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CHAPTER I

INTRODUCTION

Data mining, also known as Knowledge Discovery in Databases (KDD), is concerned with

the extraction of previously unrecognized and interesting information contained within (usually

large) data repositories. The interesting is of course a subjective concept, and a definition of what

is interesting is required: it is usually taken as an overall measure of pattern value, combining

validity, novelty, usefulness, and simplicity (Fayyad et al., 1996). Almost always, what is being

sought is some relationship which can be observed between categories of information in the data.

A particular way to describe such a relationship is in the form of an association rule which relates

attributes within the database.

The problem of mining association rules has been defined by Agrawal (Agrawal et al.,

1993) as first proposed for market basket analysis in the form of association rule mining. It ana-

lyzes customers buying habits by finding associations between the different items that customers

place in their “shopping baskets”. For instance, if customers are buying milk, how likely are they

going to also buy yogurt (and what kind of yogurt) on the same trip to the supermarket? Such

information can lead to increased sales by helping retailers do selective marketing and arrange

their shelf space. Association mining applications have been applied to many different domains

including market basket and risk analysis in commercial environments, epidemiology, clinical

medicine, fluid dynamics, astrophysics, crime prevention, and counter-terrorismall areas in which

the relationship between objects can provide useful knowledge.

The process of mining association rules consists of two steps: (i) Find the frequent itemsets

that have minimum support; (ii) Use the frequent itemsets to generate association rules that meet

the confidence threshold. Among these two steps, step (i) is the most expensive since the number

of itemsets grows exponentially with the number of items. Consequently, the task of frequent

itemsets discovery (also called frequent patterns discovery) is widely studied in data mining as

a mean of generating association rules (Agrawal et al., 1993), correlations (Brin et al., 1997a),

sequential patterns (Agrawal and Srikant, 1995), emerging patterns (Dong and Li, 1999), dense

regular patterns (Engler, 2008), frequent patterns with maximum length (Hu et al., 2008), frequent

patterns with temporal dependencies (Tatavarty et al., 2007), negative rules (Wu et al., 2004),

causality (Silverstein et al., 2000), weighted pattern mining (Tao et al., 2003)(Yun and Leggett,

2006) and classification rules (Li et al., 2001) (Liu et al., 1998).
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Over the past decade a large number of research works have been published presenting new

algorithms or improvements on existing algorithms to solve the frequent pattern mining prob-

lem more efficiently through the refinement of search strategies (depth first/breath first search

(Agrawal and Srikant, 1994), top down/bottom up traversals (Grahne and Zhu, 2005)), prun-

ing techniques, data structures (trees/other data structures (Han et al., 2004)), the use of alterna-

tive dataset organizations (vertical/horizontal formats (Zaki and Gouda, 2003)) and constraints

((Bonchi and Lucchese, 2005) (Pei et al., 2001a)). Recent surveys may be found in (Goethals,

2005) and (Han et al., 2007). However, two main bottlenecks exist: (i) A huge number of pat-

terns are generated and (ii) Most of them are redundant or uninteresting. To tackle these problems,

various approaches have been developed.

Frequent-closed pattern mining algorithms have been proposed to reduce redundant pat-

terns (Pasquier et al., 1999) and to mine a compact set of frequent patterns which cover all fre-

quent patterns (Pei et al., 2000). When a data set is dense, the number of frequent closed patterns

extracted can be orders of magnitude fewer than the number of corresponding frequent patterns

since they implicitly benefit from data correlations. Nevertheless, they concisely represent exactly

the same knowledge. From closed patterns, it is in fact trivial to generate all the frequent patterns

along with their supports. More importantly, association rules extracted from closed patterns have

been proven to be more meaningful for analysts, because all redundancies are discarded (Zaki,

2004). A recent survey may be found in (Yahia et al., 2006).

While the previous approaches work at the algorithmic level, another strategy is to rank pat-

terns in a post-algorithmic phase with objective measures of interest (Hilderman and Hamilton,

2000). A large number of interestingness measures have been proposed such as mining frequent

patterns with tougher constraints (Bonchi and Lucchese, 2005), mining dense regular patterns

(Engler, 2008), mining frequent patterns with maximum length (Hu et al., 2008), mining frequent

patterns with convertible constraints (Pei et al., 2001a), mining frequent patterns with constraints

using pattern growth approach (Pei and Han, 2002), mining temporal dependencies between fre-

quent patterns (Tatavarty et al., 2007), integrating classification and association rule mining (Li

et al., 2001)(Liu et al., 1998), etc. Interesting surveys and comparisons may be found in (Geng

and Hamilton, 2006)(Lenca et al., 2008) and (Suzuki, 2008).

On constraint-based patterns mining, pushing the constraints using objective measures

deeply into the patterns mining process is a very interesting approach (Bonchi and Lucchese,

2005) (Pei et al., 2001a). This approach uses efficient pruning strategies to discover interesting

patterns such as optimal rule mining (Li, 2006)(Le Bras et al., 2009). It is important to notice that

most of the previous mentioned works, except mainly (Li, 2006) and (Le Bras et al., 2009), are
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always subject to the dictatorship of support for the frequent pattern mining step. Avoiding the use

of support has been recognized as a major challenge, such as mining high confidence association

without support pruning (Cohen et al., 2001), (Bhattacharyya and Bhattacharyya, 2007), (Le Bras

et al., 2010), and mining rules without support threshold (Li et al., 1999)(Koh, 2008).

However, without specific knowledge, the setting of minimum support threshold is quite

tricky and it leads to the following problem that may hinder its popular use. There are two chal-

lenges of minimum support based mining: (i) if the value of minimum support is set to be too

small, the pattern mining algorithm may lead to the generation of thousands of patterns; (ii) if the

value of minimum support constraint is set to be too big, the mining algorithm may often generate

a few patterns or even no answers. In which case, the user may have to guess a smaller threshold

and do the mining again, which may or may not give a better result. As it is difficult to predict

how many patterns will be mined with a user-defined minimum support threshold, the top-k pat-

tern mining has been proposed. As a consequence many works have focused on avoiding the use

of a support threshold (e.g. (Li et al., 1999; Cheung and Fu, 2004; Koh, 2008)), or avoiding the

use of the support itself (e.g. (Cohen et al., 2001), (Bhattacharyya and Bhattacharyya, 2007) and

(Le Bras et al., 2010)). Another solution involves asking the number of desired outputs (Fu et al.,

2000). Therefore, mining top-k patterns has become a very popular task. In particular, top-k fre-

quent closed patterns (e.g. (Han et al., 2002), (Wang et al., 2005) and (Pietracaprina and Vandin,

2007)) and top-k patterns (e.g. (Fu et al., 2000) and (Yang et al., 2008)) have motivated a lot

of works. Nowadays, mining from data streams also offers a new challenge because one cannot

save all the patterns and their related information, due to the limitation of memory space. Thus

mining top-k patterns from data streams becomes of great interest (e.g. (Metwally et al., 2005),

(Li, 2009b), (Li, 2009a) and (Tsai, 2010)).

Recently, Tanbeer et al. (Tanbeer et al., 2009) proposed a pattern mining approach with a

regular constraint on patterns appearance and a minimum support constraint. As pointed out by the

authors, there are several applications to apply regular frequent patterns mining: in a retail market,

among all frequently sold products, the sales manager may be interested only on the regularly sold

products compared to the rest; for web site design or web administration, an administrator may be

interested on the click sequences of heavily hit web pages; in genetic data analysis the set of all

genes that not only appear frequently but also co-occur at regular interval in DNA sequence may

carry more significant information to scientists; for stock market, the set of high stocks indices

that rise regularally may be of special interest to traders, etc. Thus the occurrence regularity plays

an important role in discovering some interesting frequent patterns in such applications (Engler,

2008) (Laxman and Sastry, 2006).
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This dissertation here focuses on these two bottlenecks and extend the work of (Tanbeer

et al., 2009). Thus, a new kind of pattern, namely the top-k regular-frequent itemsets, which is

discovered from transactional databases is proposed. From this kind of pattern, the users can

control the number of regular-frequent itemsets to be mined. At first, MTKPP algorithm (Mining

TopK Periodic(Regular)-frequent Patterns) is introduced. It based on the use of top-k list struc-

ture and a best-first search strategy to quickly discover the regular itemsets with high supports. To

calculate support of each itemset, a set of transaction-ids (that each itemset occurs) is collected.

MTKPP also applies intersection process to collect and calculate a set of transaction-ids, a regu-

larity and a support of each larger itemset. Next, TKRIMPE algorithm (Top-K Regular Itemset

Mining using database Partitioning and support Estimation) is presented. TKRIMPE based on the

database partitioning and support estimation techniques. By using these techniques, TKRIMPE

can achieve a good performance especially on sparse datasets. Further, a new concise represen-

tation named interval tidset representation is devised. Then, a new efficient algorithm, called

TKRIMIT (Top-K Regular-frequent Itemsets Mining based on Interval Tidset representation), is

also proposed. With interval tidset representation, TKRIMIT can reduce the processing time and

memory usage on dense datasets. Finally, an efficient and scalable algorithm named H-TKRIMP

(Hybrid representation on Top-K Regular-frequent Itemsets Mining based on database Partition-

ing), based on the combination between normal tidset and interval tidset representations and the

database partitioning, is devised. By comparing with other algorithms, H-TKRIMP can achieve

a good performance for the small and large values of desired results on both sparse and dense

datasets.

1.1 Objectives of Study

The objectives of study are as follows:

• To develop algorithms to mine top-k regular-frequent patterns that are very efficient in the

terms of computational time and memory consumption.

• To develop a new technique to collect tidset of each itemset which can be applied in various

problems such as frequent pattern mining, frequent closed pattern mining, and weighted

frequent pattern mining.

• To propose an analysis of the performance of various techniques to maintain and intersect

tidsets by making a comparison to a see trade-off between time and space.
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1.2 Scopes of Study

The scopes of this study are as follows:

• This work considers the problem of top-k regular-frequent pattern mining.

• The datasets from UCI repository are used as a benchmark to test the proposed algorithms.

• Performance measurement can be either an actual running time (an actual memory con-

sumption) or a complexity analysis.

1.3 Research Methodology

• Survey literature and review related works about association rules mining, frequent item-

sets mining, frequent closed-itemsets mining, top-k frequent itemsets mining and regular-

frequent itemsets mining.

• Study the principle theories and various techniques to mine frequent and other kinds of

itemsets.

• Study various proposed representations used to maintain the content of databases.

• Collect the sparse and dense datasets from standard and existing benchmark datasets.

• Design an appropriate algorithms and perform the experiments to validate the algorithms

• Conclude the experimental results by comparing the results with those from other methods

1.4 Organization

The remainder of this dissertation is structured as follows: In Chapter 2, general back-

ground on association rules mining and its variant are introduced. Further, the frequent pattern

mining, top-k itemsets mining and regular-frequent itemsets mining problems and related works

are described. In Chapter 3, the formal notations and definitions used to mine a set of top-k

regular-frequent itemsets are mentioned. An efficient algorithm, named MTKPP (Mining Top-K

Periodic(Regular)-frequent Patterns), used a normal-tidset representation and applied a best-first

search strategy is introduced. Chapter 4 presented a new efficient algorithm, called TKRIMPE

(Top-K Regular-frequent Itemsets Mining using database Partitioning and support Estimation),

applied the database partitioning and support estimation techniques in order to reduce compu-

tational time of MTKPP algorithm. Besides, a new concise interval tidset representation named

interval tidset representation and an efficient algorithm called TKRIMIT (Top-K Regular-frequent



6

Itemsets Mining using Interval Tidset representation algorithm) is also proposed in Chapter 5. As

further extensions, in Chapter 6, the database partitioning technique and the interval tidset repre-

sentation are merged in order to devise a new algorithm, named H-TKRIMP (Hybrid representa-

tion on Top-K Regular-frequent Itemsets Mining based on database partitioning), that have a good

performance on both dense and sparse datasets. Finally, Chapter 7 concludes this dissertation and

describes future extension of this work.



CHAPTER II

RELATED WORK

The association rule mining problem has been extensively studied from various aspects

over the past decade. As mentioned in the previous chapter, association rule mining consists of 2

steps: frequent itemsets mining and association rules generation. Most of previous works focus

on frequent itemset mining which is the most time consuming step. They have been proposed to

extend frequent itemsets mining for many purposes. One of interesting approaches is to control

the number of itemsets to be mined (Fu et al., 2000), called top-k significant itemsets mining

approach. Besides, many researchers try to find more interesting patterns (itemsets) by using

other criteria instead of using only a support threshold. Recently, the regularity measure have

been devised to discover itemsets that occur very frequent and regularly in transactional databases.

Thus, this chapter surveys on previous works on the frequent itemsets mining, top-k significant

itemsets mining and regular-frequent itemsets mining.

2.1 Frequent itemsets mining

The frequent itemsets and association rule mining is first introduced by (Agrawal et al.,

1993). Most of association rule mining algorithms adopt the two-phase approach and focus on

the frequent itemset mining in the context of transaction databases. A transaction database is a

database containing a set of transactions and each transaction is associated with a transaction-id.

The basic terms needed for describing association rules and frequent itemsets mining are given by

using the formalism of (Agrawal and Srikant, 1994).

Let I = {i1, i2, . . . , in} be a set of items, that have been used as information units in an

application domain and TDB be a database which is a set of transactions, where a transaction

t is a subset of I (t ⊆ I). Each transaction is identified by a transaction-id tid. A set X =

{ij1 , . . . , ijl} ⊆ I is called an itemset or a l-itemset (an itemset of size l). If X ⊆ Y , it is said that

tq contains X (or X occurs in tq). The support of an itemset X in a database is denoted by sX ,

and is defined as sX = |{tq|1 ≤ q ≤ TDB, tq ∈ TDB and X ⊆ tq}|/|TDB|. An itemset X is

called a frequent itemset if its support is greater than or equal to a support threshold specified by

the user, otherwise the itemset is not frequent. An association rule is an expression of the form

X → Y , where X ⊆ I, Y ⊆ I and X ∩ Y = φ. Note that each of X and Y is a frequent

itemset which contains a set of one or more items and the quantity of each item is not considered.
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The itemset X is referred to as the antecedent of the rule and the itemset Y as the consequence.

An example of association rule is the statement that 80% of transactions that purchase A also

purchase B and 10% of all transactions contain both of them. Here, 10% is the support of the

itemset A,B and 80% is the confidence of the rule A → B. An association with the confidence

greater than or equal a confidence threshold is considered as a valid association rule.

In association rules mining, two types of database layouts are employed: horizontal and

vertical databases. As shown in Table 2.1, the traditional horizontal database contains a set of

transactions and each transaction consists of a set of items. Most Apriori-like algorithms use this

type of layout. On the other hand, as illustrated in Table 2.2, each item in the vertical database

layout maintains a set of transaction-ids (denoted by tidset) where it occurs. Based on the vertical

representation of database, various algorithms were devised to mine the results such as Eclat

(Zaki et al., 1997), VIPER (Shenoy et al., 2000) and Mafia (Burdick, 2001). Lastly, as pointed

out in (Zaki et al., 1997) and (Shenoy et al., 2000), they have been shown the trade-off between

both layouts. They claimed that the vertical layout performs generally better than the horizontal

format.

Table 2.1: Horizontal representation

tid items
1 a b d e
2 c d e
3 b c f g
4 a b d f g
5 c e g
6 a b c d g
7 a b c d
8 a b c e
9 b c d

10 a c e g
11 a b f
12 a b d g

A large number of efficient algorithms to mine frequent itemsets have been developed over

the years. The strategies developed to speed up frequent itemset mining process can be divided

into two approaches. The first is based on the candidate generation-and-test approach. The Apri-

ori algorithm and its several variations belong to this category. Apriori employs a bottom-up,

breadth-first search that enumerates every single frequent itemset. It also provides the Apriori

property also known as anti-monotone property that any subset of a frequent itemset must be a

frequent. In this approach, a set of candidate itemsets of length n + 1 is generated from the set

of frequent itemsets of length n and then each candidate itemset is checked to see if it meets the

support threshold. Some algorithms adopt an Apriori-like method, and are focused on reducing
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Table 2.2: Vertical Tidset representation

items tidset
a 1 4 6 7 8 10 11 12
b 1 3 4 6 7 8 9 11 12
c 2 3 5 6 7 8 9 10
d 1 2 4 6 7 9 12
e 1 2 5 8 10
f 3 4 11
g 3 4 5 6 10 12

the number of candidate itemsets, which in turn reduce the time required for scanning databases,

are briefly described as follows. Park et al. (Park et al., 1995) proposed an efficient Direct Hash-

ing and Pruning (DHP) algorithm to control the number of candidate 2-itemsets and prune the

size of the database by utilizing a hash technique. The inverted hashing and pruning (IHP) al-

gorithm (Holt and Chung, 2002) was proposed. It is similar to the Direct Hashing and Pruning

(DHP) algorithm (Park et al., 1995) in the sense that both use hash tables to prune candidate item-

sets. In DHP, every k-itemset within each transaction is hashed into a hash table. In IHP, the

transaction identifiers of each item of the transactions that contain the item are hashed into a hash

table associated with the item. The Tree-Based Association Rule (TBAR) algorithm (Berzal et al.,

2001) employs an effective data-tree structure to store all itemsets to reduce the time required for

database scans. Further, Cheung et al. proposed Fast Distributed Mining (FDM) of association

rules (Cheung et al., 1996) to efficiently discover frequent itemsets, which is a parallelization of

the Apriori algorithm. At each level, a database scan is independently performed. In 1997, Brin

et al. proposed the Dynamic Itemset Count (DIC) (Brin et al., 1997b) algorithm to locate frequent

item sets, which uses fewer passes over the database than classic algorithms, and fewer candidate

itemsets than methods based on sampling. Agarwal et al. presented the TreeProjection method

(Agarwal et al., 2001) using the hierarchical structure of a lexicographic tree to project transac-

tions at each node of the tree, and matrix counting on this reduced set of transactions for mining

frequent itemsets. Another efficient method (Tsay and Chang-Chien, 2004) uses the techniques

of clustering transactions and decomposing larger candidate itemsets for mining frequent item-

sets. Tsay et al. proposed the Cluster-Based Association Rule (CBAR) method(Tsay and Chiang,

2005), which uses cluster tables to load the database into a main memory that requires only a sin-

gle scan of the database. Its support count is performed on cluster tables, and thus, does not need

to rescan the whole database. The Efficient Dynamic Database Updating Algorithm (EDUA)

(Zhang et al., 2007) is designed for mining dynamic databases when some data are deleted. A

special database structure BitTableFI (Dong and Han, 2007) is used horizontally and vertically to

compress the database for quickly generating candidate itemsets and counting support.
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Apriori-inspired algorithms show good performance with sparse datasets such as market

basket data, where the frequent patterns are very short. However, with dense datasets such as

telecommunications and census data, where there are many, long frequent patterns, the perfor-

mance of these algorithms degrades incredibly. This degradation is due to the following reasons:

these algorithms perform as many passes over the database as the length of the longest frequent

pattern. Secondly, they have to generate and test the huge number of candidate itemsets. Thirdly,

a frequent pattern of length l implies the presence of 2l − 2 additional frequent patterns as well,

each of which is explicitly examined by such algorithms. When l is large, the frequent itemset

mining methods become CPU bound rather than I/O bound. In other words, it is practically un-

feasible to mine the set of all frequent patterns for other than small l. On the other hand, in many

real world problems (e.g., patterns in biosequences, telecommunications data, census data, etc.)

finding long itemsets of length 30 or 40 is not uncommon (Bayardo, 1998).

The second approach of pattern-growth has been proposed more recently. It also uses the

Apriori property, but instead of generating candidate itemsets, it recursively mines patterns in

the database to count the support for each pattern. Han et al. (Han et al., 2004) proposed the

FP-growth method to avoid generating candidate itemsets by building a FP-tree with only two

scans over the database. This milestone development of frequent itemsets mining avoids the

costly candidate itemsets generation phase, which overcomes the main bottlenecks of the Apriori-

like algorithms. Some algorithm analogy for FP-growth without generating candidate itemsets

is briefly described as follows. The H-mine method (Pei et al., 2001b) uses a memory-based

hyper structure to store a sparse database in the main memory, and builds an H-structure to invoke

FP-growth in mining dense databases. An inverted matrix approach uses an inverted matrix to

store the transactions in a special layout, then builds and mines relatively small structures, which

are called COFI-trees (El-hajj and Zaiane, 2003). The CFP-tree structure (Liu et al., 2007) is

designed to store pre-computed frequent itemsets on a disk to save space. A CFP-tree stores

discovered frequent itemsets, but a FP-tree stores transactions. They both use prefix and suffix

sharing in the CFP-tree, but only prefix sharing in the FP-tree. Maximum length frequent itemsets

are generated by adapting a pattern fragment growth methodology (Hu et al., 2008) based on

the FP-tree structure. For most data sets, these algorithms perform better than Apriori. Among

the existing pattern-growth algorithms, H-Mine runs faster than FP-Growth on several commonly

used test data sets.

2.2 Top-k significant itemsets mining

From mining frequent itemsets, a major problem is that user has to define a support thresh-

old. However it is quite difficult for users to set a definite support threshold if they have no special
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knowledge in advance. If the threshold is set too small, there will be a large number of itemsets

having been found, which not only consumes more time and space resource, but also brings much

burden to users on analyzing the mining results. On the contrary, if the threshold is set too large,

there might be much few even no frequent itemsets, which implies some interesting patterns are

hidden owing to the improper determination of support threshold. In some cases of application, it

is natural for user to specify a simple threshold on the amount of mining results, say the most 100

frequent itemsets should be found.

Therefore it is of interest to mine the most k frequent itemsets over transactional databases

with the highest supports.

Definition 2.1 An itemsetX is a top-k frequent itemset if there exist no more than (k−1) itemsets

whose support is higher than that of X .

To focus on mining top-k patterns, Chueung et al. proposed N-most interesting itemsets

mining (Cheung and Fu, 2002)(Cheung and Fu, 2004). This task mines only the N k-itemsets

with highest supports for 1 up to a certain kmax, where kmax is the upper bound of the length

of itemsets, and N is the desired number of k-itemsets. Three algorithms were proposed for

this mining: LOOPBACK, BOLB, and BOMO. All three algorithms are adapted from the FP-tree

approach. BOMO has two phases. First, it builds the complete FP-tree with all items in the

database to find minimum support threshold of each k-itemset. Then, it mines itemsets. During

the mining process, the support threshold of all itemsets is increased by considering the minimum

value among the support of the N th most frequent k-itemset discovered. It is used to prune

unpromising itemsets. LOOPBACK builds the FP-tree and initializes the support threshold to be

the support of theN th sorted largest 1-frequent. If the number of any k-itemsets is less thanN , the

tree will be rebuilt to find the smaller support in order to mine more itemsets in the mining phase.

BOLB is a hybrid approach of BOMO and LOOPBACK. Like BOMO, it builds the complete FP-

tree only once. The mining process is applied from the technique of LOOPBACK. Wang et al.

proposed mining top-k frequent closed itemsets of length no less than minl (Han et al., 2002)

(Wang et al., 2005), where k is the desired number of frequent closed itemsets to be mined, and

minl is the minimal length of closed itemsets. TFP starts with minimum support threshold at

0. It constructs an FP-tree to raise the threshold and uses the threshold to prune the tree. It

may take a long time to construct the FP-tree to find the final threshold and to prune the tree

if the database contains many transactions and long patterns. Moreover, TFP has to maintain

candidates to ensure that they are really closed. Top-k closed itemset mining was extended to

mine top-k closed sequence in (Tzvetkov et al., 2005). Pietracaprina et al. proposed TopKMiner
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(Pietracaprina and Vandin, 2007) to mine top-k closed itemsets without considering the minimal

length of them. From this mining, it can allow a user to dynamically raise the value k with no

need to restart the computation. TopKMiner mines top-k closed itemsets by combining the LCM

algorithm (Uno et al., 2004a)(Uno et al., 2004b) and priority queue to avoid closed checking. In

addition, it adopts best first search to generate closed itemsets with highest support first. This idea

is supported by C. Wu (Wu, 2006). He proved that a heuristic algorithm is preferred over an exact

algorithm to solve top-k closed itemset mining.

2.3 Regular-frequent itemsets mining

Mining frequent patterns, periodic pattern (Elfeky et al., 2005)(Maqbool et al., 2006)(Lee

et al., 2006) and cyclic patterns (Özden et al., 1998) in static database have been well-addressed

over the last decade. Periodic pattern (also called regular pattern) mining problem in time-series

data focuses on the cyclic behavior of patterns either in the whole (Elfeky et al., 2005) or at some

point (Lee et al., 2006) of time-series. Such pattern mining has also been studied as a wing of

sequential pattern mining (Maqbool et al., 2006)(Lee et al., 2006) in recent years. However, al-

though periodic pattern mining is closely related with regular-frequent pattern mining, it cannot

be directly applied for finding regular patterns from a transactional database because of two pri-

mary reasons. First, it considers either time-series or sequential data. Second, it does not consider

the support threshold which is the only constraint to be satisfied by all frequent patterns. Tanbeer

(Tanbeer et al., 2009) proposed the regular-frequent pattern mining technique, on the other hand,

introduces a new interesting measure of regularity and provides the set of patterns that satisfy both

of the regularity and support thresholds in a transactional database.

Ozden et. al. (Özden et al., 1998) proposed a method to discover the association rules

(Agrawal et al., 1993) occurring cyclically in a transactional database. It outputs a set of rules

that maintains a cyclic behavior in appearance among a predefined non-overlapping database seg-

ments. The main limitation of this method is segmenting the database into a series of fixed sized

segments, which may suffer from border effect. That is, if the sufficient number of occurrences

of a pattern (to become frequent) occurs in the borders of two consecutive segments, the pattern

might be ignored to generate association rules.

The problem of regular-frequent itemsets mining which has similar definition to (Tanbeer

et al., 2009) is defined as follows:

Let I = {i1, i2, . . . , in} be a set of n ≥ 1 literals, called items. A setX = {i1, . . . , ik} ⊆ I

is called an itemset (or a pattern), or a k-itemset if it contains k items. A transactional database
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TDB = {t1, t2, . . . , tm} over I is a set of m = |TDB| transactions. Each transaction tj =

(tid, Y ) is a tuple where tid = j represents the transaction-id and Y ⊆ I is an itemset. If

X ⊆ Y , it is said that tj contains X (or X occurs in tj) and is denoted as tXj . Therefore,

TX = {tXj , . . . , tXk }, where j, k ∈ [1,m] and j ≤ k, is the set of all ordered tids, called tidset,

where X occurs. The support of an itemset X in TDB, denoted as Sup(X) = |TX |, is the

number of transactions in TDB that contains X .

Let tXj and tXk be two consecutive tids in TX , i.e. where j < k and there is no transaction

ti, j < i < k, such that ti contains X . Thus, rttX = tXk − tXj is the regularity value which

represents the number of missing transaction of X between two consecutive transactions tXj and

tXk . We denote as RTTX = {rttX1 , rttX2 , . . . , rttXz }, the set of all regularities of X between

each pair of two consecutive transactions. Then, the regularity of X can be defined as rX =

max(rttX1 , rtt
X
2 , . . . , rtt

X
z ).

Therefore, an itemset X is called a regular-frequent itemset if (i) its regularity is no greater

than a user-given maximum regularity threshold (σr); (ii) its support is no less than a user-

given minimum support threshold (σs). Thus, the regular-frequent itemsets mining problem is

to discover the complete set of regular-frequent itemsets from TDB with two user-given thresh-

olds: minimum support and maximum regularity threshold which are defined in the percentage of

|TDB|.

However, as pointed out before it is quite difficult for users to set a definite support thresh-

old if they have no special knowledge in advance. In addition, in some cases, it is natural for user

to specify a simple threshold on the amount of regular-frequent patterns, say the most 100 fre-

quent patterns with regularity less than 1, 000 transactions(i.e. occur at least once in every 1, 000

transactions). It is thus of interest to mine the most frequent k regular patterns over transactional

databases without the minimum support threshold requirement.

2.4 Benchmark datasets

To validate the performance of the variant of association rule mining algorithms, several

real (i.e. accidents, BMS-POS, chess, connect, kosarak, mushroom, pumsb, pumsb*, and retail)

and synthetic database benchmarks (i.e. T10I4D100K, T20I6D100K, and T40I10D100K), pub-

licly available from IBM Almaden (http://www.almaden.ibm.com/cs/quest/syndata.html), FIMI

repository (http://fimi.cs.helsinki.fi/data/), and UC-Irvine Machine Learning Database Repository

(http://www.ics.uci.edu/ mlearn/MLRepository.html), are utilized.
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Data set accidents contains (anonymous) traffic accident data from the National Institute of

Statistics (NIS) for the region of Flanders (Belgium) for the period 1991-2000. The BMS-POS

dataset is a real world dataset containing several years worth of point-of-sale data from a large

electronic retailer, aggregated at the product category level. The connect and chess datasets are

derived from UCI Machine Learning Repository. Each transaction in connect and chess contains

legal 8-ply positions in the game where neither player has won yet and the next move is not

forced. The kosarak contains click-stream data of a hungarian on-line news portal. The mushroom

database consists of records describing the characteristics of various mushroom species. The

PUMS datasets (pumsb and pumsb*) contain census data. Pumsb* is the same as pumsb without

items with 80% or more support. The retail market basket dataset is obtained from Belgian retail

supermarket store from December 1999 to November 2000. The synthetic datasets (T10I4D100K,

T20I6D100K and T40D100K), using the IBM generator, mimic the transactions in a retailing

environment.

The classical characteristics of datasets were studies in (Gouda and Zaki, 2001). According

to (Gouda and Zaki, 2001), the density was used to categorize the characteristics of datasets. A

dataset is dense when it produces many long frequent itemsets for all values of support thresh-

old. The authors studied on seven datasets, (i.e. chess, connect, mushroom, pumsb, pumsb*,

T10I4D100K, and T40I4D100K) and then categorized these datasets according to the density.

The density is estimated by using the characteristics of maximal frquent itemsets and more pre-

cisely their distribution.

However, as pointed out in (Flouvat et al., 2010), there are two limitations of Gouda’s

classification. First, its variability with respect to support threshold values. Second, there is

no clear relationship between the proposed classification and algorithms performance. Therefore,

(Flouvat et al., 2010) proposed a new classification which differs from the classification of (Gouda

and Zaki, 2001). It takes into account both the negative border and the positive border of itemsets.

The positive border of frequent itemsets is the set of all maximal frequent itemsets w.r.t. set

inclusion. The negative border of frequent itemsets is the set of all minimal unfrequent itemsets

w.r.t. set inclusion.

These different types of datasets have been identified by taking advantage of the “dis-

tance”between positive and negative borders distributions of frequent itemsets. As a consequence,

the authors introduced a new classification of datasets made of three types:

• Type I datasets contain long itemsets in the positive border and a negative border closed

to the positive border, i.e. the mean of the negative border curve is not far from the mean



15

of the positive border curve. In other words, most of the itemsets in the two borders have

approximately the same size.

• Type II datasets contain long itemsets in the positive and a large distance between the two

borders distributions. In other words, the itemsets in the negative border are much smaller

than those of the positive border.

• Type III is a very special case of type O: the two distribution are very close, but they are

concentrated in very low levels. This type allows to catch the notion of sparseness.

The Table 2.3 summarizes this new classification and shows how this study could also used

for FIMI.

Table 2.3: Datasets classification from (Flouvat et al., 2010)

Type Type I Type II Type III
Distance between the borders Small Large Small
Itemsets size Long Long Small
Examples of datasets accidents, connect, BMS-POS,

chess, mushroom, kosarak,
pumsb pumsb* retail,

T10I4D100K,
T20I6D100K,
T40I10D100K

Based on the classification of (Flouvat et al., 2010), the Table 2.4 shows the characteristics

of the real and synthetic datasets used in the evaluation of this dissertation. It shows the number

of items, the average transaction length, and the number of records in each database. The table

additionally shows the tpye of datasets that are classified.

Table 2.4: Database characteristics

Database #items Avg.length #Transactions type
accidents 468 338 340, 183 dense
BMS-POS 1, 156 7.5 515, 597 sparse
chess 75 37 3, 196 dense
connect 129 43 67, 557 dense
kosarak 41, 270 8.1 990, 002 sparse
mushroom 119 23 8, 124 dense
pumsb 2, 113 74 49, 046 dense
pusmsb∗ 2, 088 50.5 49, 046 dense
retail 16, 469 10.3 88, 162 sparse
T10I4D100K 1, 000 10.3 100, 000 sparse
T20I6D100K 1, 000 20.2 100, 000 sparse
T40I10D100K 1, 000 40.1 100, 000 sparse



CHAPTER III

MINING TOP-K REGULAR-FREQUENT ITEMSETS

Based on the idea of “Controlling the number of regular-frequent itemsets to be

mined”motivated from (Fu et al., 2000) and (Tanbeer et al., 2009), a problem of mining k regular-

frequent with highest supports is introduced and defined in this chapter. Besides, an efficient

single-pass algorithm named Mining Top-K Periodic(Regular)-frequent Patterns (MTKPP), used

to mine this kind of itemsets is also presented. To discover a set of top-k regular-frequent itemsets,

the users can specify only a regularity threshold and a number of desired results instead of setting

a support threshold. By avoiding the setting of a support threshold, this approach might help the

users from the difficulty of specifying an appropriate support threshold to mine regular-frequent

itemsets.

3.1 Top-k regular-frequent itemsets mining

This section introduces the basic notations and definitions needed to define top-k regular-

frequent itemsets as defined in (Amphawan et al., 2009).

Let I = {i1, i2, . . . , in} be a set of n ≥ 1 literals, called items. A set X = {ij1 , . . . , ijl} ⊆

I is called an itemset or an l-itemset (an itemset of size l). A transactional database TDB =

{t1, t2, . . . , tm} is a set of transactions in which each transaction tq = (q, Y ) is a tuple containing

unique transaction identifier q (tid in the latter) and an itemset Y . If X ⊆ Y , it is said that tq

contains X (or X occurs in tq) and is denoted as tXq . Therefore, TX = {tXp , . . . , tXq }, where

1 ≤ p ≤ q ≤ |TDB|, is the set of all ordered tids (called tidset) where X occurs. The support

of an itemset X , denoted as sX = |TX |, is the number of tids (transactions) in TDB where X

appears.

Definition 3.1 (Regularity of an itemset X) Let tXj and tXk be two consecutive tids in the tidset

TX of an itemset X , i.e. where j < k and there is no transaction ti, j < i < k, such that

ti contains X . Then, rttX = tXk − tXj is the regularity value which represents the number of

transactions not containing X between two consecutive transactions tXj and tXk . Thus, RTTX =

{rttX1 , rttX2 , . . . , rttXm+1} is denoted as the set of all regularities of X . Then, the regularity of X

can be defined as

rX = max(RTTX) = max(rttX1 , rtt
X
2 , . . . , rtt

X
m+1)
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Definition 3.2 (Regular-frequent itemset) An itemset X is called a regular-frequent itemset if

(i) its regularity is no greater than a user-given regularity threshold (σr); (ii) its support is no

less than a user-given support threshold (σs).

Thus, the regular-frequent itemsets mining problem is to discover a complete set of regular-

frequent itemsets from transactional database with two user-given support and regularity thresh-

olds. However, as mentioned in the previous chapter the user may prefer to specify a simple

threshold on the amount of results instead of a support threshold. The following definition of a

top-k regular-frequent itemsets mining problem is thus proposed.

Definition 3.3 (Top-k regular-frequent itemset) An itemsetX is called a top-k regular-frequent

itemset if (i) its regularity is no greater than a user-given regularity threshold (denoted as σr)

and (ii) there exist no more than k − 1 itemsets whose their supports are higher than that of X .

Therefore, the top-k regular-frequent itemsets mining problem is to discover a set of top-k

regular-frequent itemsets from transactional database with two user-given parameters: a number

k of expected outputs and a regularity threshold σr.

3.2 Preliminary of MTKPP

In this section, details of the MTKPP algorithm which is an efficient single-pass algorithm

used to discover a set of k regular itemsets with highest supports from a transactional database are

introduced. It adopts a best-first search strategy to quickly find regular itemsets with the highest

values of support. MTKPP is based on the use of a top-k list (with hash table) structure to maintain

top-k regular-frequent itemsets during mining process.

3.3 MTKPP: Top-k list structure

Top-k list is a linked-list used to maintain k periodic(regular)-frequent patterns with highest

supports. A hash table is also used with the top-k list in order to quickly access information in

the top-k list. At any time during mining process, the top-k list contains not much more than

k regular-frequent itemsets in main memory. Each entry in a top-k list consists of 4 fields: an

item or itemset name (I), a total support (sI), a regularity (periodicity) (rI) and a tidset where I

occurs (T I). For example in Figure 3.1, an item a has a support of 8, a regularity of 3. Its tidset

is {1, 4, 6, 7, 8, 10, 11, 12} which means the item a occurs in {t1, t4, t6, t7, t8, t10, t11, t12}.
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Figure 3.1: MTKPP: Top-k list with hash table

3.4 MTKPP algorithm

MTKPP consists of two steps: (i) Top-k list initialization: scan a database once to obtain

k regular items (with highest support) and collect them into the top-k list with their supports,

regularities and tidsets; and (ii) Top-k mining: merge each pair of entries in the top-k list by using

the best-first search strategy (i.e. finding the itemsets with the highest support first in order to

reduce search space) to generate a larger candidate itemset and then sequentially intersect their

tidsets to calculate support and regularity of the new generated itemset.

3.4.1 MTKPP: Top-k list initialization

To create the top-k list, the database is scanned once to obtain all items. At the first occur-

rence of each item, the MTKPP algorithm creates a new entry in the top-k list and then initializes

its support, regularity and tidset. For other occurrences, the hash table is looked up to find the ex-

isting entry in the top-k list and update the entry values. All items that have regularity greater than

σr are removed from the top-k list and the top-k list is sorted in support descending order. Finally,

all items that have support less than the support of the kth item in top-k list (sk) are removed from

the top-k list. The details of the top-k list initialization process are described in Algorithm 1.

3.4.2 MTKPP: Top-k mining

To mine a set of top-k regular-frequent itemsets from the top-k list, the best-first search

strategy is adopted first to generate regular itemsets with the highest supports. To generate a new

candidate itemset, MTKPP starts from considering the most regular-frequent item to the least

regular-frequent item in the top-k list. It then combines two entries in the top-k list under the

following two constraints: (i) the size of the itemsets of both considered entries must be equal;

(ii) both itemsets must have the same prefix (i.e. each item from both itemsets is the same, except

the last item). When both itemsets satisfy the two constraints above, MTKPP will sequentially

intersect their tidsets in order to calculate the support, the regularity, and the tidset of the new
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Algorithm 1 (MTKPP: Top-k list initialization)
Input:

(1) A transaction database: TDB
(2) A number of itemsets to be mined: k
(3) A regularity threshold: σr

Output:
(1) A top-k list

create a hash table for all 1-items
for each transaction j in TDB do

for each item i in the transaction j do
if the item i does not have an entry in the top-k list then

create a new entry for the item i with si = 1, ri = tj and create a tidset T i that contains tj
create a link between the hash table and the new entry

else
add the support si by 1
calculate the regularity ri by tj
collect tj as the last tid in T i

for each item i in the top-k list do
calculate the regularity ri by |TDB|− the last tid of T i

if ri > σr then
remove the entry i out of the top-k list

sort the top-k list by support descending order
remove all of entries after the kth entry in the top-k list

Algorithm 2 (MTKPP: Top-k mining)
Input:

(1) A top-k list
(2) A number of itemsets to be mined: k
(3) A regularity threshold: σr

Output:
(1) A set of top-k regular-frequent itemsets

for each entry x in the top-k list do
for each entry y in the top-k list (x > y) do

if the entries x and y have the same size of itemsets and the same prefix then
merge the itemsets of x and y to be itemset Z = Ix ∪ Iy

for each tp in T Ix

and tq in T Iy

do
if tp = tq then

calculate the regularity rZ by tp
add the support sZ by 1
collect tp as the last tid in TZ

calculate the regularity rZ by |TDB|− the last tid of TZ

if rZ ≤ σr and sZ ≥ sk then
remove the kth entry from the top-k list
insert the itemset Z (Ix ∪ Iy) into the top-k list with rZ , sZ and TZ

generated candidate itemset. If the regularity of the new candidate itemset is not greater than σr

and the support is greater than the support of the kth regular itemset in the top-k list, then the kth

regular itemset will be removed from the top-k list and the newly generated candidate itemset is

inserted into the top-k list. The details of the mining process are described in Algorithm 2.
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3.5 Example of MTKPP

Let consider the TDB presented in Table 3.1. The regularity threshold σr and the number

of required results k are 4 and 5, respectively. Figure 3.2 illustrates the creating of the top-k list

process from the TDB.

Table 3.1: A transactional database as a running example of MTKPP

tid items
1 a b d e
2 c d e
3 b c f g
4 a b d f g
5 c e g
6 a b c d g
7 a b c d
8 a b c e
9 b c d

10 a c e g
11 a b f
12 a b d g

With the scanning of the first transaction t1 = {a, b, d, e}, the entries for items a, b, d and

e are initialized in the top-k list as shown in Figure 3.2(a). The next transaction (t2 = {c, d, e})

initializes a new entry in the top-k list for item c. It then updates the values of support and

regularity for items d and e to be 2 : 1 and their tidsets to be {1, 2} (Figure 3.2(b)). As shown

in Figure 3.2(c), after scanning the third transaction (t3 = {b, c, f, g}), the regularity rb of the

item b changes from 1 to 2. The top-k list after scanning all transactions is given in Figure 3.2(d).

Next, the item f which has the regularity rf = 7 greater than σr = 4 is removed from the top-k

list. Finally, the top-k list is sorted by support descending order and item e is removed from the

top-k list, since the support of e (se = 5) is less than support of g (sg = 6) which is the kth(5th)

pattern in the top-k list. The top-k list after initialization phase is shown in Figure 3.2(e).

MTKPP mines the top-k regular-frequent itemsets from the top-k list of Figure 3.2(e). Since

item b is the first item in the top-k list and it has no items in the previous sequence, MTKPP starts

by considering item a and search for identical size and prefix items (in the previous sequence),

item b. Then, item b is combined with item a and their tidsets are intersected to find the support

(sba = 7), the regularity (rba = 3) and the tidset (T ba = {1, 4, 6, 7, 8, 11, 12}) of itemset ba.

Since the regularity of ba is less than σr = 4 and the support of ba is more than sk = 6, the

itemset ba is inserted into the top-k list and item g (the kth itemset) is removed from the top-k

list (Figure 3.3). Next, the third element, item c, is considered. There are two entries which are

in the previous sequence and have the same prefix as c: b and a. Thus, item c is combined with
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(a)

(b)

(c)

(d)

(e)

Figure 3.2: Top-k list initialization

Figure 3.3: Top-k regular-frequent itemsets

item b and their tidsets are intersected. The tidset and the regularity of cb are {3, 6, 7, 8, 9} and 3,

respectively. Because the support of cb (scb = 5) is less than the support of sk = 7, the itemset

cb is no longer considered. Next, item c and item a are combined and their tidsets are intersected.

The tidset of ca is then {6, 7, 8, 10}. Since the regularity of ca(rca = 6) is greater than 4, itemset

ca cannot be a regular itemset. Next, item d and itemset ba are considered in the same manner.

When all itemsets in the top-k list have been considered, the top-k regular-frequent itemsets are

stored in the top-k list with their occurrence information. The final result is shown in Figure 3.3.
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3.6 Performance evaluation

In this section, the experimental studies are reported in order to evaluate the performance

of the MTKPP algorithm. From the best of our knowledge, there is no other existing approach to

discover top-k regular-frequent itemsets. Then, the effectiveness of MTKPP algorithm is focused

and compared with PF-tree (Tanbeer et al., 2009) which is a regular-frequent itemset mining

algorithm. It should be noticed that PF-tree mines the regular-frequent itemsets with a user-

given support threshold whereas MTKPP requires the number of regular-frequent itemsets to be

mined (k). Then, the support threshold is fixed in the way that PF-tree mines the same set of

regular-frequent itemsets with highest supports as MTKPP (i.e. it is specified as σs = sk which

is equal to the lowest support of the set of top-k regular-frequent itemsets). To demonstrate the

performance of MTKPP, the processing time (i.e. CPU and I/Os costs) is investigated to compare

the performance of the two algorithms with the small and large values of k and various values

of regularity threshold (σr). Furthermore, a study of memory consumption of MTKPP is also

considered because of the use of the top-k list structure. Lastly, the scalability of MTKPP on the

number of transactions in the database is evaluated.

3.6.1 Experimental setup

As shown the characteristics in Chapter 2, nine real (i.e. accidents, BMS-POS, chess,

connect, kosarak, mushroom, pumsb, pumsb*, retail) and three synthetic (i.e. T10I4D100K,

T20I6D100K, and T40I10D100K) datasets were employed to examine the performance of

MTKPP. The simulations were performed on a IntelrXeon 2.33 GHz and with 4 GB main mem-

ory on a Linux platform and the program of MTKPP and PF-tree implemented in C. In the ex-

periments, the value of σr is set depending on the characteristic of each dataset for illustrative

purpose. Therefore, the value of σr is specified to be different values. In fact, the number of

regular itemsets for each database increases with the value of the regularity threshold. On sparse

datasets, each itemset does not occur frequently thus the value of σr should be set to be large when

the value of k is large. While, each itemset appears very often in dense dataset, a small value of

σr should be applied. Hence, the value of k is divided into two rages: (i) [50,500] for the small

values; and (ii) [1,000, 10,000] the large values, respectively.

3.6.2 Execution time

Figure 3.4 to Figure 3.21 show the runtime of MTKPP and PF-tree on real dense datasets

(i.e. accidents, chess, connect, mushroom, pumsb, and pumsb*). From these figures, it can be

observed that in almost cases, MTKPP outperforms PF-tree with the small and large values of
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k. However, in some cases especially on connect and mushroom datasets when the value of k

is large, MTKPP cannot significantly reduce the computational time from PF-tree. This happen

because these two datasets have a small number of transactions (in some cases the number of

transaction is less that the number of desired results). Then, PF-tree can reduce time to merge

tidset from children to parent nodes, while MTKPP cannot take the advantage of using a top-k

list.

Figure 3.22 to Figure 3.36 illustrate the processing time of two real sparse datasets

(i.e. BMS-POS and retail) and the three synthetic datasets (T10I4D100K, T20I6D100K and

T40I10D100K). One can observe that the computation time of MTKPP increases as k increases.

When the value of k increases, MTKPP has to find more results, therefore the computation time

increases as well. By comparing with PF-tree, MTKPP can save a large amount of time for small

and large value of k. MTKPP runs very fast on sparse datasets since each itemset occur rarely

(i.e. the number of tids that each itemset occurs is few). As a result, MTKPP spent a little time to

intersect tidsets while PF-tree take time to merge and order tids. Therefore, these results confirm

the advantage of MTKPP over PF-tree for the real and synthetic sparse datasets where the item

distributes not regularly.

3.6.3 Memory consumption

The variation of memory usage of MTKPP with the number of regular-frequent itemsets to

be mined, k, is shown in Figure 3.37 to Figure 3.47.

From these figures, it is obvious that the memory usage increases as k increases. In fact,

the desired memory of MTKPP depends on the support of each itemset in the top-k list because

MTKPP has to maintain the tidsets (i.e. sets of tids) of all itemsets in the top-k list in order to

calculate their support and the regularity. For dense datasets, the memory usage linearly increases

because the supports of itemsets in the top-k list are very close. For sparse datasets, the memory

usage increases slightly as k increases because the supports of itemsets in the top-k list are quite

different. However, based on the used of the top-k list structure, the memory usage of MTKPP is

efficient for the top-k regular-frequent itemsets mining using the recently available gigabyte range

memory.

3.6.4 Scalability test

The scalability of MTKPP algorithm is also studied on execution time and memory con-

sumption by varying the number of transactions in database. The kosarak dataset is used to test

scalability with the number of transactions. The kosarak dataset is a huge dataset with a large
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number of distinct of items (41, 270) and transactions (990, 002). First, the database was divided

into six portions (i.e. 100K, 200K, 400K, 600K, 800K and 990K transactions). Then, the per-

formance of MTKPP was investigated on each portion. Second, the value of k is specified to be

500 and 10, 000 to investigate the scalability on the small and the large values of k. The regularity

threshold was fixed to 6% of the number of transactions in each portion.

The experimental results shown in Figures 3.48 and 3.49. It is clear from the graphs that

as the database size increases, overall top-k list initialization time and top-k mining time are

linearly increased. The performance between MTKPP and PF-tree is similar when the number of

transactions is between 0 and 200K transactions. Besides, MTKPP runs faster than PF-tree with

the large number of transactions for the small and the large values of k. As shown the memory

consumption of MTKPP in the figures, the memory requirement increases as the database size

increases. However, MTKPP shows stable performance of about linearly increase of the runtime

and memory usage with respect to the database size. Therefore, it can be observed from the

scalability test that MTKPP can mine the top-k regular-frequent patterns over large datasets and

distinct items with considerable amount of runtime and memory.

3.7 Summary

This chapter introduced and studied the problem of mining the top-k regular (periodic)-

frequent itemsets from transactional databases without setting a support threshold. This problem

allows users to control (or specify) the number of regular itemsets (i.e. the regularly-occurred

itemsets) to be mined.

To discover this kind of itemset, an efficient one-pass algorithm, called MTKPP (Mining

Top-K Periodic(Regular)-frequent Patterns), is presented. Since the minimum support to retrieve

top-k regular-frequent itemsets cannot be known in advance, a new best-first search strategy is

devised to efficiently retrieve the top-k regular-frequent itemsets and the intersection process is

applied to compute the support and the regularity of each itemset. By using these techniques,

MTKPP first considers the itemsets with the highest support and then combines candidates to

build the top-k regular-frequent itemsets list.

In the experiments, the empirical studies on both real and synthetic data (with the small and

large values of k) show that the MTKPP algorithm is efficient for top-k regular-frequent itemset

mining. It is also linearly scalable with the number of transactions comparing with PF-tree.
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Figure 3.4: Runtime of MTKPP on accidents (σr = 1%)
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Figure 3.5: Runtime of MTKPP on accidents (σr = 2%)
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Figure 3.6: Runtime of MTKPP on accidents (σr = 3%)
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Figure 3.7: Runtime of MTKPP on chess (σr = 2%)
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Figure 3.8: Runtime of MTKPP on chess (σr = 4%)
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Figure 3.9: Runtime of MTKPP on chess (σr = 6%)
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Figure 3.10: Runtime of MTKPP on connect (σr = 1%)
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Figure 3.11: Runtime of MTKPP on connect (σr = 2%)
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Figure 3.12: Runtime of MTKPP on connect (σr = 3%)
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Figure 3.13: Runtime of MTKPP on mushroom (σr = 4%)
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Figure 3.14: Runtime of MTKPP on mushroom (σr = 6%)
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Figure 3.15: Runtime of MTKPP on mushroom (σr = 8%)
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Figure 3.16: Runtime of MTKPP on pumsb (σr = 2%)
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Figure 3.17: Runtime of MTKPP on pumsb (σr = 4%)
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Figure 3.18: Runtime of MTKPP on pumsb (σr = 6%)
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Figure 3.19: Runtime of MTKPP on pumsb* (σr = 1%)
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Figure 3.20: Runtime of MTKPP on pumsb* (σr = 2%)
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Figure 3.21: Runtime of MTKPP on pumsb* (σr = 3%)
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Figure 3.22: Runtime of MTKPP on BMS-POS (σr = 1%)
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Figure 3.23: Runtime of MTKPP on BMS-POS (σr = 2%)
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Figure 3.24: Runtime of MTKPP on BMS-POS (σr = 3%)
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Figure 3.25: Runtime of MTKPP on retail (σr = 6%)
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Figure 3.26: Runtime of MTKPP on retail (σr = 8%)
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Figure 3.27: Runtime of MTKPP on retail (σr = 10%)
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Figure 3.28: Runtime of MTKPP on T10I4D100K (σr = 4%)
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Figure 3.29: Runtime of MTKPP on T10I4D100K (σr = 6%)
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Figure 3.30: Runtime of MTKPP on T10I4D100K (σr = 8%)
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Figure 3.31: Runtime of MTKPP on T20I6D100K (σr = 2%)



39

 6

 12

 18

 24

 30

0 50 100 200 300 400 500
tim

e(
s)

k

T20I6D100K (σr = 4)

PF-tree
MTKPP

 9

 18

 27

 36

 45

0 1000 2000 4000 6000 8000 10000

tim
e(

s)

k

T20I6D100K (σr = 4)

PF-tree
MTKPP

Figure 3.32: Runtime of MTKPP on T20I6D100K (σr = 4%)
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Figure 3.33: Runtime of MTKPP on T20I6D100K (σr = 6%)
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Figure 3.34: Runtime of MTKPP on T40I10D100K (σr = 2%)
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Figure 3.36: Runtime of MTKPP on T40I10D100K (σr = 6%)
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CHAPTER IV

TKRIMPE: TOP-K REGULAR-FREQUENT ITEMSETS MINING

USING DATABASE PARTITIONING AND SUPPORT

ESTIMATION

As mentioned in the previous chapter, the MTKPP algorithm scans the database once to

collect a set of transaction-ids (tidset) where each itemset occurs, and then MTKPP applies an

intersection operation on the tidsets to collect the tidset and to calculate the support and the reg-

ularity of each larger itemset. Unfortunately, MTKPP spends a lot of time to intersect the tidsets

comparing to the whole execution time.

Therefore, the aim of this chapter is to reduce the computational time on the intersection

process of the MTKPP algorithm. Then, a new efficient algorithm, called Top-K Regular-frequent

Itemsets Mining using database Partitioning and support Estimation (TKRIMPE), to mine a set

of top-k regular-frequent itemsets is proposed. The partition and estimation methods used to

dismiss some inessential computing are also described in details. Besides, the data structure used

to maintain the top-k regular-frequent itemsets and the complexity analysis of TKRIMPE are also

discussed.

The experimental studies illustrate that TKRIMPE provides significant improvements, in

particular for sparse datasets, in comparison with MTKPP on both small and large number of

required results.

4.1 Preliminary of TKRIMPE

To mine the top-k regular-frequent itemsets, TKRIMPE employs a top-k list to maintain

top-k regular-frequent itemsets during mining process. Besides, a best-first search strategy is also

applied to quickly mine the itemsets with the highest supports (i.e. to raise up the support of the

kth itemset in the top-k list which helps to reduce the search space). Furthermore, the database

partitioning technique is utilized to reduce the time to intersect tidsets. Meanwhile, the support

estimation technique is used to early terminate the intersection process and to prune the set of

candidates.
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4.2 TKRIMPE: Top-k list structure

TKRIMPE is based on the use of a top-k list as proposed in (Amphawan et al., 2009). The

top-k list is simply a linked-list with a hash table for efficiency reasons (two main operations -

which are required to frequently access the information of itemsets- will be operated: initialization

and updating the information of the top-k regular-frequent itemsets). At any time, the top-k list

only contains not much more than k regular-frequent itemsets in main memory. Each entry in a

top-k list consists of 4 fields: an item or itemset name I , a total support sI , a regularity rI and a

set of tidsets T I where I occurs in each partition, respectively. For example in Figure 4.1, an item

a has a support of 8, a regularity of 3. Its set of tidsets is {{1, 4}, {6, 7, 8}, {10, 11, 12}} which

means the item a occurs in transactions {t1, t4, t6, t7, t8, t10, t11, t12}.

Figure 4.1: TKRIMPE: Top-k list with a hash table

4.3 Database Partitioning

In TKRIMPE, the database is first separated into several disjoint partitions of an equal size

as presented in (Brin et al., 1997b). Then, TKRIMPE collects the tidsets (there is one tidset by

partition) of each itemset in one database scan in order to calculate its support and regularity.

Partitioning technique allows to reduce some unnecessary computational costs.

Given a regularity threshold σr, the database is split into pn = d|TDB|/σre partitions.

Each partition will then contains σr transactions. For example, consider the transactional database

of Table 4.1 with 12 transactions. A regularity threshold of 4 will split the database into 3 parti-

tions of 4 transactions each.

TKRIMPE will fully exploit the partitioning of the database. Thus, a new local tidset, a

local support and a local regularity related to a partition are considered. The (local) tidset of an

itemset X in the mth partition Pm, denoted as TXm , is the set of tids in mth partition that contains

itemset X:

TXm = {tq|X ⊆ tq, tq ∈ Pm}
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Table 4.1: A transactional database as a running example of TKRIMPE

tid items
1 a b d e
2 c d e
3 b c f g
4 a b d f g
5 c e g
6 a b c d g
7 a b c d
8 a b c e
9 b c d

10 a c e g
11 a b f
12 a b d g

Then, the (global) tidset of an itemset X , TX , is defined as TX = {TX1 , . . . , TXpn}.The

(local) support of an itemset X in the mth partition, denoted sXm, is the number of transactions

(also denoted tids) in themth partition that contains itemsetX , i.e. sXm = |TXm |. Then, the (global)

support sX of the itemset X is equal to
∑pn
m=1 s

X
m.

For example, consider an item a occurring in the set of tids {1, 4, 6, 7, 8, 10, 11, 12} (i.e.

transactions T a = {t1, t4, t6, t7, t8, t10, t11, t12}) from the transactional database of Table 4.1.

Thus, the set of tids {1, 4} is contained in T a1 which is the tidset of the first partition. Meanwhile,

the sets of tids {6, 7, 8} and {10, 11, 12} are stored in T a2 and T a3 , respectively. Thus, the tidset

of the item a is T a = {{1, 4}, {6, 7, 8}, {10, 11, 12}}. Besides, the support of the item a is

sa = 2 + 3 + 3 = 8.

By using the partition technique, the tidset of each itemset is spilt into several small tidsets.

As a consequence, the original definition of the regularity of an itemset (see Definition3.1) cannot

find the regularity between partitions. It is suitable on only one tidset for each itemset as in

(Amphawan et al., 2009). Then, three new definitions are proposed to calculate the regularity in

each partition, regularity between two consecutive partitions and the total regularity of an itemset.

The effect of the partition technique is evaluated in Section 4.8.2.

Definition 4.1 (Regularity of an itemset X in a partition) Let tXj,m and tXk,m be two consecutive

tids in TXm , i.e. where j < k and there is no tid tXi,m in TXm , j < i < k, such that the transaction

of tXi,m contains X . Thus, rttXj = tXk,m − tXj,m is the regularity value between two consecutive

tids tXj,m and tXk,m. Therefore, the regularity of the itemset X in the mth partition is defined as:

rpXm = max(rtt1, rtt2, . . . , rtt|TX
m |).
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Proposition 4.2 The regularity of an itemset X in any partition Pm is strictly less than regularity

threshold: rpXm < σr.

Proof: Following Definition 4.1 it is obvious that the maximum regularity of an itemset in a

partition is equal to σr − 1, which is the gap between the first and the last tids in the partition.

Definition 4.3 (Regularity of an itemset X between two consecutive partitions) Let

tX|TX
m |,m−1 be the last tid where X occurs in the (m − 1)th partition and tX1,m be the first

tid where X occurs in the mth partition. Then, rtpXm = tX1,m − tX|TX
m−1|,m−1 is the number of tids

(transactions) that do not containX between the (m−1)th andmth partitions. Thus, a regularity

of X between the two partitions is defined. Obviously, rtpX1 is tX1,m. To find the exact regularity

between two consecutive partitions of X on the entire database, the number of transactions that

do not contain X between the last tid where X occurs and the last tid (transaction) of database

has to be calculated by: rtpXpn+1 = |TDB| − tX|TX
pn|,pn

. Lastly, the regularity between any two

consecutive tidsets TXm−1 and TXm can be defined as:

rtpXm =



tX1,m if m = 1

tX1,m − tX|TX
m−1|,m−1 if 2 ≤ m ≤ pn

|TDB| − tX|TX
m−1|,m−1 if m = pn+ 1

Therefore, the regularity of an itemset is defined with the help of Definitions 4.1 and 6.8.

Definition 4.4 (Regularity of an itemset X) The regularity of an itemset X is defined as

rX = max(max(RPX),max(RTPX))

where RPX = {rpX1 , rpX2 , . . . , rpXpn} is the set of regularities of X in each partition (Defini-

tion 4.1) and RTPX = {rtpX1 , rtpX2 , . . . , rtpXpn+1} is the set of regularities of X between two

consecutive partitions (Definition 6.8).

For example consider the transactional database of Table 4.1 and the case of an item a:

T a = {{1, 4}, {6, 7, 8}, {10, 11, 12}}. The set of regularities in each partition of the item a is

RP a = {(4− 1),max(7− 6, 8− 7),max(11− 10, 12− 11)} = {3, 1, 1}. The set of regularities

between two consecutive partitions of a is RTP a = {1, 6 − 4, 10 − 8, 12 − 12} = {1, 2, 2, 0}.

Thus, the regularity of the item a is ra = max(max(3, 1, 1),max(1, 2, 2, 0)) = 3.
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4.4 Support Estimation

The support estimation is used when the number of itemsets in the top-k list is equal or

greater than k. The support estimation requires less computational efforts than the computing of

the real support. When the estimated support of an itemset is less than the support of the kth

itemset in the sorted the top-k list, TKRIMPE can conclude that the support of the itemset is less

than the support of the kth element in the top-k list, and then TKRIMPE can prune the itemset out

of a search space without intersection all of tids.

The support estimation is based on the notion of the left and right boundaries in each parti-

tion of two itemsets when these itemsets are merged. It will be also useful for regularity estima-

tion. The left (right) boundary of itemsets X and Y in the mth partition is simply the first (last)

index of tids in TXm and T Ym such that the corresponding tids are equal for the two itemsets.

Formally: given the tids tXi,m ∈ TXm and tYj,m ∈ T Ym (1 ≤ i ≤ |TXm |, 1 ≤ j ≤ |T Ym |), the left

boundaries lbXm and lbYm of itemsets X and Y at the mth partition during merging are given by:

lbXm =


0 if TXm ∩ T Ym = φ

min(i) if tXi,m = tYj,m

lbYm =


0 if TXm ∩ T Ym = φ

min(j) if tXi,m = tYj,m

Obviously, the right boundaries are defined in a very similar way:

rbXm =



0 if TXm ∩ T Ym = φ

lbXm if |TXm ∩ T Ym | = 1

max(i) if tXi,m = tYj,m

rbYm =



0 if TXm ∩ T Ym = φ

lbYm if |TXm ∩ T Ym | = 1

max(j) if tXi,m = tYj,m

Thus, the estimated support is defined as the minimum distance between the left and the

right boundaries of itemsets X and Y .
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Definition 4.5 (Estimated support) The estimated support of an itemset XY in the mth par-

tition, denoted as esXYm , is the minimum distance between the left and the right boundaries of

itemsets X and Y in the mth partition, i.e.,

esXYm =


0 if lbXm = 0 or lbYm = 0

1 +min(rbXm − lbXm, rbYm − lbYm) otherwise

Lemma 4.6 The estimated support esXYm of an itemset XY in the mth partition can be bounded

with the help of the real support of XY in the mth partition and the size of partitions:

sXYm ≤ esXYm ≤ sXYm + ((σr − 2)/2)

Proof: Obviously, since the left and the right boundaries are indexes of the first and the last

tids where itemsets X and Y occur together, the support of itemset XY could not be greater than

the difference between the right and the left indices(i.e. the estimated support). Indeed, one can

notice that the support of the itemset XY is equal to the estimated support of XY if XY occurs

in every tid between the boundaries and that the support of XY is less than estimated support if

there is at least one tid between the boundaries where the itemsets X and Y do not occur together.

Thus, sXYm ≤ esXYm .

In any partition, the maximum number of tids between the left and right boundaries of

the itemset XY is σr − 2. This is the case when itemsets X and Y occur together in the first

and the last transactions of the partition. The difference between the estimated support and the

real support (esXYm − sXYm ) corresponds to the number of tids where X and Y do not occur

together between the left and the right boundaries. Then, in the worst case, this difference is

equal to (σr − 2)/2. It happens when all the tids (between the left and the right boundaries)

are totally different. Otherwise, the maximum of the difference is less than (σr − 2)/2. Thus

esXYm ≤ sXYm + ((σr − 2)/2).

Definition 4.7 (The estimated support of an itemset XY ) The estimated support of an itemset

XY , denoted esXY , is the summation of estimated support in every partition, i.e.,

esXY =
pn∑
m=1

esXYm
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Lemma 4.8 Let esXY be the estimated support of XY and sXY be the support of XY , then

esXY ≥ sXY .

Proof: Based on Lemma 4.6, in each partition, the estimated support of XY is greater than

or equal to the real support of XY . Therefore, the estimated support of XY is no less than the

real support because esXY =
∑PN
m=1 es

XY
m ≥ sXY =

∑pn
m=1 s

XY
m .

Theorem 4.1 An itemset XY is not a top-k regular-frequent itemset if esXY < sk, where sk is

the support of the kth element in the sorted top-k list.

Proof: Based on Lemma 4.8, the estimated support of an itemset XY is always no less than

its support. If the estimated support of XY is less than sk, then the support of XY is also less

than sk. Therefore, the itemset XY is not a top-k regular-frequent itemset.

Theorem 4.1 has clear practical implications. Indeed, for all situations where Theorem 4.1

holds, TKRIMPE can early prune the search space. The effect of this pruning strategy is evaluated

in Section 4.8.2.

4.5 TKRIMPE algorithm

As MTKPP, TKRIMPE consists of two steps : (i) Top-k list initialization: partition

database, scan each partition to obtain all regular items, and collect them into the top-k list with

their supports, regularities and sets of tidsets; (ii) Top-k mining: merge each pair of entries in the

top-k list using a best-first search strategy (i.e. finding the itemsets with the highest support first)

and then intersect their tidsets (one by one partition) in order to find the top-k regular-frequent

itemsets using the proposed support estimation technique.

4.5.1 TKRIMPE: Top-k list initialization

To create the top-k list, each partition of the database is scanned (one by one) to obtain all

items. A new entry in the top-k list is created for any item that occurs in the first σr transactions

(i.e. in the first partition), and then a new tidset for the first partition is built. Finally, the tidset and
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the values of a support and a regularity are updated. For the following partitions, TKRIMPE first

looks if the considered item is already existed in the top-k or not. This is done with the help of a

hash function for efficiency reasons. For a first occurrence of an item in the partition, a new tidset

of the partition is created and the values of support, regularity and tidset are initialized. If the

item was already seen in the partition, TKRIMPE only updates its values in the top-k list. When

the entire database has been read, the top-k list is trimmed by removing the items with regularity

greater than σr. Then, the top-k list is sorted in descending order of support. Finally, TKRIMPE

removes the items that have a support less than sk (the support of the kth item in the top-k list)

from the top-k list. Details are given in Algorithm 3.

Algorithm 3 (TKRIMPE: Top-k list initialization)
(1) A transaction database: TDB
(2) A number of itemsets to be mined: k
(3) A regularity threshold: σr

Output:
(1) A top-k list

create a hash table for all 1-items
for each transaction j in the first partition do

for each item i in the transaction j do
if the item i does not have an entry in the top-k list then

create a new entry for item i with si = 1, ri = tj and create a tidset T i
1 that contain tj

create a link between the hash table and the new entry
else

add the support si by 1
calculate the regularity ri by tj
collet tj as the last tid in T i

1

for each partition m = 2 to pn do
for each transaction j in the mth partition do

for each item i in the transaction j do
if the item i has an entry in the top-k list then

if tj is the first tid that i occurs in the mth partition then
add the support si by 1
calculate the regularity ri by tj and check ri with σr

create a tidset T i
m and collect tj as an element in T i

m

else
add the support si by 1
calculate the regularity ri by tj
collect tj as the last tid in T i

m

for each item i in the top-k list do
calculate the regularity ri by |TDB|− the last tid of T i

PN (ti|T i
P N
|,PN

)

if ri > σr then
remove the entry of i out of the top-k list

sort the top-k list by support descending order
remove all of entries after the kth entry in top-k list
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4.5.2 TKRIMPE: Top-k mining

As described in Algorithm 4, TKRIMPE starts from the most frequent itemset to the least

frequent itemset in the top-k list to generate a new regular itemset with a best-first search strategy

to quickly generate the regular-frequent itemsets with the highest support. It then combines two

elements X and Y in the top-k list under the following two constraints: (i) the number of items

in the itemsets of both elements must be equal; (ii) both itemsets must have the same prefix (i.e.

each item from both itemsets is the same, except the last item). When both itemsets satisfy the two

constraints, the tidsets ofX and Y of each partition are sequentially intersected in order to find the

regularity, the support and the tidsets of the new generated regular itemsetXY . When the number

of itemsets in the top-k list is greater than or equal to k, the estimation technique is performed in

each partition (see Definition 4.5). Following Definition 4.7, the estimated support esXY of the

candidate itemsetXY is then evaluated. If esXY < sk (the support of the kth itemset in the sorted

top-k list), TKRIMPE will stop to consider the itemset XY (thanks to Theorem 4.1). Otherwise,

the remaining tids between the left and the right boundaries of each partition are continuously

intersected to find the (real) support and regularity. If the regularity of the new generated itemset

XY is no greater than σr and its support is greater than sk, then XY is inserted in the top-k

list and the kth itemset is removed from the top-k list. Lastly, one have to notice that thanks to

the partitioning technique TKRIMPE can reduce the time to intersect some tids of each partition

when at least one of the tidsets does not contains a regular sequence of transactions. This will

particularly happens often in sparse datasets.

The advantages of the database partitioning and support estimation techniques will be illus-

trated in Section 4.8. The partitioning technique allows to reduce the number of tids to compare

during intersection, and the support estimation allows to early reduce the number of candidate

itemsets.

4.6 Example of TKRIMPE

Let consider the TDB presented in Table 4.1, the regularity threshold σr be 4 and the

number of required results k be 5. The database is thus separated into three partitions.

The initialization of the top-k list from TDB is illustrated in Figure 4.2. After scanning the

first transaction t1 = {a, b, d, e}, the entries for items a, b, d and e are initialized in the top-k list as

shown in Figure 4.2(a). Then the second, the third and the fourth transactions are considered. The

tidsets for the first partition, the values of support and regularity of each element are initialized or

updated as shown in Figure 4.2(b). The next partition (transactions 5 to 8) initializes or updates
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Algorithm 4 (TKRIMPE: Top-k mining)
Input:

(1) A top-k list
(2) A number of itemsets to be mined: k
(3) A regularity threshold: σr

Output:
(1) A set of top-k regular-frequent itemsets

for each entry x in the top-k list do
for each entry y in the top-k list (x > y) do

if the entries x and y have the same size of itemsets and the same prefix (|Ix| = |Iy| and ix1 =
iy1, i

x
2 = iy2, . . . , i

x
|Ix|−1 = iy|Ix|−1) then

merge the itemsets of the entries x and y to be itemset Z = Ix ∪ Iy

esZ = 0, rZ = 0, sZ = 0
for each partition m do

calculate the left lbxm, lb
y
m and the right boundaries rbxm, rb

y
m of the mth partition

calculate the estimated support esZ
m from lbxm, lb

y
m and rbxm, rb

y
m

calculate the regularity rZ from lbxm, lb
y
m and rbxm, rb

y
m and check rZ with σr

add the estimated support esZ by esZ
m

if esZ < sk then
stop considering Z {sZ < sk}

for each partition m do
for each tp in TX

m (p = lbxm to rbxm) and tq in TY
m (q = lbym to rbym) do

if tp = tq then
calculate the regularity rZ by tp
add the support sZ by 1
collect tp as the last tid in TZ

m

recalculate the estimated support esZ = esZ − esZ
m + |TZ

m|
if esZ < sk then

stop considering Z {sZ < sk}
calculate the regularity rZ by |TDB|− last tid of pnth partition (tZ|T Z

pn|,pn)

if rZ ≤ σr and sZ ≥ sk then
remove the kth entry from the top-k list
insert the itemset Z (Ix ∪ Iy) into the top-k list with rZ , sZ and TZ

the tidsets for the second partition for each element as illustrated in Figure 4.2(c). Finally, the third

partition is considered and the top-k list after scanning all transactions is given in Figure 4.2(d).

Then, the item f which has the regularity rf = 7 greater than σr = 4 is removed from the top-k

list. The top-k list is sorted by support descending order and item e is removed, since the support

of e (se = 5) is less than the support of g (sg = 6) which is the kth (5th) item in the top-k list.

The top-k list after initialization is shown in Figure 4.2(e). It will be the starting point for the

mining process.

Since the item b is the first item in the top-k list, TKRIMPE starts by considering the item

a and then looks in the previous items which have the same size and same prefix. Thus, the

item b is combined with the item a and their tidsets are intersected (partition by partition). Since

the number of itemsets in the top-k list is greater or equal to k = 5, TKRIMPE determines the

estimated support of ba. The left and the right boundaries of b and a in the first partition are
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(a) read first transaction

(b) read first partition

(c) read second partition

(d) read third partition

(e) final top-k list

Figure 4.2: Top-k list initialization

Figure 4.3: Top-k frequent itemsets

lbb1 = 1, lba1 = 1, rbb1 = 3 and rba1 = 2, respectively. Therefore, the estimated support esba1 of the

first partition is 1 + min(3 − 1, 2 − 1) = 2. The estimated supports of the second and the third

partition are obtained in the same manner: esab2 = 3 and esab3 = 2. Finally, the estimated support

esba of ba is equal to 2+3+2 = 7. The itemset ba is still a candidate because esab = sk = 7 > sk.

Thus, TKRIMPE intersects the remaining tids between the left and the right boundaries of each
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partition to discover the support, regularity and tidsets of ba: 7, 3 and {{1, 4}, {6, 7, 8}, {11, 12}}.

Since the regularity of ba is less than σr(4) and the support of ba is more than sk = 6, itemset ba

is inserted in the top-k list and item g (the kth itemset) is removed from the top-k list (Fig. 4.3).

Next, the third element, item c, is considered. There are two elements in the previous sequence

and have the same prefix as c: b and a. The item c thus is combined with b. The itemset bc is

early pruned because its estimated support esbc = 1 + 3 + 1 = 5 is less than sk. Next, the item

d and the itemset ba are treated in the same manner. When all itemsets in the top-k list have been

considered, all top-k regular-frequent itemsets are obtained as shown in Figure 4.3.

4.7 Complexity analysis

In this section, the computational complexity for TKRIMPE is discussed in the terms of

time and space. Extensive experimental studies will complement this analysis in Section 4.8.
Proposition 4.9 The time complexity for creating the top-k list is O(nm) where m is the number

of transactions in the database and n is the number of items occurring in the database.

Proof: Since the proposed algorithm scans each transaction in the database once, the entry

of each item that occurs in the transaction is also looked up once in order to collect the tid into

tidset (O(nm)). The cost for sorting all (in the very worst case) the entries is O(n log n). Then,

the time complexity to create the top-k list is formally O(nm + n log n). In fact, the number

of items (n) is, for the considered applications, always less than the number of transactions(m).

Thus, the time complexity to create the top-k list is O(nm).

Proposition 4.10 The time complexity for mining top-k regular-itemset isO(mk2) wherem is the

number of transactions in the database and k is the number of results to be mined.

Proof: The mining process merges each itemset in the top-k list with only the former itemset

in the top-k list. Then, the tidsets of the two merged itemsets are intersected. Therefore, the

combination of all itemsets in the top-k list is k ∗ (k+ 1)/2 and the time to intersect tidset at each

step is O(m). Thus, the overall time complexity of mining process is O(mk2).

Proposition 4.11 The memory space required by the top-k list is O(km), where m is the number

of transactions in the database and k is the number of results to be mined.

Proof: The top-k list contains only k itemsets during the mining process and the maximum

tids contained in each element of the top-k list is m. Therefore, the space complexity of using

top-k list is O(km).
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4.8 Performance Evaluation

In this section, the experimental studies are here reported to investigate the performance

of the TKRIMPE algorithm over various datasets. As illustrated in previous chapter, MTKPP

algorithm (Amphawan et al., 2009) outperforms the PF-tree algorithm (Tanbeer et al., 2009) for

all datasets. Then, experiments are conducted to evaluate the performance of TKRIMPE by com-

paring with MTKPP which are the top-k regular-frequent itemsets mining. To investigate the

effectiveness of TKRIMPE, the advantages of database partitioning and support estimation tech-

niques used in TKRIMPE are first illustrated. the processing time (i.e. CPU and I/Os costs) is

examined to compare the performance of the two algorithms with the small and large values of k

and various values of regularity threshold (σr). Furthermore, a study of memory consumption of

TKRIMPE is also considered because of the use of the top-k list structure. Lastly, the scalability

of TKRIMPE on the number of transactions in the database is evaluated.

4.8.1 Experimental setup

All the experiments are performed on a Linux platform with a IntelrXeon 2.33 GHz and

with 4 GB main memory. The experiments are done on nine real datasets (accidents, BMS-

POS, chess, connect, kosarak, mushroom, pumsb, pumsb* and retail) and three synthetic datasets

(T10I4D100K, T20I6D100K and T20I6D100K) which were described their details and charac-

teristics in Chapter 2. Programs for MTKPP and TKRIMPE are written in C based on the use of

the top-k list structure.

In the experiments, the value of σr is set depending on the characteristic of each dataset

for illustrative purpose. Therefore, the value of σr is specified to be different values. In fact, the

number of regular itemsets for each database increases with the value of the regularity threshold.

On sparse datasets, each itemsets does not occur frequently thus the value of σr should be set to

be large when the value of k is large. While, each itemset appears very often in dense dataset, a

small value of σr should be applied. Hence, the value of k is divided into two rages: (i) [50,500]

for the small values; and (ii) [1,000, 10,000] the large values, respectively.
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4.8.2 Advantages of the database partitioning and the support estimation techniques ap-

plied in TKRIMPE

The advantages of applying partitioning and estimation techniques in the TKRIMPE algo-

rithm are first investigated. To do this, the numbers of early terminated itemsets (i.e. the inter-

section processes of these itemsets are not completed) by using the estimation technique and the

numbers of non-considered tids during intersection process (i.e. the summation of non-regarded

tids for each time of intersection) are considered. This analysis is done in an absolute manner and

does not depend on the implementation.

Figure 4.4 to Figure 4.14 show the numbers of itemsets that are early terminated (pruned)

by using the support estimation technique.For dense dataset, TKRIMPE is not so efficient, neither

for the small value nor the large values of k, where the number of early terminated itemsets are in

ranges: [10, 1, 370] for the small values of k and [980, 25, 799] for the large values, respectively.

The reason is that the support of each top-k regular-frequent itemset is quite close to each other.

Then, TKRIMPE cannot take benefit from the estimation technique which is an over estimation

method.

However, on sparse datasets (i.e. BMS-POS, retail, T10I4D100K, T20I6D100K and

T40I10D100K) shown in Figure 4.10 to Figure 4.14, the numbers of early terminated itemsets

of the small and large values of k are varied between ranges: [0.2K, 98K] and [17K, 5500K],

respectively. Obviously, from these figures, it could be seen that the use of estimation technique

achieves high number of pruned itemsets for sparse datasets because each itemset occurs very few

and not together. Thus, TKRIMPE cannot use the benefit of support estimation to prune such

itemsets.

To show the benefit of partitioning technique, the number of of non-regarded tids (i.e. the

summation of non-considered tids in each iteration of the intersection process) are illustrated in

Figure 4.15 to Figure 4.25 illustrate the benefit of using the partitioning and the estimation tech-

niques which is the summation of the number of non-considered tids in each iteration of intersec-

tion process. There are between 9, 000 and 38, 000, 000 non-regarded tids for sparse datasets and

between 200 and 11, 000, 000 non-regarded tids for dense datsets.
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4.8.3 Execution time

As mentioned above, TKRIMPE can save a lot of operations on itemsets using the database

partitioning and the support estimation techniques. Recall that the performance of MTKPP is

always better than that of PF-tree, a comparison on total execution times between top-k regular-

frequent itemsets mining algorithms: MTKPP and TKRIMPE is thus now only provided.

Let first consider the runtime of TKRIMPE on the six real dense datasets (i.e. accidents,

chess, connect, mushroom, pumsb, pumsb*) as shown in Figure 4.26 to Figure 4.43. From these

figures, the execution times of MTKPP and TKRIMPE are always ranked in the same order on

both the small and large values of k, due to TKRIMPE can only reduce a few number of com-

parison among the borders of a partition (i.e. the number of non-regarded tids is very few for

each dense dataset). However, in some cases with the small values of k, TKRIMPE is faster

than MTKPP because it can take advantage from the estimation technique. On the BMS-POS,

retail and three synthetic sparse datasets (see Figure 4.44 to Figure 4.58), TMRIMPE outperforms

MTKPP on both the small and large values of k. For the real retail dataset, one can notice that

TMRIMPE significantly outperforms MTKPP algorithm, since TKRIMPE fully takes advantage

of the partition and the support estimation techniques. On synthetic datasets, TMRIMPE outper-

forms MTKPP for the small and large values of k. However, on T40I10D100K, TKRIMPE has

similar performance as MTKPP when k is large. Since this dataset is neither sparse nor dense

dataset, TKRIMPE cannot take advantage of partitioning and estimation technique for this kind

of dataset.

As a whole these results illustrate that TMRIMPE is very efficient when compared with

MTKPP for sparse datasets as it was suggested in the description of the Top-k mining algorithm.

In addition, TMRIMPE has better, but not significant, performance for dense datasets.

4.8.4 Memory consumption

Now, the memory consumption of TKRIMPE and MTKPP algorithms are examined. Both

algorithms use a top-k list which contains item-name, a set of tidsets, support and regularity values

for each entry. Obviously, the memory usage of the two algorithms is similar. Figures 4.59 to 4.69

show the memory usage for several values of k on the dense and sparse databases.

These experiments show that the memory consumption is low enough to be able to mine

classical databases within the current available gigabyte-range memory. Indeed, in both imple-
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mentations the top-k list structure is handled in very efficiently way.

Lastly, it is obvious that the memory usage increases when k increases. In fact, the memory

usage of the proposed algorithm depends on the support value of each element in the top-k list

because the algorithm has to maintain the tidsets of all itemsets in the top-k list in order to compute

the support and the regularity.

4.8.5 Scalability test

the scalability of the TKRIMPE algorithm is studied on execution time and memory con-

sumption by varying the number of transactions in database. The kosarak dataset is used to test the

scalability of TKRIMPE and compared it with MTKPP. Since the kosarak is a huge dataset with

a large number of distinct of items (41, 270) and transactions (990, 002), the database is firstly

divided into six portions (i.e. 100K, 200K, 400K, 600K, 800K and 990K transactions) and the

value of desired itemsets (k) is specified to be 500 and 10, 000 to investigate the scalability on the

small and large values, respectively. Finally, the regularity threshold is set to 6% of number of

transactions in each portion for each experiment.

From Figures 4.70 and 4.71, TKRIMPE has very good linear scalability against the number

of transactions in the dataset. In comparison with MTKPP, TKRIMPE not only runs faster, but it

also has much better scalability in terms of database size: the slope ratio for MTKPP is higher than

that for TKRIMPE. This is because TKRIMPE can take the advantage from database partitioning

and support estimation techniques.

The scalability of TKRIMPE is also investigated in terms of memory. From figures 4.70

and 4.71, these two algorithms have very similar memory requirement for all datasets because

they use the same representation (tidset) to maintain tids that each itemsets occurs. Once the

number of transactions increases, the memory usage of TKRIMPE and MTKPP also increase.

However, TKRIMPE shows stable performance of about linearly increase of the memory require-

ment with respect to the database size. Therefore, it can be observed from the scalability test that

TKRIMPE can mine the top-k regular-frequent patterns over large datasets and distinct items with

considerable amount of runtime and memory.
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4.9 Summary

In this chapter, an efficient algorithm to mine a set of top-k regular-frequent itemsets,

TKRIMPE, is proposed which is based on: (i) the best-first search strategy that allows to mine the

most frequent itemsets as soon as possible and to raise quickly the kth support (i.e. the support of

the kth itemset in the sorted top-k list) dynamically which is then used to prune the search space;

(ii) the partitioning of the database in order to reduce the number of comparison of certain tids at

the end of each partition during the intersection process and (iii) the support estimation technique

used to prune the search space.

The performance studies on both real and synthetic datasets show that the proposed algo-

rithm is efficient. TKRIMPE is also compared with MTKPP, which are at the moment the only

one efficient algorithms for mining top-k regular-frequent patterns. From the results, TKRIMPE

outperforms MTKPP, for small and large value of k when the dataset is sparse, and have similar

performance for dense datasets.
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Figure 4.4: The number of early terminated itemsets on accidents dataset
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Figure 4.5: The number of early terminated itemsets on chess dataset
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Figure 4.7: The number of early terminated itemsets on mushroom dataset
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Figure 4.8: The number of early terminated itemsets on pumsb dataset
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Figure 4.9: The number of early terminated itemsets on pumsb* dataset
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Figure 4.10: The number of early terminated itemsets on BMS-POS dataset
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Figure 4.11: The number of early terminated itemsets on retail dataset
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Figure 4.12: The number of early terminated itemsets on T10I4D100K dataset
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Figure 4.13: The number of early terminated itemsets on T20I6D100K dataset
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Figure 4.14: The number of early terminated itemsets on T40I10D100K dataset
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Figure 4.15: The number of non-regarded tids during intersection process on accidents dataset



71

 6

 12

 18

 24

 30

0 50 100 200 300 400 500
nu

m
be

r 
of

 ti
ds

 (
1K

)

k

chess

σr = 2
σr = 4
σr = 6

 150

 300

 450

 600

 750

0 1000 2000 4000 6000 8000 10000

nu
m

be
r 

of
 ti

ds
 (

1K
)

k

chess

σr = 2
σr = 4
σr = 6

Figure 4.16: The number of non-regarded tids during intersection process on chess dataset
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Figure 4.18: The number of non-regarded tids during intersection process on mushroom dataset
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Figure 4.19: The number of non-regarded tids during intersection process on pumsb dataset
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Figure 4.20: The number of non-regarded tids during intersection process on pumsb* dataset
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Figure 4.21: The number of non-regarded tids during intersection process on BMS-POS dataset
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Figure 4.22: The number of non-regarded tids during intersection process on retail dataset
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Figure 4.23: The number of non-regarded tids during intersection process on T10I4D100K dataset
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Figure 4.24: The number of non-regarded tids during intersection process on T20I6D100K dataset
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Figure 4.25: The number of non-regarded tids during intersection process on T40I10D100K dataset
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Figure 4.35: Runtime of TKRIMPE on mushroom (σr = 4%)
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Figure 4.44: Runtime of TKRIMPE on BMS-POS (σr = 1%)
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Figure 4.45: Runtime of TKRIMPE on BMS-POS (σr = 2%)
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CHAPTER V

TKRIMIT: TOP-K REGULAR-FREQUENT ITEMSETS MINING

BASED ON INTERVAL TIDSET REPRESENTATION

The aim of this chapter is to reduce the computational time and memory consumption from

the MTKPP and TKRIMPE algorithms by reducing the number of maintained tids during mining

process. Hence, a new concise representation, called interval transaction-ids set (interval tidset),

used to maintain the occurrence information of each regular itemset is introduced and described

in details. Based on the interval tidset representation, an interval tidset is employed instead of

a normal tidset (i.e. maintaining all of tids that each itemset occurs) as used in MTKPP and

TKRIMPE algorithms. In addition, an efficient algorithm, called Top-K Regular-frequent Itemsets

based on Interval Tidset representation (TKRIMIT), is also proposed. Lastly, the data structure

and the complexity analysis of the TKRIMIT algorithm are discussed.

The experimental studies illustrate that TKRIMIT provides significant improvements, in

particular for dense datasets, in comparison with MTKPP and TKRIMPE on both small and large

number of required results.

5.1 Preliminary of TKRIMIT

To mine the top-k regular-frequent itemsets, TKRIMIT also employs a top-k list as MTKPP

and TKRIMPE in order to maintain a set of top-k regular-frequent itemsets during mining process.

Besides, the best-first search strategy is adopted to quickly mine itemsets with the highest supports

(i.e. to raise up the support of the kth itemset in the top-k list which helps to cut down the search

space). In addition, the interval tidset representation is devised and utilized to reduce the number

of maintained tids. By this way of doing, TKRIMIT can reduce memory to maintain tidsets and

time to intersect between tidsets.

5.2 Interval Tidset representation

Interval tidset representation is a new concise representation used to store the occurrence

information (tidsets) of the top-k regular-frequent itemsets during mining process. The main

concept of the interval tidset is to wrap up two or more consecutive continuous tids by maintaining

only the first (with one positive integer) and the last tids (with one negative integer) of that group
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of tids. By applying this representation, TKRIMIT can thus reduce time to compute support and

regularity, and also memory to store occurrence information. In particular this representation is

appropriate for dense datasets.

Definition 5.1 (Interval tidset of an itemset X) Let a set of tids that itemset X occurs in TDB

be TX = {tXp , tXp+1, . . . , t
X
q } where p < q and there are some consecutive tids {tXu , tXu+1, . . . , t

X
v }

that are continuous between tXp and tXq (where p ≤ u and q ≥ v). Thus, the interval tidset of the

itemset X is defined as:

ITX = {tXp , tXp+1, . . . , t
X
u , (t

X
u − tXv ), tXv+1, . . . , T

X
q }

For example, from the transactional database of Table 5.1, an item a occurs in the set of

transactions: T a = {t1, t2, t3, t4, t6, t7, t8, t9, t10, t11, t12} which is composed of two groups of

consecutive continuous transactions. Thus, by using the interval tidset representation, the in-

terval tidset of the item a is IT a = {1,−3, 6,−6}. The first interval tids (1,−3) represents

{t1, t2, t3, t4} whereas (6,−6) represents the last seven consecutive continuous tids that the item

a occurs in the database. For the item a, the use of interval tidset representation is efficient.

It can reduce seven tids to be maintained comparing with the normal tidset representation. For

items b and c, the sets of transactions that they occur are T b = {t1, t2, t4, t5, t7, t8, t10, t11} and

T c = {t1, t3, t5, t7, t9, t11}, respectively. Therefore, the interval tidsets of the items b and c are

IT b = {1,−1, 4,−1, 7,−1, 10,−1} and IT c = {1, 3, 5, 7, 9, 11} which are the examples of the

worst cases of interval tidset representation.

The interval tidset representation is efficient as soon as there are three consecutive contin-

uous tids in the tidsets whereas in the worst cases, the interval tidset representation contains the

same number of tids as the normal tidset representation.

Theorem 5.1 Let |ITX | is the number of tids in the interval tidset of an itemset X and sX is its

support. The |ITX | < sX where sX > d23 × |TDB|e and |TDB| ≥ 3. Otherwise, |ITX | can be

less than or eqaul to sX .

Proof: Let sX > d23 × |TDB|e and let the tidset TX of the itemset X has no more than two

consecutive continuous tids. In fact, the maximum value of sX when the tidset of X has no more

than two consecutive continuous tids is d23 × |TDB|e. It happens in the case that the itemset X

occurs in every two transactions and misses one transaction. In contradiction, for any sX which
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sX > d23 × |TDB|e must have at least one group of tids that occurs in three or more consecutive

continuous. Therefore, when the tidset TX has a group of three or more consecutive continuous

tids, TKRIMIT (based on the interval tidset representation) can group these tids together by using

only one positive and negative tids. Thus, |ITX | < sX .

With this representation a tidset of any itemsets may contain some negative tids. Therefore,

the original definition (Definition 3.1) is not suitable to calculate the regularity from this kind

of tidsets. Thus, a new way to calculate the regularity of any itemsets from the interval tidset

representation is proposed.

Definition 5.2 (Regularity of an itemset X from interval tidset) Let tXp and tXq be two consec-

utive tids in interval tidset ITX , i.e. where p < q and there is no transaction tr, p < r < q,

such that tr contains X (note that p, q and r are indeces). Then, rttXq is denoted as the regularity

between two consecutive tids tXp and tXq (i.e. the number of tids (transactions) between tXp and

tXq that do not contain X). Obviously, rttX1 is tX1 . Last, to find the exact regularity of X in the

database, the regularity between the last tid of ITXand the last tid of the database should be

calculated. This leads to the cases as follows:

rttXq =



tXq if q = 1

tXq − tXp if tXp and tXq > 0, 2 ≤ q ≤ |ITX |

1 if tXp > 0 and tXq < 0, 2 ≤ q ≤ |ITX |

tXq + (tXp − tXp−1) if tXp < 0 and tXq > 0, 2 ≤ q ≤ |ITX |

|TDB| − tX|ITX | if tX|ITX | > 0, (i.e. q = |ITX |+ 1)

|TDB|+ (tX|ITX | − t
X
|ITX |−1) if tX|ITX | < 0, (i.e. q = |ITX |+ 1)

Finally, the regularity of X is defined as rX = max(rttX1 , rtt
X
2 , . . . , rtt

X
m+1).

For example, consider the interval tidset IT a = {1,−3, 6,−6} of the item a. The set of

regularities between each pair of two consecutive tids is equal to {1, 1, 6+(−3−1), 1, 12−(−6−

6)} = {1,1,2,1,0} and the regularity of the item a is 2.
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Table 5.1: A transactional database as a running example of TKRIMIT

tid items
1 a b c d f
2 a b d e
3 a c d
4 a b
5 b c e f
6 a d e
7 a b c d e
8 a b d
9 a c d f

10 a b e
11 a b c d
12 a d f

5.3 TKRIMIT: Top-k list structure

As in (Amphawan et al., 2009), TKRIMIT is based on the use of a top-k list, which is an

ordinary linked-list, to maintain the top-k regular-frequent itemsets. A hash table is also utilized

with the top-k list in order to quickly access each entry in the top-k list. At any time, the top-k list

only contains not more than k regular-frequent itemsets in main memory. As shown in Figure 5.1,

each entry in a top-k list consists of 4 fields: (i) item or itemset name (I), (ii) total support (sI ),

(iii) regularity (rI ) and (iiii) an interval tidset where I occurs (IT I ). For example, the item a has

a support of 11, a regularity of 2 and its interval tidset is IT a = {1,−3, 6,−6} (see Figure 5.1).

Figure 5.1: TKRIMIT: Top-k list structure with hash table

5.4 TKRIMIT algorithm

As mentioned above, the TKRIMIT is based on the interval tidset representation to maintain

the occurrence information of each itemset and the use of a top-k list to collect the k regular

itemsets during mining process. The TKRIMIT algorithm consists of two steps: (i) Top-k list

initialization: scan database once to obtain and collect the all regular items(with highest support)
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into the top-k list; (ii) Top-k mining: merge each pair of entries in the top-k list and then intersect

their interval tidsets in order to collect tidset and to calculate the support and regularity of a new

generated regular itemset.

5.4.1 TKRIMIT: Top-k list initialization

To create the top-k list, TKRIMIT scans the database once (transaction per transaction).

Then, each item of the current transaction is then considered. With the help of the hash table,

TKRIMIT can know quickly if the current item is already existed in the top-k list or not. In the

first case, its support, regularity and interval tidset have just updated. If it is its first occurrence

then a new entry is created and its support, regularity and interval tidset are initialized.

To update the interval tidset ITX of an item X , TKRIMIT has to compare the last tid (ti)

of ITX with the new coming tid (tj). Thanks to the interval representation (see Definition 5.1) it

simply consists of the following cases:

• if ti < 0, i.e. there are some former consecutive continuous tids occurs with the exact

tid of ti, TKRIMIT calculates the exact tid of ti < 0 (i.e. ti−1 − ti) and compares it

with tj to check whether they are continuous. If they are consecutive continuous tids (i.e

tj − ti−1 + ti = 1), TKRIMIT has to extend the interval tidset ITX (it consists only of

adding −1 to ti). Otherwise, TKRIMIT creates a new element to take into account tj (it

simply consists of adding tj after ti in ITX ).

• if ti > 0, i.e. there is no former consecutive continuous tid occurs with ti, TKRIMIT

compared ti with tj to check whether they are continuous or not. If they are consecutive

continuous tids (i.e. tj − ti = 1), TKRIMIT creates a new interval in ITX (it consists

of adding −1 after ti in ITX ). Otherwise, TKRIMIT creates a new element to take into

account tj (it simply consists of adding tj after ti in ITX ).

After scanning all transactions, the top-k list is trimmed by removing all the entries (items)

with regularity greater than the regularity threshold σr, and the remaining entries are sorted in

descending order of support. Lastly, TKRIMIT removes the entries after the kth entry in top-k

list. The details of the top-k list’s construction are presented in Algorithm 5.
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Algorithm 5 (TKRIMIT: Top-k list initialization)
(1) A transaction database: TDB
(2) A number of itemsets to be mined: k
(3) A regularity threshold: σr

Output:
(1) A top-k list

create a hash table for all 1-items
for each transaction j in TDB do

for each item i in the transaction j do
if the item i does not have an entry in top-k list then

create a new entry for item i with si = 1, ri = tj , and T i = T i ∪ tj
create a link between the hash table and the entry

else
calculate the regularity ri by tj
add the support si by 1
if the last tid in T i(ti|T i|) < 0 then

if tj − (ti|T i|−1 − t
i
|T i|) = 1 then

add the last tid in T i by −1
else

collect tj as the last tid in T i

else
if tj− the last tid in T i = 1 then

collect −1 as the last tid in T i

else
collect tj as the last tid in T i

for each item i in top-k list do
calculate the regularity ri by |TDB|− the last tid of T i (in case of the last tid> 0, otherwise |TDB|−
(ti|T i|−1 − t

i
|T i|))

if ri > σr then
remove the entry i out of the top-k list

sort the top-k list by support descending order
remove all of items having the support less than kth item in the top-k list
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Algorithm 6 (TKRIMIT: Top-k mining)
Input:

(1) A top-k list
(2) A number of itemsets to be mined: k
(3) A regularity threshold: σr

Output:
(1) A set of top-k regular-frequent itemsets

for each entry x in the top-k list do
for each entry y in the top-k list (x > y) do

if the entries x and y have the same size of itemsets and the same prefix
(|Ix| = |Iy| and ix1 = iy1, i

x
2 = iy2, . . . , i

x
|Ix|−1 = iy|Ix|−1) then

merge the itemsets of x and y to be itemset Z = Ix ∪ Iy

rZ = 0, sZ = 0
for each tp in T Ix

(p = 1 to |T Ix |) and tq in T Iy

(q = 1 to |T Iy |) do
if tp > 0 and tq > 0 then

if tp = tq then
calculate the regularity rZ by tp and check rZ with σr

add the support sZ by 1
collect tp as the last tid in TZ

else if tp > 0 and tq < 0 then
if tp ≤ tq−1 − tq then

calculate the regularity rZ by tp and check rZ with σr

add the support sZ by 1
collect tp as the last tid in TZ

else if tp < 0 and tq > 0 then
if tp−1 − tp ≥ tq then

calculate the regularity rZ by tq and check rZ with σr

add the support sZ by 1
collect tq as the last tid in TZ

else
if tp−1 − tp > tq−1 − tq then

collect tZ|T Z | − (tq−1 − tq) as the last tid in TZ

add the support sZ by (tq−1 − tq)− tZ|T Z |
else

collect tZ|T Z | − (tp−1 − tp) as the last tid in TZ

add the support sZ by (tp−1 − tp)− tZ|T Z |

calculate the regularity rZ by |TDB|− the last tid of TZ (in case of the last tid > 0, otherwise
|TDB|− (tZ|T Z |−1 − t

Z
|T Z |))

if rZ ≤ σr and sZ ≥ sk then
remove kth entry from the top-k list
insert the itemset Z into the top-k list with rZ , sZ and TZ
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5.4.2 TKRIMIT: Top-k mining

As described in Algorithm 6, a best-first search strategy (from the most frequent itemsets

to the least frequent itemsets) is adopted to quickly generate the regular itemsets with the highest

supports from the top-k list. This technique can help TKRIMIT to prune the search space when

TKRIMIT can quickly find the top-k regular-frequent itemsets with the highest supports.

To find the top-k regular-frequent itemsets, two candidate itemsetsX and Y in the top-k list

are merged with the following two constraints: (i) the size of the itemsets of both elements must be

equal; (ii) both itemsets must have the same prefix (i.e. each item from both itemsets is the same,

except the last item). This way of doing will help the proposed algorithm to avoid the repetition of

generating larger itemset and may help to prune the search space. Then, the interval tidsets of the

two candidate itemsets are sequentially intersected in order to calculate the support, the regularity

and to collect the interval tidset of the new generated itemset. To sequentially intersect the interval

tidsets ITX and IT Y of X and Y , one have to consider four cases when comparing each pair of

tids tXi and tYj in order to construct ITXY (see Definition 5.1):

(i) if tXi = tYj > 0 add tXi at the end of ITXY

(ii) if tXi > 0, tYj < 0, tXi ≤ tYj−1 − tYj , add tXi at the end of ITXY

(iii) if tXi < 0, tYj > 0, tYj ≤ tXi−1 − tXi , add tYj at the end of ITXY

(iiii) if tXi , t
X
j < 0, add tXY|ITXY | − (tXi−1 − tXi ) at the end of ITXY if tXi−1 − tXi < tYj−1 − tYj ,

otherwise add tXY|ITXY | − (tYj−1 − tYj ) at the end of ITXY

From ITXY , the support sXY and the regularity rXY of XY (see definition 5.2) are easily

computed. TKRIMIT then removes the kth entry and inserts the itemset XY into the top-k list if

sXY is greater than the support of the kth itemset in the top-k list and if rXY is not greater than

the regularity threshold σr.

5.5 Example of TKRIMIT

Consider the TDB of Table 5.1, a regularity threshold σr of 4 and the number of desired

results k of 5. Then, the initialization of the top-k list from the TDB is illustrated in Figure 5.2.

After scanning the first transaction (t1 = {a, b, c, d, f}), the entries for items a, b, c, d and

f are created, their supports, regularities and interval tidsets are also initialized as (1 : 1 : {1})
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(a) read t1

(b) read t2

(c) read t3

(d) Sorted and trimmed top-k list

Figure 5.2: Top-k list initialization

(see Figure 5.2(a)). With the second transaction (t2 = {a, b, d, e}), TKRIMIT adds −1 at the

end of the interval tidsets of a, b and d, since these items occur in two consecutive continuous

transactions. Then, the entry for the item e is created and initialized (see Figure 5.2(b)). For

the third transaction (t3 = {a, c, d}), as shown in Figure 5.2(c), the last tids of the items a and

d are changed to −2 (i.e. they occur in the three consecutive continuous transactions t1, t2 and

t3) and the interval tidset of item c is updated by adding t3 as the last tid. After scanning all

the transactions, the top-k list is sorted by its support descending order and item f is removed

(Figure 5.2(d)).

In the mining process, item d is firstly merged with the former item a. The interval tidsets

IT a and IT d are sequentially intersected to calculate the support sad = 9, the regularity rad = 3

and to collect the interval tidset IT ad = {1,−2, 6,−3, 11,−1} of the itemset ad. Since the

support sad is greater than se = 5 and the regularity rad is less than σr = 4, the item e is removed

and ad is inserted into the top-k list as shown in Figure 5.3(a). Next, the third itemset i.e. the

itemset ad is compared to the former itemsets a and b. These itemsets do not share the same
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(a) top-k list when merging item a with item d

(b) final top-k list

Figure 5.3: Top-k during mining process

prefix and thus are not merged. TKRIMIT then considers the item b which is merged with a and d

(sab = 7, rab = 3, IT ab = {1,−2, 7,−1, 10,−1}; sbd = 5, rbd = 5, IT bd = {1,−1, 7,−1, 11}).

The itemset ab is thus added to the list and itemset c is removed. The itemset bd is eliminated,

since its regularity is greater than σr. Lastly, the itemsets ab and ad are considered and the top-k

regular-frequent itemsets are finally obtained as shown in Figure 5.3(b).

5.6 Complexity analysis

In this section, the complexity of TKRIMIT is further discussed in terms of time and space.

Proposition 5.3 The time complexity for initializing the top-k list isO(nm) where n is the number

of items occurring in database and m is the number of transactions in database.

Proof: Since the proposed algorithm scans each transaction in the database once, the entry

of each item that occurs in the transaction is also looked up once in order to collect tids into

tidsets. Hence, the cost for database scanning is O(nm) whereas the cost for sorting all (in the

very worst case) the entries is O(n log n). Then, the time complexity to create the top-k list is

formally O(nm + n log n). In fact, the number of items (n) is, for the considered applications,

always less than the number of transactions(m). Thus, the time complexity to create the top-k list

is O(nm).
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Proposition 5.4 The time complexity for mining top-k regular-itemsets is O(m(k2)) where m is

the number of transaction in database and k is the number of itemsets to be mined.

Proof: The mining process merges each itemset in the top-k list with only the former itemset

in the top-k list. Then, the interval tidsets of the two merged itemsets are intersected. Therefore,

the combination of all itemsets in the top-k list is k ∗ (k + 1)/2 and the time to intersect any

two interval tidsets at each step is O(m). Thus, the overall time complexity of mining process is

O(mk2).

Proposition 5.5 The memory space required for TKRIMIT isO((d23me)k) wherem is the number

of transaction in database and k is the number of itemsets to be mined.

Proof: Base on Theorem 5.1, the maximum number of maintained tids of each item-

set is d23 |TDB|e. Then, all of desired memory to maintain interval tidsets for k itemsets is

O((d23me)k).

5.7 Performance evaluation

In order to validate the effectiveness of the TKRIMIT algorithm based on the interval tid-

set representation, several experiments were conducted to compare the performance of TKRIMIT

with the TKRIMPE and MTKPP algorithms. To measure the performance of the three algorithms,

the processing time (i.e. included top-k list construction and mining processes) and space usage

(i.e. memory consumption and the number of maintained tids during mining process) are consid-

ered.

5.7.1 Experimental setup

All experiments were performed on an IntelrXeon 2.33 GHz with 4 GB main memory,

running on Linux platform and all the programs were coded in C with the same structure as

MTKPP (i.e. based on the use of top-k list). The experiments were performed on nine real datasets

(accidents, BMS-POS, chess, connect, kosarak, mushroom, pumsb, pumsb*, retail) and three
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synthetic datasets (T10I4D100K, T20I6D100K, and T40I10D100K) of which some statistical

information are shown in Chapter 2. The performance of TKRIMIT is evaluated by various values

of k and σr. It can be observed that in all datasets the high value of regularity threshold (σr) will

give a greater number of regular itemsets. This is due to the fact that as the σr increases, there is

a greater possibility of getting more regular itemsets compared to low σr values. This is why the

value of σr is specified for each datasets in the experiments is not equal. The value of regularity

threshold is set between 1 to 10% of total number of transactions in database. The values of k are

varied between 50 to 10, 000 to see the performance of the proposed algorithm for the small and

large value of k.

5.7.2 Compactness of using interval tidset representation

Based on the interval tidset representation, TKRIMIT can generate more concise tidsets

than the original tidsets (used in MTKPP and TKRIMPE) since the former maintains only the

first and the last tids of the two or more consecutive continuous tids by using only one positive

and one negative integer, respectively. Meanwhile, the latter collects all of tids that each itemset

occurs. Thus, the number of tids that TKRIMIT can reduce on dense and sparse datasets are

considered. To depict the result, the numbers of reduced tids by TKRIMPE is shown in Figure 5.4

to Figure 5.14.

It is observed from Figure 5.4 to Figure 5.9 that the TKRIMIT can reduce a lot of tids to

store in the interval tidset on dense datasets. For the small values of k, TKRIMIT can reduce up

to 86, 000, 000 tids whereas the number of reduced tids is 713, 000, 000 with the large values of

k. However, as shown in Figure 5.10 to Figure 5.14, TKRIMIT cannot significantly reduce the

number of maintained tids from MTKPP and TKRIMPE on sparse datsets. Because of the char-

acteristics of sparse datasets, most of itemsets do not occur in consecutive continuous tids. Thus,

the number of reduced tids is in range [500, 34, 000] for the small value of k and [800, 42, 000] for

the large values of k.

5.7.3 Execution time

From Figures 5.15 to Figure 5.32, the evaluation results for real dense datasets are re-

ported. From these figures, the performance of TKRIMIT is different from other algorithms such

as MTKPP and TKRIMPE using normal tidsets (i.e. maintaining all of tids that each itemset
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occurs). It can see from these figures that the performance of using interval tidset is better than

using normal tidset on the small and large value of k. In addition, on dense dataset, each itemset

occurs almost every transaction or occurs very frequent. Then, TKRIMIT can take the advantage

from the use of interval tidset representation. However, on mushroom dataset and the large values

of k, TKRIMIT cannot significantly reduce the runtime from MTKPP and TKRIMPE. This is

because mushroom has a small number of transactions, then TKRIMIT cannot yield the benefit

of grouping tids together.

Meanwhile, the execution time on sparse datasets is shown in Figure 5.33 to Figure 5.47.

Note that the performance of TKRIMIT is similar with MTKPP and run slower than TKRIMPE

from these figures. TKRIMIT cannot take the advantage from database partitioning and support

estimation techniques as used in TKRIMPE. Due to each itemset in sparse datasets occurs not

often and it does not occurs in the consecutive continuous transactions, TKRIMIT cannot take the

advantages from grouping consecutive continuous tids from sparse datasets.

5.7.4 Memory consumption

As mentioned above, TKRIMIT can essentially reduce the number of maintained tids dur-

ing mining. In this subsection, the memory usage of TKRIMIT is also investigated by comparing

with MTKPP and TKRIMPE.

Figure 5.48 to Figure 5.53 show the memory usage of TKRIMIT, MTKPP and TKRIMPE

on real dense datasets. From this figure, TKRIMIT can significantly save the memory usage from

MTKPP and TKRIMPE. For the large value of k, TKRIMIT consumes over two orders of mag-

nitude less memory than MTKPP and TKRIMPE. The memory usage of TKRIMIT increases lin-

early as the number of desired itemsets increases while memory used by MTKPP and TKRIMPE

increase dramatically. This is because MTKPP and TKRIMPE use normal tidset that maintain

all tids occurring in each itemset. The memory usage of MTKPP and TKRIMPE depend on the

support (i.e. number of tids that each itemset occurs) of each itemsets. Meanwhile, TKRIMIT can

take the advantage from the use of interval tidset representation which group several consecutive

continuous tids together.

As shown in Figure 5.54 to Figure 5.58, the required memory of TKRIMIT on sparse

datasets is examined. Followed by this figure, the memory usage of the three algorithms is quite

similar. This is because each itemset on sparse dataset does not occur frequently and consecutively

continuous. Then, TKRIMIT cannot group several tids together.
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5.7.5 Scalability test

To study the scalability of the TKRIMIT algorithm, the execution time and memory con-

sumption of TKRIMIIT are considered by comparing with MTKPP and TKRIMPE when the size

of database increases. The kosarak dataset which is a huge dataset with a large number of distinct

of items (41, 270) and transactions (990, 002) is used to test scalability by varying the number

of transactions. The database is first divided into six portions (i.e. 100, 000, 200, 000, 400, 000,

600, 000, 800, 000 and 990, 002 transactions). Then, the performance of TKRIMIT is investigated

on each portion. The values of desired itemsets (k) are also varied into small (i.e. 50, 100, 200,

300, 400, and 500) and large (i.e. 1, 000, 2, 000, 4, 000, 6, 000, 8, 000, 10, 000) values. Lastly, the

regularity threshold is fixed to 6% of number of transactions in each portion.

In Figure 5.59 and Figure 5.60, the scalability of TKRIMIT, MTKPP and TKRIMPE are

tested in terms of runtime with different number of transactions in the database. From these

figures, the runtime of TKRIMIT scales linearly increase when the size of database increases.

Based on the interval tidset representation, TKRIMIT can group many consecutive tids together

and then TKRIMIT has a better scalability than that of MTKPP on the small and large values

of k. Meanwhile, TKRIMIT cannot significantly reduce the runtime from TKRIMPE because

TKRIMIT uses only grouping technique (i.e. interval tidset representation) and cannot take the

advantages from the database partitioning and support estimation techniques.

Figures 5.59 and 5.60 also plot the high water mark of space usage of TKRIMIT, TKRIMPE

and MTKPP with varying the size of the database. The three algorithms have linear scalability

and TKRIMIT is a clear winner. Therefore, it can be seen from the figures that by based on the

interval tidset representation, TKRIMIT is very efficient and scalable in terms of space usage with

respect to the number of itemsets to be mined and the number of transactions in database.

5.8 Summary

This chapter have presented a new efficient and scalable algorithm named TKRIMIT (Top-

K Regular-frequent Itemsets Mining based on Interval Tidset representation) to discover a set

of k regular itemsets with the highest supports. A new concise representation, called inter-

val transaction-ids set (interval tidset), has also introduced. Based on the interval tidset repre-

sentation, a set of tids that each itemset occuring consecutively continuous is transformed and
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compressed to interval tids by using only one positive and negative integer. The top-k regular-

frequent itemsets are found by intersection of interval tidsets along the order of top-k list. Be-

sides, TKRIMIT is based on a best-first search startegy that can help TKRIMIT algorithm to raise

quickly the support of the kth itemsets in the sorted top-k list which help the proposed algorithm

to prune the search space.

The analysis and experiment results show that TKRIMIT achieves high performance on

both dense and sparse datasets. The proposed algorithm delivers competitive performance and,

especially for dense datasets, outperforms MTKPP and TKRIMPE which are currently the most

efficient algorithm for top-k regular-frequent. Based on this study, it is can be claimed that the

proposed algorithm are superior to MTKPP and TKRIMPE on both the small and large values of

k when the datasets are dense.
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Figure 5.4: The number of reduced tids from TKRIMIT on accidents datasets
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Figure 5.5: The number of reduced tids from TKRIMIT on chess datasets



115

 6

 12

 18

 24

 30

0 50 100 200 300 400 500
nu

m
be

r 
of

 r
ed

uc
ed

 ti
ds

 (
x 

10
6 )

k

connect

σr = 1
σr = 2
σr = 3

 115

 230

 345

 460

 575

0 1000 2000 4000 6000 8000 10000

nu
m

be
r 

of
 r

ed
uc

ed
 ti

ds
 (

x 
10

6 )

k

connect

σr = 1
σr = 2
σr = 3

Figure 5.6: The number of reduced tids from TKRIMIT on connect datasets
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Figure 5.7: The number of reduced tids from TKRIMIT on mushroom datasets
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Figure 5.8: The number of reduced tids from TKRIMIT on pumsb datasets
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Figure 5.9: The number of reduced tids from TKRIMIT on pumsb* datasets
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Figure 5.10: The number of reduced tids from TKRIMIT on BMS-POS datasets
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Figure 5.11: The number of reduced tids from TKRIMIT on retail datasets
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Figure 5.12: The number of reduced tids from TKRIMIT on T10I4D100K datasets
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Figure 5.13: The number of reduced tids from TKRIMIT on T20I6D100K datasets
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Figure 5.14: The number of reduced tids from TKRIMIT on T40I10D100K datasets
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Figure 5.15: Runtime of TKRIMIT on accidents (σr = 1%)
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Figure 5.16: Runtime of TKRIMIT on accidents (σr = 2%)
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Figure 5.17: Runtime of TKRIMIT on accidents (σr = 3%)
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Figure 5.18: Runtime of TKRIMIT on chess (σr = 2%)
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Figure 5.19: Runtime of TKRIMIT on chess (σr = 4%)



122

 0.03

 0.06

 0.09

 0.12

 0.15

0 50 100 200 300 400 500
tim

e(
s)

k

chess (σr = 6)

MTKPP
TKRIMPE
TKRIMIT

 0.6

 1.2

 1.8

 2.4

 3

0 1000 2000 4000 6000 8000 10000

tim
e(

s)

k

chess (σr = 6)

MTKPP
TKRIMPE
TKRIMIT

Figure 5.20: Runtime of TKRIMIT on chess (σr = 6%)

 0.3

 0.6

 0.9

 1.2

 1.5

0 50 100 200 300 400 500

tim
e(

s)

k

connect (σr = 1)

MTKPP
TKRIMPE
TKRIMIT

 8

 16

 24

 32

 40

0 1000 2000 4000 6000 8000 10000

tim
e(

s)

k

connect (σr = 1)

MTKPP
TKRIMPE
TKRIMIT

Figure 5.21: Runtime of TKRIMIT on connect (σr = 1%)
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Figure 5.22: Runtime of TKRIMIT on connect (σr = 2%)
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Figure 5.23: Runtime of TKRIMIT on connect (σr = 3%)
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Figure 5.24: Runtime of TKRIMIT on mushroom (σr = 4%)
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Figure 5.25: Runtime of TKRIMIT on mushroom (σr = 6%)
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Figure 5.26: Runtime of TKRIMIT on mushroom (σr = 8%)
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Figure 5.27: Runtime of TKRIMIT on pumsb (σr = 2%)
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Figure 5.28: Runtime of TKRIMIT on pumsb (σr = 4%)
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Figure 5.29: Runtime of TKRIMIT on pumsb (σr = 6%)
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Figure 5.30: Runtime of TKRIMIT on pumsb* (σr = 1%)
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Figure 5.31: Runtime of TKRIMIT on pumsb* (σr = 2%)
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Figure 5.32: Runtime of TKRIMIT on pumsb* (σr = 3%)
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Figure 5.33: Runtime of TKRIMIT on BMS-POS (σr = 1%)
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Figure 5.34: Runtime of TKRIMIT on BMS-POS (σr = 2%)
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Figure 5.36: Runtime of TKRIMIT on retail (σr = 6%)
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Figure 5.38: Runtime of TKRIMIT on retail (σr = 10%)
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Figure 5.40: Runtime of TKRIMIT on T10I4D100K (σr = 6%)
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Figure 5.42: Runtime of TKRIMIT on T20I6D100K (σr = 2%)
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Figure 5.44: Runtime of TKRIMIT on T20I6D100K (σr = 6%)
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Figure 5.48: Memory usage of TKRIMIT on accidents
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CHAPTER VI

H-TKRIMP: HYBRID REPRESENTATION ON TOP-K

REGULAR-FREQUENT ITEMSETS MINING BASED ON

DATABASE PARTITIONING

As described in previous chapters, TKRIMPE based on the database partitioning and the

support estimation technique works well on sparse datasets. Whilst, TKRIMIT based on the inter-

val tidset representation achieves good performance on dense datasets. Therefore, the aim of this

chapter is to devise a new efficient algorithm by combining the techniques from TKRIMPE and

TKRIMIT. The database partitioning technique is integrated with the interval tidset representation

to gain good performance on both sparse and dense datasets. Consequently, a new efficient single-

pass algorithm, H-TKRIMP (Hybrid representation on Top-K Regular-frequent Itemsets Mining

based on database Partitioning), is introduced. In this chapter, a database partitioning technique

(as presented in Chapter 4) and a hybrid representation (i.e. a combination between normal tidset

and interval tidset representations) are described in details. Besides, the data structure used to

maintain the top-k regular-frequent itemsets during mining process and the complexity analysis

of H-TKRIMPE are also discussed.

6.1 Preliminary of H-TKRIMP

To mine a set of top-k regular-frequent itemsets, H-TKRIMPE also employs a top-k list

as the previous algorithms. The top-k list is used to maintain the top-k regular-frequent itemsets

during mining. Besides, the best-first search strategy is applied to cut down the search space and

quickly mine the regular itemsets with the highest supports. Further, the database partitioning

technique is utilized to dismiss some unnecessary computing. Ultimately, a combination between

normal tidset and interval tidset representation, Hybrid representation, is devised and included

into H-TKRIMP to obtain good performance on all characteristics of datasets.

6.2 H-TKRIMP: Top-k list structure

As previous algorithms, H-TKRIMP is also based on the use of a top-k list structure which

is a simple linked-list with a hash table. The top-k list is used to maintain a set of k (or less

than k) regular itemsets with the highest supports and their occurrence information during mining

process. Meanwhile, the hash table is utilized to quickly access all the information of each itemset
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in the top-k list. As shown in Figure 6.1, each entry in the top-k list consists of 4 fields: item or

itemset name (I), total support (sI ), regularity (rI ), and a set of tidsets (T I = {T I1 , . . . , T Ipn})

where pn is the number of partitions of considered database). From the figure, the item a has a

support of 11, a regularity of 2, and tidsets as {{1,−3}, {6,−2}, {9,−3}} which means the item

a occurs in transactions {t1, t2, t3, t4, t6, t7, t8, t9, t10, t11, t12}.

Figure 6.1: H-TKRIMP: Top-k list structure with hash table

6.3 Database Partitioning

In H-TKRIMP, the database is first divided into several disjoint partitions which have an

equal number of transactions as presented in (Brin et al., 1997b). Then, the tidsets (there is one

tidset for each partition) of each itemset are collected by using the proposed hybrid representation

in order to calculate its support and regularity with one database scan. This partition technique

allows reducing unnecessary computational costs.

Given the regularity threshold σr, the database is split into pn = d|TDB|/σre partitions.

Each partition will then contains σr transactions. For example, consider the transactional database

of Table 6.1 with 12 transactions. A regularity threshold of 4 will split the database into 3 parti-

tions with 4 transactions each.

Table 6.1: A transactional database as a running example of H-TKRIMP

tid items
1 a b c d f
2 a b d e
3 a c d
4 a b
5 b c e f
6 a d e
7 a b c d e
8 a b d
9 a c d f

10 a b e
11 a b c d
12 a d f
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H-TKRIMP will fully exploit the partitioning of the database. Thus, each itemset has a

(local) support, a (local) regularity, and a (local) tidset for each partition of database.

The tidset of an itemset X in the mth partition Pm, denoted TXm , is the set of tids in mth

partition that contains the itemset X:

TXm = {tq,m|X ⊆ tq,m, tq,m ∈ Pm}

By combining the partitioning technique with the hybrid representation together, H-

TKRIMP can use two representations (i.e. normal tidset and interval tidset) to maintain tids of

each partition. Then, TX = {TX1 , . . . , TXpn} is defined as the (global) tidset of an itemset X .

The (local) support of an itemset X in the mth partition, denoted sXm, is the number of

transactions (also denoted tids) in themth partition that contains the itemsetX . Then, the (global)

support sX of the itemset X is equal to
∑pn
m=1 s

X
m.

For example, consider an item a occurring in tids {1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12} (i.e.

transactions T a = {t1, t2, t3, t4, t6, t7, t8, t9, t10, t11, t12}) from the transactional database of

Table 6.1. Thus, based on the partitioning technique, the tidset of the first partition T a1 con-

tains the set of tids {1, 2, 3, 4} where the item a occurs. Meanwhile, the set of tids {6, 7, 8}

and {9, 10, 11, 12} are maintained in T a2 and T a3 , respectively. Thus, the (global) tidset of a is

T a = {{1, 2, 3, 4}, {6, 7, 8}, {9, 10, 11, 12}}. Besides, the support of a is sa = 4 + 3 + 4 = 11.

As mentioned in Chapter 4, based on the use of database partitioning technique, H-

TKRIMP can reduce some considered tids on mining process.

6.4 Hybrid representation

To allow for efficient calculating support and regularity of an itemset, a hybrid represen-

tation is applied in H-TKRIMP to collect its tidset that occurs in each partition. A hybrid repre-

sentation is a combination between normal tidset (i.e. the exact value of the transaction-ids) and

interval tidset (i.e. using only one positive and one negative integer to store a set of consecutive

continuous transaction-ids).

Definition 6.1 (Normal tidset of an itemset X in mth partition) Let a set of tids that the item-

set X occurs in TDB at the mth partition be {tXp,m, tXp+1,m, . . . , t
X
q,m}, where p < q. Thus, the

tidset of the itemset X is defined as:
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TXm = {tXp,m, . . . , tXq,m}

Definition 6.2 (Interval tidset of an itemset X in mth partition) Let a set of tids that itemsets

X occurs in TDB at the mth partition be {tXp,m, tXp+1,m, . . . , t
X
q,m} where p < q and there are

some consecutive tids {tXu,m, tXu+1,m, . . . , t
X
v,m} that are continuous between tXp,m and tXq,m (where

p ≤ u and q ≥ v). Thus, interval tidset of itemset X is defined as:

TXm = {tXp,m, tXp+1,m, . . . , t
X
u,m, (t

X
u,m − tXv,m), tXv+1,m, . . . , t

X
q,m}

For example, consider an item a occurring in tids {1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12} from the

transactional database of Table 6.1. Thus, based on the partitioning technique and the hybrid

representation, the tidset of the first partition T a1 contains the set of tids 1,-3 where item a occurs.

Meanwhile, thetidsets {6,−2} and {9,−3} are maintained in T a2 and T a3 , respectively. Therefore,

the tidsets of a is T a = {{1,−3}, {6,−2}, {9,−3}}.

For each tidset TXm of an itemset X , H-TKRIMP has to decide which representation should

be used to achieve a good performance. To make a decision, the advantage and disadvantage of

each representation are considered. The advantage of using an interval tidset representation is the

number of reduced tids (as described in Chapter 5). Whereas, the disadvantage is the number of

tids that have to be determined whether it is consecutive continuous tids.

Definition 6.3 (Number of reduced tids in the mth partition) Let TXm be the interval tidset of

an itemset X in the mth partition and let TNX
m = {tnX1,m, . . . , tnXj,m}, where 1 ≤ j ≤ |TXm |,

tnXj,m ∈ TXm , and tnXj,m < 0, be the set of negative tids in the interval tidset TXm . Then, nrtXm is

defined as the number of reduced tids in the mth partition from the interval tidset TXm :

nrtXm =
|TNX

m |∑
i=1

−(1 + tnXi,m)

Definition 6.4 (Number of determined tids (to check whether they are consecutive continues

tids) in the mth partition) Let TXm be the interval tidset of an itemset X in the mth partition and

let TNX
m = {tnX1,m, . . . , tnXj,m}, where 1 ≤ j ≤ |TXm |, tnXj,m ∈ TXm and tnXj,m < 0, be the set

of negative tids in the interval tidset TXm . Then, the number of tids that are determined as the

consecutive continuous tids ndtXm can be defined as:
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ndtXm =


|TXm | − |TNX

m | − 1 if tX|TX
m |,m

> 0

|TXm | − |TNX
m | if tX|TX

m |,m
< 0

Therefore, the trade-off between nrtXm and ndtXm values is taken into account. If nrtXm ≥

ndtXm, H-TKRIMP can take advantage from the interval tidset representation. Then, H-TKRIMP

uses an interval tidset to maintain a tidset. Otherwise, a normal tidset is applied. By using a hybrid

representation, H-TKRIMP can save time from the use of the combination between a normal tidset

and an interval tidset in the mining process (in Section 6.6).

6.5 Calculation of Regularity and Support

By using the partition technique and the hybrid representation, the tidset of each itemset

is splited into several tidsets, and these tidsets may contain some negative tids when the itemset

occurs in consecutive continuous tids (as described in Definition 6.2). As a consequence, the

original definition of the regularity of an itemset of (Tanbeer et al., 2009)) and that of (Amphawan

et al., 2009) cannot find the regularity between two tidsets and between positive and negative tids.

It is suitable for only one tidset in each itemset and only for positive tids. Accordingly, five new

definitions is proposed to calculate the regularity of each itemset.

Definition 6.5 (Regularity of an itemset X between two consecutive tids in a normal tidset)

Consider the normal tidset TXm of an itemset X for the mth partition. Let tXp,m and tXq,m be two

consecutive tids in TXm , i.e. where p < q, and there is no tid tXo,m in TXm , p < o < q, such that a

transaction of tXo,m contains X (note that p, q and o are indices). Thus, rttXq,m is defined as the

regularity value between the two consecutive tids tXp,m and tXq,m by following cases:

rttXq,m =


tXq,m if q = 1

tXq,m − tXp,m if 2 ≤ q ≤ |TXm |

Definition 6.6 (Regularity of an itemset X between two consecutive tids in an interval tidset)

Consider the interval tidset TXm of an itemset X for the mth partition. Let tXp,m and tXq,m be two

consecutive tids in TXm , i.e. where p < q and there is no transaction to, p < o < q, such that

to contains X (note that p, q and o are indices). Then, rttXq,m is denoted as the number of tids

(transactions) between tXp,m and tXq,m that do not contain X . This leads to the following cases:
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rttXq,m =



tXq,m if q = 1

tXq,m − tXp,m if tXp,m and tXq,m > 0, 2 ≤ q ≤ |TXm |

1 if tXp,m > 0 and tXq,m < 0, 2 ≤ q ≤ |TXm |

tXq,m + (tXp,m − tXp−1,m) if tXp,m < 0 and tXq,m > 0, 2 ≤ q ≤ |TXm |

Definition 6.7 (Regularity of an itemset X in the mth partition ) Let for a TXm , RTTXm =

{rttX1,m, . . . , rttX|TX
m |,m
} be the set of regularity between each pair of consecutive tids in the mth

partition. Then, the regularity of X in the mth partition can be denoted as:

rpXm = max(rtt1,m, rtt2,m, . . . , rtt|TX
m |,m)

Definition 6.8 (Regularity of an itemset X between two consecutive tidsets) Let tX|TX
m |,m−1 be

the last tid whereX occurs in the (m−1)th partition and tX1,m be the first tid whereX occurs in the

mth partition. Then, rtpXm is denoted as the regularity of X (i.e. the number of tids (transactions)

that do not contain X) between the two consecutive partitions, (m − 1)th and mth. Obviously,

rtpX1 is tX1,m. Lastly, to find the exact regularity between two consecutive partitions ofX on all the

database, the number of transactions that do not contain X between the last tid where X occurs

and the last transaction of database: rtpXpn+1 is also considered. Thus, the regularity between

any two consecutive tidsets TXm−1 and TXm can be defined as:

rtpXm =



tX1,m if m = 1

tX1,m − tX|TX
m−1|,m−1 if 2 ≤ m ≤ pn, tX|TX

m−1|,m−1 > 0

tX1,m − (tX|TX
m−1|−1,m−1 − t

X
|TX

m−1|,m−1) if 2 ≤ m ≤ pn, tX|TX
m−1|,m−1 < 0

|TDB| − tX|TX
m−1|,m−1 if m = pn+ 1, tX|TX

m−1|,m−1 > 0

|TDB| − (tX|TX
m−1|−1,m−1 − t

X
|TX

m−1|,m−1) if m = pn+ 1, tX|TX
m−1|,m−1 < 0

Then, the regularity of an itemset is defined with the help of definitions 6.7 and 6.8.

Definition 6.9 (Regularity of an itemset X) The regularity of an itemset X is defined as:

rX = max(max(RPX),max(RTPX))
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where RPX = {rpX1 , rpX2 , . . . , rpXpn} is the set of regularities of X in each partition (Defini-

tion 6.7) and RTPX = {rtpX1 , rtpX2 , . . . , rtpXpn+1} is the set of regularities of X between two

consecutive partitions (Definition 6.8).

To calculate the support of each itemset from its tidsets, two definitions are used to compute

the support in each partition and the total support of the itemset is also presented.

Definition 6.10 (Support of an itemset X in a partition) Let tXi−1,m and tXi,m be the two consec-

utive tids in TXm Thus, sttXi,m is defined as the support value between two consecutive tids tXi−1,m

and tXi,m by following cases:

sttXi,m =


1 if tXi,m > 0

−tXi,m if tXi,m < 0

Therefore, the regularity of the itemset X in the mth partition is defined as follows.

sXm =
|TX

m |∑
i=1

sttXi,m

Definition 6.11 (Support of an itemset X) The support of an itemsetX , denoted sX , is the sum-

mation of support in every partition, i.e.,

sX =
pn∑
m=1

sXm

For example, consider the transactional database of Table 6.1 and the case of an item a:

T a = {{1,−3}, {6,−2}, {9,−3}}. The set of regularities in each partition of the item a is

RP a = {1, 1, 1}. The set of regularities between two consecutive partitions of a is RTP a =

{1, 6− (1− (−3)), 9− (6− (−2)), 12− (9− (−3))} = {1, 2, 1, 0}. Thus, the regularity of item

a is ra = max(max(1, 1, 1),max(1, 2, 1, 0)) = 2. In addition, the set of supports of the item a

in each partition is = {(1 + (−(−3)), (1 + (−(−2))), (1 + (−(−3)))} = {4, 3, 4}. Consequently,

the support sa of the item a is equal to 4 + 3 + 4 = 11.

6.6 H-TKRIMP algorithm

Based on the database partitioning and the hybrid representation mentioned above, the H-

TKRIMP algorithm is also described. H-TKRIMP consists of two steps : (i) Top-k list initializa-

tion: partition the database, scan each partition to obtain top-k regular items and then transform
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each tidset into the suitable tidset (a normal tidset or an interval tidset); (ii) Top-k mining: merge

(with two constraints) each pair of elements in the top-k list to produce new larger itemsets by

using the best-first search strategy, sequentially intersect their tidsets (one by one partition) to

find the k regular itemsets with the highest supports, and then transform each tidset of the new

generated itemset into the proper representation.

6.6.1 H-TKRIMP: Top-k initialization

To create the top-k list, each partition of the database is scanned (one by one transaction)

to obtain all k (or less than k) regular items. A new entry in the top-k list is created for any item

that occurs in the first σr transactions (i.e. occurs in the first partition). Each item of the current

transaction is then considered. With the help of the hash table, H-TKRIMP quickly realizes

whether the current item is already existed in the top-k list or not. For the first occurrence of an

item in the partition, a new tidset for the partition is built and its support, regularity, and a tidset

are initialized. Otherwise, H-TKRIMP updates its support, regularity and a tidset.

To update the tidset TXm of an item X in the mth partition, H-TKRIMP has to compare the

last tid (tXi,m) of TXm with the new coming tid (tj). It simply consists of the following cases:

• if ti,m < 0, i.e. there are some former tids which are consecutive and continuous with the

exact tid of ti,m. H-TKRIMP calculates the exact tid of ti,m < 0 (i.e ti−1,m − ti,m), and

compares it with tj to check if they are continuous or not. If they are consecutive continuous

tids (i.e tj − ti−1,m + ti,m = 1), H-TKRIMP has to extend the tidset TXm (it consists only of

adding −1 to ti,m), otherwise H-TKRIMP creates a new element to take into account tj (it

simply consists of adding tj after ti,m in TX ).

• if ti,m > 0, i.e. there is no former tid, consecutive and continuous with ti,m. H-TKRIMP

compares ti,m with tj to check if they are continuous or not. If they are consecutive contin-

uous tids (i.e. tj− ti,m = 1) H-TKRIMIP creates a new interval in TX (it consists of adding

−1 after ti,m in TXm ); otherwise, H-TKRIMP creates a new element to take into account tj

(it simply consists of adding tj after ti,m in TXm ).

At the end of themth partition, if nrtXm < ndtXm, the interval tidsets TXm will be transformed

to a normal tidset. When the entire database is read, the top-k list is trimmed by removing all the

entries (items) with regularity greater than the regularity threshold σr, and the remaining entries

are sorted in descending order of support. Lastly, H-TKRIMP removes the entries after the kth

entry in the top-k list. The detail of the top-k list’s construction is presented in Algorithm 7.
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Algorithm 7 (H-TKRIMP: Top-k list initialization)
(1) A transaction database: TDB
(2) A number of itemsets to be mined: k
(3) A regularity threshold: σr

Output:
(1) A top-k list

create a hash table for all 1-items
for each partition m = 1 to pn do

for each transaction j in the the mth partition do
for each item i in the transaction j do

if the item i does not have an entry in the top-k list then
create a new entry for the item i with si

m = 1, ri = tj and create a tidset T i
m that contain tj

create a link between the hash table and the new entry
else

add the support si
m by 1

if tj and the last tid in T i
m are two consecutive continuous tids then

if the last tid in T i
m < 0 then

add the last tid in T i
m by −1

else
collect −1 as the last tid in T i

m

else
collect tj as the last tid in T i

m

calculate the regularity ri by tj

for each entry (item) i in the top-k list do
add the support si by si

m

if nrtXm < ndtXm then
transform T i

m to be a normal tidset // not contain tid < 0

for each item i in the top-k list do
calculate the regularity ri by |TDB|− the last tid of T i

pn

if ri > σr then
remove the entry i out of the top-k list

sort the top-k list by support descending order
remove all of entries after the kth entry in the top-k list

6.6.2 H-TKRIMP: Top-k mining

The top-k mining algorithm, shown in Algorithm 8, also adopts the best-best first search

strategy (i.e. first consider from the most frequent itemsets to the least frequent itemsets in the

top-k list) to quickly generate the regular itemsets with the highest supports and to raise up the

support of the kth itemset (sk). This strategy can help the H-TKRIMP algorithm to prune the

search space by using the support sk.

To generate a new top-k regular-frequent itemsets, two candidate itemsets X and Y in the

top-k list are merged to be an itemset XY with the following two constraints: (i) the size of

the itemsets must be equal; (ii) both itemsets must have the same prefix (i.e. each item from

both itemsets is the same, excepts the last item). These constraints can help H-TKRIMP avoid

the repetition of generating top-k regular itemsets and help H-TKRIMP prune the search space.

Consequently, the tidsets of itemsets X and Y are sequentially intersected in order to calculate
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the support, the regularity and the tidsets of XY . To sequentially intersect interval tidsets TXm and

T Ym , H-TKRIMP categorizes this process into three cases as follow:

• Two of them are normal tidsets. The two tidsets can be easily intersected by comparing

each pair of tids. If they are equal, H-TKRIMP collects one of them into the tidset TXYm of

the mth partition.

• Two of them are interval tidsets. H-TKRIMP has to consider four cases when comparing

each pair of tids tXi and tYj in order to construct TXY (see Definition 6.2):

(1) if tXi,m = tYj,m > 0 add tXi,m at the end of TXYm

(2) if tXi,m > 0, tYj,m < 0, tXi,m ≤ tYj−1,m − tYj,m, add tXi,m at the end of TXYm

(3) if tXi,m < 0, tYj,m > 0, tYj,m ≤ tXi−1,m − tXi,m, add tYj,m at the end of TXYm

(4) if tXi,m, t
X
j,m < 0, add tXY|TXY |,m − (tXi−1,m − tXi,m) at the end of TXYm if tXi−1,m − tXi,m <

tYj−1,m − tYj,m otherwise add tXY|TXY |,m − (tYj−1,m − tYj,m) at the end of TXY

• One of them is a normal tidset and the another one is an interval tidset. The conditions

from the second case are applied with some different details; for example, TXm is a normal

tidset and T Ym is an interval tidset.

(1) if tXi,m = tYj,m > 0, add tXi,m at the end of TXYm

(2) if tXi,m > 0, tYj,m < 0, tXi,m ≤ tYj−1,m − tYj,m, add tXi,m at the end of TXYm

From TXYm , the support sXY and regularity rXY of XY can be easily computed. If the

regularity of the new generated itemset XY is no greater than σr and its support is greater than

sk, then XY is inserted in the top-k list and the kth itemset is removed from the top-k list. Lastly,

because of the partitioning technique, TKRIMPE can reduce the time to intersect some tids of

each partition when at least one of the tidsets does not contain regular sequence of transactions.

This will frequently happen particularly in sparse datasets.

By separating the intersection process into 3 cases, H-TKRIMP can reduce computational

time in some cases. For the first case, the two tidsets are normal tidsets. This means that the two

considered candidate itemsets occur sparsely in the partition. Thus, the computational time used

to intersect these tidsets is equal to TKRIMPE which is the fastest algorithm for sparse datasets.

For the second case, the two tidsets are interval tidsets. H-TKRIMP has similar perfomance as

TKRIMIT which is the best algorithm for dense datasets. Finally, for the third case, one is a

normal tidset and another one is an interval tidset. It is the case of the intersection between tidsets
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that are sparse and dense, respectively. H-TKRIMP has similar performance since TKRIMPE as

it consider only small size of tidsets.

Based on the hybrid representation, H-TKRIMP can reduce time to intersect tidsets from

TKRIMPE by reducing a number of tids in the dense tidsets. Moreover, H-TKRIMP can re-

duce time in the intersect process from TKRIMIT on the sparse tidsets by reducing the time to

investigate each tid in the interval tidset whether it is consecutive continuous or not.

Algorithm 8 (H-TKRIMP: top-k mining)
Input: top-k list, σr, k
Output: top-k regular-frequent itemsets

for each entry x in the top-k list do
for each entry y in the top-k list (x > y) do

if the entries x and y have the same size of itemsets and the same prefix then
merge the itemsets of x and y to be the itemset Z = Ix ∪ Iy

for each partition m = 1 to pn do
for each tp in TX

m (p = 1 to |TX
m |) and tq in TY

m (q = 1 to |TY
m |) do

if tp > 0 and tq > 0 then
if tp = tq then

calculate the regularity rZ by tp and check rZ with σr

add the support sZ
m by 1

collect tp as the last tid in TZ
m

else if tp > 0 and tq < 0 then
if tp ≤ tq−1 − tq then

calculate the regularity rZ by tp and check rZ with σr

add the support sZ
m by 1

collect tp as the last tid in TZ
m

else if tp < 0 and tq > 0 then
if tp−1 − tp ≥ tq then

calculate the regularity rZ by tq and check rZ with σr

add the support sZ
m by 1

collect tq as the last tid in TZ
m

else
if tp−1 − tp > tq−1 − tq then

add the support sZ
m by (tq−1 − tq)− tZ|T Z

m|
collect tZ|T Z

m|
− (tq−1 − tq) as the last tid in TZ

m

else
add the support sZ

m by (tp−1 − tp)− tZ|T Z
m|

collect tZ|T Z
m|
− (tp−1 − tp) as the last tid in TZ

m

add the support sZ by sZ
m

if nrtXm < ndtXm then
transform TZ

m to be a normal tidset // not contain tid < 0

calculate the regularity rZ by |TDB|− the last tid of TZ
pn

if rZ ≤ σr and sZ ≥ sk then
insert the itemset Z (Ix ∪ Iy) into the top-k list with rZ , sZ and TZ

remove the kth entry from the top-k list
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6.7 Example of H-TKRIMP

Consider the TDB of Table 6.1, the regularity threshold σr of 4 and the number of desired

results k of 5. The database is separated into three partitions. Then, the process of initializing

top-k list from the TDB of Table 6.1 is illustrated in Figure 6.2.

(a) read first transaction

(b) read second transaction

(c) read third transaction

(d) read first partition

(e) converse tidset to be normal tidset

(f) read second partition

(g) Final Top-k list in initialization process

Figure 6.2: Top-k list initialization

By scanning the first transaction t1 = {a, b, c, d, f}, the entries for items a, b, c, d, and f

are created, and their supports, regularities and interval tidsets are initialized as (1 : 1 : {1}) (see



155

(a) top-k list when merging item a with item d

(b) final top-k list

Figure 6.3: Top-k during mining process

Figure 6.2(a)). Next, the second t2 = {a, b, d, e} is read, and H-TKRIMP adds−1 at the end of the

interval tidsets of a, b and d, since these items occur in two consecutive continuous transactions.

Then, the entry for the item e is created and initialized (Figure 6.2(b)). For the third transaction

(t3 = {a, c, d}), as shown in Figure 6.2(c), the last tids of item a and d are changed to −2 (they

occur in three consecutive continuous transactions t1, t2 and t3) and the interval tidset of the item

c is updated by adding t3 as the last tid in T c1 . Now, the forth transaction is considered to update

the tidset T1 of items a and b as illustrated in Figure 6.2(d). However, if nrtb1(= 0) < ndtb1(= 1),

then H-TKRIMP transforms T b1 to be a normal tidset (see Figure 6.2(e)). After the first partition

is read, the next partition (transactions 5 to 8) initializes or updates the tidset T2 for each item

occurring in this partition as illustrated in Figure 6.2(f). Finally, the third partition is considered

and then H-TKRIMP transforms the tidsets into suitable representation. After scanning all the

transactions, the top-k list is sorted by support descending order and the item f is removed (see

Figure 6.2(g)). It will be the starting point for the mining process.

In the mining process, the item d is first merged with the former item a. The tidsets T a and

T d are sequentially intersected from the first to the last partition in order to calculate the support

sad = 9, the regularity rad = 3. The tidsets of the first and the second are T ad1 = {1,−2} and

T ad2 = {6,−2}, respectively. Meanwhile, the tidset is T ad3 = {9, 11,−1} and nrtad3 (= 0) <

ndtad3 (= 2). Then, H-TKRIMP transforms T ad3 into a normal tidset format (T ad3 = {9, 11, 12}).

The tidsets T ad of itemset ad is T ad = {{1,−2}, {6,−2}, {9, 11, 12}}. Since the support sad

is greater than se = 5 and the regularity rad is less than σr = 4, the item e is removed and ad

is inserted into the top-k list as shown in Figure 6.3(a). Next, the third itemset i.e. itemset ad is

considered and compared to the former itemsets a and b. Since these itemsets do not have different

size (and do not share the same prefix), they are not merged. Next, H-TKRIMP then considers

the item b which is merged with a and d (sab = 7, rab = 3, T ab = {{1, 2, 4}, {7, 8}, {10, 11}};

sbd = 5, rbd = 5, IT bd = {{1, 2}, {7, 8}, {11}}). The itemset ab is thus added to the list and the
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item c is removed. The itemset bd is eliminated. Lastly, the itemsets ab and ad are considered,

and finally the top-k regular-frequent itemsets are obtained as shown in Figure 6.3(b).

6.8 Complexity analysis

In this section, we discuss the computational complexity for H-TKRIMP in terms of time

and space. Extensive experimental studies will complement this analysis in Section 6.9.

Proposition 6.12 The time complexity for creating the top-k list isO(nm) wherem is the number

of transactions in the database and n is the number of items occurring in the database.

Proof: Since the proposed algorithm scans each transaction in the database once, the entry

of each items that occurs in the transaction is also looked up once in order to collect the tid into

tidset (O(nm)). The cost for sorting all (in the very worst case) the entries is O(n log n). Then,

the time complexity to create the top-k list is formally O(nm + n log n). In fact, the number

of items (n) is, for the considered applications, always less than the number of transactions(m).

Hence, the time complexity to create the top-k list is O(nm).

Proposition 6.13 The time complexity for mining top-k regular-itemset isO(mk2) wherem is the

number of transactions in the database and k is the number of results to be mined.

Proof: The mining process merges each itemset in the top-k list with only the former itemset

in the top-k list. Then, the tidsets of the two merged itemsets are intersected. Therefore, the

combination of all itemsets in the top-k list is k ∗ (k+ 1)/2 and the time to intersect tidset at each

step is O(m). Hence, the overall time complexity of mining process is O(mk2).

Proposition 6.14 The memory space required by TKRIMIT is O((d34 |TDB|e)k) where σr is the

number of transactions in each partition and k is the number of itemsets to be mined.

Proof: Based on the interval tidset representation, the maximum number of maintained tids

of an itemset X in TDB is d23 |TDB|e. With the partitioning technique, the database is divided

into several partitions. Thus, the maximum number of maintained tids of an itemset X in any

mth partition is d23σre where σr is the number of transactions in each partition. This case happens

when the itemsetX occurs in every two transactions and miss one transaction in themth partition.



157

Since, the interval tidset contains one positive and one negative tids alternately over the

tidset, the maximum value of the number of determined tids ndtXm is equal to the number of

negative tids in the interval tidset which is ndtXm = d 2
3
σre
2 = d13σre.

To decide which representation should be used for the mth partition, the value of nrtXm

must be greater than ndtXm. As mentioned in Chpater 5, the use of interval tidset representation

cannot reduce the number of tids to be maintained in the case that the number of tids is less than or

equal to d23σre. If the number of maintained tids is equal to d23σre+1, there are at least one group

that have three or more consecutive tids in the tidset. Thus, for each increasing number of tids

that more than d23σre, the number of reduced tids is increased 3 and the number of determined

tids is reduced to 1. Thus, when the number of tids that X occurs is grater than d23σre equal

to 1
4 ∗ d

1
3σre = d 1

12σre, the value of nrtXm and ndtXm are equivalent. This is the worst case of

maintaining tids of the hybrid representation. Then the maximum number of maintained tids in

the mth partition is equal to d23σre+ d 1
12σre = d34σre.

In addition, the maximum number of maintained tids of the itemset X in every partitions is

equal to d34σre∗pn = d34 |TDB|ewhere pn is the number of partitions in database. Consequently,

all of desired memory to maintain interval tidsets for k itemsets is O((d34 |TDB|e)k).

6.9 Performance evaluation

In this section, the performance of the H-TKRIMP algorithm is empirically studied

and compared with the previous top-k regular-frequent itemsets mining algorithms: MTKPP,

TKRIMPE and TKRIMIT to demonstrate the difference on performance of the algorithms to mine

top-k regular-frequent itemsets. To measure the performance of H-TKRIMP, the processing time

(including top-k list construction and mining processes), space usage (i.e. memory consumption)

and scalability (with varied number of transactions in database) are considered.

6.9.1 Experimental setup

The experiments of H-TKRIMP are done on three synthetic datasets (T10I4D100K,

T20I6D100K and T20I6D100K) and nine real datasets (accidents, BMS-POS, chess, connect,

kosarak, mushroom, pumsb, pumsb* and retail) which were described their details and character-

istics in Chapter 2. Program for H-TKRIMP is written in C in the same manner as the previous

algorithms: MTKPP, TKRIMPE and TKRIMIT using a top-k list. All experiments are performed
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on a Linux platform with a IntelrXeon 2.33 GHz and with 4 GB main memory.

To evaluate the performance of H-TKRIMP, the computational time (total execution time,

including CPU and I/O costs) of the four algorithms with the small and the large values of k and

various values of σr are considered. The value of k is divided into two ranges which are 50− 500

(for the small values) and 1, 000−10, 000 (for the large values). Meanwhile, the value of σr is set

depending on the characteristic of each dataset for illustrative purpose. Therefore, the value of σr

is not the same in each dataset. In fact, the number of regular itemsets of each database increases

with the regularity threshold. For sparse datasets, each itemset does not frequently occur, then the

value of σr should be specified to be large when the value of k is large in order to gain a large

number of results. For dense datasets, each itemset appears very often, then a small value of σr

should be used. Due to the use of the top-k list and the proposed hybrid representation, the study

of memory consumption for H-TKRIMP compared with the previous proposed algorithms is also

discussed. Lastly, the scalability of H-TKRIMP on the number of transactions in the database is

illustrated.

6.9.2 Execution time

Let first consider the six real dense datasets (i.e. accidents, chess, connect, mushroom,

pumsb, and pumsb*). Figure 6.4 to Figure 6.21 demonstrate the the runtime on real dense

datasets with varied regularity threshold. In most cases, H-TKRIMP has similar performance

to TKRIMIT but outperforms MTKPP and TKRIMPE. When the value of k increases, the per-

formance difference becomes larger. With the large values of k, H-TKRIMP and TKRIMIT can

fully take advantage of the interval tidset representation.

Recall that H-TKRIMP and TKRIMIT employ the interval tidset representation to maintain

tids that each itemset appears, then both algorithms can group consecutive continuous tids together

and reduce the number of maintained tids of each itemset. Hence, H-TKRIMP and TKRIMIT

can save time to intersect tids, calculate regularity and support, and collect tidsets of each new

generated itemset.

The runtime on sparse datasets (i.e. BMS-POS, retail, T10I4D100K, T20I6D100K, and

T40I10D100K) is illustrated in Figures 6.22 - 6.36. From these figures, it can be seen that

H-TKRIMP outperforms MTKPP and TKRIMIT for the small value of k because H-TKRIMP

employs the hybrid representation that maintains tidsets of each itemsets follows by the occur-

rence behavior of each itemset. On the other hand, TKRIMPE is faster than H-TKRIMP since
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H-TKRIMP does not apply the support estimation technique, it cannot take advantage from early

terminated intersection process. With the large values of k, H-TKRIMP consumes execution time

as much as TKRIMPE (i.e. the fastest algorithm among the previous algorithms) because both of

them employ the database partitioning technique which helps ignoring some tids in the intersec-

tion process. In some cases, especially on BMS-POS and T40I10D100K datasets, H-TKRIMP

outperforms TKRIMPE, by using the hybrid representation which can also group the consecutive

continuous tids in sparse datasets,

As mentioned above, based on the database partitioning technique and the hybrid repre-

sentation, H-TKRIMP can reduce intersection process time on sparse datasets and reduce space

used to maintain tids on dense datasets. On dense datasets, supports of most itemsets in the set

of results are quite high, thus the interval tidset representation is applied to such itemsets. As a

result, the processing time of H-TKRIMP is similar to TKRIMIT which performs best on most

dense datasets with long items. On sparse datasets, with the small value of k, the processing time

of H-TKRIMP is shorter than MTKPP and TKRIMIT but it is longer than TKRIMPE in some

cases. Since, the H-TKRIMP and TKRIMIT contain some negative tids in the tidsets, it is very

difficult to apply the estimation technique in the interval tidset representation. Accordingly, H-

TKRIMP cannot take benefit of pruning search space from estimation technique as TKRIMPE in

some datasets. With the large values of k, H-TKRIMP has the same performance as TKRIMPE

which is still better than MTKPP and TKRIMIT due to the advantage of the database partitioning

technique. By deeper analysis, in some datasets, e.g. BMS-POS and Mushroom, H-TKRIMP

is the fastest algorithm on both small and large values of k. For each itemset, H-TKRIMP uses

normal tidset to collect tids for sparse partitions and also apply interval tidset to maintain tids in

the dense partitions. Therefore, H-TKRIMP can take benefit from the hybrid representation on

fluctuated occurred datasets.

6.9.3 Memory consumption

Another issue related to the efficiency of H-TKRIMP is memory usage. To evaluate the

space usage, the regularity threshold σr is set to be the highest value (used in previous subsection)

for each dataset.

Figure 6.37 to Figure 6.42 show the memory usage of H-TKRIMP compared to other pro-

posed algorithms on dense datasets. It can be seen from the figures that the memory usage of H-

TKRIMP increases as the value of k increases and H-TKRIMP consumes the same size of memory
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as TKRIMIT in the most cases. From the figures, H-TKRIMP can down size memory usage from

MTKPP and TKRIMPE with the large value of k because the advantage of using interval tidset

representation. However, in some cases, H-TKRIMP uses more memory than that of TKRIMIT

because it has to convert some tidsets that have too few tids to be normal tidset (i.e. based on

the use of hybrid representation). By this way of doing, H-TKRIMP can save computational time

from the use of single representation (only normal tidset or interval tidset representation) but it

takes little more memory than TKRIMIT using only interval tidset representation. Meanwhile, the

memory usage on sparse datasets are illustrated in Figure 6.43 to Figure 6.47. From these figures,

the memory usage of the four proposed algorithms are similar due to the fact that each itemset

does not occur in consecutive continuous tids. Therefore, H-TKRIMP and TKRIMIT cannot take

the advantage from the interval tidset representation. However, from the results, it can be seen

that based on the used of the top-k list structure and maintaining tidset, the memory usage of

H-TKRIMP is efficient for the top-k regular-frequent itemsets mining using the recently available

gigabyte range memory.

6.9.4 Scalability test

In this experiment, two primary factors, the scalability of execution time and memory us-

age, are examined. The kosarak dataset which is a huge dataset with a large number of distinct

items (41, 270) and transactions (990, 002) is used. To test the scalability with the varied num-

ber of transactions, the database is first divided into six portions. Each portion contains: 100K,

200K, 400K, 600K, 800K and 990K transactions, respectively.The value of k (i.e. the number

of itemsets to be mined) is specified to 500 and 10, 000 (i.e. each is the instance of the small and

the large values of k), and the regularity threshold is set to 6% of the number of transactions in

each portion.

As shown in the plots in Figures 6.48 and 6.49, H-TKRIMP outperforms the three competi-

tors in all the tests conducted. All the execution time linearly grows as the dataset size increases

from 100K to 990K. For the large values of k, H-TKRIMP is much more scalable than the others

due to the fact that it benefits from the proposed hybrid representation. H-TKRIMP can reduce

the number of maintained tids during mining based on interval tidset representation. Furthermore,

the number of considered tids (in each iteration of intersection process) is also decreased by using

database partitioning technique. Meanwhile, H-TKRIMP is also the most scalable on the small

value of k. In most cases, the scalability of H-TKRIMP and TKRIMIT are similar since they are

both based on the interval tidset representation.
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The memory scalability is also considered. From the Figures 6.48 and 6.49, the slope of H-

TKRIMP smoothly increases as the number of transactions increases. In some cases, H-TKRIMP

consumes memory little more than that of TKRIMIT but it still better than MTKPP and TKRIMPE

because H-TKRIMP employs the hybrid representation of normal and interval tidsets. However,

H-TKRIMP has linearly scalability in term of memory usage for mining top-k regular-frequent

itemsets.

6.10 Summary

In this chapter, we have proposed an efficient algorithm to mine a set of top-k regular-

frequent itemsets, H-TKRIMP, which is based on: (i) a best-first search strategy that allows to

mine the most frequent itemsets as soon as possible and to raise quickly the kth support (i.e. the

support of the kth itemset in the sorted top-k list) dynamically which is then used to prune the

search space; (ii) a partitioning of the database in order to reduce the number of comparison of

certain tids at the end of each partition during the intersection process and (iii) a hybrid represen-

tation used to maintain tidset during mining process which is a combination between normal and

interval tidset representations.

The performance studies on both real and synthetic datasets show that the proposed algo-

rithm is efficient. The performance of H-TKRIMP is compared with MTKPP, TKRIMPE and

TKRIMIT, which are at the moment the only three efficient algorithms for mining top-k regular-

frequent patterns. From the performance studies, it can be concluded that with the small and the

large value of k, H-TKRIMP has good overall performance for both dense and sparse datasets.

In most time, H-TKRIMP can reduce the number of maintained tids in the top-k list on dense

datasets. This is caused to save its processing time to mine results. On the other hand, H-TKRIMP

is able to reduce the number of considered tids in each iteration of intersection process on sparse

datasets, thus improves its running time instantly. By combining the partitioning and the hybrid

representation together, H-TKRIMP is efficient in terms of time and space to mine top-k regular-

frequent itemsets.
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Figure 6.10: Runtime of H-TKRIMP on connect (σr = 1%)
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Figure 6.14: Runtime of H-TKRIMP on mushroom (σr = 6%)
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Figure 6.16: Runtime of H-TKRIMP on pumsb (σr = 2%)
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Figure 6.17: Runtime of H-TKRIMP on pumsb (σr = 4%)
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Figure 6.18: Runtime of H-TKRIMP on pumsb (σr = 6%)
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Figure 6.20: Runtime of H-TKRIMP on pumsb* (σr = 2%)
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Figure 6.22: Runtime of H-TKRIMP on BMS-POS (σr = 1%)
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Figure 6.24: Runtime of H-TKRIMP on BMS-POS (σr = 3%)
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Figure 6.26: Runtime of H-TKRIMP on retail (σr = 8%)
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Figure 6.28: Runtime of H-TKRIMP on T10I4D100K (σr = 4%)
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Figure 6.30: Runtime of H-TKRIMP on T10I4D100K (σr = 8%)
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Figure 6.32: Runtime of H-TKRIMP on T20I6D100K (σr = 4%)
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Figure 6.34: Runtime of H-TKRIMP on T40I10D100K (σr = 2%)
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Figure 6.36: Runtime of H-TKRIMP on T40I10D100K (σr = 6%)
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Figure 6.38: Memory usage of H-TKRIMP on chess
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CHAPTER VII

CONCLUSION

7.1 Summary of Dissertation

Recently, Tanbeer et al. proposed an approach for considering the occurrence behavior of

patterns (Tanbeer et al., 2009), i.e. whether the pattern occur regularly, irregularly or mostly in

specific time period of a transactional database. Hence, a pattern is a regular-frequent if it is fre-

quent in terms of the support measure, as defined in (Agrawal and Srikant, 1994), and if it regularly

appears (measure of regularity/ periodicity of the pattern which considers the maximum period

at which the pattern occurs). To discover a set of regular-frequent itemsets, the authors proposed

a highly compact tree structure named Periodic Frequent patterns tree (PF-tree) to maintain the

database content, and a pattern growth-based algorithm to mine a complete set of regular-frequent

itemsets with user-given support and regularity thresholds.

However, it is well-known that the support-based approaches tend to produce a huge num-

ber of patterns and it is not easy for end-users to determine a suitable support threshold. Thus,

the top-k significant patterns mining framework, which allows the users controlling the number of

patterns (k) to be mined (which is easy to specify) without a support threshold, is an interesting

approach (Han et al., 2002). Therefore, the contributions of this dissertation have focused on the

problem of mining top-k regular-frequent itemsets as follows.

Chapter 3 introduced the the problem of mining k regular itemsets with the highest sup-

ports, called Top-K Regular-frequent Itemsets Mining, that allows users to specify the number

of regular-frequent itemsets to be mined. From this problem, the users have to specify two pa-

rameters: (i) a number of desired results (k) (i.e. specify the value of k instead of setting the

support threshold); and (ii) a regularity threshold (i.e. to see whether an itemset occurs regularly).

Consequently, an efficient algorithm named Mining Top-K Periodic(Regular)-Frequent Pattern

(MTKPP) was proposed. To mine top-k regular-frequent itemsets, the top-k list structure (with

hash table) and the best-first search strategy were also devised for efficiency reasons. From the

experimental results, it can be observed that MTKPP ran faster than PF-tree which exactly mines

the same results (with the small and large values of k) and scaled linearly relative to the size of

the input database. Thus, the MTKPP algorithm is recommended when the users desire to control

the number of outputs.
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Subsequently, an efficient algorithm called Top-K Regular-frequent Itemsets Mining with

database Partitioning and support Estimation (TKRIMPE) to mine a set of k regular-frequent

itemsets with the highest supports was presented in Chapter 4. TKRIMPE was devised to improve

the performance of MTKPP by trying to reduce the processing time in the intersection process.

In TKRIMPE, the database partitioning and support estimation techniques were also introduced

to dismiss unnecessary computational costs and to cut down the search space. The experimental

study shows that TKRIMPE ran faster than MTKPP when the database is sparse, and also has the

similar performance on dense datasets.

Chapter 5 proposed an efficient algorithm, called Top-K Regular-frequent Itemsets based

on Interval Tidset representation (TKRIMIT) to mine top-k regular-frequent itemsets. In addition,

a new concise representation, Interval Tidset representation, used to collect the set of tids that each

considered itemset occurs was introduced. Based on the interval tidset representation, TKRIMIT

can reduce the number of maintained tids that each itemset occurs. This is caused to save the

memory usage and runtime to mine the top-k regular-frequent itemsets. As shown by results from

the experiments, the use of interval tidset representation gives the better performance from the use

of normal tidset representation especially on dense datasets.

In Chapter 6, the combination between the database partitioning technique and interval

tidset representation was proposed. The Hybrid representation was introduced to maintain the

tids that each itemset occurs. It composes of normal tidset representation (i.e. sets of normal

tids that each itemset occurs) and interval tidset representation (i.e. sets of concise (wrap up) tids

that each itemset appears). By using this representation, a simple heuristic was devised to choose

a proper presentation for the occurrence behavior of each itemset. Consequently, an efficient

algorithm based on database partitioning technique and the hybrid representation called Hybrid

representation on Top-K Regular-frequent Itemsets Mining based on database Partitioning (H-

TKRIMP) was introduced. As shown in the experiments, H-TKRIMP can run faster than the other

algorithms on both sparse and dense datasets with the small and large values of k.

In summary, this dissertation has studied the regular-frequent itemsets mining problem and

then proposed the problem of top-k regular-frequent itemsets mining which allows users to control

the number of results to be mined. To mine the top-k regular-frequent itemsets, the efficient

and scalable single-pass algorithms based on the top-k list structure have been suggested. They

consist of two steps: (i) top-k initialization: scan database to construct the top-k list of regular

items with their supports, regularities, and tidsets; and (ii) top-k mining: merge each pair of

entries in the top-k list using the best-first search strategy (i.e. first consider the itemsets with the

highest supports), then intersect their tidsets to calculate regularity and support of each itemset.
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From both steps, it can be observed that the mining process consumes high processing time in

the intersection process. Therefore, the partitioning and estimation techniques were invented to

reduce the cost of intersection by dismissing some unnecessary computing. From the experiment

(as mentioned in Chater 4), it can be seen that applying both techniques can help algorithms to

achieve a good performance especially on sparse datasets with the small and large values of k.

In addition, to gain a better performance on dense datasets, the number of maintained tids was

emphasized. If the number of maintained tids is very few, mining algorithms would spend few

time in the intersection process. Thus, a new concise representation was devised to reduce the

number of maintained tids of each itemset in the top-k list. It uses only one positive and one

negative tids to represent a group of consecutive continuous tids. By using this representation,

the performance of mining algorithms grow up in terms of time and space especially on dense

datasets. Finally, to have a good performance on both sparse and dense datasets without knowing

the characteristic of datasets in advance, the combination of database partitioning technique and

the concise representation was proposed. Then, the hybrid representation was also devised to

maintain tidsets followed by occurrence behavior of each itemset. If the itemset occurs frequent,

the concise representation is applied. Otherwise, the original representation is employed. The

results show that the use of hybrid representation and partitioning technique can give a good

performance on both sparse and dense dataset with the small and large values of k comparing

with the other proposed algorithms.

7.2 Discussion

Although, this dissertation introduced the top-k regular-frequent itemsets mining and some

efficient algorithms that achieve a good performance on both sparse and dense datasets with the

small and large values of k, there exists some limitation which can be categorized into several

points.

First, the proposed algorithms are based on single scanning and maintaining the tids for

each itemset in the top-k list. Though, there exists a concise representation which helps to save

runtime and memory space, the mining algorithms still spend a lot of time in the intersection

process and a lot of memory to maintain tids. Then, the interesting problem is to design a new

algorithm that can share the common sets of tids among the itemsets in the top-k list. This way of

doing may help the mining algorithms to save time to intersect and space to maintain tids during

mining process.

Second, to discover the top-k regular-frequent itemsets in the presence memory constraint,

the proposed algorithms would have a problem on memory consumption because they have to
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maintain tidset for each itemset the set of results. Thus, a new approach using the secondary

storage or using incremental technique to separately consider each partition of database should be

discussed in the direction of reducing required memory.

Third, the problem of top-k regular-frequent itemsets mining require two parameters: (i)

regularity threshold (σr) and (ii) the number of desired results (k). In some cases, users would

suffer from the setting a suitable regularity threshold. Thus, the interesting problem is to auto-

matically specify the regularity threshold to mine the top-k regular-frequent itemsets. To come

up with an appropriate regularity threshold, one needs to have detailed knowledge about the min-

ing query and the task-specific data, and be able to estimate, without mining, how many itemsets

would be generated with a particular threshold. Unlike a support threshold, the setting of a reg-

ularity threshold is quite subtle: a too large threshold may lead to the generation of thousands

of itemsets, whereas a too small one may often generate very few or no answers. Therefore, the

avoiding of the setting of regularity threshold by using other criteria to find the suitable threshold

might become an important task.

Fourth, the problem of top-k regular-frequent itemsets mining works only on static database

(i.e. no updated record). Therefore, another interesting direction is to study the problem of mining

top-k regular-frequent itemsets mining from incremental databases and data streams. In the past

few years, research in data streams (also incremental databases) has attracted a lot of researchers.

A data stream is a continuous, unbounded, and timely ordered sequence of data elements gen-

erated at a rapid rate. Unlike traditional static databases, stream data, in general, has additional

processing requirements; i.e., each data element should be examined at most once and processed

as fast as possible with the limitation of available memory. Even though mining user-interest based

patterns from data stream has become a challenging issue, interests in online stream mining for

discovering such patterns dramatically increased. Hence, to find top-k regular-frequent itemsets

efficiently from data streams, an efficient algorithm that can capture the stream content with one

scan and can competently mine the resultant itemsets is required. Since the proposed algorithms

scan database once, then it can be improved the algorithms to directly mine top-k regular-frequent

itemsets from data streams.

The author strongly believe that, with the proposed algorithms and the proposed approach,

it could seen many interesting, or the ultimate, solution to the mining regular patterns in the near

future.
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