle. The right ventricle then pumps the blood back out of the heart into the lungs to be replenished with oxygen. Right-sided or right ventricular (RV) heart failure usually occurs as a result of left-sided failure. When the left ventricle fails, increased fluid pressure is, in effect, transferred back through the lungs, ultimately damaging the heart's right side. When the right side loses pumping power, blood backs up in the body's veins. This usually causes swelling in the legs and ankles.

Congestive heart failure

Congestive heart failure is a type of heart failure which requires seeking timely medical attention, although sometimes the two terms are used interchangeably. As blood flow out of the heart slows, blood returning to the heart through the veins backs up, causing congestion in the body's tissues, often swelling (edema) results. Most often there is swelling in the legs and ankles, but it can happen in other parts of the body, too. Sometimes fluid collects in the lungs and interferes with breathing, causing shortness of breath, especially when a person is lying down. This is called pulmonary edema and if left untreated can cause respiratory distress. Heart failure also affects the kidneys' ability to dispose of sodium and water. This retained water also increases swelling in the body's tissues (edema).

2.1.3 Causes of heart failure

All of us lose some blood-pumping ability in our hearts as we age, but heart failure results from the added stress of health conditions that either damage the heart or make it work too hard. All of the lifestyle factors that increase risk of heart attack
and stroke – smoking, being overweight, eating foods high in fat and cholesterol and physical inactivity – can also contribute to heart failure.

Having more than one of these factors dramatically increases risk of heart failure.

- Coronary artery disease
- Past heart attack (myocardial infarction)
- High blood pressure (hypertension)
- Abnormal heart valves
- Heart muscle disease (dilated cardiomyopathy, hypertrophic cardiomyopathy) or inflammation (myocarditis)
- Heart defects present at birth (congenital heart disease)
- Severe lung disease
- Diabetes
- Other conditions

2.1.4 Common Tests for Heart Failure

Healthcare team may do some or all of these diagnostic tests and procedures.

Physical Examination, Blood Tests, Chest X-ray, Electrocardiogram (EKG or ECG) Echocardiogram (echo), Exercise Stress Test, Radionuclide Ventriculography or Multiple-Gated Acquisition Scanning (MUGA) and Coronary Angiography or Arteriography.

Ejection Fraction and Heart Failure

The ejection fraction (EF) is an important measurement in determining how well your heart is pumping out blood and in diagnosing and tracking heart failure. Ejection Fraction is a measurement of how much blood the left ventricle pumps out with each contraction. An ejection fraction of 60 percent means
that 60 percent of the total amount of blood in the left ventricle is pushed out with each heartbeat.

- A normal heart’s ejection fraction may be between 55 and 70.
- A measurement under 40 may be evidence of heart failure or cardiomyopathy.
- An EF between 40 and 55 indicates damage, perhaps from a previous heart attack, but it may not indicate heart failure.
- In severe cases, EF can be very low.
- EF higher than 75 percent can indicate a heart condition like hypertrophic cardiomyopathy.

NYHA functional classification

NYHA functional classification is commonly used to indicate functional status in cardiac patients. Functional status limitations will make heart failure patients unable to perform their normal activities (Stewart et al., 2004).

NYHA Functional Classification, it places patients in one of four categories based on how much they are limited during physical activity.

<table>
<thead>
<tr>
<th>Class</th>
<th>How Patient Feels During Physical Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>No symptoms and no limitation in ordinary physical activity.</td>
</tr>
<tr>
<td>II</td>
<td>Mild symptoms and slight limitation during ordinary activity. Comfortable at rest.</td>
</tr>
<tr>
<td>III</td>
<td>Marked limitation in activity due to symptoms, even during less-than-ordinary activity. Comfortable only at rest.</td>
</tr>
<tr>
<td>IV</td>
<td>Severe limitations. Experiences symptoms even while at rest.</td>
</tr>
</tbody>
</table>

Table 1 NYHA Functional Classification from American Heart Association (AHA, 2006).
2.2 Sleep

Human spend about one-third of their lives on sleep (Institute of medicine of the national academies, 2006). Sleep is a basic human need and is essential for good health and quality of life performing well by day. Sleep now is known to be an active process that is regulated by various behavioral neuroendocrine and factors in the central nervous system. The insufficient or poor sleep has been shown to have a variety of adverse effects on important clinical outcome (Vena et al., 2004).

2.2.1 Normal Sleep

Sleep structure and sleep duration are influenced by a multitude of factors and vary considerably from person and person (Tucker, 2007). Most adults need approximately 8 hours of sleep each night, but that can vary from person to person, ranging from 6 to 10 hours (Lundt, 2006). Normal sleep can be further characterized by effortless sleep onset, infrequent nocturnal awakenings of short duration, and natural sleep offset without reliance on an alarm clock or other artificial means of arising in the morning (Tucker, 2007).

2.2.2 Stages of Sleep and Sleep cycle

Sleep is a highly structured and well-organized activity following a circadian periodicity that is regulated by the interplay of internal biologic processes (e.g., melatonin) and environmental (e.g., daylight) factors. Normally, an individual first enters sleep through nonrapid-eye-movement (NREM) sleep, which is also called quiet sleep, because most physiologic functions are slowed down during this period. NREM sleep is subdivided into four stages, from stage 1 to stage 4. From an initial state of drowsiness preceding sleep onset, the individual first drops to stage 1 (transitional phase between wakefulness and sleep) and progressively moves into stage 2 (nonequivocal physiologic sleep), stage 3, and stage 4. Stage 3 and stage 4
sleep is also called delta or slow-wave sleep. This initial sequence is followed by a return from stage 4 to stage 3 and stage 2, leading to the first rapid-eye-movement (REM) episode. REM sleep, also called paradoxical sleep, is characterized by electroencephalographic activation, muscle atony, REMs, and dreams. The duration of this cycle is approximately 90 minutes and is generally repeated four or five times throughout the night, with REM episodes of increasing duration. The last third of the night is mostly characterized by REM sleep, whereas delta sleep is predominant at the beginning of the night (Savard and Morin, 2001).

Figure 1 A normal adult sleep cycle (Lymberis, 2000)
2.3 Insomnia

2.3.1 Definition of Insomnia

American Psychiatric Association (2000) defined insomnia as a predominant complaint is difficulty initiating or maintain sleep or nonrestorative sleep, for at least 1 month. The sleep disturbance (or associated daytime fatigue) causes clinically significant distress or impairment in social, occupational, or other important areas of functioning.

Lymberis (2000) characterized insomnia by the subjective sense that sleep quality is poor and inadequate. The sleeper will complain of difficulty initiating sleep, sleeping too lightly, easily disrupted sleep with many spontaneous arousals, or early-morning awakenings (Lymberis, 2000).

Savard and Morin (2001) defined insomnia as heterogeneous complaint that may involve (1) difficulties falling asleep (initial or sleep onset insomnia), (2) trouble staying asleep with prolonged nocturnal awakenings (middle or maintenance insomnia), (3) early morning awakening with inability to resume sleep (terminal or late insomnia), or (4) nonrestorative sleep.

Carrol (2004) defined insomnia as a symptom of perceived reduction in the quantity or quality of sleep and is not a single clinical entity.

American Academy of Sleep Medicine (2005) defined insomnia as a complaint of difficulty initiating sleep, difficulty maintaining sleep, or waking up too early, or sleep that is chronically nonrestorative or poor in quality. The sleep difficulty occurs despite adequate opportunity and circumstances for sleep.
National Institutes of Health (2005) defined insomnia by complains of disturbed sleep in the presence of adequate opportunity and circumstance for sleep. The disturbance may consist of one or more of three feathers: (1) difficulty in initiating sleep (2) difficulty in maintaining sleep, or (3) walking up too early.

Banno and Kryger (2006) characterized insomnia by difficulty in sleep initiation, maintenance duration or quality that occurs despite adequate time and opportunity for sleep, along with daytime consequences such as fatigue, sleepiness, mood disturbances, cognitive difficulties, and social or occupational impairment.

World Health Organization (2007) defined insomnia is a condition of unsatisfactory quantity and/or quality of sleep, which persists for a considerable period of time, including difficulty falling asleep, difficulty staying asleep, or early final wakening. Insomnia is a common symptom of many mental and physical disorders, and should be classified here in addition to the basic disorder only if it dominates the clinical picture.

Passarella and Duong (2008) defined insomnia as a subjective complaint of poor sleep quality or quantity despite adequate time for sleep, resulting in daytime fatigue, irritability, and decreased concentration.

In summary, insomnia can be defined as a symptom of perceived reduction in the quantity or quality of sleep at least 1 month because of one or more of difficulty falling asleep, difficulty staying asleep with prolonged nocturnal awakenings, waking up too early with an inability to resume sleep.

These symptoms occurred along with clinically significant distress or impairment in social, occupational, or other important areas of functioning.
2.3.2 Insomnia Classification

From literature review, various insomnia classifications have been proposed. The ways to classify based on specific symptoms, duration of symptoms, and based on etiology.

Classified based on Specific Symptoms:

There are 4 symptoms which have been considered as insomnia including difficulty initiating sleep, difficulty to maintain sleep, early morning awakening, or nonrestorative sleep.

Classified based on Duration of Symptoms:

One method is based on duration of symptoms, identifying insomnia as either chronic (long-term) or acute (transient). A 2005 National Institutes of Health (NIH) State-of-the-Science statement pointed out that time periods of various durations have been used to define chronic insomnia, ranging from 30 days to 6 months. The transient/chronic distinction can be clinically relevant, in as much as transient insomnias often result from specific environmental or social events, such as shift work, death of a loved one, air travel, and noise, and may be more appropriately managed by addressing these stressors and by managing the insomnia directly and often prophylactically. On the other hand, chronic insomnia may be more often related to intrinsic sleep disorders, primary insomnia, or chronic medical and psychiatric conditions, and may require a more extensive evaluation (including assessment of comorbid conditions) in order to delineate appropriate treatment (Doghramji, 2006).
Classified based on the basis of Etiology:

Insomnia can be classified on the basis of etiology into primary and secondary subtypes.

Primary insomnia indicates that the insomnia is not caused by any known physical or mental condition but is characterized by a consistent set of symptoms, a defined disease course, and a general responsiveness to treatment. Although the etiology of primary insomnia has yet to be clarified, recent research implicates endocrine, neurologic, and behavioral factors as contributing to its pathogenesis.

Secondary insomnia, in contrast, has been defined historically as insomnia resulting from other medical and psychiatric illnesses, medication use, or other primary sleep disorders. The 2005 NIH State-of-the-Science statement has suggested the use of the term comorbid insomnia, instead of secondary insomnia, based on a limited level of understanding of the causal relationships which may exist between insomnia and coexisting disorders. Conceivably, primary insomnia can coexist as an independent entity in the context of another disorder, as opposed to being caused by it (Doghramji, 2006).

2.3.3 Insomnia in Patients with Heart Failure

Heart failure was associated with insomnia in a study of 3,445 patients with chronic illness (Katz and McHorney, 1998). Insomnia was the top two most common of sleep disturbance among patients with heart failure (Brostrom and Johansson, 2005; Principe-Rodriguez et al., 2005). In addition, the empirical data reported high prevalence of insomnia in patients with heart failure. Brostrom and Johansson (2005) conducted a secondary analysis from 182 abstracts published during 1989-2004 which was relevant to sleep disturbance in patients with heart failure. The results revealed that approximately 33% of patients had insomnia (Brostrom and Johansson, 2005).
Moreover from another study revealed that 31.3% of patients with heart failure reported the symptoms suggesting the presence of insomnia in a tertiary care heart failure clinic (Principe-Rodriguez et al., 2005).

In EuroHeart survey of 187 patients with heart failure found that 63% of patients had difficulties to get to sleep, 69% woke up during the night and had difficulties to get back to sleep, while 60% of patients reported the lack of refreshing sleep (Lainscak and Keber, 2003). Consistency with a study of 84 patients was recruited from out-patient heart failure clinic. The result of this study found that 40% reported trouble falling asleep and 39% awakening early, heart failure patients also reported 4.2 naps each day and 32 % use of sleeping pills (Erickson et al., 2003).

Moreover, the data from a cross-sectional study of 223 patients (male 133 patients and female 90 patients) with HF, New York Heart Association classification II-IV, which were recruited from medical ward, heart failure clinic and primary health care centers showed that 46.7 % of female reported difficulty maintaining sleep. 36.6% of female and 36.9% of male had early morning awakenings. Twenty-five percent of all patients awaked 1-3 hours per night (Brostrom et al., 2004).

A total of 6 % was awake more than 3 hours per night. A total of 36% of the patients stated that they did not get enough sleep and 35% perceived they slept too much (Brostrom et al., 2004). From another study, Redeker and Stein (2006) used actigraph to measure sleep variable. The result revealed that percentage wake after sleep onset 10.56, frequency of wake bouts 56.11, duration of wake bouts (min) 1.21, nocturnal activity count (counts/min) 4.73 and sleep latency 27 minutes. They reported that the patients with heart failure had a significantly higher percentage of wakes after sleep onset and more frequent wake bouts when compare with general population (Redeker and Stein, 2006). Johansson et al. (2007) studied in 212 heart
failure patients. They reported that the most common type was non-restorative sleep, reported as a major complaint by 44% of the patients. Major complains of difficulty in maintaining sleep, difficulty in initiating sleep and early morning awakenings were reported by 23%, 19% and 15% of the patients.

2.4 Negative Clinical Outcome of Insomnia

Insomnia can impact to physical, psychological, health related quality of life and increased health care cost.

Physical impact including elevate heart rate, increased heart rate variability suggestive of increased sympathetic and decreased parasympathetic activity, adverse hemodynamic consequences for the failing heart, potentially debilitating symptoms of heart failure, elevated 24-hour whole body metabolic rate greater brain metabolism, increased cortisol and catecholamine secretion, increased interleukin-6 excretion, increased beta electroencephalogram (EEG) activity (Becker, 2006; Bonnet and Arand, 1995; Bonnet and Arand, 1998; Brostrom et al., 2001; Burgos et al., 2006; Daley et al., 2009; Hayes et al., 2009; Javaheri, 2008; Michael, 2005; Perlis et al., 2001; Vgontzas et al., 1998).

Moreover, insomnia could lead to fatigue, tiredness, lethargy, loss of concentration reduction of attention and concentration, listlessness memory lapses, slowed reaction time, poor coordination, increased daytime sleepiness, increased morbidity in terms of health problem.

Psychological impact including decreased feelings of well-being during the day, deterioration of mood and motivation, listlessness, loss of temper anxiety or worry about sleep, mental fatigue and depressive mood (American Psychiatric Association, 2000; Becker, 2006; Brostrom et al., 2001, Ohayon and Reynolds, 2009).
Health-related quality of life: a study focusing primarily on patients with heart failure suffering from insomnia found significantly lower HRQOL in almost all dimensions of the generic SF-36 compared to patients without sleeping difficulties, as well as to the normal population (Brostrom et al., 2004). In the same study, the disease-specific Minnesota Living with Heart Failure Questionnaire showed significantly reduced HRQOL regarding total and subscale scores for patients suffering from sleeping difficulties compared to patients without sleeping difficulties. Zambroski et al. (2005) studied in 53 patients found that difficulty sleeping was the most burdensome symptom which significant associated with health-related quality of life in patients with heart failure.

2.5 Assessment of Insomnia

Several ways to assessment insomnia; both of subjective insomnia assessment and objective insomnia assessment.

2.5.1 Subjective Insomnia Assessment

Subjective insomnia assess includes clinical interview, self-report questionnaire, and sleep diary.

Clinical Interview

The clinical interview is the most important component of an insomnia assessment because it is the springboard from which the clinician formulates hypotheses regarding etiologic factors and bases treatment decisions. In addition to a comprehensive assessment of the insomnia complaint and sleep history, the clinical interview should include evaluation of medication and substance use and medical and psychiatric issues (Edinger and Mean, 2005).
Self-Report Questionnaire

There were several self-report questionnaires evaluated of various dimensions of insomnia including Insomnia Severity Index, The Pittsburgh Sleep Quality Index, the Athens Insomnia scale, and the Insomnia severity questionnaire.

Insomnia Severity Index

This self-administration questionnaire which specifically measures insomnia symptoms, the scale contains items that correspond in part to DSM-IV criteria for insomnia, and measures the subject’s perception of symptom severity, distress, and daytime impairment. There are 7 items include: the severity of sleep onset and maintenance (middle and early morning awakening) difficulties, satisfaction with current sleep patterns, interference with daily functioning, appearance of impairment attributed to the sleep problem, and the degree of concern caused by insomnia (Smith and Wegener, 2003).

Sleep Diaries

A sleep diary was used to record daily bed times, times of sleep onset, times and durations of awakenings during the sleep period, final awakening time, and nap times during the day (Redeker and Hilkert, 2005). Self-report sleep diaries play a vital role in the assessment and treatment of insomnia, providing valuable information to both the patients and the physician. Patients should complete at least 1 week of sleep diaries, recording each night’s bedtime, arising time, sleep-onset latency, number and duration of nighttime awakenings, time of last awakening, naps, medication intake, and some measurement of sleep diary (Morin and Espie, 2003 cited in Morin, 2004).
2.5.2 Objective insomnia assessment

Objective insomnia assessment including polysomnography and actigraphy.

Polysomnography

Polysomnography, or all-night sleep recordings, is considered the most accurate measure of sleep and yields measures of specific sleep stages. Polysomnography monitors sleep-related physiologic parameters such as respiratory, neuromuscular, cardiac, gastrointestinal, and endocrine functions. Five Parameters may be measured by electroencephalogram (EEG) (the core of polysomnography), electrooculogram (EOG), electrocardiogram (ECG), or electromyogram (EMG) readings (Beck et al., 2004). However, polysomnography is indicated only when there are symptoms of other sleep disorders (e.g. sleep apnea, periodic limb movements, narcolepsy), the presenting complaint is excessive daytime sleepiness, or the patients with insomnia is unresponsive to treatment (Morin, 2004).

Actigraphy

Actigraphs are small computerized devices that record and store data generated by movement. Modern actigraphs are the size of wristwatches and can record data continuously for days, weeks, or longer. Actigraphy is general term for any of several systems for recording and analyzing devices and producers and software for collecting data, transferring it to a computer, and analyzing the digital record for levels of activity/inactivity or with scoring algorithms to provide estimates of sleep and wake for aggregated epochs of continuously sampled movement data (Acebo, 2006). The actigraph has the advantage of being a nonintrusive tool for assessing sleep in a natural environment (Vallieres and Morin, 2003).

Because insomnia is a subjective symptom therefore the appropriated assessment is self-reported questionnaire. From all self-reported questionnaire,
Insomnia Severity Index is a typical measure insomnia which has good validity and reliability and also corresponds with DSM-IV criteria for insomnia.

2.6 The 3P Model of Insomnia

The origin of this model came from Spielman (1986). He presented tripartite schematization. Three categories have been proposed in this schematization as follows: (1) Predisposing condition (2) Precipitating circumstances (3) Perpetuating factor. These factors have been tested in several groups of healthy people and illness people.

The lasted version of this conceptual model is called the 3P Model of Insomnia (Glovinsky and Spielman, 2005). The 3P model of insomnia was conducted to identify and categorize the causes of insomnia. The 3P Model suggests that three distinct elements account for the onset and course of insomnia:

(1) Predisposing characteristics found within individuals that render them more susceptible to develop a particular type of insomnia. Individual traits or characteristics may set the stage of insomnia. Many such factors appear to be present on an inherited basis—indeed; these are likely to be responsible for the quick emergence in infancy of the good sleepers and poor sleepers. But sometimes, it is an acquired characteristic that indirectly leads to insomnia (i.e. physical hyperarousal, cognitive hyperarousal, night owls and morning larks, anxiety and depression).
Figure 2 Predisposing characteristic contributing to insomnia over time

Figure 2 depicts all three factors in the 3P Model at work, it illustrates how Predisposing characteristics may be primary in a given case, and how people who possess strong risk factors for insomnia, such as physiological hyperarousal, may be prone to episodic insomnia. Arousal is easy to trigger in these individuals, whereas dampening this activation after stress hormones have flooded their systems or excitatory impulses have stampeded through their brains may be harder to achieve. The figure illustrates predisposing characteristics so strong that it takes only very small precipitating events to induce repeated bouts of sleeplessness.

(2) Precipitating events, often outside the individual’s control, that can trigger sleep disturbance. This factor is changes in routine that throw both our waking lives and our sleep out of balance. Precipitating events often arrive abruptly, as with the pain triggered by a herniated disc, the grief of losing a loved one, the disorientating of retirement, or the anxiety touched off by assuming new work responsibilities.
Precipitating events can also build gradually, such as when tensions mount in a failing marriage or when a student falls behind on semester’s coursework (i.e. family conflicts, work-related stress, health issues, death of a loved one or other loss).

Figure 3

Figure 3 show a stressful event precipitates insomnia. The stress resolves but sleeplessness persists, perpetuated by maladaptive attitudes and practices.

(3) Perpetuating attitudes and practices: when most people suffer through a poor night of sleep, they feel sleepy the next day. Sleep is supposed to be self-correcting: sleep loss increases the drive for sleep; it incurs a “sleep debt.” This debt should be experienced as increased sleepiness during waking hours. It should then lead to more sleep of deeper intensity when bedtime rolls around again, which in turn should pay back the sleep debt. The problem may have less to do with sleep and more with the way to cope with sleeplessness. Each disastrous night may trigger shifts in thoughts and attitudes about sleep, confidence, behaviors surrounding bedtime, diet, sleep schedule, and other key determinants of sleep quality. Many people think these
changes are compensating for loss of sleep, but in fact they often serve to prolong the sleep problem (i.e. getting into bed early, stay in bed late, spending extra time in bed, napping, caffeine, sleep medication and worrying about sleep or daytime functioning).

This model is appropriated with this study because the model provides comprehensive factors which lead to insomnia and also this model is the most popular framework for understanding insomnia among the community of sleep experts and has been tested with several groups of general people and various groups of patients.

2.7 Related Factors of Insomnia in Patients with Heart Failure

According to the 3P Model of Insomnia, related factors of insomnia in the previous studies, related factors of insomnia in patients with heart failure would be as follows:

2.7.1 Predisposing Factors

Age

Age related changes in sleep initiation, sleep maintenance, sleep length (Floyd et al., 2000). The total amount of sleep and the ability to initiate sleep decreases with age, while waking frequency and the duration of waking episodes increase (Floyd et al., 2000). At the age of 20 years the sleep efficiency is still usually around 95%, but it then falls progressively. By 35 years the duration of stage 4 NREM sleep is only around 6% of the total sleep time which is only half of what it is at 20. Wakefulness at night is twice as prolonged and the duration of stage 1 NREM sleep is increased slightly at around 5% of total sleep time. The percentage of REM sleep remains constant at around 22–25% throughout early and middle adult life, but REM density gradually falls. Changes in the circadian rhythms prevent subjects over the age of around 45 from adapting as fast and as completely to changes in sleep...
patterns, e.g. shift work. Other environmental factors such as a reduction in exposure to light due to indoor employment, restriction of sleep time and medical and psychological disorders influence sleep patterns (Shneerson, Ohayon, and Carskadon, 2008).

Almost all epidemiological studies reported an increased prevalence of insomnia symptoms with age, reaching close to 50% in elderly individuals (65 year old). Some studies found lower rates in middle-aged individuals, while still other studies reported an increasing prevalence with age. The prevalence of insomnia diagnoses in stable between 15-44 years; it increases from 45 years of age but the prevalence remains the same in elderly individuals (Ohayon, 2002).

A study in Korean adults reported that insomnia was being higher in those aged 60-69 years than in those aged 20-29 years (OR = 2.368) (Cho et al., 2009). Another one research, Kappler and Hohagen (2003) studied 2,512 patients in general practice found that age was the most powerful predictors of insomnia. Moreover, Nongluk Anunta-ard (2007) was reported that age had positive relationship with insomnia in hematological malignancies (r = .316). Specific on patient with heart failure found that age was not correlated with sleep disturbance in patients with heart failure. However, this study had small sample size, only 84 patients were included and this study focus on sleep disturbance not scope on insomnia.

Gender

Women had more insomnia than men because of normal physiologic periods, including puberty, menstruation, pregnancy, and menopause, they are associated with alterations in sleep patterns (Krishnan and Collop, 2006).
Women are more likely than men to report insomnia symptoms. Menopause is often offered as an explanation for the discrepancy between men and women in the prevalence of insomnia in mid-aged subjects (Ohayon, 2002).

Prior research found that female was significant correlated with insomnia in hematological malignancies (Nongluk Anunta-ard, 2007). Another study found that female reported difficulty in initiating and sleep difficulty in maintaining sleep and that early morning awakening more than male. Females were about 1.6 times at higher risk for insomnia than males (Lia et al., 2002). Moreover, one study at out-patient of the family medicine department, this studied reported that female had strong correlation with insomnia (Saisunee Tubtimtes et al., 2009). Scope to patients with heart failure, one study found that male gender was related to trouble returning to sleep but male gender was not a predictor of sleep disturbance (Erickson et al., 2003).

Anxiety

Anxiety has been defined by Spielberger (1972) as an organismic emotional state, consisting of “unpleasant, consciously perceived feelings of tension and apprehension, with associated activation or arousal of the autonomic nervous system. Anxiety is a diffuse apprehension that is vague in the nature and associated with feelings of uncertainty and helplessness. Feelings of isolation, alienation, and insecurity are also present. Anxiety is an emotion and a subjective individual experience. It is an energy and cannot be observed directly (Stuart, 2009).

Level of Anxiety

Peplau (1963) indentified four levels of anxiety and described their effects:

1. Mild anxiety is associated with the tension of day-to-day living. During this stage the person is alert and the perceptual field is increased. The person sees, hears,
and grasps more than before. This kind of anxiety can motivate learning and preduce growth and creativity.

2. Moderate anxiety, in which the person focuses only on immediate concerns, involves the narrowing of the perceptual field. The person sees, hears, and grasps less. The person blocks selected areas but can attend to more if directed to do so.

3. Severe anxiety is marked by a significant reduction in the perceptual field. The person tends to focus on a specific detail and does not think about anything else. All behavior is aimed at relieving anxiety, and much direction is needed to focus on another area.

4. Panic is associated with awe, dread, and terror, and the person feeling, it is unable to do things even with direction. Panic involves the disorganization of the personality and can be life threatening. Increased motor activity, decreased ability to relate to others, distorted perceptions, and losses of rational thought are all symptoms of panic (Stuart, 2009).

From integrated review anxiety was prevalent among patients with heart failure (Konstam et al., 2005). From a study in heart failure patients, who followed-up at out-patient department found that more than half of the participants reported anxiety (65.9%) (Phuangpha Kethong, 2007).

Anxiety which is common among patients suffering from heart failure often has a distinctly disturbing effect on sleep (Biliard, 2003). Anxiety can inhibit sleep outright through heart racing, muscle tightening, obsessive thinking, or other means. Anxiety brings psychophysiological changes that interfere with sleep onset and sleep maintenance (Glovinsky and Speiman, 2006).
A study with a qualitative design explored causes of insomnia in 25 patients with congestive heart failure (Brostrom et al., 2001). They found that anxiety is one of the factors, causing sleep disturbances. According to a study of Spormaker and Bout (2005) it was reported that anxiety correlated with insomnia in adult (r = .53). Another one study of Jansson and Linton (2006) reported that anxiety associated with insomnia (OR: 4.61) in community people. Moreover, anxiety was significant correlated with insomnia in patients with cancer (Pattarieya Keawphang, 2004). Another one study at out-patient of the family medicine department, this studied reported that female had strong correlation with insomnia (Saisunee Tubtimtes et al., 2009).

Depression

Depressive symptomatology may reflect the psychological stress of coping with the disease, may be caused by the disease process itself or by the medication used to treat it or may simply coexist in time with the medical diagnosis. Between 20-30% of cardiac patients manifest a depressive disorder (Reus, 2001).

Depression is a common health problem. People may become depressed as a result of injury or illness. Clinical depression is distinguished from everyday feelings of sadness by its duration and severity. Most people occasionally feel down or depressed, but these feelings are short-lived and do not result in impaired functioning (Smeltzer et al., 2008). From integrated review depression was prevalent among patients with heart failure (Konstam et al., 2005). More than half of the participants reported depression or felt down and blue (50.7%) (Phuangphaka Krethong, 2007).

Depression commonly causes insomnia with difficulty falling asleep, walking and being unable to fall back to sleep, or walking early in the morning (Lippincott, Williams, and Wilkins, 2005). Depressed people exhibit a number of other sleeps
disturbances in addition to insomnia, including reduced deep sleep, increased light sleep, and excessive dream sleep. They enter dream sleep earlier in the night and spend a greater percentage of time in dream sleep than non-depressed individuals (Jacobs, 2007).

Studies have shown that depression was a significant positive correlation with insomnia in cancer patients (Nongluk Anunta-ard, 2007; Pattarieya Keawphang, 2004). Moreover, previous researches in the community reported that people with insomnia had greater depression levels than people who had no insomnia and were 9.82 times more likely to have clinically significant depression (Taylor et al., 2005).

2.7.2 Precipitating Factors

Marital status

Complex personal relationships, social stress, the gradual sissolution of the traditional family structure and marriage-related problems may have contributed to the higher likelihood of insomnia in the married/divorced/widowed group (Xiang et al., 2008). Married, separated, divorced and widowed marital status were factors for all types of insomnia in Chinese people (Xiang et al., 2008). Another research in 12,778 French population found that 34% of widows, 24% of divorcees, 21% of married or living together and 16% of single individual had difficulty in initial sleep (Leger et al., 2000). Moreover, one study in breast cancer patients reported that widowhood significantly associated with the presence of insomnia symptoms (Savard et al., 2001).

Dyspnea

Dyspnea, breathlessness, and shortness of breath are interchangeable terms used by health care providers to describe reports by patients of breathing discomfort (Caroci and Lareau, 2004).
Dyspnea due to heart failure is generally precipitated or exacerbated by exertion and results from elevated left atrial and pulmonary venous pressures from hypoxia, the former are most commonly caused by left ventricular systolic dysfunction, left ventricular diastolic dysfunction (due to hypertrophy, fibrosis, or pericardial disease), or valvular obstruction. Exertional dyspnea is an anginal equivalent. The acute onset or worsening of left atrial hypertension may result in pulmonary edema. Hypoxia may be due to pulmonary edema or intracardiac chunting.

Orthopnea is dyspnea that occurs in recumbency and results from increase in central blood volume. Paroxysmal nocturnal dyspnea is shortness of breath that occurs abruptly 30 minutes to 4 hours after going to bed and is relieved (after 10 or 20 minutes) by sitting up or standing up; this symptoms is more specific for cardiac disease (Massie and Granger, 2005).

Dyspnea is a respiratory distress that occurs as the result of increased effort in breathing, it is the most common symptoms of heart failure (Lainscak and Keber, 2003). From a study of heart failure patients in Thailand, shortness of breath or dyspnea was reported in more than half of the participants (64.5%) (Phuangphaka Krethong, 2007).

Dyspnea can be present also during the night, especially in the advanced stage of the condition. One can experience either orthopnea or paroxysmal nocturnal dyspnea, causing sleep disturbances, lack of refreshing sleep and daily sleepiness (Lainscak and Keber., 2003).

From a qualitative study in patients with congestive heart failure in sleep situation found that dyspnea affected the sleep negatively (Brostrom et al., 2001). According to a research of Principe-Rodriguez et al. (2005), paroxysmal nocturnal dyspnea correlated with insomnia in patients with heart failure.
Sleep Disorder Breathing

Sleep disordered breathing (SDB) encompasses a wide range of sleep-related respiratory abnormalities and is characterized by repeated pauses in breathing during sleep or abnormalities in the level of ventilation during sleep (Lavie, 2007). The prevalence of sleep disorder breathing has been estimated to be between 45-82% with patients with heart failure (Brostrom and Johansson, 2005).

Obstructive sleep apnea (OSA), the most common such disorder, is characterized by the repetitive collapse or partial collapse of the pharyngeal airway during sleep and the need to arouse to resume ventilation. Cheyne-Stokes respiration, another type of sleep disorder breathing, is characterized by a crescendo-decrescendo pattern of respiration and is commonly seen during sleep in patients with congestive heart failure (National Heart Lung and Blood Institute, 2008). Obstructive sleep apnea related with complaints of insomnia and unrefreshing sleep (Sidney and Lichstein, 2005).

Moreover, obstructive sleep apnea leads to arousals and awakenings during sleep (Roth and Drake, 2004). Central sleep apnea is usually associated with insomnia complaints of difficulty maintaining sleep. The apnea-related awakenings sometimes begin with a gasp for air and a sensation of choking (Sidney and Lichstein, 2005). Problematic insomnia symptoms were reported by 50% of a representative sample of patients with objectively diagnosed sleep disorder breathing (Krakow, 2001).

Moreover, the prior research found that the difficulty in initiating sleep correlated significant with sleep disorder breathing (Johansson et al., 2009).
Functional Status

Functional status is defined as the conceptual universe through which a person or population’s ability to undertake activities designed to meet basic needs, fulfill life roles, and maintain health and wellbeing (Leidy, 1994 cited in Miller-Davis, Marden, and Leidy, 2006).

NYHA functional classification is commonly used to indicate functional status in cardiac patients. Functional status limitations will make heart failure patients unable to perform their normal activities (Stewart et al., 2004).

NYHA Functional Classification, it places patients in one of four categories based on how much they are limited during physical activity. Functional class I means no symptoms and no limitation in ordinary physical activity, functional class II means mild symptoms and slight limitation during ordinary activity. Comfortable at rest, functional class III means marked limitation in activity due to symptoms, even during less-than-ordinary activity. Comfortable only at rest and functional class IV means severe limitations. Experiences symptoms even while at rest.

The prior study found that NYHA class II to IV had moderate or major complaints of difficulty initiating sleep in patients with heart failure (Brostrom et al., 2004). In addition, the previous study found that NYHA was correlated with insomnia in patients with heart failure (Principe-Rodriguez et al., 2005).

2.7.3 Perpetuating Factors

Sleep Hygiene

Sleep hygiene refers to the various lifestyle and environmental forces that influence the regulation of sleep (Tucker, 2007). The term sleep hygiene was first used by Peter Hauri in the context of providing recommendations for patients to help them improve their insomnia (Hauri, 1977 cited in Stepanski and Wyatt, 2001).
The International Classification of Sleep disorders published in 1991 introduced a diagnostic category called inadequate sleep hygiene (Stepanski and Wyatt, 2001). In the 2005 revised edition of the International Classification of Sleep Disorders (ICSD-2), inadequate sleep hygiene is classified as one of 11 sleep disorders attributed to insomnia (American Academy of Sleep Medicine, 2005). Inadequate sleep hygiene practices are evident as indicated by the presence of at least one of the following: improper sleep scheduling consisting of frequent daytime napping, selecting highly variable bedtimes or rising times, or spending excessive amounts of time in bed. Routine use of products containing alcohol, nicotine, or caffeine, especially in the period preceding bedtime. Engagement in mentally stimulating, physically activating, or emotionally upsetting activities too close to bedtimes, frequent use of the bed for activities other than sleep (such as television watching, reading, studying, snacking, thinking, planning, failure to maintain a comfortable sleeping environment) (Herdegen, 2009).

Spending extra time in bed will generally increase night-to-night variability, oversleeping in the morning leading to more difficult falling asleep on subsequent nights and increased anxiety regarding bedtime, perpetuating a vicious cycle, daytime napping may make it difficult to fall asleep later that night (Glovinsky and Spielman, 2006).

Daytime napping may indeed perk up, but the cost of diminishing sleep drive, less often appreciated is that a brief nod in the evening, or even just hovering at the edge of sleep while watching TV, may make it difficult to fall asleep later that night. Caffeine and nicotine, both central nervous system stimulants, can impede sleep onset and reduce sleep efficiency and quality. Alcohol consumption prior to bedtime can lead to more fragmented sleep, early morning awakenings, and subsequent difficulty
falling back asleep. A vicious cycle can also result when alcohol is explicitly used as a sleeping aid. Regular exercise in late afternoon or early evening can deepen sleep as a result of the subsequent rebound cooling effect. Conversely, exercising too close to bedtime can have a stimulating effect and delay sleep onset. It is important to minimize noise, sleep in a very dark bedroom, avoid excessive temperature in the bedroom (Morin et al., 2001).

Surang Lertkacharam and Somporn Jarutinkorn (2000) studied in sleep hygiene of Thai chronic non-organic insomniacs. The result found that 83% of patients had poor sleep hygiene. Most of the factors of poor sleep hygiene were irregular sleep/wake schedules, spending extended amounts of time in bed awake, engaging in exciting or emotionally upsetting activities close to bedtime, daytime naps, poor sleep environment, routine use of alcohol, caffeine, or nicotine near bedtime. Another study of Nongluk Anunta-ard (2007) found that sleep hygiene was significant positive correlations with insomnia in hematological malignancies patients.

Dysfunctional Beliefs and Attitudes about Sleep

Alterations in beliefs and attitudes about sleep that in turn affect sleep itself. People who do not sleep well end up doing a lot more thinking about sleep and about themselves as sleepers and much of this extra thinking is decidedly unhelpful (Glovinsky and Spielman, 2005). Chiefly, poor sleepers experience an alteration in their self-image. As a fundamental aspect of life veers out of the control and their daytime functioning plummets, insomnia develop a general sense of vulnerability. Their self-esteem, sense of well-being, and mood are all threatened. Their quality of life suffers, leading to an ever greater focus on sleep.
The vicious cycle of worrying about sleeplessness leading to increased arousal leading to worsening sleep in an all too common outcome. In addition to changes in self-image, the experience of insomnia leads to distortions in attitudes and beliefs about sleep itself (Glovinsky and Spielman, 2005). Dysfunctional beliefs and attitudes about sleep are presumed to play an important role in perpetuating insomnia. These cognitive can be grouped in the following categories: (1) unrealistic sleep requirement expectations, (2) faulty appraisals of sleep difficulties, (3) misattributions of daytime impairments, and (4) misconceptions about the causes of insomnia (Savard and Morin, 2001).

From a study of Pattarieya Keawphang (2004) in cancer patients found that belief about sleep was significant positive correlation and insomnia of cancer patients.

Consistency with Griffiths (2005) studied in undergoing elective cardiac or orthopedic surgery during three months period. The result revealed that dysfunctional cognition about sleep is one of the three factors which could predict chronic insomnia. Moreover, Carney et al. (2010) studied in 5 community base insomnia clinics, the result shows that maladaptive sleep beliefs is most strongly associated with clinically significant levels of insomnia.

2.8 Related Researches

Surang Lertkachararn and Lertkachatarn Jarutinkorn (2000) conducted a research to study the sleep hygiene of Thai chronic non-organic insomniacs. From the result found that 15 patients (17%) from 88 patients had good sleep hygiene, 73 patients (83%) had poor sleep hygiene. Most of the factors of poor sleep hygiene were irregular sleep/ wake schedules (N = 54), spending extended amounts of time in bed awake (N = 54), engaging in exciting or emotionally upsetting activities close to
bedtime (N = 49), daytime naps (N = 33), poor sleep environment (N = 31), routine
use of alcohol, caffeine, or nicotine near bedtime (N = 23).

Brostrom et al. (2001) conducted a research by using a phenomenographic
approach in order to describe from a nursing perspective, how patients with
congestive heart failure conceived their sleep situation. Twenty informants were
selected from a medical ward, a cardiology ward and a specialist clinic. The findings
showed that the patients’ sleep was affected by their daily activities, the disease itself
and cardiac symptoms. The sleep disturbances gave effects such as fatigue,
listlessness, loss of concentration and loss of temper. These effects led to a need for
daytime sleep, seclusion, counseling and information. Patients handled their sleep
disturbances through coping mechanisms related to developed patterns of daily life
and through support from their psychosocial environment.

Erickson et al. (2003) studied in symptoms and incidence of sleep disturbance
in patients with heart failure and also studied to identify symptoms and population
characteristics in relationship with sleep disturbance in 84 adult patients with heart
failure. From the result found that severity of heart failure was not a predictor of sleep
disturbance and sleep disturbance symptoms in heart failure patients are 51%, unable
to sleep flat, 44% restless sleep, 40% trouble falling asleep, 39% walking before
needs, 38% restless legs, 11% wake with anxiety, 32% trouble returning to sleep, 32%
light sleeper, 32% use sleep pills, 23% stop breathing, 16% difficulty waking, 19%
not tired at bedtime, 10% sleep late, 10% heart pain, 8% inappropriate sleep and 6%
wake with choking feeling.

Brostrom et al. (2004) studied in 223 patients with heart failure in order to
describe self-assessed sleep difficulties, daytime sleepiness, and their relation to
health-related quality of life in men and women with heart failure. They used the
Uppsala sleep inventory-chronic heart failure and Epworth sleepiness scale, Medical outcome study 36-item short form health survey, and Minnesota living with heart failure questionnaire. From the result found that the most commonly reported sleep difficulties were initial and maintaining sleep. A total of 21% suffered from daytime sleepiness. Patients suffering from difficulties maintaining sleep, initial sleep, and early morning awakenings reported significantly lower health-related quality of life in almost all dimensions of the SF-36 compared to patients without sleeping difficulties, as well as to the normal population. The disease-specific Minnesota living with heart failure questionnaire showed significantly reduced health-related quality of life.

Redeker and Hilker (2005) conducted research in order to examine the extent to which sleep was associated with functional performance and mental health among sixty-one persons who had stable systolic heart failure. Patients wore actigraphs to record nocturnal sleep and daily activity for 3 days while living at home and complete The Pittsburgh sleep quality index and the Medical outcome study SF-36 questionnaire. Self-reported sleep quality and actigraph-recorded wake time and wake bout time explained 9% to 20% of the variance in the functional performance variables and mental health, after controlling for age, gender, comorbidity, and NYHA. Time in bed was negatively associated with functional performance. There were no statistically significant relationships between sleep duration and functional performance.

Brostrom and Johansson (2005) conducted secondary analysis in patients with heart failure in 182 abstracts published during 1989-2004, from the result found that sleep disordered breathing (SDB) and insomnia were the most common causes of sleep disturbances and occurs in 45-82% (SDB) and one-third (insomnia) of all patients with heart failure. Sleep disorder breathing cause a disturbed sleep structure
with frequent awakenings, as well as several adverse effects on the cardiovascular system causing increased mobility and mortality. Insomnia, caused by anxiety, an unknown life situation in relation to the debut of heart failure, or symptoms/deteriorations of chronic heart failure can lead to negative effects on all the aspects of quality of life, as well as daytime sleepiness.

Principe-Rodriguez et al. (2005) studied in 201 heart failure’s patients at heart failure clinic to survey sleep symptoms using a standardized questionnaire and correlated symptoms with conventional markers of clinical status. The result showed Sixty-three patients (31.3%) reported symptoms suggesting the presence of insomnia.

Redeker and Stein (2006) used 2-group comparative design to compare the sleep patterns of a sample of patients with stable systolic heart failure and a group of adult participants recruited from the community. The sample of 59 patients with heart failure was recruited from the heart failure/heart transplant out-patient program in the northeastern United States and included male and female patients who had stable NYHA functional class I to IV systolic heart failure, with ejection fractions of 35% or less. The patients with heart failure had a significantly lower percentage of wakes after sleep onset and more frequent wake bouts, as measured with wrist actigraphs. There were no group-related differences in sleep duration. Sixty-seven percent of the patients with heart failure compared with 51% of the comparison group had poor global sleep quality, and from 44% of the patients with heart failure versus, we found that 18.6% of the comparison group reported excessive daytime sleepiness.

Johnsson et al. (2007) conducted a research to study the association between insomnia and depressive symptoms in patients with heart failure in 212 heart failure patients. They used Uppsala sleep inventory-chronic heart failure so as to assess sleeping difficulties. From the result found that the most common insomnia type was
non-restorative sleep (NRS) reported as a major complaint by 44% of the patients. Major complaints of difficulty in maintaining sleep (DMS), difficulty initiating sleep (DIS) and early morning awakenings (EMA) were reported by 23%, 19% and 15% of the patients, respectively and a total of 34% suffered from depressive symptom. Patients with DS had been compared with those without DS significantly more major complains of NRS, DMS, DIS, and EMA.
Conceptual Framework

Predisposing Factors
- Age
- Gender
- Anxiety
- Depression

Precipitating Factors
- Marital status
- Dyspnea
- Sleep disorder breathing
- Functional status

Perpetuating Factors
- Sleep hygiene
- Dysfunctional beliefs and attitudes about sleep

Insomnia

clinic
CHAPTER III

METHODOLOGY

This chapter describes the research and method including research design, population and samples, sample size determination, sampling method, research instruments, data collection and data analysis, and protection of human subject.

Research Design

A descriptive research design was used in this study in order to describe characteristics of insomnia, and examine the relationship among the predisposing factors; age, gender, anxiety, depression, the precipitating factors; marital status, dyspnea, sleep apnea, functional status, the perpetuating factors; sleep hygiene, dysfunctional beliefs and attitudes about sleep, and insomnia among patients with heart failure.

Population and Sample

The population of interest in this study was Thai heart failure patients who attended at out-patient heart clinics of tertiary hospitals in Thailand.

Sample Size Determination

The sample size which could estimate the prevalence of insomnia in patients with heart failure is below:

\[n = \frac{z^2_{1-\alpha/2} \cdot p \cdot q}{d^2} \]

(Lemeshow et al., 1990)
where \(n = \) sample size

\[
p = \text{estimated prevalence} = 0.31
\]

(the prevalence of insomnia in patients with heart failure
\cite{PrincipeRodriguezetal2005})

\[
q = 1 - p = 0.69
\]

\[
d = \text{allowable error in estimating prevalence (margin of error)} = 0.05
\]

\[
\alpha = \text{probability of type I error} = 0.05 \text{ (2-tailed), } z_{0.025} = 1.96
\]

\[
n = \frac{(1.96)^2(0.21)}{(0.05)^2} = 322.69
\]

The sample was further increased by 5% to account for contingencies such as non-response or recording error. Therefore the sample was 340 patients. After collecting the data, the final sample was 340 patients. This study had no missing data.

Sampling Method

A multi-stage random sampling procedure was used to select heart failure patients into the study.

1. There were 5 major regions in Thailand, according to Bureau of policy and strategy (2008): North, Northeast, Central, South and Bangkok.

2. Using simple random sampling to select 2 tertiary hospitals in each region of Thailand. Patients with heart failure require advanced medical technology, therefore this study was sampling the hospital from tertiary hospital. There were 36 tertiary hospitals in Thailand: 7 tertiary hospitals in the North, 7 tertiary hospitals in the Northeast, 9 tertiary hospitals in the Central region, 6 tertiary hospitals in the South, and 7 tertiary hospitals in Bangkok.
3. Ten tertiary hospitals were obtained. From the North: Chiangrai Regional Hospital, and Maharaj Nakorn ChiangMai Hospital, from the Northeast: Khonkaen Hospital, and Sappasitipasong Hospital, from the Central: Ratchaburi Hospital, and Chonburi Hospital, from the South: Maharaj Nakhon Si Thammarat Hospital, Suratthani Hospital, and from Bangkok: Siriraj Hospital, and King Chulalongkorn Memorial Hospital.

4. The number of patients in each hospital was come from sample size divided by 10 hospitals. Therefore, this study collected the data from 34 patients with heart failure.

5. Screening heart failure patient from medical record by using inclusion and exclusion criteria as follow:

Inclusion Criteria

1) Diagnosed with heart failure and had stable condition.
2) Age equal to or more than 18 years old to 80 years old.
3) Able to communicate in Thai.
4) Willing to participate in this study.

Exclusion Criteria

1) Unstable condition of heart failure such as acute pulmonary edema, severe dyspnea or chest pain
2) Serious physical and psychiatric disease such as acute renal failure, cancer

6. Using systematic random sampling to select 34 patients in each hospital.

All procedure was shown in Figure 3
Sampling Method

Thailand

North
- Chiangrai Regional H.
- 34 Participants

Northeast
- Maharaj Nakorn Chiang Mai H.
- 34 Participants

Central
- Ratthaburi H.
- 34 Participants

South
- Chonburi H.
- 34 Participants

BKK
- Siriraj H.
- 34 Participants

King Chulalongkorn Memorial H.
- 34 Participants

Figure 4

Research Instruments

The instruments used in this study include a demographic questionnaire, the state-trait anxiety inventory (STAI), The Center for Epidemiologic Studies Depression Scale (CES-D Scale), the dyspnea questionnaire, Berlin Questionnaire, the New York Heart Association (NYHA) functional classification, Sleep hygiene Practice Scale, Dysfunctional Beliefs and Attitudes about sleep (DBAS-16), and Insomnia Severity Index (ISI). The detailed of the instrument are as follows:

1. **A Demographic Questionnaire** was assessed age, gender, marital status, religion, education, employment status, etiology of heart failure, year of living with
heart failure, left ventricle ejection fraction, comorbidity and sleeping medication. The data was collected from patients and reviews of patient’s medical records.

2. The State-Trait Anxiety Inventory (STAI)

The State-Trait Anxiety Inventory (STAI) of Spielberger was built up in 1983. This study was used S-anxiety (STAI, Form X-1). State anxiety refers to a state of tension and arousal taking place at a given moment. The 10 items are positive and 10 items are negative. Positive item are 1,2,5,8,10,11,15,16,19, and 20. Negative items are 3,4,6,7,9,12,13,14,17, and 18. It was translated to Thai by Nittaya Kochapakdee et al. (1981) and adapted by Sureeporn Tepa-Amorndech in 2003. It was designed to be self-administering and consists of twenty statements.

Scoring Criteria

(1) Positive items were given a weighted score within 4 points in the Likert-type format, ranging from 4 to 1: from “not at all” to “very much so.”

(2) Negative items were given a weighted score within 4 points in the Likert-type format, ranging from 1 to 4: from “not at all” to “very much so.”

Interpretation of Scores

Total SAI scores were obtained as the sum of weighted scores of the 20 items. Scores for the State Anxiety vary from a minimum of 20 to a maximum of 80. The larger figure indicates a higher anxiety level. According to Ku, Ku and Ma (2002), the interpret of score as follows:

The scores between 20 to 40 indicate a mild anxiety level

The scores between 41 to 60 indicate a moderate anxiety level

The scores between 61 to 80 indicate severe anxiety level
Validity and Reliability

The Reliability and Validity of the STAI were estimated by Spielberger et al. (1970) with a know group technique for 197 college students in Florida. In addition, it has been demonstrated in many different populations including medical and surgical patients with test-retest. The alpha reliability coefficient of the STAI was ranged from .83-.92 (Spielberger et al., 1970). The State Anxiety was validated for conceptual equivalence, clarity, and suitable language by 5 experts in field, the content validity (CVI) was .85 (Sureeporn Tepa-amordech, 2003). Reliability of Thai version of The State anxiety was tested with 30 patients with patients after undergoing coronary artery bypass graft who followed-up as outpatients and Cronbach’s alpha coefficient was .85 (Sureeporn Tepa-amordech, 2003).

In this study, reliability of The State Anxiety, Cronbach’s alpha coeeficiency was .93 in 340 heart failure patients.

3. The Center for Epidemiologic Studies Depression Scale (CES-D Scale)

The Center for Epidemiologic Studies Depression Scale (CES-D Scale) was developed for use in studies of the epidemiology of depressive symptomatology in the general population (Radloff, 1977). The items of the scale are symptoms associated with depression which have been used in previously validated longer scales. The CES-D was designed to measure the level of depressive symptomatology, with emphasis on the affective component and depressed mood. The CES-D items were selected from a pool of items from the previously validated depression scale (e.g. Beck et al., 1961; Dahlstrom and Welsh, 1960; Gardner, 1986; Raskin et al., 1969; Zung, 1965).
This scale contained 20 items. It includes six components: depressed mood; feelings of guilt and worthlessness; feelings of helplessness and hopelessness; psychomotor retardation; loss of appetite; and sleep disturbance.

The response options as follows: none of the time, occasionally often, most of the time, and all the time. A higher score is 60 related to a greater depression rating.

Scoring Criteria

(1) Negative items were given a weighted score within 4 points in the Likert-type format, ranging from 1 to 4: from “none of the time” to “all the time”

(2) Positive items were given a weighted score within 4 points in the Likert-type format, ranging from 4 to 1: from “none of the time” to “all the time”

Interpretation of Scores

The total score 16 reflects depression (Tawatchai Worapongsathorn, Wongduen Pandee and Somporn Treamchaisri, 1990)

Validity and Reliability:

The CES-D scale is based on symptoms of depression as seen in clinical cases. It is sensitive to levels of severity of depressive symptomatology, and reflect improvements after psychiatric treatment (Radloff, 1977). Construct validity of this instrument was reported through a study conducted by Hann, Winter and Jacobsen (1999). The construct validity of the CES-D was supported by finding indicating that patients undergoing cancer treatment reported more depressive symptomatology than healthy individuals. In addition, construct validity was demonstrated by moderate to high correlations with measures of fatigue, anxiety, and global mental health functioning. The CES-D was validated for conceptual equivalence, clarity, and suitable language by experts in field of mental health and heart disease, CVI was .90.
This instrument was tested in household interview surveys and in psychiatric settings. It was found to have very high internal consistency (coefficient alpha and the Spearman-Brown, split-halves method) (Nunnally, 1967). They were high in the general population (about .85), even higher in the patients sample (about .90), adequate test retest repeatability. Reliability of this instrument was reported through a study conducted by Hann et al. (1999). The CES-D found to have good internal consistency, with alpha coefficients > .85 for cancer patients and general population as well as adequate test-retest reliability in both group.

The instrument was tested for reliability in 150 patients with post acute coronary syndromes. The reliability (Cronbach’s alpha coefficient) was 0.78 (Monruedee Buran, 2005). In this study, reliability of this instrument, Cronbach’s alpha coefficient was .90 in 340 heart failure patients.

4. The Dyspnea Questionnaire

This instrument was developed by Pataraporn Kheawwan (2003) based on the Theory of Unpleasant Symptom (TOUS). The instrument comprises 19 items assessing dyspnea in terms of (1) intensity, (2) timing, (3) distress, and (4) quality in post opened-heart surgery patients receiving mechanical ventilator (Pataraporn Kheawwan, 2003). Then, Kantaporn Yodchai (2004) adapted this questionnaire to use in heart patients who do not on ventilator.

Scoring Criteria

Each of these items is rated on the 100 mm on the Horizontal Visual Analog Scale (“0” = not at all, “100” = extremely). The total dyspnea score ranges from 0 to 100. An average total score is the total score of all 19 items divided by 19.
Interpretation of Scores

- The score between 0-39 representing mild dyspnea
- The score between 40-60 representing moderate dyspnea
- The score between 61-100 representing extreme dyspnea

Validity and Reliability

The content validity was reviewed by 5 experts in fields of field and instrument development. All of them agree with all content which based on the Theory of Unpleasant Symptom (TOUS) in this questionnaire. The instrument was first used with 110 post opened-heart surgery patients receiving a mechanical ventilator.

Then Kantaporn Yodchai (2004) was used this instrument in 150 cardiac patients. Content validity was reviewed by a panel of experts in field of dyspnea, instrument development and heart disease. CVI was 1.00.

The reliability in a study of Pataraporn Kheawwan (2003) Cronbach’s alpha coefficient was .95, in a study of Kantaporn Yodchai (2004); Cronbach’s alpha coefficient was .94. In this study, reliability of the dyspnea questionnaire, Cronbach’s alpha coefficient was .97 in 340 heart failure patients.

5. Berlin Questionnaire

The Berlin Questionnaire was an outcome of the Conference on Sleep in Primary Care, which involved 120 U.S. and German pulmonary and primary care physicians and was held in April 1996 in Berlin, Germany (Netzer et al., 1999). This questionnaire was translated by using a back translation technique from Language Institute of Mahasarakham University and reviewing the quality of the translation by Language Institute of Chulalongkorn University. The Berlin Questionnaire which
addresses three known risk factors for sleep apnea or sleep disorder breathing as follows:

1. Snoring history (five questions)
2. Tiredness (four questions)
3. History of high blood pressure and/or body mass index (BMI) > 30.

Scoring Criteria

The determination of a “high risk” (high pretest probability) a “lower risk” (low pretest probability) for sleep apnea was based on the frequency of several reported symptoms and on traits. There are three items considered: snoring, daytime sleepiness/fatigue, and BMI > 30/high blood pressure.

Interpretation of Scores

To be “high risk” a person would have reported persistent (“>3-4 time/week” or “everyday”) symptoms in two questions or more about their snoring (Category 1) or about wake time sleepiness and/or drowsy driving (category 2) or persistent symptoms in either category 1 or category 2, and at least one feature (history of high blood pressure or BMI > 30) in category 3. Respondents who deny chronic symptoms or have frequent symptoms or signs in only one category were placed in the “lower risk” group.

Validity and Reliability

Risk grouping was useful in prediction of the respiratory disturbance index (RDI). Being in the high-risk group predicted and RDI greater than 5 with a sensitivity of 0.86, a specificity of .77 per cent, and positive and negative predictive values .89, and a likelihood ratio of 3.79 (Netzer et al., 1999).

This instrument was tested for reliability in 744 adults in five primary care sites in Cleveland, Ohio. The reliability (Cronbach’s alpha) was 0.86 to 0.92 (Netzer
et al., 1999). In addition, Sharma et al. (2006) tested this instrument in 180 middle-aged adults at a tertiary care referral center in northern India. They reported that internal consistency (Cronbach’s alpha coefficient) was 0.92-0.96. In this study, reliability of Berlin Questionnaire reported that Cronbach’s alpha coefficient was .73 in 340 heart failure patients.

6. The New York Heart Association (NYHA) Functional Classification

This instrument represents the functional status of patients with heart failure. The NYHA functional classification was developed in 1928 for use, as an essential criterion for a comprehensive cardiac diagnosis (Miller-Davis, Marden, and Kline, 2006). This functional class are class I, II, III or IV. It was designed for clinical assessment of patients by physicians on the basis of the patient’s limitations in physical activities caused by cardiac symptoms. The NYHA functional classification is a 4-point semi-quantitative index of functional status of patients with heart failure (Kubo et al., 2004). It is a patient’s perspective of four classes of heart failure symptoms: where patients may have symptoms of heart failure at rest (class IV), on less-than-ordinary exertion (class III), on ordinary exertion (class II), or only at levels of exertion that would limit normal individuals activity (class I) (AHA, 2006). It was translated into Thai by Phuangphaka Krethong (2007).

Validity and Reliability

The frequent use of NYHA classes in both clinical practice and in research studied demonstrates that there is general agreement that the NYHA classes are valid measures of function in cardiac patient (Bennett et al., 2002).

7. Sleep Hygiene Awareness and Practice Scale

Sleep hygiene was measured by the sleep hygiene awareness and practice scale (SHAPS). This instrument was developed from Lack and Rotert (1986). The
SHAPS has two sections, a 13-item assessment of general sleep hygiene knowledge, and a 19-item assessment of sleep practice. This study was used only the last section.

The sleep hygiene practice section contained 19 questions asking the number of days per week (0-7) that the participant have the experience or engage in the activity list (e.g. take a nap, worry prior to bedtime, exercise 2 hours before bedtime, relax before bedtime).

This questionnaire was translated by using a back translation technique from Language Institute of Mahasarakham University and reviewing the quality of the translation by Language Institute of Chulalongkorn University.

Scoring Criteria

Each item can vary from 0-7 day, the total hygiene practice scores are range from 0-133 with higher scores indicating less healthy sleep hygiene practice.

Interpretation of Scores

Score more than \pm S.D. means the patients get high sleep hygiene

Score equal to \pm S.D. means the patient get moderate sleep hygiene

Score less than \pm S.D. means the patient get low sleep hygiene

Validity and Reliability

This instrument is widely used in practice. In a study of Brown (2004) which studied the relationship between life event stress, role and job strain and sleep in middle-aged female shift workers found Cronbach’s alpha coefficient was .796.

Test-retest reliabilities measured with Pearson’s Product-Moment Correlations revealed good test-retest reliability $r = .74$, $p < .001$. In this study, reliability of the sleep hygiene practice scale reported that Cronbach’s alpha coefficient was .60 in 340 heart failure patients.
8. Dysfunctional Beliefs and Attitudes about Sleep (DBAS-16)

Morin and colleagues (1993) developed the dysfunctional beliefs and attitudes about sleep scale to evaluate sleep-disruptive and cognitive cognitions. The original DBAS version included 30 items that were range on 100-mm visual analog scales. This instrument has been translated into several languages and is increasingly used by clinicians and researchers throughout the world. The DBAS has been found to be reliable for discriminating between self-defined good and poor sleepers in both younger and older adults (Morin et al., 2006). For the DBAS-16, this version has been conducted in order to encourage a more widespread use of the DBAS among the sleep community. This questionnaire was translated by using a back translation technique from Language Institute of Mahasarakham University and reviewing the quality of the translation by Language Institute of Chulalongkorn University.

This instrument consists of 4 themes as follows:

1. Perceived consequences of insomnia (item 5, 7, 9, 12, and 16)
2. Worry/helplessness about insomnia (item 3, 4, 8, 10, 11, and 14)
3. Sleep expectations (item 1 and 2)
4. Beliefs about sleep medication (item 6, 13 and 15)

Scoring criteria

A Likert-type scale requiring participants to circle a number from 0 (strongly disagree) to 10 (strongly agree) with the same continuous 100-mm line in the background. Scores for all 16 items and dividing by 16 for an average total score. A higher score indicates more dysfunctional beliefs and attitudes about sleep.
Interpretation of scores

According to a study of Carney et al. (2010) reported that the receiver operating characteristic (ROC) curve analysis suggested that DBAS-16 total score above 3.8 is associated with the degree of unhelpful beliefs found in those with clinical insomnia. Hence this study was used this cutoff to classify patients with heart failure into two groups as below:

The result of dysfunctional beliefs and attitudes about sleep was taken:

- 0-3.8 refers to low dysfunctional beliefs and attitudes about sleep
- 3.8-10 refers to high dysfunctional beliefs and attitudes about sleep

Validity and Reliability

This instrument was tested in 283 individuals with insomnia, including 124 clinical patients and 159 research participants. The factor structure was similar to the original 30-item version with four factors. This instrument was found to be reliable, Cronbach’s alpha coefficient was .77 for clinical and 0.79 for research samples and temporal stability ($r = 0.83$) (Morin et al., 2007).

In this study, reliability of dysfunctional beliefs and attitudes about sleep (DBAS-16) reported that Cronbach’s alpha coefficient was .85 in 340 heart failure patients.

9. Insomnia Severity Index (ISI)

Insomnia Severity Index (ISI) (Morin, 1993) is a brief self-report instrument measuring the patient’s perception of his or her insomnia. For this study, ISI will be used to measure insomnia in heart failure patients. It was translated into Thai by Pattarieya Keawphang (2004). ISI comprises seven items assessing the severity of sleep-onset (initial), sleep maintenance (middle), early morning awakening (terminal) problems, satisfaction with current sleep patterns, interference with daily functioning,
noticeable ability of impairment attributed to the sleep problem, and level of distress caused by the sleep problem.

Scoring criteria

Each of these items is rated on a five-point Likert scale (“0” = not at all, “4” = extremely) and the total score ranges from 0 to 28, with high scores indicating greater insomnia severity.

Interpretation of score (Morin, 1993)

- Score between 0-7 indicated no clinically significant insomnia
- Score between 8-14 indicated subthreshold insomnia
- Score between 15-21 indicated clinical insomnia (moderate severity)
- Score between 22-28 indicated clinical insomnia (severe).

Validity and Reliability

The ISI is likely to be a clinically useful tool as a screening device or as an outcome measure in insomnia treatment research (Bastien, Vallieres, and Morin, 2001). The ISI has been validated with samples in 145 patients evaluated for insomnia at a sleep disorders clinic, and in a sample of 78 older patients who participated in a randomized-controlled trial of behavioral and pharmacological therapies for insomnia.

The result found that the ISI is a valid and sensitive measure to detect changes in perceived sleep difficulties with treatment. In addition, there is a close convergence between scores obtained from the ISI patient's version and those from the clinician's and significant other's versions. The internal consistency of the ISI estimated with a Cronbach alpha coefficient was 0.74 to 0.78. The item-total correlations varied from a low of 0.36 (initial) to a high of 0.67 (interference), with an average of 0.54 (Bastien, Vallieres, and Morin, 2001).
The reliability (Cronbach’s alpha coefficient) of ISI in cancer patients was 0.86 (Pattarieya Keawphang, 2004). In this study, the reliability, Cronbach’s alpha coefficient was .93 in 340 heart failure patients.

Data Collection Methods

1. A letter asking for the permission to collect the data from the Faculty of Nursing, Chulalongkorn University and the certificates of approval of this research from the ethical review committee for research involving human research subjects, health science group, Chulalongkorn University which was sent to the directors and IRB committee of ten tertiary hospitals.

2. After the permission, the researcher made an appointment with the physician and the head nurse of heart clinic at heart clinic outpatients departments of each hospital to introduce the researcher and to inform them regarding the objective and process of the study and asked for cooperation.

3. The researcher had been collected the data by the researcher in 5 hospitals and collecting the data with research assistant 1 hospital and another 4 hospitals in the North and the South, the researcher trained research assistants to collect the data. The research assistants in this study graduated master degree in nursing science and another 2 the research assistants had studying master degree in nursing science in the second year. Before collecting the data, the researcher went to 5 hospitals and explained regarding the objective, process and every item in the questionnaire and giving the research assistant a guideline questionnaire in order to clear all of the questions.

4. Collect clinical data of the patients from OPD Card.
5. Approach all of the patients who met the inclusion criteria at heart clinic, out-patient department, gave patient information sheet and inform consent to them and explain the details of both forms.

6. When the patients were willing to participate in the study, the researcher would invite the patients to the place prepared in order to sign consent. Then, gave all the questionnaires to the patients. The patients had to answer all the questionnaires by themselves.

7. Protect the rights of the individuals who volunteered as subjects by having each patient sign a consent form, which included an explanation of the purpose of the study, assurance of confidentiality, informed about the questionnaire destruction when finishing the study as well as the option to withdraw from the study at any time with no consequence at all.

Data Analysis

Both of descriptive and inferential statistics were utilized to describe the research hypotheses. The process of data analysis was as follows:

1. Descriptive statistics were described the demographic, the clinical characteristic, characteristics of insomnia and basic features of selected factors of insomnia of the patients in this study with frequencies, percentages, the standard deviation and the range.

2. Chi-square test and Contingency coefficient was used to explore the relationship among the predisposing factors (age, gender, anxiety, and depression), the precipitating factors (marital status, dyspnea, sleep disorder breathing, and functional status), the perpetuating factors (sleep hygiene, and dysfunctional beliefs and attitudes about sleep) and insomnia among patients with heart failure.
3. **Multiple logistic regressions was used to examine the predictability**

among the predisposing factors (age, gender, anxiety, and depression), the
precipitating factors (marital status, dyspnea, sleep disorder breathing, and functional
status), the perpetuating factors (sleep hygiene, and dysfunctional beliefs and
attitudes about sleep) and insomnia among patients with heart failure.

Human Subject Protection

The permission of the patient’s interviews were obtained from The Ethical
Review Committee for Research Involving Human Research Subjects, Health Science
Group, Chulalongkorn University and the permission from 10 hospitals
had been obtained before to approach the patients. The researcher gave the patients’
informed consent and explained about the objective of the study. The researcher did
not address his or her name in the data. The participants can withdraw from the study.

If the patients have some symptoms such as discomfort, tiredness, fatigue or fainting.
The researcher would let them take a rest and care about the patients. Everything went
well throughout collecting data process. The patients did not have any discomfort
symptoms.
CHAPTER IV

RESULTS

The objective of this study were to describe the characteristics of insomnia in patients with heart failure and examine the relationship among the predisposing factors (age, gender, anxiety, depression), the precipitating factors (marital status, dyspnea, sleep disorder breathing, functional status), the perpetuating factors (sleep hygiene, dysfunctional beliefs and attitudes about sleep), and insomnia in 340 patients with heart failure.

The data analysis is presented as follows:

Part 1 the study of demographic and clinical characteristic of the patients by using descriptive statistics: frequency, percentage, means, and standard deviation is shown in Table 2-3.

Part 2 the studies of characteristics of insomnia by using descriptive statistic: frequency, percentage, means, standard deviation is shown in Table 4-6.

Part3 the studies of selected factors of insomnia by using descriptive statistics: frequency, percentage, means, and standard deviation is shown in Table 7-12.

Part 4 Examine the relationship among the predisposing factors (age, gender, anxiety, and depression), the precipitating factors (marital status, dyspnea, sleep disorder breathing, functional status), and the perpetuating factors (sleep hygiene, and dysfunctional beliefs and attitudes about sleep) by using Chi-square test is shown in Table 13-15.

Part 5 Examine the predictive factors of insomnia by using multiple logistic regression is shown in Table 16.
1. The Characteristics of the Patients

1.1 The Demographic Characteristics of the Patients

Table 2 The frequency, percentage, means and standard deviation of demographic characteristic of patients with heart failure (N=340)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>176</td>
<td>51.8</td>
</tr>
<tr>
<td>Male</td>
<td>164</td>
<td>48.2</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-40</td>
<td>33</td>
<td>9.7</td>
</tr>
<tr>
<td>41-60</td>
<td>140</td>
<td>41.2</td>
</tr>
<tr>
<td>61-80</td>
<td>167</td>
<td>49.1</td>
</tr>
<tr>
<td>Mean = 59.22 years, S.D. = 12.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>237</td>
<td>69.7</td>
</tr>
<tr>
<td>Widowed</td>
<td>50</td>
<td>14.7</td>
</tr>
<tr>
<td>Single</td>
<td>34</td>
<td>10.0</td>
</tr>
<tr>
<td>Separated</td>
<td>13</td>
<td>3.8</td>
</tr>
<tr>
<td>Divorced</td>
<td>6</td>
<td>1.8</td>
</tr>
<tr>
<td>Educational Level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-education</td>
<td>43</td>
<td>12.6</td>
</tr>
<tr>
<td>Primary school</td>
<td>213</td>
<td>62.6</td>
</tr>
<tr>
<td>Secondary school</td>
<td>54</td>
<td>15.9</td>
</tr>
<tr>
<td>High school</td>
<td>19</td>
<td>5.6</td>
</tr>
<tr>
<td>Certificate Bachelor’ Degree</td>
<td>9</td>
<td>2.6</td>
</tr>
<tr>
<td>Master’ Degree</td>
<td>2</td>
<td>0.6</td>
</tr>
<tr>
<td>Occupation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unemployed person</td>
<td>159</td>
<td>46.8</td>
</tr>
<tr>
<td>Employee</td>
<td>60</td>
<td>17.6</td>
</tr>
<tr>
<td>Agriculturalist</td>
<td>60</td>
<td>17.6</td>
</tr>
<tr>
<td>Merchant</td>
<td>34</td>
<td>10.0</td>
</tr>
<tr>
<td>Government officer</td>
<td>16</td>
<td>4.7</td>
</tr>
<tr>
<td>Businessman</td>
<td>9</td>
<td>2.6</td>
</tr>
<tr>
<td>Student</td>
<td>2</td>
<td>0.6</td>
</tr>
</tbody>
</table>
According to Table 2 the results show that one hundred and sixty-four were male and 176 were female. Most of the patient’s age group was between 61-80 years old (49.1%). In term of marital status, the majority of the patients were married (69.70%), as regards of education levels, most of them received education in a primary school (62.6%), and most of them was employed person (46.8%), more than half of the subjects (69.7%) have income less than 5,000 Baht.
1.2 The Clinical Characteristics of the Patients

Table 3 The frequency, percentage, means and standard deviation of the clinical characteristics of patients with heart failure (N=340)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time since initial diagnosis (years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 5</td>
<td>222</td>
<td>65.3</td>
</tr>
<tr>
<td>5-10</td>
<td>99</td>
<td>29.1</td>
</tr>
<tr>
<td>>10</td>
<td>19</td>
<td>5.6</td>
</tr>
<tr>
<td>Mean</td>
<td>4.24 years</td>
<td>S.D. = 4.22</td>
</tr>
<tr>
<td>Etiology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valvular heart disease</td>
<td>145</td>
<td>42.6</td>
</tr>
<tr>
<td>Hypertension</td>
<td>93</td>
<td>27.4</td>
</tr>
<tr>
<td>Coronary artery disease</td>
<td>93</td>
<td>27.4</td>
</tr>
<tr>
<td>Cardiomyopathy</td>
<td>90</td>
<td>26.5</td>
</tr>
<tr>
<td>Cardiac arrhythmia</td>
<td>75</td>
<td>22.1</td>
</tr>
<tr>
<td>Diabetes</td>
<td>49</td>
<td>14.4</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>16</td>
<td>4.7</td>
</tr>
<tr>
<td>The New York Heart Association (NYHA) Functional Classification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FC I</td>
<td>221</td>
<td>65.0</td>
</tr>
<tr>
<td>FC II</td>
<td>79</td>
<td>23.2</td>
</tr>
<tr>
<td>FC III</td>
<td>35</td>
<td>10.3</td>
</tr>
<tr>
<td>FC IV</td>
<td>5</td>
<td>1.5</td>
</tr>
<tr>
<td>Left ventricular ejection fraction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 40%</td>
<td>96</td>
<td>28.2</td>
</tr>
<tr>
<td>40-54</td>
<td>57</td>
<td>16.8</td>
</tr>
<tr>
<td>55-70</td>
<td>73</td>
<td>21.5</td>
</tr>
<tr>
<td>>70</td>
<td>17</td>
<td>5.0</td>
</tr>
<tr>
<td>Body Mass Index</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 18.5 (underweight)</td>
<td>47</td>
<td>13.8</td>
</tr>
<tr>
<td>18.5-24.99 (normal range)</td>
<td>213</td>
<td>62.6</td>
</tr>
<tr>
<td>≥ 25 (overweight)</td>
<td>57</td>
<td>16.8</td>
</tr>
<tr>
<td>≥ 30 (obese)</td>
<td>23</td>
<td>6.8</td>
</tr>
<tr>
<td>Mean</td>
<td>22.80</td>
<td>S.D. = 4.47</td>
</tr>
</tbody>
</table>
Table 3 shows that most of the patients living with heart failure < 5 years (65.3%). The average of years was 4.24 years. The majority of etiology was valvular heart disease (42.6%). Most of patient have FC I (65%). The patients had Left ventricular ejection fraction (LVEF) less than 40% were 28.2%, LVEF between 40%-55% were 16.8% and LVEF higher than 70% were 5%. Heart failure patients had underweight (13.8%) and overweight (16.8%).

2. Characteristic of Insomnia in Patients with Heart Failure

2.1 Severity of Insomnia in Patients with Heart Failure

Table 4 The frequency and percentage of insomnia as measured by Insomnia Severity Index (ISI) (N=340)

<table>
<thead>
<tr>
<th>Severity of insomnia</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>None (0-7)</td>
<td>131</td>
<td>38.5</td>
</tr>
<tr>
<td>Sub-threshold insomnia (8-14)</td>
<td>100</td>
<td>29.4</td>
</tr>
<tr>
<td>Moderate insomnia (15-21)</td>
<td>81</td>
<td>23.8</td>
</tr>
<tr>
<td>Severe insomnia (22-28)</td>
<td>28</td>
<td>8.2</td>
</tr>
<tr>
<td>Moderate-severe (clinically significant insomnia) (15-28)</td>
<td>109</td>
<td>32.0</td>
</tr>
</tbody>
</table>

Table 4 shows that there were 109 (32%) heart failure patients who had score of ISI ≥ 15, this cut point score indicated that they have clinical insomnia.
2.2 Types of Insomnia

Table 5 The frequency and percentage of 3 types of insomnia in heart failure patients (N=340)

<table>
<thead>
<tr>
<th>Type</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Difficulty falling asleep (1)</td>
<td>102</td>
<td>30.00</td>
</tr>
<tr>
<td>Difficulty staying asleep (2)</td>
<td>102</td>
<td>30.00</td>
</tr>
<tr>
<td>Waking up too early (3)</td>
<td>88</td>
<td>25.88</td>
</tr>
</tbody>
</table>

Table 5 reveals that the most common symptoms of insomnia were difficulty falling asleep (30%), difficulty staying asleep (30%) and waking up too early.

Table 6 The frequency and percentage of 3 types and combination type of insomnia in heart failure patient who had clinically significant insomnia (N=109)

<table>
<thead>
<tr>
<th>Type</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Difficulty falling asleep (1)</td>
<td>3</td>
<td>2.75</td>
</tr>
<tr>
<td>Difficulty staying asleep (2)</td>
<td>2</td>
<td>1.80</td>
</tr>
<tr>
<td>Waking up too early (3)</td>
<td>1</td>
<td>0.92</td>
</tr>
<tr>
<td>(1) & (2)</td>
<td>16</td>
<td>14.68</td>
</tr>
<tr>
<td>(1) & (3)</td>
<td>3</td>
<td>2.75</td>
</tr>
<tr>
<td>(2) & (3)</td>
<td>4</td>
<td>3.67</td>
</tr>
<tr>
<td>(1) & (2) & (3)</td>
<td>80</td>
<td>73.40</td>
</tr>
</tbody>
</table>

Table 6 presented types of the patients who had clinical insomnia. Most of heart failure patients had mixed all types of insomnia (73.40%).
3. The Descriptive of Selected Factors of Insomnia

3.1 The Descriptive of The Predisposing factors, The Precipitating factors, and The Precipitating factors.

Table 7 The frequency, percentage, means, and standard deviation of anxiety

<table>
<thead>
<tr>
<th>Anxiety</th>
<th>Frequency</th>
<th>Percent</th>
<th>Mean</th>
<th>S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild anxiety</td>
<td>242</td>
<td>71.2</td>
<td>29.95</td>
<td>6.10</td>
</tr>
<tr>
<td>Moderate anxiety</td>
<td>90</td>
<td>26.5</td>
<td>46.68</td>
<td>5.48</td>
</tr>
<tr>
<td>Severe anxiety</td>
<td>8</td>
<td>2.4</td>
<td>62.00</td>
<td>1.60</td>
</tr>
</tbody>
</table>

Total score 35.13, 10.30

Table 7 revealed that 28.9% of heart failure patients had anxiety in moderate and severe level of anxiety.

Table 8 The frequency, percentage, means and standard deviation of depression

<table>
<thead>
<tr>
<th>Depression</th>
<th>Frequency</th>
<th>Percent</th>
<th>Mean</th>
<th>S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depression</td>
<td>104</td>
<td>30.6</td>
<td>25.17</td>
<td>8.39</td>
</tr>
<tr>
<td>No depression</td>
<td>236</td>
<td>69.4</td>
<td>8.32</td>
<td>4.32</td>
</tr>
</tbody>
</table>

Total score 13.47, 9.74

Table 8 showed that 30.6% of heart failure patients had depressive symptoms.
Table 9 The frequency, percentage, means, and standard deviation of dyspnea

<table>
<thead>
<tr>
<th>Dyspnea</th>
<th>Frequency</th>
<th>Percent</th>
<th>Mean</th>
<th>S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild dyspnea</td>
<td>280</td>
<td>82.4</td>
<td>11.35</td>
<td>11.44</td>
</tr>
<tr>
<td>Moderate dyspnea</td>
<td>39</td>
<td>11.5</td>
<td>48.04</td>
<td>6.12</td>
</tr>
<tr>
<td>Severe dyspnea</td>
<td>21</td>
<td>6.2</td>
<td>69.71</td>
<td>6.74</td>
</tr>
<tr>
<td>Total score</td>
<td></td>
<td></td>
<td>19.22</td>
<td>20.43</td>
</tr>
</tbody>
</table>

Table 9 presented that 11.5% of heart failure patients who had moderate dyspnea and 6.2% of them had severe dyspnea.

Table 10 The frequency and percentage of each item of the Berline questionnaire to measure sleep disorder breathing

<table>
<thead>
<tr>
<th>Sleep disorder breathing</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snoring</td>
<td>107</td>
<td>37.5</td>
</tr>
<tr>
<td>Snoring at least 3-4 time/weeks</td>
<td>74</td>
<td>21.8</td>
</tr>
<tr>
<td>Snoring louder than talking</td>
<td>88</td>
<td>25.9</td>
</tr>
<tr>
<td>Snoring bothered other people</td>
<td>83</td>
<td>24.4</td>
</tr>
<tr>
<td>Breathing pauses has been observed by others at last 3-4 time week</td>
<td>11</td>
<td>3.2</td>
</tr>
<tr>
<td>Total score is 2 or more points</td>
<td>98</td>
<td>28.82</td>
</tr>
</tbody>
</table>
Table 10 con’t

<table>
<thead>
<tr>
<th>Sleep disorder breathing</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feel tired or fatigued after sleep at least 3-4 times a week</td>
<td>42</td>
<td>12.4</td>
</tr>
<tr>
<td>Feel tired or fatigued or not up to par during waking time at least 3-4 times a week</td>
<td>43</td>
<td>12.6</td>
</tr>
<tr>
<td>Fallen asleep while driving a vehicle or watching very interesting TV program</td>
<td>64</td>
<td>18.8</td>
</tr>
<tr>
<td>Total score is 2 or more points</td>
<td>36</td>
<td>10.59</td>
</tr>
<tr>
<td>Category 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Have high blood pressure</td>
<td>89</td>
<td>26.18</td>
</tr>
<tr>
<td>BMI > 30</td>
<td>30</td>
<td>8.82</td>
</tr>
<tr>
<td>High blood pressure or BMI > 30</td>
<td>119</td>
<td>35</td>
</tr>
</tbody>
</table>

Interpretation

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>High risk<sup>a</sup></td>
<td>60</td>
<td>17.65</td>
</tr>
<tr>
<td>Low risk<sup>b</sup></td>
<td>280</td>
<td>82.35</td>
</tr>
</tbody>
</table>

^a There are 2 or more categories where the score is positive

^b There is only 1 or no categories where the score is positive

Table 10 presented that 17.65% of heart failure patients had high risk of sleep disorder breathing.
Table 11 Mean and standard deviation of each item of the sleep hygiene practice scale

<table>
<thead>
<tr>
<th>Sleep hygiene</th>
<th>Mean</th>
<th>S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. No exercise in the afternoon or in the evening.</td>
<td>5.05</td>
<td>2.62</td>
</tr>
<tr>
<td>2. Take a nap.</td>
<td>3.39</td>
<td>2.63</td>
</tr>
<tr>
<td>3. No manage the time for rest taking before going to bed.</td>
<td>3.12</td>
<td>2.90</td>
</tr>
<tr>
<td>4. No approximate sleep for the same period of every night.</td>
<td>1.98</td>
<td>2.35</td>
</tr>
<tr>
<td>5. Worry that you may be unable to fall asleep while going to bed.</td>
<td>1.14</td>
<td>1.84</td>
</tr>
<tr>
<td>6. Worry during the day time that you may be unable to fall asleep at night.</td>
<td>1.08</td>
<td>1.82</td>
</tr>
<tr>
<td>7. Do not set the thermostat at a comfortable temperature for sleeping inside the bedroom.</td>
<td>0.97</td>
<td>2.03</td>
</tr>
<tr>
<td>8. Allow the noise to disturb while sleeping.</td>
<td>0.80</td>
<td>1.89</td>
</tr>
<tr>
<td>9. Take sleeping pills regularly.</td>
<td>0.52</td>
<td>1.42</td>
</tr>
<tr>
<td>10. Leave the lights on while sleeping.</td>
<td>0.44</td>
<td>1.38</td>
</tr>
<tr>
<td>11. Go to bed while thirsty.</td>
<td>0.41</td>
<td>1.29</td>
</tr>
<tr>
<td>12. Go to bed while hungry.</td>
<td>0.39</td>
<td>1.16</td>
</tr>
<tr>
<td>13. Allow a person who sleeps in the same bed to disturb you while sleeping.</td>
<td>0.31</td>
<td>1.30</td>
</tr>
<tr>
<td>14. Drink the beverages containing caffeine within 4 hours before sleeping.</td>
<td>0.22</td>
<td>1.10</td>
</tr>
<tr>
<td>15. Consume or take medicine which contains caffeine within 4 hours before going to bed.</td>
<td>0.13</td>
<td>0.71</td>
</tr>
<tr>
<td>16. Over exercise within 2 hours before going to bed.</td>
<td>0.08</td>
<td>0.61</td>
</tr>
<tr>
<td>17. Drink more than 3 ounces of alcohol within 2 hours before going to bed.</td>
<td>0.08</td>
<td>0.55</td>
</tr>
</tbody>
</table>
Table 11 con’t

<table>
<thead>
<tr>
<th>Sleep hygiene</th>
<th>Mean</th>
<th>S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Use alcohol in order to fall asleep easily.</td>
<td>0.06</td>
<td>0.52</td>
</tr>
<tr>
<td>19. Smoke more than one pack of cigarettes per day.</td>
<td>0.04</td>
<td>0.44</td>
</tr>
</tbody>
</table>

Total score of the sleep hygiene practice scale
20.23 10.83

Table 11 shows that sleep hygiene which patients with heart failure did a lot was as follows: they had no exercise in the afternoon or in the evening, the average was 5.05 days per week, it means that about 2 days that they exercise. The average of napping during the day was 3.39 days per week. They did not manage the time for rest taking before going to bed; the average was 3.12 days per week. No for approximate sleep for the same period on every night was 1.14 days per week. They worry about unable to fall asleep while going to bed and worry during the day time that unable to fall asleep at night were 1.14 and 1.08 days per week respectively.
Table 12 Mean and standard deviation of each item of dysfunctional beliefs and attitudes about sleep (DBAS-16)

<table>
<thead>
<tr>
<th>Dysfunctional beliefs and attitudes about sleep</th>
<th>Mean</th>
<th>S.D.</th>
</tr>
</thead>
</table>

1. Perceived consequences of insomnia

1.1 After a poor night’s sleep, I know that it will interfere with my daily activities on the next day. 6.72 2.77

1.2 When I feel tired, have no energy, or just seem not to function well during the day, it is generally because I did not sleep well the night before. 6.43 2.94

1.3 When I feel irritable, depressed, or anxious during the day, it is mostly because I did not sleep well the night before. 6.12 3.16

1.4 Without an adequate night’s sleep, I can hardly function the next day. 5.58 3.29

1.5 I avoid or cancel obligations (social, family) after a poor night’s sleep. 5.03 3.46

2. Worry/helplessness about insomnia

2.1 I am concerned that chronic insomnia may have serious consequences on my physical health. 8.21 2.40

2.2 I feel insomnia is ruining my ability to enjoy life and prevents me from doing what I want. 6.30 3.05

2.3 I can’t ever predict whether I’ll have a good or poor night’s sleep. 5.99 3.20

2.4 I have little ability to manage the negative consequences of disturbed sleep. 5.46 3.29
Table 12 con’t

<table>
<thead>
<tr>
<th>Dysfunctional beliefs and attitudes about sleep</th>
<th>Mean</th>
<th>S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5 I am worried that I may lose control over my abilities to sleep.</td>
<td>4.26</td>
<td>3.41</td>
</tr>
<tr>
<td>2.6 When I sleep poorly on one night, I know it will disturb my sleep schedule for the whole week.</td>
<td>4.09</td>
<td>3.42</td>
</tr>
</tbody>
</table>

3. **Sleep expectations**

3.1 I need 8 hours of sleep to feel refreshed and function well during the day. 8.79 1.96

3.2 When I don’t get proper amount of sleep on a given night, I need to catch up on the next day by napping or on the next night by sleeping longer. 6.71 3.04

4. **Beliefs about sleep medication**

4.1 I believe insomnia is essentially the result of a chemical imbalance. 6.17 3.02

4.2 In order to be alert and function well during the day, I believe I would be better off taking a sleeping pill rather than having a poor night’s sleep. 3.03 3.63

4.3 Medication is probably the only solution to sleeplessness. 2.96 3.45
Table 12 shows that high average of score of dysfunctional beliefs and attitudes about sleep in every dimension. Especially, sleep expectation; “I need 8 hours of sleep to feel refreshed and function well during the day” However, low average score in item of beliefs about sleep medication, heart failure patients did not think that medication is probably the solution to sleeplessness.

4. The Relationship between Selected Factors and Insomnia

Table 13 The relationship between the predisposing factors (age, gender, anxiety, and depression) by using Chi-square test and Contingency Coefficient (C) (N = 340)

<table>
<thead>
<tr>
<th>Factor</th>
<th>No insomnia</th>
<th>Insomnia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frequency</td>
<td>Percent</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-40</td>
<td>25</td>
<td>7.35</td>
</tr>
<tr>
<td>41-60</td>
<td>100</td>
<td>29.41</td>
</tr>
<tr>
<td>61-80</td>
<td>106</td>
<td>31.18</td>
</tr>
<tr>
<td>(\chi^2 = 3.238, \ C = .097, \ p = .198)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>113</td>
<td>33.24</td>
</tr>
<tr>
<td>Female</td>
<td>118</td>
<td>34.71</td>
</tr>
<tr>
<td>(\chi^2 = .134, \ C = .020, \ p = .714)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 13 shows that anxiety and depression were significant correlated with insomnia in patients with heart failure (p < .05), with a strength of association C = .398 and .387 respectively. Age and gender were not significant correlated with insomnia.

<table>
<thead>
<tr>
<th>Factor</th>
<th>No insomnia</th>
<th>Insomnia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frequency</td>
<td>Percent</td>
</tr>
<tr>
<td>Anxiety</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild anxiety</td>
<td>195</td>
<td>57.35</td>
</tr>
<tr>
<td>Moderate anxiety</td>
<td>35</td>
<td>10.29</td>
</tr>
<tr>
<td>Severe anxiety</td>
<td>1</td>
<td>0.29</td>
</tr>
</tbody>
</table>

\[\chi^2 = 63.909, \ C = .398, p = .000^{**} \]

Depression

<table>
<thead>
<tr>
<th>Factor</th>
<th>No insomnia</th>
<th>Insomnia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frequency</td>
<td>Percent</td>
</tr>
<tr>
<td>No depression</td>
<td>191</td>
<td>56.18</td>
</tr>
<tr>
<td>Depression</td>
<td>40</td>
<td>11.76</td>
</tr>
</tbody>
</table>

\[\chi^2 = 59.781, \ C = .387, p = .000^{**} \]
Table 14 The relationship between the precipitating factors (marital status, dyspnea, sleep disorder breathing, and functional status) by using Chi-Square Test and Contingency Coefficient (N = 340)

<table>
<thead>
<tr>
<th>Factor</th>
<th>No insomnia</th>
<th></th>
<th>Insomnia</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frequency</td>
<td>Percent</td>
<td>Frequency</td>
<td>Percent</td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>29</td>
<td>8.53</td>
<td>5</td>
<td>1.47</td>
</tr>
<tr>
<td>Married</td>
<td>165</td>
<td>48.53</td>
<td>72</td>
<td>21.18</td>
</tr>
<tr>
<td>Separated/divorced/widowed</td>
<td>37</td>
<td>10.88</td>
<td>32</td>
<td>9.41</td>
</tr>
<tr>
<td>χ² = 14.15, C = .200, p = .007</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dyspnea</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild dyspnea</td>
<td>206</td>
<td>60.59</td>
<td>74</td>
<td>21.76</td>
</tr>
<tr>
<td>Moderate dyspnea</td>
<td>22</td>
<td>6.47</td>
<td>17</td>
<td>5.0</td>
</tr>
<tr>
<td>Severe dyspnea</td>
<td>3</td>
<td>0.88</td>
<td>18</td>
<td>5.29</td>
</tr>
<tr>
<td>χ² = 34.212, C = .302, p = .000*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* p < .01, ** p < .001
Table 14: The relationship between the precipitating factors (marital status, dyspnea, sleep disorder breathing, and functional status) by using Chi-Square Test and Contingency Coefficient (N = 340) (continue)

<table>
<thead>
<tr>
<th>Factor</th>
<th>No Insomnia</th>
<th>Insomnia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frequency</td>
<td>Percent</td>
</tr>
<tr>
<td>Sleep disorder breathing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High risk</td>
<td>34</td>
<td>10.00</td>
</tr>
<tr>
<td>Low risk</td>
<td>197</td>
<td>57.94</td>
</tr>
<tr>
<td>$\chi^2 = 4.252$, $C = .111$, $p = .039^*$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Functional status

<table>
<thead>
<tr>
<th>Functional status</th>
<th>No Insomnia</th>
<th>Insomnia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frequency</td>
<td>Percent</td>
</tr>
<tr>
<td>FC I</td>
<td>167</td>
<td>49.12</td>
</tr>
<tr>
<td>FCII</td>
<td>48</td>
<td>14.12</td>
</tr>
<tr>
<td>FCIII</td>
<td>16</td>
<td>4.71</td>
</tr>
<tr>
<td>FCIV</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\chi^2 = 26.304$, $C = .268$, $p = .000^{**}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* $p < .05$, ** $p < .001$

Table 14 shows that marital status, dyspnea, sleep disorder breathing and functional status were significant correlated with insomnia in patients with heart failure ($p < .05$), with a strength of association $C = .200, .302, .111$ and .268 respectively.
Table 15 The relationship between the perpetuating factors (sleep hygiene, and sleep dysfunctional beliefs and attitudes about sleep) by using Chi-square and Contingency Coefficient (N = 340)

<table>
<thead>
<tr>
<th>Factor</th>
<th>No insomnia</th>
<th></th>
<th>Insomnia</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frequency</td>
<td>Percent</td>
<td>Frequency</td>
<td>Percent</td>
</tr>
<tr>
<td>Sleep hygiene</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>39</td>
<td>11.48</td>
<td>9</td>
<td>2.65</td>
</tr>
<tr>
<td>Moderate</td>
<td>174</td>
<td>51.18</td>
<td>73</td>
<td>21.47</td>
</tr>
<tr>
<td>High</td>
<td>18</td>
<td>5.29</td>
<td>27</td>
<td>7.94</td>
</tr>
<tr>
<td>$\chi^2 = 20.744$, $C = .240$, $p = .000^{**}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dysfunctional beliefs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and attitudes about sleep</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>36</td>
<td>10.59</td>
<td>3</td>
<td>0.88</td>
</tr>
<tr>
<td>High</td>
<td>195</td>
<td>57.35</td>
<td>106</td>
<td>31.18</td>
</tr>
<tr>
<td>$\chi^2 = 12.008$, $C = .185$, $p = .001^{*}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* $p < .01$, **$p < .001$

Table 15 shows that both of sleep hygiene and dysfunctional beliefs and attitudes about sleep were significant correlated with insomnia in patients with heart failure ($p < .05$); with a strength of association $C = .240$, and .185 respectively.
5. The Predictive Factors of Insomnia

Table 16 Multiple logistic regression analysis for the relationship between selected factors and insomnia (N = 340)

<table>
<thead>
<tr>
<th>Factors</th>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Exp(B)</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single (reference)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>1.094</td>
<td>.614</td>
<td>3.169</td>
<td>1</td>
<td>2.985</td>
<td>.895- 9.952</td>
</tr>
<tr>
<td>Separated, divorced, and widowed</td>
<td>1.953</td>
<td>.658</td>
<td>8.804</td>
<td>1</td>
<td>7.051*</td>
<td>1.940-25.617</td>
</tr>
<tr>
<td>Anxiety</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild (ref.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td>1.142</td>
<td>.357</td>
<td>10.211</td>
<td>1</td>
<td>3.133*</td>
<td>1.555- 6.311</td>
</tr>
<tr>
<td>Severe</td>
<td>2.213</td>
<td>1.147</td>
<td>3.722</td>
<td>1</td>
<td>9.146</td>
<td>.965-86.648</td>
</tr>
<tr>
<td>Depression</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No (ref.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>.924</td>
<td>.355</td>
<td>6.773</td>
<td>1</td>
<td>2.519*</td>
<td>1.256-5.051</td>
</tr>
<tr>
<td>Dyspnea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild (ref.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td>.163</td>
<td>.414</td>
<td>.155</td>
<td>1</td>
<td>1.177</td>
<td>.450- 2.385</td>
</tr>
</tbody>
</table>

*Significant at p < 0.05
Table 16 con’t

<table>
<thead>
<tr>
<th>Factors</th>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Exp(B)</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lower-Upper</td>
</tr>
<tr>
<td>Dysfunctional beliefs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and attitudes about sleep</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low (ref.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>1.424</td>
<td>.636</td>
<td>5.012</td>
<td>1</td>
<td>4.156*</td>
<td>1.194-14.462</td>
</tr>
<tr>
<td>Constant</td>
<td>-4.158</td>
<td>.863</td>
<td>23.202</td>
<td>1</td>
<td>.016**</td>
<td></td>
</tr>
</tbody>
</table>

* p < .05,** p < .001

Table 16 presents the result of multiple logistic regression analysis, the predictive factors of insomnia by using multiple logistic regression, forward stepwise was conducted in five steps. All factors correlated with insomnia from \(\chi^2 \) test were included into a multiple logistic regression as predictor factors of insomnia. The beginning block and step 5 results are displayed in Appendix E.

After entering correlated factors of insomnia in each step of the forward logistic regression analysis, five factors including marital status, anxiety, depression, dyspnea and dysfunctional beliefs and attitudes about sleep were retained in the final step of the analysis. These factors were found to predict insomnia with a significant \(p < .001 \). Functional status, sleep disorder breathing, and sleep hygiene were not entered into this analysis.

There were 5 significant predictive factors of insomnia with 95% confident level \((\alpha = 0.05) \) and all of them had \(\text{Exp}(B) > 1 \) mean that 5 factors can increase the probability of insomnia as follows:
1. Separated, divorced and widowed marital status was determined to be significant (p = .003) and added to the model during step 4, with an odds ratio of 7.051. It means that the patients with Separated, divorced and widowed marital status were roughly seven times more likely to be insomnia than the patients who was single marital status.

2. Anxiety in moderate level was determined to be significant (p = .001) and added to the model during step 2, with an odds ratio of 3.133. It means that the patients with moderate anxiety were approximately three times more likely to be insomnia than the patients who had mild anxiety.

3. Depression was determined to be significant (p = .009) and added to the model during step 1, with an odds ratio of 2.519. It means that the patients who had depression were approximately two point five times more likely to be insomnia than the patients who had no depression.

4. Dyspnea in severity level was determined to be significant (p = .005) and added to the model during step 5, with an odds ratio of 9.114. It means that the patients who had severe dyspnea were approximately nine times more likely to be insomnia than the patients who had mild dyspnea.

5. Dysfunctional beliefs and attitudes about sleep in high level was determined to be significant (p = .002) and added to the model during step 5, with an odds ratio of 4.156. It means that the patients who had high dysfunctional beliefs and attitudes about sleep were approximately four times more likely to be insomnia than the patients who had low dysfunctional beliefs and attitudes about sleep.
Logistic Regression Model Predicting Insomnia

Logit (P) = -4.158 + 1.094 (married) + 1.953 (separated, divorced and widowed)*

+ 1.142 (moderate anxiety)* + 2.213 (severe anxiety)

+ 0.924 (depression)* + 0.163 (moderate dyspnea)

+ 2.210 (severe dyspnea)* + 1.424 (high dysfunctional beliefs and attitudes about sleep)*
CHAPTER V

DISCUSSION, IMPLICATION, AND RECOMMENDATIONS

This study was descriptive research design. The objectives of the study were as follows:

1. Describe the characteristics of insomnia in patients with heart failure.

2. Examine the relationship among the predisposing factors (age, gender, anxiety, depression), the precipitating factors (marital status, dyspnea, sleep disorder breathing, functional status), the perpetuating factors (sleep hygiene, dysfunctional beliefs and attitudes about sleep), and insomnia in patients with heart failure.

The sample was 340 patients with heart failure. It was obtained by using multi-stage random sampling. Setting was heart clinic at 10 tertiary care hospitals including Chiangrai Regional Hospital, Maharaj Nakorn ChiangMai Hospital, Khonkaen Hospital, Sappasitipasong Hospital, Ratraburi Hospital, Chonburi Hospital, Maharaj Nakhon Si Thammarat Hospital, Suratthani Hospital, Siriraj Hospital, and King Chulalongkorn Memorial Hospital. Collecting data was done during July 2009 to January 2010. Inclusion criteria as follows:

1) Diagnosed with heart failure and had stable condition

2) Age equal to or more than 18 years old to 80 years old

3) Able to communicate in Thai

4) Willing to participate in this study

The instruments used in this study including a demographic questionnaire, the state-trait anxiety inventory (STAI), the Center for epidemiologic studies depression scale (CES-D Scale), The dyspnea questionnaire, Berlin Questionnaire, The New York Heart Association (NYHA) functional classification, Sleep Hygiene...
Awareness and Practice Scale, Dysfunctional Beliefs and Attitudes about sleep (DBAS-16), and Insomnia Severity Index (ISI).

Data Analysis by using descriptive and inferential statistic was as follows:

1. Descriptive statistics were described the demographic and clinical characteristics, characteristic of insomnia and selected factors of insomnia in patients with heart failure by using frequencies, percentages, the standard deviation and the range.

2. Chi-square test was used to explore the relationship among the predisposing factors (age, gender, anxiety, depression), the precipitating factors (marital status, dyspnea, sleep disorder breathing, functional status), the perpetuating factors (sleep hygiene, dysfunctional beliefs and attitudes about sleep), and insomnia in patients with heart failure.

3. Multiple logistic regressions was used to examine the predictability of the predisposing factors (age, gender, anxiety, and depression), the precipitating factors (marital status, dyspnea, sleep disorder breathing, and functional status), the perpetuating factors (sleep hygiene, and dysfunctional beliefs and attitudes about sleep) and insomnia among patients with heart failure.

The Summary of the Result

1. The Characteristics of Heart Failure Patients

In this study, there were 164 male patients (48.2%) and 176 female patients (51.8%). Mean age was 59.22, S.D. 12.98, most of them was married 69.7%, the majority of education level was primary school, most of them was unemployed person (46.8%). Sixty-nine point seven percent had income less than 5,000 Baht.
For clinical characteristics, most of heart failure patients living with heart failure less than 5 years, most etiology was valvular heart disease (42.6%), most of them had more than 1 etiology (48.53%). The majority of their functional class was functional class 1 (65%). Most of patients had left ventricular ejection fraction more than 40% (43.2%), heart failure patients had underweight (13.8%) and overweight (16.8%).

3. The Characteristics of Insomnia in Patients with Heart Failure

One hundred and nine patients with heart failure (32%) reported clinical insomnia. There were 81 patients (23.8%) had moderate insomnia and 28 patients had severe insomnia (8.2%). For no clinical insomnia group of patients, there were 131 patients had no insomnia and 100 patients (29.4%) had subthreshold insomnia.

The most common type of insomnia, identified by 30% of patients with heart failure was difficulty falling asleep and difficulty staying asleep. Waking up too early was reported 25.88%. Most heart failure patients with insomnia (80.20%) indicated that they had combination of these problems; 6.8% had two types of insomnia, 73.40% had three types of insomnia. Only 1.8 % had only one type of insomnia.

The average of napping more than 30 minutes was 3.39 days per weeks. Twenty-seven percent of all patients nap every day. There were 43 patients (12.65%) of all heart failure patients have been taking sleeping pills. However, 15 patients (4.41%) of them still had clinical insomnia. Most of heart failure patients with insomnia did not taking sleeping pills every day because they knew from the physician that sleeping pills was not good for their health therefore they had taking sleeping pills only the day that they felt their symptoms of insomnia in severity level. Moreover, 94 patients (27.65%) of all heart failure patient who had clinical insomnia
did not consult with anyone in health care team regarding their symptoms of insomnia because they thought that they had to help themselves and they tried to napping during the day.

4. The Relationship between Selected Factors and Insomnia in Patients with Heart Failure

The predisposing factors including anxiety, depression, the precipitating factors including marital status, dyspnea, sleep disorder breathing, and functional status, the perpetuating factors including sleep hygiene and dysfunctional beliefs and attitudes about sleep. All of these factors were significant correlated with insomnia (p < .05).

5. Predictors of insomnia in patients with heart failure

There were 5 significant predictive factors of insomnia with 95% confident level (α = 0.05) and all of them had Exp (B) > 1 mean that 5 factors can increase the probability of insomnia as follows:

1. Separated, divorced and widowed marital status was determined to be significant (p = .003) and added to the model during step 4, with and odds ratio of 7.051. It means that the patients with separated, divorced and widowed marital status were roughly seven times more likely to be insomnia than the patients who was single marital status.

2. Anxiety in moderate level was determine to be significant (p = .001) and added to the model during step 2, with and odds ratio of 3.133. It means that the patients with moderate anxiety were approximately three times more likely to be insomnia than the patients who had mild anxiety.

3. Depression was determined to be significant (p = .009) and added to the model during step 1, with and odd ratio of 2.519. It means that the patients who had
depression were approximately two point five times more likely to be insomnia than the patients who had no depression.

4. Dyspnea in severity level was determined to be significant \((p = .005) \) and added to the model during step 5, with an odd ratio of 9.114. It means that the patients who had severe dyspnea were approximately nine times more likely to be insomnia than the patients who had mild dyspnea.

5. Dysfunctional beliefs and attitudes about sleep in high level was determined to be significant \((p = .002) \) and added to the model during step 5, with an odd ratio of 4.156. It means that the patients who had high dysfunctional beliefs and attitudes about sleep were approximately four times more likely to be insomnia than the patients who had low dysfunctional beliefs and attitudes about sleep.

Discussion

Objective 1. Describe the characteristics of insomnia in patients with heart failure.

One hundred and nine patients with heart failure (32%) reported clinical insomnia. This result did not differ from the prevalence of insomnia in western countries, according to a secondary analysis from 182 abstracts published during 1989-2004 which was relevant to sleep disturbance in patients with heart failure. The results revealed that approximately 33% of patients had insomnia (Brostrom and Johansson, 2005).

Moreover, another study revealed that 31.3% of patients with heart failure reported symptoms suggesting the presence of insomnia in a tertiary care heart failure clinic (Principe-Rodriguez et al., 2005). This percentage was higher than general population. The previous studies in Asian populations reported that the prevalence of insomnia was 15.3% in a Singaporean study (Yeo et al., 1996), 17.0% of 3,719
Korean population (Ohayon and Hong, 2002), and 21.4% in 3,030 in general Japanese population (Kim et al., 2000).

There were 81 patients (23.8%) had moderate insomnia and 28 patients had severe insomnia (8.2%). For no clinical insomnia group of patients, there were 131 patients had no insomnia and 100 patients (29.4%) had subthreshold insomnia.

The most common type of insomnia, identified by 30% of patients with heart failure was difficulty falling asleep and difficulty staying asleep. Waking up too early was reported 25.88%. The prior researches in patients with heart failure from western country, difficult in initiating sleep was reported 19-63% (Erickson et al., 2003; Johansson et al., 2007; Lainscak and Keber, 2003), difficulty falling asleep was reported 23-69% and waking up to early was reported 15-39% (Brostrom et al., 2004; Erickson et al., 2003; Johansson et al., 2007). However, all of them using difference definition of insomnia and difference instrument of insomnia. Therefore, the percentage of each study was difference. In this study was using Insomnia Severity Index which contain corresponds in part to DSM-IV criteria for insomnia. This instrument classified insomnia into no clinical insomnia and clinical insomnia and the patients have to have clinical insomnia at least one month.

Most heart failure patients with insomnia (80.20%) indicated that they had combination of these problems; there were 6.8% of the patients had two types of insomnia, 73.40% had three types of insomnia. Only 1.8 % had only one type of insomnia. The average of napping more than 30 minutes was 3.39 days per weeks. Twenty-seven percent of all patients nap every day. There were 43 patients (12.65%) of all heart failure patients have been taking sleeping pills. However, 15 patients (4.41%) of them still had clinical insomnia. Most of heart failure patients with insomnia did not taking sleeping pills every day because they knew from the
physician that sleeping pills was not good for their health therefore they had taking sleeping pills only the day that they felt their symptoms of insomnia in severity level.

A study in patients with heart failure in western country reported 33% using sleeping pills but in this study only 12.65% have been taking sleeping pills. There were 94 patients (27.65%) of all heart failure patient who had clinical insomnia did not consult with anyone in health care team regarding their symptoms of insomnia. The reason because Thai heart failure patients had clinical insomnia but many of them didn’t pay attention to these suffering symptoms, many of them thought that they had an old age so this situation was normal in aging people. They thought that they had to help themselves and they tried to napping during the day.

Objective 2 Examine the relationship among the predisposing factors (age, gender, anxiety, depression), the precipitating factors (marital status, dyspnea, sleep disorder breathing, functional status), the perpetuating factors (sleep hygiene, dysfunctional beliefs and attitudes about sleep), and insomnia in patients with heart failure.

Predisposing factors

Age

Hypothesis: Age would have a positive relationship on insomnia.

Age was not significant correlated with insomnia in patients with heart failure by using Chi-square test. This result did not support the hypothesis. The result was consistent with the previous study in patients with heart failure (Erickson et al., 2003). However, this result is inconsistent with a study in general population in Korea, this study reported that insomnia was being higher in those aged 60-69 years than in those aged 20-29 years (OR = 2.368) (Cho et al., 2009). Another one research, Kappler and Hohagen (2003) studied 2,512 patients in general practice found that age was the most powerful predictors of insomnia. Moreover, Nongluk Anunta-ard (2007) was reported
that age had positive relationship with insomnia in hematological malignancies \((r = .316) \).

The reason of this study may be sleep of patients with heart failure difference from general population. In general populations, the pattern of sleep changing by age (Bliwise, 2000; Prinz, 2004). However, heart failure patients who had a worsening function of their heart. This severity of their function may not explain their sleep pattern like general population. Age was not correlated in this study may be in every age group had symptoms of dyspnea, this symptoms was one of predicting factors of insomnia or anxiety and depression may explain the difference between the result of this study and other because this study found that anxiety and depression occurred in every age group.

Gender

Hypothesis: Gender would have a relationship on insomnia.

The result found that gender was not significant related with insomnia. This result did not support the hypothesis. This result is inconsistent with previous research in patients with heart failure. This result reported that male gender was related to trouble returning to sleep (Erickson et al., 2003). This result was inconsistent with a study of sleep problem in out-patient of primary care unit, this study found that female was strong factors associated with insomnia (Saisunee Tubtimtes et al., 2009). and inconsistent with a research conducted in Hong Kong Chinese. The result found that a total of 9,851 subjects, females were about 1.6 times at higher risk for insomnia than males (Lia et al., 2002).

Although, several study reported that female had insomnia more than male. Krishnan and Collop (2006) proposed that women have more insomnia than men because of normal physiologic periods, including puberty, menstruation, pregnancy,
and menopause, which associated with alterations in sleep patterns. However, gender may not lead to insomnia by itself but gender correlated with insomnia in a previous study in heart failure patients may be explaining by depression. From the result of this study found that high number of depression both male and female and the number of these symptoms was not significant difference both in male and female.

Marital status

Hypothesis: Marital status would have a relationship on insomnia.

This study found that marital status was correlated with insomnia (p< .05) and by using multiple logistic regressions found that separated/divorced and widowed marital status was approximately 7 times more likely to be insomnia (odds ratio = 7.051, CI = 1.940-25.617). This result consistency with one study in breast cancer patients, this study reported that widowhood significantly associated with the presence of insomnia symptoms (Savard et al., 2001) and slightly difference with previous study in Chinese people, the result of that study found that married, separated, divorced and widowed marital status were factors for all types of insomnia in Chinese people (Xiang et al., 2008). The reason may be couple in Thai had good relationship and they support each other in many way.

Anxiety

Anxiety would have a positive relationship on insomnia.

Anxiety was significant related with insomnia (p<.05) in patients with heart failure, and by using multiple logistic regression analysis found that anxiety significant predictor of insomnia (p<.05). Moderate anxiety was approximately three times more likely to be insomnia (OR = 3.133, CI = 1.555-6.311).

This result was consistent with the 3P Model of insomnia, this model was stated that anxiety can inhibit sleep outright through heart racing, muscle tightening,
obsessive thinking, or other means. Anxiety brings psychophysiological changes that interfere with sleep onset and sleep maintenance (Glovinsky and Speiman, 2006).

This result also consistency with a qualitative design explored causes of insomnia in 25 patients with congestive heart failure (Brostrom et al., 2001). They found that anxiety is one of the factors, causing sleep disturbances. In addition a previous study in out-patient of primary care unit, anxiety was strong factors associated with insomnia (Saisunee Tubtimtes et al., 2009) and consistency with a study of Jansson and Linton (2006), this study found that anxiety associated with insomnia in community people (odds ratio: 4.61) and also consistency with 3 studies in patients with cancer, these studies found that higher anxiety significantly associated with clinical significant insomnia.(Keawphang, 2004; Melanie et al., 2009; Savard et al., 2009).

Depression

Hypothesis: Depression would have a positive relationship on insomnia.

Depression was significant correlated with insomnia (p<.05), and by using multiple logistic regression found that depression was a significant predictive factors of insomnia. Depression was approximately 2.36 times more likely to be insomnia (odds ratio = 2.519, CI = 1.256-5.051).

This result is consistent with the 3P Model of insomnia. This mode was stated that depressed people exhibit a number of other sleep disturbances in addition to insomnia, including reduced deep sleep, increased light sleep, and excessive dream sleep. People who are depressed spend more time awake at night, whether at the beginning, middle, or end. They accumulate less of the deepest NREM sleep stages, while a greater proportion of total sleep time may be developed to REM sleep, often accompanied by vivid, disturbing dreams (Glovinsky and Spielman, 2006).
Depression commonly causes insomnia with difficulty falling asleep, waking and being unable to fall back to sleep, or waking early in the morning (Lippincott, Williams, and Wilkins, 2005). They enter dream sleep earlier in the night and spend a greater percentage of time in dream sleep than nondepressed individuals (Jacobs, 2007).

This result is consistent with both healthy population and illness patients. The study in Japanese women found that depressive state was risk factors for insomnia (OR = 1.2) (Kawada et al., 2003). In addition, studies have shown that depression was a significant positive correlation with insomnia in cancer patients (Nongluk Anunta-ard, 2007; Pattarieya Keawphang, 2004). Another one researches in the community reported that people with insomnia had greater depression levels than people who had no insomnia and were 9.82 times more likely to have clinically significant depression (Taylor et al., 2005).

Precipitating Factors

Dyspnea

Hypothesis: Dyspnea would have a positive relationship on insomnia.

Dyspnea was significant related with insomnia (p<.05), and by using multiple logistic regression found that dyspnea was a significant predictive factors of insomnia. Severe dyspnea was approximately nine times more likely to be insomnia (odds ratio = 9.114, CI = 2.240-37.083). This result is consistent with the 3P Model of insomnia; this model was stated that health issue is a precipitating factor of insomnia. A precipitating event is often outside the individual control, that can trigger sleep disturbance (Glovinsky and Spielman, 2006).

Dyspnea is a respiratory distress that occurs as a result of increased effort in breathing and is the most common symptom of heart failure. Dyspnea led to
difficulties lying flat as well as frequent awakenings, followed by feeling of panic (Brostrom et al., 2001). This result consistent with a research of Principe-Rodriguez et al. (2005). Paroxysmal nocturnal dyspnea correlated with insomnia in patients with heart failure. In addition, from previous qualitative studied in patients with congestive heart failure in sleep situation found that dyspnea was affected the sleep negatively (Brostrom et al., 2001).

Sleep Disorder Breathing

Hypothesis: Sleep disorder breathing would have a relationship on insomnia.

Sleep disorder breathing was significant correlated with insomnia in this study (p<.05). This result was consistent with the prior research, this result was found that difficulty in initiating sleep correlated significant with sleep disorder breathing (Johansson et al., 2009). However, by using multiple logistic regressions found that sleep disorder breathing was not a significant predictor of insomnia.

Sleep disorder breathing was not significantly predictors of insomnia when other confounding variables were taken into account, this can be explained by the fact that there was low number of patients who had sleep disorder breathing, and about 18% of heart failure patients had sleep disorder breathing.

Functional Status

Hypothesis: Functional status would have a positive relationship on insomnia.

There was 65% of heart failure patients had functional class I, 23.2 % had functional class II, 10.3% had functional class III, and 1.5% had functional class IV.

Functional status was significant related with insomnia (p<.01). This result is consistent with previous researches in patients with heart failure, this study reported that worsening functional status can correlate with difficulty initiating sleep (Brostrom et al., 2004; Principe-Rodriguez et al., 2005). However, when using
Multiple logistic regression functional status was not a significant predictive factors of insomnia.

Functional status was not significantly related with insomnia when other confounding variables were taken into account, this can be explained by the fact that separated/divorced and widowed, anxiety, depression, dyspnea, and dysfunctional beliefs and attitudes about sleep can predict insomnia better than functional status as a single factor. This result may indicated that functional status per se was not associated with insomnia, and that correlated with functional status and insomnia was due to presence of anxiety and depression, one study found that functional status (NYHA functional class) were a predictors of anxiety and depression in patients with heart failure (Scherer et al., 2007).

Perpetuating factors

Sleep Hygiene

Hypothesis: sleep hygiene would have a positive relationship on insomnia.

Sleep hygiene was a significant correlated with insomnia (p<.05). However, by using multiple logistic regressions found that sleep hygiene was not a significant predictive factors of insomnia. This result was consistent with a study of Pattarieya Keawphang (2004), sleep hygiene behavior was not correlated with insomnia in cancer patients. However, this result is inconsistent with the prior research in patients with cancer, the result of this study found that maladaptive sleep behavior was associated with an increase risk for insomnia incidence (Savard et al., 2009).

Sleep hygiene was not significantly predictors of insomnia when other confounding variables were taken into account, this can be explained by the fact that most of heart failure patients in this study did a good sleep hygiene. Most of patient received the information from health care team to take care themselves, there were
Dysfunctional Beliefs and Attitudes about Sleep

Hypothesis: Dysfunctional beliefs and attitudes about sleep would have a positive relationship on insomnia.

Dysfunctional beliefs and attitudes about sleep was a significant related with insomnia (p<.05) and by using multiple logistic regression found that dysfunctional beliefs and attitudes about sleep was a significant predictive factors of insomnia. High dysfunctional beliefs and attitudes about sleep was approximately 4.2 times more likely to be insomnia (OR = 4.156, CI = 1.194-14.462).

This result was consistent with the 3P Model of insomnia, this model was stated that alterations in beliefs and attitudes about sleep that in turn affect sleep itself. People who do not sleep well end up doing a lot more thinking about sleep and about themselves as sleepers and much of this extra thinking is decidedly unhelpful. Chiefly, poor sleepers experience an alteration in their self-image. As a fundamental aspect of life veers out of the control and their daytime functioning plummets, insomnia develop a general sense of vulnerability. Their self-esteem, sense of well-being, and mood are all threatened. Their quality of life suffers, leading to an ever greater focus on sleep. The vicious cycle of worrying about sleeplessness leading to increased arousal leading to worsening sleep in an all too common outcome. In addition to changes in self-image, the experience of insomnia leads to distortions in attitudes and beliefs about sleep itself (Glovinsky and Spielman, 2005).

This result was consistent with a study of Pattarieya Keawphang (2004) studied in cancer patients in order to examine selected factors and insomnia, the result found that belief about sleep significant positive correlation and insomnia of cancer lower rate of patients who drinking alcohol, drinking beverages containing caffeine, smoking, or taking sleeping pills.
patients and dysfunctional beliefs about sleep were associated with increased risk for insomnia incident in patient with cancer (Savard et al., 2009), and consistent with Carney et al. (2010) studied in 5 community base insomnia clinics, the result shows that maladaptive sleep beliefs is most strongly associated with clinically significant levels of insomnia.

Implications and Recommendations

The implications and recommendations of this study focus on the implications for nursing practice, nursing education, nursing research, health policy and recommendations for further studies.

1.1 Implications for Practice

The finding of this study demonstrates that high percentage of insomnia in patients with heart failure. Few of them consult with health care providers. Many patients choose to be patients instead of consult because they think that this is a normal situation. This problem was overlooked in real phenomena. Various factors including the predisposing factors (age, depression), the precipitating factor (marital status, dyspnea) and perpetuating factors (dysfunctional beliefs and attitudes about sleep) were predictive of insomnia in patients with heart failure.

Nurse have to concern insomnia problem in this population and find out the factors which lead to insomnia. This study found that the patients had physical symptoms, psychological symptoms, and dysfunctional in their thinking about sleep which causes insomnia. Screening a process should be developed in order to detect insomnia symptoms and the factors that lead to insomnia in each patient. Moreover, appropriate and effective intervention should be developed so as to prevent or reduce insomnia in patients with heart failure. Several factors can be managed by using
independent roles of nurses including psychological factors, cognitive factors and behavioral factors.

1.2 Implications for Education

The finding of this study provides new knowledge regarding the prevalence of insomnia in patients with heart failure who follow-up at heart clinic provides knowledge about the specific characteristic of insomnia in this population and also provide associated factors of insomnia. Not only physical symptoms can produce insomnia but also a psychological aspect and cognitive dimension can increase insomnia in this group of patients. Nursing curricula should be included this knowledge in the field of nursing, particularly in field of cardiovascular nursing.

1.3 Implications for Further Research

This study found 5 predictive factors which lead to insomnia. However, further researches should be study more regarding associated factors of insomnia in this population.

Creating non-pharmacological intervention to manage predictive factors so as to prevent insomnia or decrease insomnia symptom.

1.4 Implications for Health Care Policy

According to the finding of this study, insomnia was a problem which was overlooked in real situations. Insomnia could not be detected until the patient had insomnia in severity. Most of the patients with heart failure did not complain to the health care team about their symptoms of insomnia. Therefore, every hospital should have a policy or a clinical guideline to detect insomnia in patients with heart failure. Moreover, the health care team should set a system to screen or detect the real factors of insomnia and conduct an intervention to solve the insomnia problem or decrease the symptoms of insomnia in patients with heart failure.
REFERENCES

Naughton, M. T., and Lorenzi-Filho, G. Sleep in heart failure. Progress in Cardiovascular Diseases 51(4): 339-349.

คุณย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย
APPENDIX A
HUMAN SUBJECT APPROVAL
The Ethical Review Committee for Research Involving Human Research Subjects, Health Science Group, Chulalongkorn University
Institute Building 2, 4 Floor, Soi Chulalongkorn 62, Phayathai Rd., Bangkok 10330, Thailand,
Tel: 0-2218-8147 Fax: 0-2218-8147 E-mail: eccu@chula.ac.th

Certificate of Approval

Study Title: DESCRIPTORS OF INSOMNIA AMONG PERSONS WITH HEART FAILURE

Principal Investigator: Miss Jaraja Chintanawong, Doctor of Philosophy in Nursing Sciences

Place of Proposed Study/Institution: Faculty of Nursing, Chulalongkorn University

The Ethical Review Committee for Research Involving Human Research Subjects, Health Science Group, Chulalongkorn University, Thailand, has approved, constituted in accordance with the International Conference on Harmonization — Good Clinical Practice (ICH-GCP), the above study project.

Signature: [Signature]
(Associate Professor Prada Tasanapradit, M.D.)
Chairman

Signature: [Signature]
(Assistant Professor Nattaree Chaiachawangaroj, Ph.D.)
Secretary

Date of Approval: 8 April 2009 Approval Expiry date: 7 April 2010

The approval document including:
1) Research proposal
2) Participant Information Sheet and Informed Consent Form
3) Researcher
4) Questionnaire

The approved investigator must comply with the following conditions:
1. I fully understand that it is unethical to collect studied data before the proposal has been approved by the Ethical Review Committee for Research Involving Human Research Subjects, Health Science Group, Chulalongkorn University (ECRU).
2. The research project activities must be ended on the approval expired date. If you require extension of approval required, application should be done along with research progress report not less than one month prior to expired date.
3. Strictly conduct the research project activities as mentioned in the proposal.
4. Use only forms bearing the ECCU's seal of approval (Participant Information Sheet, consent form, etc.).

The project is monitored by the EECU for any violation of ethical standards.

Date of Approval: [Date]
Date of Expiry: [Date]

COA No. 049/2609

129
คุณ์วิทยทรัพยากร
จุฬาลงกรณ์มหาวิทยาลัย
Certificate of Approval

No. 199/2009

Name of Ethics Committee: Research Ethics Committee 3,
Faculty of Medicine, Chiang Mai University

Address of Ethics Committee: 116 Apsavaros Rd., Amphoe Muang Chiang Mai, Thailand 50200

Principal Investigator: Janya Chaimung
Faculty of Nursing, Chulalongkorn University

Protocol title: Descriptive of Insomnia Among Persons with Heart Failure
Study code: 09MAT211114

Sponsor:

<table>
<thead>
<tr>
<th>Documents filed</th>
<th>Document reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research protocol</td>
<td>- Version date 30 April 2009</td>
</tr>
<tr>
<td>Informed consent documents/Patient Information sheet</td>
<td>- Version 2 date 10 June 2009</td>
</tr>
<tr>
<td>Case Report Form</td>
<td>- Version date 1 July 2009</td>
</tr>
<tr>
<td>Principal Investigator Curriculum Vitae</td>
<td>- Version date 30 April 2009</td>
</tr>
</tbody>
</table>

Opinion of the Ethics Committee/Institutional Review Board: PLS CHECK ONE

- Approval
- Conditional approval (Specify on space below)

DECISION: By expedited review process

Date of Approval: July 4, 2009 Expiration Date: June 30, 2010

This Ethics Committee is organized and operates according to GCPs and relevant international ethical guidelines, the applicable laws and regulations.

Signed: …………………………………
(Emeritus Professor Panja Kulapong, M.D.)
Chairperson, Faculty of Medicine

Signed: …………………………………
(Associate Professor Nares Nantsri, M.D.)
Dean, Faculty of Medicine

131
คุณสมบัติอาจารย์
จุฬาลงกรณ์มหาวิทยาลัย
คุณย์วิทยทรัพยากร
จุฬาลงกรณ์มหาวิทยาลัย
INSTITUTIONAL REVIEW BOARD
Faculty of Medicine, Chulalongkorn University
1873 Ram 4 Road, Pathumwan, Bangkok 10330, Thailand, Tel 662-266-4486 ext 14, 16

Certificate of Approval

The Institutional Review Board of the Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand, has approved the following study which is to be carried out in compliance with the International guidelines for human research protection as Declaration of Helsinki, The Belmont Report, CIOMS Guideline, and International Conference on Harmonization in Good Clinical Practice (ICH-GCP).

Study Title: Descriptors of Insomnia among Persons with Heart Failure

Study Code:

Study Center: Chulalongkorn University

Principal Investigator: Miss Janya Chimmuang

Document Reviewed:
1. Protocol Version 2 Date April 9, 2009
2. Information sheet for research volunteer version 2 date April 9, 2009
3. Consent Form version 2 date April 9, 2009
4. CRF

Signature: (Associate Professor Unnop Jaisamram MD, MHS) (Associate Professor Supachai Wittayaletpanyo)
Acting Chairman of the Institutional Review Board
Secretary of the Institutional Review Board

Date of Approval: May 21, 2009
Approval Expiration Date: May 21, 2010

Approval is granted subject to the following conditions (see back of this Certificate).

คุณยวัฒนาวิทยากร
จุฬาลงกรณ์มหาวิทยาลัย
Protocol Title: Asthma among consecutive heart failure patients

Protocol number: 2555/2557 (EC9)

Principal Investigator/ Affiliation: Miss Ingtae Chaimong

Facility: Nursing, Chulalongkorn University

Research site: Faculty of Medicine Siriraj Hospital

Approval includes:
1. SIRB Submission Form
2. Protocol
3. Informed Consent Form
4. Case Report Form
5. Questionnaire

Approval date: July 17, 2009

Expired date: July 16, 2013

This is to certify the Siriraj Institutional Review Board is in full Compliance with International Guidelines for Human Research Protection such as the Declaration of Helsinki, the Belmont Report, ICH/GCP Guidelines and the International Conference on Harmonization in Good Clinical Practice (ICH/GCP).

[Signatures]

[Date: July 24, 2009]

[Date: July 24, 2009]
คุณวิทยาทรัพยากร
จุฬาลงกรณ์มหาวิทยาลัย
APPENDIX B

CONSENT FORM AND THE PARTICIPANT INFORMATION SHEET
ใบอนุญาตของกลุ่มประชากรหรือผู้มีส่วนร่วมในการวิจัย
(Informed Consent Form)

ซึ่งโครงการวิจัย อาการอะไรไม่หลับในผู้ปรับหัวใจล้มแหลก
เลขที่ ประธานหรือผู้มีส่วนร่วมในการวิจัย

ชักพัฒนาที่ได้ข้อมูลที่ส่วนของหนังสือเล่มนี้ ได้รับคำรับรองอย่างชัดเจนจนเป็นที่
พอใจจากผู้วิจัย ซึ่ง นางสาวจงสมจิต จิมเมือง นิสิตปริญญาเอก คณะพยาบาลศาสตร์
จุฬาลงกรณ์มหาวิทยาลัย สถานที่ติดต่อ คณะพยาบาลศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย เบอร์
โทรศัพท์มือถือ 080-5510640 ให้ข้อมูลประกอบและขั้นตอนการวิจัย ความเสี่ยง/อันตราย และ
ประโยชน์ซึ่งจะเกิดขึ้นจากการวิจัยเรื่องนี้แล้ว

ชักพัฒนาเข้าร่วมการวิจัยครั้งนี้ด้วยความสมัคคภาพที่จะตอบแบบสอบถาม 9 ข้อ โดยใช้เวลา
ในการตอบแบบสอบถามประมาณ 30 นาที และชักพัฒนาสมัคคภาพ จะตอบต่อจากข้อของการวิจัยเมื่อใจ
กิ้กได้ตามความประสงค์ โดยไม่ต้องแจ้งเหตุผล ข้างการตอบต่อจากข้อของการวิจัยนั้น จะไม่มี
ผลกระทบทางใดๆ แก่ชักพัฒนาทั้งสิ้น

ชักพัฒนาได้รับการแจ้งว่า ผู้วิจัยจะปฏิบัติต่อชักพัฒนาตามข้อมูลที่ได้ระบุไว้ และข้อมูลใดๆ
ที่เกี่ยวข้องกับชักพัฒนาจะเก็บรักษาเป็นความลับ

ชักพัฒนาเข้าร่วมการวิจัยครั้งนี้ ภายใต้เงื่อนไขที่ระบุไว้ในเอกสารข้อมูลสำหรับกลุ่ม
ประชากรหรือผู้มีส่วนร่วมในการวิจัย

ชักพัฒนาได้รับคำนารายละเอียดข้อมูลสำหรับกลุ่มประชากรหรือผู้มีส่วนร่วมในการวิจัย และ
ใบอนุญาตของกลุ่มประชากรหรือผู้มีส่วนร่วมในการวิจัยแล้ว

..
สถานที่ / วันที่ ลงนามผู้มีส่วนร่วมในการวิจัย

คุณภพ วิทยาทวีกุณ
(นางสาวจงสมจิต จิมเมือง)

..
สถานที่ / วันที่ ลงนามผู้วิจัยหลัก

..
สถานที่ / วันที่ พยาน
Informed Consent Form

Title of research project Descriptors of insomnia among persons with heart failure

Code number of participant ...

I who have signed here below agree to participate in this research project (Title Descriptors of insomnia among persons with heart failure)

I have (read or been informed) about objective of the project, what will be done upon me, risk/harm and benefit of this project. The researcher has explained to me and I clearly understand with satisfaction. The researcher name is Miss Janya Chimluang from faculty of nursing, Chulalongkorn University. Contact the researcher at faculty of nursing, Chulalongkorn University. My mobile phone number is 080-5510640.

I willingly agree to participate in this project and consent the researcher to response to 9 questionnaires, the total amount of time to do the questionnaire about 30 minute.

I have the right to withdraw from this research project at any time as I wish with no need to give any reason. This withdrawal will not have any negative impact upon me by all means.

I have been guaranteed that the researcher will act upon me exactly what have been indicated in the information. Any of my personal information will be kept confidential. Results of study will be reported as total picture. Any indirect information which could be able to identify me will not appear in the report.

I also have received a copy of information sheet and informed consent form

..

Place / Time (Participant signature)

..

Place / Time (Miss Janya Chimlaung)

..

Place / Time (Witness signature)
ข้อมูลสำหรับกลุ่มประชากรหรือผู้มีส่วนร่วมในการวิจัย
(Patient/Participant Information Sheet)

ชื่อโครงการวิจัย อาการขณะผ่อนคลายในหลังหวีดใจกลมหลัง
ชื่อผู้วิจัย นางสาววรรณา จิตรวงษ์ นิสิตคณะเวชศาสตร์และสุขภาพสังคม มหาวิทยาลัย
สถานที่ติดต่อผู้วิจัย คณะเวชศาสตร์และสุขภาพสังคม มหาวิทยาลัย
ที่อยู่ 143 บ้าน./2 ช. ต.ร酱โค จ.สุโขทัย 40100 ต.อ.เมือง จ.สุโขทัย รหัสไปรษณีย์ 40100 หมายเลขโทรศัพท์ 080-5510640

1. เนื่องจากผู้วิจัยได้ทำการศึกษาเรื่องอาการขณะผ่อนคลายในหลังหวีดใจกลมหลัง โดย
งานวิจัยนี้ต้องการศึกษาความรู้ของอาการขณะผ่อนคลายในหลังหวีดใจกลมหลังและปัจจัย
ที่มีความสัมพันธ์กับอาการขณะผ่อนคลาย

2. ผู้เข้าร่วมโครงการวิจัยในครั้งนี้เป็นผู้ป่วยหัวใจกลมหลัง ที่มีอายุตั้งแต่ 18 ปีขึ้นไป
พุทธบาทไทยได้ไม่มีปัญหาเรื่องความดันความดัน หรือโรคติดเชื้อที่เข้ารับการรักษาที่คลินิก
โรคหัวใจ แผนกผู้ป่วยนอก โดยผู้วิจัยได้ใช้การสุ่มโรงพยาบาลระดับใหญ่จำนวน 2 โรงพยาบาล
ในแต่ละภาคของประเทศไทย รวมเป็นทั้งหมด 10 โรงพยาบาล ในแต่ละโรงพยาบาลจะมี
ผู้เข้าร่วมโครงการวิจัยจำนวน 34 คน โดยงานวิจัยนี้จะมีผู้เข้าร่วมโครงการวิจัยทั้งหมด 340 คน

3. ท่านจะได้รับการชี้แจงจากผู้วิจัยเกี่ยวกับการเก็บข้อมูล หลังจากนั้นท่าน
จะได้รับแบบสอบถาม 9 ชุด เพื่อให้ผู้เข้าร่วมโครงการวิจัยนำ 답변ในแบบสอบถาม ดังนี้
1. ข้อมูลทั่วไป 2. แบบสอบถามความตื่นตัวทั้งที่ 3. แบบสอบถามอาการขัดข้อง 4. แบบสอบถาม
อาการหายใจลำ下的 5. แบบสอบถามอาการหัวใจในขณะนั่งหลับ 6. แบบสอบถามระดับ
ความรู้และการปฏิบัติตน 7. แบบสอบถามภาวะสมดุลในเรื่องสุขอนามัยของภาระงาน
หลับและระดับการปฏิบัติตน 8. แบบสอบถามภาวะเจริญ ที่ต้องมีอยู่อย่างทันท่วงทีได้แก่การนอนหลับและ
9. แบบสอบถามอาการนอนไม่หลับ โดยใช้แบบสอบถามระดับประเมิน 10 ข้อที่
4. ท่านจะเสียเวลาในการตอบแบบสอบถามทั้งหมดประมาณ 30 นาที แล้วท่านอาจเกิดอาการตึงต่อไปนี้ เช่น รู้สึกไม่สุขสบาย มีอาการเหนื่อย หรืออ่อนเพลียในขณะตอบแบบสอบถามโดยท่านสามารถหยั่งได้ตลอดเวลาโดยผู้วิจัยหรือผู้ช่วยวิจัยจะดูแลและช่วยเหลือท่าน
5. ท่านอาจไม่ตอบคำถามซ้ำโดยชื่นชมที่ท่านรู้สึกไม่สบายใจที่จะตอบและท่านสามารถบอกถอนตัวจากการวิจัยได้ทุกขณะโดยไม่ได้รับประโยชน์ที่จะได้รับ
6. ผู้วิจัยจะขอข้อมูลในเรื่องของอาการ โรคประจักษ์ และการรักษาที่ได้รับจากแพทย์จากเพิ่มประสิทธิของท่านด้วย
7. หากท่านมีข้อสงสัยในแบบสอบถามเพิ่มเติมได้โดยสามารถติดต่อผู้วิจัยได้ตลอดเวลาที่เบอร์มือถือ 080-5510640
8. ข้อมูลที่เกี่ยวข้องกับท่านจะเก็บเป็นความลับ หากมีการเสนอผลการวิจัยจะเสนอเป็นภาคผนวก
9. เพื่อเป็นการตอบแทนการเสียเวลาในการตอบแบบสอบถามผู้วิจัยขอขอบคุณผู้ตอบให้แก่ทุกผู้เข้าร่วมวิจัยทุกราย
10. หากท่านไม่ได้รับการปฏิบัติตามข้อตกลงกล่าวสามารถขอข้อมูลได้ที่คณะกรรมการศึกษาภูมิภาค ที่ 1 จุฬาลงกรณ์มหาวิทยาลัย ชั้น 4 อาคาร สถาบัน 2 ชั่ว จุฬาลงกรณ์ 62 ถนนพญาไท เขตปทุมวัน กรุงเทพฯ 10330 โทรศัพท์ 0-2218-8147 โทรสาร 0-2218-8147 E-mail: accu@chula.ac.th

ขอขอบคุณในกรณีเรื่องของท่านมา ณ ที่นี้

คุณยวิทยาทรัพยากร
จุฬาลงกรณ์มหาวิทยาลัย
Patient/ Participant Information Sheet

Title of research project Descriptors of insomnia among persons with heart failure
Principles researcher’s Name Janya Chimluang Doctoral student in nursing
Office address Faculty of Nursing, Chulalongkorn University, Bangkok, Thailand
Home address 4206 Moo 1 Soi Dansomrong 50/27 Sukumvit Road Tumbon Somrongneai Amphur Muang Samuthprakarn Province Zip code 10270
Telephone (home) 02-3613349 Cell phone 080-5510640

I am Miss Janya Chimluang, nursing student in doctoral degree at Chulalongkorn University. I would like you to cooperate as participant in my study. The detail of this study as follows:

1. The objectives of this study are to estimate prevalence of insomnia, to study patterns of insomnia and also examine predictive factors of insomnia.

2. Participants in this study are the persons with heart failure age ≥18 years. The participants can communicate with Thai Language; do not have some problem about thinking memory or psychosis and no chest pain who follow up at outpatients department. The researcher was random 2 hospitals from tertiary hospital in each region. The total 10 hospitals were included in this study. Then the researcher will be random 34 participants from each of hospital. The total of participants in this study is 340 participants.

3. The participants will receive the information from the researcher about objective of the study and the process of data collection. Then, the researcher give 9 questionnaire to the participant to answer the questionnaire including demographic questionnaire, anxiety questionnaire, depression questionnaire, dysnea questionnaire, sleep apnea questionnaire, subjective New York Heart Association Functional Classification questionnaire, sleep hygiene awareness and practice scale and dysfunctional beliefs and attitudes about sleep questionnaire and Insomnia Severity Index. The total amount of time about 30 minutes.

4. During answer the question in questionnaire, the possibility fatigue and tiredness may occur. Participants can rest anytime. The researcher will caring and support participants.

5. The benefits of conducting this will be provided knowledge for nurses and other health care providers regarding insomnia in persons with heart failure in order to prevent and conducting intervention to improve insomnia symptoms in patients with heart failure.

6. Participation to the study is voluntary and participant has the right to withdraw from the study at any time, no need to give any reason, and there will be no bad impact upon that participant.

7. If you have any question or would like to obtain more information. Participants can contact the researcher Janya Chimluang, via cell phone number 080-5510640 all the time. If the researcher has now information regarding benefit on risk/harm, participants will be informed as soon as possible”, this practice will provide an opportunity for participants to decide whether to stay/not stay with the project.

8. Information related directly to you will be kept confidential. Results of the study will be reported as total picture. Any indirect information which could be able to identity you will not appear in the report.

9. Participant will receive souvenir from the researcher
10. If researcher does not perform upon participants as indicated in the information. The participant can report the incident to the Ethical Review Committee for Research Involving Human Research Subjects, Health Sciences Group, Chulalongkorn University (ECCU). Institute Building 2, 4th Floor, Soi Chulalongkorn 62, Phyathai Rd., Bangkok 10330, Thailand, Tel: 0-2218-8147 Fax: 0-2218-8147 E-mail: eccu@chula.ac.th.
คุณย์วิทยทรัพยากร
จุฬาลงกรณ์มหาวิทยาลัย
แบบบันทึกข้อมูลส่วนบุคคล
คำชี้แจง: โปรดเติมข้อมูลในช่องของว่าง หรือทำเครื่องหมาย (√) หน้าข้อที่ตรงกับข้อมูลส่วนบุคคลของท่าน

1. แบบบันทึกข้อมูลส่วนบุคคล

1.1 อายุ ปี

1.2 เพศ

☑ ชาย □ หญิง

1.3 สถานภาพสมรส

☑ โสด □ แต่งงาน □ แยกกันอยู่ □ หย่า □ หม้าย

1.4 ศาสนา

☑ พุทธ □ อิสลาม □ คริสต์ □ ชื่น ๆ...........

1.5 ระดับการศึกษาสูงสุด

☑ ไม่ได้เรียนหนังสือ □ ปริญญาตรี

☑ ประถมศึกษา □ ปริญญาโท

☑ มัธยมศึกษา □ ปริญญาเอก

☑ อาชีวศึกษาประกาศนียบัตร

1.6 อาชีพ

☑ ไม่ได้ประกอบอาชีพ □ ธุรกิจส่วนตัว

☑ นิสิต/นักศึกษา □ รับราชการ/รัฐวิสาหกิจ/หน่วยงานของรัฐ

☑ รับจ้าง □ เทศตระตก/ทำสวน/ทำไร่

☑ ค้าขาย □ อื่น ๆ ระบุ...

1.7 รายได้ต่อเดือน

☑ น้อยกว่า 5,000 บาท □ 10,001-20,000 บาท

☑ 5,001-10,000 บาท □ มากกว่า 30,000 บาท

☑ 10,001-20,000 บาท

2. แบบบันทึกข้อมูลเกี่ยวกับภาวะหัวใจล้มเหลวและการรักษา(ผู้วิจัยเป็นผู้บันทึกจากแฟ้มประวัติ)

2.1 สาเหตุของการหัวใจล้มเหลว..

2.2 ระยะเวลาของการรักษาหัวใจล้มเหลว..

2.3 ค่าการรักษาหัวใจที่ต้องจ่าย..

2.4 โรคประจักษ์ชนิดอื่น ๆ..

2.5 ยาที่ใช้รับ ปริมาณยาที่ให้ต่อครั้งและเวลานั้นใช้..

...
แบบประเมินความรู้ศึกษา

คำชี้แจง แบบประเมินนี้ประกอบด้วย 20 ข้อ ข้อความแต่ละข้อเป็นข้อร้อยความรู้ศึกษาของ
ท่าน ในช่วง 1 เดือนที่ผ่านมา ขอให้ท่านพิจารณาข้อความที่ตรงกับความรู้ศึกษาของท่านมากที่สุด
แล้วที่เครื่องหมาย (✓) ลงในช่องว่างด้านข้างโดยไม่ก่อเหตุในการตอบคำถามดังนี้

<table>
<thead>
<tr>
<th>ข้อความ</th>
<th>ไม่มีเลย (1)</th>
<th>มีเล็กน้อย (2)</th>
<th>มีค่อนข้างมาก (3)</th>
<th>มีมาก (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ข้าพเจ้ารู้สึกสงบ...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. ข้าพเจ้ารู้สึกมั่นคงไม่เครียด..........................</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. ท่านรู้สึกดีครับ...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. ท่านรู้สึกดีเช่นเดิม......................................</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

คุณภำยศรำพยำกร
กฤษฎกรณ์ เหมะภักษา
แบบประเมินภาวะซึมเศร้า
คำชี้แจง: โปรดพิจารณาวาข้อใดตรงกับความรู้สึกของท่านมากที่สุดในช่วงเวลา
1เดือนที่ผ่านมา แล้วทำเครื่องหมาย (✓) ลงในช่องว่างของแต่ละภิจกรรมที่ตรงกับความรู้สึกของท่านมากที่สุด

<table>
<thead>
<tr>
<th>ข้อความ</th>
<th>ไม่เลย</th>
<th>มากน้อยครึ่ง</th>
<th>ค่อนข้างบ่อย</th>
<th>บ่อยครั้ง</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ท่านรู้สึกหงุดหงิดง่วง..</td>
<td>.................</td>
<td>................</td>
<td>................</td>
<td>.................</td>
</tr>
<tr>
<td>2. ท่านรู้สึกเบื่ออาหาร...</td>
<td>.................</td>
<td>................</td>
<td>................</td>
<td>.................</td>
</tr>
<tr>
<td>3. ท่านรู้สึกว่าไม่สามารถรู้จักความหมายของตัวเอง แม้ว่าจะมีคนในครอบครัวหรือเพื่อนคอยช่วยเหลือ................................</td>
<td>.................</td>
<td>................</td>
<td>................</td>
<td>.................</td>
</tr>
<tr>
<td>...</td>
<td>.................</td>
<td>................</td>
<td>................</td>
<td>.................</td>
</tr>
<tr>
<td>20. ท่านรู้สึกห่วงใยในชีวิต..</td>
<td>.................</td>
<td>................</td>
<td>................</td>
<td>.................</td>
</tr>
</tbody>
</table>

cุณยวิทยากร
จุฬาลงกรณ์มหาวิทยาลัย
แบบประเมินอาการหายใจลำบาก

ค่าสีแดง แบบประเมินนี้ประกอบด้วยข้อคำถาม เทียบกับความรู้สึกอาการหายใจลำบากของท่าน
ในช่วงเวลา 1 เดือนที่ผ่านมา โดยมีช่วงคะแนนความรู้สึกระหว่าง 0 – 100 คะแนน ขอให้ท่านทำ
เครื่องหมายภายใน (X) ลงบนเส้นตรงต่างแขนงที่ตรงกับความรู้สึกของท่านขณะนั้นจริง ๆ ไม่ว่าท่าน
จะหายใจลำบากต่ำแน่นใด จะไม่มีข้อแนะนำที่ถูกต้องหรือไม่ เพราะเป็นความรู้สึกของท่านเอง

ด้วยอาการเช่น

1. ท่านรู้สึกอาการหายใจลำบากอย่างท่านมีความรู้สึกมากน้อยเท่าใด

ไม่มีอาการหายใจลำบากเลย มีอาการหายใจลำบากมาก

ที่สุด

19. ท่านรู้สึกเหมือนหายใจไม่ได้

ไม่ได้รู้

มี ระดับความรู้สังเกต

ไม่มีความรุนแรง รุนแรงมากที่สุด
แบบประเมินการหยุดหายใจในขณะนอนหลับ
กรุณามาทำเครื่องหมาย (X) หน้าคัดตอบที่ตรงกับพฤติกรรมของคุณ ในช่วง 1 เดือนที่ผ่านมา
ส่วนสูง.. น้ำหนัก ..
(ชุดที่ 1)
1. คุณกรอบหัวไม่
 ก. ใช่
 ข. ไม่ใช่
 ค. ไม่ทราบ
อีกครั้ง
2. เสียงกรอบของคุณ
 ก. ดังกว่าเสียงหายใจเล็กน้อย
 ข. ดังเท่ากับเสียงหายใจ
 ค. ดังมากกว่าเสียงหายใจ
 ง. ดังมากจนห้องข้างๆ ได้ยิน

(ชุดที่ 2)
6. ป่วยแค่ไหนที่คุณรู้สึกเหนื่อยหรือนอนหลับจากเดินนอน
 ก. เกือบทุกครั้ง
 ข. 3-4 ครั้งต่อสัปดาห์
 ค. 1-2 ครั้งต่อสัปดาห์
 ง. 1-2 ครั้งต่อเดือน
 จ. ไม่เคยเลยหรือแทบไม่เคย
7. ในระหว่างวันคุณรู้สึกเหนื่อยหรือนอนหลับจากกินหรือไม่
 ก. เกือบทุกครั้ง
 ข. 3-4 ครั้งต่อสัปดาห์
 ค. 1-2 ครั้งต่อสัปดาห์
 ง. 1-2 ครั้งต่อเดือน
 จ. ไม่เคยเลยหรือแทบไม่เคย
แบบสอบถามเกี่ยวกับความสามารถในการปฏิบัติภารกิจ

ค่าชี้วัด แบบสอบถามนี้เป็นแบบบัตรที่มีความคิดเห็นของท่าน เกี่ยวกับข้อกังวลในการปฏิบัติภารกิจต่าง ๆ ในช่อง 1 เดือนที่ผ่านมา ให้พิมพ์ชิ้นเครื่องหมาย (√) ลงในช่องหน้าช่องที่ท่านคิดว่าการปฏิบัติภารกิจต่าง ๆ ในช่วงเวลา 1 เดือนที่ผ่านมาภารกิจตามที่ท่านให้ท่านเมื่อการอย่างใดอย่างหนึ่งหรือมากกว่า 1 อาจจะ เช่น ทำให้ท่านผู้สิทธิ์เนื่อง หรือ หายใจไม่เต็มที่ แนะแนะ รู้สึกเจ็บปวด หรือ เจ็บหน้าอก โปรดเลือกเพียง 1 ข้อ

☐ 1. ขณะปฏิบัติภารกิจตามปกติ เช่น
 - ทำตาม oluşturulผู้บังคับ
 - ล่างกลับบ้าน
 - ตัดหน้า
 - เดินขับนั้นได้บ้าน 1-2 ขัน หรือเดินบนพื้นภายในระยะ 50-100 เมตร

☐ 2. ขณะปฏิบัติภารกิจตามปกติ เพียงเล็กน้อยทำงานผ่าน ๆ เช่น
 - ประกอบอาหาร
 - ปูที่นอน
 - ต่างงาน
 - อาบน้ำ
 - เดินขับนั้นได้เดินครั้งที่ 1 หรือเดินบนพื้นภายในระยะ 10 เมตร

☐ 3. ขณะปฏิบัติภารกิจเพียงเล็กน้อย เช่น
 - ขณะปฏิบัติบัตรต่อเนื่อง
 - ไม่ต้องกลับบ้าน
 - ไม่ต้องตัดหน้า
 - ไม่ต้องเดินขับนั้นได้บ้าน
 - ไม่ต้องทำอาหาร
 - ไม่ต้องอาบน้ำ

☐ 4. ขณะอยู่อย่าง ๆ
 - ไม่ต้องตัดหน้า
 - ไม่ต้องกลับบ้าน
 - ไม่ต้องทำอาหาร
 - ไม่ต้องอาบน้ำ
 - ต้องอยู่ในที่นั่งตลอดเวลา
แบบสอบถามความระมัดระวังในเรื่องสุขอนามัยของการอนุมัติและระดับการปฏิบัติการปฏิบัติเพื่อสุขอนามัยในการอนุมัติ

กรุณาทำเครื่องหมาย (✓) ลงในช่องเพื่อระบุจำนวนวันหรือคืนโดยละเอียดต่อสัปดาห์ที่ทำกับพุทธิกรรมดังต่อไปนี้

<table>
<thead>
<tr>
<th>ข้อคำถาม</th>
<th>จำนวนวันต่อสัปดาห์</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ทานเนื้อสัตว์ในตอนกลางวันกินต่อด้วยสัปดาห์</td>
<td></td>
</tr>
<tr>
<td>2. ทานเนื้อสัตว์ในตอนเช้ากินต่อด้วยสัปดาห์</td>
<td></td>
</tr>
<tr>
<td>3. ทานเนื้อสัตว์ในตอนเที่ยงกินต่อด้วยสัปดาห์</td>
<td></td>
</tr>
<tr>
<td>4. ทานเนื้อสัตว์ในตอนเย็นกินต่อด้วยสัปดาห์</td>
<td></td>
</tr>
<tr>
<td>5. ทานเนื้อสัตว์ในตอนค่ำกินต่อด้วยสัปดาห์</td>
<td></td>
</tr>
<tr>
<td>6. ทานเนื้อสัตว์ในตอนเช้ากินต่อด้วยสัปดาห์</td>
<td></td>
</tr>
<tr>
<td>7. ทานเนื้อสัตว์ในตอนเที่ยงกินต่อด้วยสัปดาห์</td>
<td></td>
</tr>
<tr>
<td>8. ทานเนื้อสัตว์ในตอนเย็นกินต่อด้วยสัปดาห์</td>
<td></td>
</tr>
<tr>
<td>9. ทานเนื้อสัตว์ในตอนค่ำกินต่อด้วยสัปดาห์</td>
<td></td>
</tr>
<tr>
<td>10. ทานเนื้อสัตว์ในตอนเช้ากินต่อด้วยสัปดาห์</td>
<td></td>
</tr>
<tr>
<td>11. ทานเนื้อสัตว์ในตอนเที่ยงกินต่อด้วยสัปดาห์</td>
<td></td>
</tr>
<tr>
<td>12. ทานเนื้อสัตว์ในตอนเย็นกินต่อด้วยสัปดาห์</td>
<td></td>
</tr>
<tr>
<td>13. ทานเนื้อสัตว์ในตอนค่ำกินต่อด้วยสัปดาห์</td>
<td></td>
</tr>
<tr>
<td>14. ทานเนื้อสัตว์ในตอนเช้ากินต่อด้วยสัปดาห์</td>
<td></td>
</tr>
<tr>
<td>15. ทานเนื้อสัตว์ในตอนเที่ยงกินต่อด้วยสัปดาห์</td>
<td></td>
</tr>
<tr>
<td>16. ทานเนื้อสัตว์ในตอนเย็นกินต่อด้วยสัปดาห์</td>
<td></td>
</tr>
<tr>
<td>17. ทานเนื้อสัตว์ในตอนค่ำกินต่อด้วยสัปดาห์</td>
<td></td>
</tr>
<tr>
<td>18. ทานเนื้อสัตว์ในตอนเช้ากินต่อด้วยสัปดาห์</td>
<td></td>
</tr>
<tr>
<td>19. ทานเนื้อสัตว์ในตอนเที่ยงกินต่อด้วยสัปดาห์</td>
<td></td>
</tr>
<tr>
<td>20. ทานเนื้อสัตว์ในตอนเย็นกินต่อด้วยสัปดาห์</td>
<td></td>
</tr>
<tr>
<td>21. ทานเนื้อสัตว์ในตอนค่ำกินต่อด้วยสัปดาห์</td>
<td></td>
</tr>
</tbody>
</table>
แบบประเมินความเชื่อและทัศนคติที่ไม่ถูกต้องเกี่ยวกับการนอนหลับ

คำกล่าวต่างๆ ตามรายการข้างล่างนี้จะช่วยให้เห็นถึงความเชื่อและทัศนคติเกี่ยวกับการนอนหลับ ถ้าผู้ตอบรับเกี่ยวกับคุณภาพการนอนหลับ มีผลแสดงระดับความคิดเห็นของคุณว่าเห็นด้วยหรือไม่เห็นด้วยกับคำกล่าวในแต่ละข้อคัดตอบของคุณจะไม่มีอภิปรายใด ๆ ในแต่ละข้อให้คุณทำเครื่องหมาย (X) ที่หมายเลขนั้นที่ตรงกับระดับความเชื่อของคุณเอง ถ้าคุณตอบคำถามถูกต้องแม้ว่าบางข้ออาจจะไม่เกี่ยวกับสถานการณ์ของคุณโดยตรง

ตัวอย่าง

<table>
<thead>
<tr>
<th>ไม่เห็นด้วยอย่างยิ่ง</th>
<th>เห็นด้วยอย่างยิ่ง</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5 6 7 8 9 10</td>
<td></td>
</tr>
</tbody>
</table>

1. การนอนwake และอยู่ข้างในตอนกลางดึกจะทำให้รู้สึกสดชื่นและสามารถทำงานต่าง ๆ ได้ดีในระหว่างวัน

<table>
<thead>
<tr>
<th>ไม่เห็นด้วยอย่างยิ่ง</th>
<th>เห็นด้วยอย่างยิ่ง</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5 6 7 8 9 10</td>
<td></td>
</tr>
</tbody>
</table>

16. ขยันตัวอย่างขั้นตอนหลับให้เป็นไปตามหลักนี้

<table>
<thead>
<tr>
<th>ไม่เห็นด้วยอย่างยิ่ง</th>
<th>เห็นด้วยอย่างยิ่ง</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5 6 7 8 9 10</td>
<td></td>
</tr>
</tbody>
</table>
แบบประเมินอาการนอนไม่หลับ
ค่าชี้แจง แบบประเมินนี้ประกอบด้วย 7 ข้อความเกี่ยวกับอาการนอนไม่หลับของท่าน
ในช่วง 1 เดือนที่ผ่านมา โดยมีข้อตกลงความรู้สึก 0 – 4 คะแนน ขอให้ท่านทำเครื่องหมาย (X) ลงบนเส้นตรงตำแหน่งที่ตรงกับความรู้สึกของท่านในช่วง 1 เดือนที่ผ่านมาเพื่อที่สุด

1. ใน 1 เดือนที่ผ่านมาท่านนอนดีเมื่อค่อยเหลือต้องใช้เวลามากกว่า 30 นาที่จึงจะหลับได้

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ไม่ได้</td>
<td>เหลือย</td>
<td>ปานกลาง</td>
<td>รุนแรง</td>
<td>รุนแรงมาก</td>
</tr>
</tbody>
</table>

2. ใน 1 เดือนที่ผ่านมาเมื่อท่านตื่นขึ้นจากเตียงด้วย พยายามนอนต่อแต่กลับไปหลับ ต้องใช้เวลามากกว่า 15 นาทีจึงจะหลับได้ยิ่งขึ้น

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ไม่ได้</td>
<td>เหลือย</td>
<td>ปานกลาง</td>
<td>รุนแรง</td>
<td>รุนแรงมาก</td>
</tr>
</tbody>
</table>

7. ท่านผู้สัมผัสกับผมหรือแพทย์แนะนำการนอนไม่หลับ

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ไม่ได้</td>
<td>เหลือย</td>
<td>ปานกลาง</td>
<td>มาก</td>
<td>มากมาก</td>
</tr>
</tbody>
</table>
APPENDIX D

LICENSING AND PERMISSION FOR USING INSTRUMENT
คุณวิทยาทรัพยากร
จุฬาลงกรณ์มหาวิทยาลัย
คุณวิทยาทรัพยากร
จุฬาลงกรณ์มหาวิทยาลัย
APPENDIX E
RESULT OF STATISTIC ANALYSIS
Block 0: Beginning Block

Iteration History\(^{a,b,c}\)

<table>
<thead>
<tr>
<th>Iteration</th>
<th>-2 Log likelihood</th>
<th>Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 0</td>
<td>426.655</td>
<td>-.718</td>
</tr>
<tr>
<td>Step 1</td>
<td>426.572</td>
<td>-.751</td>
</tr>
<tr>
<td>Step 2</td>
<td>426.572</td>
<td>-.751</td>
</tr>
</tbody>
</table>

\(a\). Constant is included in the model.
\(b\). Initial -2 Log Likelihood: 426.572
\(c\). Estimation terminated at iteration number 3 because parameter estimates changed by less than .001.

Omnibus Tests of Model Coefficients

<table>
<thead>
<tr>
<th>Step</th>
<th>Chi-square</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>58.026</td>
<td>1</td>
<td>.000</td>
</tr>
<tr>
<td>Block</td>
<td>58.026</td>
<td>1</td>
<td>.000</td>
</tr>
<tr>
<td>Model</td>
<td>58.026</td>
<td>1</td>
<td>.000</td>
</tr>
<tr>
<td>Step 2</td>
<td>15.701</td>
<td>2</td>
<td>.000</td>
</tr>
<tr>
<td>Block</td>
<td>73.727</td>
<td>3</td>
<td>.000</td>
</tr>
<tr>
<td>Model</td>
<td>73.727</td>
<td>3</td>
<td>.000</td>
</tr>
<tr>
<td>Step 3</td>
<td>12.554</td>
<td>2</td>
<td>.002</td>
</tr>
<tr>
<td>Block</td>
<td>86.281</td>
<td>5</td>
<td>.000</td>
</tr>
<tr>
<td>Model</td>
<td>86.281</td>
<td>5</td>
<td>.000</td>
</tr>
<tr>
<td>Step 4</td>
<td>11.733</td>
<td>2</td>
<td>.003</td>
</tr>
<tr>
<td>Block</td>
<td>98.015</td>
<td>7</td>
<td>.000</td>
</tr>
<tr>
<td>Model</td>
<td>98.015</td>
<td>7</td>
<td>.000</td>
</tr>
<tr>
<td>Step 5</td>
<td>6.759</td>
<td>1</td>
<td>.009</td>
</tr>
<tr>
<td>Block</td>
<td>104.773</td>
<td>8</td>
<td>.000</td>
</tr>
<tr>
<td>Model</td>
<td>104.773</td>
<td>8</td>
<td>.000</td>
</tr>
</tbody>
</table>
Model Summary

<table>
<thead>
<tr>
<th>Step</th>
<th>-2 Log likelihood</th>
<th>Cox & Snell R Square</th>
<th>Nagelkerke R Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>368.546<sup>a</sup></td>
<td>.157</td>
<td>.219</td>
</tr>
<tr>
<td>2</td>
<td>352.845<sup>b</sup></td>
<td>.195</td>
<td>.273</td>
</tr>
<tr>
<td>3</td>
<td>340.291<sup>b</sup></td>
<td>.224</td>
<td>.314</td>
</tr>
<tr>
<td>4</td>
<td>328.557<sup>b</sup></td>
<td>.250</td>
<td>.350</td>
</tr>
<tr>
<td>5</td>
<td>321.799<sup>b</sup></td>
<td>.265</td>
<td>.371</td>
</tr>
</tbody>
</table>

^a Estimation terminated at iteration number 4 because parameter estimates changed by less than .001.

^b Estimation terminated at iteration number 5 because parameter estimates changed by less than .001.

Classification Table^a

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>logit_insomnia</td>
<td>0</td>
</tr>
<tr>
<td>Step 1</td>
<td>logit_insomnia</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Overall Percentage</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>logit_insomnia</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Overall Percentage</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>logit_insomnia</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Overall Percentage</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>logit_insomnia</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Overall Percentage</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>logit_insomnia</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Overall Percentage</td>
<td></td>
</tr>
</tbody>
</table>

^a The cut value is .500
The overall model was statistically significant ($\chi^2 = 106.415, \text{df} = 8, p = .000$).

For this study, the goodness of fit of the model was tested by Hosmer-Lemeshow χ^2.

The Chi-square values were not significant ($p = .835$) in all steps indicating that the model did fit the data. $R^2 = 26.50\%$ (Cox & Snell) and 37.10\% (Nagelkerke R^2).

The model classified insomnia patients correctly 58.70\% and classified no insomnia patients correctly 90.50\%. The overall percentage correctly 80.3\%.
BIOGRAPHY

Miss Janya Chimluang was born in 1979. She received bachelor degree of nursing science from The Thai Red Cross College of nursing in 2001. She had 5 years of clinical experience in coronary care unit at King Chulalongkorn Memorial Hospital during 2001-2005. She had received the scholarship from the Higher Education Commission to study philosophy program in nursing science, faculty of nursing, Chulalongkorn University since 2006-2010.