## CHAPTER I



## COMPLEX ANALYTIC HOMOMORPHISMS

In this chapter, we shall prove that a complex analytic homomorphism of the multiplicative semigroup  $M(n,\mathbb{C})$  to  $\mathbb{C}$  which take 0 to 0 is of the form  $(\det A)^m$  for some  $m \in \mathbb{N}$ , for all  $A \in M(n,\mathbb{C})$  or is identically zero.

We first find all analytic homomorphisms  $\Phi: \mathbb{C} \to \mathbb{C}$  such that  $\Phi(xy) = \Phi(x)\Phi(y)$  for all  $x, y \in \mathbb{C}$  and  $\Phi(0) = 0$ . Suppose that  $\Phi: \mathbb{C} \to \mathbb{C}$  is such an analytic homomorphism then  $\Phi$  can be written as

$$\phi(x) = c_1 x + c_2 x^2 + c_3 x^3 + \dots + c_n x^n + \dots$$

in some neighborhood of 0. It suffices to find  $c_i$  such that  $\phi(x)\phi(y) = \phi(xy)$ . We have that

(1.1) 
$$o(xy) = c_1 xy + c_2 x^2 y^2 + c_3 x^3 y^3 + c_4 x^4 y^4 + \dots$$

and

(1.2) 
$$\phi(x)\phi(y) = (c_1x + c_2x^2 + c_3x^3 + \dots)(c_1y + c_2y^2 + c_3y^3 + \dots)$$
$$= c_1^2xy + c_1c_2xy^2 + c_2c_1x^2y + c_3c_1x^3y + c_2^2x^2y^2 + c_1c_3xy^3 + \dots$$

If  $c_i = 0$   $\forall i$ , then  $0 \equiv 0$ . Now assume that there exists k such that  $c_k \neq 0$ . Let n be the smallest natural number such that  $c_n \neq 0$ . We claim that  $c_m = 0$   $\forall m \neq n$ . We prove this by comparing the coefficient of the term  $x^m y^n$   $(m \neq n)$  in (1.1) and (1.2); respectively.

Then.

$$0 = c_m c_n.$$

But  $c_n \neq 0$  implying that  $c_m = 0$ . Now, we consider the coefficient of the term  $x^n y^n$  in (1.1) and (1.2); respectively. Then we get that

$$e_n = e_n^2$$

which implies that  $c_n = 1$  since  $c_n \neq 0$ .

Hence the analytic homomorphisms  $0: \mathbb{C} \to \mathbb{C}$  taking 0 to 0 are the functions  $0(x) = x^n$  for some  $n \in \mathbb{N}$  and the 0 function.

Before proving this for arbitrary matrix semigroups we need two lemma Let S and S' be semigroups and S  $\times$  S' = {(s,s')|s  $\in$  S, s'  $\in$  S'}.

Define multiplication on S  $\times$  S' by

$$(s,s')(s_1,s_1') = (ss_1,s's'_1)$$

for all s,  $s_1$  in S and s',  $s_1'$  in S'. Then S  $\times$  S' with this multiplication forms a semigroup.

Remark: If F is a field and a  $\varepsilon$  F is such that  $a^2 = a$ , then a = 0 or 1.

Lemma 1.1 Let (S,0,1) and (S',0',1') be semigroups having zero and multiplicative identity and let  $(S^*,0^*,1^*)$  be a field. If  $\psi: S \times S' \to S^*$  is a homomorphism such that  $\psi((0,0')) = 0^*$ , then one of the following must be true:

- (i) There exists a homomorphism  $\alpha:S\to S^*$  such that  $\alpha(s)=\psi((s,s'))$  for all s in S, s' in S' and  $\alpha(0)=0^*$ .
- (ii) There exists a homomorphism  $\beta: S' \to S^*$  such that  $\beta(s')=\psi((s,s'))$  for all s in S, s" in S' and  $\beta(0')=0^*$ .

(iii) There exist homomorphisms  $\alpha: S \to S^*$  and  $\beta: S' \to S^*$  such that  $\psi((s,s')) = \alpha(s)\beta(s')$  for all  $s \in S$ ,  $s' \in S'$  and  $\alpha(0) = 0^*$ ,  $\beta(0^*) = 0^*$ .

Furthermore, case (i) occurs if and only if  $\psi(0,1')=0*$  and  $\psi(1,0')=1*$ , case (ii) occurs if and only if  $\psi(0,1')=1*$  and  $\psi(1,0')=0*$  and case (iii) occurs if and only if  $\psi(0,1')=0*$  and  $\psi(1,0')=0*$ .

Proof. Since  $\psi$  is a homomorphism,  $\psi((0,1')) = \psi((0,1')(0,1'))$ =  $\psi((0,1'))\psi((0,1')) = (\psi((0,1')))^2$ , so  $\psi((0,1')) = 0$ \* or 1\* by the above remark. Similarly,  $\psi((1,0')) = 0$ \* or 1\*. Now, we have 4 cases to consider.

Case 1.  $\psi((1,0')) = 0^*$  and  $\psi((0,1')) = 0^*$ . Claim that (iii) must occur. Let  $\alpha: S \to S^*$  be defined by  $\alpha(s) = \widehat{\psi}((s,1'))$  for all s in S, and  $\beta: S' \to S^*$  be defined by  $\beta(s') = \psi((1,s'))$  for all s' in S'. Then  $\alpha$ ,  $\beta$  are homomorphisms since  $\alpha(s_1s_2) = \psi((s_1s_2,1')) = \psi((s_1,1')(s_2,1'))$   $= \psi((s_1,1'))\psi((s_2,1')) = \alpha(s_1)\alpha(s_2) \text{ and } \beta(s_1's_2') = \psi((1,s_1's_2'))$   $= \psi((1,s_1')(1,s_2')) = \psi((1,s_1'))\psi((1,s_2')) = \beta(s_1')\beta(s_2'). \quad \alpha(0) = \psi((0,1'))$   $= 0^* \text{ and } \beta(0') = \psi((1,0')) = 0^*. \text{ For all } s \in S, s' \in S' \text{ we have that }$   $\psi((s,s')) = \psi((s,1')(1,s')) = \psi((s,1'))\psi((1,s')) = \alpha(s)\beta(s'); \text{ i.e., }$   $\psi((s,s')) = \alpha(s)\beta(s') \text{ for all } s \in S, s' \in S'.$ 

Case 2.  $\psi((0,1^i)) = 1^*$  and  $\psi((1,0^i)) = 1^*$ . Since  $0^* = \psi((0,0^i)) = \psi((0,1^i)(1,0^i)) = \psi((0,1^i))\psi((1,0^i))$   $= 1^* \cdot 1^* = 1^*$ , this case is impossible. Case 3.  $\psi((0,1')) = 0^*$  and  $\psi((1,0')) = 1^*$ .

We have that  $\psi((s,0')) = \psi((s,s')(1,0')) = \psi((s,s'))\psi((1,0'))$   $= \psi((s,s'))1* = \psi((s,s')) \text{ for all } s \in S, \ s' \in S', \ so \ \psi((s,0')) = \psi((s,s'))$ for all s' in S'. Define  $\alpha(s) = \psi((s,0'))$  for all  $s \in S$ . Then  $\psi((s,s'))$   $= \psi((s,0')) = \alpha(s) \text{ and } \alpha(s_1s_2) = \psi((s_1s_2,0')) = \psi((s_1,0')(s_2,0'))$   $= \psi((s_1,0'))\psi((s_2,0')) = \alpha(s_1)\alpha(s_2), \ \alpha(0) = \psi((0,0')) = 0*. \text{ Therefore}$   $\alpha \text{ satisfies (i).}$ 

Case 4.  $\psi((0,1')) = 1^* \text{ and } \psi((1,0')) = 0^*.$ 

We also have that for each s  $\epsilon$  S, s' $\epsilon$  S',  $\psi((0,s')) = \psi((s,s')(0,1'))$   $= \psi((s,s'))\psi((0,1')) = \psi((s,s')). \text{ Therefore } \psi((0,s')) = \psi((s,s')) \text{ for all}$   $\text{s in S, s' in S'. For each s'} \epsilon \text{ S', define } \beta(s') = \psi((0,s')). \text{ Then } \beta(s')$   $= \psi((0,s')) = \psi((s,s')), \beta(s'_1s'_2) = \psi((0,s'_1s'_2)) = \psi((0,s'_1)(0,s'_2))$   $= \psi((0,s'_1))\psi((0,s'_2)) = \beta(s'_1)\beta(s'_2) \text{ and } \beta(0') = \psi((0,0')) = 0^*. \text{ Hence } \beta \text{ is}$   $\text{a homomorphism and } \beta(0') = 0^* \text{ and } \beta(s') = \psi((s,s')) \text{ for all s in S, s' in S'.}$ So we have (ii).

Corollary. If S and S' are open subsets of  $\mathbb{R}^n(\mathbb{C}^n)$  for some n and S\* is  $\mathbb{R}(\mathbb{C})$  and if  $\psi$  is an analytic homomorphism, then  $\alpha$  and  $\beta$  are also real (complex) analytic homomorphisms.

Proof. It follows immediately from the definitions of  $\alpha$  and  $\beta$ .

Now we shall begin to study real and complex analytic homomorphisms  $\Phi: M(n,F) \to F$  taking O to O where F is either R or C and n > 1. Since  $\Phi$  is real or complex analytic, we have that

$$\Phi \left( \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nn} \end{bmatrix} \right) = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{nn} \\ \vdots & \vdots & & \vdots \\ 0 & x_{n1} & x_{n2} & \cdots & x_{nn} \end{bmatrix} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{nn} \\ \vdots & \vdots & & \vdots \\ 0 & x_{n1} & \cdots & x_{nn} \end{bmatrix}$$

for all  $x_{11}, \dots, x_{nn}$  in some neighborhood 0 of  $\overline{0}$ , where the constant term is 0.

Since 
$$\begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nn} \end{bmatrix} \begin{bmatrix} y_{11} & y_{12} & \cdots & y_{1n} \\ y_{21} & y_{22} & \cdots & y_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ y_{n1} & y_{n2} & \cdots & y_{nn} \end{bmatrix} = \begin{bmatrix} z_{11} & z_{12} & \cdots & z_{1n} \\ z_{21} & z_{22} & \cdots & z_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ z_{n1} & z_{n2} & \cdots & z_{nn} \end{bmatrix}$$

where  $z_{ij} = \sum_{k=1}^{n} x_{ik} y_{kj}$  and  $\phi$  is a multiplicative homomorphism, we get that

$$(\overset{\infty}{\Sigma})_{11}^{m_{12}\dots m_{1n}\dots m_{nn}} \overset{\overset{m_{11}}{m_{12}}\dots \overset{m_{1n}}{m_{1n}}\dots \overset{m_{nn}}{m_{nn}} (\overset{\infty}{\Sigma})_{11}^{m_{12}\dots m_{nn}} (\overset{\infty}{\Sigma})_{11}^{m_{12}\dots m_{1n}} \overset{m_{nn}}{\Sigma} (\overset{\infty}{\Sigma})_{11}^{m_{12}\dots m_{1n}} (\overset{\omega}{\Sigma})_{11}^{m_{12}\dots m_{1n}} (\overset{\omega}{\Sigma})_{11$$

$$.._{nl}^{m_{1l}}y_{1l}^{m_{12}}y_{12}^{m_{1n}}...y_{nl}^{m_{nl}}...y_{nn}^{m_{nn}})$$

$$= \sum_{\substack{\Sigma \\ 0}}^{\infty} \lambda_{\substack{m_{11}^{m_{12}\cdots m_{1n}\cdots m_{n1}}}} \sum_{\substack{\ldots \\ n_{n1}}}^{m_{11}} \sum_{\substack{z_{12}^{m_{12}\cdots z_{1n}}}}^{m_{1n}\cdots z_{n1}^{m_{nn}}} \sum_{\substack{z_{n1}^{m_{n1}}\cdots z_{nn}}}^{m_{nn}} . So,$$

(1.3) 
$$\sum_{0}^{\infty} \lambda_{m_{11} \dots m_{22} \dots m_{ii} \dots m_{nn}} \cdot \lambda_{k_{11} \dots k_{22} \dots k_{ii} \dots k_{nn}} x_{11}^{m_{11} \dots x_{22}^{m_{22} \dots x_{ii}} \dots x_{2i}^{m_{ii}} \dots$$

$$= \sum_{\substack{\Sigma \lambda \\ 0 \text{ mll} \cdots m_{22} \cdots m_{ii} \cdots m_{nn}}} \sum_{\substack{z \text{ mll} \\ z \text{ ll}}} \sum_{\substack{z \text{ mii} \\ 22} \cdots z_{ii}}^{m_{ii}} \sum_{nn}^{m_{nn}}$$

 $(1.3)' = \sum_{0}^{\infty} \lambda_{l_{11}...l_{22}...l_{1i}...l_{nn}} (x_{11}y_{11} + x_{12}y_{21} + x_{13}y_{31} + ... + x_{1n}y_{n1})^{k_{11}}...$ .....  $(x_{n1}y_{1n} + x_{n2}y_{2n} + x_{n3}y_{3n} + ... + x_{nn}y_{nn})^{x_{nn}}$ . The coefficient of  $x_{12}^{m_{12}} x_{23}^{m_{23}} \dots x_{n-1,n}^{m_{n-1,n}} y_{21}^{k_{21}} y_{32}^{k_{32}} \dots y_{n,n-1}^{k_{n,n-1}}$  in (1.3) is λοm<sub>12</sub>0...οm<sub>23</sub>0...οm<sub>i,i+1</sub>0...οm<sub>n-1,n</sub>0...ο<sup>λ</sup>0...οk<sub>21</sub>0...οk<sub>32</sub>0...οk<sub>i+1,i</sub>0...οk<sub>n,n-1</sub>0. If  $m_{i,i+1} = k_{i+1,i}$   $\forall 1 \le i \le n-1$ , and  $\ell_{ii} = m_{i,i+1}$   $\forall 1 \le i \le n-1$ , then the coefficient of  $x_{12}^{m_{12}} x_{23}^{m_{23}} \dots x_{n-1,n}^{m_{n-1,n}} y_{21}^{k_{21}} y_{32}^{k_{32}} \dots y_{n,n-1}^{n,n-1}$  in (1.3) is λ<sub>11</sub>0...0<sub>22</sub>0...0<sub>1i</sub>0...0<sub>n-1,n-1</sub>0...0 • Therefore,  $(1.4) \quad \lambda_{11} \circ \dots \circ \ell_{22} \circ \dots \circ \ell_{1i} \circ \dots \circ \ell_{n-1, n-1} \circ \dots \circ = \lambda_{0m_{12}} \circ \dots \circ m_{23} \circ \dots \circ m_{i, i+1} \circ \dots \circ m_{n-1, n} \circ \dots \circ m_{n-1,$ λ 0...0k<sub>21</sub>0...0k<sub>32</sub>0...0k<sub>i+1</sub>,i<sup>0...0k</sup>n,n-1<sup>0</sup>

whenever  $m_{i,i+1} = k_{i+1,i} = \ell_{ii}$   $\forall 1 \leq i \leq n-1$ . Therefore, if we can show that the RHS. of (1.4) equals zero for all  $m_{i,i+1} \in \mathbb{N}$   $\upsilon\{0\}$ ,  $1 \leq i \leq n-1$ , then  $\lambda_{\ell_{11}0...0\ell_{22}0...0\ell_{ii}0...0\ell_{n-1,n-1}0...0}$  must be zero for all  $\ell_{ii} \in \mathbb{N}$   $\upsilon\{0\}$ ,  $1 \leq i \leq n-1$ .

Let  $m_{i,i+1} \in \mathbb{N} \cup \{0\}$  for all  $i (1 \le i \le n-1)$ . The coefficient of

the term 
$$x_{12}^{m_{12}}x_{23}^{m_{23}}...x_{n-1,n}^{m_{n-1,n}}y_{12}^{m_{23}}y_{23}^{m_{23}}...y_{n-1,n}^{m_{n-1,n}}$$
 in (1.3) is

If  $m_{12} \neq 0$ , then the coefficient of the term  $x_{12}^{m_{12}m_{23}} \dots x_{n-1,n}^{m_{n-1,n}y_{12}y_{23}} \dots x_{n-1,n}^{m_{n-1,n}y_{12}y_{23}} \dots$   $m_{n-1,n}^{m_{n-1,n}}$  in (1.3) is 0. Therefore,

$$\lambda_{0m_{12}0...0m_{23}0...0m_{i,i+1}0...0m_{n-1,n}0...0} = 0$$

for all  $m_{i,i+1} \in \mathbb{N} \cup \{0\}$ , for all  $i (2 \le i \le n-1)$ , for all  $m_{12} \in \mathbb{N}$ .

Suppose that m<sub>12</sub>= 0. Let i be the smallest natural number such that

$$m_{i,i+1} \neq 0$$
. The coefficient of the term  $x_{i,i+1}^{m_{i,i+1}} x_{i+1,i+2}^{m_{i+1}} \dots x_{n-1,n}^{m_{n-1,n}} x_{i,i+1}^{m_{i,i+1}}$ 

$$y_{i+1,i+2}^{m_{i+1,i+2}} \dots y_{n-1,n}^{m_{n-1,n}}$$
 in (1.3) is  $\lambda_{0...0m_{i,i+1}}^{2} \dots 0...0m_{i+1,i+2}^{2} \dots 0...0m_{n-1,n}^{2} \dots 0...0$ 

and is 0 in (1.3)'. Therefore,

$$^{\lambda_{0...0m_{i,i+1}0...0m_{i+1,i+2}0...0m_{n-1,n}0...0} = 0$$

for all  $m_{i,i+1}, m_{i+1,i+2}, ..., m_{n-1,n} \in \mathbb{N} \cup \{0\}, m_{i,i+1} \neq 0.$ 

Since 
$$\phi(0) = 0$$
,  $\lambda_{0...0} = 0$ . Hence by (1.5) and (1.6)

$$\lambda_{\text{Om}_{12}}, \dots, \text{Om}_{23}, \dots, \text{Om}_{i,i+1}, \dots, \text{Om}_{n-1,n}, \dots, \dots = 0$$

 $\forall m_{i,i+1} \in \mathbb{N} \cup \{0\}, \ \forall i \ (1 \le i \le n-1).$  Consequently, the equation (1.4) equals zero. So

$$\lambda_{l_{11}0...0l_{22}0...0l_{ii}0...0l_{n-l,n-l}0...0} = 0$$

for all  $\ell_{ii} \in \mathbb{N} \cup \{0\}$ , for all  $i (1 \le i \le n-1)$ .

The coefficient of  $x_{21}^{m_{21}}x_{32}^{m_{32}}...x_{n,n-1}^{m_{n,n-1}}y_{12}^{k_{12}}y_{23}^{k_{23}}...y_{n-1,n}^{k_{n-1,n}}$  in (1.3)

is

 $^{\lambda_{0}...0m}_{21}^{0...0m}_{32}^{0...0m}_{i+1,i}^{0...0m}_{n,n-1}^{0...0m}_{0,n-1}^{0...0k}_{0k_{12}}^{0...0k}_{0...0k_{23}}^{0...0k}_{0...0k_{i,i+1}}^{0...0k}_{0...0k_{n-1,n}}^{0...0}$ 

If  $m_{i,i-1} = k_{i-1,i} = k_{ii}$  for all i (2  $\leq$  i  $\leq$  n), then the coefficient of

$$x_{21}^{m_{21}}x_{32}^{m_{32}}...x_{n,n-1}^{m_{n,n-1}}y_{12}^{k_{12}}y_{23}^{k_{23}}...y_{n-1,n}^{k_{n-1,n}}$$
 in (1.3) is

λ<sub>0...0l<sub>22</sub>0...0l<sub>33</sub>0...0l<sub>ii</sub>0...0l<sub>nn</sub> . Therefore,</sub>

 $(1.9) \quad \lambda_{0..0} \ell_{22} 0..0 \ell_{33} 0..0 \ell_{ii} 0..0 \ell_{nn} = \lambda_{0..0} \ell_{21} 0...0 \ell_{32} 0...0 \ell_{i+1,i} 0...0 \ell_{n,n-1} 0$ 

λ<sub>0k<sub>12</sub>0...0k<sub>23</sub>0...0k<sub>i,i+1</sub>0...0k<sub>n-1,n</sub>0...0</sub>

whenever  $m_{i,i-1} = k_{i-1,i} = k_{ii}$  for all i (2  $\leq$  i  $\leq$  n). By (1.7) we then have that (1.9) equals zero. Therefore,

(1.10) 
$$\lambda_{0..0l_{22}0..0l_{33}0..0l_{ii}0..0l_{nn}} = 0$$

for all  $\ell_{ii} \in \mathbb{N} \cup \{0\}$ , for all  $i (2 \le i \le n)$ . Now we are ready to prove the following lemma. When we write F in the following lemma it will always stand for either R or C.

If  $\Phi$ : M(n,F)  $\rightarrow$  F is a (real or complex) analytic multi-Lemma i.2 plicative homomorphism and  $\phi(0) = 0$ , then

$$\Phi \left( \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \right) = 0 \quad \text{and} \quad \Phi \left( \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \right) = 0.$$

Proof. Since

$$\phi \left( \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nn} \end{bmatrix} \right) = \frac{\omega}{\Sigma} \lambda_{m_{11}m_{12}\cdots m_{1n}} x_{n1}^{m_{11}m_{12}} x_{n1}^{m_{12}m_{12}} x_{n1}^{m_{1n}m_{1n}} x_{n1}^{m_{1n}m_{1n}} x_{nn}^{m_{1n}m_{1n}m_{1n}} x_{nn}^{m_{1n}m_{1n}m_{1n}m_{1n}} x_{nn}^{m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}} x_{nn}^{m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n}m_{1n$$

in some neighborhood U of O,

and

$$(1.12) \circ \begin{pmatrix} \begin{bmatrix} x_{11} & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} = \sum_{m=1}^{\infty} \lambda_{m, 1} 0 \cdots 0 x_{11}^{m+1}$$

in some neighborhood U of  $\overline{0}$ . By (1.10) we then have that equation (1.11) equals zero and (1.8) also implies that equation (1.12) equals zero in U. Therefore, there exist  $x_1, \dots, x_n \neq 0$  sufficiently small so that

$$\phi \left( \begin{bmatrix} x_1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} \right) = 0$$

and

Therefore,

$$\Phi \left( \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} \right) = \Phi \left( \begin{bmatrix} x_1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{x_1} & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} \right)$$

$$= \emptyset \left( \begin{bmatrix} x_1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} \right) \emptyset \left( \begin{bmatrix} \frac{1}{x_1} & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} \right)$$

$$= \emptyset \left( \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} \right) = \emptyset \left( \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & x_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & x_n \end{bmatrix} \right) \emptyset \left( \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & \frac{1}{x_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{x_n} \end{bmatrix} \right)$$

$$= \emptyset \left( \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & x_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & x_n \end{bmatrix} \right) \emptyset \left( \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & \frac{1}{x_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{x_n} \end{bmatrix} \right)$$

$$= \emptyset \left( \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & \frac{1}{x_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{x_n} \end{bmatrix} \right) \emptyset \left( \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & \frac{1}{x_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{x_n} \end{bmatrix} \right)$$

$$= \emptyset \left( \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & \frac{1}{x_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{x_n} \end{bmatrix} \right) \emptyset \left( \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & \frac{1}{x_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{x_n} \end{bmatrix} \right)$$

Therefore, the lemma is completely proved.

Again in what follows F shall stand for either  $\mathbb R$  or  $\mathbb C$ . Given  $n \geq 1$ , let

$$S = \begin{cases} \begin{bmatrix} x_{11} & 0 & \dots & 0 \\ 0 & x_{22} & \dots & x_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & x_{n2} & \dots & x_{nn} \end{bmatrix} ; x_{ij} \in F, \forall i, j = 1, 2, \dots, n \end{cases}$$

Then, with respect to matrix multiplication, S is a semigroup. Notice that for all natural numbers n > 1,  $S \stackrel{\sim}{\sim} F \times M(n-1,F)$ . If  $\Phi$  is a (real or complex) analytic homomorphism from M(n,F) to F and  $\Phi(0)=0$ , then by lemma 1.2  $\Phi((1,\overline{0}))=0$  and  $\Phi((0,I))=0$  where I is the identity in M(n-1,F) and  $\overline{0}$  is the zero matrix in M(n-1,F). Therefore, by case 1 of lemma 1.1 there are homomorphisms  $\alpha:F \to F$  and  $\beta:M(n-1,F)\to F$  such that  $\Phi((s,s'))=\alpha(s)\beta(s')$  for all  $s\in F$ , s's M(n-1,F) and  $\alpha(0)=0$ ,  $\beta(0)=0$ . Also,  $\alpha$  and  $\beta$  are (real or complex) analytic by the corollary to lemma 1.1. Now we are ready for our main theorem.

Theorem 1.3 Let  $\Phi: M(n,\mathbb{C}) \to \mathbb{C}$  be a complex analytic multiplicative homomorphism such that  $\Phi(0) = 0$ . Then  $\Phi \equiv 0$  or there is a natural number m such that  $\Phi(A) = (\det A)^m$  for all  $A \in M(n,\mathbb{C})$ .

Proof. We shall prove this theorem by induction on n. For n = 1, we have already proven that  $\Phi \equiv 0$  or there exists an m  $\varepsilon$  N such that  $\Phi(x) = x^m$  (=  $(\det x)^m$ ) for all x in  $\varepsilon$ . Suppose that n > 1 and the assertion is true for n-1. We must show that it is true for n. Since  $\Phi$  is a homomorphism,

 $\Phi(I) = \Phi(I^2) = (\Phi(I))^2 \text{ and so } \Phi(I) = 0 \text{ or l. If } \Phi(I) = 0, \text{ then}$   $\Phi(A) = \Phi(AI) = \Phi(A)\Phi(I) = \Phi(A) \cdot 0 = 0 \text{ for all } A \text{ in } M(n,C). \text{ Hence}$   $\Phi = 0. \text{ Suppose that } \Phi(I) = 1. \text{ Let } \Lambda \in M(n,C).$ 

Case 1. A has an eigenvalue  $\lambda$  of order 1. From chapter 0 p. 6 there exists an invertible matrix B such that

$$B^{-1}AB = \begin{pmatrix} \lambda & 0 & \cdots & 0 \\ 0 & & & \\ & & & \\ & & & \\ 0 & & & \\ & & & \\ & & & \\ \end{pmatrix}$$

 $\phi(B^{-1}AB) = \phi(B^{-1})\phi(A)\phi(B) = \phi(B^{-1})\phi(B)\phi(A) = \phi(B^{-1}B)\phi(A) =$   $\phi(I)\phi(A) = \phi(A), \text{ i.e., } \phi(A) = \phi(B^{-1}AB). \text{ By the previous remark we}$ have that there are complex analytic homomorphisms  $\alpha: \mathbb{C} \to \mathbb{C}$  and  $g: M(n-1,\mathbb{C}) \to \mathbb{C} \text{ such that } \phi((s,s')) = \alpha(s)\beta(s') \text{ for all } s \in \mathbb{C},$   $s' \in M(n-1,\mathbb{C}) \text{ and } \alpha(0) = 0, \beta(0) = 0. \text{ Then by the induction hypothesis}$ either  $\beta = 0$  or  $\beta(\mathbb{C}) = (\det \mathbb{C})^{\frac{1}{2}}$  for some  $t \in \mathbb{N}$ , for all  $\mathbb{C} \in M(n-1,\mathbb{C})$ and, either  $\alpha = 0$  or  $\alpha(\lambda) = \lambda^{m}$  for some  $m \in \mathbb{N}$ , for all  $\lambda \in \mathbb{C}$ . Since  $1 = \phi(I) = \phi((1,I_{(n-1)})) = \alpha(1)\beta(I_{(n-1)}), \alpha \neq 0 \text{ and } \beta \neq 0. \text{ Therefore}$   $\phi(A) = \phi(B^{-1}AB) = \lambda^{m}(\det \mathbb{C})^{\frac{1}{2}}. \text{ Claim that } m = t. \text{ Suppose that } m \neq t.$ Choose  $D \in M(n,\mathbb{C})$  such that no eigenvalues of D is zero and  $\lambda_1$ ,  $\lambda_2$  are eigenvalues of D of order 1 such that  $\lambda_1^{m-t} \neq \lambda_2^{m-t}$ . From chapter 0 p. 6 there is an invertible matrix  $E \in M(n,\mathbb{C})$  such that

$$E^{-1}DE = \begin{bmatrix} \lambda_1 & 0 & 0 & \cdots & 0 \\ 0 & \lambda_2 & 0 & \cdots & 0 \\ 0 & 0 & & & & \\ \vdots & \vdots & & & & \\ F(n-2) \times (n-2) & \vdots \\ 0 & 0 & & & & \\ \end{bmatrix}$$

Therefore 
$$\Phi(D) = \Phi(E^{-1}DE) = \lambda_1^m \det \begin{bmatrix} \lambda_2 & 0 & \cdots & 0 \\ 0 & \cdots & \ddots & \vdots \\ 0 & \cdots & \ddots & \vdots \end{bmatrix}$$

$$= \lambda_1^m \lambda_2^t \cdot \left( \det \begin{bmatrix} F(n-2) \times (n-2) \end{bmatrix} \right)^t$$

Similarly, there exists an invertible matrix G & M(n,C) such that

Therefore, 
$$\Phi(D) = \Phi(G^{-1}DG) = \lambda_2^m \det \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & & & & \\ & & & & \end{bmatrix}^{t}$$

$$= \lambda_2^{m} \lambda_1^{t} \left( \det' \left[ F_{(n-2)\times(n-2)} \right] \right)^{t} .$$

So  $\lambda_1^m \lambda_2^t$  (det  $[F_{(n-2)\times(n-2)}]$ )  $= \lambda_2^m \lambda_1^t$  (det  $[F_{(n-2)\times(n-2)}]$ ), and hence  $\lambda_1^{m-t} = \lambda_2^{m-t}$ . This contradicts the fact that  $\lambda_1^{m-t} \neq \lambda_2^{m-t}$ . Therefore m = t. This shows that  $\Phi(A) = \lambda^m (\det [C_{(n-1)\times(n-1)}])^m = (\det (B^{-1}AB))^m = (\det B^{-1}) (\det B) (\det B)^m = (\det B^{-1}) (\det B) (\det B)^m = (\det B) (\det B)^m = (\det B)^m = (\det B)^m = (\det A)^m$ .

Case 2. Suppose that all eigenvalues of A are of order > 1. In this case we claim that there is a sequence  $(A_n)$  of matrices in  $M(n,\mathbb{C})$  such that  $A_n$  has at least one eigenvalue of order 1 for each n, and  $A = \lim_{n \to \infty} A_n$ . Let  $\lambda_1, \lambda_2, \dots, \lambda_m$  be the distinct eigenvalues of A of orders  $\alpha_1, \alpha_2, \dots, \alpha_m > 1$ ; respectively. From chapter 0 p.6, there is an invertible matrix By  $\epsilon$   $M(n,\mathbb{C})$  such that

where 
$$\begin{bmatrix} \lambda_1 & 1 & \cdots & 0 \\ 0 & 0 & \lambda_1 \\ \hline 0 & & & 1 \end{bmatrix} = Y$$

$$\begin{bmatrix} \lambda_1 & 1 & \cdots & 0 \\ \lambda_1 & 1 & \cdots & 0 \end{bmatrix} \text{ is a } (k \times k) \text{ matrix and } k \leq \alpha_1.$$

Let  $d = \min \{|\lambda_1 - \lambda_2|, \dots, |\lambda_1 - \lambda_m|\}$ .

Therefore d > 0. Let  $d \in \mathbb{R}$  such that 0 < d < d, and let

$$Y_{n} = \begin{bmatrix} \lambda_{1} + d_{1} & 1 & 0 & 0 \\ 0 & \lambda_{1} & \vdots & \overline{0} \\ \vdots & \vdots & \ddots & \overline{0} \\ 0 & 0 & \lambda_{1} & \vdots \\ \overline{0} & & p(n-k) \times (n-k) \end{bmatrix}$$

Then the distinct eigenvalues of  $\gamma_n$  are  $\lambda_1 + d_n$ ,  $\lambda_1, \dots, \lambda_m$  and  $\lambda_1 + d_n$  has order 1. As  $n \to \infty$ ,  $\gamma_n \to \gamma$ . Since  $\gamma = B^{-1}AB$ ,  $A = B\gamma B^{-1}$ . Let  $A_n = B\gamma_n B^{-1}$  for all  $n \in \mathbb{N}$ . Therefore  $\lambda_1 + d_n$  is an eigenvalue of  $A_n$  of order 1 and  $A_n \to B\gamma B^{-1} = A$  as  $n \to \infty$ , i.e.,  $A = \lim_{n \to \infty} A_n$ . Thus we have the claim. Hence  $\Phi(A) = \Phi(\lim_{n \to \infty} A_n) = \lim_{n \to \infty} \Phi(A_n) = \lim_{n \to \infty} (\det A_n)^m$  =  $(\lim_{n \to \infty} (\det A_n))^m = (\det(\lim_{n \to \infty} A_n))^m = (\det A_n)^m$ .

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย