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CHAPTER I

INTRODUCTION

1.1 Background and Signification of the Research Problems

The term super-resolution (SRR) refers to the process of obtaining higher-resolution
(HR) images from several lower-resolution (LR) ones, i.e. resolution enhancement. The
quality improvement is caused by fractional-pixel displacements between images. Super-
resolution allows to overcome the limitations of the imaging system (resolving limit of the
sensors) without the need for additional hardware. The reconstruction attempts to take ad-
vantage of the additional spatio-temporal data available in the sequence of images portraying
the same scene. The fundamental problem addressed in super-resolution is a typical example
of an inverse problem, wherein multiple low-resolution (LR) images are used to solve for the
original high-resolution (HR) image.

Hallucination or recogstruction is a super-resolution algorithm that uses a different
kind of constraint, in addition to the reconstruction constraint. This algorithm attempts to
recognize local features in the low-resolution images and then enhances their resolution in
an appropriate manner. Moreover, face hallucination is still a very active field of research and
challenging because people are so familiar with the face. A small error, e.g. an asymmetry of
the eyes, might be significant to human perception, whereas for super resolution of generic
images the errors in textured regions, e.g. leaves, are often overlooked. It can be widely
applied in many fields ranging from image compression to face identification. Especially
in video surveillance, a higher resolution face image with detailed facial features will be
obviously significant to raise the systems performance.

Face hallucination with the reconstruction-based methods which try to model the pro-
cess of image formulation to build the relationship between LR and HR based on reconstruc-
tion constraints and smoothness constraints, is quite limited by the number of input LR and
usually cannot work well in single-image super-resolution problem. Then, the face halluci-
nation with learning-based methods becomes very popular. These methods use some training
set directly or indirectly to reconstruct unknown HR images but a major problem of these
methods is the high computation requirement due to complex learning process.

In our frameworks, we concentrate in the color image processing which differs from
grayscale image processing because of the redundancy and the complementary information
within the color bands. The processing is much more complicated due to the increased di-
mensionality of the problem and exchanges information from and among all bands. Almost
all super-resolution methods to date have been designed to increase the resolution of a single
channel (monochromatic) image. A related problem such as color super-resolution (SR), ad-
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dresses fusing a set of previously demosaiced color low-resolution frames to enhance their
spatial resolution. To date, there is very little work addressing the problem of color SR . The
typical solution involves applying monochromatic SR algorithms to each of the color chan-
nels independently, while using the color information to improve the accuracy of the motion
estimation. Another approach is transforming the problem to a different color space, where
chrominance layers are separated from luminance, and SR is applied only to the luminance
channel. Both of these methods are suboptimal as they do not fully exploit the correlation
across the color bands.

Real data of natural and social sciences is often very high-dimensional especially the
color face images. They can be naturally described as tensors or multilinear arrays. In the
most of previous works on face representation, the face is represented as a vector in high-
dimensional space. However, an image is intrinsically a matrix, or the second order tensor.
In vector representation, the face image has to be converted to a vector. A typical way to do
this so-called matrix-to-vector alignment is to concatenate all the rows in the matrix together
to get a single vector. To acquire such linear transformation, traditional subspace learning
methods, Principal Component Analysis (PCA) need to eigen- decomposition of some ma-
trices. Moreover, the learning parameters in PCA is very large. These methods might not
acquire good performance when the number of training samples is small. Recently, multi-
linear algebra, the algebra of higher-order tensors, is applied for analyzing the multifactor
structure of image ensembles. Tensorface which is a novel face representation algorithm
represents the set of face images by a higher-order tensor and extends traditional PCA to
higher-order tensor decomposition [1, 2]. Then, we can apply multilinear principal com-
ponent analysis (MPCA) to face hallucination. The MPCA performs feature extraction by
determining a multilinear projection that captures most of the original tensorial input vari-
ation. In this way, the multiple factors related to expression, illumination and pose can be
separated from different dimensions of the tensor. In addition, when the MPCA is imple-
mented in the color space RGB, YCbCr, HSV and CIELAB, it can be investigated that there
is a correlation between each color channel.

1.2 Literature Review

The super-resolution restoration idea was first presented by Huang et al. [3] in 1984.
It is the process of combining multiple low-resolution images to form a higher resolution
one. Numerous super-resolution algorithms have been proposed in the literature [4–8]. Most
try to produce a super-resolution image from a sequence of low-resolution images [9, 10].
Based on the definition of SRR , the relevant research papers, published in the conferences
and journals are comprehensively reviewed and are broadly categorized into two classes [11].
Specifically, the categorization is into the classes of reconstruction-based SRR algorithm and
recognition-based SRR algorithm (or hallucination).

This reconstruction-based SRR algorithm does not require images for training there-
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fore this algorithm does not depend on observed images but reconstruction-based approach
inherits limitations when magnification factor increases. The frequency domain approach is
a part of the reconstruction-based method. It makes explicit use of the aliasing that exists in
each LR image to reconstruct an HR image [12, 13]. Although the frequency domain meth-
ods are intuitively simple and computationally cheap, the observation model is restricted to
only global translational motion and blur. Due to the lack of data correlation in the frequency
domain, it is also difficult to apply the spatial domain a priori knowledge for regularization.
Next, the projection onto convex sets (POCS) approach is proposed to describe an alterna-
tive iterative approach and it can also incorporate prior knowledge about the solution into
the reconstruction process. With the estimates of registration parameters, this algorithm si-
multaneously solves the restoration and interpolation problem to estimate the SR image [14].
Since the SRR algorithm is an ill-posed problem from an insufficient number of LR images
and ill-conditioned blur operators, the regularized ML approach, called regularization, is
proposed to stabilize the inversion of ill-posed problem. The last approach of reconstruction
based is a nonuniform interpolation approach. In addition, it is the most intuitive method for
SR image reconstruction and a fast super-resolution reconstruction based on a non-uniform
interpolation using a frequency domain registration is proposed by Vandewalle et al [15–17].

In recognition-based SRR algorithm (or hallucination), this algorithm require images
for training therefore this algorithm depend on observed images but this algorithm have
high performance when magnification factor increases [18]. With statistical approach, Baker
and Kanade [19] proposed another super-resolution algorithm (hallucination or recognition-
based super-resolution) that attempts to recognize local features in the low-resolution image
and then enhances their resolution in an appropriate manner. Due to the training database,
therefore, this algorithm performance depends on the image type (such as face or character)
and this algorithm is not robust enough to be sued in typical surveillance video.

For face identification, especially by human, it is desirable to render a high-resolution
face image from the low-resolution one. This technique is called face hallucination or face
super-resolution [19]. They infer the high frequency components from a parent structure by
recognizing the local features from the training set, but there exists some noise in certain
area. The simplest way to increase image resolution is a direct interpolation of input images
with such algorithms as nearest neighbor or cubic spline. However, the performance of direct
interpolation is usually poor since no new information is added in the process. Some other
approaches [6, 20–26] are based on learning from the training set containing high and low-
resolution image pairs, with the assumption that high-resolution images are Markov random
fields (MRFs) [20, 21, 27]. These methods are more suitable for synthesizing local texture,
and are usually applied to generic images without special consideration of the property of
face images. Baker and Kanade [19, 28] developed a hallucination method based on the
property of face images. Abandoning the MRFs assumption, it infers the high-frequency
components from a parent structure by recognizing the local features from the training set.
Liu et al. [29] developed a two-step statistical modeling approach integrating global and lo-
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cal parameter models. Both methods rely on explicit resolution-reduction-function, which
is sometimes unavailable in practice. Wang and Tang develop an efficient face hallucination
algorithm using an eigentransformation algorithm [30, 31]. However, the method only uti-
lizes global information without paying attention to local details. Inspired by a well-known
manifold learning method, locally linear embedding (LLE), Chang et al. [32] develop the
Neighbor Embedding algorithm based on the assumption that the local distribution structure
in sample space is preserved in the down-sampling process, where the structure is encoded
by patch-reconstruction weights.

To go beyond the current super-resolution techniques which only consider face images
under fixed imaging conditions in terms of pose, expression and illumination, these factors
are crucial to face analysis and synthesis. Recently, Vasilescu et al. introduce multilinear
analysis to face modelling [1, 2] and demonstrate its promising application in computer vi-
sion. In the method, equipped with tensor algebra, the multiple factors are unified in the
same framework with the coordination between factors expressed in an elegant tensor prod-
uct form. Wu et al. propose a novel regrssion model to use tensor principal component analy-
sis (PCA) subspace as the face representation [33], which is a special case of the concurrent
subspace analysis and Ayan et al. introduce a learning-based method for super-resolution
of face that uses kernal principal component analysis (PCA) for deriving prior knowledge
about the face class [34]. In addition, Takahiro et al. present a kernel PCA-based adaptive
resolution enhancement method of still images. The proposed method introduces two novel
approaches into the kernel PCA-based reconstruction of high frequency components missed
from a high-resolution (HR) image [35]. Jia et al. propose a multimodal tensor model for
face super-resolution with nonlinear deformations and choose a global image-based tensor to
perform synthesis across different facial modalities, and a local patch-based multiresolution
tensor for hallucination [36–38]. Ma et al. present a simple and efficient multiview face
hallucination (MFH) method to generate high-resolution (HR) multiview faces from a single
given low-resolution (LR) one [39].

The problem of decomposing tensors (also called n-way arrays or multidimensional
arrays) is approached in a variety of ways by extending the Singular Value Decomposi-
tion (SVD), principal components analysis (PCA), and other methods to higher orders; see,
e.g., [40–46]. Multilinear analysis is a general extension of traditional linear methods such
as PCA or matrix SVD and Lathauwer et al. propose a multilinear generalization of the
symmetric eigenvalue decomposition for pair-wise symmetric tensors and investigate how
tensor symmetries affect the decomposition [47]. Kolda et al. explore the orthogonal de-
composition of tensors (also known as multidimensional arrays or n-way arrays) using two
different definitions of orthogonality and present numerous examples to illustrate the diffi-
culties in understanding such decompositions. For example, color images are often stored as
a sequence of RGB triplets, i.e.,as separate red, green and blue overlays [48].

Note that almost all super-resolution methods to date have been designed to increase
the resolution of a single channel (monochromatic) image. A related problem, color SR,
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addresses fusing a set of previously demosaiced color LR frames to enhance their spatial
resolution. To date, there is very little work addressing the problem of color SR. The typi-
cal solution involves applying monochromatic SR algorithms to each of the color channels
independently [49, 50], while using the color information to improve the accuracy of mo-
tion estimation. Another approach is transforming the problem to a different color space,
where chrominance layers are separated from luminance, and SR is applied only to the lu-
minance channel [51]. Both of these methods are suboptimal as they do not fully exploit the
correlation across the color bands.

In color image super-resolution, Patil et al. propose efficient registration and wavelet
based interpolation technique to yield a color super resolved image from four low resolu-
tion color images [52]. Therefore, this technique is efficient and computationally fast having
clear perspective of real time implementation. The new algorithm in adaptive color super-
resolution reconstruction, robust M-estimation is proposed [53]. Using a robust error norm
in the objective function, and adapting the estimation process to each of the low-resolution
frames, the proposed method effectively suppresses the outliers due to violations of the as-
sumed observation model, and results in color super-resolution estimates with crisp details
and no color artifacts, without the use of regularization.

Because abstractdigital color cameras sample the continuous color spectrum using
three or more filters therefore, each pixel represents a sample of only one of the color bands.
This arrangement is called a mosaic. To produce a full-resolution color image, the recorded
image must be processed to estimate the values of the pixels for all the other color bands.
This restoration process is often called demosaicing. Ron et al. proposes method involves
two successive steps for color super-resolution with CCD sensors [54]. His technique is to
let the edges support the color information, and the color channels support the edges, and
thereby achieve better perceptual results than those that are bounded by the sampling the-
oretical limit. Next, Trussell et al. uses stacked notation to represent the mosaiced image
capture and derives the minimum mean square error (MMSE) estimator for the demosaiced
image [55]. Farsui et al. propose a fast and robust hybrid method of super-resolution and
demosaicing, based on a maximum a posteriori estimation technique by minimizing a mul-
titerm cost function [56]. They used L1 norm for measuring the difference between the
projected estimate of the high-resolution image and each low-resolution image, removing
outliers in the data and errors due to possibly inaccurate motion estimation. Bilateral reg-
ularization is used for spatially regularizing the luminance component, resulting in sharp
edges and forcing interpolation along the edges and not across them. Moreover, an addi-
tional regularization term is used to force similar edge location and orientation in different
color channels.

In super-resolution of color video Sequences, Nimish et al. propose a new multiframe
algorithm to enhance the spatial resolution of frames in video sequences and this technique
specifically accounts for the possibility that motion estimation will be inaccurate and com-
pensates for these inaccuracies [57]. In [58], an iterative algorithm for enhancing the reso-
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lution of monochrome and color image sequences is proposed and two sets of experiments
are presented. First, several different experiments using the same motion estimator but three
different data fusion approaches to merge the individual motion fields were performed. Sec-
ond, estimated high-resolution images using the block matching estimator were compared to
those obtained by employing a recursive scheme.

In this dissertation, two frameworks are applied to improve the performance of color
face hallucination. In the first framework, we employ multilinear principal component anal-
ysis (MPCA) in linear regression model for face reconstruction. In the training set, we
compute the MPCA subspace projections for both the HR images and the LR images. Next,
the color testing image is hallucinated by back-projection in subspace process.

The second frameworks are the combination LR and HR images in a unified tensor
which can be reduced to two parts: a global image-based tensor and a local patch-based
multiresolution tensor for incorporating high-resolution image details.

1.3 Objectives

Propose a novel face super-resolution (hallucination) with higher-order tensors for
color image. The higher-order tensor can be suitable for color face images. For this rea-
son, it can be overcome curse of dimensionality and it also preserves the significant in-
formation when the images are in a feature subspace. The two frameworks of color face
super-resolution reconstruction with MPCA are proposed to increase the resolution of hal-
lucination performance. In addition, the complexity in hallucination process can be reduced
from our proposed method.

1.4 Scope

1. Develop the face hallucination technique with a linear regression model in MPCA that
can reconstruct the reasonable color facial image.

(a) Only the color face image of full frontal view faces will be presented to the PCA
in each color channel.

(b) Only the color face image of full frontal view faces will be presented to the linear
regression model with MPCA.

(c) The color face image of full frontal view faces with partially occluded will be
presented to the linear regression model with MPCA.

1.5 Expected Prospects

1. Acquire a basic knowledge of principal component analysis (PCA) for applying to face
hallucination.
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2. Obtain the new PCA analysis techniques.

3. Obtain new color face hallucination systems.

4. Publish the international journal or conference papers.

5. Know the advantages and disadvantages of using the proposed MPCA techniques in
color face hallucination.

6. Understand the necessity of the MPCA techniques for color face hallucination.

1.6 Research Procedure

1. Study previous research papers relevant to the research works of the dissertation.

2. Develop the novel hallucination techniques.

3. Develop simulation programs.

4. Test the proposed algorithms by using standard face databases such as FERET.

5. Perform the proposed algorithm on a color facial database.

6. Collect and analyze computational results obtained from simulation programs.

7. Summarize the major findings as we found in step 6 and conclude the performance of
the proposed framework in all concerned aspects.

8. Publish the international journal or conference papers.

9. Check whether the conclusions meet all the objectives of the research work of the
dissertation.

10. Write the dissertation.



CHAPTER II

BASIC BACKGROUND AND RELATED TOPICS

In this chapter, the fundamental knowledge of the two-dimensional subspace analysis
algorithm is described. First of all, the traditional 1D subspace is represented in vector form.
Next, subspace analysis with tensor PCA and the Multilinear Principal Component Analysis
(MPCA) is introduced. Finally, we review the basic knowledge of color system in image
processing.

2.1 Principal Component Analysis (PCA) Subspace Analysis

Linear dimensionality reduction techniques have been widely used in pattern recogni-
tion and computer vision, such as face hallucination, image retrieval, etc. Principal Compo-
nents Analysis (PCA) is the one of unsupervised subspace method, which is used to reduce
multidimensional data sets to lower dimensions for analysis. Let A be the m by n matrix of
pixels intensity of the image and the image vector, γ, is the vector of A which was previ-
ously transformed by column-stack vectorization. Thus, the dimension of γ is mn × 1. The
average of γ can be found as

ψ =
1

N

N∑
i=1

γi, (2.1)

where N is the number of training images. The zero-mean normalization is applied to all
image vectors by

φi = γi −Ψ, i = 1, 2, 3, ...,M, (2.2)

where φi is the ith zero-mean normalized of γi. The covariance matrix, C, of these image
vectors can be calculated as

C = ΦΦT , (2.3)

where Φ = [φ1 φ2 ... φN ]

The PCA is defined as an orthogonal linear transformation that transforms the data to
a new coordinate system such that the greatest variance by any projection of the data comes
to lie on the principal component directions. This transformation is therefore equivalent to
finding the eigenvalue decomposition of the matrix C.

According to the dimension of φ, the dimension of C will be mn×mn which can be
normally quite large for calculating the eigenvalue decomposition. The number of training
samples is normally smaller than the dimension of φ then the non-zero eigenvalues of this
covariance matrix can be found in another way via a new matrix.

L = ΦT Φ, (2.4)
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The dimension of L is only m×n, thus the eigenvalue decomposition of L can be done easier
than C. The eigenvalue decomposition of L,

L = FΛFT , (2.5)

where Λ is the diagonal matrix which contains the eigenvalues of L and F contains a set of
eigenvectors of L. Finally, the eigenvectors of C which correspond to the non-zero eigenval-
ues of C can be determined by

U = ΦF, (2.6)

where U is the matrix that contains a set of eigenvectors of C.
The eigenvector associated with the largest eigenvalue has the same direction as the

first principal component, the eigenvector associated with the second largest eigenvalue de-
termines the direction of the second principal component, and so on. Since the lower-order
principal components often contain the most important aspects of the data, the dimension
of projected space can be reduced by retaining those characteristics of the data set that
contribute most to its variance, by keeping lower-order principal components and ignoring
higher-order ones.

2.2 Subspace Learning based on Tensor Analysis

Recently, multilinear algebra, the algebra of higher-order tensors, was applied for an-
alyzing the multifactor structure of image ensembles [59]. Vasilescu and Terzopoulos have
proposed a novel face representation algorithm called Tensorface [60]. Tensorface represents
the set of face images by a higher-order tensor and extends traditional PCA to higher-order
tensor decomposition. In this way, the multiple factors related to expression, illumination
and pose can be separated from different dimensions of the tensor. However, Tensorface still
considers each face image as a vector instead of 2-dimensional (2D) tensor. Thus, Tensor-
face is computationally expensive. Moreover, it does not encode discriminating information,
thus it is not optimal for recognition.

2.2.1 Tensor PCA

Let A ∈ Rm×n denote an image of size m× n. Mathematically, A can be thought of
as the 2nd order tensor (or, 2-tensor) in the tensor space Rm⊗Rn. Let (u1, ..., um) be a set of
orthonormal basis functions of Rm. Let (v1, ..., vn) be a set of orthonormal basis functions
of Rn. Thus, an 2-tensor A can be uniquely written as:

A =
∑
ij

(uT
i Avj)uivT

j , (2.7)

This indicates that uivT
j forms a basis of the tensor space Rm ⊗ Rn. Define two matrices

U = [u1, ..., ul1] ∈ Rm×l1 and V = [v1, ..., vl2] ∈ Rn×l2 . Let U be a subspace of Rm spanned
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by ui
l1
i=1 and V be a subspace of Rn spanned by vj

l2
j=1. Thus, the tensor product U⊗V is a

subspace of Rm⊗Rn. The projection of A ∈ Rm×n onto the space U⊗V is Y = UT A V ∈
Rl1×l2

Suppose we have N images, A1,..., AN ∈ Rm×n. These images belong to k categories
C1, ..., Ck. For the i-th category, there are ni images. The mean of each category MA

i is
computed by taking the average of A in category i, i.e.,

M(A)
i =

1

ni

∑
j∈Ci

Aj (2.8)

and the global mean M(A) is defined as

M(A) =
1

N

N∑
j=1

Aj. (2.9)

Let Yi = UT AiV ∈ Rl1×l2 . Likewise, we can define

M(Y)
i =

1

ni

∑
j∈Ci

Yj (2.10)

and

M(Y) =
1

N

n∑
j=1

Yj, (2.11)

It is easy to check that MY
i = UT M(A)

i V and MY = UT M(A)V.
The tensor subspace learning problem aims at finding the (l1×l2) dimensional space

U⊗V based on the specific objective functions. Particularly, we will introduce a novel algo-
rithms called TensorPCA in this section.

TensorPCA is fundamentally based on PCA. It tries to project the data to the tensor
subspace of maximal variances so that the reconstruction error can be minimized. The ob-
jective function of TensorPCA can be described as follows:

MAXU,V

∑
i

‖Yi −M(Y)‖2 (2.12)

Note that we use tensor norm of the difference of two tensors to measure the distance of two
images. Since order two tensor is essentially matrix, we use Frobenius norm of a matrix as
our 2-d tensor norm.

Since ‖A‖2 = tr(AAT ), we have
n∑

i=1

‖Yi −M(Y)‖2 =
n∑

i=1

tr((Yi −M(Y))(Yi −M(Y))T )

=
n∑

i=1

tr(UT (Yi −M(Y))VVT (Yi −M(Y))T U)

= tr(UT

n∑
i=1

(Yi −M(Y))VVT (Yi −M(Y))T )U)

= tr(UT MVV) (2.13)
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where MV =
∑n

i=1(U
T (Yi−M(Y))VVT (Yi−M(Y))T )U). Similarly, ‖A‖2 = tr(AAT ), so we

also have

= tr(VT (
n∑

i=1

(Ai −M(A))UUT (Ai −M(A))T )V)

= tr(VT MUV) (2.14)

where MU =
∑n

i=1((Ai −M(A))T UUT (Ai −M(A))). Thus, the optimal projection U should
be the eigenvectors of MV and the optimal projection V should be the eigenvectors of MU.

One might notice that U and V can not be computed independently. In our algorithm,
we try to find an optimal coordinate system of Rm⊗Rn. That is, we assume that both U and
V are orthonormal, i.e. UT U = UUT = I and VT V = VVT = I. In such case,

M′
V =

n∑
i=1

((Ai −MA)(Ai −MA)T ) (2.15)

and

M′
U =

n∑
i=1

((Ai −MA)T (Ai −MA)). (2.16)

It is clear that M′
V no longer depends on V , and M′

U no longer depends on U. Therefore,
the matrix U can be simply computed as the eigenvectors of M′

V and the matrix V can be
computed as the eigenvectors of M′

U. Note that, both M′
U and M′

V are symmetric, hence their
eigenvectors are orthonormal. This is consistent with our assumptions. If we try to reduce
the original tensor space to a l1×l2 tensor subspace, we choose the first l1 column vectors in
U and the first l2 column vectors in V.

2.3 Multilinear Principal Component Analysis (MPCA)

For the theoretically inclined reader, it should be noted that there are some recent de-
velopments in the analysis of higher order tensors, then this section introduces a new MPCA
framework for tensor object dimensionality reduction and feature extraction using tensor
representation. This framework is introduced from the perspective of capturing the original
tensors variation. It provides a systematic procedure to determine effective representations of
tensor objects. This contrasts to previous work such as those reported in [61], where vector,
not tensor, representation was used, and the works reported in [59], [62], where matrix repre-
sentation was utilized. Furthermore, unlike previous attempts, such as the one in [29], design
issues of paramount importance in practical applications, such as the initialization, termina-
tion, convergence of the algorithm, and the determination of the subspace dimensionality,
are discussed in details. The basic idea in MPCA solution to the problem of dimensionality
reduction for tensor objects is introduced [33, 63].
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2.3.1 Multilinear Projection of Tensor Objects

In this section, we review some basic multilinear concepts used in the MPCA frame-
work development and introduces the multilinear projection of tensor objects for the purpose
of dimensionality reduction.

Throughout this paper, the discussion is restricted to real-valued vectors, matrices,
and tensors since the targeted applications, such as holistic gait recognition using binary
silhouettes, involve real data only. The extension to the complex valued data sets is out of
the scope of this work and it will be the focus of a forthcoming research.

An N th-order tensor is denoted as A ∈ RI1×I2×...×IN for In = 1, ..., N . It is addressed
by N indices in, n = 1, ..., N and each in addresses the n-mode of A. The n-mode vectors
of A are defined as the In-dimensional vectors obtained from A by varying the index in

while keeping all the other indices fixed. Unfolding A along the n-mode is denoted as A(n)

∈ RIn×(I1×...×In−1×In+1×...×IN ) and the column vectors of A(n) are the n-mode vectors of A
which are illustrated in Fig. 2.1. Let the set of tensors be {Am,m = 1, ...,M} and the total
scatter of these tensors is defined as

ΨA =
M∑

m=1

‖Am − Ā‖2, (2.17)

where Ā is the mean tensor calculated as Ā = (1/M)
∑M

m=1Am. The n-mode total scatter
matrix of these samples can be defined as

CA =
M∑

m=1

(Am(n) − Ā(n))(Am(n) − Ā(n))
T , (2.18)

where Am(n) is the n-mode unfolded of A and Ā is sample mean. The n-mode unfolded
matrix can be illustrated in Fig. 2.1. In Fig. 2.1, a third-order tensor can be unfolded in
1-mode vector.

2.3.2 MPCA Algorithm

A set of M tensor objects {Xm, m = 1, ..., M} is available for training with each tensor
object Xm∈RI1×I2×...×IN assuming values in a tensor space RI1 ⊗ RI2 ... ⊗RIN , where ⊗
denotes the Kronecker product. The main objective of MPCA is to define a multilinear
transformation Ũ

(n)
which denoted In×Pn matrix containing the orthornormal n-mode basis

vectors and the matrix Ũ
(n)

is nth projection matrix, n = 1, ..., N . It can map the original
tensor space RI1 ⊗ RI2 ...⊗ RIN into a tensor subspace RP1 ⊗ RP2 ...⊗ RPN with (Pn < In,
for n = 1,..., N ):

We can define the projection of n-mode vector of Xm as

Ym = Xm ×1 Ũ
(1)T

×2 Ũ
(2)T

...×N Ũ
(N)T

. (2.19)
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Figure 2.1: The visual illustration of the 1-mode unfolding of a third-order tensorA to matrix
A(1)

The tensor Ym can capture most of the variations observed in the original tensor objects,
assuming that these variations are measured by the total tensor scatter. The objective of
MPCA is the determination of the N projection matrices Ũ

(n)
that maximize the total tensor

scatter ΨY as
{Ũ

(n)
, n = 1, ..., N} = argmax

Ũ
(1)

,Ũ
(2)

,...,Ũ
(N)

ΨY . (2.20)

There is no known optimal solution which allows for the simultaneous optimization of
the N projection matrices. Since the projection to an N th-order tensor subspace consists of
N projections to N vector subspaces, N optimization subproblems can be solved by finding
Ũ

(n)
that maximizes the scatter in the n-mode vector subspace.
The dimensionality Pn for each mode is assumed to be known or predetermined. The

matrix Ũ
(n)

consists of the Pn eigenvectors corresponding to the largest Pn eigenvalues of
the matrix and it can be expressed as

Φ(n) =
M∑

m=1

(X(n)
m −X̄(n)

) · ŨΦ(n) · Ũ
T

Φ(n) · (X(n)
m −X̄(n)

)T , (2.21)

where
ŨΦ(n)=(Ũ

(n+1)⊗Ũ
(n+2)⊗...⊗Ũ

(1)⊗Ũ
(2)⊗...Ũ

(n−1)
). (2.22)

The optimization of ŨΦ(n) depends on the projections in other modes, so there is no closed-
form solution. Therefore an iterative procedure is proposed to solve (2.22). The projection
matrices are calculated one by one, keeping all the others fixed (local optimization).

2.3.3 Full Projection

The term full projection refers to the multilinear projection for MPCA with Pn = In

for n = 1, ..., N . In this case, we can see that ŨΦ(n) ·ŨT

Φ(n) is an identity matrix. As a
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Figure 2.2: Visual illustration of multilinear projection: (a) projection in the 1-mode vector
space and (b) 2-mode and 3-mode vectors.

result, Φ(n) reduces to Φ(n)∗ =
∑M

m=1(Xm(n)−X̄(n))(Xm(n)−X̄(n))
T , with Φ(n) determined by

the input tensor samples only and independent of other projection matrices. The optimal
Ũ

(n)
= U(n)∗ is then obtained as the matrix comprised of the eigenvectors of Φ(n)∗ directly

without iteration, and the total scatter ΨX in the original data is fully captured. However,
there is no dimensionality reduction through this full projection. From the properties of
eigendecomposition, it can be concluded that if all eigenvalues per mode are distinct, the full
projection matrices (corresponding eigenvectors) are also distinct and that the full projection
is unique (up to sign).

To interpret the geometric meanings of the n-mode eigenvalues, the total scatter tensor
Y∗var ∈ RI1×I2×...×IN of the full projection is introduced as an extension of the total scatter
matrix. Each entry of the tensor Y∗var is defined as

Y∗var(i1, i2, ..., iN) =
M∑

m=1

[(Y∗m − Ȳ∗)(i1, i2, ..., iN)]2 (2.23)

where
Y∗m(i1, i2, ..., iN) = Xm ×1 U(1)∗T ...×N U(N)∗T

(2.24)

and

Ȳ∗ = (1/M)
M∑

m=1

Y∗m (2.25)

Using the previous definition, it can be shown that for the so-called full projection (Pn=In

for all n), the inth n-mode eigenvalue λ
(n)∗
in

is the sum of all the entries of the inth n-mode
slice of Y∗var

λ
(n)∗
in

=

I1∑
i=1

...

In−1∑
in−1=1

In+1∑
in+1=1

...

IN∑
iN=1

Y∗var(i1, ..., in−1, in, in+1, ..., iN) (2.26)
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In this paper, the eigenvalues are all arranged in a decreasing order. Fig. 2.3 shows visu-
ally what the n-mode eigenvalues represent. In this graph, third-order tensors, e.g., short
sequences (four frames) of images with size 6 × 5, are projected to a tensor space of size
6× 5× 4 (full projection) so that a total scatter tensor Y∗var∈R6×5×4 is obtained.

Figure 2.3: Visual illustration of (a) total scatter tensor, (b) 1-mode eigenvalues, (c) 2-mode
eigenvalues, and (d) 3-mode eigenvalues.

2.3.4 MPCA Versus PCA and 2-D PCA Solutions

It is not difficult to see that the MPCA framework generalizes not only the classical
PCA solution but also a number of the so-called 2-D PCA algorithms.

Indeed, for N = 1, the input samples are vectors xm ∈ RI1 . There is only one mode
and MPCA is reduced to PCA. For dimensionality reduction purposes, only one projection
matrix U is needed in order to obtain ym = xm ×1 U = UT xm. In this case, there is only
one Φ(n) = Φ(1) =

∑M
m=1 (xm -x̄) · (xm − x̄)T , which is the total scatter matrix of the input

samples in PCA [36]. The projection matrix maximizing the total scatter (variation) in the
projected space is determined from the eigenvectors of Φ(1). Thus, MPCA subsumes PCA.

In the so-called 2-D PCA solutions, input samples are treated as matrices, in other
words second-order tensors. Two (left and right) projection matrices are sought to maximize
the captured variation in the projected space. The proposed MPCA algorithm is equivalent
to the 2-D PCA solution of [62], with the exception of the initialization procedure and termi-
nation criterion. Other 2-D PCA algorithms such as those discussed in [64] can be viewed
as variations of the method in [62] and thus they can be considered special cases of MPCA
when second-order tensors are considered.

2.4 TensorFaces: Multilinear Analysis of Facial Images

Multilinear algebra offers a natural approach to the analysis of the multifactor structure
of image ensembles and to addressing the difficult problem of disentangling the constituent
factors or modes then an image formation depends on scene geometry, viewpoint, and illu-
mination conditions [60]. We apply multilinear analysis to the facial image data using the
N-mode decomposition algorithm described in Section 2.3.
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Figure 2.4: Some of the basis vectors resulting from the multilinear analysis of the facial
image data tensor D [1, 2].

In a concrete application of our multilinear image analysis technique, we employ the
Weizmann face database of 28 male subjects photographed in 15 different poses under 4
illuminations performing 3 different expressions. The 5-mode decomposition of D is

D = Z ×1 Upeople ×2 Uviews ×3 Uillums ×4 Uexpres ×5 Upixels. (2.27)

Using a global rigid optical flow algorithm, we roughly aligned the original 512× 352 pixel
images relative to one reference image. The images were then decimated by a factor of 3 and
cropped as shown in Fig. 2.4, yielding a total of 7943 pixels per image within the elliptical
cropping window. Our facial image data tensor D is a 28 × 5 × 3 × 3 × 7943 tensor. The
number of modes is N = 5. The core tensor Z governs the interaction between the factors
represented in the 5 mode matrices: The 28 × 28 mode matrix Upeople spans the space of
people parameters, the 5 × 5 mode matrix Uviews spans the space of viewpoint parameters,
the 3×3 mode matrix Uillums spans the space of illumination parameters and the 3×3 mode
matrix Uexpres spans the space of expression parameters. The 7943 × 7943 mode matrix
Upixels orthonormally spans the space of images.

Our multilinear analysis, which we call TensorFaces, subsumes linear, PCA analysis
or conventional eigenfaces. Each column of Upixels is an eigenimage. These eigenimages are
identical to conventional eigenfaces [13, 17], since the former were computed by performing
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an SVD on the mode-5 flattened data tensorD which yields the matrix Dpixels whose columns
are the vectorized images. To further show mathematically that PCA is a special case of our
multilinear analysis, we write the latter in terms of matrix notation. A matrix representation
of the N -mode SVD can be obtained by unfolding D and Z as follows:

D(n) = U(n)Z(n)(U(n−1) ⊗ ...⊗ U(1) ⊗ U(N) ⊗ ...⊗ U(n+2) ⊗ U(n+1))
T , (2.28)

Using 2.28 we can express the decomposition of D as

D(pixels)︸ ︷︷ ︸
imagedata

= U(pixels)︸ ︷︷ ︸
basisvectors

(Z(pixels)U(expres) ⊗ U(illums) ⊗ U(views) ⊗ U(people))
T

︸ ︷︷ ︸
coefficients

(2.29)

The above matrix product can be interpreted as a standard linear decomposition of the image
ensemble, where the mode matrix U(pixels) is the PCA matrix of basis vectors and the asso-
ciated matrix of coefficients is obtained as the product of the flattened core tensor times the
Kronecker product of the people, viewpoints, illuminations, and expressions mode matrices.
Thus, as we stated above, our multilinear analysis subsumes linear, PCA analysis.

The advantage of multilinear analysis is that the core tensor Z can transform the eigen-
images present in the matrix U(pixels) into eigenmodes, which represent the principal axes
of variation across the various modes (people, viewpoints, illuminations, expressions) and
represents how the various factors interact with each other to create an image. This is ac-
complished by simply forming the product Z×5 U(pixels). By contrast, PCA basis vectors or
eigenimages represent only the principal axes of variation across images. To demonstrate,
Fig. 2.4 illustrates in part the results of the multilinear analysis of the facial image tensor D.
Fig. 2.4(a) shows the first 10 PCA eigenimages contained in U(pixels). Fig. 2.4(b) illustrates
some of the eigenmodes in the product Z×5 U(pixels). A few of the lower-order eigenmodes
are shown in the three arrays. The labels at the top of each array indicate the names of the
horizontal and vertical modes depicted by the array. Note that the basis vector at the top left
of each panel is the average over all people, viewpoints, illuminations, and expressions, and
that the first column of eigenmodes (people mode) is shared by the three arrays.

2.5 Color Image Processing

Over the last three decades, we have seen several important contributions in the field
of color image processing. While there have been many early papers that address various
aspects of color images, it is only recently that a more complete understanding of color vi-
sion, colorimetry, and color appearance has been applied to the design of imaging systems
and image processing methodologies. The first contributions in this area were those that
changed the formulation of color signals from simple algebraic equations to matrix repre-
sentation [65], [66], [67]. More powerful use of the matrix algebraic representation was
presented in [68], where set theoretic methods were introduced to color processing. The
first overview extending signal processing concepts to color was presented in IEEE Signal
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Processing Magazine in 1993 [69]. This was followed by a special issue on color image pro-
cessing in IEEE Transactions on Image Processing in July 1997, where a complete review of
the state of the art at that time was found in [70, 71].

At this point, the focus of the issue shifts from hardware and system centric to image
processing techniques that form the backbone of many color systems and applications. The
first of these is discussed in Detection and Classification of Edges in Color Images [72],
where the emphasis is placed on detecting discontinuities, i.e., transitions from one region
to another, instead of similarities in a given image. One of the most fundamental steps
in many applications and in the design of image processing techniques is to ensure that a
given image is optimized for noise and enhanced in quality. This is outlined in the article
Vector Filtering for Color Imaging [73], where the authors discuss and compare the various
techniques outlining their strength, areas of improvements, and future research directions.
Finally, the article titled Digital Color Halftoning [74] provides a complete review of the
methods employed by printers to reproduce color images and the challenges they face in
ensuring that these images are free of visual artifacts.

2.5.1 Mathematical Definition of Color Matching

A vector space approach to describing color is useful for expressing and solving com-
plex problems in color imaging. For this reason, we will use this notation to describe the
fundamentals of color matching. Let the N × 3 matrix S = [s1, s2, s3] represent the response
of the eye, where the N vectors, si, correspond to the response of the ith type sensor (cone)
in Fig. 2.5. A given visible spectrum can be represented by an N vector, f, a function whose
value is radiant energy. Hence, the response of the sensors to the input spectrum is a three
vector, c, obtained by

c = ST f (2.30)

Two visible N -vectors spectra f and g are said to have the same color if they appear the
same to a human observer. In our linear model, this implies that if f and g represent different
spectral distributions, they portray equivalent colors if

ST f = ST g (2.31)

From this, it can be easily seen that many different spectra can result in the same
color appearance to a given observer. This fascinating phenomena is known as metamerism
(meh tam er ism), and the two spectra are termed as metamers. In essence, metamerism
is basically color aliasing and can be described by generalizing the well-known Shannon
sampling theorem frequently encountered in communications and digital signal processing.
It should be noted, however, that the level of metamerism may vary across various observers,
dependent on their individual cone sensitivities.

In practice, it is desirable to have a matrix of color matching functions that are non-
negative, so they can be physically realized as optical filters. This problem was addressed
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by the Commission Internationale de lEclairage (CIE), in 1931, yielding the XY Z color
matching functions shown in Fig. 2.6 as solids lines. Hence, the matrix A can now be used
to represent these functions. The Y value was chosen to be the luminous efficiency function,
making it equivalent to the photometric luminance value. This standardization led to the
precise definition of colorimetric quantities, such as tristimulus values and chromaticity.

The term tristimulus values refers to the vector of values obtained from a radiant spec-
trum, r, by t = [X, Y, Z]T = AT r (we recognize the inconsistency of denoting the elements
of t by X, Y, Z, but since the color world still uses the X, Y, Z terms, we use it here). The
chromaticity is then obtained by normalizing the tristimulus values yielding

x = X/(X + Y + Z)

y = Y/(X + Y + Z)

z = Z/(X + Y + Z) (2.32)

Since x+ y + z = 1, any two chromaticity coordinates are sufficient to characterize the
chromaticity of a spectrum. In general, as a matter of convention, the x and y terms are used
as the standard.
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Figure 2.5 Cone sensitivities.

2.5.2 Mathematics of Color Reproduction

To reproduce a color image, it is necessary to generate new vectors in N space (spectral
space) from those obtained by a given multispectral sensor. Since the eye can be represented
as a three-channel sensor, it is most common for a multispectral sensor to use three types of
filters. Hence, the characteristics of the resulting multispectral response functions associated
with the input and output devices are critical aspects for color reproduction. Output devices
can be characterized as being additive or subtractive. Additive devices, such as cathode
ray tubes (CRTs), produce light of varying spectral composition as viewed by the human
observer. On the other hand, subtractive devices, such as ink-jet printers, produce filters that
attenuate portions of an illuminating spectrum. We will discuss both types in the following,
clearly highlighting their differences.
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Figure 2.6: CIE RGB and XYZ color matching functions: RGB are shown in dashed lines,
and XYZ are shown in solid lines.

2.5.3 Additive Color Systems

In additive devices, various colors are generated by combining light sources with dif-
ferent wavelengths. These light sources are known as primary. An example of this is illus-
trated in Fig. 2.7. In the Fig. 2.7, it can be easily seen that cyan, magenta, yellow, and white
are generated by combining blue and green; red and blue; red and green; and red, green, and
blue, respectively. The red, green, and blue channels of an example color image are also
shown for illustration purposes. Other colors can be generated by varying the intensities of
the red, green, and blue primaries. For instance, the screen of a television, or CRT, is covered
with phosphoric dots that are clustered in groups. Each group contains these primary colors:
red, green, and blue, which are combined in a weighted fashion to produce a wide range of
colors. Additive color systems are characterized by their corresponding multispectral output
response. For instance, a three-color monitor is represented by the N × 3 matrix, E, which
serves the same purpose as the primaries in the color matching experiment. The amount of
each primary is controlled by a three-vector c. The spectrum of the output is then computed
as follows:

f = Ec, (2.33)

Hence, the tristimulus values associated with a standard observer who is viewing the screen
are given by

t = AT f = AT Ec, (2.34)

There are several challenges that need to be considered when dealing with additive systems.
One is to choose the control values so that the output matches the intended target values.
This is not feasible for all possible colors due to the power limitations of the output device.
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Figure 2.7 Additive color system.

Furthermore, the control values cannot be negative, i.e., we cannot produce negative light.
In addition, we have the question of estimating the best values of c from some recorded data.

2.5.4 Subtractive Color Systems

Subtractive systems are characterized by the fundamental property that color is ob-
tained by removing (subtracting) selected portions of a source spectrum. This is illustrated
in Fig. 2.8, where cyan, magenta, and yellow colorants are used to absorb, in this respect, the
red, green, and blue spectral components from white light. The cyan, magenta, and yellow
channels of a color image are also shown for illustration purposes. Hence, each colorant
absorbs its complementary color and transmits the remainder of the spectrum. The amount
of light removed, by blocking or absorption, is determined by the concentration and mate-
rial properties of the colorant. The color is generally presented on a transmissive medium
like transparencies or on a reflective medium like paper. While the colorant for subtractive
systems may be inks, dyes, wax, or toners, the same mathematical representation outlined
in previously can be used to approximate them. The main property of interest for imaging
in subtractive systems is the optical density. The transmission of an optically transmissive
material is defined as the ratio of the intensity of the light that passes through the material to
the intensity of the source. This is illustrated by

T =
Iout

Iin

. (2.35)

As a result, the optical density is defined by

d = −log10(T ). (2.36)
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and is related to the physical density of the material. The inks can be characterized by their
density spectra, the N × 3 matrix D. Hence, the spectrum that is seen by the observer is
the product of an illumination source, the transmission of the ink, and the reflectance of the
paper. Since the transmissions of the individual inks reduce the light proportionately, the
output at each wavelength, λ, is given by

g(λ) = l(λ)t1(λ)t2(λ)t3(λ) (2.37)

where ti(λ) is the transmission of the ith ink and l(λ) is the intensity of the illuminant. For
simplification, the reflectance of the paper is assumed perfect and is assigned the value of
1.0. The transmission of a particular colorant is related logarithmically to the concentration
of the ink on the page. The observed spectrum is obtained mathematically by

g = L[10−Dc] (2.38)

where L is a diagonal matrix representing an illuminant spectrum and c is the concentration
of the colorant. The concentration values are held between zero and unity and the matrix of
density spectra, D, represents the densities at the maximum concentration. The exponential
term is computed componentwise, i.e.,

10r = [10r110r2 ...10rN ]T . (2.39)

This simple model ignores nonlinear interactions between colorant layers. For a re-
flective medium, the model requires an additional diagonal matrix, which represents the
reflectance spectrum of the surface. For simplicity, this can be conceptually included in the
illuminant matrix L. The actual process for subtractive color reproduction is much more
complicated and cannot, in general, be comprehensively modeled by the equations described
here. Hence, these systems are usually characterized by look-up tables (LUTs) that capture
their input-output relationships empirically. The details of handling device characterizations
via LUTs are described in [75].

2.5.5 Color Spaces

The proper use and understanding of color spaces is necessary for the development of
color image processing methods that are optimal for the human visual system. Many algo-
rithms have been developed that process in an RGB color space without ever defining this
space in terms of the CIE color matching functions, or even in terms of the spectral responses
of R, G, and B. Such algorithms are nothing more than multichannel image processing tech-
niques applied to a three-band image, since there is no accounting for the perceptual aspect of
the problem. To obtain some relationship with the human visual system, many color image
processing algorithms operate on data in hue, saturation, lightness (HSL) spaces. Com-
monly, these spaces are transformations of the aforementioned RGB color space and hence
have no visual meaning until a relationship is established back to a CIE color space. To fur-
ther confuse the issue, there are many variants of these color spaces, including hue saturation
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Figure 2.8 Subtractive color system.

value (HSV), hue saturation intensity (HSI), and hue chroma intensity (HCI), some of which
have multiple definitions in terms of transforming from RGB. Since color spaces are of such
importance and a subject of confusion, we will discuss them in details.

There are two primary aspects of a color space that make it more desirable and at-
tractive for use in color devices: 1) its computational expediency in transforming a given
set of data to the specific color space and 2) conformity of distances of color vectors in the
space to that observed perceptually by a human subject, i.e., if two colors are far apart in
the color space, they look significantly different to an observer with normal color vision.
Unfortunately, these two criteria are antagonistic. The color spaces that are most suited for
measuring perceptual differences require complex computation, and vice versa.

2.5.6 Uniform Color Spaces

It is well publicized that the psychovisual system is nonlinear and extremely complex.
It cannot be modeled by a simple function. The sensitivity of the system depends on what is
being observed and the purpose of the observation. A measure of sensitivity that is consistent
with the observations of arbitrary scenes is well beyond our present capabilities. However,
much work has been done to determine human color sensitivity in matching two color fields
that subtend only a small portion of the visual field. In fact, the color matching functions
(CMFs) of Figure 2.6 are more accurately designated by the solid angle of the field of view
that was used for their measurement. A two-degree field of view was used for those CMFs.

It is well known that mean square error is, in general, a poor measure of error in any
phenomenon involving human judgment. A common method of treating the nonuniform er-
ror problem is to transform the space into one where Euclidean distances are more closely
correlated with perceptual ones. As a result, the CIE recommended, in 1976, two transfor-
mations in an attempt to standardize measures in the industry. Neither of these standards
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achieve the goal of a uniform color space. However, the recommended transformations do
reduce the variations in the sensitivity ellipses by a large degree. In addition, they have an-
other major feature in common: the measures are made relative to a reference white point.
By using the reference point, the transformations attempt to account for the adaptive charac-
teristics of the visual system. The first of these transformation is the CIELAB space defined
by

(2.40)

L∗ = 116(
Y

Yn

)
1
3 − 16 (2.41)

a∗ = 500[(
X

Xn

)
1
3 − (

Y

Yn

)
1
3 ] (2.42)

b∗ = 200[(
Y

Yn

)
1
3 − (

Z

Zn

)
1
3 ] (2.43)

for ( X
Xn

), ( Y
Yn

), ( Z
Zn

) > 0.01. The values Xn, Yn, Zn are the CIE tristimulus values of the
reference white under the reference illumination, and X,Y, Z are the tristimulus values,
which are to be mapped to the CIELAB color space. This maps the reference white to
(L∗, a∗, b∗) = (100,0,0). The requirement that the normalized values be greater than 0.01 is
an attempt to account for the fact that at low illumination the cones become less sensitive
and the rods (monochrome receptors) become active. Hence, a linear model is used at low
light levels.



CHAPTER III

THE PROPOSED FRAMEWORKS

In this chapter, the two frameworks were proposed for improving the performance of
face hallucination. In Section 3.1, the first framework, Color Face Hallucination with Linear
Regression Model in MPCA, take the advantage of the MPCA. The second framework, Color
Face Super-Resolution Based on Tensor Patches Method, was introduced in Section 3.2.

3.1 Color Face Hallucination with Linear Regression Model in MPCA

The goal of this part is to propose a novel hallucination reconstruction, using the
MPCA for color face image. Given a training image set {XH ,X L}, whereXH = {X h

i }i=1,...,K ,
X L = {X l

i }i=1,...,K and K is the number of training image. The training color face images
can be defined as X h

i ∈ RI1⊗RI2⊗ RI3 and X l
i ∈ RJ1⊗RJ2⊗ RJ3 which are the HR color

face image and LR color face image, respectively.
In this paper, we propose our method in many color models such as RGB, YCbCr,

HSV and CIELAB. For example, the training image sets X l
i and X h

i can be described in
RGB model as X h

i ∈ RI1×I2×3 and X l
i ∈ RJ1×J2×3. In addition, the index I1 × I2 × 3 is an

array of color pixels, where each color pixel is a triplet corresponding to the red, green, and
blue components of an RGB image.

Following standard multilinear algebra, any tensor can be expressed as the product

Yh
i = X h

i ×1 Ũ
h(1)T

×2 Ũ
h(2)T

×3 Ũ
h(3)T

(3.1)

and
Y l

i = X l
i ×1 Ũ

l(1)T

×2 Ũ
l(2)T

×3 Ũ
l(3)T

(3.2)

where Yh
i ∈RP1⊗RP2⊗RP3 and Y l

i ∈RQ1⊗RQ2⊗RQ3 , with (P1 < I1, P2 < I2 and P3 < 3)
as the index of HR training set and (Q1 < J1, Q2 < J2 and Q3 < 3) as the index of LR
training set. The tensor Yi can capture most of the variations observed in the original tensor
objects, assuming that these variations are measured by the total scatter. Therefore, two
sets of MPCA subspace projection are obtained, which are Yh

i = [yh
r,s,t]i and Y l

i = [yl
r,s,t]i

respectively. In addition, we use [yr,s,t] to represent a tensor with yr,s,t as its (r, s, t)-th entry.

One can see that if the sets of Ũ
(1)

, Ũ
(2)

, Ũ
(3)

are disjoint sets of orthonormal vectors
then the correlation between the decomposition coefficients can be suppressed. From the
model Yh

i = f(Y l
i). When a generative model is used, f is actually a probability. Thus we

can consider the conditional probability P (Yh
i |Y l

i). When a new testing color face image
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(LR) X l is provided, the HR MPCA subspace projection is given by:

Yh = argmax
Y

P (Y|Y l). (3.3)

The HR color face image X h can be reconstructed by back-projection from the MPCA
subspace into the image tensor space as

X h = Yh ×1 Ũ
h(1) ×2 Ũ

h(2) ×3 Ũ
h(3)

(3.4)

Because each individual coefficient can be estimated separately, we have

ŷh
r,s,t = argmax

yr,s,t

P (yr,s,t|Y l), (3.5)

From the assumption of low-correlation between the coefficients in Y l, we can simplify this
probability in (3.5) as

P (yr,s,t|Y l)≈P (yr,s,t|yl
1,1,1)...P (yr,s,t|yl

Q1,Q2,Q3
). (3.6)

We can also rewrite [yl
r,s,t] into a vector form as

P (yr|Y l) ≈
Q1Q2Q3∏

p=1

P (yr|yl
p). (3.7)

We use Gaussian to model the probability in (3.7) as:

P (yr|yl
p) ≈ cexp{−(yr − wr,py

l
p)

2

2
}, (3.8)

where c is a constant. This Gaussian model evaluates the weighted distance between the
projection coefficients. Equation (3.7) can be rewritten as

P (yr|Y l) ≈ cexp{−
Q1Q2Q3∑

p=1

(yr − wr,py
l
p)

2

2
}. (3.9)

The Maximum Likelihood estimate of (3.9) is given by

ŷh
r = argmax

yr

logP (yr|Y l). (3.10)

We can express in a linear regression model as [76]

ŷh
r =

Q1Q2Q3∑
p=1

w′
r,py

l
p, (3.11)

where
w′

r,p =
wr,p

Q1Q2Q3

. (3.12)

We can calculate the value of w′
r,p from the HR and LR of training sets. Each training image

provides one equation to find w′
r,p (p = 1, ..., Q1Q2Q3) and the column vector formed by
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Figure 3.1: block diagram of color face hallucination with the linear regression model in
MPCA

the rth projection coefficients for the HR images be yh
r . In the same way, the column vector

formed by the pth projection coefficients for the corresponding LR set be yl
p and we can state

as:
yh

r = [yl
1, ..., yl

Q1Q2Q3
]wr, (3.13)

where
wr = [w′

r,1, ..., w
′
r,Q1Q2Q3

]T . (3.14)

After that wr can be given by an Least-Square (LS) estimate:

wr = [yl
1, ..., yl

Q1Q2Q3
]+yh

r . (3.15)

3.2 Color Face Super-Resolution Based on Tensor Patch Method

In this section, we apply HOSVD tensor patch within the well-known framework for
color face hallucination. A tensor structure provides a powerful mechanism to incorporate
information and interaction of these image ensembles of multiple modalities at different
resolutions. More precisely, given a training dataset of high-resolution face images, we blur
and subsample them with different Gaussian filters and sub-sampling factors, while keeping
the image size unchanged, so to generate a set of low-resolution training face images. To
further improve the modeling accuracy, we uniformly decompose these face images into
overlapped image blocks, and then obtain a hierarchical ensemble containing block-wise
face images at low- and high-resolution. With these training data in place, we can construct
a seventh-order tensor D. We use HOSVD to decompose D into

D = Z ×1 Uidens ×2 Upixel1 ×3 Upixel2 ×4 Upatch1 ×5 Upatch2 ×6 Ucolor ×7 Uresos (3.16)
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where tensor D groups these block-wise training images into a tensor structure, and the core
tensor Z governs the interactions between the seven mode factors. In (3.16), mode matrix
Uidens spans the parameter space of identity, Upixel1 and Upixel2 span the space of pixel in
x-axis and y-axis, Upatch1 and Upatch2 span the space of patch in x-axis and y-axis, Ucolor

span the spaces of color space and Uresos span the space of resolution.
To model high-resolution details for the purpose of face hallucination, we uniformly

decompose the low- and high-resolution face images into small overlapped patches, and
perform tensor modeling at patch level. We can hallucinate high-resolution image data with
all the decomposed patches. The final high-resolution face images are compositions of their
corresponding overlapped small patches.

We suppose that H1 is the high-resolution color images, S1 is its low-resolution corre-
spondences to be synthesized and L1 is any low-resolution color face input images. The task
comes as finding the maximum a posteriori (MAP) estimation of H1 given L1 which can be
formulated as

{H1MAP} = argmaxH1,S1
logP (H1, S1|L1) (3.17)

By applying Bayes rule, we have

P (H1, S1|L1) = P (H1|S1, L1)P (S1|L1) (3.18)

During the sequential processes of our face hallucination, the high-resolution face image
is independently reconstructed. Based on the synthesized low-resolution image, the above
expression can be state as

P (H1, S1|L1) = P (H1|S1)P (S1|L1)

= P (S1|H1)P (H1)P (S1|L1). (3.19)

The high-resolution image is naturally composed from the two part:

H = Hlm + Hh, (3.20)

where Hlm represents face images containing low- and middle-frequency information, and
Hh contains high-frequency part. Since Hlm contributes the main part of after blurring and
subsampling, then the probability P (S|H) can be approximated as P (S|Hlm). Based on
(3.20), we also have P (H) = P (Hh|Hlm)P (Hlm), and the estimation of H given Hlm is
equivalent to the estimation of Hh given Hlm, we then reformulate probability P (S1|H1)P (H1)

as

P (S1|H1)P (H1) = P (S1|Hlm
1 )P (Hh

1 |Hlm
1 )P (Hlm

1 ).

= P (Hlm
1 |S1)P (H1|Hlm

1 ). (3.21)

We can rewrite probability P (S1|L1) as

P (S1|L1) = P (L1|S1)P (S1). (3.22)



29

Probabilities P (L1|S1)P (S1), P (Hlm
1 |S1) and P (H1|Hlm

1 ) sequentially constrain S1, Hlm
1 and

H1. This leads to a two-step sequential solution. In the first step, by using a global image-
based tensor, we can synthesize the low-resolution S1. In the second step, after obtaining S1,
the Hlm

1 and H1 containing low-frequency, middle-frequency and high-frequency informa-
tion can be computed using the local patch-based tensor. In addition, the final high-resolution
H1 is computed by maximizing P (H1|Hlm

1 ).

3.2.0.1 Global Low-Resolution Color Face Image Synthesis

In this section, the synthesis S1 is computed by maximizing probability P (L1|S1)P (S1).
Since L1 and S1 are the low-resolution given and synthesized face images with the same
modality, we regard their relationship as Gaussian

P (L1|S1) =
1

f
exp{−||S1 − L1||2/λ} (3.23)

where f is a normalization constant and λ scales the variance.
In (3.16), if we index into its basis subtensor at a particular modality m1, then the

subtensor containing the individual image data as in (3.16) can be approximated by G =
ZG ×1 Uidens ×2 Upixel1 ×3 Upixel2 and we get Gm1 = BGm1 ×1 VT . We unfold it into matrix
representation and it becomes G(1)T

m1 = BGT (1)

m1
V. Suppose G(1)T

m1 correspond to color face
images S1, then we substitute for S1 in (3.23) resulting in

P (L1|S1) =
1

f
exp{−||BG(1)T

m1
V− L1||2/λ} (3.24)

In reality the given low-resolution L1 and S1 synthesized have the same modality. By setting
BG(1)T

m1
V = L1, we maximize (3.24) and approximately compute

V = (BG(1)

m1
BG(1)T

m1
)−1BG(1)T

m1
L1 (3.25)

where (BG(1)

m1
BG(1)T

m1
)−1BG(1)T

m1
is the pseudoinverse of BG(1)T

m1
.

3.2.0.2 Local Patch-Based and High-Frequency Residue Recovery in Color Face Im-
age Hallucination

To obtain their hallucinated high-resolution, we maximize P (Hlm
1 |S1) using the local

patch-based multiresolution tensor. The inference of Hlm
1 from S1 is independent. In the

following, we take Hlm
1 as an example to illustrate this second process.

Since the training local multiresolution tensor is constructed from small overlapped
patches, we decompose the synthesized S1 uniformly in the same way as decomposing train-
ing data, and factorize the likelihood P (Hlm

1 |S1) at patch level as

P (Hlm
1 |S1) =

N∏
p1,p2=1

P (Hlm
1p1,p2

|S1p1,p2
). (3.26)
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Assuming A is the blurring and subsampling operator connecting Hlm
1p1,p2

and S1p1,p2
in an

imaging observation model, we regard these processes as Gaussian, therefore

P (Hlm
1 |S1) =

N∏
p1,p2=1

1

w
exp{−||AHlm

1p1,p2
− S1p1,p2

||2/β} (3.27)

where w is a normalization constant and β scales the variance.
Suppose the local multiresolution tensor in (3.16) has a basis tensor

BL = ZL ×2 Upixel1 ×3 Upixel2 ×4 Upatch1 ×5 Upatch2 ×6 Ucolor ×7 Uresos. (3.28)

We index into this basis tensor at a particular resolution r and patch position p1 and p2,
yielding a basis subtensor

BLr,p1,p2
= ZL ×2 Upixel1 ×3 Upixel2 ×6 Ucolor ×4 VT

p1
×5 VT

p2
×7 VT

r . (3.29)

Then as described in Section (2), the subtensor containing the pixel data for that particular
patch can be approximated as Dr,p1,p2 = BLr,p1,p2

×1 VT , and its unfolded representation is
D(1)T

r,p1,p2
= BL(1)T

r,p1,p2

V. Similarly, we can obtain a subtensor for resolution r′ of the same patch

position, which is L(1)T
r′,p1,p2

= BL(1)T

r′,p1,p2

Ṽ. Suppose L(1)T
r,p1,p2

and L(1)T
r′,p1,p2

correspond to S1p1,p2

and Hlm
1p1,p2

, respectively; we substitute them in (3.27) as

P (Hlm
1 |S1) =

N∏
p1,p2=1

1

w
exp{−||ABL(1)T

r′,p1,p2

Ṽ− BL(1)T
r,p1,p2

V||2/β}. (3.30)

We optimize the parameter Ṽ based on the construction properties of the local multiresolu-
tion patch tensor, which suggests that the relation between BL(1)T

r′,p1,p2

Ṽ and BL(1)T
r,p1,p2

V observes

a basic imaging observation model through the blurring and subsampling operator A. This
is consistent with the uniqueness of the identity parameter vector in a tensor space as well.
By setting Ṽ = V, we can approximately compute Hlm

1p1,p2
as

Hlm
1p1,p2

= BL(1)T

r′,p1,p2

ΨS1p1,p2
(3.31)

where Ψ is the pseudoinverse of BL(1)T
r,p1,p2

and is equal to (BL(1)T
r,p1,p2

BL(1)T
r,p1,p2

)−1BL(1)T
r,p1,p2

. After
reconstructing all the patches at different positions, the final hallucinated color face image
Hlm

1 is simply a composition of the corresponding hallucinated small patches.
We recover the highest frequency part by patch learning from the high-resolution train-

ing data. The inference of H1 from Hlm
1 is independent. In the following, we take H1 as an

example to illustrate how to hallucinate the final high-resolution face images.
We use a MRFs to model the H1 to be inferred. By decomposing into Hlm

1 square
patches

P (H1|Hlm
1 ) = P (Hlm

1 |H1)P (H1)

=

Q∏
q=1

P (Hlm
1q |H1q)P (H1). (3.32)
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The difference between H1 and Hlm
1 is the high-frequency band information. Since the high-

frequency information depends on the lower-frequency band, we use the Laplacian image
LHlm

1
of Hlm

1 to represent the middle-frequency band. To infer H1, we use the sum of squared
differences of Laplacian images as metrics to model

∏Q
q=1 P (Hlm

1q |H1q) as

Q∏
q=1

P (Hlm
1q |H1q)α

Q∏
q=1

exp−||LHlm
1q
− LH(t)

1q
||2 (3.33)

where LH(t)
1q

are the Laplacian images from high-resolution training face images. Compar-

ing the Laplacian images LHlm
1q

with {LH(t)
1q
}T

t=1 from the training dataset, the patch H(t)
1q

with LH(t)
1q

closest to LHlm
1q

is the most probable to be chosen as H1q. Since we model the
high-resolution image as a MRFs, based on the HammersleyClifford theorem, P (H1) is a
product

∏
H1q ,H1q

Φ(H1q, H1q) of compatibility functions Φ(H1q, H1q) over all neighboring
pairs, where H1q, H1q are one of the neighboring patch pairs in a 4-neighbor system.

The compatibility function Φ(H1q, H1q) is defined using the similarity of pixel values
on the overlapping area of the neighboring patches:

Φ(H1q, H1q)αexp{−||OH1q −OH1q
||2}, (3.34)

where OH1q denotes the pixels of patch H1q overlapping with neighboring patch H1q, and vice
versa for OH1q

. We illustrate this 4-neighbor system and the corresponding patch overlapping
relations, then H1 estimated as

argmaxH1

Q∏
q=1

P (Hlm
1q |H1q)

∏

(q,q)

Φ(H1q, H1q). (3.35)

Solving probabilistic (3.35) to obtain H1 is not a trivial task. We use the iterated con-
ditional modes (ICM) algorithm [77]. More specifically, we maximize P (Hlm

1q |H1q) for all
patch positions q∈{1, ..., Q} to yield the initial maximum likelihood estimate of . Based on
this initial estimate, we then pick a random patch position q and update the estimate of H1q

using the current estimates of its neighbors H1q by maximizing P (Hlm
1q |H1q)

∏
(q,q) Φ(H1q, H1q).

We repeat this random patch selection and updating process until converging to the final
high-resolution image H1.



CHAPTER IV

THE EXPERIMENTAL RESULTS

4.1 Image Databases

We used face images from a subset of FERET databases to form two data sets for train-
ing and testing images in four color models, which are RGB, YCbCr, HSV and CIELAB. The
experiments are conducted with a large number of face images from FERET data set [78,79]
and other collections, which consist of many different races, illuminations and types of face
images.

4.1.1 FERET Database

The FERET database [78, 79] contains 1199 individuals and 365 duplicate sets of im-
ages. There are images per subject, one for each of the following facial expressions or con-
figurations: centerlight, with glasses, happy, left-light, without glasses, normal, right-light,
sad, sleepy, surprised, and wink. All sample images of one person from the FERET database
are shown in Fig. 4.3.

Figure 4.1 Preprocessing diagram

4.2 Preprocessing

In some databases, we notice that the background, some possible transformations of
the object (scaling, rotation and translation) and sensor-dependent variations (for example,
automatic gain control calibration and bad lens points) could undermine the face halluci-
nation performance. This impact can be minimized by cropping and normalization. The
preprocessing of this dissertation is following to the diagram in Fig. 4.1.
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Figure 4.2 Cropping image

4.2.1 Cropping and Resizing

In this dissertation, the cropping procedure was manually implemented by human.
Each image was manually cropped and resized to 30 × 30 pixels. By attempting to align
images such that the faces are the same size, in the same position and at the same orientation.
Specifically, the image is scaled and translated to make the eye coordinates coincident with
pre-specified locations in the output. After cropping, all of the images were resized to same
dimensions by linear interpolation. The cropping for a sample image on FERET database
was shown in Fig. 4.2.

Figure 4.3 Example training faces from FERET database in our proposed algorithm

4.2.2 Normalization

The normalization is to compensate for intensity variations. By

A′ =
A

||vec(A)|| (4.1)

where A is the original image matrix, A′ is the normalized image matrix and ||vec(A)||
represents to the norm of the vectorization of the image matrix.
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4.3 Experiments and Analysis on Color Face hallucination with Ten-
sorPCA subspace

In this section, we experimentally evaluate our proposed technique by using Tensor-
PCA methods. In our experiments, we randomly select 500 normal expression images of
different persons on the same light condition and other 50 images are used for testing. Ac-
cording to demand, we manually crop the interesting region of the faces and unify the images
to the size of (30 × 30).

In the degradation process, each testing image (LR) is introduced with Gaussian blur
with variance 1 and resized by down-sampling 2:1 (15 × 15), then we add Gaussian noise
with variance 10−6. To establish a standard training data set, we aligned these face images
manually by hand, marking the location of 3 points: the centers of the eyeballs and the lower
tip of the nose. These 3 points define an affine warp, which is used to warp the images into
a canonical form. We use Peak signal-to-noise ratio (PSNR) to evaluate the performance of
the facial reconstruction.

We compare the hallucination results between the traditional PCA and tensorPCA by
vary both of the number of principal component from 90 to 100 percent PCA. The experi-
mental results are shown in Fig. 4.4-4.7: (a) original HR images (30 × 30), (b) input LR
images (15× 15) with noise, motion and blur in LR images, (c)-(e) face hallucination result
with 90, 95 and 100 percent traditional PCA respectively, (f)-(h) face hallucination result
with 90, 95 and 100 percent tensorPCA respectively.

From the traditional PCA method, the color face image has to be converted to a vector
representation. Then, we can see that from the hallucinated results in Fig. 4.4-4.7 (c)-(e), it
can hardly maintain global smoothness and visual rationality, especially on location around
color face contour and margin of the nose and the mouth. In addition, the results have
some noise around the eyes and mouth. On the other hand, the hallucinated results from the
tensorPCA method in Fig. 4.4-4.7 (f)-(h) can reconstruct the reasonable color face images
which are compared with the ground truth color face images in Fig. 4.4-4.7 (a). In Fig. 4.4-
4.7, the outcomes we get in HSV color space show that the color distort from the original
HR images. Additionally, the details in our hallucination results such as eyes, noses, lips and
eyebrows quite differ from the original HR images.
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(b) (c) (d) (e) (f ) (g) (h)(a)

Figure 4.4: Color hallucinated face images in RGB color model. (a) original HR images
(30 × 30); (b) input LR images (15 × 15) with noise, motion and blur in LR images; (c)
face hallucination result with 90 percent traditional PCA; (d) face hallucination result with
95 percent traditional PCA; (e) face hallucination result with 100 percent traditional PCA;
(f) face hallucination result with 90 percent tensorPCA; (g) face hallucination result with 95
percent tensorPCA; (h) face hallucination result with 100 percent tensorPCA;

(b) (c) (d) (e) (f ) (g) (h)(a)

Figure 4.5: Color hallucinated face images in YCbCr color model. (a) original HR images
(30 × 30); (b) input LR images (15 × 15) with noise, motion and blur in LR images; (c)
face hallucination result with 90 percent traditional PCA; (d) face hallucination result with
95 percent traditional PCA; (e) face hallucination result with 100 percent traditional PCA;
(f) face hallucination result with 90 percent tensorPCA; (g) face hallucination result with 95
percent tensorPCA; (h) face hallucination result with 100 percent tensorPCA;
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(b) (c) (d) (e) (f ) (g) (h)(a)

Figure 4.6: Color hallucinated face images in HSV color model. (a) original HR images
(30 × 30); (b) input LR images (15 × 15) with noise, motion and blur in LR images; (c)
face hallucination result with 90 percent traditional PCA; (d) face hallucination result with
95 percent traditional PCA; (e) face hallucination result with 100 percent traditional PCA;
(f) face hallucination result with 90 percent tensorPCA; (g) face hallucination result with 95
percent tensorPCA; (h) face hallucination result with 100 percent tensorPCA;

(b) (c) (d) (e) (f ) (g) (h)(a)

Figure 4.7: Color hallucinated face images in CIELAB color model. (a) original HR images
(30 × 30); (b) input LR images (15 × 15) with noise, motion and blur in LR images; (c)
face hallucination result with 90 percent traditional PCA; (d) face hallucination result with
95 percent traditional PCA; (e) face hallucination result with 100 percent traditional PCA;
(f) face hallucination result with 90 percent tensorPCA; (g) face hallucination result with 95
percent tensorPCA; (h) face hallucination result with 100 percent tensorPCA;
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Table 4.1: PSNR results of the facial images with traditional PCA and tensorPCA methods
in Fig. 4.4 for RGB color model.

Case first row second row third row fourth row

1) 90 percent PCA 24.05 dB 30.13 dB 23.40 dB 23.98 dB
2) 95 percent PCA 24.13 dB 30.39 dB 23.77 dB 24.09 dB
3) 100 percent PCA 24.34 dB 30.67 dB 23.98 dB 24.32 dB
4) 90 percent tensorPCA 26.63 dB 35.63 dB 27.61 dB 29.88 dB
5) 95 percent tensorPCA 30.96 dB 36.69 dB 28.33 dB 30.60 dB
6) 100 percent tensorPCA 31.18 dB 40.04 dB 28.61 dB 30.82 dB

Table 4.2: PSNR results of the facial images with traditional PCA and tensorPCA methods
in Fig. 4.5 for YCbCr color model.

Case first row second row third row fourth row

1) 90 percent PCA 24.13 dB 30.21 dB 23.61 dB 24.07 dB
2) 95 percent PCA 24.25 dB 30.51 dB 23.98 dB 24.22 dB
3) 100 percent PCA 24.58 dB 30.88 dB 24.22 dB 24.64 dB
4) 90 percent tensorPCA 26.71 dB 36.08 dB 27.67 dB 30.09 dB
5) 95 percent tensorPCA 30.98 dB 36.87 dB 28.45 dB 30.58 dB
6) 100 percent tensorPCA 31.32 dB 40.13 dB 28.64 dB 30.78 dB

Table 4.3: PSNR results of the facial images with traditional PCA and tensorPCA methods
in Fig. 4.6 for HSV color model.

Case first row second row third row fourth row

1) 90 percent PCA 22.86 dB 26.85 dB 22.51 dB 22.77 dB
2) 95 percent PCA 23.02 dB 27.04 dB 22.87 dB 22.91 dB
3) 100 percent PCA 23.24 dB 27.63 dB 23.06 dB 23.12 dB
4) 90 percent tensorPCA 26.58 dB 30.91 dB 27.60 dB 29.34 dB
5) 95 percent tensorPCA 27.19 dB 31.05 dB 27.79 dB 29.51 dB
6) 100 percent tensorPCA 27.58 dB 31.12 dB 27.85 dB 29.60 dB
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Table 4.4: PSNR results of the facial images with traditional PCA and tensorPCA methods
in Fig. 4.7 for CIELAB color model.

Case first row second row third row fourth row

1) 90 percent PCA 24.42 dB 30.66 dB 23.82 dB 24.13 dB
2) 95 percent PCA 24.67 dB 31.03 dB 24.01 dB 24.36 dB
3) 100 percent PCA 24.93 dB 31.78 dB 24.34 dB 24.79 dB
4) 90 percent tensorPCA 29.48 dB 36.41 dB 27.90 dB 30.45 dB
5) 95 percent tensorPCA 31.54 dB 37.03 dB 28.28 dB 31.42 dB
6) 100 percent tensorPCA 31.97 dB 40.29 dB 28.60 dB 31.63 dB

In Table. 4.1-4.4, we show the PSNR results from the hallucinated images in Fig.
4.4-4.7. We can see that the hallucination method with tensorPCA has more PSNR values
compared with the traditional PCA method. In RGB color model, at the same percentage
of eigenvalues 90, 95 and 100, tensorPCA method can give more higher the PSNR values
than the traditional PCA about 2.58-5.90 dB, 4.56-6.83 dB and 4.63-9.37 dB respectively.
However, in HSV color space the PSNR results in Table. 4.1-4.4, the tensor PCA method can
also give more higher the PSNR values than the traditional PCA about 3.72-6.57 dB, 4.01-
6.60 dB and 3.49-6.48 dB at the same percentage of eigenvalues 90, 95 and 100 respectively.
Moreover, the PSNR results in CIELAB color space are the best performance among color
spaces.
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4.4 Experiments and Analysis on Color Face hallucination with Linear
Regression Model in MPCA

In this experiment, the MPCA is used to perform principal component analysis of
the training images and we investigate the performance of our proposed method in sense
of impact of number of eigenvalues, impact of training set size, robustness to noise and
complexity respectively.

4.4.1 Impact of Number of Eigenvalues

The MPCA is used to perform principal component analysis of the training images.
Some sample results which compared between the tensorPCA and MPCA are shown in Fig.
4.8-4.11. The figures are organized as followed: column (a) the original HR (30 × 30)
color images; (b) input the LR color images (15 × 15) with noise, motion and blur; (c)-
(e) face hallucination results with Traditional PCA method; (f)-(h) face hallucination results
with linear regression model in MPCA and the number of eigenvalue is varied from 90
to 100 percent. Compared with the input image and the traditional PCA method result, the
hallucinated face images from the linear regression model in MPCA have much clearer detail
features. As shown in Fig. 4.8-4.11 (c), (d) and (e), with traditional PCA method, we can
observe that dirty disturbance in the global reconstructed images and the results have some
noise around the eyes and mouth. In addition, all the PSNR results in different both color
space and the number of PCA are shown in Table. 4.5-4.8. As we can see, the PSNR values
from the MPCA method are significantly higher than the traditional PCA method.

Additionally, we compare between the hallucination method with linear regression
model in MPCA and other traditional methods such as bilinear interpolation and Liu method
[80]. All the results are shown in Fig. 4.12-4.15: (a) the original HR (30× 30) color images;
(b) input the LR color images (15 × 15) with noise, motion and blur; (c) face hallucination
result with bilinear interpolation method; (d) face hallucination result with Liu method and
(e)-(g) face hallucination results with linear regression model in MPCA and the number of
eigenvalue is varied from 90 to 100 percent. We can see that the performance of hallucination
by our proposed method is much better. Likewise, the hallucination results from bilinear
interpolation method, which are displayed in Fig. 4.12-4.15 (c), cannot reconstruct the facial
images because this method is unable to solve noise, motion and blur problems.

Noticed from the figures, the performance of our proposed algorithm depends on the
number of the PCA. We can remark from the facial results in Fig. 4.8-4.15 that they tend
to produce sharper facial features, clear eyelids and mouth. In particular, if our algorithm is
implemented with 100 percent of PCA, the results will become similar to the original HR
facial images. The outcomes we get in HSV color space show that the color distort from the
original HR images. Additionally, the details in our hallucination results such as eyes, noses,
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lips and eyebrows quite differ from the original HR images.
We also compare the performance which are shown in Fig. 4.16-4.19 between tensor-

PCA and MPCA method. Since the the tensorPCA method does not realize the correlation
between each color channel in a color system. For this reason, in Table. 4.9-4.12, in each
hallucinated facial image from our proposed technique has more the PSNR values than the
tensorPCA method about 0.2-0.3 dB. All the PSNR results in different both color space and
the number of PCA are shown in Table. 4.9-4.10. We can see that our method has the highest
PSNR values compared with other methods on all test faces. The PSNR results in CIELAB
color space are the best performance among color spaces. However, in HSV color space the
PSNR results in Table. 4.9-4.12 are less favorable than other color spaces.
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(b) (c) (d) (e) (f ) (g) (h)(a)

Figure 4.8: Color hallucinated face images in RGB color model. (a) original HR images
(30× 30); (b) input LR images (15× 15) with noise, motion and blur in LR images; (c) face
hallucination result with 90 percent traditional PCA; (d) face hallucination result with 95
percent traditional PCA; (e) face hallucination result with 100 percent traditional PCA; (f)
face hallucination result with 90 percent MPCA; (g) face hallucination result with 95 percent
MPCA; (h) face hallucination result with 100 percent MPCA;

(a) (b) (c) (d) (e) (f ) (g) (h)

Figure 4.9: Color hallucinated face images in YCbCr color model. (a) original HR images
(30× 30); (b) input LR images (15× 15) with noise, motion and blur in LR images; (c) face
hallucination result with 90 percent traditional PCA; (d) face hallucination result with 95
percent traditional PCA; (e) face hallucination result with 100 percent traditional PCA; (f)
face hallucination result with 90 percent MPCA; (g) face hallucination result with 95 percent
MPCA; (h) face hallucination result with 100 percent MPCA;
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(a) (b) (c) (d) (e) (f ) (g) (h)

Figure 4.10: Color hallucinated face images in HSV color model. (a) original HR images
(30× 30); (b) input LR images (15× 15) with noise, motion and blur in LR images; (c) face
hallucination result with 90 percent traditional PCA; (d) face hallucination result with 95
percent traditional PCA; (e) face hallucination result with 100 percent traditional PCA; (f)
face hallucination result with 90 percent MPCA; (g) face hallucination result with 95 percent
MPCA; (h) face hallucination result with 100 percent MPCA;

(a) (b) (c) (d) (e) (f ) (g) (h)

Figure 4.11: Color hallucinated face images in CIELAB color model. (a) original HR images
(30× 30); (b) input LR images (15× 15) with noise, motion and blur in LR images; (c) face
hallucination result with 90 percent traditional PCA; (d) face hallucination result with 95
percent traditional PCA; (e) face hallucination result with 100 percent traditional PCA; (f)
face hallucination result with 90 percent MPCA; (g) face hallucination result with 95 percent
MPCA; (h) face hallucination result with 100 percent MPCA;
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(b) (c) (d) (e) (f ) (g)(a)

Figure 4.12: Color hallucinated face images, compared with other traditional methods in
RGB color model. (a) original HR images (30 × 30); (b) input LR images (15 × 15) with
noise, motion and blur in LR images; (c) face hallucination result with bilinear interpolation
method; (d) face hallucination result with Liu method; (e) face hallucination result with 90
percent MPCA; (f) face hallucination result with 95 percent MPCA; (g) face hallucination
result with 100 percent MPCA;

(a) (b) (c) (d) (e) (f ) (g)

Figure 4.13: Color hallucinated face images, compared with other traditional methods in
YCbCr color model. (a) original HR images (30× 30); (b) input LR images (15× 15) with
noise, motion and blur in LR images; (c) face hallucination result with bilinear interpolation
method; (d) face hallucination result with Liu method; (e) face hallucination result with 90
percent MPCA; (f) face hallucination result with 95 percent MPCA; (g) face hallucination
result with 100 percent MPCA;
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(b) (c) (d) (e) (f ) (g)(a)

Figure 4.14: Color hallucinated face images, compared with other traditional methods in
HSV color model. (a) original HR images (30 × 30); (b) input LR images (15 × 15) with
noise, motion and blur in LR images; (c) face hallucination result with bilinear interpolation
method; (d) face hallucination result with Liu method; (e) face hallucination result with 90
percent MPCA; (f) face hallucination result with 95 percent MPCA; (g) face hallucination
result with 100 percent MPCA;

(b) (c) (d) (e) (f ) (g)(a)

Figure 4.15: Color hallucinated face images, compared with other traditional methods in
CIELAB color model. (a) original HR images (30×30); (b) input LR images (15×15) with
noise, motion and blur in LR images; (c) face hallucination result with bilinear interpolation
method; (d) face hallucination result with Liu method; (e) face hallucination result with 90
percent MPCA; (f) face hallucination result with 95 percent MPCA; (g) face hallucination
result with 100 percent MPCA;
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(a) (b) (c) (d) (e) (f ) (g) (h)

Figure 4.16: Color hallucinated face images, compared between TensorPCA and MPCA
in RGB color model. (a) original HR images (30 × 30); (b) input LR images (15 × 15)

with noise, motion and blur in LR images; (c) face hallucination result with 90 percent
tensorPCA; (d) face hallucination result with 95 percent tensorPCA; (e) face hallucination
result with 100 percent tensorPCA; (f) face hallucination result with 90 percent MPCA;
(g) face hallucination result with 95 percent MPCA; (h) face hallucination result with 100
percent MPCA;

(a) (b) (c) (d) (e) (f ) (g) (h)

Figure 4.17: Color hallucinated face images, compared between TensorPCA and MPCA in
YCbCr color model. (a) original HR images (30 × 30); (b) input LR images (15 × 15)

with noise, motion and blur in LR images; (c) face hallucination result with 90 percent
tensorPCA; (d) face hallucination result with 95 percent tensorPCA; (e) face hallucination
result with 100 percent tensorPCA; (f) face hallucination result with 90 percent MPCA;
(g) face hallucination result with 95 percent MPCA; (h) face hallucination result with 100
percent MPCA;
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(a) (b) (c) (d) (e) (f ) (g) (h)

Figure 4.18: Color hallucinated face images, compared between TensorPCA and MPCA
in HSV color model. (a) original HR images (30 × 30); (b) input LR images (15 × 15)

with noise, motion and blur in LR images; (c) face hallucination result with 90 percent
tensorPCA; (d) face hallucination result with 95 percent tensorPCA; (e) face hallucination
result with 100 percent tensorPCA; (f) face hallucination result with 90 percent MPCA;
(g) face hallucination result with 95 percent MPCA; (h) face hallucination result with 100
percent MPCA;

(a) (b) (c) (d) (e) (f ) (g) (h)

Figure 4.19: Color hallucinated face images, compared between TensorPCA and MPCA in
CIELAB color model. (a) original HR images (30 × 30); (b) input LR images (15 × 15)

with noise, motion and blur in LR images; (c) face hallucination result with 90 percent
tensorPCA; (d) face hallucination result with 95 percent tensorPCA; (e) face hallucination
result with 100 percent tensorPCA; (f) face hallucination result with 90 percent MPCA;
(g) face hallucination result with 95 percent MPCA; (h) face hallucination result with 100
percent MPCA;
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Table 4.5: PSNR results of the facial images with traditional PCA and MPCA methods in
Fig. 4.8 for RGB color model.

Case first row second row third row fourth row

1) 90 percent PCA 24.05 dB 30.13 dB 23.40 dB 23.98 dB
2) 95 percent PCA 24.13 dB 30.39 dB 23.77 dB 24.09 dB
3) 100 percent PCA 24.34 dB 30.67 dB 23.98 dB 24.32 dB
4) 90 percent MPCA 26.88 dB 35.91 dB 27.89 dB 30.14 dB
5) 95 percent MPCA 31.15 dB 36.91 dB 28.53 dB 30.78 dB
6) 100 percent MPCA 31.35 dB 40.23 dB 28.74 dB 30.98 dB

Table 4.6: PSNR results of the facial images with traditional PCA and MPCA methods in
Fig. 4.9 for YCbCr color model.

Case first row second row third row fourth row

1) 90 percent PCA 24.13 dB 30.21 dB 23.61 dB 24.07 dB
2) 95 percent PCA 24.25 dB 30.51 dB 23.98 dB 24.22 dB
3) 100 percent PCA 24.58 dB 30.88 dB 24.22 dB 24.64 dB
4) 90 percent MPCA 27.03 dB 36.38 dB 27.93 dB 30.13 dB
5) 95 percent MPCA 31.24 dB 37.04 dB 28.57 dB 30.69 dB
6) 100 percent MPCA 31.47 dB 40.29 dB 28.84 dB 30.88 dB

4.4.2 Impact of training set size

In Fig. 4.20 - 4.22 show examples of hallucinated face images based on a different
number of training samples. There is not much difference between the results using 120 and
240 training samples. This shows that our hallucination algorithm can achieve satisfactory
results even based on a relatively small training set. However, when the training set is too
small, 60 training samples, many individual characteristics cannot be rendered.
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Table 4.7: PSNR results of the facial images with traditional PCA and MPCA methods in
Fig. 4.10 for HSV color model.

Case first row second row third row fourth row

1) 90 percent PCA 22.86 dB 26.85 dB 22.51 dB 22.77 dB
2) 95 percent PCA 23.02 dB 27.04 dB 22.87 dB 22.91 dB
3) 100 percent PCA 23.24 dB 27.63 dB 23.06 dB 23.12 dB
4) 90 percent MPCA 26.85 dB 31.02 dB 27.71 dB 29.41 dB
5) 95 percent MPCA 27.28 dB 31.18 dB 27.87 dB 29.59 dB
6) 100 percent MPCA 27.75 dB 31.22 dB 27.96 dB 29.63 dB

Table 4.8: PSNR results of the facial images with traditional PCA and MPCA methods in
Fig. 4.11 for CIELAB color model.

Case first row second row third row fourth row

1) 90 percent PCA 24.42 dB 30.66 dB 23.82 dB 24.13 dB
2) 95 percent PCA 24.67 dB 31.03 dB 24.01 dB 24.36 dB
3) 100 percent PCA 24.93 dB 31.78 dB 24.34 dB 24.79 dB
4) 90 percent MPCA 29.59 dB 36.48 dB 28.01 dB 30.58 dB
5) 95 percent MPCA 31.66 dB 37.11 dB 28.35 dB 31.52 dB
6) 100 percent MPCA 32.08 dB 40.35 dB 28.69 dB 31.69 dB

Table 4.9: PSNR results of the facial images with tensorPCA and MPCA methods in Fig.
4.16 for RGB color model.

Case first row second row third row fourth row

1) 90 percent tensorPCA 26.63 dB 35.63 dB 27.61 dB 29.88 dB
2) 95 percent tensorPCA 30.96 dB 36.69 dB 28.33 dB 30.60 dB
3) 100 percent tensorPCA 31.18 dB 40.04 dB 28.61 dB 30.82 dB
4) 90 percent MPCA 26.88 dB 35.91 dB 27.89 dB 30.14 dB
5) 95 percent MPCA 31.15 dB 36.91 dB 28.53 dB 30.78 dB
6) 100 percent MPCA 31.35 dB 40.23 dB 28.74 dB 30.98 dB
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Table 4.10: PSNR results of the facial images with tensorPCA and MPCA methods in Fig.
4.17 for YCbCr color model.

Case first row second row third row fourth row

1) 90 percent tensorPCA 26.71 dB 36.08 dB 27.67 dB 30.09 dB
2) 95 percent tensorPCA 30.98 dB 36.87 dB 28.45 dB 30.58 dB
3) 100 percent tensorPCA 31.32 dB 40.13 dB 28.64 dB 30.78 dB
4) 90 percent MPCA 27.03 dB 36.38 dB 27.93 dB 30.13 dB
5) 95 percent MPCA 31.24 dB 37.04 dB 28.57 dB 30.69 dB
6) 100 percent MPCA 31.47 dB 40.29 dB 28.84 dB 30.88 dB

Table 4.11: PSNR results of the facial images with tensorPCA and MPCA methods in Fig.
4.18 for HSV color model.

Case first row second row third row fourth row

1) 90 percent tensorPCA 26.58 dB 30.91 dB 27.60 dB 29.34 dB
2) 95 percent tensorPCA 27.19 dB 31.05 dB 27.79 dB 29.51 dB
3) 100 percent tensorPCA 27.58 dB 31.12 dB 27.85 dB 29.60 dB
4) 90 percent MPCA 26.85 dB 31.02 dB 27.71 dB 29.41 dB
5) 95 percent MPCA 27.28 dB 31.18 dB 27.87 dB 29.59 dB
6) 100 percent MPCA 27.75 dB 31.22 dB 27.96 dB 29.63 dB

Table 4.12: PSNR results of the facial images with tensorPCA and MPCA methods in Fig.
4.19 for CIELAB color model.

Case first row second row third row fourth row

1) 90 percent tensorPCA 29.48 dB 36.41 dB 27.90 dB 30.45 dB
2) 95 percent tensorPCA 31.54 dB 37.03 dB 28.28 dB 31.42 dB
3) 100 percent tensorPCA 31.97 dB 40.29 dB 28.60 dB 31.63 dB
4) 90 percent MPCA 29.59 dB 36.48 dB 28.01 dB 30.58 dB
5) 95 percent MPCA 31.66 dB 37.11 dB 28.35 dB 31.52 dB
6) 100 percent MPCA 32.08 dB 40.35 dB 28.69 dB 31.69 dB
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(b) (c) (d) (e) (f ) (g) (h)(a)

Figure 4.20: Color hallucinated face images with training set size 60 images in RGB color
model. (a) original HR images (30× 30); (b) input LR images (15× 15) with noise variance
10−6, motion and blur in LR images; (c) face hallucination result with 90 percent MPCA;
(d) different image of face hallucination result with 90 percent MPCA; (e) face hallucination
result with 95 percent MPCA; (f) different image of face hallucination result with 95 percent
MPCA; (g) face hallucination result with 100 percent MPCA; (h) different image of face
hallucination result with 100 percent MPCA;

(b) (c) (d) (e) (f ) (g) (h)(a)

Figure 4.21: Color hallucinated face images with training set size 120 images in RGB color
model. (a) original HR images (30× 30); (b) input LR images (15× 15) with noise variance
10−6, motion and blur in LR images; (c) face hallucination result with 90 percent MPCA;
(d) different image of face hallucination result with 90 percent MPCA; (e) face hallucination
result with 95 percent MPCA; (f) different image of face hallucination result with 95 percent
MPCA; (g) face hallucination result with 100 percent MPCA; (h) different image of face
hallucination result with 100 percent MPCA;
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(b) (c) (d) (e) (f ) (g) (h)(a)

Figure 4.22: Color hallucinated face images with training set size 240 images in RGB color
model. (a) original HR images (30× 30); (b) input LR images (15× 15) with noise variance
10−6, motion and blur in LR images; (c) face hallucination result with 90 percent MPCA;
(d) different image of face hallucination result with 90 percent MPCA; (e) face hallucination
result with 95 percent MPCA; (f) different image of face hallucination result with 95 percent
MPCA; (g) face hallucination result with 100 percent MPCA; (h) different image of face
hallucination result with 100 percent MPCA;

4.4.3 Robustness to Noise

In this section, we add zero mean Gaussian noise with variance 10−6, 2.5 × 10−5,
2.5 × 10−4 and 10−3 to low-resolution face images. All the results are shown in Fig. 4.23-
4.38: (a) the original HR (30 × 30) color images; (b) input the LR color images (15 ×
15) with different noise variance ; (c), (e) and (g) face hallucination result with MPCA
method; (d), (f) and (h) different image of face hallucination results. We can observe that the
reconstructed color face images can remove most of the noise distortion and retain most of
the facial characteristics.
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(a) (b) (c) (d) (e) (f ) (g) (h)

Figure 4.23: Color hallucinated face images with noise variance 10−6 in RGB color model.
(a) original HR images (30× 30); (b) input LR images (15× 15) with noise variance 10−6,
motion and blur in LR images; (c) face hallucination result with 90 percent MPCA; (d)
different image of face hallucination result with 90 percent MPCA; (e) face hallucination
result with 95 percent MPCA; (f) different image of face hallucination result with 95 percent
MPCA; (g) face hallucination result with 100 percent MPCA; (h) different image of face
hallucination result with 100 percent MPCA;

(a) (b) (c) (d) (e) (f ) (g) (h)

Figure 4.24: Color hallucinated face images with noise variance 2.5 × 10−5 in RGB color
model. (a) original HR images (30× 30); (b) input LR images (15× 15) with noise variance
10−5, motion and blur in LR images; (c) face hallucination result with 90 percent MPCA;
(d) different image of face hallucination result with 90 percent MPCA; (e) face hallucination
result with 95 percent MPCA; (f) different image of face hallucination result with 95 percent
MPCA; (g) face hallucination result with 100 percent MPCA; (h) different image of face
hallucination result with 100 percent MPCA;
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(a) (b) (c) (d) (e) (f ) (g) (h)

Figure 4.25: Color hallucinated face images with noise variance 2.5 × 10−4 in RGB color
model. (a) original HR images (30× 30); (b) input LR images (15× 15) with noise variance
10−4, motion and blur in LR images; (c) face hallucination result with 90 percent MPCA;
(d) different image of face hallucination result with 90 percent MPCA; (e) face hallucination
result with 95 percent MPCA; (f) different image of face hallucination result with 95 percent
MPCA; (g) face hallucination result with 100 percent MPCA; (h) different image of face
hallucination result with 100 percent MPCA;

(a) (c)(b) (d) (e) (f ) (g) (h)

Figure 4.26: Color hallucinated face images with noise variance 10−3 in RGB color model.
(a) original HR images (30× 30); (b) input LR images (15× 15) with noise variance 10−3,
motion and blur in LR images; (c) face hallucination result with 90 percent MPCA; (d)
different image of face hallucination result with 90 percent MPCA; (e) face hallucination
result with 95 percent MPCA; (f) different image of face hallucination result with 95 percent
MPCA; (g) face hallucination result with 100 percent MPCA; (h) different image of face
hallucination result with 100 percent MPCA;
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(c)(b)(a) (h)(d) (e) (f ) (g)

Figure 4.27: Color hallucinated face images with noise variance 10−6 in YCbCr color model.
(a) original HR images (30× 30); (b) input LR images (15× 15) with noise variance 10−6,
motion and blur in LR images; (c) face hallucination result with 90 percent MPCA; (d)
different image of face hallucination result with 90 percent MPCA; (e) face hallucination
result with 95 percent MPCA; (f) different image of face hallucination result with 95 percent
MPCA; (g) face hallucination result with 100 percent MPCA; (h) different image of face
hallucination result with 100 percent MPCA;

(a) (b) (c) (d) (e) (f ) (g) (h)

Figure 4.28: Color hallucinated face images with noise variance 2.5× 10−5 in YCBCr color
model. (a) original HR images (30× 30); (b) input LR images (15× 15) with noise variance
10−6, motion and blur in LR images; (c) face hallucination result with 90 percent MPCA;
(d) different image of face hallucination result with 90 percent MPCA; (e) face hallucination
result with 95 percent MPCA; (f) different image of face hallucination result with 95 percent
MPCA; (g) face hallucination result with 100 percent MPCA; (h) different image of face
hallucination result with 100 percent MPCA;
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(a) (b) (c) (d) (e) (f ) (g) (h)

Figure 4.29: Color hallucinated face images with noise variance 2.5× 10−4 in YCbCr color
model. (a) original HR images (30× 30); (b) input LR images (15× 15) with noise variance
10−4, motion and blur in LR images; (c) face hallucination result with 90 percent MPCA;
(d) different image of face hallucination result with 90 percent MPCA; (e) face hallucination
result with 95 percent MPCA; (f) different image of face hallucination result with 95 percent
MPCA; (g) face hallucination result with 100 percent MPCA; (h) different image of face
hallucination result with 100 percent MPCA;

(a) (b) (c) (d) (e) (f ) (g) (h)

Figure 4.30: Color hallucinated face images with noise variance 10−3 in YCbCr color model.
(a) original HR images (30× 30); (b) input LR images (15× 15) with noise variance 10−3,
motion and blur in LR images; (c) face hallucination result with 90 percent MPCA; (d)
different image of face hallucination result with 90 percent MPCA; (e) face hallucination
result with 95 percent MPCA; (f) different image of face hallucination result with 95 percent
MPCA; (g) face hallucination result with 100 percent MPCA; (h) different image of face
hallucination result with 100 percent MPCA;
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(a) (b) (c) (d) (e) (f ) (g) (h)

Figure 4.31: Color hallucinated face images with noise variance 10−6 in HSV color model.
(a) original HR images (30× 30); (b) input LR images (15× 15) with noise variance 10−6,
motion and blur in LR images; (c) face hallucination result with 90 percent MPCA; (d)
different image of face hallucination result with 90 percent MPCA; (e) face hallucination
result with 95 percent MPCA; (f) different image of face hallucination result with 95 percent
MPCA; (g) face hallucination result with 100 percent MPCA; (h) different image of face
hallucination result with 100 percent MPCA;

(a) (b) (c) (d) (e) (f ) (g) (h)

Figure 4.32: Color hallucinated face images with noise variance 2.5 × 10−5 in HSV color
model. (a) original HR images (30× 30); (b) input LR images (15× 15) with noise variance
10−5, motion and blur in LR images; (c) face hallucination result with 90 percent MPCA;
(d) different image of face hallucination result with 90 percent MPCA; (e) face hallucination
result with 95 percent MPCA; (f) different image of face hallucination result with 95 percent
MPCA; (g) face hallucination result with 100 percent MPCA; (h) different image of face
hallucination result with 100 percent MPCA;
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(a) (b) (c) (d) (e) (f ) (g) (h)

Figure 4.33: Color hallucinated face images with noise variance 2.5 × 10−4 in HSV color
model. (a) original HR images (30× 30); (b) input LR images (15× 15) with noise variance
10−4, motion and blur in LR images; (c) face hallucination result with 90 percent MPCA;
(d) different image of face hallucination result with 90 percent MPCA; (e) face hallucination
result with 95 percent MPCA; (f) different image of face hallucination result with 95 percent
MPCA; (g) face hallucination result with 100 percent MPCA; (h) different image of face
hallucination result with 100 percent MPCA;

(a) (h)(b) (c) (d) (e) (f ) (g)

Figure 4.34: Color hallucinated face images with noise variance 10−3 in HSV color model.
(a) original HR images (30× 30); (b) input LR images (15× 15) with noise variance 10−3,
motion and blur in LR images; (c) face hallucination result with 90 percent MPCA; (d)
different image of face hallucination result with 90 percent MPCA; (e) face hallucination
result with 95 percent MPCA; (f) different image of face hallucination result with 95 percent
MPCA; (g) face hallucination result with 100 percent MPCA; (h) different image of face
hallucination result with 100 percent MPCA;
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(a) (b) (c) (d) (e) (f ) (g) (h)

Figure 4.35: Color hallucinated face images with noise variance 10−6 in CIELAB color
model. (a) original HR images (30× 30); (b) input LR images (15× 15) with noise variance
10−6, motion and blur in LR images; (c) face hallucination result with 90 percent MPCA;
(d) different image of face hallucination result with 90 percent MPCA; (e) face hallucination
result with 95 percent MPCA; (f) different image of face hallucination result with 95 percent
MPCA; (g) face hallucination result with 100 percent MPCA; (h) different image of face
hallucination result with 100 percent MPCA;

(a) (b) (c) (d) (e) (f ) (g) (h)

Figure 4.36: Color hallucinated face images with noise variance 2.5×10−5 in CIELAB color
model. (a) original HR images (30× 30); (b) input LR images (15× 15) with noise variance
10−6, motion and blur in LR images; (c) face hallucination result with 90 percent MPCA;
(d) different image of face hallucination result with 90 percent MPCA; (e) face hallucination
result with 95 percent MPCA; (f) different image of face hallucination result with 95 percent
MPCA; (g) face hallucination result with 100 percent MPCA; (h) different image of face
hallucination result with 100 percent MPCA;
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(a) (b) (c) (d) (e) (f ) (g) (h)

Figure 4.37: Color hallucinated face images with noise variance 2.5×10−4 in CIELAB color
model. (a) original HR images (30× 30); (b) input LR images (15× 15) with noise variance
10−4, motion and blur in LR images; (c) face hallucination result with 90 percent MPCA;
(d) different image of face hallucination result with 90 percent MPCA; (e) face hallucination
result with 95 percent MPCA; (f) different image of face hallucination result with 95 percent
MPCA; (g) face hallucination result with 100 percent MPCA; (h) different image of face
hallucination result with 100 percent MPCA;

(a) (b) (c) (d) (e) (f ) (g) (h)

Figure 4.38: Color hallucinated face images with noise variance 10−3 in CIELAB color
model. (a) original HR images (30× 30); (b) input LR images (15× 15) with noise variance
10−3, motion and blur in LR images; (c) face hallucination result with 90 percent MPCA;
(d) different image of face hallucination result with 90 percent MPCA; (e) face hallucination
result with 95 percent MPCA; (f) different image of face hallucination result with 95 percent
MPCA; (g) face hallucination result with 100 percent MPCA; (h) different image of face
hallucination result with 100 percent MPCA;
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Table 4.13 comparison of complexity (execution time) with training set size 60 images
Case 90 percent 95 percent 100 percent

1) MPCA method 14.403683 s. 14.676264 s. 15.586928 s.
2) tensorPCA method 14.756412 s. 14.935647 s. 15.894112 s.
3) normalize 1.0244 1.0176 1.0195

Table 4.14 comparison of complexity (execution time) with training set size 120 images
Case 90 percent 95 percent 100 percent

1) MPCA method 28.424068 s. 29.345926 s. 31.406217 s.
2) tensorPCA method 31.327327 s. 31.368005 s. 32.325575 s.
3) normalize 1.1021 1.0176 1.0292

4.4.4 Complexity

With regard to the computational complexity, we compare the execution time between
our method and tensorPCA in RGB color model [33]. We test this experiment on a desktop-
computer which is implemented on Microsoft Windows XP Professional 64 bits (version
2003), Intel(R) Core(TM)2 CPU 6600 with 2.8 GH and 3 GB of RAM and the result can
be shown in Table. 4.13 - 4.16. For hallucination in MPCA method with 60, 120, 240 and
500 training sample images, the time in this simulation is about 14.40-15.58 seconds, 28.42-
31.40 seconds, 58.70-65.27 seconds and 120.60-132.60 seconds respectively. However, with
60, 120, 240 and 500 training sample images, the method in [33] has a total time of 14.75-
15.89 seconds, 31.32-32.32 seconds, 61.01-67.99 seconds and 132.99-133.69 respectively.

Moreover, in Table. 4.13 - 4.16, the tensorPCA method in independent channel color
takes 1.01-1.1 times our algorithm time to implement similar results. The complexity of our
algorithm, color face hallucination with MPCA, is less than the method in [33] because the
MPCA can simultaneously reduce the dimension of data tensor (color face images) in PCA
processes.
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Table 4.15 comparison of complexity (execution time) with training set size 240 images
Case 90 percent 95 percent 100 percent

1) MPCA method 57.800732 s. 58.412280 s. 65.276072 s.
2) tensorPCA method 61.019110 s. 64.011103 s. 67.990804 s.
3) normalize 1.0556 1.0958 1.0415

Table 4.16 comparison of complexity (execution time) with training set size 500 images
Case 90 percent 95 percent 100 percent

1) MPCA method 120.603640 s. 122.589145 s. 132.603396 s.
2) tensorPCA method 132.994203 s. 133.472162 s. 133.696668 s.
3) normalize 1.1027 1.0887 1.0082

4.4.5 Partially Occluded Color Face Images

In this experiment, the regression model with MPCA also provides an ability to deal
with the partially occluded face image and the blocking effect is used. Since the MPCA
subspace analysis is still a holistic analysis method, we use a block for the partially occluded
image patch. The experimental results are shown in Fig. 4.39-4.42 (a) original HR images
(30 × 30); (b) input LR images (15 × 15) with noise, motion, blur and left eye occluded;
(c) face hallucination result with 100 percent traditional PCA; (d) face hallucination result
with bilinear method and (e) face hallucination result with 95 percent MPCA. We can see
that the traditional PCA and bilinear interpolation method are not suitable for hallucination
facial images which are partially occluded. On the other hand, the linear regression model
in MPCA can reconstruct realistic color face images.
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(a) (b) (c) (d) (e)

Figure 4.39: Partially occluded face hallucination results in RGB color model. (a) original
HR images; (b) input LR images with noise, motion, blur and left eye occluded; (c) face
hallucination result in RGB color model with 100 percent traditional PCA; (d) face halluci-
nation result in RGB color model with bilinear method; (e) face hallucination result in RGB
color model with 95 percent MPCA;

(b) (c) (d) (e)(a)

Figure 4.40: Partially occluded face hallucination results in YCbCr color model. (a) original
HR images; (b) input LR images with noise, motion, blur and left eye occluded; (c) face
hallucination result in YCbCr model system with 100 percent traditional PCA; (d) face hal-
lucination result in YCbCr model system with bilinear method; (e) face hallucination result
in YCbCr model system with 95 percent MPCA;
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(a) (b) (c) (d) (e)

Figure 4.41: Partially occluded face hallucination results in HSV color model. (a) original
HR images; (b) input LR images with noise, motion, blur and left eye occluded in HSV color
model; (c) face hallucination result in HSV color model with 100 percent traditional PCA;
(d) face hallucination result in HSV color model with bilinear method; (e) face hallucination
result in HSV color model with 95 percent MPCA;

(b) (c) (d) (e)(a)

Figure 4.42: Partially occluded face hallucination results in CIELAB color model. (a) orig-
inal HR images; (b) input LR images with noise, motion, blur and left eye occluded in
CIELAB color model; (c) face hallucination result in CIELAB color model with 100 percent
traditional PCA; (d) face hallucination result in CIELAB color model with bilinear method;
(e) face hallucination result in CIELAB color model with 95 percent MPCA;
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4.5 Experiments and Analysis on Color Face hallucination with Tensor
Patch

In this experiment, we choose FERET database for a set of simulated experiments.
There are 500 color faces for training set and other 50 facial images for testing. To establish
a standard training dataset, we use a face image size of (30×30) and align the data manually
by marking the location of three points: the centers of mouth and two eyes. These three
points define an affine warp, which was used to warp the images into a canonical form. For
all the 500 high-resolution facial images in the training dataset, we blurred and subsampled
them to obtain their low-resolution (15× 15) samples.

We decompose each of 500 pairs of low and high resolution training face images into
(10×10) and (5×5) patches which overlapped horizontally and vertically with each other by
2 pixel and 4 pixel (the patch size and overlapping size were experimentally determined). We
also quantify our performance by evaluating the peak signal-to-noise ratio (PSNR) between
the ground truth face images and the hallucinated images.

Some experimental results are given in Fig. 4.43-4.58: (a) original HR images (30 ×
30), (b) input LR images (15 × 15) with noise, motion and blur in LR images, (c) face hal-
lucination result with bilinear interpolation method, (d) face hallucination result with Liu
method, (e)-(g) face hallucination result with 90 - 100 percent MPCA and (h) face halluci-
nation result with Tensor patch method. The results in column (h) shows that tensor patches
technique is good at hallucinating and reproducing details of local face regions, but poor
at detail around an eye. We also give in Table. 4.17-4.20 the PSNR values between the
hallucinated face images with linear regression model in MPCA and those face hallucina-
tion results with tensor patches in Fig. 4.43-4.58. Table 4.43-4.58 show that our proposed
approach outperforms all the other face super-resolution techniques in terms of PSNR.

We compare our method with difference patch size, some example results are presented
in Fig. 4.43-4.58. Compared with the results in Fig. 4.43-4.50 (h) using tensor patches
technique with size (5 × 5), the hallucinated results in Fig. 4.51-4.58 (h) tensor patches
technique with size (10 × 10) then the bigger patch size can produce better color facial
results than small patch size. In addition, with the same value of percent MPCA, the tensor
patch method with size (10× 10) can give higher PSNR values than size (5× 5) about 0.19
- 1.24 dB.
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(b) (c) (d) (e) (f ) (g) (h)(a)

Figure 4.43: Color hallucinated face images in RGB color model. (a) original HR images
(30× 30); (b) input LR images (15× 15) with noise, motion and blur in LR images; (c) face
hallucination result with bilinear interpolation method; (d) face hallucination result with Liu
method; (e) face hallucination result with 90 percent MPCA; (f) face hallucination result
with 95 percent MPCA; (g) face hallucination result with 100 percent MPCA; (h) face hal-
lucination result with Tensor (5× 5) patches method and 95 percent MPCA;

(b) (c) (d) (e) (f ) (g) (h)(a)

Figure 4.44: Color hallucinated face images in YCbCr color model. (a) original HR im-
ages (30 × 30); (b) input LR images (15 × 15) with noise, motion and blur in LR images;
(c) face hallucination result with bilinear interpolation method; (d) face hallucination result
with Liu method; (e) face hallucination result with 90 percent MPCA; (f) face hallucination
result with 95 percent MPCA; (g) face hallucination result with 100 percent MPCA; (h) face
hallucination result with Tensor (5× 5) patches method and 95 percent MPCA;
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(b) (c) (d) (e) (f ) (g) (h)(a)

Figure 4.45: Color hallucinated face images in HSV color model. (a) original HR images
(30× 30); (b) input LR images (15× 15) with noise, motion and blur in LR images; (c) face
hallucination result with bilinear interpolation method; (d) face hallucination result with Liu
method; (e) face hallucination result with 90 percent MPCA; (f) face hallucination result
with 95 percent MPCA; (g) face hallucination result with 100 percent MPCA; (h) face hal-
lucination result with Tensor (5× 5) patches method and 95 percent MPCA;

(a) (b) (c) (d) (e) (f ) (g) (h)

Figure 4.46: Color hallucinated face images in CIELAB color model. (a) original HR im-
ages (30 × 30); (b) input LR images (15 × 15) with noise, motion and blur in LR images;
(c) face hallucination result with bilinear interpolation method; (d) face hallucination result
with Liu method; (e) face hallucination result with 90 percent MPCA; (f) face hallucination
result with 95 percent MPCA; (g) face hallucination result with 100 percent MPCA; (h) face
hallucination result with Tensor (5× 5) patches method and 95 percent MPCA;
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(b) (c) (d) (e) (f ) (g) (h)(a)

Figure 4.47: Color hallucinated face images in RGB color model. (a) original HR images
(30× 30); (b) input LR images (15× 15) with noise, motion and blur in LR images; (c) face
hallucination result with bilinear interpolation method; (d) face hallucination result with Liu
method; (e) face hallucination result with 90 percent MPCA; (f) face hallucination result
with 95 percent MPCA; (g) face hallucination result with 100 percent MPCA; (h) face hal-
lucination result with Tensor (5× 5) patches method and 100 percent MPCA;

(b) (c) (d) (e) (f ) (g) (h)(a)

Figure 4.48: Color hallucinated face images in YCbCr color model. (a) original HR im-
ages (30 × 30); (b) input LR images (15 × 15) with noise, motion and blur in LR images;
(c) face hallucination result with bilinear interpolation method; (d) face hallucination result
with Liu method; (e) face hallucination result with 90 percent MPCA; (f) face hallucination
result with 95 percent MPCA; (g) face hallucination result with 100 percent MPCA; (h) face
hallucination result with Tensor (5× 5) patches method and 100 percent MPCA;
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(b) (c) (d) (e) (f ) (g) (h)(a)

Figure 4.49: Color hallucinated face images in HSV color model. (a) original HR images
(30× 30); (b) input LR images (15× 15) with noise, motion and blur in LR images; (c) face
hallucination result with bilinear interpolation method; (d) face hallucination result with Liu
method; (e) face hallucination result with 90 percent MPCA; (f) face hallucination result
with 95 percent MPCA; (g) face hallucination result with 100 percent MPCA; (h) face hal-
lucination result with Tensor (5× 5) patches method and 100 percent MPCA;

(a) (b) (c) (d) (e) (f ) (g) (h)

Figure 4.50: Color hallucinated face images in CIELAB color model. (a) original HR im-
ages (30 × 30); (b) input LR images (15 × 15) with noise, motion and blur in LR images;
(c) face hallucination result with bilinear interpolation method; (d) face hallucination result
with Liu method; (e) face hallucination result with 90 percent MPCA; (f) face hallucination
result with 95 percent MPCA; (g) face hallucination result with 100 percent MPCA; (h) face
hallucination result with Tensor (5× 5) patches method and 95 percent MPCA;
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(b) (c) (d) (e) (f ) (g) (h)(a)

Figure 4.51: Color hallucinated face images in RGB color model. (a) original HR images
(30× 30); (b) input LR images (15× 15) with noise, motion and blur in LR images; (c) face
hallucination result with bilinear interpolation method; (d) face hallucination result with Liu
method; (e) face hallucination result with 90 percent MPCA; (f) face hallucination result
with 95 percent MPCA; (g) face hallucination result with 100 percent MPCA; (h) face hal-
lucination result with Tensor (10× 10) patches method and 95 percent MPCA;

(b) (c) (d) (e) (f ) (g) (h)(a)

Figure 4.52: Color hallucinated face images in YCbCr color model. (a) original HR im-
ages (30 × 30); (b) input LR images (15 × 15) with noise, motion and blur in LR images;
(c) face hallucination result with bilinear interpolation method; (d) face hallucination result
with Liu method; (e) face hallucination result with 90 percent MPCA; (f) face hallucination
result with 95 percent MPCA; (g) face hallucination result with 100 percent MPCA; (h) face
hallucination result with Tensor (10× 10) patches method and 95 percent MPCA;
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(b) (c) (d) (e) (f ) (g) (h)(a)

Figure 4.53: Color hallucinated face images in HSV color model. (a) original HR images
(30× 30); (b) input LR images (15× 15) with noise, motion and blur in LR images; (c) face
hallucination result with bilinear interpolation method; (d) face hallucination result with Liu
method; (e) face hallucination result with 90 percent MPCA; (f) face hallucination result
with 95 percent MPCA; (g) face hallucination result with 100 percent MPCA; (h) face hal-
lucination result with Tensor (10× 10) patches method and 95 percent MPCA;

(b) (c) (d) (e) (f ) (g) (h)(a)

Figure 4.54: Color hallucinated face images in CIELAB color model. (a) original HR im-
ages (30 × 30); (b) input LR images (15 × 15) with noise, motion and blur in LR images;
(c) face hallucination result with bilinear interpolation method; (d) face hallucination result
with Liu method; (e) face hallucination result with 90 percent MPCA; (f) face hallucination
result with 95 percent MPCA; (g) face hallucination result with 100 percent MPCA; (h) face
hallucination result with Tensor (10× 10) patches method and 95 percent MPCA;
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(b) (c) (d) (e) (f ) (g) (h)(a)

Figure 4.55: Color hallucinated face images in RGB color model. (a) original HR images
(30× 30); (b) input LR images (15× 15) with noise, motion and blur in LR images; (c) face
hallucination result with bilinear interpolation method; (d) face hallucination result with Liu
method; (e) face hallucination result with 90 percent MPCA; (f) face hallucination result
with 95 percent MPCA; (g) face hallucination result with 100 percent MPCA; (h) face hal-
lucination result with Tensor (10× 10) patches method and 100 percent MPCA;

(b) (c) (d) (e) (f ) (g) (h)(a)

Figure 4.56: Color hallucinated face images in YCbCr color model. (a) original HR im-
ages (30 × 30); (b) input LR images (15 × 15) with noise, motion and blur in LR images;
(c) face hallucination result with bilinear interpolation method; (d) face hallucination result
with Liu method; (e) face hallucination result with 90 percent MPCA; (f) face hallucination
result with 95 percent MPCA; (g) face hallucination result with 100 percent MPCA; (h) face
hallucination result with Tensor (10× 10) patches method and 100 percent MPCA;
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(b) (c) (d) (e) (f ) (g) (h)(a)

Figure 4.57: Color hallucinated face images in HSV color model. (a) original HR images
(30× 30); (b) input LR images (15× 15) with noise, motion and blur in LR images; (c) face
hallucination result with bilinear interpolation method; (d) face hallucination result with Liu
method; (e) face hallucination result with 90 percent MPCA; (f) face hallucination result
with 95 percent MPCA; (g) face hallucination result with 100 percent MPCA; (h) face hal-
lucination result with Tensor (10× 10) patches method and 100 percent MPCA;

Table 4.17: PSNR results of the facial images with tensor patches method in Fig. 4.43 - 4.58
for RGB color model.

Case first row second row third row fourth row

1) 90 percent MPCA 26.88 dB 35.91 dB 27.89 dB 30.14 dB
2) 95 percent MPCA 31.15 dB 36.91 dB 28.53 dB 30.78 dB
3) 100 percent MPCA 31.35 dB 40.23 dB 28.74 dB 30.98 dB
4) patch (5× 5) with 95 percent MPCA 34.19 dB 41.15 dB 32.32 dB 35.69 dB
5) patch (5× 5) with 100 percent MPCA 34.68 dB 42.23 dB 32.45 dB 35.78 dB
6) patch (10× 10) with 95 percent MPCA 35.28 dB 41.86 dB 32.67 dB 35.87 dB
7) patch (10× 10) with 100 percent MPCA 35.92 dB 42.71 dB 32.85 dB 36.26 dB
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(b) (c) (d) (e) (f ) (g) (h)(a)

Figure 4.58: Color hallucinated face images in CIELAB color model. (a) original HR im-
ages (30 × 30); (b) input LR images (15 × 15) with noise, motion and blur in LR images;
(c) face hallucination result with bilinear interpolation method; (d) face hallucination result
with Liu method; (e) face hallucination result with 90 percent MPCA; (f) face hallucination
result with 95 percent MPCA; (g) face hallucination result with 100 percent MPCA; (h) face
hallucination result with Tensor (10× 10) patches method and 100 percent MPCA;

Table 4.18: PSNR results of the facial images with tensor patches method in Fig. 4.43 - 4.58
for YCbCr color model.

Case first row second row third row fourth row

1) 90 percent MPCA 27.03 dB 36.38 dB 27.93 dB 30.13 dB
2) 95 percent MPCA 31.24 dB 37.04 dB 28.57 dB 30.69 dB
3) 100 percent MPCA 31.47 dB 40.29 dB 28.84 dB 30.88 dB
4) patch (5× 5) with 95 percent MPCA 34.59 dB 41.27 dB 32.39 dB 35.73 dB
5) patch (5× 5) with 100 percent MPCA 35.10 dB 42.35 dB 32.55 dB 35.84 dB
6) patch (10× 10) with 95 percent MPCA 34.87 dB 41.88 dB 32.66 dB 35.91 dB
7) patch (10× 10) with 100 percent MPCA 35.32 dB 42.78 dB 32.93 dB 36.34 dB
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Table 4.19: PSNR results of the facial images with tensor patches method in Fig. 4.43 - 4.58
for HSV color model.

Case first row second row third row fourth row

1) 90 percent MPCA 26.85 dB 31.02 dB 27.71 dB 29.41 dB
2) 95 percent MPCA 27.28 dB 31.18 dB 27.87 dB 29.59 dB
3) 100 percent MPCA 27.75 dB 31.22 dB 27.96 dB 29.63 dB
4) patch (5× 5) with 95 percent MPCA 33.20 dB 31.25 dB 31.22 dB 34.57 dB
5) patch (5× 5) with 100 percent MPCA 33.36 dB 31.31 dB 31.24 dB 34.61 dB
6) patch (10× 10) with 95 percent MPCA 33.32 dB 31.41 dB 31.28 dB 34.70 dB
7) patch (10× 10) with 100 percent MPCA 33.41 dB 31.49 dB 31.35 dB 34.78 dB

Table 4.20: PSNR results of the facial images with tensor patches method in Fig. 4.43 - 4.58
for CIELAB color model.

Case first row second row third row fourth row

1) 90 percent MPCA 29.59 dB 36.48 dB 28.01 dB 30.58 dB
2) 95 percent MPCA 31.66 dB 37.11 dB 28.35 dB 31.52 dB
3) 100 percent MPCA 32.08 dB 40.35 dB 28.69 dB 31.69 dB
4) patch (5× 5) with 95 percent MPCA 35.21 dB 41.31 dB 32.39 dB 35.75 dB
5) patch (5× 5) with 100 percent MPCA 36.15 dB 42.40 dB 32.48 dB 35.89 dB
6) patch (10× 10) with 95 percent MPCA 35.47 dB 41.52 dB 32.71 dB 35.97 dB
7) patch (10× 10) with 100 percent MPCA 36.39 dB 42.82 dB 32.96 dB 36.44 dB



75

Table 4.21: comparison of complexity (execution time) between tensor patch method and
MPCA method with training set size 60 images

Case 90 percent 95 percent 100 percent

1) MPCA method 14.403683 s. 14.676264 s. 15.586928 s.
2) tensor patch size (10× 10) 32.445231 s. 39.667863 s. 59.889969 s.
3) tensor patch size (5× 5) 253.547854 s. 287.634373 s. 304.315276 s.

Table 4.22: comparison of complexity (execution time) between tensor patch method and
MPCA method with training set size 120 images

Case 90 percent 95 percent 100 percent

1) MPCA method 28.424068 s. 29.345926 s. 31.406217 s.
2) tensor patch size (10× 10) 68.749302 s. 77.146453 s. 111.857586 s.
3) tensor patch size (5× 5) 512.846542 s. 574.463359 s. 664.599841 s.

4.5.1 Complexity

In this section, we compare the execution time between the tensor patch method and
MPCA method. The execution time results are come from a desktop-computer which is im-
plemented on Microsoft Windows XP Professional 64 bits (version 2003), Intel(R) Core(TM)2
CPU 6600 with 2.8 GH and 3 GB of RAM and the result can be shown in Table. 4.21 - 4.24.

For hallucination in MPCA method with 60, 120, 240 and 500 training sample im-
ages, the time in this simulation is about 14.40-15.58 seconds, 28.42-31.40 seconds, 58.70-
65.27 seconds and 120.60-132.60 seconds respectively but the execution time of tensor patch
method with size (10 × 10) is about 32.44-59.88 seconds, 68.74-111.85 seconds, 146.70-
223.09 seconds and 290.16-461.16 seconds respectively. In addition, in Table. 4.21 - 4.24,
we can see that the execution time of tensor patch method with size (5 × 5) will increase
rapidly from 253.54 seconds to 2798.165270 seconds when training sample increase from
60 to 500 images.
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Table 4.23: comparison of complexity (execution time) between tensor patch method and
MPCA method with training set size 240 images

Case 90 percent 95 percent 100 percent

1) MPCA method 57.800732 s. 58.412280 s. 65.276072 s.
2) tensor patch size (10× 10) 146.709354 s. 159.184390 s. 223.091005 s.
3) tensor patch size (5× 5) 1014.458788 s. 1143.303170 s. 1244.944058 s.

Table 4.24: comparison of complexity (execution time) between tensor patch method and
MPCA method with training set size 500 images

Case 90 percent 95 percent 100 percent

1) MPCA method 120.603640 s. 122.589145 s. 132.603396 s.
2) tensor patch size (10× 10) 290.167969 s. 344.809926 s. 461.160870 s.
3) tensor patch size (5× 5) 2513.275331 s. 2659.911861 s. 2798.165270 s.



CHAPTER V

CONCLUSIONS

This chapter summarizes the works presented in this dissertation including conclusions
and future directions.

5.1 Conclusions of The Dissertation

In this dissertation, the improved frameworks of color face hallucination are proposed.
Firstly, this dissertation proposed a novel face hallucination with linear regression model in
MPCA for the general color model such as RGB color model, YCbCr color model, HSV
color model and CIELAB color model to improve the performance of the system. Since
multilinear principal component analysis (MPCA) is more suitable for face representation
than traditional method, like PCA. For better performance in super-resolution reconstruction
task, higher-order tensor still be necessary.

Secondly, we apply higher-order singular value decomposition (HOSVD) in tensor
space. We formulate a unified tensor in tensor patches which can be reduced to two parts: a
global image-based tensor and a local patch-based multiresolution tensor for incorporating
high-resolution image details. Our experiments show not only performance superiority over
existing benchmark face super-resolution techniques, but also novelty of our approach in
color face super-resolution.

5.2 Future Directions

• Several parameters (such as the number of standard face images, the number of shift-
ing image and the number of classifiers) are still manually specified. The optimal
values are found by experiments for the best hallucination result. Nevertheless, auto-
matic parameter specification is necessary for the practical applications in the future
research.

• Based on using the tensor MPCA subspace with regression model, we will directly
perform our technique across different modality and under changing illumination con-
ditions.

• For applications in practical scenarios where faces captured in raw color images are
normally nonfrontal views at low resolution, we will develop a face hallucination al-
gorithm for reconstruction reasonable nonfrontal facial images.
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Appendix A
List of Abbreviations

2DPCA Two-Dimensional Principal Component Analysis
HOSVD High Order Singular Value Decomposition
LR Low Resolution
HR High Resolution
ICCA Image Cross-Covariance Analysis
LDA Linear Discriminant Analysis
MPCA Multilinear Principal Component Analysis
NN The nearest neighbor classifier
PCA Principal Component Analysis
RSM Random Subspace Method
SAR Synthetic Aperture Radar
SSS Small Sample Size Problem
SVD Singular Value Decomposition
HSV Hue, Saturation, Value
LLE Locally Linear Embedding
MRF Markov Random Field
MFH multiview face hallucination
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Appendix B
Some Experimental Results

Table 1 PSNR results of Fig. 2 with a linear regression model in MPCA method
Case 90 percent 95 percent 100 percent

1) the 1st row 31.49 dB 31.52 dB 32.57 dB
2) the 2nd row 31.40 dB 31.43 dB 31.61 dB
3) the 3rd row 24.61 dB 24.67 dB 26.89 dB
4) the 4th row 27.45 dB 27.52 dB 27.87 dB
5) the 5th row 35.60 dB 35.61 dB 35.71 dB
6) the 6th row 26.31 dB 26.39 dB 26.77 dB
7) the 7th row 27.24 dB 27.40 dB 29.61 dB
8) the 8th row 34.34 dB 34.55 dB 34.68 dB
9) the 9th row 36.53 dB 36.67 dB 37.33 dB
10) the 10th row 42.74 dB 42.79 dB 43.56 dB
11) the 11th row 28.28 dB 28.30 dB 28.63 dB
12) the 12th row 33.69 dB 33.71 dB 33.96 dB
13) the 13th row 26.56 dB 26.73 dB 26.85 dB
14) the 14th row 31.90 dB 31.96 dB 32.25 dB
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Table 2 PSNR results of Fig. 3 with a linear regression model in MPCA method
Case 90 percent 95 percent 100 percent

1) the 1st row 31.52 dB 31.58 dB 32.62 dB
2) the 2nd row 31.43 dB 31.45 dB 31.69 dB
3) the 3rd row 24.67 dB 24.73 dB 26.96 dB
4) the 4th row 27.49 dB 27.55 dB 27.95 dB
5) the 5th row 35.61 dB 35.63 dB 35.75 dB
6) the 6th row 26.36 dB 26.44 dB 26.90 dB
7) the 7th row 27.25 dB 27.47 dB 29.70 dB
8) the 8th row 34.39 dB 34.58 dB 34.86 dB
9) the 9th row 36.62 dB 36.70 dB 37.45 dB
10) the 10th row 42.75 dB 42.83 dB 43.58 dB
11) the 11th row 28.35 dB 28.39 dB 28.77 dB
12) the 12th row 33.70 dB 33.74 dB 34.06 dB
13) the 13th row 26.59 dB 26.75 dB 26.95 dB
14) the 14th row 31.99 dB 32.03 dB 32.35 dB

Table 3 PSNR results of Fig. 4 with a linear regression model in MPCA method
Case 90 percent 95 percent 100 percent

1) the 1st row 30.22 dB 30.35 dB 30.87 dB
2) the 2nd row 30.13 dB 30.24 dB 30.54 dB
3) the 3rd row 23.56 dB 23.61 dB 23.97 dB
4) the 4th row 26.24 dB 26.39 dB 26.98 dB
5) the 5th row 35.12 dB 35.24 dB 35.54 dB
6) the 6th row 25.86 dB 25.97 dB 26.25 dB
7) the 7th row 26.89 dB 27.06 dB 27.66 dB
8) the 8th row 31.03 dB 31.51 dB 32.18 dB
9) the 9th row 33.37 dB 33.92 dB 34.85 dB
10) the 10th row 41.12 dB 41.56 dB 41.94 dB
11) the 11th row 27.52 dB 27.78 dB 28.01 dB
12) the 12th row 31.76 dB 32.12 dB 32.72 dB
13) the 13th row 26.08 dB 26.23 dB 26.54 dB
14) the 14th row 30.67 dB 30.86 dB 31.15 dB
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Table 4 PSNR results of Fig. 5 with a linear regression model in MPCA method
Case 90 percent 95 percent 100 percent

1) the 1st row 31.58 dB 31.61 dB 32.75 dB
2) the 2nd row 31.57 dB 31.63 dB 31.88 dB
3) the 3rd row 24.70 dB 24.78 dB 26.87 dB
4) the 4th row 27.53 dB 27.58 dB 27.92 dB
5) the 5th row 35.64 dB 35.73 dB 35.94 dB
6) the 6th row 26.43 dB 26.52 dB 26.98 dB
7) the 7th row 27.47 dB 27.71 dB 28.13 dB
8) the 8th row 34.48 dB 34.67 dB 34.96 dB
9) the 9th row 36.68 dB 36.75 dB 37.49 dB
10) the 10th row 42.79 dB 42.87 dB 43.64 dB
11) the 11th row 28.37 dB 28.41 dB 28.83 dB
12) the 12th row 33.75 dB 33.78 dB 34.19 dB
13) the 13th row 26.65 dB 26.88 dB 27.24 dB
14) the 14th row 31.98 dB 32.11 dB 32.52 dB

Table 5 PSNR results of Fig. 6 with a linear regression model in tensorPCA method
Case 90 percent 95 percent 100 percent

1) the 1st row 31.19 dB 31.22 dB 32.27 dB
2) the 2nd row 31.06 dB 31.09 dB 31.21 dB
3) the 3rd row 24.31 dB 24.33 dB 26.52 dB
4) the 4th row 27.20 dB 27.32 dB 27.47 dB
5) the 5th row 35.34 dB 35.41 dB 35.62 dB
6) the 6th row 26.02 dB 26.03 dB 26.39 dB
7) the 7th row 27.11 dB 27.32 dB 29.48 dB
8) the 8th row 34.26 dB 34.32 dB 34.38 dB
9) the 9th row 36.03 dB 36.09 dB 36.56 dB
10) the 10th row 42.63 dB 42.71 dB 43.13 dB
11) the 11th row 28.14 dB 28.23 dB 28.51 dB
12) the 12th row 33.07 dB 33.29 dB 33.78 dB
13) the 13th row 26.29 dB 26.45 dB 26.68 dB
14) the 14th row 31.53 dB 31.72 dB 32.18 dB
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Table 6 PSNR results of Fig. 7 with a linear regression model in tensorPCA method
Case 90 percent 95 percent 100 percent

1) the 1st row 31.36 dB 31.44 dB 32.53 dB
2) the 2nd row 31.14 dB 31.32 dB 31.44 dB
3) the 3rd row 24.49 dB 24.52 dB 26.78 dB
4) the 4th row 27.36 dB 27.42 dB 27.68 dB
5) the 5th row 35.50 dB 35.61 dB 35.71 dB
6) the 6th row 26.19 dB 26.25 dB 26.63 dB
7) the 7th row 26.89 dB 27.11 dB 28.95 dB
8) the 8th row 34.03 dB 34.31 dB 34.56 dB
9) the 9th row 36.43 dB 36.52 dB 37.01 dB
10) the 10th row 42.21 dB 42.42 dB 43.19 dB
11) the 11th row 28.09 dB 28.27 dB 28.63 dB
12) the 12th row 33.25 dB 33.47 dB 33.87 dB
13) the 13th row 26.18 dB 26.42 dB 26.74 dB
14) the 14th row 31.27 dB 31.78 dB 32.04 dB

Table 7 PSNR results of Fig. 8 with a linear regression model in tensorPCA method
Case 90 percent 95 percent 100 percent

1) the 1st row 30.14 dB 30.25 dB 30.56 dB
2) the 2nd row 30.01 dB 30.11 dB 30.26 dB
3) the 3rd row 23.31 dB 23.44 dB 23.62 dB
4) the 4th row 26.01 dB 26.22 dB 26.45 dB
5) the 5th row 34.51 dB 34.77 dB 34.92 dB
6) the 6th row 25.64 dB 25.71 dB 25.97 dB
7) the 7th row 26.21 dB 26.83 dB 27.19 dB
8) the 8th row 30.92 dB 31.20 dB 31.85 dB
9) the 9th row 33.18 dB 33.54 dB 34.17 dB
10) the 10th row 40.68 dB 40.94 dB 41.37 dB
11) the 11th row 27.36 dB 27.52 dB 27.78 dB
12) the 12th row 31.61 dB 31.99 dB 32.32 dB
13) the 13th row 25.89 dB 25.97 dB 26.02 dB
14) the 14th row 30.11 dB 30.24 dB 30.79 dB
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Table 8 PSNR results of Fig. 9 with a linear regression model in tensorPCA method
Case 90 percent 95 percent 100 percent

1) the 1st row 31.47 dB 31.53 dB 32.38 dB
2) the 2nd row 31.32 dB 31.49 dB 31.74 dB
3) the 3rd row 24.56 dB 24.62 dB 26.31 dB
4) the 4th row 27.48 dB 27.52 dB 27.88 dB
5) the 5th row 35.47 dB 35.55 dB 35.86 dB
6) the 6th row 26.38 dB 26.49 dB 26.78 dB
7) the 7th row 27.41 dB 27.63 dB 27.99 dB
8) the 8th row 34.16 dB 34.56 dB 34.85 dB
9) the 9th row 36.29 dB 36.44 dB 37.08 dB
10) the 10th row 42.61 dB 42.75 dB 43.59 dB
11) the 11th row 28.08 dB 28.26 dB 28.73 dB
12) the 12th row 33.38 dB 33.57 dB 33.93 dB
13) the 13th row 26.58 dB 26.62 dB 27.01 dB
14) the 14th row 31.69 dB 32.05 dB 32.46 dB

Figure 1 Some original high-resolution color face images (30× 30) for testing.
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( a ) ( b ) ( c ) ( d ) ( e ) ( f ) ( g ) ( h )

Figure 2: Some of experimental results (RGB color model) with a linear regression model
in MPCA method. (a) original HR images (30 × 30); (b) input LR images (15 × 15) with
noise, motion and blur in LR images; (c) face hallucination result with 90 percent MPCA;
(d) different image of face hallucination result with 90 percent MPCA; (e) face hallucination
result with 95 percent MPCA; (f) different image of face hallucination result with 95 percent
MPCA; (g) face hallucination result with 100 percent MPCA; (h) different image of face
hallucination result with 100 percent MPCA;
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( a ) ( b ) ( c ) ( d ) ( e ) ( f ) ( g ) ( h )

Figure 3: Some of experimental results (YCbCr color model) with a linear regression model
in MPCA method. (a) original HR images (30 × 30); (b) input LR images (15 × 15) with
noise, motion and blur in LR images; (c) face hallucination result with 90 percent MPCA;
(d) different image of face hallucination result with 90 percent MPCA; (e) face hallucination
result with 95 percent MPCA; (f) different image of face hallucination result with 95 percent
MPCA; (g) face hallucination result with 100 percent MPCA; (h) different image of face
hallucination result with 100 percent MPCA;
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( a ) ( b ) ( d )( c ) ( e ) ( f ) ( g ) ( h )

Figure 4: Some of experimental results (HSV color model) with a linear regression model
in MPCA method. (a) original HR images (30 × 30); (b) input LR images (15 × 15) with
noise, motion and blur in LR images; (c) face hallucination result with 90 percent MPCA;
(d) different image of face hallucination result with 90 percent MPCA; (e) face hallucination
result with 95 percent MPCA; (f) different image of face hallucination result with 95 percent
MPCA; (g) face hallucination result with 100 percent MPCA; (h) different image of face
hallucination result with 100 percent MPCA;
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 ( a ) ( b ) ( c ) ( d ) ( e ) ( f ) ( g ) ( H )

Figure 5: Some of experimental results (CIELAB color model) with a linear regression
model in MPCA method. (a) original HR images (30× 30); (b) input LR images (15× 15)

with noise, motion and blur in LR images; (c) face hallucination result with 90 percent
MPCA; (d) different image of face hallucination result with 90 percent MPCA; (e) face
hallucination result with 95 percent MPCA; (f) different image of face hallucination result
with 95 percent MPCA; (g) face hallucination result with 100 percent MPCA; (h) different
image of face hallucination result with 100 percent MPCA;
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( a ) ( b ) ( c ) ( d ) ( e ) ( f ) ( g ) ( h )

Figure 6: Some of experimental results (RGB color model) with a linear regression model
in tensorPCA method. (a) original HR images (30 × 30); (b) input LR images (15 × 15)

with noise, motion and blur in LR images; (c) face hallucination result with 90 percent
tensorPCA; (d) different image of face hallucination result with 90 percent tensorPCA; (e)
face hallucination result with 95 percent tensorPCA; (f) different image of face hallucination
result with 95 percent tensorPCA; (g) face hallucination result with 100 percent tensorPCA;
(h) different image of face hallucination result with 100 percent tensorPCA;
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( a ) ( b ) ( c ) ( e ) ( f ) ( g ) ( h )( d )

Figure 7: Some of experimental results (YCbCr color model) with a linear regression model
in tensorPCA method. (a) original HR images (30 × 30); (b) input LR images (15 × 15)

with noise, motion and blur in LR images; (c) face hallucination result with 90 percent
tensorPCA; (d) different image of face hallucination result with 90 percent tensorPCA; (e)
face hallucination result with 95 percent tensorPCA; (f) different image of face hallucination
result with 95 percent tensorPCA; (g) face hallucination result with 100 percent tensorPCA;
(h) different image of face hallucination result with 100 percent tensorPCA;
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( a ) ( b ) ( c ) ( d ) ( e ) ( f ) ( g ) ( h )

Figure 8: Some of experimental results (HSV color model) with a linear regression model
in tensorPCA method. (a) original HR images (30 × 30); (b) input LR images (15 × 15)

with noise, motion and blur in LR images; (c) face hallucination result with 90 percent
tensorPCA; (d) different image of face hallucination result with 90 percent tensorPCA; (e)
face hallucination result with 95 percent tensorPCA; (f) different image of face hallucination
result with 95 percent tensorPCA; (g) face hallucination result with 100 percent tensorPCA;
(h) different image of face hallucination result with 100 percent tensorPCA;
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 ( a ) ( b ) ( c ) ( d ) ( e ) ( f ) ( g ) ( H )

Figure 9: Some of experimental results (CIELAB color model) with a linear regression
model in tensorPCA method. (a) original HR images (30×30); (b) input LR images (15×15)

with noise, motion and blur in LR images; (c) face hallucination result with 90 percent
tensorPCA; (d) different image of face hallucination result with 90 percent tensorPCA; (e)
face hallucination result with 95 percent tensorPCA; (f) different image of face hallucination
result with 95 percent tensorPCA; (g) face hallucination result with 100 percent tensorPCA;
(h) different image of face hallucination result with 100 percent tensorPCA;
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