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CHAPTER I
INTRODUCTION

In this work, we consider collateralized debt obligation (CDO) and present a

comparison of some popular CDO pricing models.

1. The Gaussian copula, the model, widely used by the financial industry, was
introduced to the credit field by Li (2000).

2. A stochastic correlation introduced by, Andersen and Sidenius (2005)

3. The Student t copula which has been considered by a number of authors.(for
example Andersen et al (2003)

4. A Doublet one factor model

5. The Clayton copula medel

We focus on “copula models” since they are the most widely used model in the credit
derivatives markets, though the factor approach also applies to various intensity models (see
Mortensen (2006)). The pricing of synthetic CDOs involves the computation of aggregate
loss distributions over different time horizons. In‘our “bottom-up” approach, CDO tranche
premiums depend upon the individual credit risk of"néﬁies in the underlying portfolio and the

dependence structure between default times.

Burtschell, Gregory,.and Laurent (2008), compared some popular CDO pricing
models. Dependence between default times I1s modeled through Gaussian, stochastic
correlation, Student t, Double &, .Clayton and Marshall-Olkin copulas. They detailed the
model properties and“compared the semi-analytic pricing approach with large portfolio
approximation techniques. They mentioned that base correlation is monotonic with respect to
the model’s ‘dependence., parameter. (Burtschell,: Gregary,  and ‘Ladient (2008), p. 2).
However, they did not compare Mezzanine, Senior, and relationship among tranches. They
concluded that Clayton tends to give similar tranche premium as Gaussian and did not
produce implied correlation smile. Student t also did not produce correlation smile. On the
other hand, Double t and stochastic correlation appeared to fit the skew better. However,

they did not link this to sensitivity analysis.



Graph 1: Correlation Smile in Market Quote
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In practice, CDO pnce%e/quoted usmgthe so-called “implied correlation,” which is

the flat correlation parameter u;/ he Galssian. copula that makes the tranche spread match the
market quote. For the market qlﬂpte, the lmpl.led éprrelatlon is lower in the mezzanine tranche
which results in the “correlatidn s‘rhile” (;aussi;a model does not create correlation smile
and fails to price of the iTraxx tranches & Accofdmg to Burtschell, Gregory, and Laurent
(2008), they observed that for both C}ayton and Stu

nt t copula model don’t produce any

correlation smile as well. Double t ang stochastlc--‘féfféiation model can fit the market quote
A

reasonably well. p =

- __.J" -

Andersen and Sideniljj_é‘ (2005), Gregory and Laurent (2004) and Hull and White

(2004) also studied about sensitivity. Nonetheless, they did not compare between each

V.

model, and they did not offer a-link between sensitivity and the ahility to fit market quotes.
In this work, we investigate these models’ sensitivityto both

— Default probability, which is the probability that the obligor cannot return debt and it
is related to credit ratings.

— Correlation, or the dependence, among the default of obligor.

1.1 Literature review
Burtschell, Gregory, and Laurent (2008) compare several copula CDO pricing models

which are uses to model the dependence between default times. They explain the model



properties and compare the semi-analytic pricing approach with large portfolio approximation

techniques. In addition, they also discuss the ability of each model to fit the market quote.

The Gaussian copula which applied to CDOs was first introduced by Li (2000)
became a tool for financial institutions be used to specify the joint distribution of survival
times after marginal distributions of survival times. The copula functions and theirs basic
properties are introduced to provide a way of joint distribution which can be called marginal.

Also, the popular credit model is used in the calibration of the correlation parameter.

Gregory and Laurent (2004) focus on the cogregtion of correlation for structure within
a Gaussian copula framework. They come up with.a*more flexible two-factor model to
incorporate a realistic correlation structure. In addition, they integrate the dependence
between recovery rates and defaulitimaes and found that it can match the correlation smile
better.

Andersen and Sidenius (2005) introduced two new models which are extensions of
the standard Gaussian copula madels The first extension is the randomized recovery which
produces a heavy upper tail. The second extension.is the randomized factor loadings which
can produce the correlation smile similar to.those observed inthe CDO market.

Andersen et al (2003) show metheds to imprO\}e the way to calculate the prices and
hedge parameters for creditsbasket derivatives. The new teehnigue focus on single-tranche

CDO sensitivity and hedge ratio calculations.

Demarta and McNeil (2005) construct two new copulas‘which are the skewed t copula
and the grouped t copula.. Two new copulas derive by the considerations of extreme value
which are the t extreme value copula andthe t lower tail._ The objective of their studies is to
combined what is known about the t copulaswith its extremely properties;and to present some

extensions of the t copula.

Hull and White (2004) develop two quick procedures for valuing tranches of CDO
and n™ to default swaps. Copula model of times to default and Fourier transforms are the
procedures which involve calculating the probability distribution of the number of defaults
and using a “probability bucketing” numerical procedure to build up the loss distribution.

Many new copula models can be created by the different distribution assumption.


http://en.wikipedia.org/wiki/Gaussian_copula�

Schénbucher and Schubert (2001) illustrate a new method to find the default dependency
in risk models which is specified by the Copula of the default times. The Gumbel and the
Clayton Copula are the two models they focus on. Gregory and Laurent (2003), Rogge and
Schénbucher (2003), Madan et al. (2004), Laurent and Gregory (2005), Schloegl and O’Kane
(2005), and Friend and Rogge (2005)) are the other studies that mention Clayton copular.

Schonbucher (2002) focuses on formula for the distribution of a loan portfolio loss
that easy to be compute. He shows three things which are modeling joint distributions,
investigating the effect of the implicit assumption of a:Gaussian dependency structure on the
risk measures and the portfolio returns distribution,.and providing an application for the

model.

1.2 Objective .

e Investigate tranche sensitivity to'the eredit rating of obligors in the underlying portfolio.
This issue finds practical implication when practitioners wish to hedge CDO tranche with
other credit derivatives such as CDS. .\We will investigate whether different models give
different sensitivity to probability default sensitivities.

e Investigate sensitivity of tranche premium with resb*ect to the correlation parameter. This
issue has important practical implication, since practitioners often require calibrating the
correlation parameter to it the market quotes. \While i is-well known that the equity
tranche sensitivity is usually monotonic with correlation parameter, no one has provided
summary across different*models as to the correlation affeCts on mezzanine and senior
tranche as suggested by Burtschell, Gregory, and Laurent.(2008).~.We also want to see if
all models agree on_relationship-between tranche premium and correlation.

e Investigate whether models that fit ‘market well<=share a sensitivity pattern. We
hypothesize:that the ability to fit market.quotes can be determined by the pattern of
tranche sensitivity to correlation parameter. Indeed, we shall see that Double t and
stochastic correlations which have been observed to fit market well (Burtschell, Gregory,
and Laurent (2008)) share a correlation sensitivity pattern, while Clayton and Student-t do
not have this pattern.

The work is organized as follows: The second chapter recalls the factor or conditional
independence approach and provides the basic understanding of each model. We consider

Gaussian, stochastic correlation, Student T, Double t, and Clayton Copula. In addition, we



also explain about the payoff description of CDO and summarize the MATLAB code. In the
third and fourth chapter, we discuss about the result of sensitivity with respect to correlation
and the sensitivity of CDO tranches with respect to default probability. The last chapter is the

conclusion.
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CHAPTER I
METHODOLOGY

In this chapter, we introduce how the factor or conditional independence approach can
be associated with computations and CDO tranches (see Laurent and Gregory (2005)). In
this work, we consider n number of underlying obligors and (z4, ..., 7, ) characterized as the

random vectors of default dates.

F(ty,....,t,) = Q11 £ty .., T, < t) 1.1

where Q stands for some pricing prebability jmeasure:"F represents the joint distribution.

Fi, ..., E, indicate the marginal distribution functions.

The loss given default for name denotes by:

where E; fori = 1, ...,n is the tranche notional associated with n credits. Here, §;
represents the corresponding recovery rates. Laté’r'; ‘we will assume that recovery rates are

deterministic and focus on the dependence of default fimes.
2.1. One factor Gaussian copula
Gaussian copula was introduced by L1 (2000) and its default dates are given by:
73 BT (e@)) for) =190 i 111

where @ is the cumulative distribution function of standard Gaussiana.s F;! denotes the

inverse of F; which'is the probability that obligors will default before time i.

Consider on one factor case of the Gaussian vector,
V, = pV + /1 - p2¥, 1.1.2

where V, V; are independent standard Gaussian random variables and 0 < p < 1.

p = 0 corresponds to independent default times while p = 1 is correlated with the
perfectly positively dependent case.



2.2. Stochastic correlation

The stochastic correlation (as discussed by Andersen and Sidenius (2005)) has been
developed as an attempt to match “correlation smiles” in the CDO market. This model is the
mixture of Gaussian with both low and high correlation parameter. The latent variables are
given by:

Vi = B;(pV + 1= p2V) + (1 = B)(BV + /1= p2V)) for i = 1,..,n, 121

where B; are Bernoulli random variables which eliher iakes value 1 with success probability
and value O with failure probability, ¥ and V are standard Gaussian random variables, all
these being jointly independeni-and p.is.some high correlation parameter , 8 is some low

correlation parameters, 0 < < pr<. 1.

We define the default time as:
T, = F oV )dori = 4,5 n 1.2.2

The default times are independent conditiohall'y onV
2.3. Student t copula ‘

The Student t copula (see example Andéfs"éﬁ'et al. (2003), Demarta and McNeil
(2005)) is a modification of Gaussian copula.  Student t copula exhibits higher tail
dependence which Gaussian copula cannot capture. In the Student t approach, the underlying
vector (Vy,...,1;,) follows a Student t distribution with v degrees of freedom. In the

symmetric case whichiwe'are going to-consider;, we have

v, = VW (g +T— 70 131

V, V; are independent Gaussian random-variables, W is an inverse Gamma distribution with
parameters equal to V/2 (or equivalently U/W follows a yZ distribution). Lett, be the
distribution function of the standard univariate Student t. Default times of Student t is
defined as:

v = F (6, () 132
It can be seen that conditional on (V, W) default times are independent.



2.4. Doublet copula

The Double t copula, introduced by Hull and White (2004), is expanded from
Gaussian copula to create heavier tails than the normal distribution. The latent variables

which is used to model default time are

v—2
1o

where V; is an independent random variable following Student t distributions with + degrees

1/2

1
v—2\"2 _
v+ 1_p2( ) ) 7, 1.4.1

of freedom and V; is also an independent random Variable following Double t distributions

with v degrees of freedom and p is'equal to or more than'zero .
The default dates are then given by:
1, = Eg*(H{O@) fordd =\ 1,..,n 1.4.2

where H; is the distribution funetionof ;.

2.5. Clayton copula

In the following, we present Clayton copula’lfﬁogel which had been studied by many
authors. See the literature review for the atithors inforrﬁation.

We consider on Clayton copula because it has lower tail dependence. Let the positive

random variable V, which is called a frailty, follow a standard Gamma distribution. Its shape

parameteris1/6 and® > 0.

Its probability density'can be expressed as

1
f(x) = —— e *x(179)/0 fopx > 0. 151
)
The Laplace transform ¥ of probability densityfunction is
W(s) = [ f(x)e ™ dx = (1 +5)7/°. 15.2
Let define some latent variables V; with:
In U;
V.= y(—— 153
= ()

The independent uniform random variable U; is independent from V. The default times are
1, =F1(V),i=1,..,n 1.5.4



having V as the factor.
2.6. Distribution Plot

In this section, we present the loss distribution plot of each copula. Note the different tail
behavior of each model.
Figure 1 Plot Distribution

— Clayton

Double t

Gaussian

Stocastic Correlation
Student t

2.7. Payoff Description

“"’1

,d jas .- b
In a CDO, default Iosse&on the credit p po

rffoilo M gi_ong some thresholds or the

attachment points and allocatec
tranches CDO, denoted as e@tyf’"
tranche is divided by the attachngent points indicate&jjay A and B.

ﬂummmwmm

Figure 2 Three Tranches of CDO

[, as Eown in the Figure 1. Each

Mezzanine

The cumulative loss by the time t, which denoted by L(t), can be separated into three
scenarios. The first case is the case where cumulative default payment is less than attachment
point A. In this scenario, equity tranche default payment, which can be referred to as E(t),



10

will be equal to L(t) and for both the Mezzanine tranche default payment, represented by M(t)
and the Senior tranche default payment, denoted as S(t), are equal to zero.

Figure 3 The Cumulative Default Payment is Less Than Attachment Point A

Senior S(t)=0

T

In the second scenario, the cuq\a\ibg“! ment is higher than attachment
point A but less than attachment peme c mdﬁdault payment for each tranche is
T —
shown in Figure 4. For the equi ‘he efa
mezzanine tranche, default pa is denot

‘ is denoted by E(t)=A. For the
(t”)'- In the senior tranche, the
default payment is equal to zer _

M(t)=L(t)-A

. =" .
In the last case, the cuEn}Jlatlve pandgjpore than attachment point

B as shown in Figure 5. In this gcegarlo tranche deqjult payment is equal to A for the equity

and equal to B-A for lﬁnﬂzﬁj rfg w ﬁ%(ﬁt Wh&lﬂ'?ﬁﬂ;ﬁé/ment is equal to L(t)-

Figure

As mentioned that cumulative default payment can occur in three scenarios, we can

summarize the cumulative default payment of each tranche by the equations below.



11

E(t) = L(t)lL(t)<A +A 1L(t)>A 2.1
M(t) = (L(t) - A)1A<L(t)<B + (B - A) 1L(t)>B 2.2
S = (L@®) = B)lyp>s 2.3

For more details on how to compute tranche premium, refer to Laurent and Gregory
(2003). Here, we summarize the tranche premium of mezzanine tranches. Holders of
synthetic CDO for the mezzanine tranche receive aF time T a principal payment of M (o) —
M(T). M(o) denotes the initial nominal of mezzaf;‘i’ﬁ;e't:[gnche which is equal to B — 4 and
M () — M(T) denotes the remaining nominal 3f the tranche.” Figure 6 shows the cash flow

that the mezzanine tranche holdﬂyaelve at thi end of each period.

Figure6 The lne Tranche Recelvable at Each Period
A, (M () - M (1) /'X) A, (Mg’m) M@)YLibartX) A (M(c)—M)XLibor+X)

The payments are usué lly equal to a floatlng rate plus a flxed margin, which is
specific to each tranche, and also based on the outstanding nommaf on the tranche. For

Figure 7, it shows the cash flow out of the mezzanine tranche at'time of defaults.

Figure 7 The Mezzanine Tranche Cash flow In and Cash flow Out
M(z,)-M(z,) M(z)—-M(z,) M(z,)—M(z,)

accrue payment accrue payment accrue payment



12

The interest payment at ¢; is equivalent to A;_q (M () — M (¢t;) ) (Libory, | + X)
where X determines the CDO margin, A;_;; represents the duration of period, and Libor;, |

is the Libor rate for the period. There are some accrued interest payments since the interest is
calculated at the end of the period. In practice, X is determined so that the present values of

all cash flows are zero.

2.8. Summary of MATLAB Code

In order to conduct the CDO tranche premium study, we created MATLAB Code to
simulate the outcome for each model using Monte-Carlo simulation. The MATLAB codes
for each model are shown in the appendix. The MATLAB-eodes can be summarize as follow:

First, we start by generatingthe \/ and VV_ which are the components of Vi, where Vi
is the latent variable follow inedifferent distribution. Then, we use Vi to generate default
times. After that we compute E*(t), M (1), and S (t) which are the accumulated loss absorbed
by the equity, mezzanine, and senior tranches regééctively. In the next step, we compute the
regular coupon payment at eachs/Coupon -date based on remaining notional payment at that
date. At each default time, we will compute two’t_hi_r;gs. The first thing that we compute is
default payment based on the inerease in E (1), M._(-_Q, and S (t). The other one is the accrued
payments based on the default time from-the nearest__ @:btlipon date. Finally, we discount all the
cash flow to time zero and find the premium that make_';pr,esent value of these cash flow equal

Zero.



CHAPTER II1
SENSITIVITY WITH RESPECT TO CORRELATION

We studied five models’ sensitivities to the correlation parameter, which is the

dependency among the defaults of obligor.

3.1. Gaussian

We use the numerical example from Burtschell, Gregory, and Laurent (2008) for
comparability, we considered 100 names, all with-aregovery rate of § = 40% and equal unit
nominal. The credit spreads are all'equal to 100 bps. They are assumed to be constant until
the maturity of the CDO. The.attachment-points of the tranches are A = 3% and B = 10%.
The CDO maturity is equal to-five years. The default free rates are provided in the appendix.
We considered CDO margins. ef theequity;, mez%a_nine and senior tranches using the different
models. We begin first by the Gaussian model a;ﬁd compute the margins with respect to the

correlation parameter p 2 .

The result of the CDO/margins from th:e “Gaussian copula with respect to the
correlation parameter is shown in the table 1. We".._i/\—/iljl_‘ compute the following models’ table
by calibrating those correlation parametérs and fit'éach model’s equity tranche margin with

Gaussian copula.

Table 1 CDO margins (bp pa) Gaussian copula with respect to the correlation

parameter.

p2 Equity Mezzanine Senior

0% 7505,26 197.55 0
10% 3940.96 334.75 0.82
30% 2015.83 378:92 7.94
50% 1200.64 331.67 16.08
70% 731.26 287.07 29.28
100% 106.86 103.72 56.54

The graph beneath plots the CDO margins from the Gaussian copula with respect to
the correlation parameter for each tranche. For the equity tranche of Gaussian copula, it
shows a strong negative dependence with respect to the correlation parameter since the non-

diversification defines that the unexpected loss on the tranche is smaller. When we consider
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the senior tranche, it shows a positive dependence come from the fact that the unexpected

loss on the tranche is larger. For the mezzanine, the result produces a bumped curve.

Graph 2: CDO margins (bp pa) Gaussian copula with respect to the correlation
parameter
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As the basis for compa}y//‘ ther m;dels, we construct two charts, one depicting
n

and the equity, as a benchmark to' compare with those of the other models. We believe that
“of
H}f!g_to fit market model. We will compare

: : W R T
with other models in the next sections. = —
,- .“J' ‘;. ~
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the shapes of these plots are indicative of the ab

*

Graph 3: Comparing bet\h;en Equityand Graph 4: Comp;a}ing between Equity and
Mezzanine Premium for Gaussian Copula Senior Premium for Gaussian Copula
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To compare between different models, we set the dependence parameters to get the

same equity tranche premiums by calibrating the other models. Then, we use outcome of the
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Gaussian copula as the benchmark. In order to get the same equity tranche premiums for

different models, we calibrate the other models as already mention.

3.2. Clayton

The result of the CDO margins for the Clayton copula with respect to the correlation
parameter is shown in Table 2 below. As an example of the calibration notice that Clayton
premium is approximately equal to Gaussian spread when we set its parameter, 8 equal to
0.17 while Gaussian parameter p is equal to 30%. 6’s in Table 2 produce equity premiums

that are almost identical to those of the Gaussian.

Table 2 CDO margins (bp pa) €layton copula with respect to the correlation parameter

0 Equity. Mezzanine Senior
0 #5383 34 ‘. 195.98 0.00
0.05 3985.93 3 329.83 0.67
0.1725 201495 2 104 &\ 882,81 7.36
0.34 o947 = 1353139 16.36
0.59 735.82 "3, W JPN13 26.66
© 107 27 : o 102.84 54.10

Graph 5 shows the CDO marglns from Clayt‘en copula with respect to its correlation
parameter. However, it shows a similar result Wlth:GaUSSIan copula. For the equity tranche

of Clayton copula, it also shows a strong negatlve d'ependence For both mezzanine and

senior tranches, it produces ygry@rrrrrl&’r@utttsm@ﬂtﬂhmﬁh@_@.aussian as well.

Graph 5: CDO margins (t;p pa) Clayton Copula copula (é degree of freedom) with
nespect-tothe correlation, parameter
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The next illustration compares the mezzanine-equity and the senior-equity premiums

between that of the Gaussian model and the Clayton coupon spread. Gaussian and Clayton
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have almost the same sensitivity to correlation parameter. This might be the reason why
Clayton cannot produce correlation smile as reported in Burtschell, Gregory, and Laurent
(2008)

Graph 6: Comparing between Equity and
Mezzanine Premium for Clayton Copula

Graph 7: Comparing between Equity and
Senior Premium for Clayton Copula
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3.3. Student T | a9 4
. WAl

Table 3 shows the resulting CD@ margms wrth’ respect to the correlation parameter
calibrated from the Student t copula.

Wy " g

= o

Table 3 CDO margins (bp pa) Student t copula (4 degree ofafreedom) with respect to

the correlation parameter ../
p2 “Equity Mezzanine Senior
0% 2018.757 4135097 6.02773
28% 1216763 354.1069 16.44014
55% 742.0458 293.9838 27.96059
100% 96.57632 94.01169 51.3378

For Student t copula, we apply it with 4 degree of freedom. Table 3 shows the

Student t copula with 6 degree of freedom with respect to the correlation parameter. In this

model, both equity and senior tranches give similar results with Clayton copula.
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Graph 8: CDO margins (bp pa) Student t copula (4 degree of freedom) with respect to
the correlation parameter
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Now, we compare the mezzanine-equity*and the senior-equity premiums relationships
produced by the Student t with"deg ree of freedom 4 to (ho%e by the Gaussian. Mezzanine
premium from Student t is diﬁ’fi@m Gauslfian. \When we focus on comparing between
equity and mezzanine tranch We can, see, tgom Graph 9, we observe that as equity
premium decreases as the resg}é/n "'éa{sing_j cgnrelation, the mezzanine premium decreases
faster than Gaussian. Then we comp e-'fegpityf%n'c;i senior premium. We found that equity

premium decreases when correlation i

crease and the'senior premium increases just as fast as
|
-hé;only unable to create correlation smile,

== -3

Gaussian. An interesting fact is th S_tud_ém tis

but also creating frown. It perhaps resdlts’_irom thlé;_ﬁhéracterlstlc.
’ Y L daf o

et I -
: N : £ :
Graph 9 : Comparing between-Equity-and.Graph- 10 Comparing between Equity
Mezzanine Premium for-Student t (4) and Senior Premium for Student t (4)
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Next, we compare the mezzanine and the senior premiums relationships produced by

the Student t with degree of freedom 12 to those by the Gaussian. It shows that the graphs
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look similar to Gaussian. We observe that when the degree of freedom increases, the graphs

converge to Gaussian.

Graph 11 : Comparing between Equity
and Mezzanine Premium for Student t (12)

Graph 12 : Comparing between Equity
and Senior Premium for Student t (12)
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3.4. Double t o

Table 4 and Table 5 show the CDO"maf

i
&

-

'éins for Double t copula 4-3 and Double t

copula 3-3 with respect to the corelation pé:rametérﬂ; .

Py

v ol

Table 4 CDO margins (bp pa) Doubfé ff,CopuléjQ’)it(B) with respect to the correlation

. parameter.. .

p2  Equity Mezzanine / Senior

0% {34 tHeT————— 100 7516=V 0.000143
10% 73922.312 235.2195 — 3.839536
28% 2035.192 225.0991 = 13.85731
48% 1199.518 205.5088 25.16618
67% 728687 £81.7121 34.45001
100% 102.3232 99.45657 54.26102

Table 5 CDO margins (bp pa) Double t Copula t(3)-t(3) with respect to the correlation
parameter

p2 Equity. Mezzanine Senior
0% 7493.363 198.5279 0
16% 3951.291 235.2241 5.878178
40% 2080.035 222.6465 16.25295
61% 1191.599 190.4813 26.00436
76% 753.8428 173.8419 33.51745
100% 109.0013 105.7383 57.61654

When we consider Double t copula with different degrees of freedom, we find that its

result come out in the same way with Gaussian copula in all tranches.




19

Graph 13 : CDO margins (bp pa) Double t Copula t(4)-t(3) with respect to the
correlation parameter
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However, when we look dat mezzanine and senior to equity premium plots, the shapes

are very different. gjw W ﬂ Iess pronounced. In
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Graph 15 : Comparing between Equity
and Mezzanine Premium for Double t 4-3

Graph 16 : Comparing between Equity
and Senior Premium for Double t Double
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3.5. Stochastic correlation

Lastly, we focus on stochastic correlation.

Table 3 presents the CDO margins of

stochastic correlation copula with-respect to] the conrelation parameter:

Table 6 CDO margins (bp pa) Stochastic correlation copula with respect to the
correlation parameter

P Equity Mezzanine Senior

0 3233.47 330.72 0.77
0.1 2881.38 322.25 3.43
0.35 2005.88 268.40 13.18
0.61 1218.33 231.97 24.93
0.8 749.62 219.36 33.51

1 339.91 202.78 42.79
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We find that stochastic correlation gives different result from other models. When we
vary correlation, stochastic correlation results in linear downward sloping for both the equity
and mezzanine tranches. However, the slope in mezzanine tranche is less steep compared to

other models.

Graph 19: CDO margins (bp pa) Stochastic correlation Rho=0.7 Beta=0.2 with respect
to the correlation parameter
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Graph 20: CDO margins (bﬁ hastic ekarrelatlon Rho=0.9 Beta=0.1 with respect
e orreiatlor{‘parameter
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Let’s look at the comparison of the ‘mezzanine andsthe senior premiums. Again, note
that stochastic-correlationswhich is reported by Burtschell, Gregary, and Laurent (2008) to
produce correlation smile, has the same property with Double t. For the mezzanine, the line
of stochastic correlation lies below Gaussian. As equity premium decreases as the result of
increasing correlation, the mezzanine premium also decreases but not as fast as Gaussian. In

senior, stochastic correlation lies on top of Gaussian.




Graph 21 : Comparing between Equity
and Mezzanine Premium for Stochastic

correlation Rho=0.7 Beta=0.2
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Graph 22 : Comparing between Equity
and Senior Premium for Stochastic

correlation Rho=0.7 Beta=0.2
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Graph 23 : Comparing between Equity
and Mezzanine Premium for Stoehastic

'Graph24: Comparing between Equity and
' Senior Premium for Stochastic correlation
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e We find that all, models”agree in equity and senior tranches. Equity coupon spread

decreases with cortrelation. cNonetheless, senior. premium increases with correlation.

Most models agree in mezzanine which creates “bump”.

Burtschell, Gregory,/andiLaurent (2008).find that Clayton and Student t*cannot produce

correlation’'smile, while Double t and stochastic correlation can produce the correlation

smile. From plotting mezzanine premium and senior premium against equity coupon

spread, we detect a pattern that might be characteristic of smile-producing models. We

found that, for Double t and Stochastic correlation, the graph lies below Gaussian for

mezzanine and above for senior. Clayton and Student t do not exhibit such pattern.



perturb credit spread which is a function of default probability

more than Gaussian as the credit /{pread

CHAPTER IV

PROBABILITY

SENSITIVITY OF CDO TRANCHES WITH RESPECT TO DEFAULT

5.1 Sensitivity to Default Probability of Equity tranche

F(taNE

When we consider the sensitivity to default probability, we restrict all the variables and

t+cred s’ spread

>

The first study is a comparison-between Gaussian copula and Clayton copula shown

in the graph below. It can be explained from the graph that Gaussian copula is less sensitive

to the change of credit spread ;.eﬁ'parlng to Clgyton copula. We observed that Clayton rise

increases
\ 4
y .‘
o Id
Graph 25 : Compare between Gaussian and Clayton Copula for Equity Tranche
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degree of freedom as examined from the graph below

Now, we move on to Student t copula. We observe that Student t copula with 4 degree
of freedom is more sensitive to the default probability than the Student t copula with 6 and 12
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Graph 26 : Compare between Gaussian and Student t for Equity Tranche
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The Gahﬁ)asaaﬁ)m §£ﬁt u %ﬂﬁ@ﬂs&l@ﬁ %lult that are not

much different ?rom Gaussian. As observed, we can conclude that as the degree freedom

increases, Double t copula converses to Gaussian.

The graph underneath illustrates the comparison between Gaussian and stochastic
correlation copula. Stochastic correlation pattern doesn’t differ much from Gaussian.
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Graph 28 : Compare between Gaussian and Stochastic correlation copula for Equity

Tranche
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In this section, we‘é_)' concentrated on Mez?g‘hej. Following graphs show
comparison with Clayton, S‘td‘dent t, Double t, and stochaédc correlation copula. The

difference is so little tﬁ it can’t'beconcluded whiéh’is more sensitive.
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Graph 30 : Compare between Student t and Gaussian Copula for Mezzanine Tranche

2,000.00

1,800.00 x
1,600.00 e

1,400.00
w  1200.00 P
Q. 1,000.00 —>=Student (4)

800.00 —@—Student (6)
600.00

400.00 —@—Student (12)
200.00

—— Gaussian

Graph 31 : Compare be Gatssian an uble t"4-3 and 3-3 Copula for

1600
1400
1200
1000
800
600
400
200

bps

—a—DoubleT 4-3

—+—Double T 3-3

Guassian

ﬂ.
Graph 32 : Compare between Gaussian and Stochastigéorrelation copula for
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Summary for Mezzanine Tranche

e The percentage changes in all models are close.
e In other words, the difference among the models in terms of sensitivity to default
probabilities is much less pronounced in mezzanine tranche.

5.3 Sensitivity to Default Probability of Senior Tranche

Last, we concentrate on senior tranche. For all models of this tranche, we notice that
the outcomes inverse equity tranche. rve that the graph from Gaussian is more
sensitive than Clayton copula. Next graph ‘jj ﬂ udent t less sensitive than Gaussian
copula.

Graph 33 : Compare between

'ian“ C@pula for Senior Tranche
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Graph 34: Compare a for Senior Tranche
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Graph 35: Compare between Gaussian and Double t 4-3 and 4-4 Copula for Senior
Tranche
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Summary for Senior Tranche

e Gaussian is more sensitive than Clayton copula. Student t is less sensitive than
Gaussian. Model that is more sensitive for equity tranche will be less sensitive for
senior tranche.

e Double t and stochastic correlation are nearly indistinguishable from Gaussian in

terms of sensitivity to default probability.




CHAPTER V
CONCLUSION

This paper is devoted to analysis of CDO tranches sensitivity to the default

probability and to the degree of dependence between defaults in various models. The models

under investigation are one factor Gaussian copula, stochastic correlation extension of the

Gaussian copula, Clayton copula, Student t copula, and Double t copula.

In term of the sensitivity to correlation, we found a characteristic of models that are
able to fit market quotes. For Double t copula and stochastic correlation, both of
which are known o fit market quotes well, tne.sensitivity to correlation parameters in
the mezzanine tranche is much.less pranounced compared to Gaussian copula. This
can be seen in the plot ofsmezzanine tranche spread versus equity tranche spread,
where the plots for Doublest copula and Stochastic correlation are flatter then
Gaussian copula. This gharacteristic is. not seen in Clayton copula and Student t
copula. Therefore, insensitivity to correlation in the mezzanine tranche seems to be a
characteristic of smile-producing modelé._ To offer an intuition behind this, the
insensitivity of mezzaning implied correlat_i(_)'n"-to remain level, while the sensitivity of
equity and senior tranches causes the implié'd"cg_rrelation of equity and senior tranches
causes the implied correlation of eguity an‘dﬂ _sehior tranches to shoot up, producing a
correlation smile as ohserved in the market. _-

Compared to Gaussian, all models agree in both equity and senior tranche as to the
effect of increasing correlation parameter. Equity premium decreases with correlation
and senior premium increases with correlation. Every model agrees in mezzanine
which creates “bump”.

We found that for Double t and stochastic correlations, which fit market well, the
sensitivity‘te defatlt probabihity produced ly these ‘iwotmodels.do not differ much.
Interestingly, the one-factor Gaussian copula, which is known to be unable to fit
market quote, produces sensitivity that is close to Double t and Stochastic correlation.
Compared to Gaussian, Clayton and Student t produce very different sensitivity to
default probability. Therefore, delta-hedging under different models will be different.
Also a model that gives more sensitivity to default probability in equity tranche will

give less sensitivity to senior tranche and vice versa.
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APPENDIX A
Data for the basket default swaps and CDO examples
Basket default swaps and homogeneous CDO examples

Table Al: Default Free Yield Curve (Continuous Rates)

1D w | 1M 2M|3M 6M|9M 1Y|2Y 3Y 4Y 5Y|

202 | 205 | 206 | 207 | 2.08 214\“%_ 237 | 28 | 317 | 347 | 371 |

The default free rates were obtaiwe sﬂap I@Euros on the 08/02/2005.

sy | av | sv |

1D 1w 1M

2.07 | 2.09 § 2.10 2.78 | 2.93 | 3.06 I

ﬁ‘LlEJ’mEJV]‘ﬁWEJ']ﬂﬁ
ama\mmumqwmaﬂ



APPENDIX B
1.) Matlab Code

1.1.) Gussian Copula

fori=1:n

\Y = randn();
\Y =randn(100,1);

Vi =rho*V + sqrt(l-rho™2)*V_;
tau = -log(1-normcdf(Vi))./spread ; ’
(tau_, num) = sort(tau); 2 //
tau_ = tau_(1:sum(tau_<5)); /
prev_date = repmat(0,length(tau_),1); ‘ ,d

for k=1:length(tau_)

prev_date(k) = t(sum(tau_(k)>t));

end
num =num (1:length(tau_));
RF = interpl(TERM,yield,tau_);
default = E(num).*(1-recover(num));
Me = min(A,cumsum(default));
Mm = max(0,min(cumsum(default)-A,
Ms = max(0,cumsum(default)-B);

if length(tau_)==0
DPLe(i)=0;
DPLm(i)=0;
DPLs(i)=0;
AMPe =0;
AMPm =0;
AMPs =0;

else

DPLs(i) = sum(diff((0;Ms))./(1+RF):Aia
AMPe =sum((tau_-prev_date).*diff(((ﬁ/lﬂ(ﬂRF)."tau_); o
AMPm = sum((tau_-preV_datg). *diff((0; Mm)). f ' K
A ESRERSEY I NN T
end 11
¢ o o/
MPe  =0; \
w3 AWIANNIUANIINYIQ Y
MPs  =0;
q
for j=2:length(t)
if length(tau_)==0
AccuLosse =0;
AcculLossm =0;
Acculosss =0;
else
AccuLosse = Me(length(tau_<t(j)));
AccuLossm = Mm(length(tau_<t(j)));
AccuLosss = Ms(length(tau_<t(j)));

end
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MPe = MPe + (t(j)-t(j-1))*(A-AccuLosse)./((1+interp1(TERM,yield,t(j)))."t(j));
MPm = MPm +(t(j)-t(-1))*(B-A-AcculLosse)./((1+interpl(TERM,yield,t(j))). t());
MPs = MPs +(t(j)-t(j-1))*(100-B-AccuLosse)./((1+interpl(TERM,yield,t(j))).~t());

end

MarginE(i) = AMPe+MPe;
MarginM(i) = AMPmM+MPm;
MarginS(i) = AMPs+MPs;

end
Xe  =mean(DPLe)/mean(MarginE);
Xm  =mean(DPLm)/mean(MarginM);
Xs  =mean(DPLs)/mean(MarginS);

1.2.) Stochastic correlation

for i=1:n
Bi = (rand(100,1) < p);
\Y% = randn();
V_ = randn(100,1);
Vi = Bi.*(rho*V + sqrt(1-rho™2)*V_)
tau = -log(1-normcdf(Vi))./spread;

(tau_, num) = sort(tau);

tau_ = tau_(1:sum(tau_<5));
prev_date = repmat(0,length(tau_),1);
for k=1:length(tau_)

prev_date(k) = t(sum(tau_(k)>t));

end
num =num (1:length(tau_));
RF = interpl(TERM,yield,tau_);
default = E(num).*(1-recover(num));
Me = min(A,cumsum(default));
Mm = max(0,min(cumsum(default)-A,B-A));
Ms = max(0,cumsum(default)-B);

if length(tau_) == 0

DPLe(i) = 0; 8 =
DPLm() = 0; D E]
DPLs(i)

B ﬂuﬂquW5wa1ﬂﬁ

DPLe(i) = sum(diff((0; Me)) /(1+RF).Mau );

2 R I AN NN Y

AMPe = sum((tau_-prev_date).*diff((0:Me))./(1+RF)."tau_);
AMPmM = sum((tau_-prev_date).*diff((0;Mm))./(1+RF)."tau_);
AMPs = sum((tau_-prev_date).*diff((0;Ms))./(1+RF). tau_);

end

MPe  =0;
MPm  =0;
MPs  =0;

for j=2:length(t)
if length(tau_)==0

AccuLosse =0;
AcculLossm =0;
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Acculosss =0;

else
AccuLosse = Me(length(tau_<t(j)));
AccuLossm = Mm(length(tau_<t(j)));
AccuLosss = Ms(length(tau_<t(j)));

end
MPe = MPe + (t(j)-t(j-1))*(A-AccuLosse)./((1+interp1(TERM,yield,t(j)))."t()));
MPm = MPm +(t(j)-t(j-1))*(B-A-AccuLosse)./((1+interp1(TERM,yield,t(j)))."t(j));
MPs = MPs +(t(j)-t(j-1))*(100-B-AcculLosse)./((1+interpl(TERM,yield,t(j)))."t(j));
end
MarginE(i) = AMPe+MPe;

MarginM(i) = AMPmM+MPm;
MarginS(i) = AMPs+MPs;

if mod(i,100)==0
fprintf('Replication %-6d, Equity %-5.0f, Mezz %-5.0
5.0f\n",i,10000*mean(DPLe(1: |))/mean(Marg|nE(1' 0

nS(1:0)));

end / '
end /
Xe  =mean(DPLe)/mean(MarginE);

Xm  =mean(DPLm)/mean(MarginM);
Xs  =mean(DPLs)/mean(MarginS);

|nM(1 i)),10000*mean(DPLs(1:i))/mean(Margi

1.3.) Studentt Copula

ﬂUEJ’JVIEJVI‘ﬁWEﬂﬂ?
QW’]@Nﬂ‘im UA1AINYAY
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fori=1:n

V  =randn();

V_ =randn(100,1);

W = degree/chi2rnd(degree);

X =rho*V + sqrt(1-rho™2)*V_;
Vi =sqrt(W)*X;

tau = -log(1-tcdf(Vi,degree))./spread ;

(tau_, num) = sort(tau);

tau_  =tau_(l:sum(tau_<5)); .

prev_date =repmat(o,Iength(tau_)’l);7 ‘

for k=1:length(tau_)

prev_date(k) = t(sum(tau_(k)>t)); .

end
num = num (1:length(tau_)); =7 0
- A
RF = interpl(TERM,yield,tau b i

default = E(num).*(1-recover(nur ))f
Me = min(A,cumsum(default));

Mm = max(0,min(cumsum(default)- A‘Q A));

* e mE NN INg

e ARANN TN ING 1A

AMPs =0;

else




DPLe(i) =sum(diff((0;Me))./(1+RF). tau_);
DPLmM(i) =sum(diff((0;Mm))./(1+RF). tau_);

DPLs(i) = sum(diff((0;Ms))./(1+RF)." tau_);

AMPe  =sum((tau_-prev_date).*diff((0;Me))./(1+RF)."au_);
AMPmM  =sum((tau_-prev_date).*diff((0;Mm))./(1+RF).~tau_);

AMPs  =sum((tau_-prev_date).*diff((0;Ms))./(1+RF)."au_);

end

MPe  =0;
MPm  =0;
MPs  =0;

for j=2:length(t)

if length(tau_)==0

AccuLosse =0;

AccuLossm =0;

AccuLosss =0;

else

AcculLosse = Me(length(tau_<t(j)));

e B ANENTNGIN S

AccuLosss = Ms(len

- AWIANIUNUNIINYIAY

MPe = MPe + (t(j)-t(j-1))*(A-AccuLosse)./((1+interpl(TERM,yield,t(j))).~t(G));
MPm = MPm +(t(j)-t(j-1))*(B-A-AccuLosse)./((1+interpl(TERM,yield,t(j)))."t(i));

MPs = MPs +(t(j)-t(j-1))*(100-B-AcculLosse)./((1 +interpl(TERM,yield,t(j)))."t(j));

end




39

MarginE(i) = AMPe+MPe;
MarginM(i) =AMPmM+MPm;

MarginS(i) = AMPs+MPs;

End

if mod(i,100)==0

fprintf(‘Replication %-6d, Equity %-5.0f, Mezz %-5.0f, Senior %o-
5.0f\n",i,10000*mean(DPLe(1:i))/mean(MarginE(1:i)),10000* mea
MarginS(1:i)));

end
Xe  =mean(DPLe)/mean(MarginE);

Xm -mean(DPLm)/mean(MarglnM/

Xs  =mean(DPLs)/mean(MarginS);

1.4.) Doublet Copula

O  =rho*((degree-2)/degree)*1/2*trnd(degree, 1000000 -E;sq (17) _; 2)*((degreev- greev)™1/2*trnd(degreev,1,1000000);
X =-5.2:5; !m 7 AR \
H =0 f"'-‘—

for 0=x;
H=(H mean(0<=0));
end

fori=1:n

V  =trnd(degree);
V_ =trnd(degree,100,1);

Vi = rho*((degree-2)/degree)*1/2*\/
tau = -log(1-interpl(x,H,Vi))./spread ; B

(tau_, num) = sort(tau);
tau -tau _(L:sum(tau_<5));

e 'e”g‘“ﬂ)u 3 EJ NINYINT

for k=1:length(tau_)

prev_date(k) = t(sum(tau_| (k)>t))

S IRRINTN UM INA Y

num = num (Llength(tau_));

RF = interpl(TERM,yield,tau_);
default = E(num).*(1-recover(numy));
Me = min(A,cumsum(default));
Mm = max(0,min(cumsum(default)-A,B-A));
Ms = max(0,cumsum(default)-B);

if length(tau_)==
DPLe(i)=0;
DPLm(i)=0;
DPLs(i)=0;
AMPe =0;
AMPmM =0;
AMPs  =0;

else
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DPLe(i) = sum(diff((0;Me))./(1+RF)."au_);
DPLm(i) = sum(diff((0;Mm))./(1+RF)."tau_);
DPLs(i) = sum(diff((0;Ms))./(1+RF). au_);

AMPe = sum((tau_-prev_date).*diff((0;Me))./(1+RF)."tau_);
AMPm  =sum((tau_-prev_date).*diff((0;Mm))./(1+RF)."tau_);
AMPs  =sum((tau_-prev_date).*diff((0;Ms))./(1+RF)."tau_);

end

MPe  =0;
MPm  =0;
MPs  =0;

for j=2:length(t)
if length(tau_)==0
Acculosse =0;
AcculLossm =0;

Acculosss =0;

s
—

else
AccuLosse = Me(length(tau_<t(j))
AccuLossm = Mm(length(tau_<t(j)));
AccuLosss = Ms(length(tau_<t(j

end

MPe = MPe + (t(j)-t(j-1))*(A-AccuLos
MPm = MPm +(t(j)-t(-
MPs = MPs +(t(j)-t(j-1))*(100-B-

end

MarginE(i) = AMPe+MPe;
MarginM(i) = AMPm+MPm;
MarginS(i) = AMPs+MPs;

End
if mod(i,100)==
fprintf('Replication %-6d, Equity %-S.Qf, \Mjezz
5.0f\n",i,10000*mean(DPLe(1:i))/mean(Marg
nS(L:i)));

end

1)),10000*mean(DPLs(1:i))/mean(Margi

Xe  =mean(DPLe)/mean(MarginE); l l' '
Xm  =mean(DPLm)/mean(MarginM i
Xs  =mean(DPLs)/mean(MarginS);

[ . a
e
. < 1110
1.5) Clayton Copula'| ¢ o 'Y,
V = randg(/theta);] |
U = rand(100,1);
Vi = (1-log(U)./V).A(-1/theta);

tau = -log(1-unifinv(Vi,0,1))./spread;
(tau_, num) = sort(tau);
tau_ = tau_(1:sum(tau_<5));
prev_date = repmat(0,length(tau_),1);
for k=1:length(tau_)
prev_date(k) = t(sum(tau_(k)>t));

end

num =num (1:length(tau_));
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RF = interpl(TERM,yield,tau_);
default = E(num).*(1-recover(num));
Me = min(A,cumsum(default));
Mm = max(0,min(cumsum(default)-A,B-A));
Ms = max(0,cumsum(default)-B);

if length(tau_)==
DPLe(i)=0;
DPLm(i)=0;
DPLs(i)=0;
AMPe =0;
AMPmM =0;
AMPs =0;

else
DPLe(i) = sum(diff((0;Me))./(1+RF)."au_);

DPLm(i) = sum(diff((0;Mm))./(1+RF). au_);
DPLs(i) = sum(diff((0;Ms))./(1+RF). au_);

AMPe = sum((tau_-prev_date).*diff((0;Me)
AMPm = sum((tau_-prev_date).*diff((0;
AMPs = sum((tau_-prev_date).*diff((0;

end 7
MPe =0; /
MPm  =0; /
MPs  =0;

for j=2:length(t)
if length(tau_)==

Acculosse =0;
AcculLossm =0;
Acculosss =0;

else
AccuLosse = Me(length(tau_<t(j)));
AccuLossm = Mm(length(tau_<t(j)));
AccuLosss = Ms(length(tau_<t(j)));

end

MPe = MPe+(t(j)-t(j-1))*(A-Acg e
MPm = MPm +(t(j)-t(j-1))*(B-A-Acc
MPs = MPs +(t(j)-t(j-1))*(100-B-AcHJ osse)./(

end
o - LY

MarginE(i) = AMPe+MPe; ﬂ p

i A U TN ENINYINT
MarginS(i) = AMPs+MPs; ] L
End M ¢

if mod(i,100)== L £ e/
HEE WARSASAI NI NEAS
5.0f\n",i,10000*mean(DPLe(1:i))/m rgi :i)),10000*mean(DPLm(1:i))/mean(MarginM(:i)),10000zmeal Ls(1:i))/mean(Margi
ns%:i))); 9

en

Xe  =mean(DPLe)/mean(MarginE);
Xm  =mean(DPLm)/mean(MarginM);
Xs  =mean(DPLs)/mean(MarginS);
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