MIURULNRANN DRI NN AUALLINIING UL BYRTILNT

AU INENTNEINS
ARIANTAUNNINGIAY

n mﬁwuﬁﬁtﬂudmﬂﬁwaamsﬁnmmwé’nq@]ﬁmnﬁumam@ﬂﬁﬁmﬂ@
8V ITRAINTINABNAUADT N1ATT AN TINABNALADT
AMAAINIINAFAT JRIAINIVUNATING IS Y
Un13finm 2553

a a Asl a s
ﬂ‘llﬁ“/lﬁ‘llﬂdﬁ!ﬁ'm\‘lﬂiﬂi&m'nﬂ g1ay

MINING TOP-K REGULAR-FREQUENT ITEMSETS FROM TRANSACTIONAL DATABASE

ﬂ‘LlEJ’JVIEJVIiWEJ’]ﬂ?'
amaﬁmmumqﬂmaﬂ

A Dissertation Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy Program in Computer Engineering
Department of Computer Engineering
Faculty of Engineering
Chulalongkorn University
Academic Year 2010

Copyright of Chulalongkorn University

Thesis Title MINING TOP-K REGULAR-FREQUENT ITEMSETS FROM

TRANSACTIONAL DATABASE
By Mr. Komate Amphawan
Field of Study Computer Engineering
Thesis Advisor Assistant Professor Athasit Surarerks, Ph.D.

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial Fulfillment of

....................... Examiner

A R o
AR ﬁ\“lﬂi@k@ﬁﬂ%’l ViEWRE

(Assistant Professor Krisana Chinnasarn, Ph.D.)

............................. External Examiner

(Assistant Professor Arnon Rungsawang, Ph.D.)

iv

Tnie dunwiu: mamzluuuausinsuainduduunangusayanons. (MIN-
ING TOP-K REGULAR-FREQUENT ITEMSETS FROM TRANSACTIONAL
DATABASE) 8.fi3nwinenfiwusuan : faruemaananss asinans gaons, 197

¥
.

e

s o € v s ' % < ¥ °
nInIng e sunus neld ATTUURRUUISAINNN LDBINUN Fﬂ.ﬂi?:u Wuauaay

1A v ° - v 1 =3 a a v '
TRNFUIVUATUNIINIANBIVBY A ﬂU’N‘lﬁ'ﬂW\&lﬂ')']&lﬂ?.li)x‘lﬂ'\‘ilﬂﬂ'ﬂﬂﬁﬁ].ujﬂI.l]JlJﬂ'N‘]E]"ﬁI

1 = J A
luwsananazidwidanlevasniim

da v o fo R = .
num'mauwuﬁnmqLﬂuﬂszmuﬁ\J@_~ ,

o o € k3 s A %—ﬁ ° . v "]_J & 1 a ﬂ 1
FUWKHDVBITAYANADNIILN Gﬁujlﬂ DAURNITUIMPVURWNULLNTING

o a o & o P
l' ANURNY ﬂ\'luuﬂmim;ﬂ’lﬂﬂﬂ‘uadjﬂuuu

P a
mu']ﬁ'm 3'1] HUURWIVBINIILNA AN

\ a9 19 o “% a & o % ' v
'luizﬂ:ﬂ'h‘lﬂbﬂ'ﬂ“ﬂ’)'\ _ A1udd Lﬂﬂmuluﬁﬂﬂm:ﬂoﬂm?ﬂ:@lad

° J L A a J '
ImIfmuaAauuay ava3tayafifiadu ualung

v o 1A

] : s
nomuaa1dautsfiiasiin

Ujuduaanisimuae

° v €d ve b 2 1A 1 o €dn v
11]’1]1H'JHNRRWD'YI1QTI n n’tdmuﬂmmuuomnuaammh

23 o ' \ . 1A - SV 7 & °
fazfidmiurasniaen v ANVAULUIN AIURUNWUNITNINUA
APautainisnimuaian MERUICRUNIIIMNNITIRIIIITUIY
P .

na aqluﬁaquuwmﬂ 1 nmla:gauuuammuamﬂmaomi

msmmmuhu o)

msaumunumanmq}{
afuayuiiats ﬁ Ej ﬁf ﬂ TayauuulnaiiRaaainm
Lm:miwm'm@v‘w YYL YL ﬂ Pidflyﬁ‘ WmlniBanauazniag
ANI1UBY "IL fu w ﬁ(vy lddays
tH umé ﬁ}jrﬁ ﬁ:ﬁ ﬁ jjﬁﬂ ﬁgi gmuﬂnan%mw

X o o X
wuauadasi (1) uammmamm (2) M3l

qmwaaﬂﬂ‘%qumsﬂum (3) J\wkml.m'uamau.a zmydIzunmen

a a [4 - {ﬂ (A g N ‘r\“
nap AFINIUABUNIILGDY....... [PUaTaURA ... bN AR
a a a [- % P a a € o ‘ éﬂi;;a‘
{1977 VAINIUAUNIUGDT....... audaToe. NUInE INLANUINAN 7.

dnsdnw . 2553 ...

4871857021: MAJOR COMPUTER ENGINEERING

KEYWORDS: DATA MINING / ASSOCIATION RULES / TOP-K SIGNIFICANT ITEMSETS

/ REGULAR-FREQUENT ITEMSETS / TOP-K REGULAR-FREQUENT ITEMSETS
KOMATE AMPHAWAN : MINING TOP-K REGULAR-FREQUENT ITEMSETS FROM
TRANSACTIONAL DATABASE. THESIS ADVISOR : Assistant Professor Athasit Surar-
erks, Ph.D., 53 pp.

Association rule based on support-cenfident framework is an important task in data min-
ing community. However, the occurrence frequeney of a pattern may not be sufficient criterion
for mining meaningful patterns. The occurrence behavior can be revealed as an important key
in several applications. A pattern is-a regular pattern if it regularly occurs in a user-given period
(regularity threshold). To'mine régular itemsﬁts, a support threshold is used to filter some regular
itemsets. However, in practice! iyfis/often difficult for users to provide an appropriate support
threshold. Indeed, a too small suppert tl}re‘sholtl?i cczpld yield a number of regular-frequent itemsets
impractically large while a too large thrcshold'?qm;ld yield very few or no regular-frequent item-

sets. Therefore, the use of a support tlirejsbold tc;ilas to preduce a large number of regular-frequent

itemsets and it could be better t@ ask for the number;gf desired results.

Currently, from the deep suf'\-'é'y-, there is o ‘éxfshh_rfg approagh permitting users to specify the

number of regular—freql',_le_-.nt 1temsets to be mined. Therefore, a ncw approach allowing the users to
control the number of resul-t_s (i.e. k regular itemsets with the highest supports) is presented. There
are several techniques proposed.in this dissertation to mine this kind of itemsets: (i) a single-scan
approach, (ii) a best-first search strategy used to prunc-the search space, (iii) the partitioning
and estimation techniques assisting in reducing unnecessary computational costs, and (iv) a new
concise representation’hélping to save runtime and memory. From thé\performance study, the
proposed approaches are efficient and scalable in terms of time and memory for small and large

values of desired results on sparse and dense datasets.

Department: Computer Engineering Student’s Signature N0, l .. Q [.
Field of Study:Computer Engineering Advisor’s Signature

Academic Year: 2010............

Acknowledgements

First and foremost, I wish to thank the Higher Education Commission of Thailand who
gave me a research scholarship. I would like to express my deep gratitude to my supervisor,
Athasit Surarerks, Ph.D., to whom with his guidance, advices and helps me to overcome the
difficulties of the process of conducting this dissertation. He patiently and thoroughly guided
me for an almost 5-year period from a starting point to reading the chapters of this thesis. I
also would like to express my deepest gratitude to my co-supervisor, Philippe Lenca, Ph.D. at
Telecom Bretagne, France. His invaluable advice and patience allowed me to undergo and finish
the challenging process of my doctoral degree program. I also express my thankfulness to my
dissertation committees: Wanehat Rivepiboon, PhD., Pizzanu Kanongchaiyos, Ph.D., Krisana
Chinnasan, Ph.D. and Arnon Rungsawang, PhD for their advices and guidance to help me focus
on my research activities. Lam also grateful to Sunisa Rimchareon, Ph.D., and Miss Warisa
Sritriratanarak whom always@ncourage me.to do research, give me moral support and help me

h

everything as they can do. .

I also would like to thank all of my 1ovéi}_/ Jf'-riends (e.g. Pai, Phae, Te, Yring, Rin, Chan,
Aui, Krit, Tuk, Kai, Kik, Camp, Oat, . Zeng, Wat;-Tar; Trung, Kwan, Pum, etc.) and the graduate
students in Computer Engineering department (e;g"-. P’ Chai, Koh, Pook, Pla, Woot, Wut, P’ Tom,
P’ Chang, P’ Jim, P’ Phueng, P” Chit, P*Vic, Tei, lé"T;-l‘ej;’lf’un, Dong, Kai, Puh, Pair, Na, Pong, Dear,
Oat(Elite), Oat(CG), Petch(Van), Petech(Dek), P’Kéﬁg-Tair, Chris, Tuy, Jumbo, Noot, P’ Ae, P’
Aoe, Matt, P’ Mao,P’ Aui-P* Sakorn, P* Yui, Petch(Mhee), P> Dde, P’ Jung, I’ Nhan, P’Fu, June,
Pia, Vit, etc.) whose advice and friendship gave me a lot of encouragement for my studying at

Chulalongkorn University:

I would liketto thank.the Department of Computer Engineering of Chulalongkorn Univer-
sity for giving me the opportunity to pursue a Ph.D. degree in computer engineering. I am also

thankful testhe supportsstaffs innComputen Engineering Department;for, always being helpful.

Last but not least, I am very grateful to my family: Father, Mother and my Sister for their
love, patience, continuous moral support and encouragement. Without all of these I could not

have accomplished my doctoral degree.

Contents

Page
Abstract (Thai) e v
Abstract (English) v
Acknowledgements vi
Contents vii
Listof Tables X
Listof Figures e xi
Chapter
I Introduction e I e 1
1.1 Objectives of Study ""‘ . .1 N 4
1.2 Scopes of Study . / 4% P 5
1.3 Research Methodology . & /.00 .. M . e 5
1.4 Organization. ’ R AR W 5
II Relatedwork o ... il | N 7
2.1 Frequent itemsets mini Gl T T 7
2.2 Top-k significant ite ining B N 10
2.3 Regular-frequent itemsets g ".'; R . . 12
2.4 Benchmark datasets . . .- i e 13
I Mining top-k regulat-frequent i 4 16
3.1 Top-k regular—frquut itemsetsmining ..U L L L L Ll L 16
3.2 Preliminary of MTKPP e IR 17
3.3 MTKPP: ﬂ)usmrﬂntj ‘nj w EJ ’] ﬂi 17
3.4 MTKPP algorithm 18
3 P; ‘;n &U 18
AT Ang ey
3.5 Example of MTKPP 20
3.6 Performance evaluation 22
3.6.1 Experimental setup 22
3.6.2 Execution timeo e e 22
3.6.3 Memory consumption i e e e e 23
3.6.4 Scalability test 23

37 Summary ... e e e e e e 24

Chapter

IV TKRIMPE: Top-K Regular-frequent Itemsets Mining using database Parti-

tioning and support Estimation
4.1 Preliminary of TKRIMPE
4.2 TKRIMPE: Top-k list structure,
4.3 Database Partitioning w b i oo e e
4.4 Support Estimationo Ll 0 L
4.5 TKRIMPE algorithm . . ©o. o0 0. 0 .
4.5.1 TKRIMPE: Top-k list initialization
4,52 TKRIMPE: Top-Lamining - . . b &0 oo e oo e e e e e e

4.6 Example of TKRIMPE#". 0 &S00 . 0. 000 o0 e e
4.7 Complexity analysis .4 & 0 L. <o BEA NN\ ™
4.8 Performance Evaluations. /. 0 . = —

4.8.1 Experimental segtups . o . . 0 Tas 0 N

4.8.2 Advantages of the database partitidning and the support estimation tech-

niques applied in TKRIMPE

4.8.3 Execution time4 2
4.8.4 Memory COnSUMPHOn v o o v 0l e o e e
4.8.5 Scalabilitygtest gL L

4.9 Summary . . . R

V TKRIMIT: Top-K Regular-frequent Itemsets Mining based on Interval Tidset

representation .. | . L L UL L LT LRl D
5.1 Preliminaryjof TKRIMIT
5.2 Interval=Tidsetrepresentation &= . 1. @ 1 0.0 &% #% O O 057 00 - - - - .
5.3 TKRIMIT: Top-k list structare” “°. W70 5 0 0 0 0 Db R0 =0 0L
54 TKRIMIT algorithm e

5.4.1 TKRIMIT: Top-k list initialization
542 TKRIMIT: Top-kmining,
5.5 Example of TKRIMIT
5.6 Complexity analysis i i e e
5.7 Performance evaluation

5.7.1 Experimental setup

viii

Page

ix

Chapter Page
5.7.2 Compactness of using interval tidset representation 110
ST3 Execution timeo 110
5.7.4 Memory consumption e e e 111
5.7.5 Scalability test 112

5.8 Summary ... 112

VI H-TKRIMP: Hybrid repres Regular-frequent Itemsets

Mining based on database / 143
6.1 Preliminary of H-T —— . 143
6.2 H-TKRIMP: Top-k list \ 143
6.3 Database Partitioning .. & & 00 . . Ll i e 144
6.4 Hybrid representation 4. & 0 LL <in el 0w L L 145
6.5 Calculation of Regularity and Suppert-—+*. L L L 147
6.6 H-TKRIMP algorithm . & . 0 .. i 00 149
6.6.1 H-TKRIMP: Top#k initialization o0 . - 0 oo oo o 150
6.6.2 H-TKRIMP: Top-k . 151

6.7 Example of H-TKRIMP . 50 o000 154
6.8 Complexity analysis . A e o 156
6.9 Performance e 7 - L 157
6.9.1 Experimental se 7 e 157
6.9.2 Execution tim 158
6.9.3 Memory consufqiﬁ)n e R 159
os S ANYNINYINS
6.10Summary q'l G W 161

7.1 Summary of Dissertation. e 185
T2 DISCUSSION o o o e e e e e e 187
References e 189

List of Tables
Table Page
2.1 Horizontal representation e 8
2.2 Vertical Tidset representation v vt vttt e e 9
2.3 Datasets classification from (Flouvatetal.,2010) 15
2.4 Database characteristics L e 15

3.1
4.1
5.1
6.1

AU INENTNEINS
PRIANTUUMINYAE

X1

List of Figures
Figure Page
3.1 MTKPP: Top-k list with hashtable 18
3.2 Top-k listinitialization 21
3.3 Top-k regular-frequent itemsets 21
3.4 Runtime of MTKPP on accidents (o, = 1%) i 25
3.5 Runtime of MTKPP on accidents (o, =2%) i 25
3.6 Runtime of MTKPP on accidents (gp = 83%) . .« . v v o o i i i e e e 26
3.7 Runtime of MTKPP on chess (o, = 2%) 0 & o 26
3.8 Runtime of MTKPP on chess (0, = 4%) . o s o o o oo 27
3.9 Runtime of MTKPP on Ciessh@r = 6%) - . &t e+« + o oo oo 27
3.10 Runtime of MTKPP on georineat (o = 1%0) . . o vi o oo 28
3.11 Runtime of MTKPP on.gonnect (o = 2%) oo i i oo e e e 28
3.12 Runtime of MTKPP on connect (o = 3%) F . . oo b e e 29
3.13 Runtime of MTKPP.on mushmwoom (o, = 4-%) 29
3.14 Runtime of MTKPP onmushroom (g, — 6'{,79) 30
3.15 Runtime of MTKPP on neshoom (0, = 8%) -~ . .0 i e oo 30
3.16 Runtime of MTKPP on punish (o, = 2%) -.":t.f;_ N 31
3.17 Runtime of MTKPP on pumsb (o7=4%) — .j J 31
3.18 Runtime of MTKPR on pusiish (o, = 6%) . ‘ B . L. 32
3.19 Runtime of MTKPPOnpumsb(or="4%)rrrrreeean 32
3.20 Runtime of MTKPP on pumsb* (o, =2%) . . - o« o . . T o i 33
3.21 Runtime of MTKPP on pumsb* (o, =3%) o o e 33
3.22 Runtime of MTKPPR on BMS-POS (05 =1 %) mai. i 5 o v o o ovov oo e o 34
3.23 Runtime of MTKPP on-BMS-POS e, = 2%) © .0 Ll o D00 00 000 000 0. 34
3.24 Runtime of MTKPP on BMS-POS (6, = 3%) . .. « o v v oo o B oo oo 35
3.25 Runtime of MTKPP on rerail (o =6%) | . /L . L .2 Lol L o 35
3.26 Runtime of MTKPP on retail (o, = 8%) 36
3.27 Runtime of MTKPP on retail (o, = 10%) oo it e 36
3.28 Runtime of MTKPP on T10I4DI100K (o, = 4%) i 37
3.29 Runtime of MTKPP on T10I4DI100K (o, = 6%)« v i i 37
3.30 Runtime of MTKPP on T10I4D100K (o, =8%) . . o v v v i v i i 38
3.31 Runtime of MTKPP on T20I6D100K (o, =2%) i i 38
3.32 Runtime of MTKPP on T20I6DI100K (o, = 4%) v 39

3.33 Runtime of MTKPP on T20I6D100K (o, = 6%) i i it 39

Figure

3.34 Runtime of MTKPP on 740110D100K (o, = 2%)
3.35 Runtime of MTKPP on T40110D100K (o, = 4%)
3.36 Runtime of MTKPP on 740110D100K (o, = 6%)
3.37 Memory usage of MTKPP on accidents
3.38 Memory usage of MTKPP on chess
3.39 Memory usage of MTKPP on connect
3.40 Memory usage of MTKPP on mushroom
3.41 Memory usage of MTKPP on pumsb

3.42 Memory usage of MTKPP on pumsb*
3.43 Memory usage of MTKPP on BMS-POSy . . -« 00 0 .o o
3.44 Memory usage of MTKPPon reiail
3.45 Memory usage of MTKPP on'T'L0I4D 100K

3.46 Memory usage of MTKPP on 72016D [OOIK

3.47 Memory usage of MTKPP on 740110D1 OOJIg
3.48 Scalability of MTKPP (ks 500, g,.= 6) {
3.49 Scalability of MTKPP/(k : 40,000, g, = 6I)_"

4.1
4.2
43
4.4
45
4.6
4.7
4.8
4.9

4.10 The number of early terminated itemsets on BM.S-POS dataset
4.11 The number oflearly terminatéd itemsets-on retail dataset
4.12 The number of early terminated itemsets on 7/0[4D100K dataset

4.13 The number of early terminated itemsets on 720/6D100K dataset

4.14 The number of early terminated itemsets on 740/10D 100K dataset
4.15 The number of non-regarded tids during intersection process on accidents dataset
4.16 The number of non-regarded tids during intersection process on chess dataset
4.17 The number of non-regarded tids during intersection process on connect dataset

4.18 The number of non-regarded tids during intersection process on mushroom dataset . . .

TKRIMPE: Top-k list with ahash able © ©h h . . e oo
Top-k list initialization . . .7,;!,;_J
Top-k frequent itemsetso L b anL L
The number of early terminatledt‘itemsets on ac-cz:;ierjlts dataset
The number of early ferminated itemsets on chess dataset. &
The number of early terminated itemsets on connect dataset
The number of early terminated itemsets on mushroom dataset
The number (of early terminated/itemnsets on'pumsh dataset = 4. %=,

The number of early terminated itemsets on pumsb* dataset

Xii

Page
40
40
41
41
42
42
43
43
44
44
45
45
46
46
47
47
49
58
58
65
65
66
66
67
67
68
68
69
69
70
70
71
71
72

Figure Page

4.19 The number of non-regarded tids during intersection process on pumsb dataset 72
4.20 The number of non-regarded tids during intersection process on pumsb* dataset 73
4.21 The number of non-regarded tids during intersection process on BMS-POS dataset . . . 73
4.22 The number of non-regarded tids during intersection process on retail dataset 74

4.23 The number of non-regarded tids during intersection process on T10I4D100K dataset . 74
4.24 The number of non-regarded tids during intersection process on 720/6D 100K dataset . 75
4.25 The number of non-regarded tids during intersection process on 740/110D100K dataset . 75

4.26 Runtime of TKRIMPE on accidents (op = 1%) 76
4.27 Runtime of TKRIMPE on accidents (o, = 2%) 76
4.28 Runtime of TKRIMPE on accidenis (o, = 3%) =" 77
4.29 Runtime of TKRIMPE.omehess(as = 290) o oo . e o o oo e 77
4.30 Runtime of TKRIMPE®ON /€8s (07 == 4%0) . -« v v e e e e e e 78
4.31 Runtime of TKRIMPL:on chess(a,/= 6%} 78
4.32 Runtime of TKRIMPE on connect (o, = I%) 79
4.33 Runtime of TKRIMPE on connect.(o, = 2-%) 79
4.34 Runtime of TKRIMPE on ¢onnect (g, = 3‘%). P L O 80
4.35 Runtime of TKRIMPE on mushromﬁ (o :7_‘ 4,%) 80
4.36 Runtime of TKRIMPE on mushioom (o, = Ei(/;b), 81
4.37 Runtime of TKRIMPE on mushroom (o, = 8%) 81
4.38 Runtime of TKRIVBE oflpumsb (0, =2%) . - - . £ 82
4.39 Runtime of TKRIMPE on pumish (6, = 4%) -« « v v oo e 0) o oo 82
4.40 Runtime of TKRIMPE on pumsb (o, =6%) 83
4.41 Runtime of TKRIMPE on pumsb* (o, = 1%) 83
4.42 Runtime of TKRIMPE on'pumsbi* (o, ' = 2%) QL. 0 0y S 84
4.43 Runtime of TKRIMPE on pumsb* (o, =3%) 84
4.44 Runtime.of TKRIMPE on.BMS-POS (G, = L20). o e o rose e o e o e e e e e 85
4.45 Runtime of TKRIMPE on BMS-POS (Gp=2%) . .G .0 L Lt 00 Lo .. 85
4.46 Runtime of TKRIMPE on BMS-POS (o, =3%) o ... 86
4.47 Runtime of TKRIMPE on retail (6, =6%) o i 86
4.48 Runtime of TKRIMPE on retail (6, = 8%) o i 87
4.49 Runtime of TKRIMPE on retail (o, = 10%) i 87
4.50 Runtime of TKRIMPE on T10I4DI100K (0, =4%) o o v v i v i 88
4.51 Runtime of TKRIMPE on TI10I4DI100K (o, = 6%) 88

4.52 Runtime of TKRIMPE on T10I4D100K (o, = 8%) 89

Xiv

Figure Page
4.53 Runtime of TKRIMPE on T20I6D100K (o, =2%)« .o i i i 89
4.54 Runtime of TKRIMPE on T20I6D100K (o, =4%) 90
4.55 Runtime of TKRIMPE on T20I6D100K (o, = 6%) oo . 90
4.56 Runtime of TKRIMPE on T40110D100K (o, =2%) v v ... 91
4.57 Runtime of TKRIMPE on T40I10DI100K (o =4%) o v i i i i 91
4.58 Runtime of TKRIMPE on T40I10DI100K (o, = 6%)« o o i i i i 92
4.59 Memory usage of TKRIMPE on accidents 92
4.60 Memory usage of TKRIMPE onchess . . & 93
4.61 Memory usage of TKRIMPE on connect '« & & 93
4.62 Memory usage of TKRIMPE onmushroom . -0 L. 94
4.63 Memory usage of TKREMPE onpumsb . . .o . 0 i oo o oo 94
4.64 Memory usage of TKRIMPEOnpumnshb™ 0 oo oo 95
4.65 Memory usage of TKRIMPE on BMS—PO|S 95
4.66 Memory usage of TKRIMPE on retail™ . :‘.‘.'. 96
4.67 Memory usage of TKRIMPEon T/014D 1 éOK 96
4.68 Memory usage of TKRIMPE on 7201601 OOK IR P 97
4.69 Memory usage of TKRIMPE on T4OI] 0D1 OO,K 97
4.70 Scalability of TKRIMPE (k': 500, G, = 6) - i, 98
4.71 Scalability of TKRIMPE (k : 10,000, o, = 6)_ 98
5.1 TKRIMIT: Top-k list structure Qith hash table - .7 102
5.2 Top-k listinitialization o oo i 107
5.3 Top-k during mining processo i e 108
5.4 The number of reduced tids from TKRIMIT on accidents datasets 114
5.5 The numberof réduced tids from TKRIMIT-on'chess datasets |.“~. 114
5.6 The number of reduced tids from TKRIMIT on connect datasets 115
5.7 The number of reduced tids from TKRIMIT on mushroom datasets ..~ 115
5.8 The number of reduced tids from/TKRIMIT on pumsb datasets .|. 000 L. 116
5.9 The number of reduced tids from TKRIMIT on pumsb* datasets 116
5.10 The number of reduced tids from TKRIMIT on BMS-POS datasets 117
5.11 The number of reduced tids from TKRIMIT on retail datasets 117
5.12 The number of reduced tids from TKRIMIT on T10I4D100K datasets 118
5.13 The number of reduced tids from TKRIMIT on 720I16D100K datasets 118
5.14 The number of reduced tids from TKRIMIT on 740110D100K datasets 119

5.15 Runtime of TKRIMIT on accidents (o, = 1%) 119

XV

Figure Page
5.16 Runtime of TKRIMIT on accidents (o, =2%) 120
5.17 Runtime of TKRIMIT on accidents (o, =3%) 120
5.18 Runtime of TKRIMIT on chess (o =2%) i i 121
5.19 Runtime of TKRIMIT on chess (o =4%) it 121
5.20 Runtime of TKRIMIT on chess (o, = 6%) e 122
5.21 Runtime of TKRIMIT on connect (o, =1%) 122
5.22 Runtime of TKRIMIT on connect (o, =2%) i i 123
5.23 Runtime of TKRIMIT on connect (o = 3%0) 4. . . . o o i i i i it 123
5.24 Runtime of TKRIMIT on mushioom (o, = 4%+ 124
5.25 Runtime of TKRIMIT on mushroom (o, 5= 6%) =" 124
5.26 Runtime of TKRIMIT.onmiiishioom (o, = 8%) . . vev . o o v i i i 125
5.27 Runtime of TKRIMIT0n puaatsh(a: = 270) = . v oo e e e e e e e e e 125
5.28 Runtime of TKRIMIT.on pumsb (¢, = 4‘%) 126
5.29 Runtime of TKRIMIT on pumnsh (o, = 6%1)’; 126
5.30 Runtime of TKRIMIT onpumsh* (o, = 1%/6)*_' 127
5.31 Runtime of TKRIMIT on pumsb* (g, = 2%) I IE I 127
5.32 Runtime of TKRIMIT ol pudtsh * (o= 3%), '\ | T 128
5.3 Runtime of TKRIMIT on BMSA0S (7, =190 - & - - - -« oo oo 128
5.34 Runtime of TKRIMIT on BMS-POS (7, — 2%). 129
5.35 Runtime of TKRIMIT off BMS-POS (oy'= 3%) « . S £+ - oo 129
5.36 Runtime of TKRIMIT on retail (o, = b)) oy X . | 130
5.37 Runtime of TKRIMIT on retail (o, =8%) . . = 130
5.38 Runtime of TKRIMIT on retail (o, = 10%) i 131
5.39 Runtime of TKRIMIT 'onT104D 100K (o, = 4%) o | T3 S5 131
5.40 Runtime of TKRIMIT on T10I4DI00K (o, = 6%) 132
5.41 Runtime.of TKRIMIT.on.710I4D100K. (T p.= 8%0) ' i m g esims v e e e e e v v 132
5.42 Runtime of TKRIMITwon T20I6D100K (o, = 2%) © 0. L L. .00 Lo 133
5.43 Runtime of TKRIMIT on T20I6D100K (o, =4%) 133
5.44 Runtime of TKRIMIT on T20I6D100K (o, = 6%) 134
5.45 Runtime of TKRIMIT on T40110D100K (o, = 2%) i i i it i i 134
5.46 Runtime of TKRIMIT on T40I10D100K (o, =4%) o oot 135
5.47 Runtime of TKRIMIT on T40I10DI00K (o, = 6%) o v it i it 135
5.48 Memory usage of TKRIMIT on accidents 136

5.49 Memory usage of TKRIMIT onchess 136

XVi

Figure Page
5.50 Memory usage of TKRIMIT on connect 137
5.51 Memory usage of TKRIMIT on mushroom 137
5.52 Memory usage of TKRIMIT onpumsb 138
5.53 Memory usage of TKRIMIT on pumsb* 138
5.54 Memory usage of TKRIMIT on BMS-POS, 139
5.55 Memory usage of TKRIMIT on retail 139
5.56 Memory usage of TKRIMIT on T/0I[4DI00K 140
5.57 Memory usage of TKRIMIT on 720I6DI00K 140
5.58 Memory usage of TKRIMIT on 740[10DI00K 141
5.59 Scalability of TKRIMIT (k :500.0, =6) . - 141
5.60 Scalability of TKRIMIT«(&= 10,000, 0, =6) « . . . o oo i 142
6.1 H-TKRIMP: Top-k lisestructare with hash table 0o . oo o oo o o000 144
6.2 Top-k list initializations™. . & & & /. . BN 154
6.3 Top-k during mining precess’ . 4 .. .= . t:.'. 155
6.4 Runtime of H-TKRIMP on a¢cidents (o ‘:‘. MORN NN, . 162
6.5 Runtime of H-TKRIMP onaccidents (o, :‘2%) 162
6.6 Runtime of H-TKRIMP on accid-ent-s forn :3%) 163
6.7 Runtime of H-TKRIMP onfhess (a0, — 2%;;_'.-4.;‘ A 163
6.8 Runtime of H-TKRIMP on chess (o, — 4%)T 164
6.9 Runtime of H-TKRIMPOH chess (0 =6%) « -« . £51 - oo 164
6.10 Runtime of H-TKRIMP on connect (o, = 1)« «« .1 . | 165
6.11 Runtime of H-TKRIMP on connect (o, = 2%) i 165
6.12 Runtime of H-TKRIMP on connect (6, =3%) 166
6.13 Runtime of H-TKRIMP|on miushroom (o) =4%). .0 L O3 S5 166
6.14 Runtime of HEFKRIMP on mushroom (o, = 6%) 167
6.15 Runtime.of H-TKRIMP on mushroom (0 =.8%) "cot v o onomm v e v e o e e e o 167
6.16 Runtime of H-TKRIMP on pumsb (o, =2%) .. .0 .00 00 Lo o ... 168
6.17 Runtime of H-TKRIMP on pumsb (o, =4%) 168
6.18 Runtime of H-TKRIMP on pumsb (o, = 6%) i 169
6.19 Runtime of H-TKRIMP on pumsb* (o, = 1%) 169
6.20 Runtime of H-TKRIMP on pumsb* (o, =2%) 170
6.21 Runtime of H-TKRIMP on pumsb* (g, =3%) i 170
6.22 Runtime of H-TKRIMP on BMS-POS (o, =1%) i 171

6.23 Runtime of H-TKRIMP on BMS-POS (o, =2%) 171

Figure Page
6.24 Runtime of H-TKRIMP on BMS-POS (o, =3%) i it 172
6.25 Runtime of H-TKRIMP on retail (0, =6%) i 172
6.26 Runtime of H-TKRIMP on retail (o, =8%) i 173
6.27 Runtime of H-TKRIMP on retail (o, = 10%) i 173
6.28 Runtime of H-TKRIMP on TI0I4DI00K (o, = 4%) v oo i i i 174
6.29 Runtime of H-TKRIMP on T10I4D100K (o, = 6%) 174
6.30 Runtime of H-TKRIMP on T10I4DI100K (o, =8%)o v v 175
6.31 Runtime of H-TKRIMP on T20I6DI00K (op = 2%)o v i it 175
6.32 Runtime of H-TKRIMP on 720[6D100K (o = 4%) o i .. 176
6.33 Runtime of H-TKRIMP on T20/6D100Ky(o, =6%) 176
6.34 Runtime of H-TKRIMP.on'TZ0LIODI00K (g, =27 vas o o o o v oo 177
6.35 Runtime of H-TKRIMPon 740.10D [00{(o 2 W~ 177
6.36 Runtime of H-TKRIMP on #40110D 1 00]|€ (RSN & 178
6.37 Memory usage of H-TKRIMP on ac'é-idenéi'. 178
6.38 Memory usage of H-TKRIMP on che;s , J AN 179
6.39 Memory usage of H-TKRIMP on connect ‘ T I I IR 179
6.40 Memory usage of H-TKRIMP oﬁ @éshroo;‘a}l;:_‘.- 180
6.41 Memory usage of H-TKRIMP on RIOLSD Sisa - ™ - - 180
6.42 Memory usage of H-TKRIMP on pramsh* T 181
6.43 Memory usage of H-TKRIMI; (;n BMS-POS ‘l.. ﬂ _ C 181
6.44 Memory usage of H-TKRIMP O refail - - -« «++«« o). 182
6.45 Memory usage of H-TKRIMP on T104DI00K P 182
6.46 Memory usage of H—"l:KRIMP on T20I6D100K B 183
6.47 Memory usage of H-TKRIMP.on T40I{ODTOOK | .\ © 3 S oo oo oo o 183
6.48 Scalability of H-TKRIMP (k : 500,50, =6) 184

6.49 Scalability.of H-TKRIMP.(k 2 10,000,075 = 6) . o i s on s o o smege o o o o o o o 184

CHAPTER

INTRODUCTION

Data mining, also known as Knowledge Discovery in Databases (KDD), is concerned with
the extraction of previously unrecognized and interesting information contained within (usually
large) data repositories. The interesting is of course a subjective concept, and a definition of what
is interesting is required: it is usually taken as an' overall measure of pattern value, combining
validity, novelty, usefulness, and simplicity (Fayyad.etal., 1996). Almost always, what is being
sought is some relationship which can be observed between categories of information in the data.
A particular way to describe suchra relationship is in the form of an association rule which relates
attributes within the database.

h

The problem of mining assogiation rules 'has been defined by Agrawal (Agrawal et al.,
1993) as first proposed for market basket analyé-is n the form of association rule mining. It ana-
lyzes customers buying habits by finding associéifion§ between the different items that customers
place in their “shopping baskets”. For instance, iff;gstomers are buying milk, how likely are they
going to also buy yogurt (and what Kind of yogurt) on the same trip to the supermarket? Such
information can lead to increased sales by helpiné_-rgtailers do selective marketing and arrange
their shelf space. Association mining applications have been applied to many different domains
including market basket rar-xd risk analysis in commercial environments, epidemiology, clinical
medicine, fluid dynamics, astrophysics, crime prevention, and counter-terrorismall areas in which

the relationship between objects.can provide useful knowledge.

The process of mining association rules consists of two steps: (i) Find the frequent itemsets
that have minimum support; (iz) Use the frequent itemséts'to generate assoeiation rules that meet
the confidence threshold, Among these twosteps, step (7):is the most expensive since the number
of itemsets grows exponentially with the number of items. Consequently, the task of frequent
itemsets discovery (also called frequent patterns discovery) is widely studied in data mining as
a mean of generating association rules (Agrawal et al., 1993), correlations (Brin et al., 1997a),
sequential patterns (Agrawal and Srikant, 1995), emerging patterns (Dong and Li, 1999), dense
regular patterns (Engler, 2008), frequent patterns with maximum length (Hu et al., 2008), frequent
patterns with temporal dependencies (Tatavarty et al., 2007), negative rules (Wu et al., 2004),
causality (Silverstein et al., 2000), weighted pattern mining (Tao et al., 2003)(Yun and Leggett,
2006) and classification rules (Li et al., 2001) (Liu et al., 1998).

Over the past decade a large number of research works have been published presenting new
algorithms or improvements on existing algorithms to solve the frequent pattern mining prob-
lem more efficiently through the refinement of search strategies (depth first/breath first search
(Agrawal and Srikant, 1994), top down/bottom up traversals (Grahne and Zhu, 2005)), prun-
ing techniques, data structures (trees/other data structures (Han et al., 2004)), the use of alterna-
tive dataset organizations (vertical/horizontal formats (Zaki and Gouda, 2003)) and constraints
((Bonchi and Lucchese, 2005) (Pei et al., 2001a)). Recent surveys may be found in (Goethals,
2005) and (Han et al., 2007). However, two main bottlenecks exist: (i) A huge number of pat-
terns are generated and (77) Most of them are redundant or uninteresting. To tackle these problems,

various approaches have been developed.

Frequent-closed pattern mining algoritilms have been proposed to reduce redundant pat-
terns (Pasquier et al., 1999) and to.mine a compact set of frequent patterns which cover all fre-
quent patterns (Pei et al., 2000). When a data set is dense, the number of frequent closed patterns
extracted can be orders of maghitude fewer than the number of corresponding frequent patterns
since they implicitly benefit from data correlati(;‘fls.i Nevertheless, they concisely represent exactly
the same knowledge. From ¢losed patterns, it is"li,r_l fact trivial to generate all the frequent patterns
along with their supports. More importantly, assdéfaffon rules extracted from closed patterns have
been proven to be more meaningful for analysts-,":b?c_cja‘use all redundancies are discarded (Zaki,

2004). A recent survey may be found im-(Yahia et al.. 72.006).

While the previous.approaches work at the algorithmic level another strategy is to rank pat-
terns in a post-algorithmic phase with objective measures of interest (Hilderman and Hamilton,
2000). A large number of-interestingness measures have been proposed such as mining frequent
patterns with tougher constraints. (Bonchi and Luechese, 2005), mining dense regular patterns
(Engler, 2008), mining frequent patterns with maximum length (Hulet al., 2008), mining frequent
patterns with convertible constraints (Pei et al., 2001a), mining frequent patterns with constraints
using pattern'growth approach (Perand Han, 2002), mining temporal dependencies between fre-
quent pattetns (Tatavarty et al., 2007), integrating classification and association rule mining (Li
et al., 2001)(Liu et al., 1998), etc. Interesting surveys and comparisons may be found in (Geng

and Hamilton, 2006)(Lenca et al., 2008) and (Suzuki, 2008).

On constraint-based patterns mining, pushing the constraints using objective measures
deeply into the patterns mining process is a very interesting approach (Bonchi and Lucchese,
2005) (Pei et al., 2001a). This approach uses efficient pruning strategies to discover interesting
patterns such as optimal rule mining (Li, 2006)(Le Bras et al., 2009). It is important to notice that

most of the previous mentioned works, except mainly (Li, 2006) and (Le Bras et al., 2009), are

always subject to the dictatorship of support for the frequent pattern mining step. Avoiding the use
of support has been recognized as a major challenge, such as mining high confidence association
without support pruning (Cohen et al., 2001), (Bhattacharyya and Bhattacharyya, 2007), (Le Bras
et al., 2010), and mining rules without support threshold (Li et al., 1999)(Koh, 2008).

However, without specific knowledge, the setting of minimum support threshold is quite
tricky and it leads to the following problem that may hinder its popular use. There are two chal-
lenges of minimum support based mining: () if the value of minimum support is set to be too
small, the pattern mining algorithm may lead to the generation of thousands of patterns; (i7) if the
value of minimum support constraint is set to be t00 big, the mining algorithm may often generate
a few patterns or even no answeis. In which case, the uscisimay have to guess a smaller threshold
and do the mining again, which may or may-JnOt give a better result. As it is difficult to predict
how many patterns will be mined with.a user-defined minimum support threshold, the top-k pat-
tern mining has been proposed: As‘a ¢onsequence many works have focused on avoiding the use
of a support threshold (e.g. (L etal ; 1999; Cheung and Fu, 2004; Koh, 2008)), or avoiding the
use of the support itself (e'g. (Cohen et al., ZOOTf),J(Bhattacharyya and Bhattacharyya, 2007) and
(Le Bras et al., 2010)). Another solution involvéls_aéking the number of desired outputs (Fu et al.,
2000). Therefore, mining top-k patterns has becéﬁieﬂé very popular task. In particular, top-k fre-
quent closed patterns (e.g. (Han et al.;-2802); (Wz‘{i'l_g'_e_t al.; 2005) and (Pietracaprina and Vandin,
2007)) and top-k patterns (e.g. (Fu et zﬂ., 2000);an?(ifJ(Yang et al., 2008)) have motivated a lot
of works. Nowadays, mining from data streams éiéé'é)ffers a new-challenge because one cannot
save all the patterns and theirrelated-information;due-to-the-lifiitation of memory space. Thus
mining top-k patterns from-data streams becomes of great interest (e.g. (Metwally et al., 2005),

(Li, 2009b), (Li, 2009a) and (Tsai, 2010)).

Recently, Tanbeer et al. (Tanbeer et al., 2009) proposed a [pattern mining approach with a
regular constraint on patterns appearance and a minimum support constraint. As pointed out by the
authors, thereare sevetal applications to apply regular frequent patterns/miing; in a retail market,
among all frequently sold products, the sales manager may be interested only on the regularly sold
products compared to the rest; for web site design or web administration, an administrator may be
interested on the click sequences of heavily hit web pages; in genetic data analysis the set of all
genes that not only appear frequently but also co-occur at regular interval in DNA sequence may
carry more significant information to scientists; for stock market, the set of high stocks indices
that rise regularally may be of special interest to traders, etc. Thus the occurrence regularity plays
an important role in discovering some interesting frequent patterns in such applications (Engler,

2008) (Laxman and Sastry, 2006).

This dissertation here focuses on these two bottlenecks and extend the work of (Tanbeer
et al., 2009). Thus, a new kind of pattern, namely the top-k regular-frequent itemsets, which is
discovered from transactional databases is proposed. From this kind of pattern, the users can
control the number of regular-frequent itemsets to be mined. At first, MTKPP algorithm (Mining
TopK Periodic(Regular)-frequent Patterns) is introduced. It based on the use of top-k list struc-
ture and a best-first search strategy to quickly discover the regular itemsets with high supports. To
calculate support of each itemset, a set of transaction-ids (that each itemset occurs) is collected.
MTKPP also applies intersection process to collect and calculate a set of transaction-ids, a regu-
larity and a support of each larger itemset. Next; TKRIMPE algorithm (Top-K Regular Itemset
Mining using database Partitioning and support Estimation) is presented. TKRIMPE based on the
database partitioning and support estimation techniques. By using these techniques, TKRIMPE
can achieve a good performanee espeeially on sparse datasets. Further, a new concise represen-
tation named interval tidserepresentation is,devised. Then, a new efficient algorithm, called
TKRIMIT (Top-K Regulat-frequent Itemsets 1|\/Iining based on Interval Tidset representation), is
also proposed. With interval tidset representatioﬁ'; TKRIMIT can reduce the processing time and
memory usage on dense datasets. Finally, an eff}cient and scalable algorithm named H-TKRIMP
(Hybrid representation on Top-K Regular-frequ%fhtl IF_emsets Mining based on database Partition-
ing), based on the combination between hormal V_ti;_.ds-fl:t and interval tidset representations and the
database partitioning, is devised." By, comparing ;)s;iitl%lg,pther algorithms, H-TKRIMP can achieve
a good performance for the small and farge valt%e;,'_s_ of desired results on both sparse and dense

datasets.
1.1 Objectives of Study

The objectives of study ate.as follows:

e To develop algorithms to mine top-k regular-frequent patterns that are, very efficient in the

terms of| computational time and ' memory ¢onsumption.

e To develop a new technique to collect tidset of each itemset which can be applied in various
problems such as frequent pattern mining, frequent closed pattern mining, and weighted

frequent pattern mining.

e To propose an analysis of the performance of various techniques to maintain and intersect

tidsets by making a comparison to a see trade-off between time and space.

1.2 Scopes of Study

The scopes of this study are as follows:

e This work considers the problem of top-k regular-frequent pattern mining.
e The datasets from UCI repository are used as a benchmark to test the proposed algorithms.

e Performance measurement can be either an actual running time (an actual memory con-

sumption) or a complexity analysis.

1.3 Research Methodology

e Survey literature and review related works about association rules mining, frequent item-
sets mining, frequent clgsed-itemsets mining, top-k frequent itemsets mining and regular-

frequent itemsets mining.

e Study the principle theories and -various \techniques to mine frequent and other kinds of

itemsets.

e Study various proposed representations used to maintain the content of databases.
e id j
e Collect the sparse and dense datasets from standard and existing benchmark datasets.

e Design an appropriate algorithms and perform the experiments to validate the algorithms

e Conclude the experimental results by comparing the results with those from other methods

1.4 Organization

The remainder of this dissertation.is structured as follows: In Chapter 2, general back-
ground on, association-gules mining and its‘variant are introduced. Furthet, the frequent pattern
mining, top=k itemsets mining and regular-frequent itemsets mining problems and related works
are described. In Chapter 3, the formal notations and definitions used to mine a set of top-k
regular-frequent itemsets are mentioned. An efficient algorithm, named MTKPP (Mining Top-K
Periodic(Regular)-frequent Patterns), used a normal-tidset representation and applied a best-first
search strategy is introduced. Chapter 4 presented a new efficient algorithm, called TKRIMPE
(Top-K Regular-frequent Itemsets Mining using database Partitioning and support Estimation),
applied the database partitioning and support estimation techniques in order to reduce compu-
tational time of MTKPP algorithm. Besides, a new concise interval tidset representation named

interval tidset representation and an efficient algorithm called TKRIMIT (Top-K Regular-frequent

Itemsets Mining using Interval Tidset representation algorithm) is also proposed in Chapter 5. As
further extensions, in Chapter 6, the database partitioning technique and the interval tidset repre-
sentation are merged in order to devise a new algorithm, named H-TKRIMP (Hybrid representa-
tion on Top-K Regular-frequent Itemsets Mining based on database partitioning), that have a good
performance on both dense and sparse datasets. Finally, Chapter 7 concludes this dissertation and

describes future extension of this work.

AU INENTNEINS
ARIANTAUNININGIAE

CHAPTER II

RELATED WORK

The association rule mining problem has been extensively studied from various aspects
over the past decade. As mentioned in the previous chapter, association rule mining consists of 2
steps: frequent itemsets mining and association rules generation. Most of previous works focus
on frequent itemset mining which is the most time'consuming step. They have been proposed to
extend frequent itemsets mining for many purposes..One of interesting approaches is to control
the number of itemsets to be mined (Fu et al., 2000), called top-k significant itemsets mining
approach. Besides, many researchess iry to find more interesting patterns (itemsets) by using
other criteria instead of usinggonly a supportithreshold. Reeently, the regularity measure have
been devised to discover it€msats that oceur very frequent and regularly in transactional databases.
Thus, this chapter surveys©n previous works on the frequent itemsets mining, top-k significant

itemsets mining and regular-frequent itemsets m'inihg.

2.1 Frequent itemsets mining 7 ¥
224
The frequent itemsets and association ruleng_ﬁn_ing is first introduced by (Agrawal et al.,
1993). Most of association rule mlnlng algorithn.ls- -eizi;)i)t the two-phase approach and focus on
the frequent itemset mining il the context of transaction databascs. A transaction database is a
database containing a set of transactions and each transaction is associated with a transaction-id.
The basic terms needed for describing association rules and frequent itemsets mining are given by

using the formalism of’ (Agrawal'and Srikanti1994)!

Let I = {iy,12,...,i,} be a set of items, that have been used as imformation units in an
application' domain and'T%D B be a database which is a set of transactions, where a transaction
t is a subset of I (t C [I). Each transaction is identified by a transaction-id tid. A set X =
{ij,,...,15,} C Iis called an itemset or a l-itemset (an itemset of size [). If X C Y, it is said that
tq contains X (or X occurs in t;). The support of an itemset X in a database is denoted by sX,
and is defined as s = |{t,]1 < ¢ < TDB,t, € TDB and X C t,}|/|TDB|. An itemset X is
called a frequent itemset if its support is greater than or equal to a support threshold specified by
the user, otherwise the itemset is not frequent. An association rule is an expression of the form
X — Y, where X C LY C Tand X NY = ¢. Note that each of X and Y is a frequent

itemset which contains a set of one or more items and the quantity of each item is not considered.

The itemset X is referred to as the antecedent of the rule and the itemset Y as the consequence.
An example of association rule is the statement that 80% of transactions that purchase A also
purchase B and 10% of all transactions contain both of them. Here, 10% is the support of the
itemset A, B and 80% is the confidence of the rule A — B. An association with the confidence

greater than or equal a confidence threshold is considered as a valid association rule.

In association rules mining, two types of database layouts are employed: horizontal and
vertical databases. As shown in Table 2.1, the traditional horizontal database contains a set of
transactions and each transaction consists of a set of items. Most Apriori-like algorithms use this
type of layout. On the other hand, as illustrated in Table 2.2, each item in the vertical database
layout maintains a set of transaction-ids (denoted by-tidset)where it occurs. Based on the vertical
representation of database, various algorithn;s were devised to mine the results such as Eclat
(Zaki et al., 1997), VIPER (Shenoysetal.; 2000) and Mafia (Burdick, 2001). Lastly, as pointed
out in (Zaki et al., 1997) and(Shenoy et al., 2000), they have been shown the trade-off between
both layouts. They claimed that the yeutical layout performs generally better than the horizontal

format. ‘
Table 2.1, Horizor;t_z_gl representation

¢

items -,

tid

T e
2. 4 TR
3 (bEfETT
4 | abdfg
H——re=g

6 |abcdg
TE i
8 |abce
9 | bed
103 aice g
11} la bf
12 | abdg

A large number of efficient algorithms to mine frequent itemsets have been developed over
the years. The strategies developed to speed up frequent itemset mining process can be divided
into two approaches. The first is based on the candidate generation-and-test approach. The Apri-
ori algorithm and its several variations belong to this category. Apriori employs a bottom-up,
breadth-first search that enumerates every single frequent itemset. It also provides the Apriori
property also known as anti-monotone property that any subset of a frequent itemset must be a
frequent. In this approach, a set of candidate itemsets of length n + 1 is generated from the set
of frequent itemsets of length n and then each candidate itemset is checked to see if it meets the

support threshold. Some algorithms adopt an Apriori-like method, and are focused on reducing

Table 2.2: Vertical Tidset representation

items | tidset
14678101112
13467891112
235678910
12467912
125810

3411
34561012

gQ - 0 &0 O W

the number of candidate itemsets, which in turn reduce the time required for scanning databases,
are briefly described as follows. Park et al. (Parketals#1995) proposed an efficient Direct Hash-
ing and Pruning (DHP) algorithm to control the number of candidate 2-itemsets and prune the
size of the database by utilizing.a'hash technique. The inverted hashing and pruning (IHP) al-
gorithm (Holt and Chung, 2002) was proposed. It is similar to the Direct Hashing and Pruning
(DHP) algorithm (Park etal., 1995)dnthe sense that both use hash tables to prune candidate item-
sets. In DHP, every k-itemset within each tral;saction is hashed into a hash table. In IHP, the
transaction identifiers of each'item of the transaét_ic;hs that contain the item are hashed into a hash
table associated with the item. The Tree<Based Ajs-sociation Rule (TBAR) algorithm (Berzal et al.,
2001) employs an effective data-tree staucture to :éfore all itemsets to reduce the time required for
database scans. Further, Cheung et al. proposedgéf;bistributed Mining (FDM) of association
rules (Cheung et al., 1996) to efficiently discover fréciuent itemsets, which is a parallelization of
the Apriori algorithm. ‘Atieach level, a database scan is independently performed. In 1997, Brin
et al. proposed the Dynamic, [temset Count (DIC) (Brin et al., 1997b) algorithm to locate frequent
item sets, which uses fewet-passes over the database than classic-algorithms, and fewer candidate
itemsets than methods based on“sampling. Agarwal et al. presented the TreeProjection method
(Agarwal et al., 2001) using the hierarchical strueture of a lexicographic tree to project transac-
tions at each node of the tree, and matrix counting on this reduced set of transactions for mining
frequent ‘itemsets.” Another-efficient method (T'say and‘Chang:Chien, 2004) uses the techniques
of clustering transactions and decomposing larger candidate itemsets for mining frequent item-
sets. Tsay et al. proposed the Cluster-Based Association Rule (CBAR) method(Tsay and Chiang,
2005), which uses cluster tables to load the database into a main memory that requires only a sin-
gle scan of the database. Its support count is performed on cluster tables, and thus, does not need
to rescan the whole database. The Efficient Dynamic Database Updating Algorithm (EDUA)
(Zhang et al., 2007) is designed for mining dynamic databases when some data are deleted. A
special database structure BitTableFI (Dong and Han, 2007) is used horizontally and vertically to

compress the database for quickly generating candidate itemsets and counting support.

10

Apriori-inspired algorithms show good performance with sparse datasets such as market
basket data, where the frequent patterns are very short. However, with dense datasets such as
telecommunications and census data, where there are many, long frequent patterns, the perfor-
mance of these algorithms degrades incredibly. This degradation is due to the following reasons:
these algorithms perform as many passes over the database as the length of the longest frequent
pattern. Secondly, they have to generate and test the huge number of candidate itemsets. Thirdly,
a frequent pattern of length implies the presence of 2! — 2 additional frequent patterns as well,
each of which is explicitly examined by such algorithms. When [is large, the frequent itemset
mining methods become CPU bound rather than 1/O bound. In other words, it is practically un-
feasible to mine the set of all frequent patterns for ether than small /. On the other hand, in many
real world problems (e.g., patterns in biosequences; telecommunications data, census data, etc.)

finding long itemsets of length#30 or 40 is not uncommon (Bayardo, 1998).

The second approach of patiern-growth has been proposed more recently. It also uses the
Apriori property, but instead of géngrating candidate itemsets, it recursively mines patterns in
the database to count thessuppert for each patt-érr}, Han et al. (Han et al., 2004) proposed the
FP-growth method to avoidigenerating candiddlt,ﬁ: itemsets by building a FP-tree with only two
scans over the database. This milestore develoﬁrr{ént of frequent itemsets mining avoids the
costly candidate itemsets generation phase; which‘?n?e_:r_gomes the main bottlenecks of the Apriori-
like algorithms. Some algorithm anaiogy for FP—.gr;\.';vth without generating candidate itemsets
is briefly described as follows. Thé H-mine méfii‘tid; (Peivet al.,.2001b) uses a memory-based
hyper structure to store a Sparse-database-in-the-main-memory;and builds an H-structure to invoke
FP-growth in mining dense databases. An inverted matrix approach uses an inverted matrix to
store the transactions in a special layout, then builds and mines telatively small structures, which
are called COFI-treess(El-hajj and-Zaiane, 2003).. The CEP-tree-structure (Liu et al., 2007) is
designed to store' pre-computed frequentitemsets on a disk to save 'space. A CFP-tree stores
discovered frequent itemsets, but a FP-trée stores transagtions. They both nise prefix and suffix
sharing in'the CFP-tree, but only prefix sharing in'the FP-tree. Maximum/length frequent itemsets
are generated by adapting a pattern fragment growth methodology (Hu et al., 2008) based on
the FP-tree structure. For most data sets, these algorithms perform better than Apriori. Among
the existing pattern-growth algorithms, H-Mine runs faster than FP-Growth on several commonly

used test data sets.
2.2 Top-k significant itemsets mining

From mining frequent itemsets, a major problem is that user has to define a support thresh-

old. However it is quite difficult for users to set a definite support threshold if they have no special

11

knowledge in advance. If the threshold is set too small, there will be a large number of itemsets
having been found, which not only consumes more time and space resource, but also brings much
burden to users on analyzing the mining results. On the contrary, if the threshold is set too large,
there might be much few even no frequent itemsets, which implies some interesting patterns are
hidden owing to the improper determination of support threshold. In some cases of application, it
is natural for user to specify a simple threshold on the amount of mining results, say the most 100

frequent itemsets should be found.

Therefore it is of interest to mine the most & frequent itemsets over transactional databases

with the highest supports.

Definition 2.1 An itemset X isatop-kfrequent itemsel if there exist no more than (k — 1) itemsets

whose support is higher thawthat of X.

To focus on mining tep-k patterns, Chuéuhg et al. proposed N-most interesting itemsets
mining (Cheung and Fu, 2002)(Cheung and Fm 2004). This task mines only the N k-itemsets
with highest supports for 1 up to a certain k,ma;'z_,where Kmaz 1 the upper bound of the length
of itemsets, and N is the desired number of k—.‘i_;tgnsets. Three algorithms were proposed for
this mining: LOOPBACK, BOLB, and BOMO. All tlﬁ:(_%;e algorithms are adapted from the FP-tree
approach. BOMO has two phases.. First, it bui,lrdr_js_'_t?garcomplete FP-tree with all items in the
database to find minimum support threshold of each k—itemset. Then, it mines itemsets. During
the mining process, the supbort threshold of all itemsets is increased by considering the minimum
value among the support of the N most frequent k-itemset discovered. It is used to prune
unpromising itemsets. LOOPBACK builds the FP-tree and initializes the support threshold to be
the support of the N!"'sorted largest /-frequent. Ifthe number of any k-itemsets is less than N, the
tree will be rebuilt 1o find the smaller support in order to mine more itemsets in the mining phase.
BOLB is a*hybrid approachiof-BOMO-and LOOFPBACK LikeBOM Oyit builds the complete FP-
tree only once. ‘The mining process is ‘applied from the“technique of ' LOOPBACK. Wang et al.
proposed mining top-k frequent closed itemsets of length no less than min; (Han et al., 2002)
(Wang et al., 2005), where k is the desired number of frequent closed itemsets to be mined, and
min; is the minimal length of closed itemsets. TFP starts with minimum support threshold at
0. It constructs an FP-tree to raise the threshold and uses the threshold to prune the tree. It
may take a long time to construct the FP-tree to find the final threshold and to prune the tree
if the database contains many transactions and long patterns. Moreover, TFP has to maintain
candidates to ensure that they are really closed. Top-k closed itemset mining was extended to

mine top-k closed sequence in (Tzvetkov et al., 2005). Pietracaprina et al. proposed TopKMiner

12

(Pietracaprina and Vandin, 2007) to mine top-k closed itemsets without considering the minimal
length of them. From this mining, it can allow a user to dynamically raise the value k& with no
need to restart the computation. TopKMiner mines top-k closed itemsets by combining the LCM
algorithm (Uno et al., 2004a)(Uno et al., 2004b) and priority queue to avoid closed checking. In
addition, it adopts best first search to generate closed itemsets with highest support first. This idea
is supported by C. Wu (Wu, 2006). He proved that a heuristic algorithm is preferred over an exact

algorithm to solve top-k closed itemset mining.
2.3 Regular-frequent itemsets mining

Mining frequent patterns, periodic pattern (Elfeky et al., 2005)(Magbool et al., 2006)(Lee
et al., 2006) and cyclic patterns (Ozden et al.; 1998) in static database have been well-addressed
over the last decade. Periodic pattérn«(also called regular pattern) mining problem in time-series
data focuses on the cyclic behayior of patterns either in the whole (Elfeky et al., 2005) or at some
point (Lee et al., 2006) of timgsseries. Such pattern mining has also been studied as a wing of
sequential pattern mining (Maqgbool et al.; 2()0;6)(Lee et al., 2006) in recent years. However, al-
though periodic pattern mining is closely relaté?i_ \;x;ith regular-frequent pattern mining, it cannot
be directly applied for finding regulac patterns frl7_m-a transactional database because of two pri-
mary reasons. First, it considers either time—serieéin: sequential data. Second, it does not consider
the support threshold which is the only constraint tTo bJeJ satisfied by all frequent patterns. Tanbeer
(Tanbeer et al., 2009) proposed the-reglilar-frequent i)éttern mining technique, on the other hand,
introduces a new interestifig measure of regularity and provides the set of patterns that satisfy both

of the regularity and support thresholds in a transactional database:

Ozden et. al. (Ozdencet.al., 1998) proposed a method to discover the association rules
(Agrawal et al., 1993) occurring cyclically in a transactional database: It outputs a set of rules
that maintains a cy€lic behavior in appearance among a predefined non-overlapping database seg-
ments. The, main limitationjof-thissmethod is segmenting-the, databasesinto,a series of fixed sized
segments, which may'suffer from border effect.' That is,"if the sufficient'number of occurrences
of a pattern (to become frequent) occurs in the borders of two consecutive segments, the pattern

might be ignored to generate association rules.

The problem of regular-frequent itemsets mining which has similar definition to (Tanbeer

et al., 2009) is defined as follows:

Let [= {i1,i9,...,i,} beasetof n > 1 literals, called items. A set X = {iy,...,ix} C 1

is called an itemset (or a pattern), or a k-itemset if it contains k items. A transactional database

13

TDB = {t1,t,...,ty} over I is a set of m = |T'DB| transactions. Each transaction ¢; =
(tid,Y) is a tuple where tid = j represents the transaction-id and Y C I is an itemset. If
X C Y, it is said that ¢; contains X (or X occurs in t;) and is denoted as t]X . Therefore,
TX = {t, ...,y }, where j, k € [1,m] and j < k, is the set of all ordered tids, called ridset,

where X occurs. The support of an itemset X in TDB, denoted as Sup(X) = |TX

, 1s the

number of transactions in 7" DB that contains X.

Let th and t? be two consecutive tids in 7%, i.e. where j < k and there is no transaction
ti, j < i < k, such that ¢; contains X . Thus, nttX = th — tJX is the regularity value which
represents the number of missing transaction of X' between two consecutive transactions th and
. We denote as RTTX = {utl vty , . .., rti1, theset of all regularities of X between
each pair of two consecutive transactions. "l:hen, the regularity of X can be defined as r¥ =

mazx(rtty vty .. rttX).

1
Therefore, an itemset X is called a regular=frequent itemset if (i) its regularity is no greater
than a user-given maximum regularity threshold (o,): (¢i) its support is no less than a user-
given minimum support threshold (g). Thus,v;"thé- regular-frequent itemsets mining problem is
to discover the complete set of regular—frequent':-itemsets from TDB with two user-given thresh-
olds: minimum support and maximum regul arity:ﬂ;peshold which are defined in the percentage of

~ 4

ITDB. : 254

Tyl S

However, as pointed out before it is quite difficult for users to set a definite support thresh-
old if they have no special knowledge in advance. In addition, in.seome cases, it is natural for user
to specify a simple threshold on the amount of regular-frequent patterns, say the most 100 fre-
quent patterns with regularitysless than 1, 000 transactions(i.e. occur at least once in every 1,000
transactions). It isithus of interest to' mine|the most frequent k regular patterns over transactional

databases without the minimum support threshold requirement.
2.4 Benchmark datasets

To validate the performance of the variant of association rule mining algorithms, several
real (i.e. accidents, BMS-POS, chess, connect, kosarak, mushroom, pumsb, pumsb*, and retail)
and synthetic database benchmarks (i.e. T10I4D100K, T20I6D100K, and T40I10D100K), pub-
licly available from IBM Almaden (http://www.almaden.ibm.com/cs/quest/syndata.html), FIMI
repository (http://fimi.cs.helsinki.fi/data/), and UC-Irvine Machine Learning Database Repository

(http://www.ics.uci.edu/ mlearn/MLRepository.html), are utilized.

14

Data set accidents contains (anonymous) traffic accident data from the National Institute of
Statistics (NIS) for the region of Flanders (Belgium) for the period 1991-2000. The BMS-POS
dataset is a real world dataset containing several years worth of point-of-sale data from a large
electronic retailer, aggregated at the product category level. The connect and chess datasets are
derived from UCI Machine Learning Repository. Each transaction in connect and chess contains
legal 8-ply positions in the game where neither player has won yet and the next move is not
forced. The kosarak contains click-stream data of a hungarian on-line news portal. The mushroom
database consists of records describing the characteristics of various mushroom species. The
PUMS datasets (pumsb and pumsb*) contain census data. Pumsb* is the same as pumsb without
items with 80% or more support. The retail markeibasket dataset is obtained from Belgian retail
supermarket store from December 1999 to November2000. The synthetic datasets (T10I14D100K,
T20I6D100K and T40D100K); using-the IBM generator, mimic the transactions in a retailing

environment.

The classical characteristics0f datasets were studies in (Gouda and Zaki, 2001). According
to (Gouda and Zaki, 2001), thefdensity was us&l to categorize the characteristics of datasets. A
dataset is dense when it produces many long ffl:_quent itemsets for all values of support thresh-
old. The authors studied on seven datasets. (i.é."" c"fless, connect, mushroom, pumsb, pumsb*,
T10I4D100K, and T40I4D100K) and-then categ'ér]zed these datasets according to the density.
The density is estimated by using the characteristfcsj :)f maximal frquent itemsets and more pre-

cisely their distribution.

However, as pointed out in (Flouvat et al., 2010), there are two limitations of Gouda’s
classification. First, its variability with respect to support threshold values. Second, there is
no clear relationship between thésproposed classificdtion and algorithms performance. Therefore,
(Flouvat et al., 2010) proposed a new classification-which differs from the classification of (Gouda
and Zaki, 2001). It takes into account bothsthe negative border and the positive border of itemsets.
The positive ‘border ofy frequent itemsets| is the set’ of ‘all maximal ‘frequént itemsets w.r.t. set
inclusion. The negative border of frequent itemsets is the set of all minimal unfrequent itemsets

w.r.t. set inclusion.

These different types of datasets have been identified by taking advantage of the “dis-
tance”’between positive and negative borders distributions of frequent itemsets. As a consequence,

the authors introduced a new classification of datasets made of three types:

e Type I datasets contain long itemsets in the positive border and a negative border closed

to the positive border, i.e. the mean of the negative border curve is not far from the mean

15

of the positive border curve. In other words, most of the itemsets in the two borders have

approximately the same size.

e Type II datasets contain long itemsets in the positive and a large distance between the two
borders distributions. In other words, the itemsets in the negative border are much smaller

than those of the positive border.

e Type III is a very special case of type O: the two distribution are very close, but they are

concentrated in very low levels. This type allows to catch the notion of sparseness.

The Table 2.3 summarizes this new classification and shows how this study could also used

for FIMI. 2

Table 2.3: Datasets classification from (Elouvat et al., 2010)

Type Type 1 Type II Type III
Distance between'the borders’| -Small Large Small
Itemsets size ~Long Long Small
Examples of datasets i |laccidents, | connect, BMS-POS,
chesjs? mushroom, | kosarak,
pum§b . 4 | pumsb* retail,
- A T1014D100K,
v dia T2016D100K,
=l T40110D100K

......

J el

Based on the classification of (Flouvat et al., 2010), the Tablg: 2.4 shows the characteristics

of the real and synthetic datasets used in the evaluation of this dissertation. It shows the number
of items, the average transaction length, and the number of records in each database. The table

additionally shows the tpye of datasets that are classified.

Table 2.4:"Database characteristics

Database #items | “Avgldength: | #Transdetions| | ‘type

accidents 468 338 340,183 | dense
BMS-POS 1,156 7.5 515,597 | sparse
chess 75 37 3,196 | dense
connect 129 43 67,557 | dense
kosarak 41,270 8.1 990,002 | sparse
mushroom 119 23 8,124 | dense
pumsb 2,113 74 49,046 | dense
pusmsb* 2,088 50.5 49,046 | dense
retail 16,469 10.3 88,162 | sparse
T10I14D100K 1,000 10.3 100,000 | sparse
T20I6D 100K 1,000 20.2 100,000 | sparse
T40110D100K 1,000 40.1 100,000 | sparse

CHAPTER III

MINING TOP-K REGULAR-FREQUENT ITEMSETS

Based on the idea of “Controlling the number of regular-frequent itemsets to be
mined”’motivated from (Fu et al., 2000) and (Tanbeer et al., 2009), a problem of mining % regular-
frequent with highest supports is introduced and defined in this chapter. Besides, an efficient
single-pass algorithm named Mining Top-K Periodic(Regular)-frequent Patterns (MTKPP), used
to mine this kind of itemsets is also presented. To discover a set of top-k regular-frequent itemsets,
the users can specify only a regularity threshold and.a number of desired results instead of setting
a support threshold. By avoiding the setting of a suppost-threshold, this approach might help the
users from the difficulty of specifying an app-ropriate support threshold to mine regular-frequent

itemsets.

3.1 Top-k regular-frequent itemsets miming

This section introduces'the /basic notatioﬁs and definitions needed to define top-k regular-

frequent itemsets as defined in (Amphawan et a1;2009)
f;_a

Let I = {iy, iz, ..., in} béa setofn > L lig&é}g, called items. A set X = {ij,,...,i;} C
I is called an itemset or an [-itemset (an itemse@ s-_ize [). A transactional database TDB =
{t1,t2,...,tm} is aset Of transacti(;ﬁé in which eaéﬂ _t;a-ltisaction t, = (¢,Y) is a tuple containing
unique transaction identiffer ¢ (tid in the latter) and an itemset Y If X C Y, itis said that tq
contains X (or X occurs in t,) and is denoted as tf. Therefore, 7% = {tff e ,tff }, where
1 <p < q < |TDB], is the set of all ordered tids (called ridser) where X occurs. The support

of an itemset X, déndted 48 s¥ = |TX . is'the number of tids (Gransactions) in 7D B where X

appears.

Definition 3.1 (Regularity of an itemset' X") Let t;(and tf be two consecutive tids in the tidset
TX of an itemset X, i.e. where j < k and there is no transaction t;, j < i < k, such that
t; contains X. Then, rttX = tf — tf is the regularity value which represents the number of
transactions not containing X between two consecutive transactions t;X and ti(. Thus, RTTX =
{rttsS vt ... rtt 11} is denoted as the set of all regularities of X. Then, the regularity of X

can be defined as

r* = maz(RTTX) = max(rtt vt , ... vty 1)

17

Definition 3.2 (Regular-frequent itemset) An itemset X is called a regular-frequent itemset if
(1) its regularity is no greater than a user-given regularity threshold (o,); (ii) its support is no

less than a user-given support threshold (o).

Thus, the regular-frequent itemsets mining problem is to discover a complete set of regular-
frequent itemsets from transactional database with two user-given support and regularity thresh-
olds. However, as mentioned in the previous chapter the user may prefer to specify a simple
threshold on the amount of results instead of a support threshold. The following definition of a

top-k regular-frequent itemsets mining problem is thus proposed.

Definition 3.3 (Top-k regular-frequent itemiset) Az itemset X is called a top-k regular-frequent
itemset if (i) its regularity is ng.greater than a user-given regularity threshold (denoted as o)

and (ii) there exist no more than' k. = ¥ itemsets whose their supports are higher than that of X.

Therefore, the top-k'regular-frequent itelffse}_s mining problem is to discover a set of top-k
regular-frequent itemsets from transactional database with two user-given parameters: a number

k of expected outputs and a regularity threshold O'T

3.2 Preliminary of MTKPP

In this section, details of the MTKPP algoritﬁmrwhich 1s.an efficient single-pass algorithm
used to discover a set ofik régular itemsets with highest supports from a transactional database are
introduced. It adopts a best-first search strategy to quickly find regular itemsets with the highest
values of support. MTKPP is based on the use of atop-k list (with hash table) structure to maintain

top-k regular-frequent itemsets'during mining process.
3.3 MTKPP: Top-k list structure

Top-k list is a linked-list used to maintain k periodic(regular)-frequent patterns with highest
supports. A hash table is also used with the top-k list in order to quickly access information in
the top-k list. At any time during mining process, the top-k list contains not much more than
k regular-frequent itemsets in main memory. Each entry in a top-k list consists of 4 fields: an
item or itemset name (), a total support (s'), a regularity (periodicity) (r/) and a tidset where I
occurs (7). For example in Figure 3.1, an item a has a support of 8, a regularity of 3. Its tidset

is {1,4,6,7,8,10,11, 12} which means the item a occurs in {t1, ¢4, t¢, t7, ts, t10, t11, t12}-

18

item |top-k list's link
a | e
A4
b . a:8:3 N d:7:3
c {1,4,6,7,8,10,11,12} {1,2,4,6,7,9,12}
d |] +
e
f
g

Figure 3.1: MTKPP: Top-k list with hash table

3.4 MTKPP algorithm

MTKPP consists of two'steps: (#) Top-k list initialization: scan a database once to obtain
k regular items (with highest suppost) and collect them into the top-k list with their supports,
regularities and tidsets; and (/) #op=k mining: merge each pair of entries in the top-k list by using
the best-first search strategy (i.e. finding the itemsets with thc highest support first in order to
reduce search space) to generate a larger candidate itemset and then sequentially intersect their
tidsets to calculate support and regularity of thev;hed\i-v generated itemset.

3.4.1 MTKPP: Top-k list initialization ¥,

dia

To create the top-k list, the database is scanﬁé Z)nce to obtain all items. At the first occur-
rence of each item, the MTKPP alé&ithm creates- anc;w éntry in the top-k list and then initializes
its support, regularity and-tidset. For other occurrences, the hash table is looked up to find the ex-
isting entry in the top-k liét and update the entry values. All itenis that have regularity greater than
o, are removed from the top-k list and the top-k list is sorted in support descending order. Finally,

all items that have'siippoit less thanthie support of the) k" dtenrin top-klist (s;,) are removed from

the top-k list. The details of the top-k list'initialization process are described in Algorithm 1.
3.4.2 MTKEFP: Top-k mining

To mine a set of top-k regular-frequent itemsets from the top-k list, the best-first search
strategy is adopted first to generate regular itemsets with the highest supports. To generate a new
candidate itemset, MTKPP starts from considering the most regular-frequent item to the least
regular-frequent item in the top-k list. It then combines two entries in the top-k list under the
following two constraints: (i) the size of the itemsets of both considered entries must be equal;
(i1) both itemsets must have the same prefix (i.e. each item from both itemsets is the same, except
the last item). When both itemsets satisfy the two constraints above, MTKPP will sequentially

intersect their tidsets in order to calculate the support, the regularity, and the tidset of the new

19

Algorithm 1 (MTKPP: Top- list initialization)

Input:
(1) A transaction database: T DB
(2) A number of itemsets to be mined: k
(3) A regularity threshold: o,
Output:
(1) A top-k list

create a hash table for all 1-items
for each transaction j in 7D B do
for each item ¢ in the transaction j do
if the item ¢ does not have an entry in the top-k list then

create a new entry for the item ¢ with s = 1,r* = ¢; and create a tidset 7" that contains ¢;

create a link between the hash table and the new entry
else

add the support s’ by 1

calculate the regularity »“by.

collect ¢; as the last tidin 4"

for each item ¢ in the top-k list do
calculate the regularity r’ by'|T' DiB|+ thelast tid of 7
if r* > o, then |
remove the entry ¢ outof thefop-k list

sort the top-k list by support descending order
remove all of entries after the k'¥eniry in the topk list

Algorithm 2 (MTKPP: Top-kmining)

Input: -

(1) A top-k list » /
(2) A number of itemsets to be mined; A
(3) A regularity threshold: o,

Output: y
(1) A set of top-k regular-frequent itemsets e

for each entry x in the topsk 1ist do
for each entry y in thetop-k list (z > y) do
if the entries and y have the same size of itemsets and the same prefix then
merge the itemsets 0f x and y to be itemset Z = I* U [Y
for each t,, in T!" and'tzin 77" do
if £, =, then

calculate the régularity 7 by ¢,
add thejsupport sZ by 1
collect ¢, as the last tid in 7%

calculate the regularity % by, | "D B| = the last tid of 1'%
if 72 <lo, and's? > s, then
remove the k" entry from the top-k list
insert the itemset Z (I U IY) into the top-k list with rZ, sZ and 7%

generated candidate itemset. If the regularity of the new candidate itemset is not greater than o,

and the support is greater than the support of the k" regular itemset in the top- list, then the k"

regular itemset will be removed from the top-k list and the newly generated candidate itemset is

inserted into the top-k list. The details of the mining process are described in Algorithm 2.

20

3.5 Example of MTKPP

Let consider the 7D B presented in Table 3.1. The regularity threshold o, and the number
of required results k are 4 and 5, respectively. Figure 3.2 illustrates the creating of the top-k list

process from the T'D B.

Table 3.1: A transactional database as a running example of MTKPP

tid items

1 abde
2 ¢de

3 bic fig
4 a'bid f.g
5 ceg

6 abedg
7 abcd
8 abce
g | 1 aa6d
107+ aceg
i
12 abdg

With the scanning of the first transactionr-z;f.-:; {a,b,d, e}, the entries for items a, b, d and
e are initialized in the top-k list a§ shown in Figﬁf&3.2(a). The next transaction (to = {c,d, e})
initializes a new entry in the top-k-list for itemi;"ft then updates the values of support and
regularity for items d and e to be 2 % and their t'i_d’séts- to be {1,2} (Figure 3.2(b)). As shown
in Figure 3.2(c), after secanning the third transaction (£5- = {b.¢ i g}), the regularity rb of the
item b changes from 1 t6-2. The top-k list after scanning all transactions is given in Figure 3.2(d).
Next, the item f which has the regularity 7/ = 7 greater than @, = 4 is removed from the top-k
list. Finally, the top-k list is Sorted by support descénding order and item e is removed from the
top-k list, since the support of e (s¢ = 5) is less than support of ¢ (89 = 6) which is the k" (5!")

pattern in the top-k list. The top-k list after initialization phase is shown in Figure 3.2(e).

MTKPP mines the top-k regular-frequent itemsets from the'top-k'list of Figure 3.2(e). Since
item b is the first item in the top-k list and it has no items in the previous sequence, MTKPP starts
by considering item a and search for identical size and prefix items (in the previous sequence),
item b. Then, item b is combined with item a and their tidsets are intersected to find the support
(s = 7), the regularity (r** = 3) and the tidset (7% = {1,4,6,7,8,11,12}) of itemset ba.
Since the regularity of ba is less than ¢, = 4 and the support of ba is more than s, = 6, the
itemset ba is inserted into the top-k list and item g (the k*" itemset) is removed from the top-k
list (Figure 3.3). Next, the third element, item c, is considered. There are two entries which are

in the previous sequence and have the same prefix as ¢: b and a. Thus, item c is combined with

21

a:l:1 b:1:1 d:1:1
> (1 g (1 > {3
e:l:1
i
(a)
a:l:1 b:1:1 c:1:2
> il g (1 > 2
21 d2 T
n2 1 ooy
(b)

| c:8:2
| 123,5,6.7.8.9,10}

c:8:2
{2,3,5,6,7.8,9,10}

d:7:3
11,2,4,6,7,9,12}

')

4 1zatioﬂ

5019500,
d

{1,4,6,7,8,11,12} {1,2,4,6,7,9,12}

9 W’l ANATDURIINEIAY

item b and their tidsets are intersected. The tidset and the regularity of ¢b are {3,6,7,8,9} and 3,
respectively. Because the support of cb (s®® = 5) is less than the support of s, = 7, the itemset
cb is no longer considered. Next, item ¢ and item a are combined and their tidsets are intersected.
The tidset of ca is then {6, 7,8, 10}. Since the regularity of ca(r°® = 6) is greater than 4, itemset
ca cannot be a regular itemset. Next, item d and itemset ba are considered in the same manner.
When all itemsets in the top-k list have been considered, the top-k regular-frequent itemsets are

stored in the top-k list with their occurrence information. The final result is shown in Figure 3.3.

22

3.6 Performance evaluation

In this section, the experimental studies are reported in order to evaluate the performance
of the MTKPP algorithm. From the best of our knowledge, there is no other existing approach to
discover top-k regular-frequent itemsets. Then, the effectiveness of MTKPP algorithm is focused
and compared with PF-tree (Tanbeer et al., 2009) which is a regular-frequent itemset mining
algorithm. It should be noticed that PF-tree mines the regular-frequent itemsets with a user-
given support threshold whereas MTKPP requires the number of regular-frequent itemsets to be
mined (k). Then, the support threshold is fixed in the way that PF-tree mines the same set of
regular-frequent itemsets with highest supports as'MTKPP (i.e. it is specified as o; = s which
is equal to the lowest support of the set of top-k regulai-frequent itemsets). To demonstrate the
performance of MTKPP, the processing time (l e. CPU and 1/Os costs) is investigated to compare
the performance of the two algorithms with the small and large values of k£ and various values
of regularity threshold (o). JFurthermore, a study of memory consumption of MTKPP is also
considered because of the use0f the op-k list structure. Lastly, the scalability of MTKPP on the

number of transactions in.the database is evaluszec[._

3.6.1 Experimental setup

As shown the characteristics i -Chapter 2, mne real (i.e. accidents, BMS-POS, chess,
connect, kosarak, mushroom, pumsb. pumsb*, r;talp and three synthetic (i.e. T10I4D100K,
T2016D100K, and T40LLOD100K) datasets were erﬁployed to_examine the performance of
MTKPP. The simulatioris were performed on a Intel®Xeon 2.33 GHz and with 4 GB main mem-
ory on a Linux platform and the program of MTKPP and PF-tree implemented in C. In the ex-
periments, the value of o, issset depending on the characteristic of each dataset for illustrative
purpose. Therefore; the value of o is'specified to be! different ,values. In fact, the number of
regular itemsets fof|each database increases with the value of the regularity threshold. On sparse
datasets, eachritemset does not-occur frequently thus the value of @, ishould-beset to be large when
the value of k'is'large’ While; each itemset‘appears very-often'in-dense dataset, a small value of

o, should be applied. Hence, the value of £ is divided into two rages: (i) [50,500] for the small
values; and (i7) [1,000, 10,000] the large values, respectively.

3.6.2 Execution time

Figure 3.4 to Figure 3.21 show the runtime of MTKPP and PF-tree on real dense datasets
(i.e. accidents, chess, connect, mushroom, pumsb, and pumsb*). From these figures, it can be

observed that in almost cases, MTKPP outperforms PF-tree with the small and large values of

23

k. However, in some cases especially on connect and mushroom datasets when the value of k
is large, MTKPP cannot significantly reduce the computational time from PF-tree. This happen
because these two datasets have a small number of transactions (in some cases the number of
transaction is less that the number of desired results). Then, PF-tree can reduce time to merge
tidset from children to parent nodes, while MTKPP cannot take the advantage of using a top-k

list.

Figure 3.22 to Figure 3.36 illustrate the processing time of two real sparse datasets
(i.e. BMS-POS and retail) and the three synthetic datasets (T1014D100K, T20I6D100K and
T40I10D100K). One can observe that the computation time of MTKPP increases as k increases.
When the value of k increases; JMTKPP has to find-more.sesults, therefore the computation time
increases as well. By comparing with PF-tree:‘ MTKPP can save a large amount of time for small
and large value of k. MTKPPR«runssvery fast on sparse datasets since each itemset occur rarely
(i.e. the number of tids that cach itemset occurs is few). As a result, MTKPP spent a little time to
intersect tidsets while PF-tree gakefime to merge and order tids. Therefore, these results confirm
the advantage of MTKPP/over /PF-tree for the -réal_ and synthetic sparse datasets where the item

distributes not regularly.

3.6.3 Memory consumption ‘A

The variation of memory usage of MTKPP Wlth the number of regular-frequent itemsets to

be mined, k, is shown in Higure 3.37 to Figure 3.47.

From these figures, it is obvious that the memory usage increases as k increases. In fact,
the desired memory of MTKPP depends on the support of each itemset in the top-k list because
MTKPP has to mdintdin| the tidSets! (i el Sets/of tids) of all itémsets«n the top-k list in order to
calculate their support and the regularity. For dense datasets, the memory usage linearly increases
because the supports of itemsets in the top-k list are veryelose. For sparse-datasets, the memory
usage increases 'slightly'as'® increases;because the supports of|itemsets in'the top-k list are quite
different. However, based on the used of the top-k list structure, the memory usage of MTKPP is
efficient for the top-k regular-frequent itemsets mining using the recently available gigabyte range

memory.
3.6.4 Scalability test

The scalability of MTKPP algorithm is also studied on execution time and memory con-
sumption by varying the number of transactions in database. The kosarak dataset is used to test

scalability with the number of transactions. The kosarak dataset is a huge dataset with a large

24

number of distinct of items (41, 270) and transactions (990, 002). First, the database was divided
into six portions (i.e. 100K, 200/, 400K, 600K, 800K and 990K transactions). Then, the per-
formance of MTKPP was investigated on each portion. Second, the value of k is specified to be
500 and 10, 000 to investigate the scalability on the small and the large values of k. The regularity

threshold was fixed to 6% of the number of transactions in each portion.

The experimental results shown in Figures 3.48 and 3.49. It is clear from the graphs that
as the database size increases, overall top-k list initialization time and top-k mining time are
linearly increased. The performance between MTKPP and PF-tree is similar when the number of
transactions is between 0 and 200/ transactions./Besides, MTKPP runs faster than PF-tree with
the large number of transactions for the small and the laige values of k. As shown the memory
consumption of MTKPP in the figures, the r;lemory requirement increases as the database size
increases. However, MTKPP showssstable performance of about linearly increase of the runtime
and memory usage with respect to the database size. Therefore, it can be observed from the
scalability test that MTKPP cah ming the'top-k regular-frequent patterns over large datasets and

distinct items with considerablgfamount of runtffnq_and memory.

3.7 Summary

2 7
all ol il

This chapter introduced and studied the problem of mining the top-k regular (periodic)-
frequent itemsets from transactional databases wi_tﬁ_o_t;'t setting a support threshold. This problem
allows users to control (or specify) the number of regular itemsets (i.e. the regularly-occurred

itemsets) to be mined.

To discover this kind of itemset, an efficient one-pass algorithm, called MTKPP (Mining
Top-K Periodic(Regular)-frequent Patterns)is)ptesentedSSinCe the miinimum support to retrieve
top-k regular-frequent ‘itemsets cannot be knownin ‘advance, a new best-first search strategy is
devised to efficiently retrieve the top-k regular-frequent-itemsets and the‘intersection process is
applied to'compute the support and the tegularity of each itemset. By wusing these techniques,
MTKPP first considers the itemsets with the highest support and then combines candidates to

build the top-k regular-frequent itemsets list.

In the experiments, the empirical studies on both real and synthetic data (with the small and
large values of k) show that the MTKPP algorithm is efficient for top-k regular-frequent itemset

mining. It is also linearly scalable with the number of transactions comparing with PF-tree.

accidents (o, = 1)

175 T T T T T
PF-tree —+—
14 | MTKPP —-%--
% 105 - T A
O -
£ X
= 7+ - 0 -
%
35| - _
=1 1 1 1
0 50 100 200 300 400 500
k
=1
2400 T T
1920 F- -/~ -
. — >
@ 1440 —
g [e
= 960 . —
j 8000 10000
Figure8.4: (o, = 1%)
e) =2)
17.5 T
@ -
Q
g X% |
5 e
e 7
u 0 2 0 0 500
k
= s

time(s)

x*
0

F-tree

| MTKPP —-X--

1000

2000 4000 6000 8000 10000
k

Figure 3.5: Runtime of MTKPP on accidents (o, = 2%)

25

time(s)

time(s)

time(s)

time(s)

accidents (o, = 3)

26

175

14 -

10.5

35

I I
PF-tree —+—
MTKPP —->¢--

2400
1920
14407

960

.15

24
18
1.2

0.6

MTKPP —-%—-

400

500

2)

8000

10000

(or = 3%)

Figure 3.7: Runtime of MTKPP on chess (o, = 2%)

1000 2000

4000
k

6000

8000

10000

time(s)

time(s)

time(s)

time(s)

chess (o, = 4)

27

0.15 |~

0.12

I I
PF-tree —+—
MTKPP —->¢--

-

0.09 i
0.06 .
0.03 i

1
0 50 100 200 300 400 500
K
=4
3 | | “
M e / -
2.4 - — Z .
——

1.8 — .
1.2 .
0.6 ! .

0 8000 10000
o
Figure 3. = 4%)
A % oy 6)

15 ! =

X .

e — W 7
0 2 0 0 500

K

¢ o o/

2.4

18

1.2

0.6

MTKPP —-%—-

0

Figure 3.9: Runtime of MTKPP on chess (o, = 6%)

1000

2000

4000
k

6000

8000

10000

connect (o, = 1)

8.75 : | | | |
PF-tree —+—
2 | MTkPP - ¢--]
5 525]
£
= 35}]
i S
A S *—— | ‘ :
0 50 100 200 300 400 500
K
= 1)
75 |
P ”
60 |- MTKPP]
@ 45 : e]
2 - -
£ 3 ‘ o i
1 \]
Z / 2. 6 8000 10000
Figure 3.1 B o — 1%
SRR =2)
8.75 _ |
@ —
Q
'E B i
17 B
1 = YR
° 2 0 0 500
K
H i o/

PF-tree ——
| MTKPP ——<--

time(s)

0 1000 2000 4000 6000 8000 10000
k

Figure 3.11: Runtime of MTKPP on connect (o, = 2%)

28

29

connect (o, = 3)

8.75 : | | | |
PF-tree —+—
2 | MTkPP - ¢--]
5 525]
£
= 35}]
T L]
A S *—— | I :
0 50 100 200 300 400 500
K
:3)
75 |
P ”
60 |- MTKPP]
@ 45 : e]
: - -
£ 3 ‘ > i
1 \]
Z / 2. 6 8000 10000
Figure3.1 B o — 3%
TN =4)
03 : |
_ =
@ - -~ —
Q
£ =
X
" X QS _

q 24

1.8

MTKPP —-%—-

time(s)

1.2

0.6

0 1000 2000 4000 6000 8000 10000
k

Figure 3.13: Runtime of MTKPP on mushroom (o, = 4%)

mushroom (o, = 6)

30

03 F T T T T
PF-tree —+—
0.24 |- MTKPP =~
% 018 -
[9)
£
=012 —
0.06 —
0 50 100 200 300 400 500
k
=6)
3 ! ! 5
i i Y /‘ ////
2.4 — s _
——
2 18 - —
[J) -,
E
s 12 —
0.6 5 —
0 p- i 8000 10000
Figure 3.14: (o, = 6%)
;_ i oy =8
0.4 T
) . _
£ -~ %77
= % _
0.0 X
- .
FI u 0 2 0 0 500
q K

54 L MTKPP =<~

1.8

time(s)

1.2

0.6

0

1000 2000 4000

k

6000

8000 10000

Figure 3.15: Runtime of MTKPP on mushroom (o, = 8%)

time(s)

time(s)

time(s)

2.75

22

11

0.55

60

48

36

24

2.75

31

pumsb (o, = 2)

I I
PF-tree —+—

PF-tree ——
MTKPP —->--

| MTKPP —-%-- _
//7
- /,/X// —
///X//
u g _
L A i
B I I I I
0 50 100 200 300 400 500
k
=2)
T T
P
MTKPP: /i _
— _——
‘ %
¥ 6 8000 10000
- o
El -
¥ or = 2%)
A ' _‘-f =4
1 -]
/”X’
X 7
Y, -
0 2 0 0 500
k
¢ o o/

0

1000 2000

4000
k

6000 8000 10000

Figure 3.17: Runtime of MTKPP on pumsb (o, = 4%)

32

pumsb (o, = 6)

275 F T T T
PF-tree —+—
5o L MTKPP —¢--
@ 165 xS
[9)
£
0.55 -
1
0 50 100 200 300 400 500
k
= 6)
60 T T
P
48 |- MIKPR — .
@ 36 S i
Q < —
I -
= 24 ‘ X —
1 A -
0 ¥ 6 8000 10000
- o
El - ’
Figurg 3.1 o = 6%)
A ' % oy X
25 =
@ -
Q
£
5 —
-
| -
u 0 0 400 500
k
, ¢ o o/
aN ¢
160 | MTKPP —<--
T 120 -
[3)
£
40 -
————— NOEEE St
0 1000 2000 4000 6000 8000 10000
k
Figure 3.19: Runtime of MTKPP on pumsb* (o, = 1%)

pumsb* (o, = 2)

25 F T T T T =
PF-tree —+—
20 b= MTKPP —-%--
@ 15
9]
£
5
*
0 50 100 200 300 400 500
k

T I
P T

| MTKPP --X%--

time(s)

0 1000 2000 4000 6000 8000 10000
k

Figure 3.21: Runtime of MTKPP on pumsb* (o, = 3%)

33

BMS-POS (g, = 1)

150 |~ | | [—
%0 PF-tree ——
120 |- MTKPP — - -—- _
v 90 —
9]
=
= 60 —
30 —
b2 N o S Appp—— ¥ ———— N ———
0 50 100 200 300 400 500
k

MTKPP —-%—-

time(s)

0 1000 2000 4000 6000
k

8000

10000

Figure 3.23: Runtime of MTKPP on BMS-POS (o, = 2%)

34

150 F T T T =
PF-tree —+—
120 | MTKPP = -- |
@ 90 |- .
[9)
£
S 60| i
30 | i
oo Yeooo o3
0 50 100 200 300 400 500
K
=3)
325 |
260 |- MTKPI - — _
——
% 195 , — i
FE; -
£ 130 ‘ i
SN S
0 ! 8000 10000
Figure 3.24: A (o, = 3%)
A . & o, - 6)
2.25 "
@ _
Q
£
0asd-. T s RN DI
u 0 2 0 0 500
K
a ¢ o Y

time(s)

BMS-POS (o, = 3)

| MTKPP —-%--

F-tree

0

1000

2000

4000
k

6000

8000

10000

Figure 3.25: Runtime of MTKPP on retail (o, = 6%)

35

time(s)

time(s)

time(s)

time(s)

retail (o, = 8)
25 F | : | |
PF-tree —+—
2+ MTKPP —-¢-—-
1.5 I
1 _
" -—== B
0 50 100 200 300 400 500
k
= 8)
20 | |
P
16 b MTKPP]
12 =2 o)
8 ‘ —
‘ . 6 8000 10000
Fig e
Y 4% = 10)
2.75 |
05 s .]
° ? 0 0 500
k
oy -y Y]

F-tree
MTKPP —-X—-

0

Figure 3.27: Runtime of MTKPP on retail (o, = 10%)

1000

2000

4000
k

6000

8000

10000

36

T1014D100K (o, = 4)

5 T T T T
PF-tree —+—
4 |- MTKPP —-%-- _
@ 3]
£
= 2+ —
1 VIR
oXmmmT X=X
N it X~] 1 1
0 50 100 200 300 400 500
k
K (o, =4)
6.5 _ f =
5.2 | '/“ -
———
g]
£ N -7
= 26 \ - —
ok =
F-tree —+—]
2 : PP —-X--
0 20007, % 4c 8000 10000
- - o~
£ - L h
Figure 3.28: Runtime o AT on K (0, = 4%)
2 ,g F
e 4 -
J‘..JJ’
e i o =6)
5
@ - —
£
=] 2 —
o Xm—mT K
1 = ¥ - b -
‘a L _wF
FI u 5 0 4 500
q k
)
[3)
£
13/ 7 PF-tree —+—]
. MTKPP —-X--
- 1 1 1 1 1
0 1000 2000 4000 6000 8000 10000
k

Figure 3.29: Runtime of MTKPP on T10I4D100K (o, = 6%)

37

T1014D100K (o, = 8)

5 T T T T
PF-tree —+—
4 b MTKPP —¢-- _
@ 3 .
£
s 2 X7 1
X
1 X7 .
————— X7
N]]]]
0 50 100 200 300 400 500
k
K (o, = 8)
6.5 f =
5.2 — ! /“ ™
— -7
& 39 X -
] e
IS -
= 26 -
F-tree —+—
PP —-%--
0 ¥ 8000 10000
- - o~
£ - L h
Figure 3.30: Runtime o A1 on K (0, = 8%)
At
e -
' T
‘:‘g}’“
- ‘.d!‘-‘-J.—
A i o =2)
30 T
@ - —
£
=] 1 —
6 p—
- VA vy 3
u 0 0 400 500

time(s)

.
st
PF-tree ——
MTKPP —-%--

0 1000 2000

4000 6000 8000 10000
k

Figure 3.31: Runtime of MTKPP on T20I16D100K (o, = 2%)

38

39

T2016D100K (o, = 4)

30 T T T T T
PF-tree ——
24 L MTKPP —=¢-- _
s B[1
£
= 12 —
6 - =2
____ %‘——‘ x
e i X I I
0 50 100 200 300 400 500
k
o, =4)
f
45 g PF-tree —+— 7
e ; MTKPP —-X%--
36 — .
’ >
O
3 7 ; —_——]
£ -
5 1 . 7
- --X/
9 . _
0 2000 = a0 6 8000 10000
- - o~
- - R
Figure 3.32: Run on K (o, = 4%)
e L =6)
I —
@ - _
(3]
£
_____ X-—""7F
400 500

n§8

PF-tree —
MTKPP — % -
Momm = X 7
|
0 1000 2000 4000 6000 8000 10000

k

Figure 3.33: Runtime of MTKPP on T20I16D100K (o, = 6%)

40

T40110D100K (o, = 2)

400 T T T T

PF-tree ——

320 MTKPP —-X-- -
w240 |- —
z
= 160 |- -

80 |- -

N2 NE oo ¥ Yoo
0 50 100 200 300 400 500
k
K (0,=2)
550
440 — : — —
——
% 330 _
S 220 ' -
1 F-tree —+—
3 PR - X0 S
0 ¥ 8000 10000
- i o
El -
Figure 3. ti on K (o, = 2%)
> e o, =4)

400
@ - —
£
= 1 —

80 -

- o
u 1 20 0 400 500
K

440

330

time(s)

220

R kit X———— * R

PF-tree __|>_€_ 1
MT). Fel
= JSPP;.(‘

1000 2000 4000
k

6000 8000 10000

Figure 3.35: Runtime of MTKPP on T40110D100K (o, = 4%)

time(s)

time(s)

400

320

240

160

80

550

440

330

220

11

Figure 3.

memory(MB)

250

al
o

2 2

memory(MB)

41

T40110D100K (o, = 6)

[[[T
PF-tree —+—
MTKPP —-X-- |
Sk Sk I 2, N —— Yo ————
50 100 200 300 400 500

-tree —+—]
C 8000 10000
on K (o, = 6%)
2 =3)
A
T
L7 7]
1 20 0 400 500
k

1000

2000 4000 6000 8000 10000
k

Figure 3.37: Memory usage of MTKPP on accidents

l)‘
=2

. > |
2D

memory(MB)

memory(MB)

memory(MB)

42

chess (o, = 6)

=

memory(MB)

5 T T T T T
MTKPP ——
4 -
3 —
2 - —
1 —
|]]]]
0 50 100 200 300 400 500
k
1essi(o, = 6)
100 T T
MT| /
80 7 d T
60 - — —
40 —
20 —
0 200¢ 8000 10000
I‘ 5 -
Figure €0 ‘on chess
,“.-- !
=3)
A A o,
125 b2 T
25 —
-4 s
1 20 300 400 500
k

0

1000

2000 4000 6000 8000 10000
k

Figure 3.39: Memory usage of MTKPP on connect

. > |
2D

memory(MB)

memory(MB)

memory(MB)

memory(MB)

mushroom (o, = 8)

7 T T T T
MTKPP —+—
56 | -
42 b -
28 | .
14 -
I
0 50 100 200 300 400 500
K
10000

0 1000 2000 4000 6000 8000
k

Figure 3.41: Memory usage of MTKPP on pumsb

10000

43

memory(MB)

memory(MB)

memory(MB)

memory(MB)

44

pumsb* (g, = 3)

0 50 100 200 300 400 500
k
o.=3)

825 T T

MT ' /
560 [~ — -
495 - | o .
330 v ‘ .
165 / .

W 4 #2000 8000 10000

Fi 3 eo pumsb*
i IAY]
° Q 7
u 0 0 0 3 400 500
k
¢ o UE]
a 19 MTKPP
140 [~ —
105 [~ —
70 |- —
35 [—
]]]]]
0 1000 2000 4000 6000 8000 10000

k

Figure 3.43: Memory usage of MTKPP on BMS-POS

retail (o, = 10)

2 T T T T '
MTKPP —+—
16 -
o
S 12 —
s ' : : .
E o8| -
£
04 -
I I I I I
0 50 100 200 300 400 500
K
f
o
s ‘ : — _
Z\ s
o
£ _
[) \
E /ﬂ \\\\
/ . % 1
10000

o]/ 72200 T angd

retail

“ k
L , ¢ o o
Ch e 3
1
q |MTKPP ——
12 |~ —
)
2 9 -
g
2 T T
3 —
]]]]]
0 1000 2000 4000 6000 8000

k

10000

Figure 3.45: Memory usage of MTKPP on T10/4D100K

45

2
=0

) o8
2))

T2016D100K (o, = 6)

46

T T T T
MTKPP —+—

72 -

3.6 -

memory(MB)

0 50 100 200 300

400 500

T
40 Ttk E /
32 -
24 ' S —

16

memory(MB)

o, = 6)

8000 10000

016D 100K

12.8

t memory(MB)
S
N
)

memory(MB)
w Py D
e & o
[[[

i
o
|

0 1000 2000 4000 6000

k

8000 10000

Figure 3.47: Memory usage of MTKPP on 740110D100K

47

kosarak (k = 500, g, = 6)

67 T I I | |
PF-tree ——

53.6 | MTKPP —-%-- |
w402 |- |
2
s 268 |

134 |- |

e X-———— X--—=7 >Ie —————
° ' 2 4 6 8 9.9
Number of transactions(100K)
500,0, = 6)
70 | I
MTK :

56 —— . 4 4 |
E n 3
S a2 -]
2 - -

S .
$ 28 : |
E 1

14 |

2 %) i 800 990
trau 0
s ,0r = 0)
= v 0, o, = 6)

400 : LA |
@ - —
Q
£ |

ok - J

,,,,, x--=="X

Y- 7.

2 2

memory(MB)

0 100 200 400 600 800 990
Number of transactions (100K)

Figure 3.49: Scalability of MTKPP (% : 10, 000, o, = 6)

CHAPTER IV

TKRIMPE: TOP-K REGULAR-FREQUENT ITEMSETS MINING
USING DATABASE PARTITIONING AND SUPPORT
ESTIMATION

As mentioned in the previous chapter, the MTKPP algorithm scans the database once to
collect a set of transaction-ids (tidset) where cach itemset occurs, and then MTKPP applies an
intersection operation on the tidsets to collect the tidset-and to calculate the support and the reg-
ularity of each larger itemset. Unfortunately, MTKPP spends a lot of time to intersect the tidsets

comparing to the whole exécution time.

Therefore, the aim of this ¢hapter isto rgauce the computational time on the intersection
process of the MTKPP algorithm. Then,:a new ;fﬁcient algorithm, called Top-K Regular-frequent
Itemsets Mining using databasejPartitioning aﬁd support Estimation (TKRIMPE), to mine a set
of top-k regular-frequent itemsets is prdposed. _-Th-e partition and estimation methods used to
dismiss some inessential computing are also desc;i-b—e}q"‘_in details. Besides, the data structure used
to maintain the top-k regular-frequent itemsets andjthe-_complexity analysis of TKRIMPE are also

discussed.

The experimental studies illustrate that TKRIMPE provides significant improvements, in
particular for sparse datas€ts, in comparison with MTKPP on both small and large number of

required results.
4.1 Preliminary of TKRIMPE

To mine the top-k regular-frequent itemsets, TKRIMPE employs-a‘top=k list to maintain
top-k regular-frequent itemsets during mining process. Besides, a best-first search strategy is also
applied to quickly mine the itemsets with the highest supports (i.e. to raise up the support of the
k" itemset in the top-k list which helps to reduce the search space). Furthermore, the database
partitioning technique is utilized to reduce the time to intersect tidsets. Meanwhile, the support
estimation technique is used to early terminate the intersection process and to prune the set of

candidates.

49

4.2 TKRIMPE: Top-k list structure

TKRIMPE is based on the use of a top-k list as proposed in (Amphawan et al., 2009). The
top-k list is simply a linked-list with a hash table for efficiency reasons (two main operations -
which are required to frequently access the information of itemsets- will be operated: initialization
and updating the information of the top-k regular-frequent itemsets). At any time, the top-k list
only contains not much more than k regular-frequent itemsets in main memory. Each entry in a
top-k list consists of 4 fields: an item or itemset name I, a total support s, a regularity 7/ and a
set of tidsets 7' where I occurs in each partition, respectively. For example in Figure 4.1, an item
a has a support of 8, a regularity of 3. Its set of tidsetsids {{1,4},{6,7,8},{10,11,12}} which

means the item @ occurs in transactions {¢1, t4, t. iz ts,byos t11, t12}-

item |top-k list'silink

a | 0 ey

v
b | 2:8:3 d:7:3

—>

C 1 41,41,06,7,81 141010, 123} | " {§1,2,4},{6,7,},{9,12} }
d | -4, P N e SR .._.."; 4
c -
f \
. ,

Figure 4.1: TKRIMPE: Top-k list with a hash table

i

4.3 Database Partitioning - -

In TKRIMPE, the database is first separated into several disjoint partitions of an equal size
as presented in (Brin et al.,'1997b). Then, TKRIMPE collects the tidsets (there is one tidset by
partition) of each itemset infone,database scan in.order to calculate its support and regularity.

Partitioning technique allows to reduce some unnecessary computational costs.

Giyen a gegularity threshold.o . the databaseis splitiintospn.= HTDB|/o,]| partitions.
Each partition'will thet' contains o, transactions. For example, consider the'transactional database
of Table 4.1 with 12 transactions. A regularity threshold of 4 will split the database into 3 parti-

tions of 4 transactions each.

TKRIMPE will fully exploit the partitioning of the database. Thus, a new local tidset, a
local support and a local regularity related to a partition are considered. The (local) tidset of an
itemset X in the m!" partition P,,, denoted as T:X, is the set of tids in mt" partition that contains
itemset X:

TX = {14]X C 1yt € P}

50

Table 4.1: A transactional database as a running example of TKRIMPE

tid items

1 abde
2 cde

3 bcfg
4 abdfg
5 ceg

6 abcdg
7 abcd
8 abce
9 bcd
10 dcgeg
y,] ab f
12 a'bd'g

Then, the (global) tidset.of anditemset X, 7, is defined as T~X = {T7%,..., T p)fl}.The
(local) support of an itemset A#in themn® partition, denoted s7%, is the number of transactions
(also denoted tids) in the ™™ paftitionthas contains itemset X, 1.€. 5% = |T:X|. Then, the (global)

support s of the itemset X'is equal tg > ¥4 g%

¢
For example, consider an item. a occurrirzlllgz__in_.‘the set of tids {1,4,6,7,8,10,11,12} (i.e.
transactions 7% = {t1, t4, tg, t7.8s, t19s 11, tlg}’)i{fgom the transactional database of Table 4.1.
Thus, the set of tids {1, 4} is containgd in 7% which fs'j.the tidset of the first partition. Meanwhile,
the sets of tids {6,7,8} and {10, 11,12} are stot?(—i_,,_i_r_i‘ I¢ and T, respectively. Thus, the tidset
of the item a is 7% = {{1,4},{6,7,8},{10,11,12}}. Besides, the support of the item a is
S0 =2+3+3=8 d |

By using the partitioﬁ technique, the tidset of each itemset is spilt into several small tidsets.
As a consequence;.theloriginal definifion’'of the régularity|of an‘itémset (see Definition3.1) cannot
find the regularity between partitions. It is suitable on only one tidset for each itemset as in
(Amphawan et al., 2009). Then, three new definitions are*proposed to calculate the regularity in
each partition, regularity between two consecutive partitions and the total regularity of an itemset.

The effect of the partition technique is evaluated in Section 4.8.2.

Definition 4.1 (Regularity of an itemset X in a partition) Ler tfm and tifm be two consecutive
tids in TX, i.e. where j < k and there is no tid ti)’(m in TX, j < i < k, such that the transaction
of ti{m contains X. Thus, rtt;x = tfm — tfm is the regularity value between two consecutive
tids tfm and th,m‘ Therefore, the regularity of the itemset X in the m** partition is defined as:

rpx = max(rtty, vtty, ..., rttpx)).

51

Proposition 4.2 The regularity of an itemset X in any partition Py, is strictly less than regularity

threshold: TpX < 0.

Proof: Following Definition 4.1 it is obvious that the maximum regularity of an itemset in a

partition is equal to o, — 1, which is the gap between the first and the last tids in the partition. M

Definition 4.3 (Regularity of an itemset X between two consecutive partitions) Let
tX be the last tid where X occurs in the (m — 1) partition and tfm be the first

tid where X occurs in the m'™ partition. Then, rtpi = t{fm — tl)I{“,ff,ll,mfl is the number of tids
(transactions) that do not contain X between the (1w ™" and m'" partitions. Thus, a regularity
of X between the two partitions'is defined. Obviously, Ftpi* is tfm. To find the exact regularity
between two consecutive parftitions of<X on the entire database, the number of transactions that
do not contain X between the last tid where X occurs and the last tid (transaction) of database
has to be calculated by: rtpgfl # # DB A tl')i?% o Lastly, the regularity between any two
consecutive tidsets T:X_| and T;¥ can be defined as:

J

_ oo ‘ 4 ifin=1
X Al \
rip;, = t{fm,f t}l‘,;f_l"l‘,;n"—-l if2<m<pn

]TDB| = tl)%X_lTn;-l ifm=pn+1

d -l

Therefore, the regtﬂa_rity of an itemset is defined with the hefp of Definitions 4.1 and 6.8.

Definition 4.4 (Regularity of an itemset X) Thewegularity of an itemset X is defined as
r~ = maz(maz(RPX), max(RTPY))

where RPY = {rp‘lx, rpgf, 11 rpi%} is. the set of regularities;of X inveach partition (Defini-
tion 4.1) and RTPX = {rtpf, rtpgf, el rtpfoglﬂ} is the set of regularities of X between two

consecutive partitions (Definition 6.8).

For example consider the transactional database of Table 4.1 and the case of an item a:
T = {{1,4},{6,7,8}, {10,11,12}}. The set of regularities in each partition of the item a is
RP* ={(4—-1),max(7—6,8—7),max(11 —10,12—11)} = {3,1,1}. The set of regularities
between two consecutive partitions of a is RT'P* = {1,6 — 4,10 — 8,12 — 12} = {1,2,2,0}.

Thus, the regularity of the item a is 7* = max(maz(3,1,1),maz(1,2,2,0)) = 3.

52

4.4 Support Estimation

The support estimation is used when the number of itemsets in the top-k list is equal or
greater than k. The support estimation requires less computational efforts than the computing of
the real support. When the estimated support of an itemset is less than the support of the k"
itemset in the sorted the top-k list, TKRIMPE can conclude that the support of the itemset is less
than the support of the k*" element in the top-k list, and then TKRIMPE can prune the itemset out

of a search space without intersection all of tids.

The support estimation is based on the notion of the left and right boundaries in each parti-
tion of two itemsets when these itemsets are merged. le'will be also useful for regularity estima-
tion. The left (right) boundary of itemsets X “and Y i themt" partition is simply the first (last)
index of tids in 7 and 7)), such.that.the corresponding tids are equal for the two itemsets.

|
Formally: given the tids tffm €7 and t;fm e Th (1 <i<|TX|,1 <7 <|TY), the left

boundaries [b;5 and [bY, of if€msets X and i af_‘;ﬁe m™ partition during merging are given by:

0.2 TR Ao
») v
18 -4 s 4
) L,ﬁt;xm = t}fm
0 HLNTY =¢
Iy, =
min(j) if tffm = t}fm

Obviously, the right boundaries are defined in a very similar way:

Oap 4G5 NAY = ¢
rhy =1 X AT NTY| =1

m

maa(i) Qi) & t}fm

0 ifTXNTY =¢

by, = wy

if|TxNTYy| =1

max(j) iftY, = t}fm

Thus, the estimated support is defined as the minimum distance between the left and the

right boundaries of itemsets X and Y.

53

Definition 4.5 (Estimated support) The estimated support of an itemset XY in the m** par-

XY

tition, denoted as es;),” , is the minimum distance between the left and the right boundaries of

itemsets X and Y in the m" partition, i.e.,

0 if1bX =0orlbY, =

1+ min(rbs — b, rbYy —1bY) otherwise

Lemma 4.6 The estimated support es;." of anjitemset XY in the m! h partition can be bounded

with the help of the real support of XY in the mi" partition and the size of partitions:

sf,iy = esnXlY §4‘sﬁy + ((o0—2)/2)

Proof: Obviously, sincesthe left and the ﬁight boundaries are indexes of the first and the last
tids where itemsets X and Y o€curtogether, the support of itemset XY could not be greater than
the difference between the'right'and the left 1nEf1ces(z e. the estimated support). Indeed, one can
notice that the support of the itemset X Y is equgl to the estimated support of XY if XY occurs
in every tid between the boundaries and that the support of XY is less than estimated support if
there is at least one tid between the boundarles where the itemsets X and Y do not occur together.

XY XY i
Thus, s;," <es;,”. =

......

In any partition, the maximum number of tids between the'left and right boundaries of

the itemset XY is o, —2. This is the case when itemsets X and Y occur together in the first
and the last transactions of the partition. The difference between the estimated support and the

XY _ gXY)icarresponds to the fwmber of tids where X and Y do not occur

real support (es;,,
together between the left and the right,boundaries. Theti, in the worst case, this difference is
equal to (o, — 2)/2. It happens when all the tids (between the left and the right boundaries)
are totally different] Otherwise; the maximum'of the difference is lessithan' (o, — 2)/2. Thus

esk¥ < sV 4+ (o, — 2)/2). [|

Definition 4.7 (The estimated support of an itemset XY') The estimated support of an itemset

XY, denoted esXY | is the summation of estimated support in every partition, i.e.,

pn
Y _ Z €Sﬁy
m=1

54

Lemma 4.8 Let es™Y be the estimated support of XY and sXY be the support of XY, then
esXY > gXY

Proof: Based on Lemma 4.6, in each partition, the estimated support of XY is greater than
or equal to the real support of XY. Therefore, the estimated support of XY is no less than the

XY _ Z?’I;Zl 687)7(11/ > SXY — \pn SXY [

real support because es me1Sm. -

Theorem 4.1 An itemset XY is not a top-k regular-frequent itemset if es™Y < sy, where sy, is

the support of the k" element in the sorted top-k li%L

Proof: Based on Lemma 4.3 theestimated support of an itemset XY is always no less than
its support. If the estimated supporiof XV i§ less than s, then the support of XY is also less

than s;. Therefore, the itemset XY ds not a top-k regular-frequent itemset. []

Theorem 4.1 has clear practical implicatibns. Indeed, for all situations where Theorem 4.1
holds, TKRIMPE can early prune the search spaéél; The effectof this pruning strategy is evaluated

in Section 4.8.2.

i

4.5 TKRIMPE algorithm

As MTKPP, TKRIMPE consists of two steps : (i) Top-k list initialization: partition
database, scan eaCh partition to obtain all regular-items, and ‘collect them into the top-k list with
their supports, regularities and sets of tidsets; (if) Top-k mining: merge each pair of entries in the
top-k list using.a,best-first search strategy, (i.e., finding the itemsets with the highest support first)
and then intersect their tidsets (one by lenelpartition) lin ‘order to-find the top-k regular-frequent

itemsets using the proposed support estimation technique.

4.5.1 TKRIMPE: Top-k list initialization

To create the top-k list, each partition of the database is scanned (one by one) to obtain all
items. A new entry in the top-k list is created for any item that occurs in the first o, transactions

(i.e. in the first partition), and then a new tidset for the first partition is built. Finally, the tidset and

55

the values of a support and a regularity are updated. For the following partitions, TKRIMPE first
looks if the considered item is already existed in the top-k or not. This is done with the help of a
hash function for efficiency reasons. For a first occurrence of an item in the partition, a new tidset
of the partition is created and the values of support, regularity and tidset are initialized. If the
item was already seen in the partition, TKRIMPE only updates its values in the top-k list. When
the entire database has been read, the top-k list is trimmed by removing the items with regularity
greater than o,. Then, the top-k list is sorted in descending order of support. Finally, TKRIMPE
removes the items that have a support less than s;, (the support of the k" item in the top-k list)

from the top-k list. Details are given in Algorithm 3;

Algorithm 3 (TKRIMPE: Top-k list initialization)
(1) A transaction database: T DB
(2) A number of itemsets to be mined: %
(3) A regularity threshold: o
Output:
(1) A top-k list

create a hash table for all T-iteras 3
for each transaction j in the first partition do .
for each item ¢ in the transaction 4 do l 4
if the item ¢ does not haye anentry in the top-k list then
create a new entry for iteg i with s = 1, 7"= ¢; and create a tidset 77 that contain ¢;
create a link between the hagh table and the newentry
else oy
add the support s’ by 1 ' -
calculate the regularity r* by = - L
collet ¢; as the last tid in 77

for each partition m = 2'to pn do
for each transaction ‘j-ii the m‘”* partition do
for each item ¢ in the/ttransaction 7 do
if the item ¢ has an‘entry in the top-k list then

if ¢; is the first tid/that 7 occurs in the m'™ partition then
add the support s’ by 1
calculate the regulafity 7’ by ¢; and cheek'r* with g,
creatga tidset 7, and collectt; asan element inZ},

else
add the'support s’ by 1
calculate the regularity.r’ by ¢,
collect ¢ j/as the last tid in 17,

for each item ¢ in the top-k list do

calculate the regularity ¢ by |T'DB|— the last tid of T, (¢!)
T, |, PN

if »* > o, then
remove the entry of ¢ out of the top-k list

sort the top-k list by support descending order
remove all of entries after the k*" entry in top-k list

56

4.5.2 TKRIMPE: Top-k mining

As described in Algorithm 4, TKRIMPE starts from the most frequent itemset to the least
frequent itemset in the top-k list to generate a new regular itemset with a best-first search strategy
to quickly generate the regular-frequent itemsets with the highest support. It then combines two
elements X and Y in the top-k list under the following two constraints: (i) the number of items
in the itemsets of both elements must be equal; (if) both itemsets must have the same prefix (i.e.
each item from both itemsets is the same, except the last item). When both itemsets satisfy the two
constraints, the tidsets of X and Y of each partition are sequentially intersected in order to find the
regularity, the support and the tidsets of the new generated regular itemset X'Y. When the number
of itemsets in the top-k list is greater than or equal to'k, the estimation technique is performed in
each partition (see Definition 4.5). Following,; Definition 4.7, the estimated support es*¥ of the
candidate itemset XY is then evaluatéd: If ¢s* " < s, (the support of the k*" itemset in the sorted
top-k list), TKRIMPE will step to.consider the itemset X Y (thanks to Theorem 4.1). Otherwise,
the remaining tids between thé left and the right boundaries of each partition are continuously
intersected to find the (real) suppout and regulafftyz_lf the regularity of the new generated itemset
XY is no greater than o, and its support is gée_ater than sg, then XY is inserted in the top-k
list and the k'™ itemset is removed froni the top=k list. Lastly, one have to notice that thanks to
the partitioning technique TKRIMPE can reduce 't':hfe'ti_me to intersect some tids of each partition

i

when at least one of the tidsets does mot contains a regular sequence of transactions. This will

particularly happens often in sparse datasets.

The advantages of the database partitioning and support estimation techniques will be illus-
trated in Section 4.8. The-partitioning technique allows to reduce the number of tids to compare
during intersection, and the Support estimation allows to early reduce the number of candidate

itemsets.
4.6 Exampleof TKRIMPE

Let consider the T DB presented in Table 4.1, the regularity threshold o, be 4 and the

number of required results k£ be 5. The database is thus separated into three partitions.

The initialization of the top-k list from T'D B is illustrated in Figure 4.2. After scanning the
first transaction ¢t = {a, b, d, e}, the entries for items a, b, d and e are initialized in the top-k list as
shown in Figure 4.2(a). Then the second, the third and the fourth transactions are considered. The
tidsets for the first partition, the values of support and regularity of each element are initialized or

updated as shown in Figure 4.2(b). The next partition (transactions 5 to 8) initializes or updates

57

Algorithm 4 (TKRIMPE: Top-k mining)
Input:
(1) A top-k list
(2) A number of itemsets to be mined: k
(3) A regularity threshold: o,
Output:
(1) A set of top-k regular-frequent itemsets

for each entry z in the top-k list do
for each entry y in the top-k list (x > y) do
if the entries = and y have the same size of itemsets and the same prefix (|[[*| = |IY| and i} =
z'?{,igzi"z’,...,ifm zl, _,) then
merge the itemsets of the entrles z and 9 to be itemset Z = [* U IY
Z2=0,7%=0,s=0
for each partition m do
calculate the left [b%,, [b%, and the right bounidafics#bZ,, rbY, of the m*" partition
calculate the estlmated support esZ from [b==1b and rbZ, , rbY,
calculate the regularity »4 from bz, lby and b rbY, and check 72 with o,
add the estimated support cs7 by esZ,
if es? < s* then
stop considering Z {540 si)
for each partition 7 do
for each t,, in T, (p.& (bf, 1© #bf,) and b, in T, (¢ = 1bY, to rbY,) do
ift, = t, then
calculate the regularity 7% by s
add the suppoit sZ by 1
collect t,, as.the last tid in T2 -

recalculate the estimated support esi= éé;z T o5k T2 |
if es? < s, then Fin
stop considering Z {57 £ Sk} il

calculate the regularity r# by |T"DB| last ﬁi‘of pn h partition (¢Z 12| pn)

if rZ < o, and sZ > s; then— o~
remove the k!-&éntry from the top-k list ’
insert the itemset Z (7= U T¥Y into the top-k list With 7%, %% and T2

the tidsets for the second partition for each element as illustrated in Figure 4.2(c). Finally, the third
partition is considered and thetop-k list after’ scanning all transactions,is given in Figure 4.2(d).
Then, the item f which has the regularity r/ = 7 greater than o, = 4 is removed from the top-k
list. The top-k list is sorted by support.descending order and.item e is.removed, since the support
of e (s¢ =15)isiless than the lsupport ofy (59 = 6) which is the & (5%) item in the top-k list.
The top-k list after initialization is shown in Figure 4.2(e). It will be the starting point for the

mining process.

Since the item b is the first item in the top-k list, TKRIMPE starts by considering the item
a and then looks in the previous items which have the same size and same prefix. Thus, the
item b is combined with the item a and their tidsets are intersected (partition by partition). Since
the number of itemsets in the top-k list is greater or equal to £ = 5, TKRIMPE determines the

estimated support of ba. The left and the right boundaries of b and a in the first partition are

58

a:l:1 b:l:1 d:1:1

—» {1y g (i g {13
v

e:l:1

"l

(a) read first transaction

a:2:3 b:3:2 c:2:2

> ({14} > (11341} > (123}
:2:3 e:2:1 d:3:2
(341}] (1.2} T (1241
v
g:2:3
{341

a:5:3 W[b-ad c:6:2
) 111,4},16,7,8} (R SO0 Ll 142,3},15,6,7,8}}

{{34}{ -i"

d:5:2
{1,2,4}.{6,7}}

c:8:2
,3},15,6,7,8},{9,10} }

_F

27 \ d:#:3
i frez i‘M‘ (1.241,16,71,19,12}}

/ AN
{{1,4},16,7.8 JA’[M\m

{{3,4},{5,6}, 0,128

b:9:2

= c:8:2
6.7,8},{9:11 1’2}-}‘

{{213.}5{5’6’758}’{9510}}

L.
d:7:3

4}.16,7}.{9,12}}

ﬂuEJWW SHEINT

b:9:2 a:8:3 c:8:2
{{134} (6.7.83.49,11,1213 Pl 41,16,7.8}, {10113.}_ {£2,3},15.6,7.80{9.10}}

QRN IR HI DU RIS

Figure 4.3: Top-k frequent itemsets

P11,3,41.46

18 =1,16% = 1,7} = 3 and b = 2, respectively. Therefore, the estimated support est® of the
first partition is 1 + min(3 — 1,2 — 1) = 2. The estimated supports of the second and the third
partition are obtained in the same manner: es3® = 3 and es%® = 2. Finally, the estimated support

ab

ba of ba is equal to 2+3+2 = 7. The itemset ba is still a candidate because es®” = s = 7 > sg.

Thus, TKRIMPE intersects the remaining tids between the left and the right boundaries of each

59

partition to discover the support, regularity and tidsets of ba: 7, 3 and {{1, 4}, {6,7,8}, {11,12}}.
Since the regularity of ba is less than o,.(4) and the support of ba is more than s, = 6, itemset ba
is inserted in the top-k list and item g (the k" itemset) is removed from the top-k list (Fig. 4.3).
Next, the third element, item c, is considered. There are two elements in the previous sequence
and have the same prefix as ¢: b and a. The item c thus is combined with b. The itemset bc is
early pruned because its estimated support es?® = 1 + 3 4+ 1 = 5 is less than sj. Next, the item
d and the itemset ba are treated in the same manner. When all itemsets in the top-k list have been

considered, all top-k regular-frequent itemsets are obtained as shown in Figure 4.3.
4.7 Complexity analysis

In this section, the computational complexity for TKRIMPE is discussed in the terms of

time and space. Extensive experimenial studies will complement this analysis in Section 4.8.
Proposition 4.9 The time-complexity for, creatling the top-k list'is O(nm) where m is the number

of transactions in the database and n is the number of items oceurring in the database.

Proof: Since the proposed algorithm scaﬁé e;ch transaction in the database once, the entry
of each item that occurs in the/transaction-is als;);,.looked up once in order to collect the tid into
tidset (O(nm)). The cost for sorting all (in the \;e'ify worst case) the entries is O(nlogn). Then,
the time complexity to create the top-k list is fo@a-l'fy O(nm + nlogn). In fact, the number
of items (n) is, for the considered-appiications, al"W_éys less than the number of transactions(m).
Thus, the time complexity:to create the top-k list is O(nm). , [

Proposition 4.10 The time complexity for mining top-k regular-iteinset is O(mk?) where m is the

number of transactions inthe database and k is the number of vesults to be mined.

Proof: The mining processimerges each itemset in the top-k list with only the former itemset
in the top-k list. Then, the tidsets of the' two merged itemsets are intersected. Therefore, the
combination of all itemsets in the top-k list 1S % * (k + 1) /2 and the time to,intersect tidset at each

step is O(r). Thus, the overall time complexity of mining process is O(mk?). [|

Proposition 4.11 The memory space required by the top-k list is O(km), where m is the number

of transactions in the database and k is the number of results to be mined.

Proof: The top-k list contains only & itemsets during the mining process and the maximum
tids contained in each element of the top-k list is m. Therefore, the space complexity of using

top-k listis O(km). [|

60

4.8 Performance Evaluation

In this section, the experimental studies are here reported to investigate the performance
of the TKRIMPE algorithm over various datasets. As illustrated in previous chapter, MTKPP
algorithm (Amphawan et al., 2009) outperforms the PF-tree algorithm (Tanbeer et al., 2009) for
all datasets. Then, experiments are conducted to evaluate the performance of TKRIMPE by com-
paring with MTKPP which are the top-k regular-frequent itemsets mining. To investigate the
effectiveness of TKRIMPE, the advantages of database partitioning and support estimation tech-
niques used in TKRIMPE are first illustrated. the processing time (i.e. CPU and 1/Os costs) is
examined to compare the performance of the two algorithms with the small and large values of &
and various values of regularity.threshold (o,.). Futthermore, a study of memory consumption of
TKRIMPE is also considered because of the ase of the top-k list structure. Lastly, the scalability

of TKRIMPE on the number oftransactions in the database is evaluated.

4.8.1 Experimental setup

All the experiments are performed on a Lir-i'}llx-.:platform with a Intel®Xeon 2.33 GHz and
with 4 GB main memory. The experiments ar-e-i:(ii()_rjl? on nine real datasets (accidents, BMS-
POS, chess, connect, kosarak, mushro6, pumsb, ;Fu;;sb* and retail) and three synthetic datasets
(T10I4D100K, T20I6D Q0K and T2016D100K) wh15h were deseribed their details and charac-
teristics in Chapter 2. Programs for MTKPPand TKRIMPE are written in C based on the use of

the top-k list structure.

In the experiments, the value of g, is set depending on the characteristic of each dataset
for illustrative purpose.sTherefore, the value of oy is specified to be different values. In fact, the
number of regular itemsets for each database increases with the value of the regularity threshold.
On sparseydatasets, each itemsets does not occur frequently thus the value of ¢} should be set to
be large when the value of k is large. While, each itemset appears very often in dense dataset, a
small value of o, should be applied. Hence, the value of k is divided into two rages: (i) [50,500]

for the small values; and (i) [1,000, 10,000] the large values, respectively.

61

4.8.2 Advantages of the database partitioning and the support estimation techniques ap-

plied in TKRIMPE

The advantages of applying partitioning and estimation techniques in the TKRIMPE algo-
rithm are first investigated. To do this, the numbers of early terminated itemsets (i.e. the inter-
section processes of these itemsets are not completed) by using the estimation technique and the
numbers of non-considered tids during intersection process (i.e. the summation of non-regarded
tids for each time of intersection) are considered. This analysis is done in an absolute manner and

does not depend on the implementation.

Figure 4.4 to Figure 4.14 show the numbers-of.itemsets that are early terminated (pruned)
by using the support estimation technique.For dense dataset, TKRIMPE is not so efficient, neither
for the small value nor the large valucs'of &, where the number of early terminated itemsets are in
ranges: 10,1, 370] for the small*valtics of k and (980,25, 799] for the large values, respectively.
The reason is that the support of eachitop-k regular-frequent itemset is quite close to each other.
Then, TKRIMPE cannot take benefit from-the ;stimation technique which is an over estimation

method.)

However, on sparse datasets (i.e. BMS:?QS, retail, T1014D100K, T20I6D100K and
T40110D100K) shown in Figure 4.10.t0 Figure 4—.14,1_}the numbers of early terminated itemsets
of the small and large values of k are varied betw?e_@_rgnges: [0.2K,98K] and [17K, 5500K],
respectively. Obviously, from these ﬁgures, it coulci be seen that the use of estimation technique
achieves high number of pfuned itemsets for sparse datasets because each itemset occurs very few

and not together. Thus, TKRIMPE cannot use the benefit of support estimation to prune such

itemsets.

To show the benefit 'of partitioning technique, the number of of non-regarded tids (i.e. the
summation of non-considered tids in each iteration of thé+intersection proeess) are illustrated in
Figure 4.15 to Figure (4.25llustrate the benefit of using the partitioning/and the estimation tech-
niques which is the summation of the number of non-considered tids in each iteration of intersec-
tion process. There are between 9, 000 and 38, 000, 000 non-regarded tids for sparse datasets and

between 200 and 11, 000, 000 non-regarded tids for dense datsets.

62

4.8.3 Execution time

As mentioned above, TKRIMPE can save a lot of operations on itemsets using the database
partitioning and the support estimation techniques. Recall that the performance of MTKPP is
always better than that of PF-tree, a comparison on total execution times between top-k regular-

frequent itemsets mining algorithms: MTKPP and TKRIMPE is thus now only provided.

Let first consider the runtime of TKRIMPE on the six real dense datasets (i.e. accidents,
chess, connect, mushroom, pumsb, pumsb*) as shown in Figure 4.26 to Figure 4.43. From these
figures, the execution times of MTKPP and TKRIMPE are always ranked in the same order on
both the small and large values of &, due to TKRIMPE"can only reduce a few number of com-
parison among the borders of @ partition (i.e. the number of non-regarded tids is very few for
each dense dataset). However, in"some cases with the small values of k, TKRIMPE is faster
than MTKPP because it can take advantage from the estimation technique. On the BMS-POS,
retail and three synthetic sparsedatasets (see Figure 4.44 to Figure 4.58), TMRIMPE outperforms
MTKPP on both the smalliand large values of -k For the real retail dataset, one can notice that
TMRIMPE significantly outperforms MTKPP él_g(;rithm, since TKRIMPE fully takes advantage
of the partition and the support estimation technicjues. On synthetic datasets, TMRIMPE outper-
forms MTKPP for the small and large.values of :k’-. “Howeyver, on T40I110D100K, TKRIMPE has
similar performance as MTKPP when %-is Iarge.,$i-r’11.f:e this dataset is neither sparse nor dense
dataset, TKRIMPE cannot take advantage of parti"ti‘énﬁng and estimation technique for this kind

of dataset.

As a whole these results illustrate that TMRIMPE is very efficient when compared with
MTKPP for sparse datasets as it. was suggested in,the description of the Top-k mining algorithm.

In addition, TMRIMPE has bettet, but not significant, performance for dense datasets.

4.8.4 Memory consumption

Now, the memory consumption of TKRIMPE and MTKPP algorithms are examined. Both
algorithms use a top-k list which contains item-name, a set of tidsets, support and regularity values
for each entry. Obviously, the memory usage of the two algorithms is similar. Figures 4.59 to 4.69

show the memory usage for several values of k on the dense and sparse databases.

These experiments show that the memory consumption is low enough to be able to mine

classical databases within the current available gigabyte-range memory. Indeed, in both imple-

63

mentations the top-k list structure is handled in very efficiently way.

Lastly, it is obvious that the memory usage increases when k increases. In fact, the memory
usage of the proposed algorithm depends on the support value of each element in the top-k list
because the algorithm has to maintain the tidsets of all itemsets in the top-k list in order to compute

the support and the regularity.

4.8.5 Scalability test

the scalability of the TKRIMPE algorighm 1s-studied on execution time and memory con-
sumption by varying the numbeioftransactions in database. The kosarak dataset is used to test the
scalability of TKRIMPE andseompared it with MTKPP. Since the kosarak is a huge dataset with
a large number of distinct of‘items (41, 270) 1and transactions (990, 002), the database is firstly
divided into six portions (i.e. £00 K, 200K, 406]% , 600K, 800K and 990K transactions) and the
value of desired itemsets (k) isSpecified.to be 560 and 10, 000 to investigate the scalability on the
small and large values, respectively. Finally, tlf‘e_ regularity threshold is set to 6% of number of

transactions in each portion for each experiment.. "

o

From Figures 4.70 and 4.71, TKRIMPE has-x_zei’l}; good linear scalability against the number
of transactions in the dataset. In comparison witH JI'.\'/{'-FKPP, TKRIMPE not only runs faster, but it
also has much better scalabilityin-terms-of database.size:-theslope ratio for MTKPP is higher than
that for TKRIMPE. This is-because TKRIMPE can take the advantage from database partitioning

and support estimation techniques.

The scalability of TKRIMPE is also investigated in terms/of mémory. From figures 4.70
and 4.71, these two'algorithms have very, similar memory requirement for all datasets because
they use/the Same tepisefitation’(tidset) to maintain) tids that each’itenisets dccurs. Once the
number of transactions increases, the memory usage of TKRIMPE and MTKPP also increase.
However, TKRIMPE shows stable performance of about linearly increase of the memory require-
ment with respect to the database size. Therefore, it can be observed from the scalability test that
TKRIMPE can mine the top-k regular-frequent patterns over large datasets and distinct items with

considerable amount of runtime and memory.

64

4.9 Summary

In this chapter, an efficient algorithm to mine a set of top-k regular-frequent itemsets,
TKRIMPE, is proposed which is based on: (i) the best-first search strategy that allows to mine the
most frequent itemsets as soon as possible and to raise quickly the &k support (i.e. the support of
the k*" itemset in the sorted top-k list) dynamically which is then used to prune the search space;
(i) the partitioning of the database in order to reduce the number of comparison of certain tids at

the end of each partition during the intersection process and (iii) the support estimation technique

an(/& datasets show that the proposed algo-
—d

ared w P, which are at the moment the only

. From the results, TKRIMPE

used to prune the search space.

The performance studies
rithm is efficient. TKRIMP

one efficient algorithms for mini

ular-frequent patterns
.

0 vhe ataset is sparse, and have similar

AU INENTNEINS
RINNIUUNIININY

accidents
I I I I

< -
)
[2]
2 -
2]
IS
5 -
B —
@
Qo
[S -
>
o

x*

0 50 100 200 300 400 500

k
L “"L ‘
—

_ AN
< . /
) Sl]
[%2]
@
%]
g -
2
5 -
@
Qo
IS -
>
o

10000

Figure 4.4: Thg ter msets on accidents dataset
oy

sets (1K)

o)
number of itemsets (1K)2> ﬂumber of item:
#o ="
N .
I
a
I
' [\
\ J
N 1=
\]
\

|
0 1000 2000 4000 6000 8000 10000
k

Figure 4.5: The number of early terminated itemsets on chess dataset

65

Figure 4.6: Th be

number of itemsets (1K)

number of itemsets (1K)

sets (1K)

number of itemsets (1K)2> ﬂumber of item:

connect
0.35
0.28
0.21
0.14
0.07
0 50 100 200 300 400 500
k

165 T N1/
—
132 |9 ,""‘*;: - 3 i

16.8 [-0r=8 - =%~
12.6
8.4

4.2

|
0 1000 2000 4000 6000 8000 10000
k

Figure 4.7: The number of early terminated itemsets on mushroom dataset

66

09
X
S
5 072
g
£ 054
5 o
S 036
[}
£
E o018
c
k
175 —
. I '
e
14 |G M / =
o > 4 - —
2 105 .
F__.! -
5 7 .
@
Qo
S 3.5 = $ -
>
c

8000 10000

Figure 4.8: on pumsb dataset

msets _1K)
‘ .

number of itemsets (1K)2> ﬂumber of ite

| | | | |
0 1000 2000 4000 6000 8000 10000
k

Figure 4.9: The number of early terminated itemsets on pumsb* dataset

67

)
=2

BMS-POS
<
S
0
g
(2}
£
£
5
@
Qo
£
>
c
0 50 100 200 300 400 500
k

225
<
2 180
1%}
g
g 135
.ﬂ:) o
5 90 73 : .
‘a—) d
Qo
E 45 \]
: & |

A o ! 4%

%

0 72000 '\‘ 00 00 10000

Figure 4.10: The numbe

f%@: inated i ‘. (S on BMS-POS dataset

A 2
e

sets (1K)

ﬂumber of item:

) B
number of itemsets (1K)2>

*
0 1000 2000 4000 6000 8000 10000
k

Figure 4.11: The number of early terminated itemsets on refail dataset

68

)
=2

T1014D100K
95 F T T T T T

<

)

= .
K}

(2}

E —
)

s .
@

Qo

€ .
>

c

x*
0 50 100 200 300 400 500
k
=

<

2 -
1%}

@

(2}

2 .
2

‘C —
@
Qo

£ i
>

c

8000 10000

Figure 4.12: The (s on 771014D100K dataset

A S
= i

umber of itemsets (1K)

. > |
=

Bl
<
2 380
2]
3
2 285
£
5 190
o]
Qo
E 95
=1
=
1 1 1 1 1
0 1000 2000 4000 6000 8000 10000
k

Figure 4.13: The number of early terminated itemsets on 720/6D100K dataset

69

T40110D100K

number of itemsets (1K)

number of itemsets (1K)

2000 "‘ 00 “\ 8000 10000
Figure 4.14:] . Ferminated it on 740110D100K dataset

TR\ I
= i

number of tids (1K

number of tids (1K)

0 50 100 200 300 400 500

Figure 4.15: The number of non-regarded tids during intersection process on accidents dataset

70

chess

30 T T T T 7]

T
o‘r:2 _—
< 0, =4 —-X--
o 24f0,=6--3%-- —
8
E 18 |~ -;
t Vet
8 12 T - R
E ’3%
>
c 6 - /’_,_,% —
L T 1 1 1
0 50 100 200 300 400 500
K
< .
e
n
k]]
S %
5 -2
Qo
£
>
3 _
L
00 E"'ﬁ-ﬂ.' 400 00 8000 10000

a -
£l -

Figure 4.16: The number of no egarde -: dur1 ntersection process on chess dataset
' 7& \\

..M-.

!’ a‘JJ

“

LA

numberofﬁds(lK

642

428

number of tids (1K)

214

0 1000 2000 4000 6000 8000 10000
k

Figure 4.17: The number of non-regarded tids during intersection process on connect dataset

mushroom
50 FF T T T T T
< -
2
%2}
k=] —
5 i 3
@]
Qo
E
=}
3 .
500
k
/ room
1165 — T T =
o 932 k / e
é . ‘ - ’,76
%2} Z Pid
S 699 , - IR
Z - . XK
5 > -
g 466 "N —
Qo ~
IS P o . -
2 233 .
@ 200 8000 10000
. = '
Figure 4.18: The number of non-regarde ... ring int process on mushroom dataset
il 4 L
o AT
&" —t
Sttis 1% '
e] _‘* e
; A

1.4 -

t number of tids (1K
=)
=
N
=)
w
)
N
S
a
o
)

RHS

<
)
B a8
G
o 212
Qo
=
2 106
S
0 1000 2000 4000 6000 8000 10000
k

Figure 4.19: The number of non-regarded tids during intersection process on pumsb dataset

72

pumsb*
375 F T T T T T
=1 ——
— g, = __X_.
é 30 —0::3__*_. -
%2}
2 25| —
©
g Br 3
:
g 75 X7
Tk
Y S et X
0 50 100 200 300 400 500
k
1 S x
1200 — I I
g [.4 -
S ;
B 720 - —
z = - -
§ 480 xm 7T
g : v
2 240 oo T -
@ 200 8000 10000
LY 15 ,
Figure 4.20: The numbes of non-regard: ti uri n process on pumsb* dataset
ads L
. i ¥ ¢
&.7 -
S
Sttis 1%
- S
AN,
0.85 T =

4.5

number of tids (1M) m t number of tids (1M
=)
v\
A !
=)
=)
o
=)
=)

2.25

|
0 1000 2000 4000 6000 8000 10000
k

Figure 4.21: The number of non-regarded tids during intersection process on BMS-POS dataset

73

retail

05

g 04 |-

2]

2 o3}

G

g 02 |-

=

2 01}
0

s

S

2]

il

s

)

Qo

£

=}

)

Figure 4.22: The numbg

number of tids (1K

number of tids (1K)

0

Figure 4.23: The number of non-regarded tids during intersection process on 7/0/4D100K dataset

| | | | |
o, = 6 B m— //
O'r_8 - —- //')é
0,=10 --%-- ////, -
¥ -
4‘({‘
== | | |
50 100 200 300 400 500
k
I <
8000 10000

of

\\\

duri 1\ ection process on refail dataset

1000 2000

4000
k

6000 8000 10000

74

T2016D100K

1425

1140

855

570

number of tids (1K)

285

0 50 100 200 300 400 500

number of tids (1K)

10000

Y
ZOY

number of tids (100K

125
100
75
50

number of tids (100K)

25

0 1000 2000 4000 6000 8000 10000
k

Figure 4.25: The number of non-regarded tids during intersection process on 740/10D100K dataset

75

accidents (o, = 1)

125 F T T T T
MTKPP —+—
TKRIMPE —->--
10| =
s 75 =
Q
E
= 5 —
25 =
0 50 100 200 300 400 500
k
i (0, =1)
200 T T
160 . '/'F &
% 120 _ = .
= 80 —
TKPP —+—
PE - -X--
0 p- i 8000 10000
Figure s (o, = 1%)
;_) =2)
125
@ - —
(3]
E
2 -
-9 L7
u 0 2 0 0 500
k
¢ o o/

time(s)

ITKRIMPEI——X—'

MTKPP —F+— -]

0 1000 2000 4000 6000 8000

k

Figure 4.27:

10000

Runtime of TKRIMPE on accidents (o, = 2%)

76

accidents (o, = 3)

125 F T T T T
MTKPP ——
10 LTKRIMPE —-¢~- _
z 75 _
[9)
£
= 5 -
25 -
0 50 100 200 300 400 500
k
i (g, =3)
200 T T
160 . ' __/j e
@ 120 _— _
T .
= 80 —
TKPP —+—
PE —-%--
0 ¥ 8000 10000
Figure s (o, = 3%)
— — 2)
A o,
0.15 A
o _
Q
0.0 _
- o
0 2 0 0 500
k

time(s)

Figure 4.29:

1000 2000 4000 6000 8000 10000
k

Runtime of TKRIMPE on chess (o, = 2%)

77

0.15

chess (o, = 4)

0.12

0.09

time(s)

0.06

0.03

T T
MTKPP —+—
| TKRIMPE - - --

50 100 200 300 400 500

Figure 4.31:

1000 2000 4000 6000 8000 10000
k

Runtime of TKRIMPE on chess (o, = 6%)

78

79

connect (o, = 1)

15 F T T T
MTKPP —+—
| TKRIMPE —-% -~

1.2

0.9

time(s)

0.6

0.3

0 50 100 200 300 400 500

8000

ect (o, = 1%)

q MTKPP —+—
TKRIMPE —-X--
32

time(s)

| | | |
0 1000 2000 4000 6000 8000 10000
k

Figure 4.33: Runtime of TKRIMPE on connect (o, = 2%)

connect (o, = 3)

15

1.2

0.9

time(s)

0.6

0.3

- T T
MTKPP —+—
| TKRIMPE - -

time(s)

time(s)

100 200 300 400 500

8000 10000

0 1000

2000 4000 6000 8000 10000
k

Figure 4.35: Runtime of TKRIMPE on mushroom (o, = 4%)

80

mushroom (o, = 6)

T T T T
02 - MTKPP ——
TKRIMPE —-X -~
0.16 |- -
D
T 0.12 —
£
= 008 -
0.04 -
L
0 50 100 200 300 400 500
k
r=6)
3 ; T T
2.4 HK e - /~' -
——
» 18 | —
E=] 1.2 L —
0 20007, % 4c 8000 10000
- - o~
- - R
Figure 4.36: Runtime o K E m (o, = 6%)
J,'
T
j,"-'-‘
id e
;_ L B =8)
T =
0 =]
O i
2 -
'E ﬁ
004 v/ 7

o
N
o
o
al
o
o

time(s)

| | | | |
0 1000 2000 4000 6000 8000 10000
k

Figure 4.37: Runtime of TKRIMPE on mushroom (o, = 8%)

pumsb (o, = 2)

2 F T T T T
MTKPP —+—

16 | TKRIMPE —-X-—-

12

time(s)

0.8

0.4

0 50 100 200 300 400 500

18 1 o -1

|

time(s)

12

)71
0 4609" J #2000 8000 10000

#2000 *
A

59

| | | | |
0 1000 2000 4000 6000 8000 10000
k

Figure 4.39: Runtime of TKRIMPE on pumsb (o, = 4%)

82

time(s)

time(s)

Figure 4.40: R

10

B 75

Q

£

= 5
25

pumsb (o, = 6)
2

T T T T
MTKPP —+—

16 | TKRIMPE —-X--

500

12 —
0.8 -
0.4 —
0 50 100 200 300 400
k

30

18 '
12 /)
A =
0 3600f /2000

#2000 *
A

59

8000

TKRIMPE —-X--
| | | | |

MTKPP —+—]

10000

0 1000 2000 4000 6000 8000 10000

k

Figure 4.41: Runtime of TKRIMPE on pumsb* (o, = 1%)

84

pumsb* (o, = 2)

1F T T T T
MTKPP —+—
TKRIMPE —->~-
0.8 [~
@ 06 .
(<}
£
=04 .
0.2 4
]
0 50 100 200 300 400 500
k
@ —
[}
E

5 7 o ' .
S K | MTKPP —— —
-
of 41000/ 2000V 4000 . 6000, 8000 10000

2P\

Figure 4.42: Ruatime o _ PE pumsb* (o, = 2%)
ey _ \
y

time(s)

MTKPP —+—]
TKRIMPE --% -

| | |
0 1000 2000 4000 6000 8000 10000
k

Figure 4.43: Runtime of TKRIMPE on pumsb* (o, = 3%)

85

BMS-POS (g, = 1)

T T T T T
MTKPP —— —=77

4 [TKRIMPE - -%-- X

time(s)
X
\

0 50 100 200 300 400 500

15 T

12 e - o X7

time(s)
©
\

|

6 —
TKPP —+—
- PE —-%--

0 2000 = a0 6 8000 10000

Figure 4 E S (o, = 1%)
;_ L =2
I — 7
- -
T 3 —
=
=
¢ = v .

time(s)

ITKRIMPEI —X--

| | |
0 1000 2000 4000 6000 8000 10000
k

Figure 4.45: Runtime of TKRIMPE on BMS-POS (o, = 2%)

86

BMS-POS (g, = 3)

T T T T
MTKPP —+—
5 [TKRIMPE —-X%--

4 -
@

g’ 7

2 —

1 —

0 50 100 200 300 400 500
k

T -

=7

X7 .

0 _
[J)
£

MTKPP —+— —

RIMPE —->—-
8000 10000
Figure 4 POS (o, = 3%)

time(s)

0 1000 2000 4000 6000 8000 10000
k

Figure 4.47: Runtime of TKRIMPE on retail (o, = 6%)

retail (o, = 8)
05 I I I
: MTKPP ——
TKRIMPE —-X%--
0.4 [~ s
X
@ 03 —
(<}
£
= 0.2 —
0.1 —
|
0 50 100 200 300 400 500
k
il{o, = 8)
12.5 |
10 Kl ; = - ./. |
% 15 _ _
EE; ! -
= 5 -
- K== 7
¥ 8000 10000
Figure4 .4 etail (o, = 8%)

= 10)
0.6

time(s)
\
1
|
1
|
X
\
\
\
|
|

time(s)

1000 2000 4000 6000 8000 10000
k

Figure 4.49: Runtime of TKRIMPE on retail (o, = 10%)

87

T1014D100K (o, = 4)

1F T T T
MTKPP —+—
0.8 | TKRIMPE - _
. -
@ 06 =
Q
£
=04 =
0.2 4
1
0 50 100 200 300 400 500
k
K (o, =4)
35 T T
28 -/~ -
d _-7
& 21 X4
T o
= 14 A =
P TKPP —+—
& PE —-X--
0 p- i 8000 10000
Figure 4. 0K (o, = 4%)
- . o, = 6)
15
-7
z . m
(3]
'E g
0.3 7 -
e L7
FI u 1 20 0 400 500
q k

time(s)

09 - /7

MTKPP —F+— -]
TKRIMPE - —-

0 1000 2000 4000
k

6000 8000 10000

Figure 4.51: Runtime of TKRIMPE on T10I4D100K (o, = 6%)

88

T1014D100K (o, = 8)

2 T T T
MTKPP ——
| TKRIMPE - % -~]
1.6 B
7 12 .
Q
£
= 08 —
0.4 .
]
0 50 100 200 300 400 500
k
K (o, = 8)
5.25 T T
42 m ' /‘ -
. -~ X
@ 315 _ X" .
H -
= 21 —
TKPP —+— -]
- PE —-%--
p- i 8000 10000
Figure 4. 0K (o, = 8%)
- e 0, =2)
_3.75 T =
@ - —
(3]
.E ke
X
0.7 et .
- x~
0 0 500

time(s)

1.75

MTKPP —F+— -
TRIMPE =% -

0 1000 2000 4000 6000 8000 10000
k

Figure 4.53: Runtime of TKRIMPE on T20I16D100K (o, = 2%)

89

T2016D100K (o, = 4)

6.5 F T T T T
MTKPP —+—
TKRIMPE —-%--
52 |-
2 39 —
Q
E
= 26 —
13| —
) =
0 50 100 200 300 400 500
k
OK (o, = 4)
2175 T T
17.4 - -/-' 5
s 130 x4
FE; —
= 8.7 X —
.35 2 —
z
p- i 8000 10000
Figure 4. 0K (o, = 4%)
;_ 4 'y Gr = 6)
7.5 T
. //
DN . 7
GEl> 7
£ X -
15 - -
P e)
1 20 0 400 500
k

time(s)

MTKPP —F+— -
TKRIMPE X -

0 1000

2000 4000

k

6000 8000 10000

Figure 4.55: Runtime of TKRIMPE on T20I16D100K (o, = 6%)

90

T40110D100K (o, = 2)

125 F T T T
MTKPP ——
TKRIMPE —-% -
10
»w 15}F]
[9)
£
=] 5 L —
25 -
* ———— |
0 50 100 200 300 400 500
k
OK (o, =2)
275 , —
22 [: — -
: T
% 165 -
£ 1 \ -
TKPP ——
- PE - -
4 2000, % 8000 10000
Figure 4.5 1 E on 0K (o, = 2%)
;_ L Wy Or = 4)
15 T
D - -
Q
-E ///
3 _ X’
o o
FI u 0 0 400 500
Y K
0
[3)
£
85 [~ MTKPP —+—
TKRIMPE —-X% -
I I I I I
0 1000 2000 4000 6000 8000 10000
K

Figure 4.57: Runtime of TKRIMPE on T40110D100K (o, = 4%)

91

92

T40110D100K (o, = 6)

15 T T T T T
MTKPP —+— >
12 FTKRIMPE —-%-- -7
//X/
z 9F .
9] X
E oL i
sL //,x |
e r I I I
0 50 100 200 300 400 500
k
K (o, = 6)
50 T T ==
40 e : === -
% 30 g -
2 = K
= 20 . —
10 ‘ TKPP —+—
- PE —-X--

0 #2000 = 40 6 8000 10000
Figure 4.5 i E on 0K (o, = 6%)
BTN, ~

250 =
)
2 - .
=
o
£ i
£ 1
£
OF o [V 7

2

memory(MB)

| | | | |
0 1000 2000 4000 6000 8000 10000
k

Figure 4.59: Memory usage of TKRIMPE on accidents

93

chess (o, = 6)

L 4
‘b- 600

Figure f e of TK ’E on chess

8000 10000

5 T T T T
MTKPP —+—
4 LTKRIMPE - % -
o
S 3| -
=
g
g 2[7]
£
1 -
x*
0 50 100 200 300 400 500
K
100
80 .
a A
2 60 - 1 K -
g a -
2 4 | ‘ ; \ _
£ "/)
2 773\]
=
il
o Aood J2000" s

| | | | |
0 1000 2000 4000 6000 8000 10000
k

Figure 4.61: Memory usage of TKRIMPE on connect

2
=0

. > |
=
&o

mushroom (o, = 8)

T T T T
MTKPP —+—
| TKRIMPE - X -

5.6

4.2

2.8

memory(MB)

1.4

0 50 100 200 300 400 500

memory(MB)

10000

memory(MB)

1320
o
S 99
>
g
E 660
£

330

]]]
0 1000 2000 4000 6000 8000 10000
k

Figure 4.63: Memory usage of TKRIMPE on pumsb

94

2
=0

. > |

pumsb* (g, = 3)

so T T T T
MTKPP —}—

TKRIMPE —-X--

a0l -
a1}
<

< 30 -
o

§ 20 _
£

10 -

|
0 50 100 200 300 400 500
K

memory(MB)

_jﬂﬂ‘_h |

20004 ‘\ 00 8000 10000

a\

\

memory(MB)

2 =2
‘o P

MTKPP —+—
TKRIMPE —-X--

105

memory(MB)

| | | |
0 1000 2000 4000 6000 8000 10000
k

Figure 4.65: Memory usage of TKRIMPE on BMS-POS

95

. > |

‘9_-)
=0
2D

96

retail (o, = 10)

2 T T T T X
MTKPP —+—

16 FTKRIMPE —-¢-- i
o
S 12 —
2 % ¥ ¥ ¢
E o8l .
£

04 | .

I I I I I
0 50 100 200 300 400 500
K
X
a Y
= — _
= ’ S
2 4
£ R | S i
[)
£ /
/ p | 4
090 /#2000 ‘\ 00 0 8000 10000
le

PE on retail

memory(MB)

=

MTKPP —+—
12 ITKRIMPE —-%~-

memory(MB)

| | | | |
0 1000 2000 4000 6000 8000 10000
k

Figure 4.67: Memory usage of TKRIMPE on 71014D100K

2
=0

. > |

97

T2016D100K (o, = 6)

9 T T T T
MTKPP —+—

79 ITKRIMPE - ¢ -- i
o
2 54 —
=
g
E 36 i
£

18 .

I
0 50 100 200 300 400 500
K

memory(MB)

8000 10000

Figure 4668 Memory uSag CRIMPE on 72016D 100K

memory(MB)

2 =

MTKPP ——
60 FTKRIMPE —-%--

memory(MB)

| | | |
0 1000 2000 4000 6000 8000 10000
k

Figure 4.69: Memory usage of TKRIMPE on 740110D100K

98

kosarak (k = 500, g, = 6)

7 T T T T T
56 |- o
X7
5 42 e _
Q
E L.l ol |
) — x-
14 |- = MTKPP —+—
ke TKRIMPE —-%--
]]]]]
0 1 2 4 6 8 9.9
Number of transactions(100K)
1500,0, = 6)
70 _ T T
M
56 # 7]
E L
= 42 " —
> =
E 28 —
S : ‘
14 A -]
0 # 200 800 990
tral 0
Figurgd.7 I 0,0, = 06)
¢ j::.l’
o] 0, o, = 6)
A J-
% LA :
//4
D]
Q
£ -]
1 = —
818 o~ = o/ . M':'KPP ——
9.9

Number of transactions(100K)

¢ o Y,

2 2

MTKPP —+—
| TKRIMPE — =% —-

memory(MB)

0 100 200 400 600 800 990
Number of transactions (100K)

Figure 4.71: Scalability of TKRIMPE (% : 10, 000, o, = 6)

CHAPTER V

TKRIMIT: TOP-K REGULAR-FREQUENT ITEMSETS MINING
BASED ON INTERVAL TIDSET REPRESENTATION

The aim of this chapter is to reduce the computational time and memory consumption from
the MTKPP and TKRIMPE algorithms by reducing the number of maintained tids during mining
process. Hence, a new concise representation, called iuterval transaction-ids set (interval tidset),
used to maintain the occurrence information of each segular itemset is introduced and described
in details. Based on the interval tidsei tepresentation, an-interval tidset is employed instead of
a normal tidset (i.e. maintaining all of tids that each itemset occurs) as used in MTKPP and
TKRIMPE algorithms. In additions an ofticient algorithm, called Top-K Regular-frequent Itemsets
based on Interval Tidset representation (TKRIMYT), is also proposed. Lastly, the data structure

and the complexity analysis of the TKIRIMIT afgorithm are discussed.

The experimental studigs illustrate that TKRIMIT provides significant improvements, in
particular for dense datasets, in comparison with 'MTKnPP and TKRIMPE on both small and large

g4

number of required results. —
5.1 Preliminary of TKRIMIT

To mine the top-k regular-frequent itemsets, TKRIMIT also employs a top-k list as MTKPP
and TKRIMPE in order to maintain a set of top-k regular-frequent itemsets during mining process.
Besides, the best-first search strategy is adopted toquickly mine itemsets with the highest supports
(i.e. to raise up thetsupport of the k' itemset in the top-k list which helps to cut down the search
space). In.additions.the.interval.tidset representation is devised, and utilized to.reduce the number
of maintained'tids. By'this'way'ofidoing, TKRIMIT canireduce'memory. to maintain tidsets and

time to intersect between tidsets.
5.2 Interval Tidset representation

Interval tidset representation is a new concise representation used to store the occurrence
information (tidsets) of the top-k regular-frequent itemsets during mining process. The main
concept of the interval tidset is to wrap up two or more consecutive continuous tids by maintaining

only the first (with one positive integer) and the last tids (with one negative integer) of that group

100

of tids. By applying this representation, TKRIMIT can thus reduce time to compute support and
regularity, and also memory to store occurrence information. In particular this representation is

appropriate for dense datasets.

Definition 5.1 (Interval tidset of an itemset X) Let a set of tids that itemset X occurs in TDB
beTX = {t;(, tl)f-f—l’ e tg(} where p < q and there are some consecutive tids {t; ,tX, |, ...ty
that are continuous between t;f and t;((where p < wand q > v). Thus, the interval tidset of the

itemset X is defined as:

X . X (X Xy X X
IT :{tp,tp+1,,t_u,(tu _tv)ftv+17"'7Tq}

For example, from the tranSactional datlabase of Table 5.1, an item a occurs in the set of
transactions: T% = {t1, tagts, tal test7. ls, to, i_le? t11, t12} which is composed of two groups of
consecutive continuous transactions. Thus, by, l'lsing the interval tidset representation, the in-
terval tidset of the item a is 7% = {1, -3, 6, ~6}. The first interval tids (1, —3) represents
{t1,12,t3,t4} wWhereas (6, <6) gepresents the laé_f-_,geyen consecutive continuous tids that the item
a occurs in the database. For the item a;the ﬁg)?dof interval tidset representation is efficient.
It can reduce seven tids to be maintained compaﬁﬁg,lyvith the normal tidset representation. For
items b and ¢, the sets of transactignﬁs_ that they o_c?__u_f;a_m Tt = {t1,ta,ta,ts5,t7,ts,t10,t11} and
T¢ = {t1,t3,ts5, 7, to,t124}s respectively. Therefore, the interval tidsets of the items b and c are
ITY = {1,-1,4,-1,7, ,—i, 10, —1} and I7€ = {1,3,5,7,9, 11} which are the examples of the

worst cases of interval tidset representation.

The interval tidSet|répiies€ntation is jefficienit a§ soon as'there,are three consecutive contin-
uous tids in the tidsets whereas in the worst cases, the interval tidset representation contains the

same number of tids as the normal tidset representation.

Theorem 5.1 Let |IT| is the number of tids in the interval tidset of an itemset X and s is its
support. The |ITX| < sX where s* > [2 x |TDB|] and |TDB| > 3. Otherwise, |ITX | can be

less than or eqaul to s°X.

Proof: Lets* > [2 x |[TDB]|] and let the tidset TX of the itemset X has no more than two
consecutive continuous tids. In fact, the maximum value of sX when the tidset of X has no more
than two consecutive continuous tids is [2 x |TDB|]. It happens in the case that the itemset X

occurs in every two transactions and misses one transaction. In contradiction, for any s~ which

101

sX > [2 x |TDB|] must have at least one group of tids that occurs in three or more consecutive
continuous. Therefore, when the tidset 7% has a group of three or more consecutive continuous
tids, TKRIMIT (based on the interval tidset representation) can group these tids together by using

only one positive and negative tids. Thus, [ITX| < s¥X. [|

With this representation a tidset of any itemsets may contain some negative tids. Therefore,
the original definition (Definition 3.1) is not suitable to calculate the regularity from this kind

of tidsets. Thus, a new way to calculate the regularity of any itemsets from the interval tidset

representation is proposed.

3
Definition 5.2 (Regularity of anvitemset X from interval tidset) Ler t;f and tf be two consec-
utive tids in interval tidset JI, ie. where p < q and there is no transaction t,., p < r < g,
such that t,. contains X (note'that'p, q and r ar!‘e indeces). Then, Tttff is denoted as the regularity
between two consecutive tids tg(and té((e thé number. of tids (transactions) between tg(and
tX that do not contain X'). Obviously, rtt; is;X ¢ Last, to find the exact regularity of X in the
database, the regularity between the last tid of‘I T A and the last tid of the database should be

calculated. This leads to the cases as follows

tq . — lf‘q —]- :

tX - ifty and ity >0,2 < q < |ITX]|

1 ifty > 0and ty <0,2<q<|ITY|
rity = 'e D1y A X X

TRz AR it <0and t271>0,2 < ¢ < [IT|

[PDB| — t{ipx, iftf}TX| >0, (ie.q= [ITX|+1)

T DB i)t xed) Vi il <04 (e g SMTA |+ 1)
Finally, the regularity of X is defined as ™ = maz(rttX, rtt5, ... rttix).

For example, consider the interval tidset /7% = {1, —3,6,—6} of the item a. The set of
regularities between each pair of two consecutive tids is equal to {1,1,6+(—3—1),1,12—(—6—

6)} ={1,1,2,1,0} and the regularity of the item a is 2.

102

Table 5.1: A transactional database as a running example of TKRIMIT

tid items

1 abcecdf
2 abde
3 acd

4 ab

5 bcef
6 ade

7 abcde
8 abd

9 acdf
10 abe
11 wb old
12 wdf

o

5.3 TKRIMIT: Top-k list strueture

|
As in (Amphawan et'al., 2009), TK_RIMIT_ is based on the use of a top-k list, which is an

ordinary linked-list, to maintain the top—k geguf_ev_,r:frequent itemsets. A hash table is also utilized
with the top-k list in order to guickly access eac‘b entry in the top-k list. At any time, the top-k list
only contains not more than k regular—fregtlent if:é[psg__ts in main memory. As shown in Figure 5.1,
each entry in a top-k list consists ©f 4 fields: (i)'-'!f'ij@gl or itemset name ([), (ii) total support (sh),
(iii) regularity (r") and (iiii) an interval tidset where :Y_J:_bccurs (IT"). For example, the item a has

a support of 11, a regularity of 2 and its interval tid_égt is /T* = {1,—3,6,—6} (see Figure 5.1).

item | top-k list's link

v -

a:11:2 c:6:2

|0 ([ea)o | o e

Figure 5.1: TKRIMIT: Top-£ list structure with hash table

5.4 TKRIMIT algorithm

As mentioned above, the TKRIMIT is based on the interval tidset representation to maintain
the occurrence information of each itemset and the use of a top-k list to collect the & regular
itemsets during mining process. The TKRIMIT algorithm consists of two steps: (i) Top-k list

initialization: scan database once to obtain and collect the all regular items(with highest support)

103

into the top-k list; (if) Top-k mining: merge each pair of entries in the top-k list and then intersect
their interval tidsets in order to collect tidset and to calculate the support and regularity of a new

generated regular itemset.

5.4.1 TKRIMIT: Top-k list initialization

To create the top-k list, TKRIMIT scans the database once (transaction per transaction).
Then, each item of the current transaction is then considered. With the help of the hash table,
TKRIMIT can know quickly if the current item/is‘already existed in the top-k list or not. In the
first case, its support, regularity and interval.tidset have just updated. If it is its first occurrence

then a new entry is created and its suppett, regularity and interval tidset are initialized.

To update the intervalsidses7 77 of an item X ., TKRIMIT has to compare the last tid (¢;)
of ITX with the new comingid (#;)4 Thanks th the interval representation (see Definition 5.1) it

it

simply consists of the following cases: -, ‘}
e if £, < 0, i.e. there are some former colﬂgiegptive continuous tids occurs with the exact
tid of t;, TKRIMIT calculates' the-exact tlﬂ)f‘tz < 0 (i.e. t;—1 — t;) and compares it
with ¢; to check whether thcy_’are'continuoi};_-,_'_gﬁ they are consecutive continuous tids (i.e
t; —ti_1 +t; = 1), TKRIMIT has to extend the interval tidset 1 T (it consists only of
adding —1 to ;). étherwise, TKRIMIT creates a new element to take into account ¢; (it

simply consists of adding ¢; after ¢; in I —

e if t; > 0, L.er there,is no former consecutive ;continueus-tid.occurs with ¢;, TKRIMIT
compared ?; with"?; to'chéck ‘whether'theytare continuous'or not. If they are consecutive
continuous tids (i.e. t; —t; = 1)#TKRIMIT creates a new intervalrin I TX (it consists
of adding\—1 aftéf # in IT-Y). Otherwise; TKRIMIT creates a new element to take into

account ¢; (it simply consists of adding ¢; after ¢; in [).

After scanning all transactions, the top-k list is trimmed by removing all the entries (items)
with regularity greater than the regularity threshold o,, and the remaining entries are sorted in
descending order of support. Lastly, TKRIMIT removes the entries after the k*" entry in top-k

list. The details of the top-k list’s construction are presented in Algorithm 5.

104

Algorithm 5 (TKRIMIT: Top-k list initialization)
(1) A transaction database: T DB)
(2) A number of itemsets to be mine:
(3) A regularity threshold: o,

Output:

(1) A top-k list /
create a hash table for all M

for each transaction j in
for each item i in the tran
if the item 4 does no
create a new entry fo
create a link betw.

else
calculate the regul
add the support s° by 1
if the last tid in Ti(!

= (i —

add the last tid in T by

else

collect ¢; as.the la
else
if ¢ —thelas (id
collect 1 as the
else I

collect t; as the last tid in T

m“ﬁmmm PINEIDT oo

alculate the r

IT’I 1 IT’

‘”%ﬁ%ﬁmmmwmmaﬂ

sort th
remove all of items having the support less than k" item in the top-k list

105

Algorithm 6 (TKRIMIT: Top-k mining)
Input:
(1) A top-k list
(2) A number of itemsets to be mined: k
(3) A regularity threshold: o,
Output:
(1) A set of top-k regular-frequent items

for each entry z in the top-k list

("] = [1Y| and if =
merge the itemsets o
2=0,s=0
for each t,, in 71"
ift, > 0 and ¢,
if{, = ¢, then
calculate the reg
add the suppor
collect ¢, as-the I
elseif ¢, > 0and t,
iftp Stq—l —tq (9
calculate the regu
add the support s by
collect ¢, as the last

elseif £, < Qand t; >

7ith o,

£)
Y]

add the su -
collect ¢4 e last tid in 1" m
else

‘”ﬁmﬁﬁ S NT

[TZ|
else

q mzwmmﬂwﬁ NYQY

ca ulate the regulanty rZ by |TDB|— the last tid of T'# (in case of the last tid > 0, otherwise
|TDB|— (tITZI—l |TZ|))
if 74 < o, and sZ > s, then

remove k" entry from the top-k list

insert the itemset Z into the top-k list with 7Z, 5% and 7%

106

5.4.2 TKRIMIT: Top-k mining

As described in Algorithm 6, a best-first search strategy (from the most frequent itemsets
to the least frequent itemsets) is adopted to quickly generate the regular itemsets with the highest
supports from the top-k list. This technique can help TKRIMIT to prune the search space when

TKRIMIT can quickly find the top-k regular-frequent itemsets with the highest supports.

To find the top-k regular-frequent itemsets, two candidate itemsets X and Y in the top-k list
are merged with the following two constraints; (i) the size of the itemsets of both elements must be
equal; (i7) both itemsets must have the same prefix(i.e. each item from both itemsets is the same,
except the last item). This way of deing will help the pieposed algorithm to avoid the repetition of
generating larger itemset and may help to prune the search Space. Then, the interval tidsets of the
two candidate itemsets are sequentially intersected in order to calculate the support, the regularity
and to collect the interval tidset.of the new generated itemset. To sequentially intersect the interval
tidsets I7%X and ITY of X anddV"_oné have to consider four cases when comparing each pair of

tids tZX and t}/ in order to constrict J77° Y «(see Pefinition 5.1):

(i) if tX =t} > 0 add t;* afthelend of 77X+~

s J

J all ol il
(i) if ;X > 0,8} < 0,65 <) 44 add ;¥ atthe,end of IT*Y

(i) if X < 0,6} > 0,¢ <X, ¥ add () artheend of ITXY

iid) if ¢, 5 < 0, add e {ligm iy Jat the end OE LY if ¢ — ¢ <t) —t],

otherwise add tff}/X'Y] - (t}/_1 - tg/) at the end of ITXY

From ITXY , the support's* ¥ and the regularity 7Y of XY (see definition 5.2) are easily
computed. TKRIMIT then remoyes the & entryand insérts the itemset XY into the top-k list if
XV is greater than the support of the k'%itemset in the top-k list and if X} is not greater than

the regulagity thresholdya s,

5.5 Example of TKRIMIT

Consider the T'D B of Table 5.1, a regularity threshold o, of 4 and the number of desired

results k£ of 5. Then, the initialization of the top-k list from the T'D B is illustrated in Figure 5.2.

After scanning the first transaction (t; = {a, b, ¢, d, f}), the entries for items a, b, ¢, d and

f are created, their supports, regularities and interval tidsets are also initialized as (1 : 1 : {1})

107

a:l:1 b:1:1 c:1:1
> {1} > (1 > {i}
f:1:1 d:1:1
i A (o
(a) read t1
a:2:1 b:2:1 c:1:1
g Rt VS VR g E L S TR g {1}
f:1:1 e:1:2 d:2:1
(1 T 21 <
(b) read 73
a:3:1 bl c:2:2
P (2 el (e {1.3)
f: 1+ Sl d:3:1
(1) Vi 12} 1 a2
(cj[readt3
a:11:2 “d:9:2 b:&:2
—> {1,-3.0£6! i1 {1,-2:6,-3, 11,41} _’{1,-1,4,-1,7,-1.10,-1}
s 62
4 o C.0:
{2:5:42,10} N {1,3,5,7,9,11}

(d) Sorted and tffrjnned top-k list
Jabt #7224
Figure'5.2: Top-k list initialization

d -l

(see Figure 5.2(a)). Wlth the second transaction (to = {a, b, d; e}), TKRIMIT adds —1 at the
end of the interval tidsets of a,b and d, since these items occur in two consecutive continuous
transactions. Then, the eniry for the item e is created and iniiialized (see Figure 5.2(b)). For
the third transaction ({5 = {a/c,\d}); as'shown 4n Figuré'5.2(¢), the'last tids of the items a and
d are changed to =2 (i.e. they occur in the three consecutive continuous transactions t1,to and
t3) and the interyal tidset of item.c is.updated by adding ¢3 .as.the last tid. After scanning all
the transactions} the top-k list is sorted by fits support déscending order’and.item f is removed

(Figure 5.2(d)).

In the mining process, item d is firstly merged with the former item a. The interval tidsets
IT® and IT? are sequentially intersected to calculate the support 5% = 9, the regularity 7%¢ = 3
and to collect the interval tidset I7°% = {1,-2,6,—3,11, —1} of the itemset ad. Since the
support s°? is greater than s¢ = 5 and the regularity r°? is less than o, = 4, the item e is removed
and ad is inserted into the top-k list as shown in Figure 5.3(a). Next, the third itemset i.e. the

itemset ad is compared to the former itemsets a and b. These itemsets do not share the same

108

—» {1aji31,16:,-26} > {1,-2,%:,-93:,211,-1} B {1,-22,12,:-2,:121,-1}
{1,3(,:5:,672,3,11} <_{1,-1,4,]-31:%:,-21.10,-1}

(a) top-k list when merging item a with item d
—> {153531,16:,-26} > {1,-2,%:,-93:,211,-1} B {1,-22,12,:-2,:121,-1}
(1,1 31377] 31 0-13 [,4,]-31:,%:,-21 10,-1}

(b) final top-k list

Figuie 5.3: Top-k during“mining process
)

prefix and thus are not merged: TKRIMIT then considers the item b which is merged with a and d
(s% =7, p% = 3, IT = L™ 27 £1 1021} b =5 pbd— 5 1T = {1, 1,7, —1,11}).
The itemset ab is thus added 0 the list and-itemset ¢ is removed. The itemset bd is eliminated,

since its regularity is greater than g,.. Lastly, the itemsets ab and ad are considered and the top-k
v

regular-frequent itemsets are finally obtained as‘'shown in Figure 5.3(b).

5.6 Complexity analysis T

In this section, thé @()Thplexity of TKRIMIT is further diséuséed in terms of time and space.

Proposition 5.3 The time complexity for initializifig'the top-k list is O(nm) where n is the number

of items occurring in database and m is the number of transactions|indatabase.

Proof: Since the'proposed algorithm scans each transaction-in the database once, the entry
of each item that occurs in the transaction is also looked up once in order to collect tids into
tidsets. Hence, the cost for database scanning is O(nm) whereas the cost for sorting all (in the
very worst case) the entries is O(nlogn). Then, the time complexity to create the top-k list is
formally O(nm + nlogn). In fact, the number of items (n) is, for the considered applications,
always less than the number of transactions(m). Thus, the time complexity to create the top-k list

is O(nm). [|

109

Proposition 5.4 The time complexity for mining top-k regular-itemsets is O(m(k?)) where m is

the number of transaction in database and k is the number of itemsets to be mined.

Proof: The mining process merges each itemset in the top-k list with only the former itemset
in the top-k list. Then, the interval tidsets of the two merged itemsets are intersected. Therefore,
the combination of all itemsets in the top-k list is k& % (k 4+ 1)/2 and the time to intersect any
two interval tidsets at each step is O(m). Thus, theoyerall time complexity of mining process is

O(mk?). [

Proposition 5.5 The memoryspacerequired for TKRIMIT is O(([%m})k) where m is the number

of transaction in database and'k isithe number of itemsets to be mined.

Proof: Base on Theorem 3.1, the max}mum number of maintained tids of each item-

set is [%\TDBH. Then, all offdegired memoty to maintain interval tidsets for k itemsets is

O(([3m])h). e .

5.7 Performance evaluation

In order to validate the effectiveness of the TKRIMIT algorithm based on the interval tid-
set representation, several experiments were conducted to compare the performance of TKRIMIT
with the TKRIMPE and MTKPP algorithms. To measure the performance of the three algorithms,
the processing time.(i.e. included top-k list construction and mining processes) and space usage
(i.e. memOtyconstmption and thesnumber of mainitained tids /dufingmining process) are consid-

ered.

5.7.1 Experimental setup

All experiments were performed on an Intel®Xeon 2.33 GHz with 4 GB main memory,
running on Linux platform and all the programs were coded in C with the same structure as
MTKPP (i.e. based on the use of top-k list). The experiments were performed on nine real datasets

(accidents, BMS-POS, chess, connect, kosarak, mushroom, pumsb, pumsb*, retail) and three

110

synthetic datasets (T1014D100K, T20I6D100K, and T40I110D100K) of which some statistical
information are shown in Chapter 2. The performance of TKRIMIT is evaluated by various values
of k and o,.. It can be observed that in all datasets the high value of regularity threshold (o) will
give a greater number of regular itemsets. This is due to the fact that as the o, increases, there is
a greater possibility of getting more regular itemsets compared to low o, values. This is why the
value of o, is specified for each datasets in the experiments is not equal. The value of regularity
threshold is set between 1 to 10% of total number of transactions in database. The values of k are
varied between 50 to 10, 000 to see the performance of the proposed algorithm for the small and

large value of k.

5.7.2 Compactness of using interyal tidset representation

1
Based on the interyal tidset tepresentation, TKRIMIT can generate more concise tidsets

than the original tidsets (used in®MTKPP and jKRIMPE) sinee the former maintains only the
first and the last tids of the two of more conseéuthe continuous tids by using only one positive
and one negative integer, respectively. Meanwhijt_;_, the latter collects all of tids that each itemset
occurs. Thus, the number of tids that TKRIMIT{ can reduce on dense and sparse datasets are

considered. To depict the result, the nimbers of reduced tids by TKRIMPE is shown in Figure 5.4

to Figure 5.14.

Tyl S

It is observed fronr Figure 5.4 fo Figure 5.9 that the TRRIMIT can reduce a lot of tids to
store in the interval tidsef on dense datasets. For the small values of k£, TKRIMIT can reduce up
to 86, 000, 000 tids whereas the number of reduced tids is 713, 000, 000 with the large values of
k. However, as shown in Figure,5:0, to Figute«5;14 \TKRIMIT«cantiot significantly reduce the
number of maintained tids from MTKPP“and TKRIMPEon sparse'datsets. Because of the char-
acteristics of sparse datasets, most of itemsets do not oc€ur in consecutive'continuous tids. Thus,
the number of reduced tids'is in range 1500, 34, 000] for the small value of & and [800, 42, 000] for

the large values of k.

5.7.3 Execution time

From Figures 5.15 to Figure 5.32, the evaluation results for real dense datasets are re-
ported. From these figures, the performance of TKRIMIT is different from other algorithms such

as MTKPP and TKRIMPE using normal tidsets (i.e. maintaining all of tids that each itemset

111

occurs). It can see from these figures that the performance of using interval tidset is better than
using normal tidset on the small and large value of k. In addition, on dense dataset, each itemset
occurs almost every transaction or occurs very frequent. Then, TKRIMIT can take the advantage
from the use of interval tidset representation. However, on mushroom dataset and the large values
of k, TKRIMIT cannot significantly reduce the runtime from MTKPP and TKRIMPE. This is
because mushroom has a small number of transactions, then TKRIMIT cannot yield the benefit

of grouping tids together.

Meanwhile, the execution time on sparse datasets is shown in Figure 5.33 to Figure 5.47.
Note that the performance of TKRIMIT is similar with. MTKPP and run slower than TKRIMPE
from these figures. TKRIMIT cannot take the advantage fiom database partitioning and support
estimation techniques as used in. FKRIMPE. Due to each itemset in sparse datasets occurs not
often and it does not occurs in.the consecutive continuous transactions, TKRIMIT cannot take the

advantages from grouping consecutive continuous tids from sparse datasets.

5.7.4 Memory consumption

¥

As mentioned above, TKRIMIT ¢an essenfi__éflyj n_reduce the number of maintained tids dur-
ing mining. In this subsection, the memory usage of TKRIMIT is also investigated by comparing

with MTKPP and TKRIMPE:

Figure 5.48 to Figure 5.53 show the memory usage of TKRIMIT, MTKPP and TKRIMPE
on real dense datasets. From this figure, TKRIMIT can significantly save the memory usage from
MTKPP and TKRIMPE. For the large value of k, TKRIMIT consumes over two orders of mag-
nitude less memory thaneMTKPP and TKRIMPEThe mémory usage of TKRIMIT increases lin-
early as the number of desired itemsets in¢reases while memory used by MTKPP and TKRIMPE
increase dramatically.“This is because MTKPP and TKRIMPE use normal fidset that maintain
all tids occurring in each itemset. The memory usage of MTKPP and TKRIMPE depend on the
support (i.e. number of tids that each itemset occurs) of each itemsets. Meanwhile, TKRIMIT can
take the advantage from the use of interval tidset representation which group several consecutive

continuous tids together.

As shown in Figure 5.54 to Figure 5.58, the required memory of TKRIMIT on sparse
datasets is examined. Followed by this figure, the memory usage of the three algorithms is quite
similar. This is because each itemset on sparse dataset does not occur frequently and consecutively

continuous. Then, TKRIMIT cannot group several tids together.

112

5.7.5 Scalability test

To study the scalability of the TKRIMIT algorithm, the execution time and memory con-
sumption of TKRIMIIT are considered by comparing with MTKPP and TKRIMPE when the size
of database increases. The kosarak dataset which is a huge dataset with a large number of distinct
of items (41, 270) and transactions (990, 002) is used to test scalability by varying the number
of transactions. The database is first divided into six portions (i.e. 100, 000, 200, 000, 400, 000,
600, 000, 800, 000 and 990, 002 transactions). Then, the performance of TKRIMIT is investigated
on each portion. The values of desired itemsets (k) aresalso varied into small (i.e. 50, 100, 200,
300, 400, and 500) and large (i-e. 1,000, 2, 000, 4,000, 6,000, 8,000, 10, 000) values. Lastly, the

regularity threshold is fixed to 6% of atimber of transactions in each portion.

In Figure 5.59 and Figures5.00, the scaiakz_ility of TKRIMIT, MTKPP and TKRIMPE are
tested in terms of runtime with different numhér of fransactions in the database. From these
figures, the runtime of TKRIMIT scales lineaf].y increase when the size of database increases.
Based on the interval tidset representation, TKRTMIT can group many consecutive tids together
and then TKRIMIT has a better scalability than;t_h_iat of MTKPP on the small and large values
of k. Meanwhile, TKRIMIT cannot significantly: 'fé@[uce the runtime from TKRIMPE because
TKRIMIT uses only grouping techaique (i.e. int_e?_v_é% tidset representation) and cannot take the

advantages from the database partitioning and support estimation/techniques.

Figures 5.59 and 5.60 also plot the high water mark of space usage of TKRIMIT, TKRIMPE
and MTKPP with varying the size of the database. The three algorithms have linear scalability
and TKRIMIT is @ clearjwinher= Therefotiefiitican’ be seen from the figures that by based on the
interval tidset representation, TKRIMIT is very efficient and scalable in'terms of space usage with

respect to the number of itemsets to be mined and the nuiaber of transactions in database.

5.8 Summary

This chapter have presented a new efficient and scalable algorithm named TKRIMIT (Top-
K Regular-frequent Itemsets Mining based on Interval Tidset representation) to discover a set
of k regular itemsets with the highest supports. A new concise representation, called infer-
val transaction-ids set (interval tidset), has also introduced. Based on the interval tidset repre-

sentation, a set of tids that each itemset occuring consecutively continuous is transformed and

113

compressed to interval tids by using only one positive and negative integer. The top-k regular-
frequent itemsets are found by intersection of interval tidsets along the order of top-k list. Be-
sides, TKRIMIT is based on a best-first search startegy that can help TKRIMIT algorithm to raise
quickly the support of the k" itemsets in the sorted top-k list which help the proposed algorithm

to prune the search space.

The analysis and experiment results show that TKRIMIT achieves high performance on
both dense and sparse datasets. The proposed algorithm delivers competitive performance and,

especially for dense datasets, outperform and TKRIMPE which are currently the most

efficient algorithm for top-k regul this study, it is can be claimed that the

proposed algorithm are superi n both the small and large values of

AU INENTNEINS
RINNIUUNIININY

114

accidents

number of reduced tids (x 106)

0 50 100 200 300 400 500

number of reduced tids (x 106)

8000 10000

Figure 5.4: VIIT on accidents datasets

ber of reduced tids (x 105)

9,
=

k3

2]

h=]

o

ja}

o

>

°

1

G

o}

E

3 | | |

0 1000 2000 4000 6000 8000 10000

k

Figure 5.5: The number of reduced tids from TKRIMIT on chess datasets

connect

0 F T T T T T

number of reduced tids (x 106)

0 50 100 200 300 400 500

number of reduced tids (x 106)

Figure 5.6: The ber of reduced 1 ro 0 1 KR l IIT on connect datasets

e
[i

d tids (x 10°)

number of reduced tids (x 1@ fber of reduce

0 1000 2000 4000 6000 8000 10000
k

Figure 5.7: The number of reduced tids from TKRIMIT on mushroom datasets

115

)
S 20
X
g 16
B 12
>
o
e 8
S
g 4
E
2
0 50 100 200 300 400 500
k

W,

360 “‘\\:‘:}"E 77
280 :

N
=
o

number of reduced tids (x 106)

8000 10000

Figure 5.8: The MIT on pumsb datasets

er of reduced tids (x 106)

=
[N}

-8,
fb

N w S
N o [oe]

=
N

number of reduced tids (x 12)
[2]
D

| | | | |
0 1000 2000 4000 6000 8000 10000
k

Figure 5.9: The number of reduced tids from TKRIMIT on pumsb* datasets

116

BMS-POS

"’5 225 X C Y =X
=
g 180 .
B 135 —
=]
he}
© 90 .
s 0=1 ——
g e 0;=2 — -~
£ 0=3--%-
3 | |

0 50 100 200 300 400 500

number of reduced tids (x 103)

8000 10000

Figure 5.10: The g ced ti AIT on BMS-POS datasets

number of reduced tids (x 12) fber of reduced tids (x 103)
(61
o
o

| | | | |
0 1000 2000 4000 6000 8000 10000
k

Figure 5.11: The number of reduced tids from TKRIMIT on retail datasets

117

T1014D100K

790
8
S 632
el
Q
o
2 474
]
S 316
9]
Qo
E 158
=

0 50 100 200 300 400 500
k

[
=]
el
Q
(=]
=}
el
]
s
@
Q
€
>
=

8000 10000

DE T on T10I4D100K datasets

Figure 5.12: The n

A 2
et PG

number of reduced tids

number of reduced tids 2) ﬁ

| | | | |
0 1000 2000 4000 6000 8000 10000
k

Figure 5.13: The number of reduced tids from TKRIMIT on 720/6D100K datasets

118

119

T40110D100K

34500 T T T
3
= 27600 -
o
Q
s
2 20700 —
2
S 13800 =
[)
2 0, =2 ——
E 6900 0,=4 — %]
S o, = 6 I_ -¥ -
300 400 500
k
40000 =
[
he
2 2000 |
3 32000 |
B 24000 |-/ =
g 16000 = —
o) 2 ——
§ 8000 ' 0y =4 —X—-
< d E =6 --¥--
8000 10000
Figure 5.14: The n ‘ ids . on 740110D100K datasets

160
- 120
g
= 80
MTKPP ——
40 TKRIMPE —-X%--]
| | TKRIMIT -3 -
0 1000 2000 4000 6000 8000 10000

k

Figure 5.15: Runtime of TKRIMIT on accidents (o, = 1%)

accidents (o, = 2)

125 F T T T T
MTKPP —+—
10 FTKRIMPE - _
TKRIMIT - -3 -
€ 75 E 3
:
£ x
25 -
"""" 1
0 50 100 200 300 400 500
k
\ idents (o, = 2)
200 , I I
160 . /‘ 5 A
- e ,;K/
@ 120 n = - —
g -
= 80 ' —
: 3 KPP ——
21\ IMPE —-%—-]
> . T --% -
0 4 200¢ 8000 10000
Figure idents (o, = 2%)
:3)
125
7 2
3
£ X

time(s)

MTKPP —+—

40 TKRIMPE —-X%--]
| | TKRIMIT - 3% -
0 1000 2000 4000 6000 8000 10000

k

Figure 5.17: Runtime of TKRIMIT on accidents (o, = 3%)

120

time(s)

0.15

0.09

0.06

0.03

chess (0, = 2)

| I
MTKPP ——
0.12 HKRIMPE —-X--
TKRIMIT --% -+

| TKRIMPE ——X--
TKRIMIT --3% --

."*/’

0 1000 2000 4000 6000 8000 10000

k

Figure 5.19: Runtime of TKRIMIT on chess (o, = 4%)

121

chess (o, = 6)

0.15 : | | | |
MTKPP —+—

0.12 FIKRIMPE —-x¢-- 7
TKRIMIT - -3 -

0.09

time(s)

0.06

0.03

15— -_E"rfl:"l-'—:’ﬁ’f,r-.-'_‘

=
TKRIMPE —-X~-
32 -TKRIMIT --% -

T 24]
[3)
£
= 16]
T e ¥--oooT ¥ 3
S -
0 1000 2000 4000 6000 8000 10000
K

Figure 5.21: Runtime of TKRIMIT on connect (o, = 1%)

122

connect (o, = 2)

15 F T T
MTKPP ——

TKRIMPE —-%—-

L2 FTKRIMIT --3% -

0.9

time(s)

0.6

0.3

time(s)

q) ~ MTKPP —+—
TKRIMPE —-X--
32 FTKRIMIT --3 -~

300 400 500

______ K

8000 10000

ect (o

=2%)

______ *

0 1000 2000 4000

k

6000

8000 10000

Figure 5.23: Runtime of TKRIMIT on connect (o, = 3%)

123

124

mushroom (o, = 4)

02 F T T T T
MTKPP ——
TKRIMPE —-%—-
0.16 FTKRIMIT - - - ~+
2 012 x4
Q
£
= 0.08 .
0.04 - .
]
0 50 100 200 300 400 500

L TKRIMPE ——X -~
TKRIMIT --3% --

time(s)

|
0 1000 2000 4000 6000 8000 10000
k

Figure 5.25: Runtime of TKRIMIT on mushroom (o, = 6%)

mushroom (o, = 8)

T T T T
0.2 | MTKPP ! ==
2 [TKRIMPE -~ -
0.16 LLTKRIMIT -3¢ -- = A
_ ok
% o012 X _
£ ¥
0.08 |- .
—”‘¥‘
0.04 |- — % —
I I I I
0 50 100 200 300 400 500
K

MTKPP ——
24 |TKRIMPE -~ _
TKRIMIT - -3 --

T 18 -
(3]
£
= 12]
B S
6 I S
--------- L
0 1000 2000 4000 6000 8000 10000

k

Figure 5.27: Runtime of TKRIMIT on pumsb (o, = 2%)

125

pumsb (o, = 4)

2 F T T
MTKPP —+—
16 |TKRIMPE —-<~-
O TTKRIMIT --3% -

12

time(s)

0.8

0.4

time(s)

| . |
| N\
q MTKPP ——
24 _TKRIMPE - --
TKRIMIT --3% -
@ 18 |-
[0}
1S
=1 12 -
6 -

200 300 400 500

8000 10000

msb (o, = 4%)

S
P
oK T

0 1000 2000

4000 6000 8000 10000
k

Figure 5.29: Runtime of TKRIMIT on pumsb (o, = 6%)

126

pumsb* (o, = 1)

= T T
MTKPP —+—

0.6

time(s)

0.4

0.2

TKRIMPE — - -
0.8 =TKRIMIT --3K -- ¥ 7]
]
0 50 100 200 300 400 500
k

time(s)

7
4

10

& 75

Q

£

= 5
25

8000

MTKPP —+—
TKRIMPE —-%—- —
[TRRIMIT -5 -

X.

WX -

10000

0 1000 2000

4000

k

6000 8000

10000

Figure 5.31: Runtime of TKRIMIT on pumsb* (o, = 2%)

127

pumsb* (o, = 3)

— T T T T
M wmrkep ——
TKRIMPE —-X~--
0.8 FTKRIMIT - -3 - T
@ 06 .
(<}
=
S 04 .
0.2 .
1
0 50 100 200 300 400 500
k
(0,=3)
125 T T
-~ / __‘-76
10 - — R’
s 75 h - .
[}
E
= 5 —
5 KPP —+—
-5 B IMPE =X ~- -]
- IT--%-
4 20 8000 10000
3 #
Figure 5.32 ime / I (o, = 3%)
- - '
L. -
' T
¢ ,'f;:.l'
; 7* o =
5 T
/’/7
: ¥
s _
£
= 2 - ~ —
‘re i W]
u 5 0 4 500

time(s)

3 TKRIMPE —-%—-]
TKRIMIT --% -
]]]]]
0 1000 2000 4000 6000 8000 10000
k

Figure 5.33: Runtime of TKRIMIT on BMS-POS (o, = 1%)

128

129

BMS-POS (g, = 2)

T T T T
s | MTKPP —— i
TKRIMPE — - --
4 |LTKRIMIT - -5 - K _
0
T 3 —
£
2 —
1 p—
1
0 50 100 200 300 400 500
k
5 (0, =2)
30 T T
24 / T
y X
z 18 D X N
GE.) - -y
= 12 AL -
| KPP ——
\ IMPE ==X -]
- IT --%-
0 200! 6 8000 10000
Figure S (0. = 2%)
- 7* o ~ 3))
3
7
- ¥ e _
1o .Y -
ﬂ u 5 0 4 500
q k
¢ o Q/
35
28
@ 2
[3)
£
S 14
7 TKRIMPE —-X-- —
TKRIMIT --% -
1 1 1 1 1
0 1000 2000 4000 6000 8000 10000
k
Figure 5.35: Runtime of TKRIMIT on BMS-POS (o, = 3%)

retail (o, = 6)
0.5 T T T
MTKPP —+—
0.4 FKRIMPE —-%--

TKRIMIT --% -~ X
= 03 - -
g
=02 —

0.1 -
|
0 50 100 200 300 400 500

| TKRIMPE ——X--
TKRIMIT --3% --

Figure 5.37:

1000 2000 4000 6000 8000 10000
k

Runtime of TKRIMIT on retail (o, = 8%)

130

131

retail (o, = 10)

0.6 T T T T T
MTKPP ——
0.48 HKRIMPE —-X-- -
TKRIMIT --% - - 3
& 036 X
z

= 0.24 —
0.12 i

1

400 500

etail (o, = 10)
h ra

;ﬁ'*-m I/,
v - /
#

".‘."g\
| '\

MTKPP —+—

0.7 i~ TKRIMPE —-X--
TKRIMIT - -3 -
1 1 1 1 1
0 1000 2000 4000 6000 8000 10000

k

Figure 5.39: Runtime of TKRIMIT on T10I4D100K (o, = 4%)

T1014D100K (o, = 6)

15 F T T T
MTKPP —+—

1.2 [TKRIMPE —-<~-

2 TTKRIMIT - -3 -

0.9

time(s)

0.6

0.3

0 50 100 200 300 400 500

time(s)

KPP —+—
RIMPE —-X—- 7]
T --%-

8000 10000

Figure 5.4([00K (o, = 6%)

=

[3)

£
MTKPP ——

105 7 TKRIMPE —-%—-]
TKRIMIT --% -
]]]]]
0 1000 2000 4000 6000 8000 10000

k

Figure 5.41: Runtime of TKRIMIT on T10I4D100K (o, = 8%)

132

133

T2016D100K (o, = 2)

375 F T T
MTKPP —+—

TKRIMPE —-X~-

~TKRIMIT - -3 --

2.25

time(s)

15

0.75

time(s)

MTKPP ——
| TKRIMPE —-X -
TKRIMIT --3 --

time(s)

500

PE ¢
RIMPE —-X -]
\“t.,. IT --%--

8000 10000

G\'i\

100K (o, = 2%)

0

1000 2000

4000

6000 8000 10000

k

Figure 5.43: Runtime of TKRIMIT on T20I16D100K (o, = 4%)

T2016D100K (o, = 6)

7.5 T T T T
MTKPP ——
6 ITKRIMPE —->¢--
TKRIMIT - -3 --
» 451 P 1
z
= 3+ -
15| —
NSt il |
0 50 100 200 300 400 500
k
)
[J)
£
KPP ——
RIMPE —-X—- -]
IT--%-
8000 10000
Figure 5.4 00K (o, = 6%)

MTKPP —+—
TKRIMPE —-%—- -
[TRRIMIT -5 -

0 1000 2000 4000 6000 8000 10000

k

Figure 5.45: Runtime of TKRIMIT on T40110D100K (o, = 2%)

134

135

T40110D100K (o, = 4)

15 F T T T
MTKPP —+—
15 [TKRIMPE - -

TKRIMIT --% -+

z 9
Q
£
s 6
3
0 50 100 200
k

time(s)

300 400 500

KPP —+—
RIMPE —-X—-
IT--%-

8000 10000

500
k
, ¢ o o/
Q
‘ 5
9 "
@ 30
H
= 20
MTKPP ——
10 TKRIMPE —-X%—- 7
TKRIMIT -- % -
]]]]]
0 1000 2000 4000 6000 8000 10000

k

Figure 5.47: Runtime of TKRIMIT on T40110D100K (o, = 6%)

memory(MB)

memory(MB)

memory(MB)

memory(MB)

accidents (o, = 3)

250 T T T T
MTKPP ——
200 _TKR'MPE —_X_'
TKRIMIT --3% --

150 -
100 3 2
50 -

------]
0 50 100 200 300 400 500
k
|I -
3600 NN
2830 [-
2160 PR

TR)

L e N

MTKPP ——
80 HKRIMPE —-X--
TKRIMIT --3 --

60]
40]
20]
----------- ¥ X
0 1000 2000 4000 6000 8000 10000
k

Figure 5.49: Memory usage of TKRIMIT on chess

136

connect (o, = 3)

125 T T T T
MTKPP ——

100 HKRIMPE —-X<-—-
- TKRIMIT --% --
2 75 _
=
g
E 50 —
E

25 —

! A P K
0 50 100 200 300 400 500
k
|I i 3

2425 AN ‘ :

1940 e - :_’-F -
a 3
S 1455 1 X —
=
g
£ 970 —
£

memory(MB)

|
TKRIMPE —-X--
48 [FTKRIMIT - -3 -

B

g
s 36 -
o
5 241
£
12 I
1 1 1 1 1
0 1000 2000 4000 6000 8000

k

Figure 5.51: Memory usage of TKRIMIT on mushroom

10000

137

memory(MB)

memory(MB)

memory(MB)

=2
8o

memory(MB)

pumsb (o, = 6)

85 F T T T T T
MTKPP ——

TKRIMPE —->—-

68 FTKRIMIT -- % - m

0 50 100 200 300 400 500

(0, = 6)

N '
1650 AT ,
FEa
1320 | A # N

990

660

2 C ;f[ft\\\\\u* _

8000 10000

A. lI- __ o
em ,, ;' of MIT on pumsb
* F

el
-

MTKPP —+—
660 FIKRIMPE —-X - .
TKRIMIT --3 - ¥
495 - ¥ —
330 |- —
-7 * .
165 —X - -
=]]]]
0 1000 2000 4000 6000 8000 10000

k

Figure 5.53: Memory usage of TKRIMIT on pumsb*

138

memory(MB)

memory(MB)

9,
=

R4

memory(MB)

&'. g ‘@_'”

memory(MB)

45

36

27

18

3.6

2.4

12

139

BMS-POS (g, = 3)

000 J #2000 '\‘ 00 8000

MTKPP —+—
L TKRIMPE ——X -~
TKRIMIT --3% --

T T T
MTKPP —}—
| TKRIMPE - X -
TKRIMIT - -3 - -
- F
]
0 50 100 200 300 400 500

10000

on BMS-POS

0 1000 2000

4000 6000 8000 10000
k

Figure 5.55: Memory usage of TKRIMIT on retail

T1014D100K (o, = 8)

3 T T T T X
MTKPP —+—

24 |TKRIMPE —-%-- _
= TKRIMIT - -3 - -
S 18| —
=
g
E 12f -
£

06 -

* I
0 50 100 200 300 400 500
K
-
"\

o
= _
=
o
£ _
[)
£

' \\

F'“ﬁ'-"x‘-i' 40

Figure 5.56: Memory ﬁ

.....

memory(MB)

|
TKRIMPE —-X--
32 FTKRIMIT --3% --

24

memory(MB)

16

10000

| T'1014D100K

0 1000 2000 4000 6000
k

8000

10000

Figure 5.57: Memory usage of TKRIMIT on 720/6D100K

140

memory(MB)

memory(MB)

memory(MB)

128
10.4 FIKRIMPE —-X--

42

N
o]

=
i

T40110D100K (o, = 6)

T T T
MTKPP —+—

TKRIMIT --3% --

7.8 -
5.2 -
2.6 —
|
0 50 100 200 300 400 500
k

10000

TKRIMPE - - -
. KRIM L
- 1 j
a’ 3 9.9
¢ o o/
'
| TKRIMPE - -- _
TKRIMIT --% -
B ¥
I I I I
0 100 200 400 600 800 990

Number of transactions (100K)

Figure 5.59: Scalability of TKRIMIT (% : 500, o, = 6)

141

142

200 400 600 800 990
Number of trarisactions (100K)

AudIndisiiiag,
PMIAN TN NGNS Y

CHAPTER VI

H-TKRIMP: HYBRID REPRESENTATION ON TOP-K
REGULAR-FREQUENT ITEMSETS MINING BASED ON
DATABASE PARTITIONING

As described in previous chapters, TKRIMPE based on the database partitioning and the
support estimation technique works well on sparse‘datasets. Whilst, TKRIMIT based on the inter-
val tidset representation achieves-good performance on-dense datasets. Therefore, the aim of this
chapter is to devise a new cfficient-algotithm by combining the techniques from TKRIMPE and
TKRIMIT. The database partitioningtechnique is integrated with the interval tidset representation
to gain good performance.on both'sparse and dense datasets. Consequently, a new efficient single-
pass algorithm, H-TKRIMPB«(Hybrid represcnta;ti;)n on Top-K Regular-frequent Itemsets Mining
based on database Partitioning), i§ infroduced. In this chapter, a database partitioning technique
(as presented in Chapter 4) and.a hybrid represeﬁt__ation (i.e. a combination between normal tidset
and interval tidset representations) are described in details. Besides, the data structure used to
maintain the top-k regular-frequent itemsets during mining process and the complexity analysis

of H-TKRIMPE are also discussed.

6.1 Preliminary of H-TKRIMP

To mine a set of top-k regular-frequent itemsets, H-TKRIMPE also employs a top-k list
as the previous algorithms., The-top-k; list issused-to maintain.the. top-k.regular-frequent itemsets
during mining. Besides;the-best-first search'strate€gy'isiappliedito cut down the search space and
quickly mine the regular itemsets with the highest supperts. Further, the database partitioning
techniquelis utilized to.dismiss some unnecessary/ computing. Ultimately,.a combination between
normal tidset and interval tidset representation, Hybrid representation, is devised and included

into H-TKRIMP to obtain good performance on all characteristics of datasets.
6.2 H-TKRIMP: Top-k list structure

As previous algorithms, H-TKRIMP is also based on the use of a top-k list structure which
is a simple linked-list with a hash table. The top-k list is used to maintain a set of &k (or less
than k) regular itemsets with the highest supports and their occurrence information during mining

process. Meanwhile, the hash table is utilized to quickly access all the information of each itemset

144

in the top-k list. As shown in Figure 6.1, each entry in the top-k list consists of 4 fields: item or
itemset name ([), total support (sh), regularity (r"), and a set of tidsets (T = {TII e ’Tz{n})
where pn is the number of partitions of considered database). From the figure, the item a has a
support of 11, a regularity of 2, and tidsets as {{1, —3}, {6, —2}, {9, —3}} which means the item

a occurs in transactions {¢1, ta, t3, t4, te, t7, ts, to, t10, t11, t12}.

item |top-k list's link
A | e *
b) a:11:2 N c:6:2
I 3 {{13'3}5{6a_2}a{99'3}} {{173}9{5:7}a{9911}}
d Y) T)
e
f

)
Figure 6.1: H-TKRIMP: Top-k list sttucture with hash table

6.3 Database Partitioning s\ 4

it

In H-TKRIMP, the databaseg is first dividfda_into several disjoint partitions which have an
equal number of transactions as/presented in (Brin et al., 1997b). Then, the tidsets (there is one
tidset for each partition) of each itemset are colle_.«_sf;ﬁdlby using the proposed hybrid representation

in order to calculate its support @and regularity with one database scan. This partition technique

allows reducing unnecessary computational costs, —

Given the regularity-thieshold-op-the-database-is-splitiito pn = [|TDB|/o, | partitions.
Each partition will then contains @, transactions. For example, consider the transactional database
of Table 6.1 with 12 transactions. A regularity threshold of 4 will split the database into 3 parti-

tions with 4 transactions each.

Tablel6.1: A transactional database as a running example of H-TKRIMP

tid items

1 abcdf
2 abde
3 acd

4 ab

5 bcef
6 ade

7 abcde
8 abd

9 acdf
10 abe
11 abcd
12 adf

145

H-TKRIMP will fully exploit the partitioning of the database. Thus, each itemset has a

(local) support, a (local) regularity, and a (local) tidset for each partition of database.

The tidset of an itemset X in the m!" partition P,,, denoted Tn)f , is the set of tids in mt"

partition that contains the itemset X:

T = {tamlX Ctgmitgm € Pm}

m

By combining the partitioning technique with the hybrid representation together, H-
TKRIMP can use two representations (i.e. novmaltidset and interval tidset) to maintain tids of

each partition. Then, T = {77+, 75 } is,definied as the (global) tidset of an itemset X

The (local) support of an‘itemset X in the m partition, denoted s:\, is the number of
transactions (also denoted tidsyin the . pa_rti"tion that contains the itemset X . Then, the (global)

support sX of the itemset X isequal {0 port ‘sﬁ !

For example, consides an/item a occul;(ir;é in tids {1,2,3,4,6,7,8,9,10,11,12} (i.e.
transactions 7% = {tl,tQ,t3,t4,tG,1?7,tg,tg,tzlf(-y;,'tﬂ,tlg}) from the transactional database of
Table 6.1. Thus, based on the partitioning teéﬂﬁique, the tidset of the first partition 77" con-
tains the set of tids {1, 2, 3,4} where the item @E’:’c::hrs. Meanwhile, the set of tids {6,7, 8}
and {9,10, 11,12} are maintained-in 7% and Tg—‘,j'r_és;i)ectively. Thus, the (global) tidset of a is
T* = {{1,2,3,4}, {6, %8}, {9,10, 11, 12} }. Besides. the suppoftof a is s* =4+ 3 +4 = 11.

As mentioned in Ch_apter 4, based on the usc of database partitioning technique, H-

TKRIMP can reduce some considered tids on mining process.
6.4 Hybrid representation

To allow for efficient calculating support and regularity of an itemset,-a hybrid represen-
tation is applied in H-TKRIMP to collect its tidset that occurs in each partition. A hybrid repre-
sentation is a combination between normal tidset (i.e. the exact value of the transaction-ids) and
interval tidset (i.e. using only one positive and one negative integer to store a set of consecutive

continuous transaction-ids).

Definition 6.1 (Normal tidset of an itemset X in m!" partition) Let a set of tids that the item-

set X occurs in TDB at the m'"* partition be {t;fm, tl)fﬂ,m, o ,t;{m}, where p < q. Thus, the

tidset of the itemset X is defined as:

146

= {tp’m, .

Definition 6.2 (Interval tidset of an itemset X in m!" partition) Ler a set of tids that itemsets

X occurs in TDB at the m*" partition be {t where p < q and there are

X
p+1m,...,tqm}

} that are continuous between t m and tX (where

X
some consecutive tids {tu ms bkl mo -+ -9 tX m

p < wand q > v). Thus, interval tidset of itemset X is defined as:

_ X X X X
{tpm7 p+1m7"'7tum7(tum tv,)’thrlmﬂ""tqm

For example, consider'an itema.occurting in tids {1,2/3,4,6,7,8,9,10,11,12} from the
transactional database of “Fable 6!1. /Thus, based on the partitioning technique and the hybrid
representation, the tidset ofithe first partition Tf eontains the set of tids 1,-3 where item a occurs.
Meanwhile, thetidsets {6, —2} and {9, =3} are‘_iplaintained in 7% and T, respectively. Therefore,
the tidsets of a is 7 = {{1, 48} 46,2} (9, ~3}}.

For each tidset T of an itemser X H- TKRIMP has to decide which representation should
be used to achieve a good performance To make a de0151on the advantage and disadvantage of
each representation are considered. The advantage_f usmg an interval tidset representation is the
number of reduced tids (as descrlbed in Chapter 5) Whereas the'disadvantage is the number of

tids that have to be determined whether it is consecutive continuous tids.

Definition 6.3 (Number of reduced tids in the m!" partition) Letr TX be the interval tidset of

an itemset X in the m'" partition ‘and let TN, = {tnfm,) ,tnfm}, where 1 < j < |TX|,
X X X X X .

tnj’m e T, and tnj’m < 0, be the set of negative tids in the interval tidset T, . Then, nrt;, is

defined as-thesaumber,of reduced tidsin thesm!"spartition.from the interval tidset T:X :

TN

nrtX = Z —(1+ tnf{m)
i=1

Definition 6.4 (Number of determined tids (to check whether they are consecutive continues
tids) in the m'" partition) Let T'X be the interval tidset of an itemset X in the m*" partition and

let TN;X = {tnfm, . ,tnj’(m , where

m € TX and tn m < 0, be the set

of negative tids in the interval tidset T:X. Then, the number of tids that are determined as the

consecutive continuous tids ndt;. can be defined as:

147

ITX| — ITNX| =1 iftly, >0

X |T’V$§‘7m
ndt,, = . . o
‘Tm‘ - ‘TNm‘ lft|T7}n(‘7m <0

Therefore, the trade-off between nrt.s and ndt;s values is taken into account. If nrt:X >
ndt;X, H-TKRIMP can take advantage from the interval tidset representation. Then, H-TKRIMP
uses an interval tidset to maintain a tidset. Otherwise, a normal tidset is applied. By using a hybrid
representation, H-TKRIMP can save time from the use of the combination between a normal tidset

and an interval tidset in the mining process (in Section 6.6).
6.5 Calculation of Regularity and Support

By using the partitionstéchnique and the hybrid representation, the tidset of each itemset
is splited into several tidsetsgfand.these tidsetslmay contain some negative tids when the itemset
occurs in consecutive continuous/tids (as deséri’bed in Definition 6.2). As a consequence, the
original definition of the regularity of an_.itemsegofJ(Tanbeer et al.; 2009)) and that of (Amphawan
et al., 2009) cannot find the regularity between tév_o tidsets and between positive and negative tids.
It is suitable for only one tidset in eacil itemset an'd 8nly for positive tids. Accordingly, five new
definitions is proposed to calculate the réngularity‘ af.déa}gh itemset.

s

Definition 6.5 (Regularity of an itemset X between two consecutive tids in a normal tidset)

Consider the normal tids:éﬁ X of an itemset X for the mt" paﬂition. Let tgfm and téfm be two
consecutive tids in Tn{f e ‘where p < q, and there is no tid tgfm in Tn)f , p < o< q, such that a
transaction of tgfm contains X (note that p, q and o are indices). Thus, rttéfm is defined as the

regularity value betwéen the two consecutive tids tifm and t;{m by following cases:

X ifg=1

b =t if2<q < | T

Definition 6.6 (Regularity of an itemset X between two consecutive tids in an interval tidset)
Consider the interval tidset T;X of an itemset X for the m"* partition. Let t;fm and t;fm be two

consecutive tids in TX

o, l.e. where p < q and there is no transaction t,, p < o < g, such that

t, contains X (note that p, q and o are indices). Then, rttgfm is denoted as the number of tids

X

(transactions) between t;{m and t3,,, that do not contain X. This leads to the following cases:

148

tom ifg =1
X — ift, and tX,, > 0,2 < q < |Tx|
Tt =

1 it > 0and), < 0,2 < q < |T|

X + (X — b) i, <O0and t),, > 0,2 < q < |TxX|
Definition 6.7 (Regularity of an itemset X' il th partition) Let for a T:X, RTTx =
{rttd,,, ritips|) be the set of re; i each pair of consecutive tids in the m'™"
partition. Then, the regularity of X i1 the] be denoted as:
Definition 6.8 (Regularity o i X _ _' ecutive tidsets) Let tﬁm’m_l be
the last tid where X occu)" .-_ 1io . be'the first tid where X occurs in the

the number of tids (transactions)
that do not contain X) betwe Wi * . ive partitic s, (m — 1) and m**. Obviously,
rtps is tX Lastly, to find the e Cl‘]‘ = -
database, the number of transactions 1 ﬁmmiv

i iy o
R

FAESTT
"';_' b X :
database: rfﬁpn +1’"

and the last transaction

any two consecutive tidse

ﬁﬂﬂ?ﬂﬂﬂﬁ“ﬂmﬂ’ﬁ

|TX ym—1 lf?<m<pn&X 1m— 1>O

Kis Wﬂﬂﬁ NIRRT IRY. <

9 :
ITDB| = tirx -1 fm=pn+ Lty | >0

X X : _ X
ITDB| = (tipx |—1me1 = brx jmet) Fm=pn+Ltgx 0 4 <0
Then, the regularity of an itemset is defined with the help of definitions 6.7 and 6.8.

Definition 6.9 (Regularity of an itemset X) The regularity of an itemset X is defined as:

X = maz(maz(RPX), max(RTPY))

149

where RPX = {rpX rp¥, ..., rpf)‘;t} is the set of regularities of X in each partition (Defini-
tion 6.7) and RTPX = {rtpf(, rtpg(, e Ttpl))fwl} is the set of regularities of X between two

consecutive partitions (Definition 6.8).

To calculate the support of each itemset from its tidsets, two definitions are used to compute

the support in each partition and the total support of the itemset is also presented.

Definition 6.10 (Support of an itemset X in a partition) Lezt;* | , andt;\, be the two consec-
utive tids in T:X Thus, sttffm is defined as the support value between two consecutive tids X 1m

and tfm by following cases:

< 1 if tfm >0
Sth’m = |

=t NN e

L,

Therefore, the regularityof the itemset X \in'the m'" partition is defined as follows.
vede ¥
or X
Sy = Z_‘,sttim
=
Definition 6.11 (Support of an itemset X°) The support of an itemset X, denoted s, is the sum-

mation of support in every partition,1.e:, S

For example, consider the|transactional database of Table 6i1“and the case of an item a:
T = {{1,—-3},{6s—2}, {9, —3}}. The set of regularities in each partition of the item a is
RP* = {1,1,1}. The set of regularities between two consecutive partitions of a is RT'P* =
{1,6 — (1'% (+3)),921(6% (—2))312 =(9= (+3)) }={1,2,1,.0}. Thus, the.regularity of item
ais r® = max(maz(1,1,1),max(1,2,1,0)) = 2. In addition, the set of supports of the item a
in each partition is = {(1 4 (—(—3)), (1 + (—(=2))), (1 + (=(=3)))} = {4, 3,4}. Consequently,
the support s of the item a is equal to 4 + 3 + 4 = 11.

6.6 H-TKRIMP algorithm

Based on the database partitioning and the hybrid representation mentioned above, the H-
TKRIMP algorithm is also described. H-TKRIMP consists of two steps : (i) Top-k list initializa-

tion: partition the database, scan each partition to obtain top-k regular items and then transform

150

each tidset into the suitable tidset (a normal tidset or an interval tidset); (if) Top-k mining: merge
(with two constraints) each pair of elements in the top-k list to produce new larger itemsets by
using the best-first search strategy, sequentially intersect their tidsets (one by one partition) to
find the k regular itemsets with the highest supports, and then transform each tidset of the new

generated itemset into the proper representation.
6.6.1 H-TKRIMP: Top-k initialization

To create the top-k list, each partition of the database is scanned (one by one transaction)
to obtain all &k (or less than k) regular items. A new entry in the top-k list is created for any item
that occurs in the first o, transactions (i.e. occurs.in the'first partition). Each item of the current
transaction is then considered:"With the hélp of the hash table, H-TKRIMP quickly realizes
whether the current item is aiready existed in the top-k list or not. For the first occurrence of an
item in the partition, a new tidset for the partition is builtand its support, regularity, and a tidset

are initialized. Otherwise; H-TKRIMP updates its support, regularity and a tidset.

To update the tidset 75fof an item X in fhe'mth partition, H-TKRIMP has to compare the
last tid (tf(m) of T:X with the new coming tid (t]':j-:i__lt‘._simply consists of the following cases:
s
o if t; ,, < 0, i.e. there are some former tids W_htéh are consecutive and continuous with the
exact tid of ¢; ,,. H-TKRIMP calculates the-"_e;’céet; tid of ¢;,, < 0 (i.e ti—1,m — tim), and
compares it with #; t0 check if they are continuous or not. If they are consecutive continuous
tids (i.e t; — t;—1,m = lim = 1), H-TKRIMP has to extend-th¢ tidset 7, n)f (it consists only of

adding —1 to t; ;,), otherwise H-TKRIMP creates a new €lement to take into account ¢; (it

simply consists of addifigy, after ¢; ,,, in TX).

o if ¢;,, > 0,/i.e. there-is no former-tid, consecutive'and continuous with ¢; ,,. H-TKRIMP
compares ?; ,, with ¢; to check if they are continuous or not. If they @ré consecutive contin-
uous'tids (i.e. t;5¢; m = 1) H-TKRIMIP creates a new interval in T* (it consists of adding
—1 after ¢; ,,, in T:X); otherwise, H-TKRIMP creates a new element to take into account ¢;

(it simply consists of adding ¢; after ¢; ,,, in Tn)f).

At the end of the m!" partition, if nrt;\ < ndt;X, the interval tidsets T;x will be transformed
to a normal tidset. When the entire database is read, the top-k list is trimmed by removing all the
entries (items) with regularity greater than the regularity threshold o, and the remaining entries
are sorted in descending order of support. Lastly, H-TKRIMP removes the entries after the k"

entry in the top-k list. The detail of the top-k list’s construction is presented in Algorithm 7.

151

Algorithm 7 (H-TKRIMP: Top-k list initialization)
(1) A transaction database: T DB
(2) A number of itemsets to be mined: k
(3) A regularity threshold: o,
Output:
(1) A top-k list

create a hash table for all 1-items
for each partition m = 1 to pn do
for each transaction j in the the m" partition do
for each item ¢ in the transaction j do
if the item ¢ does not have an entry in the top-k list then
create a new entry for the item ¢ with s?, = 1,7 = ¢; and create a tidset 7}, that contain ¢;
create a link between the hash table and the new entry
else
add the support s?, by 1
if ¢; and the last tid inZ},, are two consecutivé Conéintous tids then
if the last tid in 7% <0 then
add the last tiddn @ by~ i
else

collect —1-a8'the last tidin 77
|

else
collect ¢; as the lasgtid in T7
calculate the regularity » “by ¢

for each entry (item) ¢ in thg top=k list do Y
add the support s° by s :
if nrt;X < ndt:X then \ Ay 4
transform 77/, to be a normal tidset # not contain tid < 0

for each item ¢ in the top-k list do =y
calculate the regularity r* by |T'D B}~ the last tid of TJ’;‘”

if 7' > o, then T
remove the entry i.qut of the top-k list

sort the top-k list by suppert descending order
remove all of entries afterthe & entry in the top-k list

6.6.2 H-TKRIMP: Top-k mining

The top-k mining-algerithim, 'shown in Algorithm 8, 'also adopts the best-best first search
strategy (i.e. first consider from the most frequent itemsets to the least frequent itemsets in the
top-k list)’to quickly generate the regular itemsets with the highest supports and to raise up the
support of the k" itemset (s;,). This strategy can help the H-TKRIMP algorithm to prune the

search space by using the support sg.

To generate a new top-k regular-frequent itemsets, two candidate itemsets X and Y in the
top-k list are merged to be an itemset XY with the following two constraints: (i) the size of
the itemsets must be equal; (ii) both itemsets must have the same prefix (i.e. each item from
both itemsets is the same, excepts the last item). These constraints can help H-TKRIMP avoid
the repetition of generating top-k regular itemsets and help H-TKRIMP prune the search space.

Consequently, the tidsets of itemsets X and Y are sequentially intersected in order to calculate

152

the support, the regularity and the tidsets of XY". To sequentially intersect interval tidsets 7. and

TY , H-TKRIMP categorizes this process into three cases as follow:

e Two of them are normal tidsets. The two tidsets can be easily intersected by comparing
each pair of tids. If they are equal, H-TKRIMP collects one of them into the tidset 7Y of

the m*" partition.

e Two of them are interval tidsets. H-TKRIMP has to consider four cases when comparing

each pair of tids tZX and t}/ in order to construct 7XY (see Definition 6.2):

(1) 1ftX = tY > 0 add tX at the end ofT2Y

add#* at the end of TX Y

7—1 m 1 7. 2,1

Q) if %, > 0,t),, <Ost<t

s Yg,m

() ift;5, < 0,t),, > 0 it add ¢} at the end of X"

' vim i = e zm’

@ if 7, 15, <0, add 17X & (tg%’lm—t?f) at the end of T:XY if ¢*

i,ms Yj,m

tffm <

i—1lm

tY

i—1m tY othegwisefadd t1TXy| -t (t] oy t;/m) at the end of TXY

e One of them is a normal tidset and the :i.ndther one is an interval tidset. The conditions
from the second case are applied with sorhje'_;_different details; for example, T;x is a normal

tidset and 7Y is an interval fidset.]

ol J

() if &%, = tY,, > 0,add t;', -at the end otTXY

2,1

_ add tX at the end of TX Y

g — jm’

) ift¥, >0t <0,tX, <t

s 99,1 » “i,m

From TxY, the support s~ and regularity 7' of XV can be easily computed. If the
regularity of the new generated.itemset XY is ng, greater than o, and its support is greater than
Sk, then XY is insérted in the top-klist and the k' itemset is removed from the top-k list. Lastly,
because of the partitioning technique, TKRIMPE can reduce the time to intersect some tids of
each partitionywhen, at-least;one, of-the-tidsets does not contain regular sequence of transactions.

This will frequently ‘happen particularly in sparse datasets.

By separating the intersection process into 3 cases, H-TKRIMP can reduce computational
time in some cases. For the first case, the two tidsets are normal tidsets. This means that the two
considered candidate itemsets occur sparsely in the partition. Thus, the computational time used
to intersect these tidsets is equal to TKRIMPE which is the fastest algorithm for sparse datasets.
For the second case, the two tidsets are interval tidsets. H-TKRIMP has similar perfomance as
TKRIMIT which is the best algorithm for dense datasets. Finally, for the third case, one is a

normal tidset and another one is an interval tidset. It is the case of the intersection between tidsets

153

that are sparse and dense, respectively. H-TKRIMP has similar performance since TKRIMPE as

it consider only small size of tidsets.

Based on the hybrid representation, H-TKRIMP can reduce time to intersect tidsets from
TKRIMPE by reducing a number of tids in the dense tidsets. Moreover, H-TKRIMP can re-
duce time in the intersect process from TKRIMIT on the sparse tidsets by reducing the time to

investigate each tid in the interval tidset whether it is consecutive continuous or not.

Algorithm 8 (H-TKRIMP: top-k mining)
Input: top-k list, o, k
Output: top-k regular-frequent itemsets
for each entry z in the top-k list do
for each entry y in the top-k list (z > y) do
if the entries = and y have the same size of itemsets and the same prefix then
merge the itemsets of z and y.to'be the itemset 4 = [* U [Y
for each partition m =1 to.pn do
for each t,, in TX @@= 16 |7~ and t,in Y (¢ — 1t0|TY |) do
if ¢, > Oandt > _@'then \
if ty = t, thell ’
calculate the regularity 4 by tz;ka’l-id check r% with o,
add the support$Z byd .
collect ¢, as the last tidin 7}%- |
elseif ¢, > 0 and ¢, < 0, then
if t, < g1 7‘,1 then -, -
calculate the regular1ty r by.t, a,nd check r% with o,
add the support s ., by 1 ¥/ -
collect t,, as the last_‘ tidin Tﬁ Fr
elseif ¢, < O0and?, > 0 then —
ift, 1—t > t, then - i L] =
calculate the regularlty rZ by t, and check r% with &,
add the support.sZ by | :
collectit as the last tid in)2

else
iftp 1— t >tq 17t then
add the support sZ, by (t;—1 — t4).— t\ZTg\
cdllest 1% | + (o Syt q) as thedasiytid ind 7
else
add the support sZ, by (t,—1 —t,) — ‘Tz‘

m

collect tITZI (tp—1 — p) as the last tid ifidd 2

add the support 57 by 52,
if nrtX < ndtX then
transform T'Z to be a normal tidset // not contain tid < 0

calculate the regularity r# by |T'DB|— the last tid of T2,

if % < o, and sZ > s, then
insert the itemset Z (I U IY) into the top-k list with rZ, sZ and T%
remove the k' entry from the top-k list

154

6.7 Example of H-TKRIMP

Consider the T'D B of Table 6.1, the regularity threshold o, of 4 and the number of desired
results k& of 5. The database is separated into three partitions. Then, the process of initializing

top-k list from the 7D B of Table 6.1 is illustrated in Figure 6.2.

a:l:1 b:l:1 c:1:1
— (0 g (i g {0y

f:1:1 d:1:1
i N

c:l:1
"}

d:2:1
-3}

c2:2
(1,3}

d:3:1
{12}

{{1 2}}

:4:2
A he i{5,7}}
T4 I 43 d:6:3
= (13,450 £ 2L 11:2).6g2))

AN AP Td I A E)

:9:3
1{1,-3},16,-2},19,-3}} H1,-2}.6,-2},{9,11,12}}

f

22

{{1.2.4}.{5.7.8}.{10,11}}

e:5:3 c:6:2
142},{5,-2},{10}} T H1L30 45,7149, 113}

(g) Final Top-k list in initialization process

Figure 6.2: Top-k list initialization

By scanning the first transaction t; = {a, b, ¢, d, f}, the entries for items a, b, ¢, d, and f

are created, and their supports, regularities and interval tidsets are initialized as (1 : 1 : {1}) (see

155

a:9:2 d:9:3 ad:9:3
—> {{1,-3},{6,-2},{9,-3}} > {{1,-2},{6,-2},{9,11,12}} > {{1,-2},{6,-2},{9,11,12} }
c:6:2 P b:&8:2

{(41,31,45,73, 49,11} {41,2,4}.{5,7.8},{10,11}}

(a) top-k list when merging item a with item d

a:9:2 d:9:3 ad:9:3
P 130,0620.4093)) [P {41,20,16,-21.09,11,123) [P {41,-21,46,21,19.11,12}}
ab:7:3 P b:8:2

{{1,2,4},{7,8},{10,11}} {{1,2,4},{5,7,8},{10,11}}

(b) final top-k list

Figure 6.3: Top-k during mining process

Figure 6.2(a)). Next, the secondéo={a, b, d:€} is read;and H-TKRIMP adds —1 at the end of the
interval tidsets of a, b and d, since.thése items occur in two consecutive continuous transactions.
Then, the entry for the item e is«€reated and irllitialized (Figure 6.2(b)). For the third transaction
(ts = {a,c,d}), as shownsin Figtire/6, 2(0) the last tids of item @ and d are changed to —2 (they
occur in three consecutive contintous transactlcms t1, to and t3) and the interval tidset of the item
c is updated by adding t3 as the last id‘in b Now, the forth transaction is considered to update
the tidset 7} of items @ and b as illustrate,_d in Fié;jge 6.2(d). However, if nrté (= 0) < ndt}(= 1),
then H-TKRIMP transforms 77 t0 be a normal f{gl@gt (see Figure 6.2(e)). After the first partition
is read, the next partition (transactions-5to 8) iriél{zes or updates the tidset 75 for each item
occurring in this partition as illustrated ip Figurei?Z@_Finally, the third partition is considered

and then H-TKRIMP tyzﬁj_sforms the tidsets into suitable repres_éh_t__ation. After scanning all the

transactions, the top-k lisi'is sorted by support descending order-and the item f is removed (see

Figure 6.2(g)). It will be the starting point for the mining process.

In the minifg ptocess, the itein d is first merged with the formet-item a. The tidsets 7' and

T? are sequentiallysintersected from the first to the last partition in order to calculate the support
4 = 9, the regularity. 7 = 3. The tidsets of the firstand the second are 70¢ = {1, -2} and
Tgd = {652}, respectivelyl Meanwhile,tthe tidset is @94 = [{9, 11, %1} land nrtgd(= 0) <
ndt§?(= 2). Then, H-TKRIMP transforms 7$¢ into a normal tidset format (7§¢ = {9, 11, 12}).
The tidsets 7%¢ of itemset ad is T°¢ = {{1, -2}, {6, —2},{9,11,12}}. Since the support s°¢
is greater than s¢ = 5 and the regularity ¢ is less than o, = 4, the item e is removed and ad
is inserted into the top-k list as shown in Figure 6.3(a). Next, the third itemset i.e. itemset ad is
considered and compared to the former itemsets a and b. Since these itemsets do not have different
size (and do not share the same prefix), they are not merged. Next, H-TKRIMP then considers
the item b which is merged with ¢ and d (s®® = 7, r® = 3, T% = {{1,2,4},{7,8},{10,11}};
bd — 5, pbd = 5, T = {{1,2},{7,8},{11}}). The itemset ab is thus added to the list and the

156

item c is removed. The itemset bd is eliminated. Lastly, the itemsets ab and ad are considered,

and finally the top-k regular-frequent itemsets are obtained as shown in Figure 6.3(b).
6.8 Complexity analysis

In this section, we discuss the computational complexity for H-TKRIMP in terms of time

and space. Extensive experimental studies will complement this analysis in Section 6.9.

Proposition 6.12 The time complexity for. creating the top-k list is O(nm) where m is the number

of transactions in the database and n is the number of items occurring in the database.

Proof: Since the proposedralgorithm scans each transaction in the database once, the entry
of each items that occurs in.the transaction is also looked up once in order to collect the tid into
tidset (O(nm)). The cost fossortingall (in the very worst case) the entries is O(n logn). Then,
the time complexity to create the‘top-k list is.fc’)'.rmally O(nm + nlogn). In fact, the number

of items (n) is, for the considered applications, always less than the number of transactions(m).

Hence, the time complexity o cieate the top-k list is O(nm). [|

2 7
all ol il

Proposition 6.13 The time complexity for mining ﬁ)p% regular-itemset is O(mk?) where m is the

number of transactions in the database and I is the number of results to be mined.

Proof: The mining process merges each itemset in the top-£ list with only the former itemset
in the top-k list. Then, the tidsets of the two merged itemsets are intersected. Therefore, the
combination of all itemsets int thetop-k list is &k * (k*+ 1)/2 and the time to intersect tidset at each

step is O(m). Hence, the overalltime complexity:0f mining process isfO(mk?). [|

Proposition 6.14 The memory space required by TKRIMIT is O(([3|T DB|1)k) where o, is the

number of transactions in each partition and k is the number of itemsets to be mined.

Proof: Based on the interval tidset representation, the maximum number of maintained tids
of an itemset X in TDB is [2|TDB|]. With the partitioning technique, the database is divided
into several partitions. Thus, the maximum number of maintained tids of an itemset X in any
m!" partition is (%UJ where o, is the number of transactions in each partition. This case happens

when the itemset X occurs in every two transactions and miss one transaction in the m*” partition.

157

Since, the interval tidset contains one positive and one negative tids alternately over the
tidset, the maximum value of the number of determined tids ndt: is equal to the number of
[3o-]

negative tids in the interval tidset which is ndt;}y = .= = [10,].

To decide which representation should be used for the m!" partition, the value of nrt;x
must be greater than ndt;x. As mentioned in Chpater 5, the use of interval tidset representation
cannot reduce the number of tids to be maintained in the case that the number of tids is less than or
equal to [%ar] . If the number of maintained tids is equal to [%Uﬂ + 1, there are at least one group
that have three or more consecutive tids in the tidset. Thus, for each increasing number of tids
that more than [%aﬂ, the number of reduced tids is'inereased 3 and the number of determined
tids is reduced to 1. Thus, when the number of tids that X occurs is grater than [%a,ﬂ equal
to * [20,] = [150,], the value-of mrt:X and ndt:-are equivalent. This is the worst case of
maintaining tids of the hybridaepresentation.: Then the maximum number of maintained tids in

the m'" partition is equal to [£6, | & [50, 1= [10,].

In addition, the maximumynumber of maintained tids of the itemset X in every partitions is
equal to [30,]*pn = [2|T DB||where piis the number of partitions in database. Consequently,

all of desired memory to maintain intervaltidsets for'k itemsets is O(([3|TDB|))k). [

6.9 Performance evaluation - -

In this section, the- performance of the H-TKRIMP algerithm is empirically studied
and compared with the previous top-k regular-frequent itemsets mining algorithms: MTKPP,
TKRIMPE and TKRIMIT todemonstrate the difference on performance of the algorithms to mine
top-k regular-frequent itemsets. To measure the performance of H-TKRIMP, the processing time
(including top-k list.construction and mining processes), space usage (i.e. memory consumption)

and scalability (with varied'numbet-of transactions in"database) arejconsidered.

6.9.1 Experimental setup

The experiments of H-TKRIMP are done on three synthetic datasets (T10I4D100K,
T20I6D100K and T20I6D100K) and nine real datasets (accidents, BMS-POS, chess, connect,
kosarak, mushroom, pumsb, pumsb* and retail) which were described their details and character-
istics in Chapter 2. Program for H-TKRIMP is written in C in the same manner as the previous

algorithms: MTKPP, TKRIMPE and TKRIMIT using a top-k list. All experiments are performed

158

on a Linux platform with a Intel®Xeon 2.33 GHz and with 4 GB main memory.

To evaluate the performance of H-TKRIMP, the computational time (total execution time,
including CPU and I/O costs) of the four algorithms with the small and the large values of k£ and
various values of o, are considered. The value of & is divided into two ranges which are 50 — 500
(for the small values) and 1, 000 — 10, 000 (for the large values). Meanwhile, the value of o is set
depending on the characteristic of each dataset for illustrative purpose. Therefore, the value of o,
is not the same in each dataset. In fact, the number of regular itemsets of each database increases
with the regularity threshold. For sparse datasets, each itemset does not frequently occur, then the
value of o, should be specified to be large whensthe value of £ is large in order to gain a large
number of results. For dense datasets, each itemset-appeass very often, then a small value of o,
should be used. Due to the use of the top-k hst and the proposed hybrid representation, the study
of memory consumption for H=FKRIMP. compared with the previous proposed algorithms is also
discussed. Lastly, the scalability of H-TKRIMP on the number of transactions in the database is

illustrated.

6.9.2 Execution time o+,

Let first consider the six real dense datasé’g_s (Le accidents, chess, connect, mushroom,
pumsb, and pumsb*). Figure 6.4 to Figure 6.‘2‘1".-c_l-ée-nionstrate the the runtime on real dense
datasets with varied regufarity threshold. In most cases, H-TKRIMP has similar performance
to TKRIMIT but outperforms MTKPP and TKRIMPE. When the value of k increases, the per-
formance difference becomes larger. With the large values of k£, H-TKRIMP and TKRIMIT can

fully take advantage of thefinterval tidset représentation!

Recall that H-TKRIMP and TKRIMIT employ the.interval tidset representation to maintain
tids that each itemset appears, then both algorithms can group,consecutive ¢ontinuous tids together
and reduce’the number of maintained tids of each itemset. Hence, H-TKRIMP and TKRIMIT
can save time to intersect tids, calculate regularity and support, and collect tidsets of each new

generated itemset.

The runtime on sparse datasets (i.e. BMS-POS, retail, T1014D100K, T2016D100K, and
T40I10D100K) is illustrated in Figures 6.22 - 6.36. From these figures, it can be seen that
H-TKRIMP outperforms MTKPP and TKRIMIT for the small value of k& because H-TKRIMP
employs the hybrid representation that maintains tidsets of each itemsets follows by the occur-

rence behavior of each itemset. On the other hand, TKRIMPE is faster than H-TKRIMP since

159

H-TKRIMP does not apply the support estimation technique, it cannot take advantage from early
terminated intersection process. With the large values of k£, H-TKRIMP consumes execution time
as much as TKRIMPE (i.e. the fastest algorithm among the previous algorithms) because both of
them employ the database partitioning technique which helps ignoring some tids in the intersec-
tion process. In some cases, especially on BMS-POS and T40I110D100K datasets, H-TKRIMP
outperforms TKRIMPE, by using the hybrid representation which can also group the consecutive

continuous tids in sparse datasets,

As mentioned above, based on the database partitioning technique and the hybrid repre-
sentation, H-TKRIMP can reduce intersection process. time on sparse datasets and reduce space
used to maintain tids on dense.datasets. On dense datasets; supports of most itemsets in the set
of results are quite high, thus the.interval tid;et represeitation is applied to such itemsets. As a
result, the processing time of H=TKRLMP is similar to TKRIMIT which performs best on most
dense datasets with long items: OnsSparse datasets, with the small value of k, the processing time
of H-TKRIMP is shorter thandMBKPP /and TKRIMIT but it is longer than TKRIMPE in some
cases. Since, the H-TKRIMP and TKRIMIT cgntgin some negative tids in the tidsets, it is very
difficult to apply the estimation technique.in tﬁi—:;_iﬁterval tidset representation. Accordingly, H-
TKRIMP cannot take benefit of praniig Search space from estimation technique as TKRIMPE in
some datasets. With the large values of %; H—TKI:%IMP has the same performance as TKRIMPE
which is still better than MTKPP and TKRIMIT dtret:; the advantage of the database partitioning
technique. By deeper analysis, in some datasets-,'!.-é._ ¢. BMS-POS. and Mushroom, H-TKRIMP
is the fastest algorithm 0f-both-smali-and-large-values-of &:Fot €ach itemset, H-TKRIMP uses
normal tidset to collect tids for sparse partitions and also apply-interval tidset to maintain tids in
the dense partitions. Thercfore, H-TKRIMP can take benefit from the hybrid representation on

fluctuated occurred-datasets.

6.9.3 Memory consumption

Another issue related to the efficiency of H-TKRIMP is memory usage. To evaluate the
space usage, the regularity threshold o, is set to be the highest value (used in previous subsection)

for each dataset.

Figure 6.37 to Figure 6.42 show the memory usage of H-TKRIMP compared to other pro-
posed algorithms on dense datasets. It can be seen from the figures that the memory usage of H-

TKRIMP increases as the value of k increases and H-TKRIMP consumes the same size of memory

160

as TKRIMIT in the most cases. From the figures, H-TKRIMP can down size memory usage from
MTKPP and TKRIMPE with the large value of k£ because the advantage of using interval tidset
representation. However, in some cases, H-TKRIMP uses more memory than that of TKRIMIT
because it has to convert some tidsets that have too few tids to be normal tidset (i.e. based on
the use of hybrid representation). By this way of doing, H-TKRIMP can save computational time
from the use of single representation (only normal tidset or interval tidset representation) but it
takes little more memory than TKRIMIT using only interval tidset representation. Meanwhile, the
memory usage on sparse datasets are illustrated in Figure 6.43 to Figure 6.47. From these figures,
the memory usage of the four proposed algorithmsiare similar due to the fact that each itemset
does not occur in consecutive continuous tids. Therefore, H-TKRIMP and TKRIMIT cannot take
the advantage from the interval tidset representation.“However, from the results, it can be seen
that based on the used of thestop-k list-structure and maintaining tidset, the memory usage of
H-TKRIMP is efficient for.the top=k regular-frequent itemsets mining using the recently available

gigabyte range memory.

6.9.4 Scalability test

¥

In this experiment, two primany factors, the sealability of execution time and memory us-
age, are examined. The kosarak dataset which is ;_11_1_'1g¢ dataset with a large number of distinct
items (41, 270) and transactions (990, 002) is used. To test the scalability with the varied num-
ber of transactions, the database is first divided into six portions. Each portion contains: 100K,
200K, 400K, 600K, 800K and 990K transactions, respectively.The value of k£ (i.e. the number
of itemsets to be mined) is specified to 500 and 10, 000 (i.e. each is the instance of the small and

the large values ofik), and the regularity. threshold i$/set to 6% of the'number of transactions in

each portion.

As'shown in the plots in Figures6.48 and 6.49, H-FTKRIMP outperforms the three competi-
tors in all the tests conducted. All the execution time linearly grows as the dataset size increases
from 100K to 990K . For the large values of k£, H-TKRIMP is much more scalable than the others
due to the fact that it benefits from the proposed hybrid representation. H-TKRIMP can reduce
the number of maintained tids during mining based on interval tidset representation. Furthermore,
the number of considered tids (in each iteration of intersection process) is also decreased by using
database partitioning technique. Meanwhile, H-TKRIMP is also the most scalable on the small
value of k. In most cases, the scalability of H-TKRIMP and TKRIMIT are similar since they are

both based on the interval tidset representation.

161

The memory scalability is also considered. From the Figures 6.48 and 6.49, the slope of H-
TKRIMP smoothly increases as the number of transactions increases. In some cases, H-TKRIMP
consumes memory little more than that of TKRIMIT but it still better than MTKPP and TKRIMPE
because H-TKRIMP employs the hybrid representation of normal and interval tidsets. However,
H-TKRIMP has linearly scalability in term of memory usage for mining top-k regular-frequent

itemsets.

6.10 Summary

In this chapter, we have proposed an.eéfficient algorithm to mine a set of top-k regular-
frequent itemsets, H-TKRIMP, whieh is based on: (i) a best-first search strategy that allows to
mine the most frequent itemsets as soon as p0|§sible and to raise quickly the k*" support (i.e. the
support of the k* itemsetif thefSorted fop-k A_lis}t_) dynamically which is then used to prune the
search space; (ii) a partitioning of the databasijﬁ order to reduce the number of comparison of
certain tids at the end of each partition during tﬁp intersection process and (iii) a hybrid represen-
tation used to maintain tidset during mining proic_fc_gs which is a combination between normal and
interval tidset representations. 3 J, "

The performance studies on bbth real and é;_y;n;ﬂetic datasets show that the proposed algo-
rithm is efficient. The perfonnan;:-eydf H—TKRII-\jl-lg _i-;swéompared with MTKPP, TKRIMPE and
TKRIMIT, which are at the moment the only three efficient algorithms for mining top-k regular-
frequent patterns. From £he performance studies, it can be concluded that with the small and the
large value of k, H—TKRIMP has good overall performance for both dense and sparse datasets.
In most time, H-TKRIMP can/rediice thel number ¢f maintained tids:in the top-k list on dense
datasets. This is caused to save its processing timeto mine results.” On the other hand, H-TKRIMP
is able to reduce the number of considered tids in each itération of intersection process on sparse
datasets, thus improves its‘tunning time.dnstantly. By combining the partitioning and the hybrid
representation together, H-TKRIMP is efficient in terms of time and space to mine top-k regular-

frequent itemsets.

accidents (o, = 1)

125 F T T T T
MTKPP ——
10 |- TKRIMPE -~ _
TKRIMIT -~ - -
H-TKRIMP -~
s 15|
‘g 3 :;'—_:-ﬁ
p=1 5 Lz ‘;.Tﬁ:" -
25 . -
- I
0 50 100 200 300 400 500
k
| i (0, =1)
200 . I I '
160 |- ‘4 Ao
//:rm,;—‘
@ 120 ; K e .
: -
= 80 —
_ PP ——
= " TKRIMIT --% -
2 R
0 200 8000 10000
B (s ,
Figure 644: time of H-Tk idents (o, = 1%)
WAy
B4EL
F (T '
A] * ir = 2)
175 T

time(s)

\
\

\

\\
é

\
|

time(s)

TKRIMPE —-X%--
TKRIMIT --% -]
|i|-TKR|MPI----Ei----

|
1000 2000 4000 6000 8000 10000
k

Figure 6.5: Runtime of H-TKRIMP on accidents (o, = 2%)

162

accidents (o, = 3)

163

175 T T T T T
PF-tree ——
14 | MTKPP —¢--
& 105 [x —
2 -
= X~
= 7 e 0 -
—X
35 |- - _
=1 1 1 1
0 50 100 200 300 400
k

time(s)

500

8000

10000

N
ats (o, = 3%)

, w ¢ o o/
AW AN d
q 24 | TKRIMPE —-%~- _
T TKRIMIT --% -
H-TKRIMP {5+
% 18| .
[3)
£ 12 s ?j
—_T-T‘E‘-
0.6 i
!
0 1000 2000 4000 6000 8000 10000
k
Figure 6.7: Runtime of H-TKRIMP on chess (o, = 2%)

chess (o, = 4)

0.15 T T T

1 I
MTKPP ——
0.12 I-TKRIMPE —-X--

TKRIMIT --% -+
H-TKRIMP (-

& 009 —
2
= 0.06 —
0.03 -
- S -%
...................... f
0 50 100 200 300 400 500

0.15 oot

T

_TKRIMPE - -
TKRIMIT --% -~
H-TKRIMP ----[3----
@ 1.8 - —
g |
£ 1 X
,_:-T‘T'ﬁ'.
0.6 —
0 1000 2000 4000 6000 8000 10000

k

Figure 6.9: Runtime of H-TKRIMP on chess (o, = 6%)

164

165

connect (o, = 1)

15 F T T T T
MTKPP ——

TKRIMPE —-X--
12 = TKRIMIT --% -

H-TKRIMP {3~

w 09 |
Q
£
= 06 |
03 g . B T
. 1 1 | | t
0 50 100 200 300 400 500
k

time(s)

8000 10000

Figure 6410: f H-TH r ect (o, = 1%)

q TKPP

TKRIMPE —-X~-
32 |- TKRIMIT - -3 --
H-TKRIMP -5+

2 24|
(3]
E
= 16|
8- PR
0 1000 2000 4000 6000 8000 10000
k

Figure 6.11: Runtime of H-TKRIMP on connect (o, = 2%)

166

connect (o, = 3)

15 F T T T T
MTKPP ——

TKRIMPE —-%—-
12 = TKRIMIT --% -

H-TKRIMP {3~

_.ra |m'

TKRIMPE —-%—-
2 = TKRIMIT -- % --
H-TKRIMP ----(3----

1000 2000 4000 6000 8000 10000
k

Figure 6.13: Runtime of H-TKRIMP on mushroom (o, = 4%)

167

mushroom (o, = 6)

T T T T
02 - MTKPP ——
TKRIMPE —-X--
0.16 = TKRIMIT --3 --]
H-TKRIMP {3~ Y\
“£ 012 K R
: oo
= 008 —
0.04 .
]
0 50 100 200 300 400 500
k
" -
| = 6)
3 - I I P2
24 1K F- /— .
----- —
» 18 , gt —
T -
= 1.2 —
0 ¥ 8000 10000
NG |
Figure 6. e of -TKRIM s, m (o, = 6%)
. o 'y ¢ !
-&. -
T
f::"
S -
e i - N 8)
, 1 3
0 o
@ _—'_—__'__‘..'-Eﬁ
kol RS -
PO —
.-""E‘."
0.0 T, _»_-_'_'___&_.—" u —
ﬂ u 0 2 0 0 500
q k

24

18

time(s)

1.2

0.6

TKPP
| TKRIMPE —-X--
TKRIMIT - - --
H-TKRIMP -+

1000 2000

4000 6000 8000 10000
k

Figure 6.15: Runtime of H-TKRIMP on mushroom (o, = 8%)

pumsb (o, = 2)

2F , : | |
MTKPP ——
16 L TKRIMPE - -
6 [~ TKRIMIT - - --
H-TKRIMP -+~
s 12|
(<}
£
S o8|
PP --..«.;..--.%-._,.—-._.
04 - WU TR- T .
| | | |
0 50 100 200 300 400
K

500

q TKPP
24 | TKRIMPE —-X--)
TKRIMIT --3 --
H-TKRIMP ----[3----
> 18 - |
Q
€
= 12]
.
N - L
e T T |
0 1000 2000 4000 6000 8000 10000

k

Figure 6.17: Runtime of H-TKRIMP on pumsb (o, = 4%)

168

169

pumsb (o, = 6)

2 F T T T T

MTKPP —+—

| TKRIMPE —-%--
TKRIMIT - - -

H-TKRIMP {3~

1.6

v 12}]
9]
£
= 08 |
I B BELSL |
0.4 N - R - ki
| | 1 | |
0 50 100 200 300 400 500
k

time(s)

8000 10000

Figure 6.18: of H-T 1sb (o, = 6%)

5 MTKPP —+— |
TKRIMPE —-X—-
2.5 TKRIMIT - -3 -]

2 |
0 1000 2000 4000 6000 8000 10000
k

I-:-TKRIMPI----Ei""

Figure 6.19: Runtime of H-TKRIMP on pumsb* (o, = 1%)

pumsb* (o, = 2)

1F T T T T
MTKPP ——
TKRIMPE —-X~--
08 = TKRIMIT --% -- TR
H-TKRIMP -3+ “
@ 06 —
[9)
£
= 04 —
0.2 _
]
0 50 100 200 300 400 500

X% \\m PP
L ,E __X_.
\\ KRIMIT - - % -
\ B
Ty

time(s)

KR P -3

8000 10000

10
B 75
Q
£
= 5

MTKPP ——
TKRIMPE —-X%~-
TKRIMIT --% -]

I-:-TKRIMPI----Ei""

da |
0 1000 2000 4000 6000 8000 10000
k

Figure 6.21: Runtime of H-TKRIMP on pumsb* (o, = 3%)

170

171

BMS-POS (o, = 1)

time(s)

BN W A~a
I

MTKPP —+—
TKRIMPE —-X--
TKRIMIT --%--

HTKRIMP -3~

15
12

Figure 6.

time(s

100 200 300 400 500

k
=1
T
_——7
————— X7
- BEEE SRR
: TKPP —+— —
E --X--
e --
000 10000
“TKRIM S (o = 1%)
.ri‘,.Ta‘
= 2)
- MTKPP —+—
24 TKRI —-X--
TKRIMIT -- - -
L7 H-TKRIMP -+~
0 0 4 500
k

TKRIMPE —-X--
TKRIMIT --%--
H-TKRIMP (-

2000 4000 6000 8000 10000

k

Figure 6.23: Runtime of H-TKRIMP on BMS-POS (o, = 2%)

Figure 6.

172

BMS-POS (o, = 3)

5 |-
~ 4 —
@
O -
£ sm g
2 TKRIMPE - -X--]
1 TKRIMIT --%-- _|
HTKRIMP -~
50 100 200 300 400 500
k

TKRIMPE —-X--
RIN - X --
\‘\t P o

time(s)

000 8000 10000

\

POS (o, = 3%)

TKPP
5.2 |- TKRIMPE --%--

TKRIMIT - - --
H-TKRIMP -+

% 39 —
]
B 2.6 —
N B - S
' I I I
0 1000 2000 4000 6000 8000 10000
K

Figure 6.25: Runtime of H-TKRIMP on retail (o, = 6%)

retail (o, = 8)
05 I I I
: MTKPP —— ;_
TKRIMPE —-X%--
0.4 = TKRIMIT --% -+ e -
H-TKRIMP {3+ X
@ 03 - —
(<}
=02 PRI —
0.1 -
! !
0 50 100 200 300 400 500
k
D -
[}
£

|

8000 10000

6

TKRIMPE —-X |
132 = TKRIMIT - - -- N
H-TKRIMP -~
@ 99| -
[3)
£
£ 66| -
33 -ﬁ””""g—”_/m
: Y S
% 1 1 1
0 1000 2000 4000 6000 8000 10000

k

Figure 6.27: Runtime of H-TKRIMP on retail (o, = 10%)

173

0.8

0.6

time(s)

0.4

0.2

time(s)

Figure 6.2

time(s)

174

T1014D100K (o, = 4)

H-TKRIMP {3~

T T
MTKPP —+—

TKRIMPE —-X--
[~ TKRIMIT - -3 --

Q
3

N 7
N

500

TKRIMPE —-X%--
TKRIMIT --% -]
IiI-TKRIMPI----Ei""

1000

2000

4000 6000 8000 10000

k

Figure 6.29: Runtime of H-TKRIMP on T10/4D100K (o, = 6%)

T1014D100K (o, = 8)

2F T T T
MTKPP —+—
16 |- TKRIMPE ——<-- g
: TKRIMIT - é - e
H-TKRIMP -3+ i

s 12| Q _
Q
=
= 08 —

0.4 _

o ! L
0 50 100 200 300 400 500
k
5.25) ;
\“}‘“ Z B g

4.2 b . -
> "
[J)
£

10000
Figure 6.30 4D100K (o, = 8%)

@
(9]
£
4
, TKRIMPE —-X%--
1.75 |- TKRIMIT --% -]
H-TKRIMP -]+
1 1 1 1 1
0 1000 2000 4000 6000 8000 10000

k

Figure 6.31: Runtime of H-TKRIMP on 72016D100K (o, = 2%)

175

T2016D100K (o, = 4)

6.5 F T T
MTKPP ——
5o |- TKRIMPE —-<--
27 TKRIMIT --% -
H-TKRIMP -+
@ 39
(9]
E
=26
1.3
0 50 100
@
(5]
£
Figure 6.3

N

va

200 300 400 500

'HY:\ 8000 10000

\'Y DI00K (o, = 4%)

TKRIMPE —-X%--
TKRIMIT --% -]
HI-TKRIMP I----El----

1000 2000

4000 6000 8000 10000
k

Figure 6.33: Runtime of H-TKRIMP on 72016D100K (o, = 6%)

176

T40110D100K (g, = 2)

177

125 |~ | | I |
MTKPP ——
TKRIMPE - X~ -
10 [~ TKRIMIT - - --

7.5

time(s)

g —— —

H-TKRIMP -

H
. s
22 .

time(s)

500

MTKPP —— |

KRIMIT

8000

10000

q k
\; ¢ N
q a . “ » |
4 I—
34 it
@ 255
(3]
£
= 17
TKRIMPE - -X —-
8.5 TRRIMIT % - —
H-TKRIMP -
DK | I | I |
0 1000 2000 4000 6000 3000
k

10000

Figure 6.35: Runtime of H-TKRIMP on T40110D100K (o, = 4%)

15

12

time(s)

time(s)

Figure 6.36

memory(MB)

T40110D100K (o, = 6)

178

T T
MTKPP —+—

| TKRIMPE —-X-—-
TKRIMIT --% -~

H-TKRIMP -3~

S————

MTKPP —+—

2880 |- TKRIMPE - -

memory(MB)

500

TKRIMIT - - % --
H-TKRIMP {5+ _ _Eg
N
]
0 1000 2000 4000 6000 8000
k

10000

Figure 6.37: Memory usage of H-TKRIMP on accidents

memory(MB)

memory(MB)

memory(MB)

memory(MB)

chess (o, = 6)

5 T T T T
MTKPP —+—
4 L TKRIMPE - % --
TKRIMIT - - - -
5 |HTKRIMP &
2]
1 -
b2 L %
0 50 100 200 300 400 500

=N

MTKPP —+—
1940 |-TKRIMPE —-X--
940 ™ TKRIMIT -~ % -
H-TKRIMP -+

485 |
P B
0 1000 2000 4000 6000 8000 10000
k

Figure 6.39: Memory usage of H-TKRIMP on connect

179

memory(MB)

memory(MB)

Figure

memory(MB)

=
&o

memory(MB)

180

mushroom (o, = 8)

7 T T T T
MTKPP ——
56 |-TKRIMPE —-%-- _
TKRIMIT --3 --
H-TKRIMP -3+
4.2 -[]
28 5| 2K
T
1.4 -
- | |
0 50 100 200 300 400 500

MTKPP —+—
| TKRIMPE —-X--

1820 = TKRIMIT -~ --
H-TKRIMP -~

990 [~

660 [~

330 [~

AR —

00 F".ﬁ-.'ﬁ‘.?.l' \\\ 10000
404 Mg on mushroom

e R R
. SR

1000 2000

4000 6000 8000 10000

k

Figure 6.41: Memory usage of H-TKRIMP on pumsb

pumsb* (g, = 3)

o | T T T

MTKPP —+—

TKRIMPE — -~ -

_ 40 [~ TKRIMIT -- % -- -
@ H-TKRIMP &
S 30
g R
§ 20 .
£

10 -

!
0 50 100 200 300 400 500
k

)
2
=
=}
g _
[}
g

8000 10000

[P on pumsb*

memory(MB)

2

TKRIMPE —-X~-
— TKRIMIT --% -
H-TKRIMP -+

memory(MB)

1000 2000 4000 6000 8000 10000
k

Figure 6.43: Memory usage of H-TKRIMP on BMS-POS

181

retail (o, = 10)

2 1 T T T 3
MTKPP ——
1.6 |-TKRIMPE —-%-- _
= TKRIMIT - -3 --
H-TKRIMP ----[3----
S 12 = —
—p—e
E 08| —
L .
04 |- —
*"]]]]
0 50 100 200 300 400 500
k
,,-"
o
=3 _
=
o
£ _
[)
£
10000

LRI L

L

memory(MB)

q MTKPP —+—

12 L TKRIMPE —-X -
TKRIMIT - - --
H-TKRIMP -5+

memory(MB)

2 | | | | |
0 1000 2000 4000 6000 8000 10000
k

Figure 6.45: Memory usage of H-TKRIMP on T10I14D100K

182

memory(MB)

memory(MB)

At
QR4S

memory(MB)

memory(MB)

7.2

5.4

3.6

1.8

| }ir .

&

45

30

15

T2016D100K (o, = 6)

183

T T
MTKPP —+—

| TKRIMPE —-X--
TKRIMIT - - --

H-TKRIMP -+

MTKPP —+—
TKRIMPE —-X~-
TKRIMIT - - --
H-TKRIMP -+

500

10000

N
S

1000

2000

4000 6000
k

8000 10000

Figure 6.47: Memory usage of H-TKRIMP on 740110D100K

kosarak (k = 500, g, = 6)

7 T T
56 |-
w 42
2
s 28
TKRIMPE —-X-—-
14 | TKRIMIT --3% --
|I+TKR|MPI----E1----
0 1 2 4 6 8 9.9
Number of transactions(100K)
iy
500,0, = 6)
70 — T
T : _’:—F .
= 42 1 ‘_:______,_..__-5.3
: et
E 28] o O -
1S f "
14 g% -1
0 g o 8 9.9
Num| tran 0
- . ’
Figure 6.4 aﬁl' of 00, o, = 6)
i L L
WA,
e =
:l::.'
abliid < 2
0, o, = 6)
A ‘_*
90 el |

time(s)

memory(MB)

u == 4 TKRIME |
3

S PP —+— |
TKRIMPE —-%--
18 TKRIMIT --% -]

¢ o v/
N
MTKPP —
188 |- TKRIMPE —-% - -
TKRIMIT --% - m
H-TKRIMP - e
141 -.;‘;;m,-, -
94 -
47 -
|
0 1 2 4 6 8 9.9

Number of transactions (100K)

Figure 6.49: Scalability of H-TKRIMP (% : 10, 000, o, = 6)

184

CHAPTER VII

CONCLUSION

7.1 Summary of Dissertation

Recently, Tanbeer et al. proposed an approach for considering the occurrence behavior of
patterns (Tanbeer et al., 2009), i.e. whether the pattern occur regularly, irregularly or mostly in
specific time period of a transactional database. Hence, apattern is a regular-frequent if it is fre-
quent in terms of the support measure, as definéd in (Agrawaland Srikant, 1994), and if it regularly
appears (measure of regularity/ pesiodicity of the pattern which considers the maximum period
at which the pattern occurs). To.discover a set|of regular-frequent itemsets, the authors proposed
a highly compact tree strueture named Periodljc Erequent patterns tree (PF-tree) to maintain the
database content, and a pattern growth-based alé,olrithm to mine a complete set of regular-frequent

itemsets with user-given support and regularity thresholds,

i

However, it is well-known that t-‘he- suppor;;i}a;éd approaches tend to produce a huge num-
ber of patterns and it is not easy for end =Users toJ cfet@;mlne a suitable support threshold. Thus,
the top-k significant patterns mlnlng framework whlch allows the users controlling the number of
patterns (k) to be mined (which is easy to spe01fy) w1ti1;)ut a support threshold, is an interesting
approach (Han et al., 20Q2).). Therefore, the contributions of this dissertation have focused on the

problem of mining top-k regular-frequent itemsets as follows.

Chapter 3 introduced the-the, problem, of mining, k.regular.itemsets with the highest sup-
ports, called Top-K Regular-frequent \Itemsets. Mining, that allows!users to specify the number
of regular-frequent itemsets to be mined# From this problem, the users hayve to specify two pa-
rameters: (i) a numberiofidesired results (k) (i.¢. specify the value of % instead of setting the
support threshold); and (i) a regularity threshold (i.e. to see whether an itemset occurs regularly).
Consequently, an efficient algorithm named Mining Top-K Periodic(Regular)-Frequent Pattern
(MTKPP) was proposed. To mine top-k regular-frequent itemsets, the top-k list structure (with
hash table) and the best-first search strategy were also devised for efficiency reasons. From the
experimental results, it can be observed that MTKPP ran faster than PF-tree which exactly mines
the same results (with the small and large values of k) and scaled linearly relative to the size of
the input database. Thus, the MTKPP algorithm is recommended when the users desire to control

the number of outputs.

186

Subsequently, an efficient algorithm called Top-K Regular-frequent Itemsets Mining with
database Partitioning and support Estimation (TKRIMPE) to mine a set of k regular-frequent
itemsets with the highest supports was presented in Chapter 4. TKRIMPE was devised to improve
the performance of MTKPP by trying to reduce the processing time in the intersection process.
In TKRIMPE, the database partitioning and support estimation techniques were also introduced
to dismiss unnecessary computational costs and to cut down the search space. The experimental
study shows that TKRIMPE ran faster than MTKPP when the database is sparse, and also has the

similar performance on dense datasets.

Chapter 5 proposed an efficient algorithmy'called Top-K Regular-frequent Itemsets based
on Interval Tidset representation (LKRIMIT) to minetop-cregular-frequent itemsets. In addition,
a new concise representation, /nzeival Tidset r;:presentation, used to collect the set of tids that each
considered itemset occurs wassdntroduced. Based on the interval tidset representation, TKRIMIT
can reduce the number of maintained tids that each itemset occurs. This is caused to save the
memory usage and runtime toming the top-k regular-frequent itemsets. As shown by results from
the experiments, the use of integval tidset represé}ltgtion gives the better performance from the use

of normal tidset representation especially on dense datasets.

In Chapter 6, the combination -between fh’eadatabase partitioning technique and interval
tidset representation was proposed. <Fhe Hybrid,-i;él;iiésenmtion was introduced to maintain the
tids that each itemset occurs. It eemposes of nor"mai tidset representation (i.e. sets of normal
tids that each itemset occurs) and interval tidset representation (i.e.sets of concise (wrap up) tids
that each itemset appears). By using this representation, a simple heuristic was devised to choose
a proper presentation for-the occurrence behavior of each itemset. Consequently, an efficient
algorithm based on database“pattitioning techniquie’and the hybrid representation called Hybrid
representation on Top-K' Regular-frequent Itemsets Mining based ondatabase Partitioning (H-
TKRIMP) was introduced. As shown in the experiments, H-TKRIMP can run faster than the other

algorithms on both spassesand dense datasets with the small"and large valuges of k.

In summary, this dissertation has studied the regular-frequent itemsets mining problem and
then proposed the problem of top-k regular-frequent itemsets mining which allows users to control
the number of results to be mined. To mine the top-k regular-frequent itemsets, the efficient
and scalable single-pass algorithms based on the top-k list structure have been suggested. They
consist of two steps: (i) top-k initialization: scan database to construct the top-k list of regular
items with their supports, regularities, and tidsets; and (if) top-k mining: merge each pair of
entries in the top-k list using the best-first search strategy (i.e. first consider the itemsets with the

highest supports), then intersect their tidsets to calculate regularity and support of each itemset.

187

From both steps, it can be observed that the mining process consumes high processing time in
the intersection process. Therefore, the partitioning and estimation techniques were invented to
reduce the cost of intersection by dismissing some unnecessary computing. From the experiment
(as mentioned in Chater 4), it can be seen that applying both techniques can help algorithms to
achieve a good performance especially on sparse datasets with the small and large values of k.
In addition, to gain a better performance on dense datasets, the number of maintained tids was
emphasized. If the number of maintained tids is very few, mining algorithms would spend few
time in the intersection process. Thus, a new concise representation was devised to reduce the
number of maintained tids of each itemset in the top-k list. It uses only one positive and one
negative tids to represent a group of consecutive eontinuous tids. By using this representation,
the performance of mining algorithms grow _up in-terms of time and space especially on dense
datasets. Finally, to have a geed'performance on both sparse-and dense datasets without knowing
the characteristic of datasets'in advance; the combination of database partitioning technique and
the concise representation was proposed. Th|en, the hybrid representation was also devised to
maintain tidsets followed by occurrence behaviol;" of each itemset. If the itemset occurs frequent,
the concise representation is applied. Otherwi's’le,»'the original representation is employed. The
results show that the use of hybrid representatiibn and partitioning technique can give a good

performance on both sparse and dense dataset w.i.,th.the small and large values of k comparing

with the other proposed algorithms. e s
7.2 Discussion

Although, this dissertation introduced the top-k regular-frequent itemsets mining and some
efficient algorithms that achieve a good performance on both sparse and dense datasets with the
small and large values of k,"thére exists some lithitation which can be categorized into several

points.

Firsty thesproposed algoerithms qate jbasedron single, seanning and ;maintaining the tids for
each itemset in the top-k list." Though; there exists a concise representation which helps to save
runtime and memory space, the mining algorithms still spend a lot of time in the intersection
process and a lot of memory to maintain tids. Then, the interesting problem is to design a new
algorithm that can share the common sets of tids among the itemsets in the top-k list. This way of
doing may help the mining algorithms to save time to intersect and space to maintain tids during

mining process.

Second, to discover the top-k regular-frequent itemsets in the presence memory constraint,

the proposed algorithms would have a problem on memory consumption because they have to

188

maintain tidset for each itemset the set of results. Thus, a new approach using the secondary
storage or using incremental technique to separately consider each partition of database should be

discussed in the direction of reducing required memory.

Third, the problem of top-k regular-frequent itemsets mining require two parameters: (7)
regularity threshold (o) and (if) the number of desired results (k). In some cases, users would
suffer from the setting a suitable regularity threshold. Thus, the interesting problem is to auto-
matically specify the regularity threshold to mine the top-k regular-frequent itemsets. To come
up with an appropriate regularity threshold, one needs to have detailed knowledge about the min-
ing query and the task-specific data, and be able to estimate, without mining, how many itemsets
would be generated with a particular threshold. Unidike a.support threshold, the setting of a reg-
ularity threshold is quite subtle: a-too large -t-.hreshold may lead to the generation of thousands
of itemsets, whereas a too small one'may often generate very few or no answers. Therefore, the
avoiding of the setting of regularity threshold by using other criteria to find the suitable threshold

&

might become an important task. .

Fourth, the problem of top-k regular—freqlibndt'-itemsets mining works only on static database
(i.e. no updated record). Therefore, another intere-sting direction is to study the problem of mining
top-k regular-frequent itemsets mining-from incféﬁlcntal databases and data streams. In the past
few years, research in data streams (also'incremen-f_él;éétabases) has attracted a lot of researchers.
A data stream is a continuous, unbounded, and ti’inéLy ordered sequence of data elements gen-
erated at a rapid rate. Unlike traditional static databases. streani.data, in general, has additional
processing requirements;.e., each data element should be examined at most once and processed
as fast as possible with thedimitation of available memory. Eventhough mining user-interest based
patterns from data stream has béecome a challenging issue, interests in online stream mining for
discovering such patterns dramatically increased.- Hence; to find top-k regular-frequent itemsets
efficiently from data'streams, an efficient algorithm that can capture the stream content with one
scan and’can ‘competenily,mine theirésultant itemsets is required.. Since the proposed algorithms
scan database once, then it can be improved the algorithms to directly mine top-k regular-frequent

itemsets from data streams.

The author strongly believe that, with the proposed algorithms and the proposed approach,
it could seen many interesting, or the ultimate, solution to the mining regular patterns in the near

future.

References

Ramesh C. Agarwal, Charu C. Aggarwal, and V. V. V. Prasad. 2001. A tree projection algorithm
for generation of frequent item sets. Journal of Parallel and Distributed Computing 61

,3:350-371.

Rakesh Agrawal and Ramakrishnan Srikant. 1995. Mining sequential patterns. In International

Conference on Data Engineering, pp: 3—14. L.os Alamitos, CA, USA. IEEE Computer

Society.

Rakesh Agrawal and Ramakrishnan.Srikant. 11994: Fast algorithms for mining association rules
in large databases. lnVLDB 94, Proceedings of 20th International Conference on Very
Large Data Bases, Santiago de¢ Chile, Chile,September 12-15, pp. 487-499.

i

Rakesh Agrawal, Tomasz Imielingki,and Arun N. Swami. 1993. Mining association rules between

sets of items in large databases: In Progzedings of the 1993 ACM SIGMOD International

Conference on Management of Data, Washington, D.C., May 26-28, pp. 207-216.

Komate Amphawan, Philippe Lenca, and-Athasit Surarerks. 2009. Mining top-k periodic-frequent

patterns without support thieshold. In ’@e}’l’a’lrd International Conference on Advances
in Information Technology.-FAI'T" 09, Baﬁgkok; Thailand, December 1-5, volume 55 of
CCIS, pp. 18-29. Springer.

Roberto J. Bayardo. 1998. Efficiently mining long patterns from databases. In SIGMOD ’98:
Proceedings of the 1998 ACM SIGMOD international conference on Management of
data, pps:85+93.

Fernando Berzal, Juan-Carlos Cubero, Nicolds Marin, and José-Maria Serrano. 2001. Tbar:
An (efficient acthod for association fule/mininglifi relational“databases. Data and

Knowledge Engineering 37,1:47-64.

Ramkishore Bhattacharyya and Balaram Bhattacharyya. 2007. High confidence association min-
ing without support pruning. In Ashish Ghosh, Rajat K. De, and Sankar K. Pal, edi-
tors, Pattern Recognition and Machine Intelligence, Second International Conference,

PReMI 2007, Kolkata, India, December 18-22, 2007, Proceedings, volume 4815 of

Lecture Notes in Computer Science, pp. 332—-340. Springer.

Francesco Bonchi and Claudio Lucchese. 2005. Pushing tougher constraints in frequent pat-

tern mining. In Advances in Knowledge Discovery and Data Mining, 9th Pacific-Asia

190

Conference, PAKDD 2005, Hanoi, Vietnam, May 18-20, volume 3518 of Lecture Notes

in Computer Science, pp. 114-124. Springer.

Sergey Brin, Rajeev Motwani, and Craig Silverstein. 1997a. Beyond market baskets: generalizing

association rules to correlations. In ACM SIGMOD/PODS, pp. 265-276.

Sergey Brin, Rajeev Motwani, Jeffrey D. Ullman, and Shalom Tsur. 1997b. Dynamic itemset

counting and implication rules for market basket data. In SIGMOD ’97: Proceedings

of the 1997 ACM SIGMOD international conference on Management of data, pp. 255—
264.

Doug Burdick. 2001. Mafia: A maximal frequent iiemset algorithm for transactional databases.
In ICDE °01: Proceedings-of the 17th Inteinational Conference on Data Engineering, p.
443.

David W. Cheung, Jiawei Han, Vincent/T. Ng, Ada W. Fu, and Yongjian Fu. 1996. A fast

distributed algorithmufor mining association rules. In DIS ’96: Proceedings of the fourth

international conféren¢e on on Parallel and distributed information systems, pp. 31-43.

Yin-Ling Cheung and Ada‘Wai-Chee Fu.- 2002. Fp-tree approach for mining n-most interesting

itemsets. Data Mining and Knowledge 'Dislcovery: Theory, Tools, and Technology IV
4730,1:460-471. =l

Yin-Ling Cheung and Ada Wai-Chee-Fu.-2004. Minihg frequent itemsets without support thresh-

old: With and without item constraints. IEEE Transdctions on Knowledge and Data

Engineering 16;9:1052-1069.

Edith Cohen, Mayur Datar, Shinji Fujiwara, Aristides Gionis, Piotr Indyk, Rajeev Motwani, Jef-
frey D. Ullmanj and Cheng Yang: 2001.<Findinginteresting associations without support

pruning. IEEE Transactions on"Knowledge and Data Engineering 13,1:64-78.

Guozhu Dong andJinyan Li«1999: «Efficient mining ofiemerging patternsiidiscovering trends

and differences. In KDD”99:"ACM SIGKDD 'international conference on Knowledge

discovery and data mining, San Diego, California, United States, pp. 43-52.

Jie Dong and Min Han. 2007. Bittablefi: An efficient mining frequent itemsets algorithm.
Knowledge-Based Systems 20,4:329-335.

Mohammad El-hajj and Osmar R. Zaiane. 2003. Cofi-tree mining: A new approach to pattern
growth with reduced candidacy generation. In Workshop on Frequent Itemset Mining

Implementations (FIMI’03) in conjunction with IEEE-ICDM.

191

Mohamed G. Elfeky, Walid G. Aref, and Ahmed K. Elmagarmid. 2005. Periodicity detection in
time series databases. IEEE Trans. on Knowl. and Data Eng. 17,7:875-887.

Joseph Engler. 2008. Mining periodic patterns in manufacturing test data. In International

Conference IEEE SoutheastCon, pp. 389-395.

Usama M. Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. 1996. Knowledge discovery
and data mining: Towards a unifying framework. In KDD, pp. 82-88.

Frdric Flouvat, Fabien De Marchi, and Jean-Marc Petit. 2010. A new classification of datasets

for frequent itemsets. Journal of Intelligent Information Systems 34:1-19.

Ada Wai-Chee Fu, Renfrew W. w. Kwong, and Jian Fang. 2000. Mining n-most interesting item-

sets. In ISMIS *00: Proceedings of the 12th International Symposium on Foundations

of Intelligent SystemssPp..59-67. Springer-Verlag.

1
Liquang Geng and Howard®J. Hamilton: 2006. Interestingness measures for data mining: A

&

survey. ACM Comput. Sugy. 38,39 '

Bart Goethals. 2005. Frequent set mining. In The Data Mining and Knowledge Discovery
Handbook, pp. 377-397. Springer.

: ¥/

Karam Gouda and Mohammed J: Zaki: 2001 EfﬁCIentlJy mining maximal frequent itemsets. Data

Mining, IEEE International Conference on 0 163.

s

Gosta Grahne and JianfeiZhu. 2005. Fast algorithms for frequent.itemset mining using fp-trees.

IEEE Transactions on Knowledge and Data Engineering-17,10:1347-1362.

Jiawei Han, Jianyong Wang, Ying Lu, and Petre Tzvetkov. 2002. Mining top-k frequent closed
patterns without minimum support, In IEEE, International Conference on Data Mining,

pp- 211218

Jiawei Han, Jian Pei, Xiwen Yin,.and.Runying.Mao. 2004..Mining, frequent patterns without
candidate generation: A frequent-patternitree approach..Data Min. Knowl. Discov. 8,1:

53-87.

Jiawei Han, Hong Cheng, Dong Xin, and Xifeng Yan. 2007. Frequent pattern mining: current

status and future directions. Data Min. Knowl. Discov. 15,1:55-86.

Robert J. Hilderman and Howard J. Hamilton. 2000. Applying objective interestingness measures
in data mining systems. In Principles of Data Mining and Knowledge Discovery, 4th

European Conference, PKDD 2000, Lyon, France, September 13-16, volume 1910 of

Lecture Notes in Computer Science, pp. 432—439. Springer.

192

John D. Holt and Soon M. Chung. 2002. Mining association rules using inverted hashing and

pruning. Information Processing Letters 83,4:211-220.

Tianming Hu, Sam Yuan Sung, Hui Xiong, and Qian Fu. 2008. Discovery of maximum length

frequent itemsets. Inf. Sci. 178,1:69-87.

Yun Sing Koh. 2008. Mining non-coincidental rules without a user defined support threshold.
In Advances in Knowledge Discovery and Data Mining, 12th Pacific-Asia Conference,

PAKDD 2008, Osaka, Japan, May 20-23, volume 5012 of Lecture Notes in Computer

Science, pp. 910-915. Springer.

Srivatsan. Laxman and P.S. Sastry. 2006. A survey.0f.témporal data mining. In Sadhana, volume

31, Part 2, pp. 173-198.

Yannick Le Bras, Philippe Lencas“and Stéphane Lallich. 2009. On optimal rule mining: A
framework and a necesSary‘and sufficient condition of antimonotonicity. In Advances in

Knowledge Discoveryiand Data Mining, 13th Pacific-Asia Conference, PAKDD 2009,

Bangkok, Thailand, April27-30, volt_;me 5476 of Lecture Notes in Computer Science,
pp. 705-712. Springer. Ta

Yannick Le Bras, Philippe Lenca, and Stéphané Lallichy. 2010. Mining interesting rules with-

out support requirement: A-—general universal existential upward closure property.

do ir Aol

Information Systems . —

Guanling Lee, Wenpo Yang, and Jia;Min Lee. 2006. A parallel algorithm for mining multiple

partial periodie pétterns. Information Sciences 176,24:3591-3609.

Philippe Lenca, Patrick Meyer, Benoit Vaillant, and Stéphane Lallich. 2008. On selecting interest-
ingness measures forsassociation rules: fUser oriented description and multiple criteria

decision aid.| European Journal of Operational Research 184,2:610-626.

Hua-Fu Li. 2009a. Mining top-k maximal referencessequences froméstreaming web click-
sequences| with ‘a damped sliding window. = Expert Systems Wwith, Applications 36,8:
11304-11311.

Hua-Fu Li. 2009b. Interactive mining of top-k frequent closed itemsets from data streams. Expert
Systems with Applications 36,7:10779-10788.

Jinyan Li, Xiuzhen Zhang, Guozhu Dong, Kotagiri Ramamohanarao, and Qun Sun. 1999. Effi-
cient mining of high confidence association rules without support thresholds. In Jan M.
Zytkow and Jan Rauch, editors, Principles of Data Mining and Knowledge Discovery,
Third European Conference, PKDD °99, Prague, Czech Republic, September 15-18,

volume 1704 of Lecture Notes in Computer Science, pp. 406—411. Springer.

193

Jiuyong Li. 2006. On optimal rule discovery. IEEE Transactions on Knowledge and Data

Engineering 18,4:460-471.

Wenmin Li, Jiawei Han, and Jian Pei. 2001. Cmar: Accurate and efficient classification based on

multiple class-association rules. Data Mining, IEEE International Conference on 0:369.

Bing Liu, Wynne Hsu, and Yiming Ma. 1998. Integrating classification and association rule
mining. In 4th International Conference on Knowledge Discovery and Data Mining, pp.

80-86.

Guimei Liu, Hongjun Lu, and Jeffrey Xu Yu. 2007. Cfp-tree: A compact disk-based structure for

storing and querying frequent itemsets./Infosmation Systems 32,2:295-319.

Fahad Magbool, Shariq Bashiiyand-A. Rauf Baig. 2006.-E-map: Efficiently mining asynchronous

periodic patterns.” IJCSNS International Journal of Computer Science and Network

Security 6,8:174=179.

Ahmed Metwally, Divyakant Agrawal,fand Amr El Abbadi, 2005. Efficient computation of
frequent and topzKclements in data stréams. In Thomas Eiter and Leonid Libkin, editors,

Database Theory - ICDT 2005, 10th Iﬁ}ernational Conference, Edinburgh, UK, January

5-7, 2005, Proceedings, volume 3363 'of-Lécture Notes in Computer Science, pp. 398—
412. Springer. dda

do ir Aol

Banu Ozden, Sridhar Ramaswamy, and Abraham. Silberschatz. 1998. Cyclic association

rules. In ICDE,’98: Procéédings of the Fourteefith. Ingernational Conference on Data

Engineering, pp:412-421.

Jong Soo Park, Ming-Syan Chen, and Philip S. Yu. 1995. An effective hash-based algorithm for
mining association rules. SIGMOD Rec, 24,2:175-186.

Nicolas Pasquier, Y ves Bastide, Rafik Taouil, and Eotfi Lakhal. 1999. Discovering frequent closed

itemsets for association rules. In.Database Theory - ICDT, 7th International Conference,

Jerusalem, Israel, Januaryy10-12, volume 1540, pp: 398=416.

Jian Pei and Jiawei Han. 2002. Constrained frequent pattern mining: a pattern-growth view.

SIGKDD Explor. Newsl. 4,1:31-39.

Jian Pei, Jiawei Han, and Runying Mao. 2000. Closet: An efficient algorithm for mining frequent

closed itemsets. In ACM SIGMOD Workshop on Research Issues in Data Mining and

Knowledge Discovery, pp. 21-30.

Jian Pei, Jiawei Han, and Laks V. S. Lakshmanan. 2001a. Mining frequent item sets with

convertible constraints. In Proceedings of the 17th International Conference on Data

Engineering, April 2-6, Heidelberg, Germany, pp. 433—442.

194

Jian Pei, Jiawei Han, Hongjun Lu, Shojiro Nishio, Shiwei Tang, and Dongquing Yang. 2001b.
H-mine: Hyper-structure mining of frequent patterns in large databases. Data Mining,

IEEE International Conference on 0:441.

Andrea Pietracaprina and Fabio Vandin. 2007. Efficient incremental mining of top-k frequent

closed itemsets. In Discovery Science, volume 4755 of Lecture Notes in Computer

Science, pp. 275-280. Springer.

Pradeep Shenoy, Jayant R. Haritsa, S. Sudarshan, Gaurav Bhalotia, Mayank Bawa, and Devavrat
Shah. 2000. Turbo-charging vertical mining of large databases. SIGMOD Rec. 29,2:
22-33.

Craig Silverstein, Sergey BringRajeev- Motwani, and Jeff-Ullman. 2000. Scalable techniques for

mining causal structures..Data Mining and Knowledge Discovery 4,2-3:163-192.

Einoshin Suzuki. 2008. Pitfalis fopcategorizations of objective interestingness measures for rule

discovery. In Statistical dmplicative Analysis, Theory and Applications, volume 127,

pp- 383-395. Springex:
Syed Khairuzzaman Tanbeer, Chowdhury Farhan Ahmed, Byeong-Soo Jeong, and Young-Koo

Lee. 2009. Discovering periodic-ftequent patterns in transactional databases. In

Advances in Knowledge Discovery and Da;a Mining, 13th Pacific-Asia Conference,
PAKDD 2009, Bangkok. Thailand, Ap?il 27-30, volume 5476 of Lecture Notes in

Computer Science; pp. 242;253. Springer-.

Feng Tao, Fionn Murtagh; and Mohsen Farid. 2003. Weighted association rule mining using

weighted suppost-and significance framework. In KD ’03: Proceedings of the ninth

ACM SIGKDD international conferencé.on Knowledge discovery and data mining, pp.

661-666.

Giridhar Tatavarty, Raj Bhatnagar, and Barrington Young« 2007. Discovety of temporal depen-

dencies between'frequent patterns.in multivariate time series.y In/Proceedings of the

IEEE Symposium on Computational Intelligence and Data Mining, CIDM 2007, part

of the IEEE Symposium Series on Computational Intelligence 2007, Honolulu, Hawaii,

USA, 1-5 April 2007, pp. 688-696. IEEE.

Pauray S.M. Tsai. 2010. Mining top-k frequent closed itemsets over data streams using the sliding

window model. Expert Systems with Applications In Press, Corrected Proof:—.

Yuh-Jiuan Tsay and Ya-Wen Chang-Chien. 2004. An efficient cluster and decomposition algo-

rithm for mining association rules. Information Sciences 160,1-4:161-171.

195

Yuh-Jivan Tsay and Jiunn-Yann Chiang. 2005. Cbar: an efficient method for mining association

rules. Knowledge-Based Systems 18,2-3:99-105.

Petre Tzvetkov, Xifeng Yan, and Jiawei Han1. 2005. Tsp: Mining top-k closed sequential patterns.
Knowledge and Information Systems 7,4:438—457.

Takeaki Uno, Tatsuya Asai, Yuzo Uchida, and Hiroki Arimura. 2004a. An efficient algorithm

for enumerating closed patterns in transaction databases. In Discovery Science, volume

3245 of Lecture Notes in Computer Science, pp. 16-31. Springer.

Takeaki Uno, Masashi Kiyomi, and Hiroki Arimura. 2004b. Lcm ver. 2: Efficient mining al-

gorithms for frequent/closed/maximal’itemsetse In Proceedings of the IEEE ICDM

workshop on frequentitemset mining implementations. Brighton, UK, volume 126.

Jianyong Wang, Jiawei Han, Ying L, and Petre Tzvetkov. 2005. Tfp: an efficient algorithm

for mining top-k frequent'closed itemsets. In Proceeding of the IEEE Transactions on

Knowledge and DataiEngingering; volume 17, pp. 652—-664.

Chienwen Wu. 2006. Mining top-kK frequent"-lclosed itemsets is not in apx. In Advances in

Knowledge Discovery and Data Mining, volume 3918 of Lecture Notes in Computer

Science, pp. 435-439. Springer. F

Xindong Wu, Chengqi Zhang, and Shichao Zhang".-_;2]€504. Efficient mining of both positive and
negative association rules: ACM Trans. Inf. Syst. 22,3:381-405.

Sadok Ben Yahia, Tarek Hamioufii, and Bngelbert Mephu Nguifo: 2006. Frequent closed itemset
base algorithms: a thorough structural and analytical Survey. SIGKDD Explorations 8

,1:93-104.

Bei Yang, Houkuait Huang,-and Zhifeng-Wu.' 2008. Topsis: Finding top-k significant n-itemsets
in sliding'windows adaptively. Knowl.-Based Syst. 21,6:443-449.

Unil Yunpand/John J\Leggett. 2006.. Wip:/ mining weighted interesting patterns with a
strong weight and/or support affinity. In Proceedings of the Sixth SIAM International
Conference on Data Mining, April 20-22, 2006, Bethesda, MD, USA, pp. 623-627.

Mohammed Javeed Zaki. 2004. Mining non-redundant association rules. Data Mining and

Knowledge Discovery 9,3:223-248.

Mohammed Javeed Zaki and Karam Gouda. 2003. Fast vertical mining using diffsets.
In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Washington, DC, USA, August 24 - 27, pp. 326-335.

196

Mohammed Javeed Zaki, Srinivasan Parthasarathy, Mitsunori Ogihara, and Wei Li. 1997. New
algorithms for fast discovery of association rules. In KDD, pp. 283-286.

Shichao Zhang, Jilian Zhang, and Chengqi Zhang. 2007. Edua: An efficient algorithm for dy-

namic database mining. Information Sciences 177,13:2756-2767.

AULINENINYINg
ARIAATAUIM TN

197
Biography

Komate Amphawan was born in Chonburi, Thailand, on October, 1981. He received B.Sc.,
in computer science, from Burapha University, Thailand, in 2002. He received M.Sc., in computer
engineering, from Chulalongkorn University, Thailand, in 2005. His master degree have been
supervised by Dr. Athasit Surarerks. His doctorate has been also under the supervision of Dr.
Athasit Surarerks. During his research at Chulalongkorn University (october 2008 - October

2009), he had a great chance to visit a research institute : Telecom Bretagne, France. His field

AU INENTNEINS
RINININUNINYAY

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Chapter I Introduction
	1.1 Objectives of Study
	1.2 Scopes of Study
	1.3 Research Methodology
	1.4 Organization

	Chapter II Related work
	2.1 Frequent itemsets mining
	2.2 Top-k significant itemsets mining
	2.3 Regular-frequent itemsets mining
	2.4 Benchmark datasets

	Chapter III Mining top-k regular-frequent itemsets
	3.1 Top-k regular-frequent itemsets mining
	3.2 Preliminary of MTKPP
	3.3 MTKPP: Top-k list structure
	3.4 MTKPP algorithm
	3.5 Example of MTKPP
	3.6 Performance evaluation
	3.7 Summary

	Chapter IV TKRIMPE: Top-K Regular-frequent Itemsets Mining using database Partitioningand support Estimation
	4.1 Preliminary of TKRIMPE
	4.2 TKRIMPE: Top-k list structure
	4.3 Database Partitioning
	4.4 Support Estimation
	4.5 TKRIMPE algorithm
	4.6 Example of TKRIMPE
	4.7 Complexity analysis
	4.8 Performance Evaluation
	4.9 Summary

	Chapter V TKRIMIT: Top-K Regular-frequent Itemsets Mining based on Interval Tidsetrepresentation
	5.1 Preliminary of TKRIMIT
	5.2 Interval Tidset representation
	5.3 TKRIMIT: Top-k list structure
	5.4 TKRIMIT algorithm
	5.5 Example of TKRIMIT
	5.6 Complexity analysis
	5.7 Performance evaluation
	5.8 Summary

	Chapter VI H-TKRIMP: Hybrid representation on Top-K Regular-frequent ItemsetsMining based on database Partitioning
	6.1 Preliminary of H-TKRIMP
	6.2 H-TKRIMP: Top-k list structure
	6.3 Database Partitioning
	6.4 Hybrid representation
	6.5 Calculation of Regularity and Support
	6.6 H-TKRIMP algorithm
	6.7 Example of H-TKRIMP
	6.8 Complexity analysis
	6.9 Performance evaluation
	6.10 Summary

	Chapter VII Conclusion
	7.1 Summary of Dissertation
	7.2 Discussion

	References
	Vita

