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CHAPTER I 

INTRODUCTION 
In this work, we consider collateralized debt obligation (CDO) and present a 

comparison of some popular CDO pricing models.   

1. The Gaussian copula, the model, widely used by the financial industry, was 

introduced to the credit field by Li (2000).   

2. A stochastic correlation introduced by Andersen and Sidenius (2005) 

3. The Student t copula which has been considered by a number of authors.(for 

example Andersen et al (2003) 

4. A Double t  one factor model 

5. The Clayton copula model  

 

We focus on “copula models” since they are the most widely used model in the credit 

derivatives markets, though the factor approach also applies to various intensity models (see 

Mortensen (2006)).  The pricing of synthetic CDOs involves the computation of aggregate 

loss distributions over different time horizons.  In our “bottom-up” approach, CDO tranche 

premiums depend upon the individual credit risk of names in the underlying portfolio and the 

dependence structure between default times. 

Burtschell, Gregory, and Laurent (2008), compared some popular CDO pricing 

models. Dependence between default times is modeled through Gaussian, stochastic 

correlation, Student t, Double t, Clayton and Marshall-Olkin copulas. They detailed the 

model properties and compared the semi-analytic pricing approach with large portfolio 

approximation techniques. They mentioned that base correlation is monotonic with respect to 

the model’s dependence parameter (Burtschell, Gregory, and Laurent (2008), p. 2).  

However, they did not compare Mezzanine, Senior, and relationship among tranches.  They 

concluded that Clayton tends to give similar tranche premium as Gaussian and did not 

produce implied correlation smile.  Student t also did not produce correlation smile.  On the 

other hand, Double t and stochastic correlation appeared to fit the skew better.  However, 

they did not link this to sensitivity analysis. 
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Graph 1: Correlation Smile in Market Quote 

 

In practice, CDO prices are quoted using the so-called “implied correlation,” which is 

the flat correlation parameter in the Gaussian copula that makes the tranche spread match the 

market quote. For the market quote, the implied correlation is lower in the mezzanine tranche 

which results in the “correlation smile”.  Gaussian model does not create correlation smile 

and fails to price of the iTraxx tranches.  According to Burtschell, Gregory, and Laurent 

(2008), they observed that for both Clayton and Student t copula model don’t produce any 

correlation smile as well.  Double t and stochastic correlation model can fit the market quote 

reasonably well. 

Andersen and Sidenius (2005), Gregory and Laurent (2004) and Hull and White 

(2004) also studied about sensitivity.  Nonetheless, they did not compare between each 

model, and they did not offer a link between sensitivity and the ability to fit market quotes. 

In this work, we investigate these models’ sensitivity to both 

→ Default probability, which is the probability that the obligor cannot return debt and it 

is related to credit ratings. 

→ Correlation, or the dependence, among the default of obligor. 

 

1.1 Literature review 

Burtschell, Gregory, and Laurent (2008) compare several copula CDO pricing models 

which are uses to model the dependence between default times.  They explain the model 
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properties and compare the semi-analytic pricing approach with large portfolio approximation 

techniques.  In addition, they also discuss the ability of each model to fit the market quote.   

The Gaussian copula which applied to CDOs was first introduced by Li (2000) 

became a tool for financial institutions be used to specify the joint distribution of survival 

times after marginal distributions of survival times.  The copula functions and theirs basic 

properties are introduced to provide a way of joint distribution which can be called marginal.  

Also, the popular credit model is used in the calibration of the correlation parameter. 

Gregory and Laurent (2004) focus on the correction of correlation for structure within 

a Gaussian copula framework.  They come up with a more flexible two-factor model to 

incorporate a realistic correlation structure. In addition, they integrate the dependence 

between recovery rates and default times and found that it can match the correlation smile 

better. 

Andersen and Sidenius (2005) introduced two new models which are extensions of 

the standard Gaussian copula model.  The first extension is the randomized recovery which 

produces a heavy upper tail. The second extension is the randomized factor loadings which 

can produce the correlation smile similar to those observed in the CDO market. 

Andersen et al (2003) show methods to improve the way to calculate the prices and 

hedge parameters for credit basket derivatives.  The new technique focus on single-tranche 

CDO sensitivity and hedge ratio calculations.   

Demarta and McNeil (2005) construct two new copulas which are the skewed t copula 

and the grouped t copula.  Two new copulas derive by the considerations of extreme value 

which are the t extreme value copula and the t lower tail. The objective of their studies is to 

combined what is known about the t copula with its extremely properties and to present some 

extensions of the t copula. 

Hull and White (2004) develop two quick procedures for valuing tranches of CDO 

and nth to default swaps.  Copula model of times to default and Fourier transforms are the 

procedures which involve calculating the probability distribution of the number of defaults 

and  using a “probability bucketing” numerical procedure to build up the loss distribution.  

Many new copula models can be created by the different distribution assumption. 

http://en.wikipedia.org/wiki/Gaussian_copula�
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Schönbucher and Schubert (2001) illustrate a new method to find the default dependency 

in risk models which is specified by the Copula of the default times.  The Gumbel and the 

Clayton Copula are the two models they focus on. Gregory and Laurent (2003), Rogge and 

Schönbucher (2003), Madan et al. (2004), Laurent and Gregory (2005), Schloegl and O’Kane 

(2005), and Friend and Rogge (2005)) are the other studies that mention Clayton copular. 

 

Schönbucher (2002) focuses on formula for the distribution of a loan portfolio loss 

that easy to be compute.  He shows three things which are modeling joint distributions, 

investigating the effect of the implicit assumption of a Gaussian dependency structure on the 

risk measures and the portfolio returns distribution, and providing an application for the 

model. 

 

1.2 Objective 

• Investigate tranche sensitivity to the credit rating of obligors in the underlying portfolio.  

This issue finds practical implication when practitioners wish to hedge CDO tranche with 

other credit derivatives such as CDS.  We will investigate whether different models give 

different sensitivity to probability default sensitivities. 

• Investigate sensitivity of tranche premium with respect to the correlation parameter.  This 

issue has important practical implication, since practitioners often require calibrating the 

correlation parameter to fit the market quotes.  While it is well known that the equity 

tranche sensitivity is usually monotonic with correlation parameter, no one has provided 

summary across different models as to the correlation affects on mezzanine and senior 

tranche as suggested by Burtschell, Gregory, and Laurent (2008).  We also want to see if 

all models agree on relationship between tranche premium and correlation. 

• Investigate whether models that fit market well share a sensitivity pattern.  We 

hypothesize that the ability to fit market quotes can be determined by the pattern of 

tranche sensitivity to correlation parameter.  Indeed, we shall see that Double t  and 

stochastic correlations which have been observed to fit market well (Burtschell, Gregory, 

and Laurent (2008)) share a correlation sensitivity pattern, while Clayton and Student-t do 

not have this pattern. 

The work is organized as follows: The second chapter recalls the factor or conditional 

independence approach and provides the basic understanding of each model.  We consider 

Gaussian, stochastic correlation, Student T, Double t, and Clayton Copula.  In addition, we 
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also explain about the payoff description of CDO and summarize the MATLAB code.  In the 

third and fourth chapter, we discuss about the result of sensitivity with respect to correlation 

and the sensitivity of CDO tranches with respect to default probability. The last chapter is the 

conclusion.  

 



 

 

CHAPTER II 

METHODOLOGY 

In this chapter, we introduce how the factor or conditional independence approach can 

be associated with computations and CDO tranches (see Laurent and Gregory (2005)).  In 

this work, we consider n number of underlying obligors and (𝜏𝜏1, … , 𝜏𝜏𝑛𝑛  ) characterized as the 

random vectors of default dates.   

 
𝐹𝐹(𝑡𝑡1, … , 𝑡𝑡𝑛𝑛) = 𝑄𝑄(𝜏𝜏1 ≤ 𝑡𝑡1, … , 𝜏𝜏𝑛𝑛 ≤ 𝑡𝑡𝑛𝑛) 1.1 

 

where Q stands for some pricing probability measure. F represents the joint distribution. 

𝐹𝐹1, … ,𝐹𝐹𝑛𝑛  indicate the marginal distribution functions.  

 

 The loss given default for name i denotes by: 

 
𝑀𝑀𝑖𝑖 = 𝐸𝐸𝑖𝑖(1 − 𝛿𝛿𝑖𝑖) 1.2 

 
where 𝐸𝐸𝑖𝑖  for 𝑖𝑖 = 1, … ,𝑛𝑛 is the tranche notional associated with n credits.  Here, 𝛿𝛿𝑖𝑖  

represents the corresponding recovery rates. Later, we will assume that recovery rates are 

deterministic and focus on the dependence of default times.  

 
2.1. One factor Gaussian copula 

 
 Gaussian copula was introduced by Li (2000) and its default dates are given by: 

 
𝜏𝜏𝑖𝑖 = 𝐹𝐹𝑖𝑖−1�𝛷𝛷(𝑉𝑉𝑖𝑖)�   for 𝑖𝑖 = 1, … ,𝑛𝑛 1.1.1 

 
where  𝛷𝛷  is the cumulative distribution function of standard Gaussian.   𝐹𝐹𝑖𝑖−1  denotes the 

inverse of 𝐹𝐹𝑖𝑖  which is the probability that obligors will default before time i.  

 
Consider on one factor case of the Gaussian vector, 

𝑉𝑉𝑖𝑖 = 𝜌𝜌𝜌𝜌 + �1 − 𝜌𝜌2𝑉𝑉�𝑖𝑖 1.1.2 

 
where 𝑉𝑉, 𝑉𝑉�𝑖𝑖 are independent standard Gaussian random variables and  0 ≤ 𝜌𝜌 ≤ 1.  

𝜌𝜌 =  0 corresponds to independent default times while 𝜌𝜌 =  1 is correlated with the 
perfectly positively dependent case.
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2.2. Stochastic correlation 

 
 The stochastic correlation (as discussed by Andersen and Sidenius (2005)) has been 

developed as an attempt to match “correlation smiles” in the CDO market.  This model is the 

mixture of Gaussian with both low and high correlation parameter.  The latent variables are 

given by: 

𝑉𝑉𝑖𝑖 = 𝐵𝐵𝑖𝑖�𝜌𝜌𝜌𝜌 + �1 − 𝜌𝜌2𝑉𝑉�𝑖𝑖� + (1 − 𝐵𝐵𝑖𝑖)�𝛽𝛽𝛽𝛽 + �1 − 𝛽𝛽2𝑉𝑉�𝑖𝑖� for  𝑖𝑖 =  1, … ,𝑛𝑛 , 1.2.1 

 

where 𝐵𝐵𝑖𝑖  are Bernoulli random variables which either takes value 1 with success probability 

and value 0 with failure probability, 𝑉𝑉 and 𝑉𝑉𝑖𝑖  are standard Gaussian random variables, all 

these being jointly independent and 𝜌𝜌 is some high correlation parameter , 𝛽𝛽 is some low 

correlation parameters, 0 ≤  𝛽𝛽 ≤  𝜌𝜌 ≤  1.  

 
 We define the default time as:  

𝜏𝜏𝑖𝑖 = 𝐹𝐹𝑖𝑖−1�𝛷𝛷(𝑉𝑉𝑖𝑖)� for 𝑖𝑖 =  1, … ,𝑛𝑛. 1.2.2 

 
 The default times are independent conditionally on V 

 

2.3.  Student t copula 
 The Student t copula (see example Andersen et al (2003), Demarta and McNeil 

(2005)) is a modification of Gaussian copula.  Student t copula exhibits higher tail 

dependence which Gaussian copula cannot capture.  In the Student t approach, the underlying 

vector (𝑉𝑉1, … ,𝑉𝑉𝑛𝑛)  follows a Student t distribution with 𝜈𝜈 degrees of freedom.  In the 

symmetric case which we are going to consider, we have  

𝑉𝑉𝑖𝑖 = √𝑊𝑊 �𝜌𝜌𝜌𝜌 + �1 − 𝜌𝜌2𝑉𝑉�𝑖𝑖� 1.3.1 

 

 𝑉𝑉, 𝑉𝑉�𝑖𝑖  are independent Gaussian random variables, 𝑊𝑊 is an inverse Gamma distribution with 

parameters equal to 𝑉𝑉 2�   (or equivalently 𝑣𝑣 𝑊𝑊�  follows a 𝜒𝜒𝑣𝑣2  distribution). Let 𝑡𝑡𝜈𝜈  be the 

distribution function of the standard univariate Student t.  Default times of Student t is 

defined as: 

 𝜏𝜏𝑖𝑖 = 𝐹𝐹𝑖𝑖−1�𝑡𝑡𝜈𝜈(𝑉𝑉𝑖𝑖)� 1.3.2 

It can be seen that conditional on (𝑉𝑉,𝑊𝑊 ) default times are independent. 
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2.4.  Double t  copula 
 

 The Double t copula, introduced by Hull and White (2004), is expanded from 

Gaussian copula to create heavier tails than the normal distribution. The latent variables 

which is used to model default time are  

𝑉𝑉𝑖𝑖 = 𝜌𝜌 �
𝑣𝑣 − 2
𝑣𝑣

�
1

2�

𝑉𝑉 + �1 − 𝜌𝜌2 �
𝑣𝑣 − 2
𝑣𝑣

�
1

2�

𝑉𝑉�𝑖𝑖  1.4.1 

 

where Vi  is an independent random variable following Student t distributions with  degrees 

of freedom and  V�i  is also an independent random variable following  Double t distributions 

with ν� degrees of freedom and  ρ is equal to or more than zero . 

 
The default dates are then given by:  

 𝜏𝜏𝑖𝑖 = 𝐹𝐹𝑖𝑖−1(𝐻𝐻𝑖𝑖(𝑉𝑉𝑖𝑖)) for 𝑖𝑖 =  1, … , 𝑛𝑛 
 

1.4.2 

where 𝐻𝐻𝑖𝑖  is the distribution function of  𝑉𝑉𝑖𝑖 .  

 

2.5.  Clayton copula 
 
In the following, we present Clayton copula model which had been studied by many 

authors.  See the literature review for the authors information.  

 

We consider on Clayton copula because it has lower tail dependence.  Let the positive 

random variable V , which is called a frailty, follow a standard Gamma distribution.  Its shape 

parameter is 1/θ  and θ >  0 . 

 
Its probability density can be expressed as  

f(x) = 1
Γ(1
θ)

e−xx(1−θ)/θ  for  x >  0. 1.5.1 

The Laplace transform Ψ of probability density function is  

Ψ(s) = ∫ f(x)e−sx dx∞
0 = (1 + s)−1/θ. 

 
1.5.2 

Let define some latent variables  Vi   with: 

Vi =  Ψ�
𝐼𝐼𝐼𝐼 Ui

𝑉𝑉
� 1.5.3 

 
 The independent uniform random variable Ui is independent from V. The default times are 

τi = Fi
−1(Vi), i = 1, … , n 1.5.4 
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having V as the factor.  

2.6. Distribution Plot 
 

In this section, we present the loss distribution plot of each copula.  Note the different tail 

behavior of each model. 

Figure 1  Plot Distribution 

 
2.7. Payoff Description 

In a CDO, default losses on the credit portfolio are divided along some thresholds or the 

attachment points and allocated to the different tranches.  For example, consider a three 

tranches CDO, denoted as equity, mezzanine, and senior, as shown in the Figure 1.  Each 

tranche is divided by the attachment points indicated by A and B.   

 

Figure 2   Three Tranches of CDO 

 
\ 

 The cumulative loss by the time t, which denoted by L(t), can be separated into three 

scenarios.  The first case is the case where cumulative default payment is less than attachment 

point A.   In this scenario, equity tranche default payment, which can be referred to as E(t), 
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will be equal to L(t) and for both the Mezzanine tranche default payment, represented by M(t) 

and the Senior tranche default payment, denoted as S(t), are equal to zero.  

 
Figure 3  The Cumulative Default Payment is Less Than Attachment Point A 

 
 
 In the second scenario, the cumulative default payment is higher than attachment 

point A but less than attachment point B.  The cumulative default payment for each tranche is 

shown in Figure 4.  For the equity tranche, the default payment is denoted by E(t)=A.  For the 

mezzanine tranche, default payments is denoted by M(t)=L(t)-A.  In the senior tranche, the 

default payment is equal to zero.  

  

Figure 4 The Cumulative Default Payment More Than A But Less Than Attachment 
Point B 

 
 

In the last case, the cumulative default payment expands more than attachment point 

B as shown in Figure 5.  In this scenario, tranche default payment is equal to A for the equity 

and equal to B-A for the mezzanine.  For the senior tranche, default payment is equal to L(t)-

B. 

Figure 5   The Cumulative Default Payment More Than Attachment Point B 

 
  

 As mentioned that cumulative default payment can occur in three scenarios, we can 

summarize the cumulative default payment of each tranche by the equations below. 
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 𝐸𝐸(𝑡𝑡) = 𝐿𝐿(𝑡𝑡)1𝐿𝐿(𝑡𝑡)<𝐴𝐴 + 𝐴𝐴 1𝐿𝐿(𝑡𝑡)>𝐴𝐴 2.1 
 

𝑀𝑀(𝑡𝑡) = (𝐿𝐿(𝑡𝑡) − 𝐴𝐴)1𝐴𝐴<𝐿𝐿(𝑡𝑡)<𝐵𝐵 + (𝐵𝐵 − 𝐴𝐴) 1𝐿𝐿(𝑡𝑡)>𝐵𝐵 2.2 
 

𝑆𝑆(𝑡𝑡) = (𝐿𝐿(𝑡𝑡) − 𝐵𝐵)1𝐿𝐿(𝑡𝑡)>𝐵𝐵  2.3 
 

 For more details on how to compute tranche premium, refer to Laurent and Gregory 

(2003).  Here, we summarize the tranche premium of mezzanine tranches.  Holders of 

synthetic CDO for the mezzanine tranche receive at time T a principal payment of  𝑀𝑀(∞) −

𝑀𝑀(𝑇𝑇).  𝑀𝑀(∞)  denotes the initial nominal of mezzanine tranche which is equal to 𝐵𝐵 − 𝐴𝐴 and 

𝑀𝑀(∞) −𝑀𝑀(𝑇𝑇) denotes the remaining nominal of the tranche.   Figure 6 shows the cash flow 

that the mezzanine tranche holders receive at the end of each period.    

 
Figure 6   The Mezzanine Tranche Receivable at Each Period 

 

  

The payments are usually equal to a floating rate plus a fixed margin, which is 

specific to each tranche, and also based on the outstanding nominal on the tranche.   For 

Figure 7, it shows the cash flow out of the mezzanine tranche at time of defaults. 

 
Figure 7   The Mezzanine Tranche Cash flow In and Cash flow Out 
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The interest payment at 𝑡𝑡𝑖𝑖  is equivalent to ∆𝑖𝑖−1,𝑡𝑡𝑖𝑖(𝑀𝑀(∞) – M (𝑡𝑡𝑖𝑖) ) (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡𝑖𝑖−1 + 𝑋𝑋) 

where X determines the CDO margin, ∆𝑖𝑖−1,𝑖𝑖  represents the duration of period, and 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡𝑖𝑖−1  

is the Libor rate for the period.  There are some accrued interest payments since the interest is 

calculated at the end of the period.  In practice, X is determined so that the present values of 

all cash flows are zero. 

  

2.8.  Summary of MATLAB Code 
 In order to conduct the CDO tranche premium study, we created MATLAB Code to 

simulate the outcome for each model using Monte-Carlo simulation.  The MATLAB codes 

for each model are shown in the appendix. The MATLAB codes can be summarize as follow: 

First, we start by generating the V and V_ which are the components of Vi, where Vi 

is the latent variable follow in different distribution.  Then, we use Vi to generate default 

times.  After that we compute E (t), M (t), and S (t) which are the accumulated loss absorbed 

by the equity, mezzanine, and senior tranches respectively.  In the next step, we compute the 

regular coupon payment at each coupon date based on remaining notional payment at that 

date.  At each default time, we will compute two things.  The first thing that we compute is 

default payment based on the increase in E (t), M (t), and S (t). The other one is the accrued 

payments based on the default time from the nearest coupon date.  Finally, we discount all the 

cash flow to time zero and find the premium that make present value of these cash flow equal 

zero. 

 



 

 

CHAPTER III 

SENSITIVITY WITH RESPECT TO CORRELATION 

  

We studied five models’ sensitivities to the correlation parameter, which is the 

dependency among the defaults of obligor. 

3.1.  Gaussian 
 We use the numerical example from Burtschell, Gregory, and Laurent (2008) for 

comparability, we considered 100 names, all with a recovery rate of 𝛿𝛿 = 40% and equal unit 

nominal. The credit spreads are all equal to 100 bps. They are assumed to be constant until 

the maturity of the CDO. The attachment points of the tranches are A = 3% and B = 10%. 

The CDO maturity is equal to five years. The default free rates are provided in the appendix. 

We considered CDO margins of the equity, mezzanine and senior tranches using the different 

models. We begin first by the Gaussian model and compute the margins with respect to the 

correlation parameter 𝜌𝜌 2 .  

 The result of the CDO margins from the Gaussian copula with respect to the 

correlation parameter is shown in the table 1.  We will compute the following models’ table 

by calibrating those correlation parameters and fit each model’s equity tranche margin with 

Gaussian copula. 

 

The graph beneath plots the CDO margins from the Gaussian copula with respect to 

the correlation parameter for each tranche. For the equity tranche of Gaussian copula, it 

shows a strong negative dependence with respect to the correlation parameter since the non-

diversification defines that the unexpected loss on the tranche is smaller.  When we consider 

Table 1 CDO margins (bp pa) Gaussian copula with respect to the correlation 
parameter. 

ρ 2 Equity Mezzanine Senior 
0% 7505.26 197.55 0 
10% 3940.96 334.75 0.82 
30% 2015.83 378.92 7.94 
50% 1200.64 331.67 16.08 
70% 731.26 287.07 29.28 
100% 106.86 103.72 56.54 
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the senior tranche, it shows a positive dependence come from the fact that the unexpected 

loss on the tranche is larger.  For the mezzanine, the result produces a bumped curve. 

 

Graph 2: CDO margins (bp pa) Gaussian copula with respect to the correlation 
parameter 

   

 

As the basis for comparison with other models, we construct two charts, one depicting 

relationship between the mezzanine and the equity premiums, the other between the senior 

and the equity, as a benchmark to compare with those of the other models. We believe that 

the shapes of these plots are indicative of the ability to fit market model.  We will compare 

with other models in the next sections. 

 

Graph 3: Comparing between Equity and 
Mezzanine Premium for Gaussian Copula 

Graph 4: Comparing between Equity and 
Senior Premium for Gaussian Copula 

  
 

To compare between different models, we set the dependence parameters to get the 

same equity tranche premiums by calibrating the other models. Then, we use outcome of the 
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Gaussian copula as the benchmark.  In order to get the same equity tranche premiums for 

different models, we calibrate the other models as already mention.  

 

3.2.  Clayton 
The result of the CDO margins for the Clayton copula with respect to the correlation 

parameter is shown in Table 2 below.  As an example of the calibration notice that Clayton 

premium is approximately equal to Gaussian spread when we set its parameter, 𝜃𝜃 equal to 

0.17 while Gaussian parameter 𝜌𝜌 is equal to 30%.  𝜃𝜃’s in Table 2 produce equity premiums 

that are almost identical to those of the Gaussian. 

 

Graph 5 shows the CDO margins from Clayton copula with respect to its correlation 

parameter.  However, it shows a similar result with Gaussian copula.   For the equity tranche 

of Clayton copula, it also shows a strong negative dependence.  For both mezzanine and 

senior tranches, it produces very similar outcomes to those of the Gaussian as well. 

 

 

The next illustration compares the mezzanine-equity and the senior-equity premiums 

between that of the Gaussian model and the Clayton coupon spread.  Gaussian and Clayton 

Table 2 CDO margins (bp pa) Clayton copula with respect to the correlation parameter 
θ Equity Mezzanine Senior 
0 7533.31 195.98 0.00 

0.05 3935.93 329.83 0.67 
0.1725 2011.95 382.81 7.36 
0.34 1199.17 353.39 16.36 
0.59 735.82 301.13 26.66 

∞ 107.27 102.84 54.10 

Graph 5: CDO margins (bp pa) Clayton Copula copula (6 degree of freedom) with 
respect to the correlation parameter 
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have almost the same sensitivity to correlation parameter.  This might be the reason why 

Clayton cannot produce correlation smile as reported in Burtschell, Gregory, and Laurent 

(2008) 

 

 

3.3.  Student T 
 
Table 3 shows the resulting CDO margins with respect to the correlation parameter 

calibrated from the Student t copula.    

 
 

For Student t copula, we apply it with 4 degree of freedom.  Table 3 shows the 

Student t copula with 6 degree of freedom with respect to the correlation parameter. In this 

model, both equity and senior tranches give similar results with Clayton copula.  

 

 

 

 

Graph 6: Comparing between Equity and 
Mezzanine Premium for Clayton Copula 

Graph 7: Comparing between Equity and 
Senior Premium for Clayton Copula 

  

Table 3 CDO margins (bp pa) Student t copula (4 degree of freedom)  with respect to 
the correlation parameter 

ρ 2 Equity Mezzanine Senior 
0 % 2018.757 413.5097 6.02773 
28% 1216.763 354.1069 16.44014 
55% 742.0458 293.9838 27.96059 
100% 96.57632 94.01169 51.3378 
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Graph 8: CDO margins (bp pa) Student t copula (4 degree of freedom) with respect to 
the correlation parameter 

   
 
  

Now, we compare the mezzanine-equity and the senior-equity premiums relationships 

produced by the Student t with degree of freedom 4 to those by the Gaussian.  Mezzanine 

premium from Student t is different from Gaussian.  When we focus on comparing between 

equity and mezzanine tranches as we can see from Graph 9, we observe that as equity 

premium decreases as the result of increasing correlation, the mezzanine premium decreases 

faster than Gaussian.  Then we compare equity and senior premium. We found that equity 

premium decreases when correlation increase and the senior premium increases just as fast as 

Gaussian.  An interesting fact is that Student t is not only unable to create correlation smile, 

but also creating frown.   It perhaps results from this characteristic. 

 

Graph 9 : Comparing between Equity and 
Mezzanine Premium for Student t (4) 

Copula 

Graph 10 : Comparing between Equity 
and Senior Premium for Student t (4) 

Copula 
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look similar to Gaussian.   We observe that when the degree of freedom increases, the graphs 

converge to Gaussian.  

Graph 11 : Comparing between Equity 
and Mezzanine Premium for Student t (12) 

Copula 

Graph 12 : Comparing between Equity 
and Senior Premium for Student t (12) 

Copula 

  
  

3.4. Double t  
Table 4 and Table 5 show the CDO margins for Double t  copula 4-3 and Double t  

copula 3-3 with respect to the correlation parameter.  

 

When we consider Double t copula with different degrees of freedom, we find that its 
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Table 4 CDO margins (bp pa) Double t  Copula t(4)-t(3) with respect to the correlation 
parameter 

ρ 2 Equity Mezzanine Senior 
0% 7341.467 190.7516 0.000143 
10% 3922.312 235.2195 3.839536 
28% 2035.192 225.0991 13.85731 
48% 1199.518 205.5088 25.16618 
67% 728.687 181.7121 34.45001 
100% 102.3232 99.45657 54.26102 

Table 5 CDO margins (bp pa) Double t  Copula t(3)-t(3) with respect to the correlation 
parameter 

ρ 2 Equity Mezzanine Senior 
0% 7493.363 198.5279 0 
16% 3951.291 235.2241 5.878178 
40% 2080.035 222.6465 16.25295 
61% 1191.599 190.4813 26.00436 
76% 753.8428 173.8419 33.51745 
100% 109.0013 105.7383 57.61654 
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However, when we look at mezzanine and senior to equity premium plots, the shapes 

are very different.  In mezzanine, the “bump” of Double t is much less pronounced.  In 

senior, Double t lies above Gaussian.  This may be the characteristic of smile-producing 

model. As equity premium decreases, Double t moves slowly than Gaussian in mezzanine 

premium.  

 

 

Graph 13 : CDO margins (bp pa) Double t  Copula t(4)-t(3) with respect to the 
correlation parameter 

   

Graph 14 : CDO margins (bp pa) Double t  Copula t(3)-t(3) with respect to the 
correlation parameter 
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Graph 15 : Comparing between Equity 

and Mezzanine Premium for Double t  4-3 
Copula 

Graph 16 : Comparing between Equity 
and Senior Premium for Double t  Double 

t  4-3 Copula 

  
Graph 17 : Comparing between Equity 

and Mezzanine Premium for Double t  3-3 
Copula 

Graph 18 : Comparing between Equity 
and Senior Premium for Double t  Double 

t  3-3 Copula 

  
 

 

3.5.  Stochastic correlation  
Lastly, we focus on stochastic correlation.  Table 3 presents the CDO margins of 

stochastic correlation copula with respect to the correlation parameter. 
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Table 6 CDO margins (bp pa)  Stochastic correlation  copula  with respect to the 
correlation parameter 

P Equity Mezzanine Senior 
0 3233.47 330.72 0.77 

0.1 2881.38 322.25 3.43 
0.35 2005.88 268.40 13.18 
0.61 1218.33 231.97 24.93 
0.8 749.62 219.36 33.51 
1 339.91 202.78 42.79 
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We find that stochastic correlation gives different result from other models. When we 

vary correlation, stochastic correlation results in linear downward sloping for both the equity 

and mezzanine tranches.  However, the slope in mezzanine tranche is less steep compared to 

other models. 

Graph 19: CDO margins (bp pa) Stochastic correlation Rho=0.7 Beta=0.2 with respect 
to the correlation parameter 

   

 
 

Let’s look at the comparison of the mezzanine and the senior premiums.  Again, note 

that stochastic correlation which is reported by Burtschell, Gregory, and Laurent (2008) to 

produce correlation smile, has the same property with Double t.  For the mezzanine, the line 

of stochastic correlation lies below Gaussian. As equity premium decreases as the result of 

increasing correlation, the mezzanine premium also decreases but not as fast as Gaussian. In 

senior, stochastic correlation lies on top of Gaussian.   
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 Graph 20: CDO margins (bp pa) Stochastic correlation Rho=0.9 Beta=0.1 with respect  

to the correlation parameter 
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Graph 21 : Comparing between Equity 
and Mezzanine Premium for Stochastic 

correlation Rho=0.7 Beta=0.2 

Graph 22 : Comparing between Equity 
and Senior Premium for Stochastic 

correlation Rho=0.7 Beta=0.2 

  
Graph 23 : Comparing between Equity 
and Mezzanine Premium for Stochastic 

correlation copula Rho=0.9 Beta=0.1 

Graph 24: Comparing between Equity and 
Senior Premium for Stochastic correlation 

copula Rho=0.9 Beta=0.1 

  
 

• We find that all models agree in equity and senior tranches.  Equity coupon spread 

decreases with correlation.  Nonetheless, senior premium increases with correlation.  

Most models agree in mezzanine which creates “bump”.   

Summary 

• Burtschell, Gregory, and Laurent (2008) find that Clayton and Student t cannot produce 

correlation smile, while Double t and stochastic correlation can produce  the correlation 

smile.  From plotting mezzanine premium and senior premium against equity coupon 

spread, we detect a pattern that might be characteristic of smile-producing models.  We 

found that, for Double t and Stochastic correlation, the graph lies below Gaussian for 

mezzanine and above for senior.  Clayton and Student t do not exhibit such pattern.   
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CHAPTER IV 

SENSITIVITY OF CDO TRANCHES WITH RESPECT TO DEFAULT 
PROBABILITY 

 
5.1 

 

Sensitivity to Default Probability of Equity tranche 

When we consider the sensitivity to default probability, we restrict all the variables and 

perturb credit spread which is a function of default probability: 

𝐹𝐹(𝑡𝑡) = 1 − 𝑒𝑒𝑡𝑡∗𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  4.1 
 

 The first study is a comparison between Gaussian copula and Clayton copula shown 

in the graph below.  It can be explained from the graph that Gaussian copula is less sensitive 

to the change of credit spread comparing to Clayton copula.  We observed that Clayton rise 

more than Gaussian as the credit spread increase. 

 

 

Graph 25 : Compare between Gaussian and Clayton Copula for Equity Tranche 

 
 

 

Now, we move on to Student t copula. We observe that Student t copula with 4 degree 

of freedom is more sensitive to the default probability than the Student t copula with 6 and 12 

degree of freedom as examined from the graph below. 
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Graph 26 : Compare between Gaussian and Student t for Equity Tranche 

 
  

We observe that Student t credit spread with high degree of freedom will approach 

Gaussian premium. 

  

Graph 27 : Compare between Gaussian ,Double t  4-3 and  Double t  3-3 Copula for 
Equity Tranche 

 
 

 The Graph reports that both Double t 4-3 and Double t 3-3 produce result that are not 

much different from Gaussian.  As observed, we can conclude that as the degree freedom 

increases, Double t copula converses to Gaussian. 

 

The graph underneath illustrates the comparison between Gaussian and stochastic 

correlation copula.  Stochastic correlation pattern doesn’t differ much from Gaussian.  
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Graph 28 : Compare between Gaussian and Stochastic correlation copula for Equity 

Tranche 

 
 

• We observe that Clayton copula is more sensitivity to default probability than the 

Gaussian copula.  Furthermore, Gaussian copula is less sensitive to default probability 

than Student t copula.  For Student t copula, we observed that as the degree of t 

increase, it converse to Gaussian copula.   

Summary for Equity Tranche  

• For Gaussian, Double t, and stochastic correlation copula, the results are not much 
different.   
 

5.2 
In this section, we concentrated on Mezzanine tranche. Following graphs show 

comparison with Clayton, Student t, Double t, and stochastic correlation copula.  The 

difference is so little that it can’t be concluded which is more sensitive. 

Sensitivity to Default Probability of Mezzanine tranche 

Graph 29 : Compare between Gaussian and Clayton Copula for Mezzanine Tranche 
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Graph 30 : Compare between Student t and Gaussian Copula for Mezzanine Tranche 

 
Graph 31 : Compare between Gaussian and Double t  4-3 and 3-3 Copula for 

Mezzanine Tranche 

 
Graph 32 : Compare between Gaussian and Stochastic correlation copula for 

Mezzanine Tranche 
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• The percentage changes in all models are close. 

Summary for Mezzanine Tranche  

• In other words, the difference among the models in terms of sensitivity to default 

probabilities is much less pronounced in mezzanine tranche. 

  

5.3 
Last, we concentrate on senior tranche. For all models of this tranche, we notice that 

the outcomes inverse equity tranche.   We observe that the graph from Gaussian is more 

sensitive than Clayton copula.  Next graph shows that Student t less sensitive than Gaussian 

copula. 

Sensitivity to Default Probability of Senior Tranche 

Graph 33 : Compare between Gaussian and Clayton Copula for Senior Tranche 

 
Graph 34: Compare between Gaussian and Student t Copula for Senior Tranche 
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Graph 35: Compare between Gaussian and Double t  4-3 and 4-4 Copula for Senior 
Tranche 

 
Graph 36: Compare between Gaussian and Stochastic correlation copula for Mezzanine 

Tranche 

 
 

 Just like what we find in the equity tranche, we find that the sensitivity to default 

probability produced by Double t and Stochastic Correlations models are not much different 

from the Gaussian model. 

 

• Gaussian is more sensitive than Clayton copula.  Student t is less sensitive than 

Gaussian.  Model that is more sensitive for equity tranche will be less sensitive for 

senior tranche. 

Summary for Senior Tranche 

• Double t and stochastic correlation are nearly indistinguishable from Gaussian in 

terms of sensitivity to default probability.   
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CHAPTER V 

CONCLUSION 

 This paper is devoted to analysis of CDO tranches sensitivity to the default 

probability and to the degree of dependence between defaults in various models.  The models 

under investigation are one factor Gaussian copula, stochastic correlation extension of the 

Gaussian copula, Clayton copula, Student t copula, and Double t copula. 

 
• In term of the sensitivity to correlation, we found a characteristic of models that are 

able to fit market quotes.  For Double t copula and stochastic correlation, both of 

which are known o fit market quotes well, the sensitivity to correlation parameters in 

the mezzanine tranche is much less pronounced compared to Gaussian copula.  This 

can be seen in the plot of mezzanine tranche spread versus equity tranche spread, 

where the plots for Double t copula and Stochastic correlation are flatter then 

Gaussian copula.  This characteristic is not seen in Clayton copula and Student t 

copula.  Therefore, insensitivity to correlation in the mezzanine tranche seems to be a 

characteristic of smile-producing models.  To offer an intuition behind this, the 

insensitivity of mezzanine implied correlation to remain level, while the sensitivity of 

equity and senior tranches causes the implied correlation of equity and senior tranches 

causes the implied correlation of equity and senior tranches to shoot up, producing a 

correlation smile as observed in the market. 

• Compared to Gaussian, all models agree in both equity and senior tranche as to the 

effect of increasing correlation parameter.  Equity premium decreases with correlation 

and senior premium increases with correlation.  Every model agrees in mezzanine 

which creates “bump”. 

• We found that for Double t and stochastic correlations, which fit market well, the 

sensitivity to default probability produced by these two models do not differ much.  

Interestingly, the one-factor Gaussian copula, which is known to be unable to fit 

market quote, produces sensitivity that is close to Double t and Stochastic correlation. 

• Compared to Gaussian, Clayton and Student t produce very different sensitivity to 

default probability.  Therefore, delta-hedging under different models will be different.  

Also a model that gives more sensitivity to default probability in equity tranche will 

give less sensitivity to senior tranche and vice versa. 
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APPENDIX A 
 

Data for the basket default swaps and CDO examples 
 
Basket default swaps and homogeneous CDO examples 
 

Table A1: Default Free Yield Curve (Continuous Rates) 

1D  1W  1M  2M  3M  6M  9M  1Y  2Y  3Y  4Y  5Y 

2.02 2.05 2.06 2.07 2.08 2.14 2.2 2.37 2.8 3.17 3.47 3.71 
 
 
The default free rates were obtained from the swap market in Euros on the 08/02/2005. 
 

Table A3: Default Free Yield Curve (Continuous Rates) 

1D  1W  1M  2M  3M  6M  9M  1Y  2Y  3Y  4Y  5Y 

2.07  2.09  2.10  2.12  2.14  2.18 2.24  2.34 2.59  2.78 2.93  3.06 
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APPENDIX B 
 
1.) Matlab Code 

 
1.1.) Gussian Copula 
 
for i=1:n 
    
     V          = randn(); 
     V_         = randn(100,1); 
     Vi         = rho*V + sqrt(1-rho^2)*V_ ; 
    tau         = -log(1-normcdf(Vi))./spread ;   
    
 (tau_, num)    = sort(tau); 
   tau_         = tau_(1:sum(tau_<5)); 
   prev_date    = repmat(0,length(tau_),1);    
   
   for k=1:length(tau_) 
        
          prev_date(k) = t(sum(tau_(k)>t)); 
           
   end 
       
    num         = num (1:length(tau_)); 
     RF         = interp1(TERM,yield,tau_); 
   default      = E(num).*(1-recover(num)); 
     Me         = min(A,cumsum(default)); 
     Mm         = max(0,min(cumsum(default)-A,B-A)); 
     Ms         = max(0,cumsum(default)-B); 
      
     if length(tau_)==0 
         DPLe(i)=0; 
         DPLm(i)=0; 
         DPLs(i)=0; 
         AMPe   =0; 
         AMPm   =0; 
         AMPs   =0; 
     
     else 
          
         DPLe(i)    = sum(diff((0;Me))./(1+RF).^tau_); 
         DPLm(i)    = sum(diff((0;Mm))./(1+RF).^tau_); 
         DPLs(i)    = sum(diff((0;Ms))./(1+RF).^tau_); 
          
         AMPe       = sum((tau_-prev_date).*diff((0;Me))./(1+RF).^tau_); 
         AMPm       = sum((tau_-prev_date).*diff((0;Mm))./(1+RF).^tau_); 
         AMPs       = sum((tau_-prev_date).*diff((0;Ms))./(1+RF).^tau_); 
      
     end 
  
    MPe     =0; 
    MPm     =0; 
    MPs     =0; 
      
     for j=2:length(t) 
      
         if length(tau_)==0 
          
            AccuLosse =0; 
            AccuLossm =0; 
            AccuLosss =0; 
          
         else 
            AccuLosse      =  Me(length(tau_<t(j)));  
            AccuLossm      =  Mm(length(tau_<t(j))); 
            AccuLosss      =  Ms(length(tau_<t(j))); 
          
         end 
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       MPe      =  MPe + (t(j)-t(j-1))*(A-AccuLosse)./((1+interp1(TERM,yield,t(j))).^t(j));  
       MPm      =  MPm +(t(j)-t(j-1))*(B-A-AccuLosse)./((1+interp1(TERM,yield,t(j))).^t(j)); 
       MPs      =  MPs +(t(j)-t(j-1))*(100-B-AccuLosse)./((1+interp1(TERM,yield,t(j))).^t(j)); 
      
     end 
      
  MarginE(i)     = AMPe+MPe; 
  MarginM(i)     = AMPm+MPm; 
  MarginS(i)     = AMPs+MPs; 
     
end 
        Xe      =mean(DPLe)/mean(MarginE); 
        Xm      =mean(DPLm)/mean(MarginM); 
        Xs      =mean(DPLs)/mean(MarginS); 

 
1.2.) Stochastic correlation 
 
for i=1:n 
    
      Bi        =  (rand(100,1) < p);  
       V        =  randn(); 
      V_        =  randn(100,1); 
      Vi        =  Bi.*(rho*V + sqrt(1-rho^2)*V_) + (1-Bi).*(beta*V + sqrt(1-beta^2)*V_); 
       tau      = -log(1-normcdf(Vi))./spread;    
    
 (tau_, num)    =  sort(tau); 
   tau_         =  tau_(1:sum(tau_<5)); 
   prev_date    =  repmat(0,length(tau_),1);    
   
   for k=1:length(tau_) 
        
          prev_date(k) = t(sum(tau_(k)>t)); 
           
   end 
       
    num         = num (1:length(tau_)); 
     RF         = interp1(TERM,yield,tau_); 
   default      = E(num).*(1-recover(num)); 
     Me         = min(A,cumsum(default)); 
     Mm         = max(0,min(cumsum(default)-A,B-A)); 
     Ms         = max(0,cumsum(default)-B); 
      
     if  length(tau_)  ==  0 
          
         DPLe(i)  =  0; 
         DPLm(i)  =  0; 
         DPLs(i)  =  0; 
         AMPe     =  0; 
         AMPm     =  0; 
         AMPs     =  0; 
     
     else 
          
         DPLe(i)    =  sum(diff((0;Me))./(1+RF).^tau_); 
         DPLm(i)    =  sum(diff((0;Mm))./(1+RF).^tau_); 
         DPLs(i)    =  sum(diff((0;Ms))./(1+RF).^tau_); 
          
         AMPe       =  sum((tau_-prev_date).*diff((0;Me))./(1+RF).^tau_); 
         AMPm       =  sum((tau_-prev_date).*diff((0;Mm))./(1+RF).^tau_); 
         AMPs       =  sum((tau_-prev_date).*diff((0;Ms))./(1+RF).^tau_); 
          
     end 
  
    MPe     =0; 
    MPm     =0; 
    MPs     =0; 
      
     for j=2:length(t) 
      
         if length(tau_)==0 
          
            AccuLosse =0; 
            AccuLossm =0; 
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            AccuLosss =0; 
          
         else 
            AccuLosse      =  Me(length(tau_<t(j)));  
            AccuLossm      =  Mm(length(tau_<t(j))); 
            AccuLosss      =  Ms(length(tau_<t(j))); 
          
         end 
          
        MPe      =  MPe + (t(j)-t(j-1))*(A-AccuLosse)./((1+interp1(TERM,yield,t(j))).^t(j));  
        MPm      =  MPm +(t(j)-t(j-1))*(B-A-AccuLosse)./((1+interp1(TERM,yield,t(j))).^t(j)); 
        MPs      =  MPs +(t(j)-t(j-1))*(100-B-AccuLosse)./((1+interp1(TERM,yield,t(j))).^t(j)); 
      
     end 
           
  MarginE(i)     = AMPe+MPe; 
  MarginM(i)     = AMPm+MPm; 
  MarginS(i)     = AMPs+MPs; 
     
  if mod(i,100)==0 
  fprintf('Replication %-6d, Equity %-5.0f, Mezz %-5.0f, Senior %-
5.0f\n',i,10000*mean(DPLe(1:i))/mean(MarginE(1:i)),10000*mean(DPLm(1:i))/mean(MarginM(1:i)),10000*mean(DPLs(1:i))/mean(Margi
nS(1:i))); 
  end                                                                           
     
end 
        Xe      =mean(DPLe)/mean(MarginE); 
        Xm      =mean(DPLm)/mean(MarginM); 
        Xs      =mean(DPLs)/mean(MarginS); 
 
 
1.3.) Student t Copula 
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for i=1:n 

    

     V    = randn(); 

     V_   = randn(100,1); 

     W    = degree/chi2rnd(degree); 

     X    = rho*V + sqrt(1-rho^2)*V_ ; 

     Vi   = sqrt(W)*X; 

 tau = -log(1-tcdf(Vi,degree))./spread ;  

  

 (tau_, num)    = sort(tau); 

   tau_         = tau_(1:sum(tau_<5)); 

   prev_date    = repmat(0,length(tau_),1);    

   

   for k=1:length(tau_) 

        

          prev_date(k) = t(sum(tau_(k)>t)); 

           

   end 

       

    num         = num (1:length(tau_)); 

     RF         = interp1(TERM,yield,tau_); 

   default      = E(num).*(1-recover(num)); 

     Me         = min(A,cumsum(default)); 

     Mm         = max(0,min(cumsum(default)-A,B-A)); 

     Ms         = max(0,cumsum(default)-B); 

      

     if length(tau_)==0 

         DPLe(i)=0; 

         DPLm(i)=0; 

         DPLs(i)=0; 

         AMPe   =0; 

         AMPm   =0; 

         AMPs   =0; 

     

     else 
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         DPLe(i)    = sum(diff((0;Me))./(1+RF).^tau_); 

         DPLm(i)    = sum(diff((0;Mm))./(1+RF).^tau_); 

         DPLs(i)    = sum(diff((0;Ms))./(1+RF).^tau_); 

          

         AMPe       = sum((tau_-prev_date).*diff((0;Me))./(1+RF).^tau_); 

         AMPm       = sum((tau_-prev_date).*diff((0;Mm))./(1+RF).^tau_); 

         AMPs       = sum((tau_-prev_date).*diff((0;Ms))./(1+RF).^tau_); 

      

     end 

  

    MPe     =0; 

    MPm     =0; 

    MPs     =0; 

      

     for j=2:length(t) 

      

         if length(tau_)==0 

          

            AccuLosse =0; 

            AccuLossm =0; 

            AccuLosss =0; 

          

         else 

            AccuLosse      =  Me(length(tau_<t(j)));  

            AccuLossm      =  Mm(length(tau_<t(j))); 

            AccuLosss      =  Ms(length(tau_<t(j))); 

          

         end 

          

       MPe      =  MPe + (t(j)-t(j-1))*(A-AccuLosse)./((1+interp1(TERM,yield,t(j))).^t(j));  

       MPm      =  MPm +(t(j)-t(j-1))*(B-A-AccuLosse)./((1+interp1(TERM,yield,t(j))).^t(j)); 

       MPs      =  MPs +(t(j)-t(j-1))*(100-B-AccuLosse)./((1+interp1(TERM,yield,t(j))).^t(j)); 

      

     end 
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  MarginE(i)     = AMPe+MPe; 

  MarginM(i)     = AMPm+MPm; 

  MarginS(i)     = AMPs+MPs; 

     

End 

 

  if mod(i,100)==0 

  fprintf('Replication %-6d, Equity %-5.0f, Mezz %-5.0f, Senior %-
5.0f\n',i,10000*mean(DPLe(1:i))/mean(MarginE(1:i)),10000*mean(DPLm(1:i))/mean(MarginM(1:i)),10000*mean(DPLs(1:i))/mean(
MarginS(1:i))); 

  end                                                                           

        Xe      =mean(DPLe)/mean(MarginE); 

        Xm      =mean(DPLm)/mean(MarginM); 

        Xs      =mean(DPLs)/mean(MarginS); 

 
1.4.) Double t  Copula 
 
O      = rho*((degree-2)/degree)^1/2*trnd(degree,1,1000000)  +  sqrt(1-rho^2)*((degreev-2)/degreev)^1/2*trnd(degreev,1,1000000); 
x      = -5:.2:5; 
H      =(); 
  
for o=x; 
    H=(H mean(O<=o)); 
end 
         
for i=1:n 
     
  
     V      = trnd(degree); 
     V_     = trnd(degree,100,1); 
     Vi     = rho*((degree-2)/degree)^1/2*V  +  sqrt(1-rho^2)*((degreev-2)/degreev)^1/2*V_ ; 
      tau   = -log(1-interp1(x,H,Vi))./spread ; 
  
    
 (tau_, num)    = sort(tau); 
   tau_         = tau_(1:sum(tau_<5)); 
   prev_date    = repmat(0,length(tau_),1);    
   
   for k=1:length(tau_) 
        
          prev_date(k) = t(sum(tau_(k)>t)); 
           
   end 
       
    num         = num (1:length(tau_)); 
     RF         = interp1(TERM,yield,tau_); 
   default      = E(num).*(1-recover(num)); 
     Me         = min(A,cumsum(default)); 
     Mm         = max(0,min(cumsum(default)-A,B-A)); 
     Ms         = max(0,cumsum(default)-B); 
      
     if length(tau_)==0 
         DPLe(i)=0; 
         DPLm(i)=0; 
         DPLs(i)=0; 
         AMPe   =0; 
         AMPm   =0; 
         AMPs   =0; 
     
     else 
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         DPLe(i)    = sum(diff((0;Me))./(1+RF).^tau_); 
         DPLm(i)    = sum(diff((0;Mm))./(1+RF).^tau_); 
         DPLs(i)    = sum(diff((0;Ms))./(1+RF).^tau_); 
          
         AMPe       = sum((tau_-prev_date).*diff((0;Me))./(1+RF).^tau_); 
         AMPm       = sum((tau_-prev_date).*diff((0;Mm))./(1+RF).^tau_); 
         AMPs       = sum((tau_-prev_date).*diff((0;Ms))./(1+RF).^tau_); 
      
     end 
  
    MPe     =0; 
    MPm     =0; 
    MPs     =0; 
      
     for j=2:length(t) 
      
         if length(tau_)==0 
          
            AccuLosse =0; 
            AccuLossm =0; 
            AccuLosss =0; 
          
         else 
            AccuLosse      =  Me(length(tau_<t(j)));  
            AccuLossm      =  Mm(length(tau_<t(j))); 
            AccuLosss      =  Ms(length(tau_<t(j))); 
          
         end 
          
        MPe      =  MPe + (t(j)-t(j-1))*(A-AccuLosse)./((1+interp1(TERM,yield,t(j))).^t(j));  
        MPm      =  MPm +(t(j)-t(j-1))*(B-A-AccuLosse)./((1+interp1(TERM,yield,t(j))).^t(j)); 
        MPs      =  MPs +(t(j)-t(j-1))*(100-B-AccuLosse)./((1+interp1(TERM,yield,t(j))).^t(j)); 
      
     end 
      
      
  MarginE(i)     = AMPe+MPe; 
  MarginM(i)     = AMPm+MPm; 
  MarginS(i)     = AMPs+MPs; 
     
End 
  if mod(i,100)==0 
  fprintf('Replication %-6d, Equity %-5.0f, Mezz %-5.0f, Senior %-
5.0f\n',i,10000*mean(DPLe(1:i))/mean(MarginE(1:i)),10000*mean(DPLm(1:i))/mean(MarginM(1:i)),10000*mean(DPLs(1:i))/mean(Margi
nS(1:i))); 
  end                                                                           
        Xe      =mean(DPLe)/mean(MarginE); 
        Xm      =mean(DPLm)/mean(MarginM); 
        Xs      =mean(DPLs)/mean(MarginS); 
     
 
 
1.5.) Clayton Copula 

for i=1:n 
     
     V    =  randg(1/theta); 
     U    =  rand(100,1); 
     Vi   = (1-log(U)./V).^(-1/theta); 
 tau = -log(1-unifinv(Vi,0,1))./spread;  
  
   (tau_, num)    = sort(tau); 
   tau_         = tau_(1:sum(tau_<5)); 
   prev_date    = repmat(0,length(tau_),1);    
   
   for k=1:length(tau_) 
        
          prev_date(k) = t(sum(tau_(k)>t)); 
           
   end 
       
    num         = num (1:length(tau_)); 
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     RF         = interp1(TERM,yield,tau_); 
   default      = E(num).*(1-recover(num)); 
     Me         = min(A,cumsum(default)); 
     Mm         = max(0,min(cumsum(default)-A,B-A)); 
     Ms         = max(0,cumsum(default)-B); 
      
     if length(tau_)==0 
         DPLe(i)=0; 
         DPLm(i)=0; 
         DPLs(i)=0; 
         AMPe   =0; 
         AMPm   =0; 
         AMPs   =0; 
     
     else 
          
         DPLe(i)    = sum(diff((0;Me))./(1+RF).^tau_); 
         DPLm(i)    = sum(diff((0;Mm))./(1+RF).^tau_); 
         DPLs(i)    = sum(diff((0;Ms))./(1+RF).^tau_); 
          
         AMPe       = sum((tau_-prev_date).*diff((0;Me))./(1+RF).^tau_); 
         AMPm       = sum((tau_-prev_date).*diff((0;Mm))./(1+RF).^tau_); 
         AMPs       = sum((tau_-prev_date).*diff((0;Ms))./(1+RF).^tau_); 
      
     end 
  
    MPe     =0; 
    MPm     =0; 
    MPs     =0; 
      
     for j=2:length(t) 
      
         if length(tau_)==0 
          
            AccuLosse =0; 
            AccuLossm =0; 
            AccuLosss =0; 
          
         else 
            AccuLosse      =  Me(length(tau_<t(j)));  
            AccuLossm      =  Mm(length(tau_<t(j))); 
            AccuLosss      =  Ms(length(tau_<t(j))); 
          
         end 
          
       MPe      =  MPe + (t(j)-t(j-1))*(A-AccuLosse)./((1+interp1(TERM,yield,t(j))).^t(j));  
       MPm      =  MPm +(t(j)-t(j-1))*(B-A-AccuLosse)./((1+interp1(TERM,yield,t(j))).^t(j)); 
       MPs      =  MPs +(t(j)-t(j-1))*(100-B-AccuLosse)./((1+interp1(TERM,yield,t(j))).^t(j)); 
      
     end 
           
  MarginE(i)     = AMPe+MPe; 
  MarginM(i)     = AMPm+MPm; 
  MarginS(i)     = AMPs+MPs; 
     
End 
  if mod(i,100)==0 
  fprintf('Replication %-6d, Equity %-5.0f, Mezz %-5.0f, Senior %-
5.0f\n',i,10000*mean(DPLe(1:i))/mean(MarginE(1:i)),10000*mean(DPLm(1:i))/mean(MarginM(1:i)),10000*mean(DPLs(1:i))/mean(Margi
nS(1:i))); 
  end                                                                           
        Xe      =mean(DPLe)/mean(MarginE); 
        Xm      =mean(DPLm)/mean(MarginM); 
        Xs      =mean(DPLs)/mean(MarginS); 
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