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This dissertation proposes two novel frameworks for color face super-resolution recon-
struction with higher-order singular value decomposition in four basic color systems such as
RGB, YCbCr , HSV and CIELAB color system. The first framework is based on the linear
regression model with MPCA since a color face image can be naturally described as tensors
or multi-linear arrays. We find that the traditional/method does not consider the correlation
of data in each color channel. Therefore, theré is.an error in the face reconstruction pro-
cess. In this dissertation, we investigate the performance of our proposed method in sense
of effect of number of eigenvalue; effect of noise and complexity respectively and we can
reconstruct the reasonable colerface images which are compared with the ground truth color
face images. In the second framework, we décompose each pair of low and high resolution
training face images into‘a small paiches and apply higher-order singular value decompo-
sition in a tensor space. In.€olor face reconstruction process, there are two steps : the first
step tends to reconstruct a global face. Next st"gp;:thc local detail is hallucinated from small
overlapped patches. The expcrimental results from standard color facial database show that
our second proposed framewerk €an effecnvely reconstruct the color face i images than the
previous method. However, decomposiig small‘[;ttches in the training process will result in
a more complicated process than that of the first _a;ﬁ'lework
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CHAPTER I

INTRODUCTION

1.1 Background and Signification of the Research Problems

The term super-resolution (SRR) refers to the process of obtaining higher-resolution
(HR) images from several lower-resolution (LR) ones, i.e. resolution enhancement. The
quality improvement is caused by fractional-pixel displacements between images. Super-
resolution allows to overcome the limitations of the'imaging system (resolving limit of the
sensors) without the need for additional hardware. The reconstruction attempts to take ad-
vantage of the additional spatio-temperal data available in the sequence of images portraying
the same scene. The fundamental’problem addressed in super-resolution is a typical example
of an inverse problem, wheréin multiple low-resolution (LR) images are used to solve for the
original high-resolution (HR)‘image: : 'n

Hallucination or recogsiriction is a super=resolution algorithm that uses a different
kind of constraint, in addition t@ the reconstruction constraint. This algorithm attempts to
recognize local features in the/low-resolution images and then enhances their resolution in
an appropriate manner. Moreover, face hallucinat:}ion is still a very active field of research and
challenging because people are so familiar with the face. A small error, e. g. an asymmetry of
the eyes, might be significant to human perception, whereas for super resolution of generic
images the errors in textured regions, e.g. leaves, are often overlooked. It can be widely
applied in many fields ranging from image compression to face identification. Especially
in video surveillance, a higher resolution face image with detailed facial features will be
obviously significant to raise the systems performance.

Face hallucination with the reconstruction-based methods.which try to model the pro-
cess of image formulation to build the relationship between LR andHR based on reconstruc-
tion constraints and Smoothness constraints, is quite limited by the number of input LR and
usually cannot'work well ifi single-image supérstesolutiofi préblem. Theti, the face halluci-
nation with learning-based methods becomes very popular. These methodsuse some training
set directly or indirectly to reconstruct unknown HR images but a major problem of these
methods is the high computation requirement due to complex learning process.

In our frameworks, we concentrate in the color image processing which differs from
grayscale image processing because of the redundancy and the complementary information
within the color bands. The processing is much more complicated due to the increased di-
mensionality of the problem and exchanges information from and among all bands. Almost
all super-resolution methods to date have been designed to increase the resolution of a single
channel (monochromatic) image. A related problem such as color super-resolution (SR), ad-



dresses fusing a set of previously demosaiced color low-resolution frames to enhance their
spatial resolution. To date, there is very little work addressing the problem of color SR . The
typical solution involves applying monochromatic SR algorithms to each of the color chan-
nels independently, while using the color information to improve the accuracy of the motion
estimation. Another approach is transforming the problem to a different color space, where
chrominance layers are separated from luminance, and SR is applied only to the luminance
channel. Both of these methods are suboptimal as they do not fully exploit the correlation
across the color bands.

Real data of natural and social sciences is often very high-dimensional especially the
color face images. They can be naturally deseribed as tensors or multilinear arrays. In the
most of previous works on face representation, the.face is represented as a vector in high-
dimensional space. However, an image is itrinsieally.a matrix, or the second order tensor.
In vector representation, the face image has.fo be converted to a vector. A typical way to do
this so-called matrix-to-vectomalignment is to concatenate-all the rows in the matrix together
to get a single vector. To acguire.such linear transformation, traditional subspace learning
methods, Principal Component Analysis (PCA) need to eigen- decomposition of some ma-
trices. Moreover, the learningsparameters in PCA is very large. These methods might not
acquire good performance #when the pumber of training samples is small. Recently, multi-
linear algebra, the algebra ofthigher-order teri'sofs, is applied for analyzing the multifactor
structure of image ensembles. /Tensorface Whi'(_:_h iis a novel face representation algorithm
represents the set of face images by a higher-order tensor and extends traditional PCA to
higher-order tensor decomposition {1,2].. Then, we can apply multilinear principal com-
ponent analysis (MPCA) to face hallucination. The MPCA performs feature extraction by
determining a multilineas, projection that captuféé_tﬁbst of the-original tensorial input vari-
ation. In this way, the muliipie-factors-relaied-to-expression.-illumination and pose can be
separated from different dimensions of the tensor. In addition, when the MPCA is imple-
mented in the color space RGB, YCbCr, HSV and CIELAB4, it can be investigated that there

is a correlation between eachicolor channel.

1.2 Literature Review

The super-tesolution‘restoration idea was first presented by Huang et al. [3] in 1984.
It is the process of combining multiple low-resolution images to form a higher resolution
one. Numerous super-resolution algorithms have been proposed in the literature [4—8]. Most
try to produce a super-resolution image from a sequence of low-resolution images [9, 10].
Based on the definition of SRR , the relevant research papers, published in the conferences
and journals are comprehensively reviewed and are broadly categorized into two classes [11].
Specifically, the categorization is into the classes of reconstruction-based SRR algorithm and
recognition-based SRR algorithm (or hallucination).

This reconstruction-based SRR algorithm does not require images for training there-



fore this algorithm does not depend on observed images but reconstruction-based approach
inherits limitations when magnification factor increases. The frequency domain approach is
a part of the reconstruction-based method. It makes explicit use of the aliasing that exists in
each LR image to reconstruct an HR image [12, 13]. Although the frequency domain meth-
ods are intuitively simple and computationally cheap, the observation model is restricted to
only global translational motion and blur. Due to the lack of data correlation in the frequency
domain, it is also difficult to apply the spatial domain a priori knowledge for regularization.
Next, the projection onto convex sets (POCS) approach is proposed to describe an alterna-
tive iterative approach and it can also incorporate prior knowledge about the solution into
the reconstruction process. With the estimates of registration parameters, this algorithm si-
multaneously solves the restoration and interpolation problem to estimate the SR image [14].
Since the SRR algorithm is an ill-posed problem {romn.an insufficient number of LR images
and ill-conditioned blur operators, the regularized ML approach, called regularization, is
proposed to stabilize the invession ofatl-posed problem. The last approach of reconstruction
based is a nonuniform interpelation‘approach. In addition, it is the most intuitive method for
SR image reconstruction andsa fast super-resolution reconstruction based on a non-uniform
interpolation using a frequencydomain registration is proposed by Vandewalle et al [15-17].

In recognition-basedSRRsalgorithm (or hallucination), this algorithm require images
for training therefore this algorithm depend on observed images but this algorithm have
high performance when magnification factor iné'r__eases [18]. With statistical approach, Baker
and Kanade [19] proposed another super-resoldtion algorithm (hallucination or recognition-
based super-resolution) that attempts to.recognize logal features in the low-resolution image
and then enhances their resolution in an appropfiaté manner. Due to the training database,
therefore, this algorithm performance depends on the image type (such as face or character)
and this algorithm is not10bust-enough-io-besued-in-typical-strveillance video.

For face identification, especially by human, it is desirable to render a high-resolution
face image from the low-resolution one. This technique is called face hallucination or face
super-resolution [19]. They infes the high frequency components from a parent structure by
recognizing the logal features from'the-training)set, but there exists some noise in certain
area. The simplest way to increase image resolution is a direct interpolation of input images
with such algorithms as nearest.neighbor or cubic spline.* However, the pérformance of direct
interpolation is usuallypoor since no,new Anformation s added in the process. Some other
approaches [6,20-26] are based on learning from the training set containing high and low-
resolution image pairs, with the assumption that high-resolution images are Markov random
fields (MRFs) [20,21,27]. These methods are more suitable for synthesizing local texture,
and are usually applied to generic images without special consideration of the property of
face images. Baker and Kanade [19, 28] developed a hallucination method based on the
property of face images. Abandoning the MRFs assumption, it infers the high-frequency
components from a parent structure by recognizing the local features from the training set.
Liu et al. [29] developed a two-step statistical modeling approach integrating global and lo-



cal parameter models. Both methods rely on explicit resolution-reduction-function, which
is sometimes unavailable in practice. Wang and Tang develop an efficient face hallucination
algorithm using an eigentransformation algorithm [30,31]. However, the method only uti-
lizes global information without paying attention to local details. Inspired by a well-known
manifold learning method, locally linear embedding (LLE), Chang et al. [32] develop the
Neighbor Embedding algorithm based on the assumption that the local distribution structure
in sample space is preserved in the down-sampling process, where the structure is encoded
by patch-reconstruction weights.

To go beyond the current super-resolution techniques which only consider face images
under fixed imaging conditions in terms of pose, expression and illumination, these factors
are crucial to face analysis and synthesis. Récently, Vasilescu et al. introduce multilinear
analysis to face modelling [1,2] and demonstrai€ afS_promising application in computer vi-
sion. In the method, equipped with tensor.algebra, the multiple factors are unified in the
same framework with the coerdination between factors expressed in an elegant tensor prod-
uct form. Wu et al. propose amoveltegrssion model to use tensor principal component analy-
sis (PCA) subspace as the fage representation [33], which is a special case of the concurrent
subspace analysis and Ayan egal./ introduce a learning-based method for super-resolution
of face that uses kernal prncipal component analysis (PCA) for deriving prior knowledge
about the face class [34]. In addition, Takahiro et al, present a kernel PCA-based adaptive
resolution enhancement method of still images.-'__Th_e proposed method introduces two novel
approaches into the kernel PCA-based reconstruetion of high frequency components missed
from a high-resolution (HR) image,[35]. Jia et al. propose a multimodal tensor model for
face super-resolution with nonlinear deformationg'aﬂd choose a global image-based tensor to
perform synthesis across-different facial modaliﬁééfénd alocalpatch-based multiresolution
tensor for hallucination {36=38}.-—Ma-ei-al-—present-a sumpic and efficient multiview face
hallucination (MFH) method to generate high-resolution (HR) multiview faces from a single
given low-resolution (LR)-one [39].

The problem of decomposing tensors (alsoscalled n-way arrays or multidimensional
arrays) is approached in/ a variety of ways by extending the Singular Value Decomposi-
tion (SVD), principal components analysis (PCA), and other methods to higher orders; see,
e.g., [40-46]. Multilinear analysis. is a general extension of traditional linear methods such
as PCA or'matrix SVD'and Lathauwer et al. ‘propose a multilinear, generalization of the
symmetric eigenvalue decomposition for pair-wise symmetric tensors and investigate how
tensor symmetries affect the decomposition [47]. Kolda et al. explore the orthogonal de-
composition of tensors (also known as multidimensional arrays or n-way arrays) using two
different definitions of orthogonality and present numerous examples to illustrate the diffi-
culties in understanding such decompositions. For example, color images are often stored as
a sequence of RGB triplets, i.e.,as separate red, green and blue overlays [48].

Note that almost all super-resolution methods to date have been designed to increase
the resolution of a single channel (monochromatic) image. A related problem, color SR,



addresses fusing a set of previously demosaiced color LR frames to enhance their spatial
resolution. To date, there is very little work addressing the problem of color SR. The typi-
cal solution involves applying monochromatic SR algorithms to each of the color channels
independently [49, 50], while using the color information to improve the accuracy of mo-
tion estimation. Another approach is transforming the problem to a different color space,
where chrominance layers are separated from luminance, and SR is applied only to the lu-
minance channel [S1]. Both of these methods are suboptimal as they do not fully exploit the
correlation across the color bands.

In color image super-resolution, Patil et al. propose efficient registration and wavelet
based interpolation technique to yield a celon super resolved image from four low resolu-
tion color images [52]. Therefore, this technique i efficient and computationally fast having
clear perspective of real time implementation. “The new algorithm in adaptive color super-
resolution reconstruction, robust M-estimation is proposed [53]. Using a robust error norm
in the objective function, andsadapting the estimation proeess to each of the low-resolution
frames, the proposed methodeeffeetively suppresses the outliers due to violations of the as-
sumed observation model, and restlis in color super-resolution estimates with crisp details
and no color artifacts, without.the uise of regularization.

Because abstractdigital celor cameras sample the continuous color spectrum using
three or more filters therefores eagh pixel repreSeflts a sample of only one of the color bands.
This arrangement is called a mgsaie. To produé'c_.a._fu]l—resolution color image, the recorded
image must be processed to estimate the values of the pixels for all the other color bands.
This restoration process is often called.demosaicing. Ron et al. proposes method involves
two successive steps for color super-resolution wfith- CCD sensors [54]. His technique is to
let the edges support the.color information, and the colon.channels support the edges, and
thereby achieve better percepiual-resulis-than-those-that-are-bounded by the sampling the-
oretical limit. Next, Trussell et al. uses stacked notation to-rcpresent the mosaiced image
capture and derives the miaimum mean square error (MMSE) estimator for the demosaiced
image [55]. Farsui et al. prepese a fast and robust hybrid method of super-resolution and
demosaicing, based’on a maximum a posteriori estimation téechniqie by minimizing a mul-
titerm cost function;[56]. They used L; norm for measuring the difference between the
projected estimate of the high-resolution image and €ach low-resolution image, removing
outliers in the data and,errors due-to-possibly inaccurate motion estimation. Bilateral reg-
ularization is used for spatially regularizing the luminance component, resulting in sharp
edges and forcing interpolation along the edges and not across them. Moreover, an addi-
tional regularization term is used to force similar edge location and orientation in different
color channels.

In super-resolution of color video Sequences, Nimish et al. propose a new multiframe
algorithm to enhance the spatial resolution of frames in video sequences and this technique
specifically accounts for the possibility that motion estimation will be inaccurate and com-
pensates for these inaccuracies [57]. In [58], an iterative algorithm for enhancing the reso-



lution of monochrome and color image sequences is proposed and two sets of experiments
are presented. First, several different experiments using the same motion estimator but three
different data fusion approaches to merge the individual motion fields were performed. Sec-
ond, estimated high-resolution images using the block matching estimator were compared to
those obtained by employing a recursive scheme.

In this dissertation, two frameworks are applied to improve the performance of color
face hallucination. In the first framework, we employ multilinear principal component anal-
ysis (MPCA) in linear regression model for face reconstruction. In the training set, we
compute the MPCA subspace projections for both the HR images and the LR images. Next,
the color testing image is hallucinated by bagk-projection in subspace process.

The second frameworks are the combination. J.R and HR images in a unified tensor
which can be reduced to two paits: a global image-based tensor and a local patch-based

multiresolution tensor for incorporating highsresolution image details.

1.3 Objectives

Propose a novel face supersresolution (hallucination) with higher-order tensors for
color image. The higher-order gensor can be Suitable for color face images. For this rea-
son, it can be overcome cugse of dimensionalify and it also preserves the significant in-
formation when the images arg in a feature subspace. The two frameworks of color face
super-resolution reconstruction with MPCA: are proposed to increase the resolution of hal-
lucination performance. In addition, the complexity in hallucination process can be reduced
from our proposed method. —al

1.4 Scope

1. Develop the face hallucination technique with a linear teégression model in MPCA that

can reconstruct the reasonable color faciakimage.

(a) Only the color face itnage of-full frofital view-faces will'be presented to the PCA
in each color channel.

(b) ©nly the color face image of full frontal view faces will be presented to the linear
régression model with MPCA.

(c) The color face image of full frontal view faces with partially occluded will be
presented to the linear regression model with MPCA.

1.5 Expected Prospects

1. Acquire a basic knowledge of principal component analysis (PCA) for applying to face
hallucination.



1.6

10.

. Develop simulation pgograms,

Obtain the new PCA analysis techniques.

. Obtain new color face hallucination systems.
. Publish the international journal or conference papers.

. Know the advantages and disadvantages of using the proposed MPCA techniques in

color face hallucination.

. Understand the necessity of the MPCA techniques for color face hallucination.

Research Procedure

. Study previous research.papers ielevant to the iesearch works of the dissertation.

Develop the novel hallucination techniques.

\

. Test the proposed algerithms by using standard face databases such as FERET.

. Perform the proposed.algorithm on a cof‘o_r facial database.

Collect and analyze compugational resulis ebtained from simulation programs.

Summarize the major findings as we found_Qiﬁ%tep 6 and conclude the performance of

the proposed framework in all concerned aspects.
Publish the internationaljournal-orconterence papers: +

Check whether the conclusions meet all the objectives of the research work of the
dissertation.

Write the dissertation.



CHAPTER 11

BASIC BACKGROUND AND RELATED TOPICS

In this chapter, the fundamental knowledge of the two-dimensional subspace analysis
algorithm is described. First of all, the traditional 1D subspace is represented in vector form.
Next, subspace analysis with tensor PCA and the Multilinear Principal Component Analysis
(MPCA) is introduced. Finally, we review the basic knowledge of color system in image

processing.

2.1 Principal Component Analysié (PCA) Subspace Analysis

Linear dimensionality reduction technigues have been widely used in pattern recogni-
tion and computer vision, stich as face hallucination, image retrieval, etc. Principal Compo-
nents Analysis (PCA) is the one of unsupervis;ca subspace method, which is used to reduce
multidimensional data sets to lower dimensions for analysis. Let A be the m by n matrix of
pixels intensity of the image and the image vector, ¥, is the vector of A which was previ-
ously transformed by column-stack Vectorizatior'l';. Thus, the dimension of ~ is mn x 1. The

average of v can be found as — n
New 22 44
: =

T — z_; o, 2.1)

where NV is the number of training images. The zero-mean novmalization is applied to all

image vectors by
¢ = —W,i=1,2,3,..., M, (2.2)

where ¢; is the i'" zero-mean normalized of ~;, The covariance matrix, C, of these image
vectors can be calculated as
C =97, (2.3)

where © = [@1 Do o)y

The PCA'1s defined as an orthogonal linear transformation thattransforms the data to
a new coordinate system such that the greatest variance by any projection of the data comes
to lie on the principal component directions. This transformation is therefore equivalent to
finding the eigenvalue decomposition of the matrix C.

According to the dimension of ¢, the dimension of C will be mnxmn which can be
normally quite large for calculating the eigenvalue decomposition. The number of training
samples is normally smaller than the dimension of ¢ then the non-zero eigenvalues of this

covariance matrix can be found in another way via a new matrix.

L=2o"0, (2.4)



The dimension of L is only m xn, thus the eigenvalue decomposition of L. can be done easier

than C. The eigenvalue decomposition of L,
L = FAFT, (2.5)

where A is the diagonal matrix which contains the eigenvalues of L and F contains a set of
eigenvectors of L. Finally, the eigenvectors of C which correspond to the non-zero eigenval-
ues of C can be determined by

U = OF, (2.6)

where U is the matrix that contains a set of eigenvectors of C.

The eigenvector associated with the largest eigenvalue has the same direction as the
first principal component, the eigenvector assoe¢lated with the second largest eigenvalue de-
termines the direction of the second principal comipenent, and so on. Since the lower-order
principal components often contain the most important aspects of the data, the dimension
of projected space can be reducedsby retaining those characteristics of the data set that
contribute most to its variancesby.keeping lower-order principal components and ignoring
higher-order ones.

2.2 Subspace Learning based on Tépéor Analysis

Recently, multilinear algebra, the algebra Qf higher—order tensors, was applied for an-
alyzing the multifactor structure of image enseﬁll:t;hejg [59]. Vasilescu and Terzopoulos have
proposed a novel face representation aigorithm caﬂc& Tensorface [60]. Tensorface represents
the set of face images by a higher-order tensor and extends traditional PCA to higher-order
tensor decomposition. In-this way, the multiple factors relatedto expression, illumination
and pose can be separatedfrom different dimensions of the tensor. However, Tensorface still
considers each face image as a vector instead of 2-dimensional (2D) tensor. Thus, Tensor-
face is computationally expensive. Moreover, it does not encode discriminating information,

thus it is not optimal for recognition!

2.2.1 Tensor PCA

Let A € R™* " dénote an image of size m x n. Mathematically, A'ecan be thought of
as the 2"¢ order tensor (or, 2-tensor) in the tensor space R @ R". Let (uy, ..., u,,) be a set of
orthonormal basis functions of R™. Let (v, ..., V,) be a set of orthonormal basis functions

of R". Thus, an 2-tensor A can be uniquely written as:
A= Z(uiTAvj)uiVJT, (2.7)
]

This indicates that uiv;‘-F forms a basis of the tensor space R™ ® R". Define two matrices
U=uy,...,uy] € R™and V = [vy, ..., vj] € R™2, Let U be a subspace of R™ spanned
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by u;lL, and V be a subspace of R" spanned by Vj?:l' Thus, the tensor product U®V is a
subspace of R"®@R". The projection of A € R™ " onto the space UV isY=UT AV ¢
RU <l

Suppose we have N images, Aj,..., Ay € R™*". These images belong to k categories
C1,...,Cy. For the i-th category, there are n; images. The mean of each category M? is
computed by taking the average of A in category 1, i.e.,

Z A, (2.8)

and the global mean M™) is defined as

1/
= (2.9)

N2

Let Y; = UTA,V € Ri*2 | | jkewise, we can define

‘/
= Z Y; (2.10)
and

»
= _f]\,?ZYj, (2.11)

It is easy to check that MY = UTM(A)V and MY U'M@y.

The tensor subspace learning problem aimssat finding the (/1x[2) dimensional space
U®YV based on the specific objective functions. P_arﬁcularly, we will introduce a novel algo-
rithms called TensorPCA in this section. —4 B

TensorPCA is fundamentally based on PCA. It tries to project the data to the tensor
subspace of maximal variances so that the reconstruction errdr can be minimized. The ob-

jective function of TensorPCA can be described as follows:

MAXuy Y 1%~ MY (2.12)

Note that we use tensornorm of'the difference of two'ténsors to measure the distance of two
images. Since order two tensor is essentially matrix, we use Frobeniug norm of a matrix as
our 2-d tensor norm.

Since |[A|? = tr(AAT), we have

DoV = MO = 3 er((% — MY)(Y: - MY
i=1 ;

= ZtrUTY — MYV (Y, - MY)TU)

=1

= tr(U"Y (Y, - M) VV(Y; - M¥)T)U)
=1
= tr(U'MyV) (2.13)
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where My = > (UT (Y, - MM)VVT(Y; —M®)T)U). Similarly, ||A||? = tr(AAT), so we
also have

= tr(VT(i(Ai — MM)UUT(A; — MA)HT)Y)

= tr(VIMyV) (2.14)

where My = >, ((A; — M®)TUUT (A, — M™))). Thus, the optimal projection U should
be the eigenvectors of My and the optimal projection V should be the eigenvectors of My.

One might notice that U and V can not be computed independently. In our algorithm,
we try to find an optimal coordinate system of R™ & R". That is, we assume that both U and
V are orthonormal, i.e. UTU = UUY =T and V.V.= VV” = 1. In such case,

MU= A T M) (2.15)

and
n

My, A50(A = MYT(A = M), (2.16)
= | .
It is clear that My no longer depends on V , x;ind M, no longer depends on U. Therefore,
the matrix U can be simply €omputed as the é_igenvectors of My, and the matrix V can be
computed as the eigenvectors of My . -Note that, both MY, and M/, are symmetric, hence their
eigenvectors are orthonormal. This is.censistént with our assumptions. If we try to reduce
the original tensor space to a [; X[, ténsor subspaige",-‘i?ve choose the first {; column vectors in

U and the first [, column vectors in V.

2.3 Multilinear Principal Component Analysis (MPCA)

For the theoretically inclined reader, it should be noted that there are some recent de-
velopments in the analysis of higher order tensors; then this section.introduces a new MPCA
framework for tensor object dimensionality reduction; and feature extraction using tensor
representation. This"framework is introduced from the perspective of capturing the original
tensors variationadtprovides assystematic proceduretodetermine effectiverepresentations of
tensor objects. This coiitrasts to previous work such'as‘those reportedin [61], where vector,
not tensor, representation was used, and the works reported in [59], [62], where matrix repre-
sentation was utilized. Furthermore, unlike previous attempts, such as the one in [29], design
issues of paramount importance in practical applications, such as the initialization, termina-
tion, convergence of the algorithm, and the determination of the subspace dimensionality,
are discussed in details. The basic idea in MPCA solution to the problem of dimensionality
reduction for tensor objects is introduced [33, 63].
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2.3.1 Multilinear Projection of Tensor Objects

In this section, we review some basic multilinear concepts used in the MPCA frame-
work development and introduces the multilinear projection of tensor objects for the purpose
of dimensionality reduction.

Throughout this paper, the discussion is restricted to real-valued vectors, matrices,
and tensors since the targeted applications, such as holistic gait recognition using binary
silhouettes, involve real data only. The extension to the complex valued data sets is out of
the scope of this work and it will be the focus of a forthcoming research.

An Nth-order tensor is denoted as A & R < /2%-XIN for [ =1 ... N. It is addressed
by N indices i,,,n = 1, ..., N and each ¢,, addresses the n-mode of .A. The n-mode vectors
of A are defined as the [,-dimensional vectors obtained from 4 by varying the index i,
while keeping all the other indices fixed. Unfolding A along the n-mode is denoted as An)
e RInxUnxexn—a Xl XINY pdefheColumn veetors of A, are the n-mode vectors of A
which are illustrated in Fig: 2. LeLct'the set of tensors be {A,,,m = 1,..., M} and the total

scatter of these tensors is defined'as

i
U= N IMAg = A (2.17)

a1

where A is the mean tensor calculated as A = (1 /M) S M A,.. The n-mode total scatter

matrix of these samples can be defined as

S

M "
Ca =D (A ~ A Bmay= A" (2.18)
m=1
where A, is the n-modé unfolded of A and A is sample-mean. The n-mode unfolded
matrix can be illustrated in'Fig. 2.1. In Fig. 2.1, a third-o#der tensor can be unfolded in

1-mode vector.

2.3.2 MPCA Algorithm

A setof M tensot-objects { X, m =1, .5 A/} iS available for training with each tensor
object X, cRI™ XU agquming values'in a tensor space R @ R? " “@RI!¥, where ®
denotes the Kronecker product. The main objective of MPCA is to define a multilinear
transformation ﬁ(n) which denoted I,, X P,, matrix containing the orthornormal n-mode basis
vectors and the matrix ﬁ(n) is nth projection matrix, n = 1, ..., V. It can map the original
tensor space R”* ® R™2... @ R!¥ into a tensor subspace R”" @ R... @ R~ with (P, < I,,,
forn=1,..., N):

We can define the projection of n-mode vector of X, as

T (N)T

~(T =(2) =
V=X, x1 U xoU " .. xyU . (2.19)
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Figure 2.1: The visual illustration of the 1-mode unfolding of a third-order tensor A to matrix
AL

The tensor ), can capture most of the variations observed in the original tensor objects,
assuming that these variationssaremeasured: by the total tensor scatter. The objective of

MPCA is the determination®f the NV projection matrices ﬁ(n) that maximize the total tensor

scatter Uy, as J
@ 44 S, argmax ) Uy, (2.20)

| *'ﬁ(r) G ol
There is no known optimalsolution Whicﬁ{éiﬂpyvs for the simultaneous optimization of
the NV projection matrices. Since thé prbjectioni;é%% Nth-order tensor subspace consists of
N projections to N vector subspaees, A-optimization subproblems can be solved by finding

ﬁ(n) that maximizes the scatter in the n-mode vector subspac_e‘.v 4

The dimensionalitnyn for each mode is assumed to be kiown or predetermined. The
. ==(n) . ' - ’ .
matrix U(n consists of the P, eigenvectors corresponding (o the largest P, eigenvalues of
the matrix and it can be expressed as

M
gl M (e x) 1, 6 ks (x0T, (221)
m=1
where
~ ~ (n+1 ~(n+2 ~(1 ~ (2 ~(n—%
U= o0 g 0t et e 0" ). (2.22)

The optimization of qu)(n) depends on the projections in other modes, so there is no closed-
form solution. Therefore an iterative procedure is proposed to solve (2.22). The projection

matrices are calculated one by one, keeping all the others fixed (local optimization).

2.3.3 Full Projection

The term full projection refers to the multilinear projection for MPCA with P, = [,
. =~ =T . . .
forn = 1,...,N. In this case, we can see that Ugwm)-Ugm 1S an identity matrix. As a
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Figure 2.2: Visual illustratio mt “proj ; rojection in the 1-mode vector
space and (b) 2-mode and 3-mo B | NS
. \ o

result, ™ reduces to o

the input tensor samples on independen h “Iiriqjection matrices. The optimal

6(n) = U™ is then obtai ItriX COm ]an ed o h‘&igenvectors of ®(™* directly

without iteration, and the t

there is no dimensionality reducti r}.-thﬁ)ug 2
‘J"-l W ..
elgendecomposmon it can be co ludeﬁt lLeigenvalues per mode are distinct, the full

is unique (up to sign). ] AT ,_?:v- oy
To interpret the gq(‘)}hetnc meanings of the Mﬁa ues, the total scatter tensor

V€ Rixx-xIngf extension of the total scatter
i

matrix. Each entry of the tﬁso'r"y*
il RRL I kT At e
Qﬁﬁﬁﬁﬂﬁfﬁﬁdm?)‘ﬁﬂ%&l

= (1/M) Zy;; (2.25)

where

and

Using the previous definition, it can be shown that for the so-called full projection (P,=I,
for all n), the i,th n-mode eigenvalue )\1(:)* is the sum of all the entries of the 7,,th n-mode
slice of V*

var

11 In—l In+1

In
A= Y S Vi G et s i) (2.26)

=1 Z‘n71:1 in+1:1 ZN:1
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In this paper, the eigenvalues are all arranged in a decreasing order. Fig. 2.3 shows visu-
ally what the n-mode eigenvalues represent. In this graph, third-order tensors, e.g., short
sequences (four frames) of images with size 6 X 5, are projected to a tensor space of size

6 x 5 x 4 (full projection) so that a total scatter tensor J*, €R%**** is obtained.

R
o 777/ i
{Yvar ' :: :j
6’&5’(.4 «® )6 o |
(a) (b) () (d)

Figure 2.3: Visual illustration.of{a)-total scatter teinsoiz(b) 1-mode eigenvalues, (c) 2-mode

eigenvalues, and (d) 3-mode-eigenyales.

2.3.4 MPCA Versus PCA and 2-D) PCA Solutions

It is not difficult to sce that the MPCATfra_mework generalizes not only the classical
PCA solution but also a numaber of the so—calle"Id_ 2-D PCA algorithms.

Indeed, for N = 1, the iaput samples are veetors x,, € R™ . There is only one mode
and MPCA is reduced to PCA. For dimensionéﬁty reduction purposes, only one projection
matrix U is needed in order to obtain 'y, = xmi"f:-U = U”x,,. In this case, there is only
one ™ = &M ="M (x,, X) - (%, x)" , which.is the total scatter matrix of the input
samples in PCA [36]. The projection matrix méximizing the fotal scatter (variation) in the
projected space is deterlhiried from the eigenvectors of &1, Thus, MPCA subsumes PCA.

In the so-called 2-D PCA solutions, input samples aié treated as matrices, in other
words second-order tensors. Two (left and right) projection matrices are sought to maximize
the captured variation in the projected space. The proposed MPCA. algorithm is equivalent
to the 2-D PCA solution.of [62],;with the exception of the initialization procedure and termi-
nation criterion. Other 2-D PCA algorithms such as those discussed in [64] can be viewed
as variationsyof) the'methodiin[62}:and thus they: can be ¢onsidered specialicases of MPCA

when second-order tensors are considered.

2.4 TensorFaces: Multilinear Analysis of Facial Images

Multilinear algebra offers a natural approach to the analysis of the multifactor structure
of image ensembles and to addressing the difficult problem of disentangling the constituent
factors or modes then an image formation depends on scene geometry, viewpoint, and illu-
mination conditions [60]. We apply multilinear analysis to the facial image data using the
N-mode decomposition algorithm described in Section 2.3.
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D=2Zx y}wple X2 Utieure X8 00ttms x4 Ublpres X5 Upies- (2.27)

Using a global rigid optical flo r1th ly aligned the original 512 x 352 pixel
images relative to ﬁ w ﬁn gﬁpies %Jhﬁ e 1 ted by a factor of 3 and
cropped as shown ifi Fig. 2.4, yielding a total of 7943 pixels per image within the elliptical
cropping ﬁ Xél 943 tensor. The
number oyaodmm ﬁ ﬂﬁ mﬂm % %]rjjt E]veen the factors
represented i 1n the 5 mode matrices: The 28 x 28 mode matrix Upeqp spans the space of
people parameters, the 5 X 5 mode matrix U,;.,s spans the space of viewpoint parameters,
the 3 x 3 mode matrix U;;,,,»s Spans the space of illumination parameters and the 3 x 3 mode
matriX Uegpres Spans the space of expression parameters. The 7943 x 7943 mode matrix
Upizers orthonormally spans the space of images.

Our multilinear analysis, which we call TensorFaces, subsumes linear, PCA analysis
or conventional eigenfaces. Each column of U, is an eigenimage. These eigenimages are

identical to conventional eigenfaces [13, 17], since the former were computed by performing
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an SVD on the mode-5 flattened data tensor D which yields the matrix D,;;.;s whose columns
are the vectorized images. To further show mathematically that PCA is a special case of our
multilinear analysis, we write the latter in terms of matrix notation. A matrix representation
of the N-mode SVD can be obtained by unfolding D and Z as follows:

D(n) = U(n)Z(n) (U(n,l) ®.. U(l) ® U(N) Q.. U(n+2) ® U(n+1))T, (2.28)
Using 2.28 we can express the decomposition of D as

D(pixels) = U(pixels) (Z(pixels)U(expres) ® U(illums) ® U(m’ews) ® U(people))T (229)
N’ N—— \

imagedata basisvectors coef ficients

The above matrix product can be interpreted as a standard linear decomposition of the image
ensemble, where the mode matiix U ..c,) 1s the PCAGmatrix of basis vectors and the asso-
ciated matrix of coefficients is Obtained as the product of the flattened core tensor times the
Kronecker product of the peoplesviewpoints, illuminations, and expressions mode matrices.
Thus, as we stated above, our maltilinear analysis subsumes linear, PCA analysis.

The advantage of mulfilingar analysis is that the core tensor Z can transform the eigen-
images present in the matriz U, ) Anto eig,{@hmodes, which represent the principal axes
of variation across the various'modes (people, viewpoints, illuminations, expressions) and
represents how the various factors interact wiih each other to create an image. This is ac-
complished by simply forming the product Z x SI'UJ('-piIelS). By contrast, PCA basis vectors or
eigenimages represent only the principal axes dfya_riation across images. To demonstrate,
Fig. 2.4 illustrates in part the results'of the multilif_néﬁr analysis of the facial image tensor D.
Fig. 2.4(a) shows the first 10 PCA. eigenimages-c’oﬁfained in U pigers)- Fig. 2.4(b) illustrates
some of the eigenmodes in the product Z x5 Ug,izcrs). A few of the lower-order eigenmodes
are shown in the three arrays. The labels at the top of each array indicate the names of the
horizontal and vertical modes depicted by the array. Note that the basis vector at the top left
of each panel is the average oyer all people, viewpoints, illuminations, and expressions, and

that the first column-of-eigenmodes;(people,mode)is shared-by-the-three arrays.

2.5 Color Image Processing

Over the last three decades, we have seen several important contributions in the field
of color image processing. While there have been many early papers that address various
aspects of color images, it is only recently that a more complete understanding of color vi-
sion, colorimetry, and color appearance has been applied to the design of imaging systems
and image processing methodologies. The first contributions in this area were those that
changed the formulation of color signals from simple algebraic equations to matrix repre-
sentation [65], [66], [67]. More powerful use of the matrix algebraic representation was
presented in [68], where set theoretic methods were introduced to color processing. The
first overview extending signal processing concepts to color was presented in IEEE Signal
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Processing Magazine in 1993 [69]. This was followed by a special issue on color image pro-
cessing in IEEE Transactions on Image Processing in July 1997, where a complete review of
the state of the art at that time was found in [70,71].

At this point, the focus of the issue shifts from hardware and system centric to image
processing techniques that form the backbone of many color systems and applications. The
first of these is discussed in Detection and Classification of Edges in Color Images [72],
where the emphasis is placed on detecting discontinuities, i.e., transitions from one region
to another, instead of similarities in a given image. One of the most fundamental steps
in many applications and in the design of image processing techniques is to ensure that a
given image is optimized for noise and enhanced in quality. This is outlined in the article
Vector Filtering for Color Imaging [73], where the authors discuss and compare the various
techniques outlining their strength, areas of 1mprevements, and future research directions.
Finally, the article titled Digital Color Halftoning [74] provides a complete review of the
methods employed by printers to reproduce color images and the challenges they face in

ensuring that these images arefregofvisual artifacts.

2.5.1 Mathematical Definition of Color Matching

A vector space approachito describing chor 18 useful for expressing and solving com-
plex problems in color imagings For this reason, we will use this notation to describe the
fundamentals of color matching. Letthe NV x 3 matrix S = s1, So, S3] represent the response
of the eye, where the N vectors, §;, corréspond tb--thc response of the 7th type sensor (cone)
in Fig. 2.5. A given visible spectrum can be représé”ﬁted by an N vector, f, a function whose
value is radiant energy. Hence, the response of the sensors to the input spectrum is a three
vector, ¢, obtained by

c=S'f (2.30)

Two visible N-vectors spectra f and g are said to have the same color if they appear the
same to a human observet. Inl otn lin€armaodel sthis impliés thatif £and g represent different

spectral distributiong, they portray equivalent'colors if
STf =STg (2.31)

From this, it can be easily seen that many different spectra can result in the same
color appearance to a given observer. This fascinating phenomena is known as metamerism
(meh tam er ism), and the two spectra are termed as metamers. In essence, metamerism
is basically color aliasing and can be described by generalizing the well-known Shannon
sampling theorem frequently encountered in communications and digital signal processing.
It should be noted, however, that the level of metamerism may vary across various observers,
dependent on their individual cone sensitivities.

In practice, it is desirable to have a matrix of color matching functions that are non-

negative, so they can be physically realized as optical filters. This problem was addressed
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by the Commission Internationale de 1Eclairage (CIE), in 1931, yielding the XY Z color
matching functions shown in Fig. 2.6 as solids lines. Hence, the matrix A can now be used
to represent these functions. The Y value was chosen to be the luminous efficiency function,
making it equivalent to the photometric luminance value. This standardization led to the
precise definition of colorimetric quantities, such as tristimulus values and chromaticity.

The term tristimulus values refers to the vector of values obtained from a radiant spec-
trum, r, by t = [X, Y, Z]” = ATr (we recognize the inconsistency of denoting the elements
of t by XY, Z, but since the color world still uses the X, Y, Z terms, we use it here). The
chromaticity is then obtained by normalizing the tristimulus values yielding

=X £ 4+ 7)
Y=""Y /(X £ 52

g="7 (X £ ¥ L) (2.32)

Since x +y + z = 1, any'two€hromaticity coordinates are sufficient to characterize the

chromaticity of a spectrum. la'general, as a matter of convention, the = and y terms are used
as the standard. :

1T ~ v,/ I'f"j\ N
0.8} / \ ;’,/ 1
s sl ] )kl N

0.6} // i
b er | \
0.4} % —3 -
A7/ ) \

TN =
0 e A N e :
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Waelength (nm)

Figure 2.5 Cone sensitivities.

2.5.2 Mathematics of Color Reproduction

To reproduce a colonimage, 1t iSnecessary to generate new vectoss in NV space (spectral
space) from those obtained by a given multispectral sensor. Since the eye can be represented
as a three-channel sensor, it is most common for a multispectral sensor to use three types of
filters. Hence, the characteristics of the resulting multispectral response functions associated
with the input and output devices are critical aspects for color reproduction. Output devices
can be characterized as being additive or subtractive. Additive devices, such as cathode
ray tubes (CRTs), produce light of varying spectral composition as viewed by the human
observer. On the other hand, subtractive devices, such as ink-jet printers, produce filters that
attenuate portions of an illuminating spectrum. We will discuss both types in the following,
clearly highlighting their differences.
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YXZ(soI ld)

Figure 2.6: CIE RGB and XYZ.color matching functions: RGB are shown in dashed lines,
-t
and XYZ are shown in solid lines,

sl

2.5.3 Additive Color Systems

In additive devices, various colors are galénerated by combining light sources with dif-
ferent wavelengths. These light sources are known as primary. An example of this is illus-
trated in Fig. 2.7. In the Fig. 2.7 it can be eas1fy seen that cyan, magenta, yellow, and white
are generated by combining blue and green red and blue; red and green; and red, green, and
blue, respectively. The red, green, dnd blue channels of an example color image are also
shown for illustration purposes. Other-colors c&ffbe generated by varying the intensities of
the red, green, and blue primaries. ‘For instance, the screen,of a television, or CRT, is covered
with phosphoric dots that are clustered in eroups. Each eroup gontams these primary colors:
red, green, and blue, Wh'i'cﬁare combined in a weighted fashior to produce a wide range of
colors. Additive color systems are characterized by their corresponding multispectral output
response. For instance, a three-color monitor is represented by the N x 3 matrix, E, which
serves the same purpoSe as the primaries in the-color matching experiment. The amount of
each primary is controlled by a three-vector ¢. The spectrum of the output is then computed
as follows:

f = Ec, (2.33)

Hence, the tristimulus values associated with a standard observer who is viewing the screen
are given by
t=A"f=ATEc, (2.34)

There are several challenges that need to be considered when dealing with additive systems.
One is to choose the control values so that the output matches the intended target values.

This is not feasible for all possible colors due to the power limitations of the output device.
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ge Blll& |mage

Furthermore, the control valug be;rié‘gdbi €, l.e., we ‘cannot produce negative light.

he ei% values of ¢ from some recorded data.
dj

Subtractive systems are ¢ rqct;c&f%d:- ) fundamental property that color is ob-
tained by removing (subtracting sél'é_c@ "p(')r’t.
in Fig. 2.8, where cyan, magenta, an_'d‘;i@pv&?c@@&are used t_o absorb, in this respect, the
red, green, and blue quc-iial components from white light. T 5& ¢ cyan, magenta, and yellow
channels of a color ima& Fj;are also shown ?or I::HSW“ J) ses. Hence, each colorant
absorbs its complementari;tolor and transmi 1ndfjof the spectrum. The amount
of light removed, by block1n§ or absorption, is Qetermined y the concentration and mate-
rial properties of t lorant. lor i t .a transmissive medium
like transparencies@cil ' ﬁﬁﬂﬁ ﬁﬁﬁ\?ﬁiﬂh colorant for subtractive
systems may be ink%‘! dyes, wax, or toners, the same amathematical re&r,esentation outlined
in previou ﬁﬁtﬂu ‘ i : : interest for imaging
in subtract?% syste sﬁﬂ ﬁﬁg{g m'ﬁrgiﬂmn@:ﬂly transmissive

material is defined as the ratio of the intensity of the light that passes through the material to

a source spectrum. This is illustrated

the intensity of the source. This is illustrated by

Iout
T = ) 2.35
I (2.35)

As a result, the optical density is defined by

d = —logio(T). (2.36)
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and is related to the physical density of the material. The inks can be characterized by their
density spectra, the N x 3 matrix D. Hence, the spectrum that is seen by the observer is
the product of an illumination source, the transmission of the ink, and the reflectance of the
paper. Since the transmissions of the individual inks reduce the light proportionately, the

output at each wavelength, A, is given by
g(A) = 1Nt (Mt (N)ts(N) (2.37)

where ¢;()) is the transmission of the ith ink and /() is the intensity of the illuminant. For
simplification, the reflectance of the paper is assumed perfect and is assigned the value of
1.0. The transmission of a particular colorant is related logarithmically to the concentration
of the ink on the page. The observed spectrum is©btained mathematically by

g = L[1072 (2.38)

where L is a diagonal matrixrépresenting an illuminant speetrum and c is the concentration
of the colorant. The concenirationalues are held between zero and unity and the matrix of
density spectra, D, representsithe densities-at the maximum concentration. The exponential

term is computed componentwise,1.¢.,
W 1071974 1078 (2.39)

This simple model ignores nonlinear interactions between colorant layers. For a re-
flective medium, the model requires an-additional diagonal matrix, which represents the
reflectance spectrum of the surface. For simplicity, this can be conceptually included in the
illuminant matrix L. The actual process for suBi_ra_c_tive color reproduction is much more
complicated and cannot, in general, be comprehenSii-/ely modeled by the equations described
here. Hence, these systems are usually characterized by look-up tables (LUTs) that capture
their input-output relationships empirically. The details of handling device characterizations
via LUTs are described in{75].

2.5.5 Color Spaces

The proper use and understanding of color spaces is necessary for the development of
color image, processing-methods that are optimal for the human visual system. Many algo-
rithms have been developed that process in an RGB color space without ever defining this
space in terms of the CIE color matching functions, or even in terms of the spectral responses
of R, G, and B. Such algorithms are nothing more than multichannel image processing tech-
niques applied to a three-band image, since there is no accounting for the perceptual aspect of
the problem. To obtain some relationship with the human visual system, many color image
processing algorithms operate on data in hue, saturation, lightness (HSL) spaces. Com-
monly, these spaces are transformations of the aforementioned RGB color space and hence
have no visual meaning until a relationship is established back to a CIE color space. To fur-
ther confuse the issue, there are many variants of these color spaces, including hue saturation
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value (HSV), hue saturation.i t f"(H.SI)', nd hue chroma intensity (HCI), some of which
have multiple definitions in te sforming from RGB. Since color spaces are of such
g w1$dlscuss them 1n details.

of & color space that make it more desirable and at-

importance and a subject

There are two primar
tractive for use in color devic its.computational expediency in transforming a given
set of data to the specific color space and 2) cggfgrmity of distances of color vectors in the
space to that observed perceptu lly'.b_y' ‘a humég%;@jecf 1.e., if two colors are far apart in
the color space, they look s1gn1ﬁcantly dlffereﬁto an observer with normal color vision.

Unfortunately, these two" clnterla are antagomstlc The color ¢ spaces that are most suited for

measuring perceptual dlﬁwmmmm Jand vice versa.

2.5.6 Uniform Color Spabes -

It is well publi¢ized that the psychovisnal:systemgsnonlinear-and extremely complex.
It cannot be modeled by“a simplé functien. The Sensitivity of the system depends on what is
being observed and the purpose of the obgervation. A measure of sensitivity that is consistent
with the observations Oi arbitrary scenes is well beyond our present edpabilities. However,
much work has been done to determine human color sensitivity in matching two color fields
that subtend only a small portion of the visual field. In fact, the color matching functions
(CMFs) of Figure 2.6 are more accurately designated by the solid angle of the field of view
that was used for their measurement. A two-degree field of view was used for those CMFs.

It is well known that mean square error is, in general, a poor measure of error in any
phenomenon involving human judgment. A common method of treating the nonuniform er-
ror problem is to transform the space into one where Euclidean distances are more closely
correlated with perceptual ones. As a result, the CIE recommended, in 1976, two transfor-
mations in an attempt to standardize measures in the industry. Neither of these standards
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achieve the goal of a uniform color space. However, the recommended transformations do
reduce the variations in the sensitivity ellipses by a large degree. In addition, they have an-
other major feature in common: the measures are made relative to a reference white point.
By using the reference point, the transformations attempt to account for the adaptive charac-
teristics of the visual system. The first of these transformation is the CIELAB space defined
by

(2.40)

. Yo
L* = 116(=)3 — 16 (2.41)

Y,

3] (2.42)
3] (2.43)
for (£-), (), (£) > 0.01. Thevalus P, Ee CIE tristimulus values of the
reference white under the refere J inati a , Z are the tristimulus values,
which are to be mapped tothe a D lo \‘\\\ s maps the reference white to
(L*,a*,b*) = (100,0,0). The q S ’ that ed values be greater than 0.01 is
an attempt to account for'the _,Qt I ) t cones become less sensitive

and the rods (monochrome gece : mesactives H - , a linear model is used at low

light levels.

ﬂﬂﬂ?ﬂﬂﬂiﬂﬂﬂﬂ‘ﬁ
Q‘W?Mﬂ‘im UAIINYAY



CHAPTER III

THE PROPOSED FRAMEWORKS

In this chapter, the two frameworks were proposed for improving the performance of
face hallucination. In Section 3.1, the first framework, Color Face Hallucination with Linear
Regression Model in MPCA, take the advantage of the MPCA. The second framework, Color

Face Super-Resolution Based on Tensor Patches Method, was introduced in Section 3.2.

3.1 Color Face Hallucination with Linear Regression Model in MPCA

The goal of this part 1s_terprepose a novel hallucination reconstruction, using the

.....

-----

can be defined as X" € RU@R#,RE and X! € R @R R’ which are the HR color
face image and LR color face image, respectively.

In this paper, we propose our method in many color models such as RGB, YCbCr,
HSV and CIELAB. For example, the training ifnéige sets X! and X can be described in
RGB model as X" € R"*2%3 apd xle R XJ?:'Xfrf‘: In addition, the index I; x I, x 3 is an
array of color pixels, where each color pixel is airifﬂet corresponding to the red, green, and
blue components of an RGB image: TERS

Following standard multilinear algebra, any tensor can be.expressed as the product

e~ T 2l T ~h3T
V= 2, U o 0, O G.1)

and
T T. T

P10 TGO 8L T 3.2)

where V' € R @R™® R and J! € R @RY2® R, with (P, < I}, P, < I, and Py < 3)
as the indeX of! HR traifing setiand (), € Vi, Qs < Jland Q4 < 12) 48 the index of LR
training set. The tensor'}); can capture most of the variations observed in'the original tensor
objects, assuming that these variations are measured by the total scatter. Therefore, two
sets of MPCA subspace projection are obtained, which are V! = [y ]; and V! = [y}, ];
respectively. In addition, we use [y, ;] to represent a tensor with v, ; as its (r, s, t)-th entry.
One can see that if the sets of fJ(l), 6(2), 6(3) are disjoint sets of orthonormal vectors

then the correlation between the decomposition coefficients can be suppressed. From the
model V" = f()!). When a generative model is used, f is actually a probability. Thus we
can consider the conditional probability P(J"|)!). When a new testing color face image
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(LR) X! is provided, the HR MPCA subspace projection is given by:
V" = argmax P(Y|)"). (3.3)
y

The HR color face image X" can be reconstructed by back-projection from the MPCA
subspace into the image tensor space as

Because each individual coefficient can be estimated separately, we have

Urse =, angmias P (y,.| V'), 3.5)

Yrysyt

From the assumption of low-corrélation betweenthe«coefficients in ))!, we can simplify this
2

probability in (3.5) as

! !
1) P Yo t19G5.05.05)- (3.6)
\
We can also rewrite [y, , Jfito awvegtor form as.

@1Q2Q3
P, 10" = L Runlvh). (3.7)

p—-]

We use Gaussian to model the probablhty 1 (3 7) as:

(yr H Wr: pyp)

~; 2 (3.8)

(yrlyp) R cexp{—

where c is a constant. This Gau551an model evaluates the welghted distance between the
projection coefficients. Equatlon (3.7) can be rewritten as

Q1Q2Q3 (y, — w
)
P{|Y") ~ cexp{— Z —””}- (3.9)
The Maximum Likelihoed estimate of (3.9) is given by
" = argmax log P(yp)"). (3.10)
Yr
We can express in a linear regression model as [76]
Q1Q2Q3
D Wi (3.11)
p=1
where
' Wrp
w,, = —2——. (3.12)
P Q10203

We can calculate the value of w. , from the HR and LR of training sets. Each training image
provides one equation to find w;., (p = 1,...,Q1Q2Q3) and the column vector formed by
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Figure 3.1: block diagram of color face hallueination with the linear regression model in
MPCA

-

the rth projection coefficients fortheFIR images be y”. In the same way, the column vector
formed by the pth projection coefficients for fpe corresponding LR set be yé and we can state
as: y-v
O i & = 3.13
¥ YL 30 0.0 W (3.13)

\ A

where ¢ ¢
id T
W, : [w:‘,li “'?v':a{:",@ngQg] Y (314)

After that w,. can be given by an Least-Square (ES) estimate:
i ik fasat 'jl’J

W =¥ Y aese) Y- (3.15)

3.2 Color Face Super-Resolution Based on Tensor Patch Method

In this sectiofi,, we apply"HOSVD tefisorpatch withinithe\well-known framework for
color face hallucination.“A-tensor structure provides'a“powerful mechanism to incorporate
information and interaction of these image ensembles, of multiple modalities at different
resolutionsgpMore precisely, given a training dataset of high-reésolutionface images, we blur
and subsample them with different Gaussian filters and sub-sampling factors, while keeping
the image size unchanged, so to generate a set of low-resolution training face images. To
further improve the modeling accuracy, we uniformly decompose these face images into
overlapped image blocks, and then obtain a hierarchical ensemble containing block-wise
face images at low- and high-resolution. With these training data in place, we can construct

a seventh-order tensor D. We use HOSVD to decompose D into

D=Zx 1 Uidens X2 Upi:cell X3 UpixelZ X4 Upatchl X5 Upatch? X6 Ucolor X7 Uresos (316)
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where tensor D groups these block-wise training images into a tensor structure, and the core
tensor Z governs the interactions between the seven mode factors. In (3.16), mode matrix
Uidens spans the parameter space of identity, U,;;c;1 and U,ze2 span the space of pixel in
x-axis and y-axis, Upqtcn1 and Upgeno span the space of patch in x-axis and y-axis, Ucgor
span the spaces of color space and U,..,s span the space of resolution.

To model high-resolution details for the purpose of face hallucination, we uniformly
decompose the low- and high-resolution face images into small overlapped patches, and
perform tensor modeling at patch level. We can hallucinate high-resolution image data with
all the decomposed patches. The final high-resolution face images are compositions of their
corresponding overlapped small patches.

We suppose that H; is the high-resolution coler images, S; is its low-resolution corre-
spondences to be synthesized and L; is any low-résoluiion color face input images. The task
comes as finding the maximum a posteriori(MAP) estimation of H; given L; which can be
formulated as

{Haatf p = drgimaky, g logP(Hy, 8, L, ) (3.17)

By applying Bayes rule, wedhave
B(H S JLj) =PH,; Sy, L) P(Si|L;) (3.18)

During the sequential procegsses of our face ﬂallucination, the high-resolution face image
is independently reconstructed: Based on the synthesized low-resolution image, the above
expression can be state as -

P(Hl,Sl|L1) — P(Hll—sl)P(SﬂLl)

= P(S[Hy) P(H)P($1[L:1). (3.19)
The high-resolution image'1s naturally composed from the two part:
H=H" +H", (3.20)

where H'™ represents facdefihagesiconfaining lows ahd’ thiddle=fréquency information, and
H" contains high-frequency-part. SinceH'™ contributes'the main part of after blurring and
subsampling, then the probability P(S|H) can be approximated as R(S/H™). Based on
(3.20), we also have P(H) = P(H"H")P(H""), and the estimation of H given H™ is
equivalent to'the estimation of H" given H"", we then reformulate probability P(S; |H;)P(H,)
as

P(S1|Hy)P(Hy) = P(S;[H{™)P(H}[H™)P(H[™).
= P(HY"|S,)P(H,|H™). (3.21)

We can rewrite probability P(S;|L;) as

P(S1[Ly) = P(Ly[S1) P(S1). (3.22)
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Probabilities P(L;|S;)P(S;), P(H™|S,) and P(H,|H'™) sequentially constrain S;, H.™ and
H;. This leads to a two-step sequential solution. In the first step, by using a global image-
based tensor, we can synthesize the low-resolution S;. In the second step, after obtaining Sy,
the H/™ and H, containing low-frequency, middle-frequency and high-frequency informa-
tion can be computed using the local patch-based tensor. In addition, the final high-resolution
H; is computed by maximizing P(H, |[H™).

3.2.0.1 Global Low-Resolution Color Face Image Synthesis

In this section, the synthesis S; is computed by maximizing probability P(L1|S;)P(S;).
Since L; and S; are the low-resolution given and synthesized face images with the same

modality, we regard their relationship as Gaussian
1
P(LlSy) = ?e:z;p{—HSl =i{|>/\} (3.23)

where f is a normalization genstant and J\ scales the variance.

In (3.16), if we index.ifito.its/basis subtensor at a particular modality m?, then the
subtensor containing the individual image data as in (3.16) can be approximated by G =
26 X1 Uidens X2 Upigern %4 Upm; 2 and we get Gt = Bg, x4 V We unfold it into matrix
representation and it becomes G 7 )V. Suppose G correspond to color face
images S, then we substitute for 81 mn (3 2%) resultmg n

1 r dd
P(Ly|Si) = ?cmp{—HB_G(q)lf_rV = Li|/A} (3.24)

In reality the given low-resolutionf.y and S, synthesized have the same modality. By setting

BG%TV = L,, we maximize (3.24) and approximately compute
V=B BG%T)*BGSYHTLl (3.25)
where (BG:}1 BGS)lT)_lBGSL)lT is.the pseudoinyerse of BGSL)IT.

3.2.0.2 Local Patch-Based and High-Frequency Residue Recovery in Color Face Im-
age Hallucination

To obtéin their hallucinated high-resolution, we maximize P(H\™|S;) using the local
patch-based multiresolution tensor. The inference of H™ from S is independent. In the
following, we take H™ as an example to illustrate this second process.

Since the training local multiresolution tensor is constructed from small overlapped
patches, we decompose the synthesized S; uniformly in the same way as decomposing train-
ing data, and factorize the likelihood P(H/™|S;) at patch level as

P(H™(S,) = H PH™ |Sy,.,.). (3.26)

Lpy,pg
p1,p2=1
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. . . . . lm .
Assuming A is the blurring and subsampling operator connecting Hlpl’p2 and S;,  inan
imaging observation model, we regard these processes as Gaussian, therefore

N
1
pEps) = [T eon{-lIAHY =S, .17/} (327)

p1,p2=1
where w is a normalization constant and 3 scales the variance.

Suppose the local multiresolution tensor in (3.16) has a basis tensor
BL = ZE X2 Upi:rell X3 Upirel2 X4 Upatchl X5 UpatchQ X6 Ucolor X7 Uresos- (328)

We index into this basis tensor at a particular resolution r and patch position p; and po,

yielding a basis subtensor
T T T
Be., p, = Zc X2 Upigais X3 Upiverz X6 Vet <4V, X5V, X7 V.. (3.29)

Then as described in Section (2)sthe subtensor containing the pixel data for that particular

patch can be approximated ase, 5, == B, - X V¥, and its unfolded representation is

O

g = Bpor V. Similarlyfwean obtain a subtensor for resolution 7 of the same patch

™P1,P2
mr

position, whichis L, | "= B of V. Suppose LT and LT correspond to Sy,

§ T,01,P2 r’,p1,p2
@ 1P

and Hl{:1 . , respectively; we substitute them 1 m (3.27)as

1 4 A
lm _ ok g ) ¥ - 2
PH™S) = ] e it HAI'?ng’)meV By VII%/6}. (3.30)
p1,p2=l Firy
We optimize the parameter V based on the constu-éjfion properties of the local multiresolu-

tion patch tensor, which suggests that the relation: bet.ween BL(l)T V and BL<1 r V observes

a basic imaging observation model through the blurring and sﬁlbps?ampling operator A. This

is consistent with the unigueness of the identity parameter vector in a tensor space as well.

By setting V =V, we can approximately compute Hlf:1 by 35

H" =B oA US, (3.31)

1
D 1P
P2 T

where U is the pseudoinverse of BL%LQ and is equal to (BLg’l)T BL%lT 2 )leL%lTpQ After
reconstructing all the patches at different positions, the.final hallucmated color face image
H'™ is simply a compasition of thelcorresponding hallucinated-small patches.

We recover the highest frequency part by patch learning from the high-resolution train-
ing data. The inference of H; from H/™ is independent. In the following, we take H; as an
example to illustrate how to hallucinate the final high-resolution face images.

We use a MRFs to model the H; to be inferred. By decomposing into H™ square

patches

P(H1|Hl1m) = (Hlm’Hl) (Hl)

= HPH IHy,)P(H,). (3.32)
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The difference between H; and H{™ is the high-frequency band information. Since the high-
frequency information depends on the lower-frequency band, we use the Laplacian image
Ly of H'™ to represent the middle-frequency band. To infer H;, we use the sum of squared

differences of Laplacian images as metrics to model H§:1 (Hlm|H1q) as

Q Q
[T PEEH )] eop—|| Ly - LH§2||2 (3.33)
q=1 q=1

where LH(“ are the Laplacian images from high-resolution training face images. Compar-

ing the Laplacian images LHzm with {LH(t)}t , from the training dataset, the patch H(t)
with LH(t) closest to LHzm 1S the most probable 0 be chosen as Hy,. Since we model the
high- resolutlon image as a MRFs, based on the HammersleyClifford theorem, P(H;) is a
product Hqu,Hm ®(Hy,, Hig) of eompatibility futiciions” ® (H,,, H,5) over all neighboring
pairs, where H,,, H;5 are one of themeighboring pateh pairs in a 4-neighbor system.

The compatibility function"®(#;,. H,;) is defined using the similarity of pixel values
on the overlapping area of the a€ighbering patches:

(L 5 )0 =10y~ On|°}, (3.34)

where Oy, , denotes the pixelg'of pat¢h Hy ove'ﬂapping with neighboring patch H,g, and vice
versa for Oy,,. We illustrate thi§ 4-neighbor system and the corresponding patch overlapping
relations, then H; estimated as 4

= -',J"ﬂ

@ ==
argmaxy, L] 20 [Hyy) [ ©(Hi,, Hig). (3.35)

q=1 ()

Solving probabilisrti,c‘(3.35) to obtain Hj is not a trivial taSk. We use the iterated con-
ditional modes (ICM) algorithm [77]. More specifically, we maximize P(Hlfg\qu) for all
patch positions ¢€{1, ..., J} to yield the initial maximum likelihood estimate of . Based on
this initial estimates-we, then pick a,random, pateh position g,and update the estimate of Hy,
03) o(H,,, Hip).
We repeat this random patch selection and updating process until conyerging to the final

using the current estimates of'its neighbors H,; by maximizing P (Hlm [Hi,) [

high-resolution image j.



CHAPTER IV

THE EXPERIMENTAL RESULTS

4.1 Image Databases

We used face images from a subset of FERET databases to form two data sets for train-
ing and testing images in four color models, which are RGB, YCbCr, HSV and CIELAB. The
experiments are conducted with a large number of face images from FERET data set [78,79]

and other collections, which consist of many différent races, illuminations and types of face

.

images.

4.1.1 FERET Database

|

The FERET database [78:79] contains 1199 individuals and 365 duplicate sets of im-
ages. There are images perSubjéct, one for each of the following facial expressions or con-
figurations: centerlight, with glasses, happy, léftilight, without glasses, normal, right-light,
sad, sleepy, surprised, and winks All sample inié[ges_.‘ of one person from the FERET database
are shown in Fig. 4.3. )

— [ = - e

e Cropping & o ——

Color Image [ e Resizing | New Image
Database ‘ - =" i I Database

Figure 4.1 Preprocessing diagram

4.2 Preprocessing

In some databases, we notice that the background, some possible transformations of
the object (scaling, rotation and translation) and sensor-dependent variations (for example,
automatic gain control calibration and bad lens points) could undermine the face halluci-
nation performance. This impact can be minimized by cropping and normalization. The

preprocessing of this dissertation is following to the diagram in Fig. 4.1.
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—

Figure 4.2 Cropping image

4.2.1 Cropping and Resizing \}3\‘ V///

In this dissertation, thecm pr@edu@nually implemented by human.

Each image was manually ixels. By attempting to align

images such that the faces a ition and at the same orientation.

dimensions by linear inte

was shown in Fig. 4.2.

Faue 43 Bl ol EJT?/JE@?! Bed & bBproposea agorith
422 No%am;]ﬁﬂ ﬂim mﬂ') VI El,] a E]

The normalization is to compensate for intensity variations. By

A
S — 4.1)
|lvec(A)]]
where A is the original image matrix, A’ is the normalized image matrix and ||vec(A)]|

represents to the norm of the vectorization of the image matrix.
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4.3 Experiments and Analysis on Color Face hallucination with Ten-

sorPCA subspace

In this section, we experimentally evaluate our proposed technique by using Tensor-
PCA methods. In our experiments, we randomly select 500 normal expression images of
different persons on the same light condition and other 50 images are used for testing. Ac-
cording to demand, we manually crop the interesting region of the faces and unify the images
to the size of (30 x 30).

In the degradation process, each testing image (LR) is introduced with Gaussian blur
with variance 1 and resized by down-sampling 2: (15 x 15), then we add Gaussian noise
with variance 107%. To establish a standard trainifig-data set, we aligned these face images
manually by hand, marking the‘loeation of 3 points: the eenters of the eyeballs and the lower
tip of the nose. These 3 points defin€ an affine warp, which'is used to warp the images into
a canonical form. We use Péak signal-to-noise ratio (PSNR) to evaluate the performance of
the facial reconstruction. '

We compare the hallucination results between he traditional PCA and tensorPCA by
vary both of the number of principal componé‘nt,i.from 90 to 100 percent PCA. The experi-
mental results are shown in Figs 4.4-4.7: (a) “"Qriginal HR images (30 x 30), (b) input LR
images (15 x 15) with noise, motion-and blur in LR images, (c)-(e) face hallucination result
with 90, 95 and 100 percent traditional PCA fe?spectively, (f)-(h) face hallucination result
with 90, 95 and 100 percent tensorPCA respecti\ély;"

From the traditional PCA method, the colo.fjf_z_lﬂ'c_erimage has to be converted to a vector
representation. Then, we ¢an see that from the hallucinatedrestlts in Fig. 4.4-4.7 (c)-(e), it
can hardly maintain globat'smoothness and visual rationality, €specially on location around
color face contour and margin of the nose and the mouth:” In addition, the results have
some noise around the eyes and mouth. On the other hand, the hallucinated results from the
tensorPCA method. in Fig. 4.4:4v7 (f)-(h) can reéeonstruct the reasonable color face images
which are compared with the greound truth color.face images in Fig: 4.4-4.7 (a). In Fig. 4.4-
4.7, the outcomes we get in HSV color space show that the color distort from the original
HR images-~Additionally, the details imjourhallucination results such as,eyes, noses, lips and

eyebrows quite differ from the original HR ‘images.
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Figure 4.4: Color hallucin es|in
(30 x 30); (b) input LR i 5) With ion and blur in LR images; (c)
face hallucination result wi o it CA; face hallucination result with
95 percent traditional PCA; lucir
(f) face hallucination res
percent tensorPCA; (h) face

Figure 4.5: Color hallucinated face images in YCbCr color model. (a) original HR images
(30 x 30); (b) input LR images (15 x 15) with noise, motion and blur in LR images; (c)
face hallucination result with 90 percent traditional PCA; (d) face hallucination result with
95 percent traditional PCA; (e) face hallucination result with 100 percent traditional PCA;
(f) face hallucination result with 90 percent tensorPCA; (g) face hallucination result with 95
percent tensorPCA; (h) face hallucination result with 100 percent tensorPCA;
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Figure 4.6: Color hallucin
(30 x 30); (b) input LR im
face hallucination result with*©
95 percent traditional PCA; (g
(f) face hallucination resu

: .H—B'\mxodel. (a) original HR images

ith noise, motion and blur in LR images; (c)
i l“--PCA; face hallucination result with
sult “:mgh 100 percent traditional PCA;

rcent (ense face hallucination result with 95
percent tensorPCA; (h) face ha 198 -"'“ Wi percent tensorPCA;

() (b) (c) (d) (e) () (9 (h)

Figure 4.7: Color hallucinated face images in CIELAB color model. (a) original HR images
(30 x 30); (b) input LR images (15 x 15) with noise, motion and blur in LR images; (c)
face hallucination result with 90 percent traditional PCA; (d) face hallucination result with
95 percent traditional PCA; (e) face hallucination result with 100 percent traditional PCA;
(f) face hallucination result with 90 percent tensorPCA; (g) face hallucination result with 95
percent tensorPCA; (h) face hallucination result with 100 percent tensorPCA;
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Table 4.1: PSNR results of the facial images with traditional PCA and tensorPCA methods
in Fig. 4.4 for RGB color model.

Case first row | second row | third row | fourth row
1) 90 percent PC A 24.05dB | 30.13dB |23.40dB | 23.98 dB
2) 95 percent PC'A 24.13dB | 30.39dB |23.77dB | 24.09 dB
3) 100 percent PC' A 2434 dB | 30.67dB |2398dB | 24.32dB
4) 90 percent tensorPCA | 26.63dB | 35.63dB |27.61dB | 29.88 dB
5) 95 percent tensor PC'A 36.69dB | 28.33dB | 30.60 dB

6) 100 percent tensor PCA |- dB | 28.61dB | 30.82dB

Table 4.2: PSNR results
in Fig. 4.5 for YCbCr color
Case
1) 90 percent PC A
2) 95 percent PC'A
3) 100 percent PC'A

CA and tensorPCA methods

row third row | fourth row

23.61 dB | 24.07 dB
2398 dB | 24.22 dB
2422 dB | 24.64 dB
4) 90 percent tensor PC A 27.67dB | 30.09 dB
5) 95 percent tensor PCA™ . 28.45dB | 30.58 dB
6) 100 percent ii-L-é B | : .64 dB | 30.78 dB

7 g
AUYANYNTNYNS

Table 4.3: PSNR reSults of the facial im?ges with traditional PCA and tensorPCA methods
i _ ./

I

in Fig. 4.6 =) . ~
1) 90 percent PC'A 22.86dB | 26.85dB | 22.51dB | 22.77dB
2) 95 percent PCA 23.02dB | 27.04dB | 22.87dB | 22.91dB
3) 100 percent PC A 23.24dB | 27.63dB | 23.06dB | 23.12dB

4) 90 percent tensorPCA | 26.58dB | 30.91dB | 27.60dB | 29.34 dB
5) 95 percent tensorPCA | 27.19dB | 31.05dB | 27.79dB | 29.51 dB
6) 100 percent tensorPCA | 27.58 dB | 31.12dB | 27.85dB | 29.60 dB
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Table 4.4: PSNR results of the facial images with traditional PCA and tensorPCA methods
in Fig. 4.7 for CIELAB color model.

Case first row | second row | third row | fourth row
1) 90 percent PC A 2442 dB | 30.66dB |23.82dB | 24.13dB
2) 95 percent PC'A 24.67dB | 31.03dB |24.01dB | 24.36dB
3) 100 percent PC'A 2493dB | 31.78dB |24.34dB | 24.79dB

4) 90 percent tensorPCA | 29.48dB | 36.41dB |27.90dB | 30.45dB
5) 95 percent tensorPCA | 31.54dB | 37.03dB | 28.28dB | 31.42dB
6) 100 percent tensorPCA | 31.97dB | 40.29dB | 28.60dB | 31.63 dB

In Table. 4.1-4.4, we show th : m the hallucinated images in Fig.
4.4-477. We can see that the$0 sorPCA has more PSNR values

compared with the traditio odel, at the same percentage

of eigenvalues 90, 95 and d ca ive more higher the PSNR values
than the traditional PCA ab ] 5¢ . B and 4.63-9.37 dB respectively.
However, in HSV color space !
also give more higher the
6.60 dB and 3.49-6.48 dB at
Moreover, the PSNR results 1 AB color$] ¢ best performance among color

spaces.

AUEINENINYINg
ARIAN TN INGINY
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4.4 Experiments and Analysis on Color Face hallucination with Linear
Regression Model in MPCA

In this experiment, the MPCA is used to perform principal component analysis of
the training images and we investigate the performance of our proposed method in sense
of impact of number of eigenvalues, impact of training set size, robustness to noise and

complexity respectively.

4.4.1 Impact of Number of Eigenvalues

The MPCA is used to perform principal/Cotaponent analysis of the training images.
Some sample results which compared between the iensorPCA and MPCA are shown in Fig.
4.8-4.11. The figures are organized as followed: column (a) the original HR (30 x 30)
color images; (b) input the LR*€oler smages (15 x 15) with noise, motion and blur; (c)-
(e) face hallucination results with Fraditionall PCA method; (f)-(h) face hallucination results
with linear regression model in MPCA and: the number of eigenvalue is varied from 90
to 100 percent. Compared with the/input image and the traditional PCA method result, the
hallucinated face images fromuthe linear regression model in MPCA have much clearer detail
features. As shown in Fig.#4.8:4.11 (c), (d) and (e), with traditional PCA method, we can
observe that dirty disturbance/in the global recoijsti'ucted images and the results have some
noise around the eyes and mouth. In addition, _;a_-li thh.e PSNR results in different both color
space and the number of PCA are shown in Table. 4,'.:5—4.8. As we can see, the PSNR values
from the MPCA method are significantly higher than the traditional PCA method.

Additionally, we compare between the hallucination method with linear regression
model in MPCA and other traditional methods such as bilinear interpolation and Liu method
[80]. All the results are shown in Fig. 4.12-4.15:(a) the original HR (30 x 30) color images;
(b) input the LR color images (15 x 15) with noise, motion and blur; (c) face hallucination
result with bilinear intérpolation'method; (d) face hallucination result with Liu method and
(e)-(g) face hallucination results with linear regression model in MPCA and the number of
eigenvalue is varied from 90 to 100 percent. We can see:that the performance of hallucination
by our proposed method is much better. Likewise, the hallueinationiresults from bilinear
interpolation‘method, which are displayed in Fig. 4.12-4.15 (c), cannot reconstruct the facial
images because this method is unable to solve noise, motion and blur problems.

Noticed from the figures, the performance of our proposed algorithm depends on the
number of the PCA. We can remark from the facial results in Fig. 4.8-4.15 that they tend
to produce sharper facial features, clear eyelids and mouth. In particular, if our algorithm is
implemented with 100 percent of PCA, the results will become similar to the original HR
facial images. The outcomes we get in HSV color space show that the color distort from the

original HR images. Additionally, the details in our hallucination results such as eyes, noses,
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lips and eyebrows quite differ from the original HR images.

We also compare the performance which are shown in Fig. 4.16-4.19 between tensor-
PCA and MPCA method. Since the the tensorPCA method does not realize the correlation
between each color channel in a color system. For this reason, in Table. 4.9-4.12, in each
hallucinated facial image from our proposed technique has more the PSNR values than the
tensorPCA method about 0.2-0.3 dB. All the PSNR results in different both color space and
the number of PCA are shown in Table. 4.9-4.10. We can see that our method has the highest
PSNR values compared with other methods on all test faces. The PSNR results in CIELAB
color space are the best performance among color spaces. However, in HSV color space the

PSNR results in Table. 4.9-4.12 are less fa pe than other color spaces.
Z.

AULINENINYINT
AN TUNM NN Y
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Figure 4.8: Color hallucin Ao

(30 x 30); (b) input LR imag ‘( 45) vith n i d blur in LR images; (c) face
hallucination result with 9Qspercehifiaditi n ;(d hallucination result with 95
percent traditional PCA; (e) face ha : £ 1'Tes fh::-l\OO percent traditional PCA; (f)
face hallucination result with 90'percent. \ PCA,; allugination result with 95 percent

MPCA; (h) face hallucination resv

Figure 4.9: Color hallucinated face images in YCbCr color model. (a) original HR images
(30 x 30); (b) input LR images (15 x 15) with noise, motion and blur in LR images; (c) face
hallucination result with 90 percent traditional PCA; (d) face hallucination result with 95
percent traditional PCA; (e) face hallucination result with 100 percent traditional PCA; (f)
face hallucination result with 90 percent MPCA; (g) face hallucination result with 95 percent
MPCA; (h) face hallucination result with 100 percent MPCA;
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Figure 4.10: Color hallucinated Face-iin
(30 x 30); (b) input LR imag ﬂ';/ /.
hallucination result with 9Qgpercent/traditi
percent traditional PCA; (e) faCe ha l i
face hallucination result with 90'pe
MPCA; (h) face hallucination res

oe ;nm-mn\lwdel. (a) original HR images
i \,ise, ti d blur in LR images; (c) face
A (d) hallucination result with 95

i%fi}l\OO percent traditional PCA; (f)
1lucination result with 95 percent

Figure 4.11: Color hallucinated face images in CIELAB color model. (a) original HR images
(30 x 30); (b) input LR images (15 x 15) with noise, motion and blur in LR images; (c) face
hallucination result with 90 percent traditional PCA; (d) face hallucination result with 95
percent traditional PCA; (e) face hallucination result with 100 percent traditional PCA; (f)

face hallucination result with 90 percent MPCA; (g) face hallucination result with 95 percent
MPCA; (h) face hallucination result with 100 percent MPCA;



43

Figure 4.12: Color hallucina 128S,
RGB color model. (a) originél HR' imag: | \ ut LR images (15 x 15) with
noise, motion and blur in L. Réimages: | - ult with bilinear 1nterp01at10n
method; (d) face hallucinatiogfrest
percent MPCA; (f) face
result with 100 percent MPCA;

Figure 4.13: Color hallucinated face images, compared with other traditional methods in
YCbCr color model. (a) original HR images (30 x 30); (b) input LR images (15 x 15) with
noise, motion and blur in LR images; (c) face hallucination result with bilinear interpolation
method; (d) face hallucination result with Liu method; (e) face hallucination result with 90
percent MPCA; (f) face hallucination result with 95 percent MPCA; (g) face hallucination
result with 100 percent MPCA;
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Figure 4.14: Color hallucina ace” fhages, coimpare h other traditional methods in
HSV color model. (a) origimal HR" i .l \:;E%hput LR images (15 x 15) with
noise, motion and blur in LR gE S / T > ha 1 i ult with bilinear interpolation
method; (d) face hallucinatiogfrest Yfl ‘

percent MPCA; (f) face hallucination g;sq—_t- réent MPCA; (g) face hallucination

result with 100 percent MPCA; h

“.

T@ (b) (© (@ () Q) @

Figure 4.15: Color hallucinated face images, compared with other traditional methods in
CIELAB color model. (a) original HR images (30 x 30); (b) input LR images (15 x 15) with
noise, motion and blur in LR images; (c) face hallucination result with bilinear interpolation
method; (d) face hallucination result with Liu method; (e) face hallucination result with 90

percent MPCA; (f) face hallucination result with 95 percent MPCA; (g) face hallucination
result with 100 percent MPCA;



45

Figure 4.16: Color hallucin nage %-—between TensorPCA and MPCA
in RGB color model. (a) origimal HR images (3 :(b) input LR images (15 x 15)
with noise, motion and blur i ' face I ucination result with 90 percent
tensorPCA; (d) face halluefhatioh stiit with 9: MR e rPCA; (e) face hallucination
result with 100 percent tengorP€A: ace ation result with 90 percent MPCA;
(g) face hallucination result )5 drcéj}" PCA; face hallucination result with 100

percent MPCA; y . i

f ) .
g T —— -

7
q

Figure 4.17: Color hallucinated face images, compared between TensorPCA and MPCA in
YCbCr color model. (a) original HR images (30 x 30); (b) input LR images (15 x 15)
with noise, motion and blur in LR images; (c) face hallucination result with 90 percent

Yl 3) bléd & Vel

(b)

tensorPCA; (d) face hallucination result with 95 percent tensorPCA; (e) face hallucination
result with 100 percent tensorPCA; (f) face hallucination result with 90 percent MPCA;
(g) face hallucination result with 95 percent MPCA; (h) face hallucination result with 100
percent MPCA;
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between TensorPCA and MPCA
; (b) input LR images (15 x 15)
ucination result with 90 percent
tensorPCA; (d) face hall i - with 98 Q sorPCA; (e) face hallucination
result with 100 percent te b ion result with 90 percent MPCA;
(g) face hallucination result ce hallucination result with 100
percent MPCA;

- -..-1.-.-- -

h (b :‘" W © ] !".._‘ l' ©)

3 \

Figure 4.19: Color hallucinated face images, compared between TensorPCA and MPCA in
CIELAB color model. (a) original HR images (30 x 30); (b) input LR images (15 x 15)
with noise, motion and blur in LR images; (c) face hallucination result with 90 percent
tensorPCA; (d) face hallucination result with 95 percent tensorPCA; (e) face hallucination
result with 100 percent tensorPCA; (f) face hallucination result with 90 percent MPCA;
(g) face hallucination result with 95 percent MPCA; (h) face hallucination result with 100
percent MPCA;
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Table 4.5: PSNR results of the facial images with traditional PCA and MPCA methods in
Fig. 4.8 for RGB color model.

Case first row | second row | third row | fourth row
1) 90 percent PC'A 24.05dB | 30.13dB | 23.40dB | 23.98 dB
2) 95 percent PCA 24.13dB | 30.39dB | 23.77dB | 24.09 dB
3) 100 percent PC'A 24.34dB | 30.67dB | 23.98dB | 24.32dB
4) 90 percent MPCA | 26.88dB | 3591dB | 27.89dB | 30.14 dB
5) 95 percent MPCA | 31.15dB | 3691dB | 28.53dB | 30.78 dB
6) 100 percent MPCA | 31.35dB | 40.23dB | 28.74dB | 30.98 dB

Table 4.6: PSNR results of the E@Tﬂ% ional PCA and MPCA methods in
756 tow

Fig. 4.9 for YCbCr color mode —
Case TOW | ;@hlrd row | fourth row
# 4 A
1 3021.dB"|.23.61 dB | 24.07 dB

51 2398 dB | 24.22 dB

3) 100 percent P 22dB | 24.64 dB
4) 90 percent M BE" B+ 36.38 dB \N% dB | 30.13dB
r B, % _:‘

5) 95 percent M PG l @ Zﬂ ausw 137.04 dB %8.57 dB | 30.69 dB
6) 100 percent M 402 8.84dB | 30.88 dB

!!!!!!

In Fig. 4.20 - 4.22 show examples of hallucinated face ifages based on a different
' ctween the results using 120 and
240 training samples. This shows t at our hallucination al gorithm can achieve satisfactory
results even based on a relatively small training,set. However, when the training set is too

small, 60 training ﬂnﬁs Ejaﬁ% wﬂwﬁlwﬁ ’Tﬂﬁ rendered.
AR a\‘lﬂ‘ml UAIINLAY



Table 4.7: PSNR results of the facial images with traditional PCA and MPCA methods in

Fig. 4.10 for HSV color model.

Table 4.8: PSNR results
Fig. 4.11 for CIELAB colo

4.16

od

Case first row | second row | third row | fourth row
1) 90 percent PC A 22.86dB | 26.85dB | 22.51dB | 22.77dB
2) 95 percent PC A 23.02dB | 27.04dB | 22.87dB | 2291 dB
3) 100 percent PC'A 23.24dB | 27.63dB | 23.06dB | 23.12dB
4) 90 percent MPCA | 26.85dB | 31.02dB | 27.71dB | 29.41 dB
5) 95 percent M PC' A 1.18dB | 27.87dB | 29.59 dB
6) 100 percent M PC' A 27.96 dB | 29.63 dB

CA and MPCA methods in

Case lri 5 v | third row | fourth row
1) 90 percent PC %‘#& §3.82 dB | 24.13dB
2) 95 percent PCA ’ 4.67dB | 31.03dB | 24.01 dB | 2436 dB
3) 100 percent PCA %ﬁB?—dB:‘ , dB | 2434dB | 24.79dB
4) 90 percent M PC' A dB | 28.01dB | 30.58 dB
) 95 percent MPC AL S166db | 28.35dB | 31.52dB

32.0848 31.69 dB

AUYANYNTNYNS

Table 4.9: PSNR ré8ults of the facial i images with tennsorPCA and MIEE’ZA methods in Fig.

forR%Wﬂn [ TaTal Wl - Ila¥Wa |

Case™¥ W‘edndrﬂ (third row | fourth row
1) 90 ];'ercent tensorPCA | 26.63dB | 35.63dB | 27.61dB | 29.88 dB
2) 95 percent tensorPCA | 3096 dB | 36.69dB | 28.33dB | 30.60 dB
3) 100 percent tensorPC A | 31.18dB | 40.04 dB | 28.61 dB | 30.82 dB
4) 90 percent MPCA 26.88dB | 3591dB |27.89dB | 30.14dB
5) 95 percent M PC A 31.15dB | 3691dB | 28.53dB | 30.78 dB
6) 100 percent M PCA 31.35dB | 40.23dB | 28.74dB | 30.98 dB




49

Table 4.10: PSNR results of the facial images with tensorPCA and MPCA methods in Fig.

4.17

Table 4.11: PSNR results

4.18

for YCbCr color model.
Case first row | second row | third row | fourth row
1) 90 percent tensor PCA | 26.71 dB | 36.08dB | 27.67dB | 30.09 dB
2) 95 percent tensorPCA | 30.98dB | 36.87dB | 28.45dB | 30.58 dB
3) 100 percent tensorPCA | 31.32dB | 40.13dB | 28.64dB | 30.78 dB
4) 90 percent M PC A 27.03dB | 36.38dB |27.93dB | 30.13dB
5) 95 percent M PC'A 37.04dB | 28.57dB | 30.69 dB
6) 100 percent MPC A dB | 28.84 dB | 30.88 dB

for HSV color model.
Case

1) 90 percent tenso

2) 95 percent tensor P ﬂ

3) 100 percent tensor PCA

4) 90 percent MPC A

and MPCA methods in Fig.

5) 95 percent MPA

6) 100 percent

/)
e

LV Ion

7

|"third row | fourth row
1 27.60dB | 29.34 dB
27.79dB | 29.51 dB
27.85dB | 29.60 dB
02dB | 27.71dB | 29.41 dB
3 ‘217.87 dB | 29.59dB
27.75dB + 3122 dB 02796 dB | 29.63 dB

¢ a Y
\ \ ‘
AUBINENITNEING
Table 4.12: PSNR f@ults of the facial ilz;ages with tensorPCA and ME-(’ZA methods in Fig.
=
DAMONDIM O

4.19 for C or"
AN TN TT a0 ot B iR

ir urth row
1) 90 pqercent tensorPCA | 2948 dB | 36.41dB |27.90dB | 30.45dB
2) 95 percent tensor PCA | 31.54dB | 37.03dB | 28.28dB | 31.42dB
3) 100 percent tensorPCA | 31.97dB | 40.29dB | 28.60dB | 31.63 dB
4) 90 percent MPCA 29.59dB | 36.48dB | 28.01dB | 30.58 dB
5) 95 percent M PC A 31.66dB | 37.11dB |28.35dB | 31.52dB
6) 100 percent M PCA 32.08dB | 40.35dB | 28.69dB | 31.69 dB
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model. (a) original HR image )y (b) input LR imiages (15 x 15) with noise variance

Figure 4.20: Color hallucirmt(j‘:aoﬂé)n ges with traiging set size 60 images in RGB color

1075, motion and blur in LR i ¢ fa hallucination result with 90 percent MPCA;

Figure 4.21: Color hallucinated face images with training set size 120 images in RGB color
model. (a) original HR images (30 x 30); (b) input LR images (15 x 15) with noise variance
10~°, motion and blur in LR images; (c) face hallucination result with 90 percent MPCA;
(d) different image of face hallucination result with 90 percent MPCA; (e) face hallucination
result with 95 percent MPCA; (f) different image of face hallucination result with 95 percent
MPCA; (g) face hallucination result with 100 percent MPCA; (h) different image of face
hallucination result with 100 percent MPCA;
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4.4.3 Robustness to Noise

i.r s

In this section, we_add zero rnea-n Gauss{ﬁ‘hﬁlse wi }Variance 1076, 2.5 x 1075,
2.5 x 107* and 1073 todMWﬂlts are shown in Fig. 4.23-
4.38: (a) the original H‘Rﬁﬁo x 30) color images; g}- e LR color images (15 x
15) with different noise Vgﬁance ; (©), (e) and (g) face hgﬂucination result with MPCA
method; (d), (f) and (h) differ@n&mage of face hﬁl}ucination results. We can observe that the

recons'fmcted colo ,: ‘:Eén%ﬂ%?jdﬁfrﬁt ?lfq}fgéwrﬁre*rﬁ'tstgrtlon and retain most of
¢

the facial character‘1

F

ARIAINTUURINYIAY
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(a) original HR images (30 .

motion and blur in LR ima

Figure 4.24: Color hallucinated face images with noise variance 2.5 x 107° in RGB color
model. (a) original HR images (30 x 30); (b) input LR images (15 x 15) with noise variance
10~°, motion and blur in LR images; (c) face hallucination result with 90 percent MPCA;
(d) different image of face hallucination result with 90 percent MPCA; (e) face hallucination
result with 95 percent MPCA;; (f) different image of face hallucination result with 95 percent
MPCA; (g) face hallucination result with 100 percent MPCA; (h) different image of face
hallucination result with 100 percent MPCA;
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Figure 4.25: Color hallucmgtgg,faee’lmage with" nowance 2.5 x 107* in RGB color
model. (a) original HR image

10~*, motion and blur in LR i

) (b) input LR images (15 x 15) with noise variance

Figure 4.26: Color hallucinated face images with noise variance 1072 in RGB color model.

(a) original HR images (30 x 30); (b) input LR images (15 x 15) with noise variance 1073,
motion and blur in LR images; (c) face hallucination result with 90 percent MPCA; (d)
different image of face hallucination result with 90 percent MPCA; (e) face hallucination
result with 95 percent MPCA;; (f) different image of face hallucination result with 95 percent
MPCA; (g) face hallucination result with 100 percent MPCA; (h) different image of face
hallucination result with 100 percent MPCA;
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Figure 4.27: Color hallucinagzg_ﬂa&ﬁna es with noiéegyégi&nce 107 in YCbCr color model.

(a) original HR images (30 M i

nput LR images (15 x 15) with noise variance 1075,
motion and blur in LR ima ha ucination result with 90 percent MPCA; (d)

Figure 4.28: Color hallucinated face images with noise variance 2.5 x 10~° in YCBCr color

model. (a) original HR images (30 x 30); (b) input LR images (15 x 15) with noise variance
10~°, motion and blur in LR images; (c) face hallucination result with 90 percent MPCA;
(d) different image of face hallucination result with 90 percent MPCA; (e) face hallucination
result with 95 percent MPCA; (f) different image of face hallucination result with 95 percent
MPCA; (g) face hallucination result with 100 percent MPCA; (h) different image of face
hallucination result with 100 percent MPCA;
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Figure 4.29: Color hallucmaﬁ_gfase-rm

model. (a) original HR image
10~%, motion and blur in LR i A fa hallucination‘result with 90 percent MPCA;

ages 1th noiseyariance 2.5 X 10~* in YCbCr color

;(b) input LR images (15 x 15) with noise variance

Figure 4.30: Color hallucinated face images with noise variance 102 in YCbCr color model.

(a) original HR images (30 x 30); (b) input LR images (15 x 15) with noise variance 1073,
motion and blur in LR images; (c) face hallucination result with 90 percent MPCA; (d)
different image of face hallucination result with 90 percent MPCA; (e) face hallucination
result with 95 percent MPCA; (f) different image of face hallucination result with 95 percent
MPCA; (g) face hallucination result with 100 percent MPCA; (h) different image of face
hallucination result with 100 percent MPCA;
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Figure 4.31: Color hallucinated face~ images with nmseg&g_ance 1075 in HSV color model.
(a) original HR images ( 30}39‘)/'

nput LR images (15 x 15) with noise variance 10~°,
motion and blur in LR images: ha ueination result with 90 percent MPCA; (d)

Figure 4.32: Color hallucinated face images with noise variance 2.5 x 10~ in HSV color

model. (a) original HR images (30 x 30); (b) input LR images (15 x 15) with noise variance
10~°, motion and blur in LR images; (c) face hallucination result with 90 percent MPCA;
(d) different image of face hallucination result with 90 percent MPCA; (e) face hallucination
result with 95 percent MPCA; (f) different image of face hallucination result with 95 percent
MPCA; (g) face hallucination result with 100 percent MPCA; (h) different image of face
hallucination result with 100 percent MPCA;
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model. (a) original HR image

10~*, motion and blur in LR i

e fa hallucination result with 90 percent MPCA;
rps_ul‘g w‘ith 90 percent MPCA; (e) face hallucination

; (b) input LR images (15 x 15) with noise variance

enﬁnﬁge of face hallucination result with 95 percent

Figure 4.34: Color hallucinated face images with noise variance 10~ in HSV color model.

(a) original HR images (30 x 30); (b) input LR images (15 x 15) with noise variance 1073,
motion and blur in LR images; (c) face hallucination result with 90 percent MPCA; (d)
different image of face hallucination result with 90 percent MPCA; (e) face hallucination
result with 95 percent MPCA;; (f) different image of face hallucination result with 95 percent
MPCA; (g) face hallucination result with 100 percent MPCA; (h) different image of face
hallucination result with 100 percent MPCA;
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Figure 4.35: Color hallucin;a.t_gd_.faée images witill"newriance 10=% in CIELAB color

model. (a) original HR imaw ) (b) input LR images (15 x 15) with noise variance
1075, motion and blur in LR i A& hallucination result with 90 percent MPCA;

(h)

Figure 4.36: Color hallucinated face images with noise variance 2.5 x 10~ in CIELAB color
model. (a) original HR images (30 x 30); (b) input LR images (15 x 15) with noise variance
10~°, motion and blur in LR images; (c) face hallucination result with 90 percent MPCA;
(d) different image of face hallucination result with 90 percent MPCA; (e) face hallucination
result with 95 percent MPCA;; (f) different image of face hallucination result with 95 percent
MPCA; (g) face hallucination result with 100 percent MPCA; (h) different image of face
hallucination result with 100 percent MPCA;
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Figure 4.37: Color hallucinated faceimages with noise.variance 2.5 x 10~* in CIELAB color

model. (a) original HR imW ;(b) input LR images (15 x 15) with noise variance
10~%, motion and blur in LR i A fa hallucination‘result with 90 percent MPCA;

Figure 4.38: Color hallucinated face images with noise variance 10~ in CIELAB color
model. (a) original HR images (30 x 30); (b) input LR images (15 x 15) with noise variance
1073, motion and blur in LR images; (c) face hallucination result with 90 percent MPCA;
(d) different image of face hallucination result with 90 percent MPCA; (e) face hallucination
result with 95 percent MPCA; (f) different image of face hallucination result with 95 percent
MPCA; (g) face hallucination result with 100 percent MPCA; (h) different image of face
hallucination result with 100 percent MPCA;



Table 4.13 comparison of complexity (execution time) with training set size 60 images

Case 90 percent 95 percent 100 percent
1) M PC'A method 14.403683 s. | 14.676264 s. | 15.586928 s.
2) tensor PC' A method | 14.756412 s. | 14.935647 s. | 15.894112 s.
3) normalize 1.0244 1.0176 1.0195

60

Table 4.14 comparison of complexity (execution time) with training set size 120 images

4.4.4 Complexity

\
\

Case 90 percent 95 percent | 100 percent
1) M PCA method 28.424068 s. | 29.345926's. | 31.406217 s.
2) tensor PC'A method | 31.327327¢s4| 31.368005 s. | 32.325575 s.
3) normalize 1.1021 1.0176 1.0292

J

With regard to the computational comp%exr[y, we compare the execution time between
our method and tensorPCA in/RGB éolor model [33]. We test this experiment on a desktop-
computer which is implemented on Mlcrosoft Windows XP Professional 64 bits (version
2003), Intel(R) Core(TM)2 €PU 6600 with 2;8 GH and 3 GB of RAM and the result can
be shown in Table. 4.13 - 4.16. For hallucmatlon in MPCA method with 60, 120, 240 and
500 training sample images, the time in' EhlS s1mulat10n 18 about 14.40-15.58 seconds, 28.42-
31.40 seconds, 58.70-65.27 seconds.-ancL 1 20.60&2‘.60 seconds respectively. However, with
60, 120, 240 and 500 training sample 1mages, t}; ‘method in [33] has a total time of 14.75-
15.89 seconds, 31.32-32. 32 seconds, 61.01-67.99 seconds and/ 132 99-133.69 respectively.

Moreover, in Table 4 13- 4.16, the tensorPCA method 11;1 independent channel color

takes 1.01-1.1 times our algorlthm time to implement similar tesults. The complexity of our
algorithm, color face hallucination with MPCA, is less than the method in [33] because the
MPCA can simultaneously.reduce the dimension of data tensor.(color face images) in PCA

processes.



61

Table 4.15 comparison of complexity (execution time) with training set size 240 images

Case 90 percent 95 percent | 100 percent

1) MPCA method 57.800732 s. | 58.412280 s. | 65.276072 s.
2) tensor PC'A method | 61.019110s. | 64.011103 s. | 67.990804 s.
3) normalize 1.0556 1.0958 1.0415

Table 4.16 comparison of complexity (execution time) with training set size 500 images

Case 90 percent 95 percent 100 percent

1) MPCA method 122.589145 s. | 132.603396 s.
2) tensor PC'A method 133.696668 s.
3) normalize 1.0082

4.4.5 Partially Occlude

" "\j"'-.,

In this experiment, \ o provides an ability to deal
with the partially occlude i ect is used. Since the MPCA
image patch. The experimentalresults aEe ywn in Fig. 4.39-4.42 (a) original HR images
(30 x 30); (b) input LR ima x ;@J ith, noi otion, blur and left eye occluded;
(c) face hallucination result wit 1009@% nt ' onal PCA; (d) face hallucination result

[P

with bilinear method and (e) face hﬁﬂif:ma est alt with 95 percent MPCA. We can see

li_sticcolo fac |
ﬂ‘iJEJ’J'VlEJV]’EWEﬂﬂ‘ﬁ
AR a\‘lﬂ‘ﬁw UAIINYIAY

in MPCA can reconstru



62

Figure 4.39: Partially oc%
HR images; (b) input L ¥ d

hallucination result in RGB ¢olo
nation result in RGB color model
color model with 95 perceni

Figure 4.40: Partially occluded face hallucination results in YCbCr color model. (a) original
HR images; (b) input LR images with noise, motion, blur and left eye occluded; (c) face
hallucination result in YCbCr model system with 100 percent traditional PCA; (d) face hal-
lucination result in YCbCr model system with bilinear method; (e) face hallucination result
in YCbCr model system with 95 percent MPCA;
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Figure 4.41: Partially occ
HR images; (b) input LR 1 1 blur and left eye occluded in HSV color
model; (c) face hallucination e ult Smlor del with 100 percent traditional PCA;
(d) face hallucination result in HSV ¢ lpr mod 11)1 h bilinear method; (e) face hallucination
result in HSV color model with 9 rcent' MPC A;

i ’ J! ," q

L2 1'

ici n rMSV color model. (a) original

Q, ot1 0

* o

-
-
!'~'J
5

.

-
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'

LR L hesl L

(a) (b) () (d) (e)

Figure 4.42: Partially occluded face hallucination results in CIELAB color model. (a) orig-
inal HR images; (b) input LR images with noise, motion, blur and left eye occluded in
CIELAB color model; (c) face hallucination result in CIELAB color model with 100 percent
traditional PCA; (d) face hallucination result in CIELAB color model with bilinear method;
(e) face hallucination result in CIELAB color model with 95 percent MPCA;
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4.5 Experiments and Analysis on Color Face hallucination with Tensor
Patch

In this experiment, we choose FERET database for a set of simulated experiments.
There are 500 color faces for training set and other 50 facial images for testing. To establish
a standard training dataset, we use a face image size of (30 x 30) and align the data manually
by marking the location of three points: the centers of mouth and two eyes. These three
points define an affine warp, which was used to warp the images into a canonical form. For
all the 500 high-resolution facial images.in the training dataset, we blurred and subsampled
them to obtain their low-resolution (15 x 15) samples.

We decompose each of 500 pairs of low and hagh resolution training face images into
(10x10) and (5 x 5) patches which overlapped horizontally and vertically with each other by
2 pixel and 4 pixel (the patch'size and overlapping size were experimentally determined). We
also quantify our performanée byevaluating the peak signal-to-noise ratio (PSNR) between
the ground truth face images‘and.the hallucin|ated images.

Some experimental results are/given in'Fi"g. 4.43-4.58: (a) original HR images (30 X
30), (b) input LR images (15 »¢'15) with noisé; motion and blur in LR images, (c) face hal-
lucination result with bilinear interpolation m"@thod, (d) face hallucination result with Liu
method, (e)-(g) face hallucination result with 90'-100 percent MPCA and (h) face halluci-
nation result with Tensor patch method. The reéﬁlls in column (h) shows that tensor patches
technique is good at hallucinating ‘and reproducfih'g;-"details of local face regions, but poor
at detail around an eye. We also give in Tablic,-'f__ﬁ_fi'.17r—4.20 the PSNR values between the
hallucinated face images with linear regression model in MPCA and those face hallucina-
tion results with tensor patches in Fig. 4.43-4.58. Table 4:43-4.58 show that our proposed
approach outperforms all the other face super-resolution techniques in terms of PSNR.

We compare our method with difference patch size, soni€ example results are presented
in Fig. 4.43-4.58. Compared with the results in Fig. 4.43-4.50 _(h) using tensor patches
technique with size (5 x 5), the hallucinated results in Fig. [4:51-4.58 (h) tensor patches
technique with size’(10 x 10) then the bigger patch size can produce better color facial
results than~small'patch-size. In addition, withithessame valueiof pereentMPCA, the tensor
patch method with size(10% '10) can’give'higher PSNR values-than size (5 x 5) about 0.19
- 1.24 dB.
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(30 x 30); (b) input LR i
hallucination result with bilin€a

d blur in LR images; (c) face

T —
Figure 4.43: Color halluci g
y inte _.If.

hallucination result with Liu

method; (e) face hallucination res jith-9 _ ' T{p@, (f) face hallucination result
with 95 percent MPCA; (g) face ;" 1atio it -IOOpercent MPCA; (h) face hal-
P = R

lucination result with Tenso

Figure 4.44: Color hallucinated face images in YCbCr color model. (a) original HR im-
ages (30 x 30); (b) input LR images (15 x 15) with noise, motion and blur in LR images;
(c) face hallucination result with bilinear interpolation method; (d) face hallucination result
with Liu method; (e) face hallucination result with 90 percent MPCA; (f) face hallucination
result with 95 percent MPCA; (g) face hallucination result with 100 percent MPCA; (h) face
hallucination result with Tensor (5 x 5) patches method and 95 percent MPCA;
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Figure 4.45: Color halluci
(30 x 30); (b) input LR i
hallucination result with bilia€z

del (a) original HR images
d blur in LR images; (c) face
hallucination result with Liu

method; (e) face hallucination res yith-90. P‘QA, (f) face hallucination result
with 95 percent MPCA; (g) face 101 ¢ it 100percent MPCA; (h) face hal-

lucination result with Tenso

Figure 4.46: Color hallucinated face images in CIELAB color model. (a) original HR im-
ages (30 x 30); (b) input LR images (15 x 15) with noise, motion and blur in LR images;

(c) face hallucination result with bilinear interpolation method; (d) face hallucination result
with Liu method; (e) face hallucination result with 90 percent MPCA; (f) face hallucination
result with 95 percent MPCA; (g) face hallucination result with 100 percent MPCA; (h) face
hallucination result with Tensor (5 x 5) patches method and 95 percent MPCA;
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(30 x 30); (b) input LR i
hallucination result with bilin€a

d blur in LR images; (c) face

T —
Figure 4.47: Color halluci g
y inte _.If.

hallucination result with Liu

method; (e) face hallucination res jith-9 _ ' T{p@, (f) face hallucination result
with 95 percent MPCA; (g) face ;" 1atio it -IOOpercent MPCA; (h) face hal-
P = R

lucination result with Tenso

Figure 4.48: Color hallucinated face images in YCbCr color model. (a) original HR im-
ages (30 x 30); (b) input LR images (15 x 15) with noise, motion and blur in LR images;
(c) face hallucination result with bilinear interpolation method; (d) face hallucination result
with Liu method; (e) face hallucination result with 90 percent MPCA; (f) face hallucination
result with 95 percent MPCA; (g) face hallucination result with 100 percent MPCA; (h) face
hallucination result with Tensor (5 x 5) patches method and 100 percent MPCA;
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Figure 4.49: Color halluci
(30 x 30); (b) input LR i
hallucination result with bilia€z

T in ﬂﬁi\ﬂ]del (a) original HR images
Wi se\n%wd blur in LR images; (c) face

hallucination result with Liu

method; (e) face hallucination res yith-90. P‘QA, (f) face hallucination result
with 95 percent MPCA; (g) face 101 ¢ it 100percent MPCA; (h) face hal-

lucination result with Tenso

] L]
(e) f)

(h)

(@)

=

Figure 4.50: Color hallucinated face images in CIELAB color model. (a) original HR im-
ages (30 x 30); (b) input LR images (15 x 15) with noise, motion and blur in LR images;

(c) face hallucination result with bilinear interpolation method; (d) face hallucination result
with Liu method; (e) face hallucination result with 90 percent MPCA; (f) face hallucination
result with 95 percent MPCA; (g) face hallucination result with 100 percent MPCA; (h) face
hallucination result with Tensor (5 x 5) patches method and 95 percent MPCA;
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(30 x 30); (b) input LR i
hallucination result with bilin€a

d blur in LR images; (c) face

T —
Figure 4.51: Color halluci o
y inte plo’.

hallucination result with Liu

method; (e) face hallucination res jith-9 _ ' i{C\A; (f) face hallucination result
with 95 percent MPCA; (g) fa ‘ ' ’é it -IOOpercent MPCA; (h) face hal-

lucination result with Tensor (10

Figure 4.52: Color hallucinated face images in YCbCr color model. (a) original HR im-
ages (30 x 30); (b) input LR images (15 x 15) with noise, motion and blur in LR images;
(c) face hallucination result with bilinear interpolation method; (d) face hallucination result
with Liu method; (e) face hallucination result with 90 percent MPCA; (f) face hallucination
result with 95 percent MPCA; (g) face hallucination result with 100 percent MPCA; (h) face
hallucination result with Tensor (10 x 10) patches method and 95 percent MPCA;
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Figure 4.53: Color halluci
(30 x 30); (b) input LR i
hallucination result with bilia€z

del (a) original HR images
d blur in LR images; (c) face

hallucination result with Liu

method; (e) face hallucination res yith-90. P‘QA, (f) face hallucination result
with 95 percent MPCA; (g) face 101 ¢ é it 100percent MPCA; (h) face hal-

lucination result with Tensor(10

Figure 4.54: Color hallucinated face images in CIELAB color model. (a) original HR im-
ages (30 x 30); (b) input LR images (15 x 15) with noise, motion and blur in LR images;

(c) face hallucination result with bilinear interpolation method; (d) face hallucination result
with Liu method; (e) face hallucination result with 90 percent MPCA; (f) face hallucination
result with 95 percent MPCA; (g) face hallucination result with 100 percent MPCA; (h) face
hallucination result with Tensor (10 x 10) patches method and 95 percent MPCA;
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Figure 4.55: Color halluci
(30 x 30); (b) input LR i
hallucination result with bilia€z

d blur in LR images; (c) face
on me (c hallucination result with Liu
method; (e) face hallucination res yith-9 _ ' EC\A; (f) face hallucination result
with 95 percent MPCA; (g) fa ' it -I‘Oﬂpercent MPCA; (h) face hal-

lucination result with Tensor(10

Figure 4.56: Color hallucinated face images in YCbCr color model. (a) original HR im-
ages (30 x 30); (b) input LR images (15 x 15) with noise, motion and blur in LR images;
(c) face hallucination result with bilinear interpolation method; (d) face hallucination result
with Liu method; (e) face hallucination result with 90 percent MPCA; (f) face hallucination
result with 95 percent MPCA; (g) face hallucination result with 100 percent MPCA; (h) face
hallucination result with Tensor (10 x 10) patches method and 100 percent MPCA;
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Table 4.17: PSNR results of thefacial images witH tensor pgches method in Fig. 4.43 - 4.58
forRGBcolormo@i.lJEl g “Em ) ﬂj

Case q firgt?olw second row | third row | fourth row
- — —
1) 90 per 1 ; M ; q% 1 127.89dB | 30.14 dB
2) 95 percent 131154 6.91dB /28.53 dB | 30.78 dB
3) 100 percént MPCA 31.35dB | 40.23dB | 28.74dB | 30.98 dB
4) patch (5 x 5) with 95 percent M PC A 34.19dB | 41.15dB | 32.32dB | 35.69 dB
5) patch (5 x 5) with 100 percent M PC A 34.68dB | 42.23dB | 3245dB | 35.78dB
6) patch (10 x 10) with 95 percent MPCA | 3528 dB | 41.86dB | 32.67dB | 35.87 dB
7) patch (10 x 10) with 100 percent MPCA | 35.92dB | 42.71dB | 32.85dB | 36.26 dB
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motion and blur in LR images;

Table 4.18: PSNR results of thefacial images wﬂhf tensor p}lﬁtches method in Fig. 4.43 - 4.58

for YCbCr color rrlﬁjle m ‘o il 4
Case q . - first row | second row | third row | fourth row

- - - -

1) 90 peree m ‘%ﬁ 127.93dB | 30.13 dB
2) 95 percent M P 31264 . +28.57dB | 30.69 dB
3) 100 perc«]ent MPCA 3147dB | 40.29dB | 28.84dB | 30.88 dB
4) patch (5 x 5) with 95 percent M PC A 3459dB | 41.27dB | 32.39dB | 35.73dB
5) patch (5 x 5) with 100 percent M PC A 35.10dB | 42.35dB | 32.55dB | 35.84dB
6) patch (10 x 10) with 95 percent MPCA | 34.87dB | 41.88dB | 32.66dB | 3591 dB
7) patch (10 x 10) with 100 percent MPCA | 3532dB | 42.78dB | 32.93dB | 36.34 dB
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Table 4.19: PSNR results of the facial images with tensor patches method in Fig. 4.43 - 4.58

for HSV color model.
Case first row | second row | third row | fourth row
1) 90 percent M PCA 26.85dB | 31.02dB | 27.71dB | 29.41 dB
2) 95 percent M PCA 2728 dB | 31.18dB | 27.87dB | 29.59 dB
3) 100 percent M PC' A \ J75dB | 31.22dB |27.96dB | 29.63 dB
4) patch (5 x 5) with 95 perc dB | 31.25dB | 31.22dB | 34.57dB
5) patch (5 x 5) with 100 C’gl i 31.31dB | 31.24dB | 34.61 dB
6) patch (10 x 10) with 1{?: A‘.\' . 3141dB | 31.28dB | 34.70 dB
7) patch (10 x 10) with 3149dB | 31.35dB | 34.78 dB
b A4\
Ne V)
J‘Ilg.:.'l | \
L
JEd s

Table 4.20: PSNR results

7
for CIELAB color model.
-

Case d:lﬁrst row _ seccgi row | third row | fourth row
1) 90 percent M%ﬁ%m B f;ls.d dB | 28.01dB | 30.58dB
2) 95 percent MP%'A ¢ 31.ﬁdB 37.11 % 28.35dB | 31.52dB
Cen 1 | 2.08 dB)| | g |28.69 dB | 31.69 dB
( . 1.31'dB “{'32.39.dB | 35.75dB
5) patch (5 x 5) with 100 percent M PC' A 36.15dB | 42.40dB | 32.48dB | 35.89dB
6) patch (10 x 10) with 95 percent MPCA | 35.47dB | 41.52dB | 32.71dB | 35.97 dB
7) patch (10 x 10) with 100 percent MPCA | 36.39dB | 42.82dB | 32.96dB | 36.44 dB




Table 4.21: comparison of complexity (execution time) between tensor patch method and

MPCA method with training set size 60 images

Case 90 percent 95 percent 100 percent

1) M PC'A method 14.403683 s. | 14.676264s. | 15.586928 s.
2) tensor patch size (10 x 10) | 32.445231s. | 39.667863s. | 59.889969 s.
3) tensor patch size (5 X 5) 253.547854 s. | 287.634373 s. | 304.315276 s.

Table 4.22: comparison of complexity (execution time) between tensor patch method and

MPCA method with training set size 120 images

Case 90 pergent 95 percent 100 percent

1) MPCA method 28.424068 s+ 29.345926s. | 31.406217 s.

2) tensor patch size (10 x0)4-68.7493025:477.146453 s. | 111.857586 s.

3) tensor patch size (5 .59 512.846542 §:+4.574.463359 5. | 664.599841 s.
4.5.1 Complexity Y 4 4 47

In this section, we co;rnpare the e_:xe_cutig"n time between the tensor patch method and
MPCA method. The execution time results aré' come from a desktop-computer which is im-
plemented on Microsoft Windows XP Professmnal 64 bits (version 2003), Intel(R) Core(TM)2
CPU 6600 with 2.8 GH and 3 GB of RA-M and" tﬁEresult can be shown in Table. 4.21 - 4.24.

For hallucination in MPCA fnethod with 60-’ 120, 240 and 500 training sample im-
ages, the time in this simulation is about 14.40- ]j,»S 58 seconds, 28.42-31.40 seconds, 58.70-
65.27 seconds and 120. 60 1132.60 seconds respectively but the executlon time of tensor patch
method with size (10 X I@) 1s about 32.44-59.88 seconds, 68 ]4 111.85 seconds, 146.70-
223.09 seconds and 290.16-461.16 seconds respectively. In addltlon in Table. 4.21 - 4.24,
we can see that the execution time of tensor patch method with size (5 x 5) will increase

rapidly from 253.54,seconds, t0:2798.165270 seconds when training sample increase from
60 to 500 images.



Table 4.23: comparison of complexity (execution time) between tensor patch method and

MPCA method with training set size 240 images

Case 90 percent 95 percent 100 percent
1) M PC A method 57.800732 s. 58.412280 s. 65.276072 s.
2) tensor patch size (10 x 10) | 146.709354 s. | 159.184390s. | 223.091005 s.
3) tensor patch size (5 x 5) 1014.458788 s. | 1143.303170 s. | 1244.944058 s.

Table 4.24: comparison of complexity (execution time) between tensor patch method and
MPCA method with training set size 500 i

Case 0, \} l r ‘ 95 percent 100 percent
1) MPC A method 2 w 225891455 | 132.603396 s.

'l\_ e

.809926 s.
3) tensor patch size (5 %5 ‘/im 331 ‘-:,\ 9011861 s.

461.160870 s.
2798.165270 s.

2) tensor patch size (10
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CHAPTER V

CONCLUSIONS

This chapter summarizes the works presented in this dissertation including conclusions

and future directions.

5.1 Conclusions of The Dissertation

In this dissertation, the improved frameworks 0f color face hallucination are proposed.
Firstly, this dissertation proposed a novel face hallucination with linear regression model in
MPCA for the general color medél such as RGB color model, YCbCr color model, HSV
color model and CIELAB Color'medel to improve the performance of the system. Since
multilinear principal compeéneni‘analysis (MPCA) is more suitable for face representation
than traditional method, like PCAC Hor better Q@fformance 1 super-resolution reconstruction
task, higher-order tensor still bé ngcessary! '.

Secondly, we apply higher-order singuia_r value decomposition (HOSVD) in tensor
space. We formulate a unified fengor in tensor pé’}'t(fhes which can be reduced to two parts: a
global image-based tensor and alocal patch—bas':cd_ multiresolution tensor for incorporating
high-resolution image details. Our experiments ShO\J)V not only performance superiority over
existing benchmark face super-resolution techni’qués, but also novelty of our approach in

color face super-resolution.

5.2 Future Directions

e Several paraméters)(such-as the number ef-standard face:images, the number of shift-
ing image and theé'numbér of classifiers)-are still'manually-specified. The optimal
values are found by experiments for the best hallucination result, Nevertheless, auto-
matic, parameter specification is necessary for the practical applications in the future

research.

e Based on using the tensor MPCA subspace with regression model, we will directly
perform our technique across different modality and under changing illumination con-

ditions.

e For applications in practical scenarios where faces captured in raw color images are
normally nonfrontal views at low resolution, we will develop a face hallucination al-

gorithm for reconstruction reasonable nonfrontal facial images.
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Appendix A
List of Abbreviations

2DPCA Two-Dimensional Principal Component Analysis
HOSVD
LR
HR
ICCA
LDA B
MPCA N v \.\.»\‘\:‘m ient Analysis
NN "The™meéare '

PCA
RSM
SAR
SSS
SVD
HSV
LLE
MRF
MFH

ngular Value Decomposition
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Appendix B
Some Experimental Results

Table 1 PSNR results of Fig. 2 with a linear regression model in MPCA method

Case 90 percent | 95 percent | 100 percent
1) the 1%t row 31.49 31.52 dB 32.57dB
2) the 2™ row \ 43 dB 31.61 dB
3) the 3" row. dB ‘ 26.89 dB
4) the 4" ro 45 . 27.87 dB
5) the 57 1" ‘ 61dB"| 35.71dB
6) the 6 AN 26:0% 26.77 dB
7) the Tafow, 24.dB _ . 29.61 dB
8) the 8" 1. .3 34.68 dB
9) the 9" ro 6.53 7 B | 37.33dB
10) the 104 r 42! dF 4 - 43.56dB
11) the 11* 28 ) 28.63 dB
12) the 121" ro : ‘ » .71 dB 33.96 dB
13) the 13" row 6-d 73dB | 26.85dB
14) the 140 B 32.25dB
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Table 2 PSNR results of Fig. 3 with a linear regression model in MPCA method
Case 90 percent | 95 percent | 100 percent
1) the 15 row 31.52dB | 31.58 dB 32.62 dB
2) the 2™ row 31.43dB | 31.45dB 31.69 dB
3) the 3" row 24.67dB | 24.73 dB 26.96 dB
4) the 4™ row 27.49dB | 27.55dB 27.95 dB
5) the 5" row 35.61dB | 35.63dB 35.75dB

6) the 6" row 26. | 26.44dB | 26.90dB
7) the ™" row 47dB | 29.70 dB
8) the 8" row dB dB | 34.86dB
9) the 9™ r 62 dB 37.45 dB
10) the 10 [2775,dB, |42, 43.58 dB
11) the 1349 0w N 28.77 dB
12) the 12480 707 33 34.06 dB
13) the 134 59-d _ 26.95 dB
14) the 14% ;. 99dB, |432. 1" 32.35dB
.:'u“r o .
XD
Jatdais. i
Table 3 PSNR results of Fig. @ai ession model in MPCA method
Case g 190 perce ﬂo percent

1) the L'%row i |1 30.87 dB
2) the 2" row B | 30.54dB
3)the 3" row | 23.56dB | 23.61dB | 23.97dB
T 39,dB-| 2698 dB
B || 3564dB

6) %e 6" row 25.86 dB 25.9&dB 26.25 &
h n

qu !) tEe g[h row % 31.5; dE %&

9) the 9" row 33.37dB | 33.92dB 34.85dB

10) the 10" row | 41.12dB | 41.56 dB 41.94 dB

11) the 11" row | 27.52dB | 27.78 dB 28.01 dB

12) the 12" row | 31.76 dB | 32.12dB 32.72 dB

13) the 13" row | 26.08 dB | 26.23 dB 26.54 dB
14) the 14" row | 30.67 dB | 30.86 dB 31.15dB




Table 4 PSNR results of Fig. 5 with a linear regression model in MPCA method

e

F e e
G

Table 5 PSNR results of Fig. 6 with.a lin:

ion model in tensorPCA method

Case 90 percent | 95 percent | 100 percent
1) the 1° row 31.58dB | 31.61dB | 32.75dB
2) the 2™ row | 31.57dB | 31.63dB | 31.88dB
3) the 3" row 2470 dB | 24.78dB | 26.87 dB
4) the 4" row 27.53dB | 27.58dB | 27.92dB
5) the 5™ row 35.64dB | 35.73dB | 35.94dB
6) the 6™ row 26.43 26.52dB | 26.98 dB
7) the 7" row 71dB | 28.13dB
8) the 8" row dB dB | 34.96dB
9) the 9™ r 68 dB 37.49 dB
10) the 10 79,8 | 4287 0B 43.64dB
11) the 1349 0w \N 28.83 dB
12) the 124470 757 34.19 dB
13) the 134 65-d 27.24 dB
14) the 14% ;. 9§, 32.52dB
it
XD
227

Case g 90 pércé ﬂo percent
1) the §"frow |7 32.27dB
2) the 2" row B | 31.21dB
3)the 3" row | 24.31dB | 24.33dB | 26.52dB
i 127.32,dB~| ~27:47 dB
) 4ids |l 356248
6) e 6™ row 26.02dB | 26.03dB | 2639dB
P :
qu !) tEe g[h row )_m 33.35 dE %
9) the 9" row | 36.03dB | 36.09dB | 36.56 dB
10) the 10" row | 42.63dB | 42.71dB | 43.13dB
11) the 11" row | 28.14dB | 28.23dB | 28.51dB
12) the 12" row | 33.07dB | 33.29dB | 33.78 dB
13) the 13" row | 26.29dB | 26.45dB | 26.68 dB
14) the 14" row | 31.53dB | 31.72dB | 32.18dB
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Table 6 PSNR results of Fig. 7 with a linear regression model in tensorPCA method

Case 90 percent | 95 percent | 100 percent

1) the 1% row 31.36dB | 31.44dB 32.53 dB
2) the 2™ row 31.14dB | 31.32dB 31.44 dB
3) the 3" row 2449 dB | 24.52 dB 26.78 dB
4) the 4" row 27.36dB | 27.42dB 27.68 dB
5) the 5" row 35.50dB | 35.61dB 35.71 dB

6) the 6" row 26. | 26.25dB | 26.63dB
7) the ™" row .11dB | 28.95dB
8) the 8" row dB dB | 34.56dB
9) the 9™ r 43 dB 37.01 dB
10) the 10 2721, dB_ | 42 43.19 dB
11) the 1349 0w N 28.63 dB
12) the 12480 25% 33 33.87dB
13) the 134 18dB " 2 26.74 dB
14) the iF 2’1 dB 431" 1" 32.04 dB
it '
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Table 7 PSNR results of Fig. 8 with alin ion model in tensorPCA method
Case g 90 Eérée ﬂo percent
1) the L'ow i 173056 dB
2) the 2" row B | 30.26dB
3) the 3" row 2331dB | 23.44dB 23.62 dB
— ot = o

E I AT
71dB || 34924dB
2571dB | 2597dB |
. I 31'.23d§ | %&
9)the 9" row | 33.18dB | 33.54dB | 34.17 dB
10) the 10" row | 40.68dB | 40.94dB | 41.37dB
11) the 11" row | 27.36dB | 27.52dB | 27.78 dB
12) the 12" row | 31.61dB | 31.99dB | 32.32dB

13) the 13" row | 25.89 dB | 25.97 dB 26.02 dB
14) the 14" row | 30.11dB | 30.24 dB 30.79 dB




Table 8 PSNR results of Fig. 9 with a linear regression model in tensorPCA method

Figure 1 Some original high-resolution color face images (30 x 30) for testing.

.‘*ﬁﬂ;ﬁ :

T

Case 90 percent | 95 percent | 100 percent
1) the 1% row 3147dB | 31.53dB | 32.38dB
2) the 2™ row | 31.32dB | 31.49dB | 31.74dB
3) the 3™ row 24.56dB | 24.62dB | 26.31dB
4) the 4" row 27.48dB | 27.52dB | 27.88dB
5) the 5" row 35.47 35.55dB | 35.86dB
6) the 6" row 49dB | 26.78 dB
7) the ™" row . / dB | 27.99dB
8) the 8 1o 16 34.85 dB
9) the 9t 9dB | 37.08 dB
10) the 10 | 4 43.59 dB
11) the 11" 08. 28.73 dB
12) the 38'¢ 33.93 dB
13) the 13# S58-dB* | 26. 27.01 dB
14) the 14" 40 69 3 32.46 dB
i
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9 a) (b) (c) (d) (e) (f) (9) (h)

Figure 2: Some of experimental results (RGB color model) with a linear regression model
in MPCA method. (a) original HR images (30 x 30); (b) input LR images (15 x 15) with
noise, motion and blur in LR images; (c) face hallucination result with 90 percent MPCA;
(d) different image of face hallucination result with 90 percent MPCA; (e) face hallucination
result with 95 percent MPCA; (f) different image of face hallucination result with 95 percent
MPCA; (g) face hallucination result with 100 percent MPCA; (h) different image of face
hallucination result with 100 percent MPCA;
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(a) (b) (c) (d) (e) (f) (9) (h)

Figure 3: Some of experimental results (YCbCr color model) with a linear regression model
in MPCA method. (a) original HR images (30 x 30); (b) input LR images (15 x 15) with
noise, motion and blur in LR images; (c) face hallucination result with 90 percent MPCA;
(d) different image of face hallucination result with 90 percent MPCA; (e) face hallucination
result with 95 percent MPCA; (f) different image of face hallucination result with 95 percent
MPCA; (g) face hallucination result with 100 percent MPCA; (h) different image of face
hallucination result with 100 percent MPCA;
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(a) (b) (c) (d) (e) (f) (9) (h)

Figure 4. Some of experimental results (HSV color model) with a linear regression model
in MPCA method. (a) original HR images (30 x 30); (b) input LR images (15 x 15) with
noise, motion and blur in LR images; (c) face hallucination result with 90 percent MPCA;
(d) different image of face hallucination result with 90 percent MPCA; (e) face hallucination
result with 95 percent MPCA; (f) different image of face hallucination result with 95 percent
MPCA; (g) face hallucination result with 100 percent MPCA; (h) different image of face
hallucination result with 100 percent MPCA;
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(b) (c) (d) (e) (f) (9) (H)

(a)

Figure 5: Some of experimental results (CIELAB color model) with a linear regression
model in MPCA method. (a) original HR images (30 x 30); (b) input LR images (15 x 15)
with noise, motion and blur in LR images; (c) face hallucination result with 90 percent
MPCA; (d) different image of face hallucination result with 90 percent MPCA; (e) face
hallucination result with 95 percent MPCA; (f) different image of face hallucination result
with 95 percent MPCA; (g) face hallucination result with 100 percent MPCA; (h) different
image of face hallucination result with 100 percent MPCA;
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Figure 6: Some of experimental results (RGB color model) with a linear regression model
in tensorPCA method. (a) original HR images (30 x 30); (b) input LR images (15 x 15)
with noise, motion and blur in LR images; (c) face hallucination result with 90 percent
tensorPCA; (d) different image of face hallucination result with 90 percent tensorPCA; (e)
face hallucination result with 95 percent tensorPCA; (f) different image of face hallucination
result with 95 percent tensorPCA; (g) face hallucination result with 100 percent tensorPCA;
(h) different image of face hallucination result with 100 percent tensorPCA;
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(a) (b) (c) (d) (e) (f) (9) (h)

Figure 7: Some of experimental results (YCbCr color model) with a linear regression model
in tensorPCA method. (a) original HR images (30 x 30); (b) input LR images (15 x 15)
with noise, motion and blur in LR images; (c) face hallucination result with 90 percent
tensorPCA; (d) different image of face hallucination result with 90 percent tensorPCA; (e)
face hallucination result with 95 percent tensorPCA; (f) different image of face hallucination
result with 95 percent tensorPCA; (g) face hallucination result with 100 percent tensorPCA;
(h) different image of face hallucination result with 100 percent tensorPCA;
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Figure 8: Some of experimental results (HSV color model) with a linear regression model
in tensorPCA method. (a) original HR images (30 x 30); (b) input LR images (15 x 15)
with noise, motion and blur in LR images; (c) face hallucination result with 90 percent
tensorPCA; (d) different image of face hallucination result with 90 percent tensorPCA; (e)
face hallucination result with 95 percent tensorPCA; (f) different image of face hallucination
result with 95 percent tensorPCA; (g) face hallucination result with 100 percent tensorPCA;
(h) different image of face hallucination result with 100 percent tensorPCA;
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(b) (c) (d) (e) (f) (9) (H)

(a)

Figure 9: Some of experimental results (CIELAB color model) with a linear regression
model in tensorPCA method. (a) original HR images (30 x 30); (b) input LR images (15x 15)
with noise, motion and blur in LR images; (c) face hallucination result with 90 percent
tensorPCA; (d) different image of face hallucination result with 90 percent tensorPCA; (e)
face hallucination result with 95 percent tensorPCA; (f) different image of face hallucination
result with 95 percent tensorPCA; (g) face hallucination result with 100 percent tensorPCA;

(h) different image of face hallucination result with 100 percent tensorPCA;
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Publications and Presentations

Krissada Asavaskulkeit and Somchai Jitapunkul,

“Generalized color face hallucination with linear regression model in MPCA,” In

preparation to summit to IEICE Transaction on Information and Systems.

Krissada Asavaskulkeit and Somchai Jitapunkul,
“A Color Face Hallucination with a Lineat.Rcgression Model in MPCA,” Proceeding
on the 2009 International-Conference on Computer Engineering and Applications
(ICCEA 2009), pp. 100=104,Manila, Philippine, 6-8 June 2009.

Krissada Asavaskulkeit and Somchai Jitapunkul,
“Performance Evaluation'of. Color, Face Hallucination with a Linear Regression Model
in MPCA,” Proceeding on the 2009 International Conference on Image Processing,
Computer Vision, Pattern Recognition @PCV 2009), pp. 387-392, Las Vegas Nevada,
USA, 13-16 July 2009.

Krissada Asavaskulkeit and Somehai J itapunkui{t'a_
“The Color Face Hallucination with the Lﬂeé‘r Regression Model and MPCA in HSV
Space,” Proceeding on the 16th Internatj;qngl Conference on Systems, Signals and
Image Processing (IWSSIP 2009), Chalkida, Greece, 18—20 June 2009.
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