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CHAPTER 1

INTRODUCTION
Finite element method is a nume 1que for obtaining approximate

solutions which are basedwe riati mof partial differential equa-
tions(PDEs). The finit d in many applications in
science and engineering ing, structural simulation,
aeronautical, biomecha

Adaptivity is one ol uracy and performance for

finite element methods in nite element method was first

é‘\‘ ples.

sgiing adaptive algorithm for
finite element ﬁ g ﬁ 1 teriori error estimates
as indicators, v‘v“@ are computable quantltlesﬂnown dat nihe adaptive algorithm
solves foﬁrﬁ éﬁnﬂfﬁoﬁlﬁm w ﬁﬂewmtﬁﬂﬁnem and some

elements for coarsening depending on the error indicators on each element.

A posteriori error 1y81s is the main idea for de

An adaptive finite element method will loop the following procedure

—  Solve — Estimate — Refine/Coarsen — ...

With a given initial mesh,



Solve finds finite element solution based on current mesh.

Estimate computes the error indicators on each element based on known data and

solution.

Refine/Coarsen repartitions the current mesh to maintain the accuracy and per-

W rror indicators.

e finite element method is begun

formance in the system based

The analysis and convergenc
by the work of W. Dorfle uatlon In 2002, P. Morin et
al[11] extended [8] to elli ant coefficient A. They also
introduced the concept H. Nochetto[10] worked on
general second order li

For parabolic PDE, 1 osteriori error estimates for

linear parabolic PDEs in e model problem,
ou _
ot
U= in €2,

where u € L*(Q), a

—
m
e~

=

=
=
~

—~

=
@

£1(0,T) — LX(9).

In this thesis, we exténded the work frﬂn'l Chen and F. Jia by considering a

cniee e AR O S NS

Rt At

where a(x) is now a positive function in L>(€2) and f is non-linear Lipschitz function
of u.

We derived the upper and local lower bounds based on the standard residual
technique to show that a posteriori error estimators are reliable and efficiency, and

also constructed an adaptive algorithm for the finite element methods.



CHAPTER 11

PRELIMINARY

ic kn@ﬁmte element analysis including

L —
roof of the maim results. The proofs of theorems
si- ed references. This Chapter

)

In this Chapter, we provide

definitions and theorem

in this Chapter are omi

consists of 3 parts: th

q s, of the finite element space,

and some approximati

This section prov1des some ba ic kn vieds t Sobolev spaces required later in

this thesis. To obtain:the variational blem from the given PDE problem one need
! \

to use functions in some Sob A 'mbout Sobolev spaces can be

found in Chapter 2 of [3]. € o

Lot 2 be anﬂ SRV S AR Gt 22 0 s

of function u(z) which is square-integrable in the Lebesgue sensegover . It is known

that L2 @ ma@t\iﬂ ﬁﬂJ&Mﬂ@?ﬂ EJ r] a E]

(u,v)o = /uv dx Vu,v € L*(),
Q

with the norm defined by

[lullo = v/ (u, w)o.



Definition 2.1. Given an integer m > 0, let H™(Q)) be the set of all functions u in
L?(Q)) which possess weak derivatives 0%u for all |a| < m. We can define a scalar

product on H™(Q2) by

with the norm

And the semi-norm

Definition 2.2. The¢o oct to-the Sobolev norm || - ||m is

denoted by Hy"(Q2). L4 Y

Note 2.3. H™(Q) andgl (Q) are Hilbert Spaces

waene t@tummmmm Ao
T QA YR AT U TN A Yt e o

side lengthqs. Then

[lollo < slvh Yo € Hy(Q).
Proof. The proof can be found in the book by D. Braess [3]. O

Theorem 2.6. If Q) is bounded, then |- |, is a norm on H'(2) which is equivalent

to ||+ lm- In addition, if Q2 is contained in a cube with side length s, then



[0l < 0]l < (14 8)" [0l Vv € Hy(Q).

Proof. The proof can be found in the book by D. Braess [3]. O

Definition 2.7. Let H be a Hilbert space with norm || - ||g-

”lgd, continuous provided there exists ¢ > 0

L.

| W
\r . ’UEH.

A bilinear formb : H x H — R 14

such that

A bilinear form b(- ispdeesV in H, provided for some

a >0,

Remark 2.8. We can define an energy 19 on V' with coercive bilinear form b(-,-)
S S / g

by lvlls = +/b(v,v). Phe norm | I Wl is equivalent"tothe-norm of the Hilbert space

|| - ||z, namely, there 11 a c '

AUt Fmminenns
22 SHIBRENIR BRG] Y126 8

The goal for this section is to build a finite element space V', a finite dimensional
subspace of H}(Q), and to introduce some approximation results.

Let © be a bounded polygonal domain in R?.

Definition 2.9. A partition M = {K1, Ks, ..., Kx} of Q into triangular subdomains

K; is called a triangulation of Q2 if the following properties holds:



2. If K; N K consists of exactly one point, then it is a common vertex of K; and

K.

3. If for i # j, K;N K consists of more than one point, then K; N K is a common

Qs called shape regular pro-

vided that there exists a n : that every K in My and for every k

edge of K; and Kj.

Definition 2.10. A fami

contains a circle of radi

where hy is the diameter of element K.

To define a finite element orrr;'f ,,_-“, non-negative integer h, let Mj be

a shape-regular trla {'--— “fthe set of polynomials of
degree < [. Let V be aﬂn’c e gﬁ continuous piecewise linear

functions, defined by

ﬂumﬂﬂmwm‘z

V={ve H'(Q| vl P YK EM}. .,

ARIAINIUURINYAY

Here, we u!e linear Lagrange elements with nodal basis functions, i.e., for each node
x; of element K, the nodal basis for node z; is ¢;(z;) = 0;;. For each v € V,

= Zv(zz)@(x) where N is the total number of node.



d

L N J

\!

\!
podal-basis ah

Figure 2.1: Example

2.3 Approximati

Let B be the set of al

M. We denoted patche

VeebB,

W = ? ;’5:'-?: ‘ VK e M,

';“"4' e M,

Ttk
VYN Y

Figure 2.2: The example of the patch w, for the edge e

@s piecewise linear function



v

Figure 2.3: The left picture is thg\gx‘l/// the right picture is the patch wg
‘;,\.:‘5# /
—— —

We state some importaw nd‘pron\ezclin the proof of the main
results as follows. : | \ \

lo = Zavllo € chalfEliceay v 8 21)

i -
\ " LY
Y

Jr
2

o — Tuoljow, edliillo

Proof. The proof can be found in [6] b

(2.2)

7! O
The Clement’sinterpoﬁa’&n ﬁproxim&tfbﬁs are the main ingredients for obtaining
t

) Ll | 18 )k b vound, e e
G A1

the upper boun

e definitions and properties are given below.

Definition 2.12. Let K € My, and e € B. The functions ¥k, 1. are the bubble

functions corresponding to K and e, respectively, with properties:

Y € P3, supp v = K, 0 < g <1, maxypg =1,



and

Ve € Py, supp e = we, 0 < Y < 1, max ), = 1.

Proposition 2.13. Let My, be a shape-regular triangulation. Then there exists a

constant ¢ which depends only on the shape parameter k such that

Vv e L*(K),
Vpel,
Vpem,
Vo eP,
Vo eP,

VoelP,

where E : L?*(e) — 4 0 | on an edge e and h, is the

length of the edge e.

Proof. The proof can be found E-'EE R. Verfurth and [1] by M. Ainsworth and

J.T. Oden. O\ T V4 0
v

.;,
AULINENINYINT
ARIAATAUNNIING A Y



CHAPTER III

MODEL PROBLEM

In this Chapter, we intro , a semi-linear parabolic PDE

with some assumptions we formulated the variational

problem and discretize : ;.sm\.\ ite element method.

Let €2 be a bounded polygona hidf ] R? with bo ndary denoted by I' = 02 and
a final time 7" > 0. We cons'__ in arabolic PDE

- — in Qx (0,7)

on I'x (0,7)

x {t =0},

where ug € L*(Q ) € JPO is a pOSlthG function (a(z) > ~ for some v > 0) and

the function f ﬂ L‘Mﬂfg ‘ﬂtﬁﬁq@ewgﬁ {2)biidifion, i.c., there exists a

constant L > 0 s&h that for each ﬁ)ged t,

ARIANN I AN Y

||f ur) = flu)llo < Llfur —uallo  Vu(-, 1), us(-,t) € L*(9). (3.1)

To obtain the weak form, we multiply the PDE by ¢ € H}(Q2) and apply Green’s

theorem (see [9] page 459) to get

(Gt 2o+ @V, Vodo = (F, ol (3.2)
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where (v, w)p = / vw dz.
Q

We define bilinear form b(-,-) by

b(v,w) = (a(z)Vv, Vw)y = /Qa(x)Vv NVwdr  Yv,w e Hy ().

Lemma 3.1. The bilinear . us symmetric and coercive on
Hy(€2)

Proof. First, we will show.&  Biligearib( C uous. We need to show that
there exists ¢ > 0 such t < iRl any u, v € H ().

Let u,v € H (). Since a 9, ik anded. ain Q, so

LLCOHE OO () VGOt

o < bl

where the last ELL&LEJ TR 88 BT hndariy and e norm

MWL a7 11T 1oL 01 1

Next, we will show that a bilinear form b(-,-) is a symmetric and coercive in
H (). Tt easy to see that b(-,-) is a symmetric by the definition. To show that b(-, -)

is coercive in H} (). Let v € H}(Q). Since a(z) is a positive function in L>(2), so
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a(z) >~y >0ae xe€and

b(v,v) = /a(x)Vv -Vovdx
Q
> fy/ Vv - Vodx

Since semi-norm | - [} and A H(Q) are equivalent, so by Theorem 2.6

with m =1, |v|; > ﬁ

Hence, b(-,-) is coercive i

)

Since b(:, -) is coercive and con tinuous in Hy(§2) the energy norm
h

ri
|

i¥

|||90||| b(e, ) Vso € Hy(%),

mwmmmmkggyﬂw5WBﬂnﬁ

mark 2.8

Lemna 82/ ) ADFUNBLINYOA L o

lello < Collell-

Proof. Let ¢ € H}(Q). By Theorem 2.5 and Remark 2.8,

llello < slel < sllelh < sCellell
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where C), := sC. O

In order to approximate weak solution, we assume the uniqueness and existence
of weak solution in (3.2). To obtain the discrete problem, we divided this procedure

into 2 steps.

1. Discretization on time (0, 7).

First, we partition (0
t" =0 and tN =

We define the n-

It follows that

Consider at the ime R » ‘2)
Y

(tﬁ>,goo
— ﬂumw gNINYINT

©)o L'J Vp € H&(Q),

Next, we approx1mate by the backward Buler, namely ﬁ{ ~ Y _T:" 1, SO
TR i
(o b g) = (0 Vo € H(® (33

n

This approximation is used in the finite element scheme.

2. Discretization on space Q.

With a given initial triangulation M of Q, for n > 1, let { M"} be a conforming



14

and shape-regular family of triangulations where M™ is obtained from M"~1,
does not need to be nested. Let V™ be a Lagrange finite element space of
a continuous piecewise linear functions over the triangulation M" and V' =
VN HY(Q). Let P, : HY(Q) — VI be a projection operator for mesh M"

and define UY = Pyup. With initial information U' € Vj*', we seek an

approximation U}’ € V" satisfying rete weak form
\
b(U; i ,0)g Vv eV (3.4)

To approximate u(z,t) for Gt = aterpolate linearly between U™ and

U}, namely, for each z €

Note 3.4. Uh(x@gﬂﬁlﬁﬂﬂﬁw ﬁ ﬁ%ﬂ %i fort € (11, )

which use in the

AN TUNM NN Y



CHAPTER IV

A POSTERIORI ERROR ESTIMATES

and & bounds for the errors using the

er bot n. d gt e bound of the global error in

In this Chapter, we derived
standard residual techni
term of the estimator solution is acceptable. The
local lower bound gives” ors and their estimators with
some other quantities.

To obtain a posteri

nique. We used area-based r

el s\ ed the standard residual tech-
\\ " and edge-based residual on
|

edge e on the element K to estl 'E.’;... e error on the element K.
T 3

We defined the aréa-be

Laes

Y \;‘ at fixed ¢ = " by
B” =1 V(@)
an the edge bﬂu iJL’& 'ﬂtm&ﬁ Bk 7179

4% mﬂmmmmay

Note 4.1. Since U} is a piecewise linear function, so AU}’ = 0 and

V- (aVU!) = Va- VU + aAU! = Va - VU

Note that, we need Va(x) to be well defined, i.e., a(x) is differentiable in K, for each
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K € My, thus we need to assume in additional that a(z) is piecewise differentiable
on Q, i.e., al| is differentiable for all K € M,,.

We define the local error indicator n}. for any K € M™ by

1
2
N = <h§(||Rn||(2),K+ ZheIIJQIIE‘i,e> : (4.1)

eCOK

For each element K € M", for refinement or coarsening. To

check the error of the ap on ) wat the finite element solution

is acceptable, we defined Bal érfor estin ALO]  the space for fixed ¢ = ¢" by

We use 1), as a stopping of discrete system at time ¢ = ¢".

To start the next discrete sy ve need to find the suitable time

step size that is not too large ol W

control time step siz Ay L
»w —_— \.‘
ane) ”|Uh U ”‘WIIE

S A ] LR ININT

e defined error estimators n},.. to

€ Tp.

AINIURIINA Y

4.1 Upperloun

To analyze the upper bound, we measured the error by the energy norm in space and
L?—norm in time. First, we estimated the error at a fixed time ¢t = ", and then

combined for all time in (0,7).

Note 4.2. Since a constant C' in each inequalities can change from line to line, we
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will use the same C to indicate a constant for convenience.

Lemma 4.3. For any integer n > 1,

(2=Un) o)y + b(u — UR, )

=(f—f¢ 0+Z/Rn —vdx+Z/J” — )

KeMn

ot

ecBn

for all o € H} (), v € V.

Proof. Let ¢ € H}(2) andw
(U"—U"_l ) (10)0 + b(Ul?a

Tn

) U)O - b(Ul?7 U)

cach element K e M",

ur—yn-1!
( h 7_nh

= (f}?? SO)O 4
We apply Green’s theorés

bl

b(U}?,QO—U) =

Substituting the above equality
(Un uUun— 1 SD) :

Tn

—v)ds

aVUh QF v d:c—z

ﬂumé ﬁwﬁEQ

K eM eGB”

TR Qﬁ"ﬁam’ﬂﬁﬂﬂﬂﬁﬂpﬁ e

Lemma 4 4. For anyn > 1,

b(u—Up,u—=Un) = 5 (llu=Upl* + llu = Unll® = 1Ux — URII*).
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Proof.

= blu—-Ulu—U})—blu—UpU,—U})
= flu—=Upl* = b(Un — Uy, Up = Up) + b(Un = u, Uy = Uyy)

= Ju—UpI? I + b(Un — u, Uy, — u)

Upll? = b(u — Uy, u — Uy)

10 = URIIP) - O
Now, we use 2 above houm > eror at time ¢ = ¢" in the following
Lemma.
Lemma 4.5. For fized time { % 2AC, L wl|2 is an increasing function
of t then there exists a constan gf.ﬂ- 051
=L DR,
i( Gy L) e Pl e )+ U, — U2,
dt -.v- J h

where L is the szschztz c.anstant of the functwn f(u) in (3.1).

Proof. By Clen’% uﬂ ’)amncﬁj mj HSTEJthe E erpolation function Z" :
H}( 2 2
O Apngq/ jﬁhy-ﬁjm ﬁ;] to Ii a g: :]dasetgjz I™p, we get

_u

< 1f = fllollello+ D IR okl — I0llo.x
KeMn

ecB”
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By the Lipschitz continuity of f and Clement’s approximations (2.1) and (2.2),

(Al oo + b(u — UR, )

< Llfu—=Uylloll#llo

+ > Chil IR loxlVellozi + D Che| T2 ol Vellogi

KeMn eel’j’”1

)2> IVello

IN

Lllu = Uplollgllo +C

where the second inequalit Follows from C warz inequality.

dellw = Ul + (lu

< 2L|u =

(4.2)
Unll + U — U

7
rms ||u — Uy|| from Nepace

udinmidwpny oo
aﬁwﬁ%ﬁ*s“”’“%ﬁﬁ'ﬁwb we o

Note, in ( 4ﬂ3 , we used ¢ = 2 and in (4.4) we used ¢ =

we separate terms 2 5'-?!’:"

by

C2

[u=Up I3 Ju=URI®
2C S 2

By Lemma 3.2, so

Substituting them in main inequality and cancelling the term |Ju— Uy||? in both sides,



20

we get
d 2 1 n||2 2 2 n 2 n||2
1t = Usllo + Sl = URI" = 2(CL)[w = Unllo + C1(0pace)” + U = UR ™

Since 0 < %(6—2(0pL)2t||u — Up|2) and

% (6—2(CPL)2t| |u _

i e 2L lu — Uy [[7)

L)*[u = U5,
then we obtain the rem/ [\
d, —ac,ny 2
PG [ Dipace)” + 1Ux — UR I
dt
O
Corollary 4.6. If L <
d :
4 s U~ U
i ILJ
Proof. From the 1nequaht¥ (4.2) in the proof of Lemma (4.5), we have
- iR R REAT NN T
< S U7l 1 # Ul + Ol — Ul 50— UR P
we R indailig b heak 84 il
9
n L2 2 n||2
2L{Ju = Ugllo - [lu = Unllo < 5—llw = Unllo + 2exlu = Uy'llo, (4.5)
¢ 2
Cnspace |||u Un ||| = 2, (nspace) + ||| — Uy ||| (46)

where we choose €7 and g5 such that { L) + 052 < 1. This implies that we have to
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choose

(CpL)?
By (4.5), (4.6) and Lemma 3.2 we get,

d C
Tl = Uallg + llu = TR < 2Cpeflu — UR I + z—gz(n?pacef +Un = URI?

Since L < T30 SO then
d 2
= U S+ U = UR|l
U
Theorem 4.7. (Upper g ‘ ' egertl S < N, under the assumption

\!

of Lemma 4.5, there exis 0 de vending only on the shape constant

k of meshes M™, the coefficient alx), 2 constant L and domain ) such that

the following error e Q
T — P

OV
¢ n=1/t""" . -~
APERY 1) 7} a2
Proof. F i ﬁ to time ¢ = ",
Integratlng to colle(azle erroﬁrom t= W?Tﬁ.vrgﬁ. ﬁ

e 2CLP" [y _ 2 4L Z / lu — Up |2t
' m ng m
< o= ORI+ Y [ 10 = Ut G 3
n=1 [ n=1

U, IL'J
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t" tn
Note that / 10, — UplI2dt = / (SE2NU5 = Up~HPdt = 7 (1ie ) -
~1 gn—1 "

t‘ﬂ

n—

Corollary 4.8. If we assume L < ﬁ, we obtain a sharper estimate, (without the
P

assumption of Lemma 4.5)

A
=0+ 5> [ > Tl +Cod Tl
n=1/1""1 —"— n=1
( | >

= 0O

0 t get the result.

\ te element solutions at the fixed

Proof. We integrate Coro O

time t = t", with the given initi | : ._ the so : tion from the previous time step

bl oa |
Uprt € Vit To compare th e der U € H}(Q), a solution of the

¥P)o H(Q), (4.7)

Tn

e - B UHINENTNYINT
Note 4121 me‘aggﬂ Ajm i] ﬁjﬁwm a"’rﬂor the discrete

problem (3i4) where H, 1s approximated by V.

Again, we measured the local error U — U using the L?-norm. Since error
indicators 7} consist of 2 parts, the area-based and edge-based residuals, to bound
the error indicators, we estimated the two residuals using the idea of element and

edge bubble functions.
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For convenience, we denote the square of error on element K € M™ by

hi U = U113

2
T

err?(K) =

+ \UJZ—U;?I?,K-

Lemma 4.10. (Error Representation) For any ¢ € Hy(Q),

b(Uf—Ug,Qp):(ff—f]?,ﬁp 0

Z /R”cpdx+2/ “pds

KeMmMn eeBBn

Proof. Let ¢ € H} ().

4.2.1 Estlmate

] ﬂ g W&Ll fangTs
e Y AT A TN YA

c1,c0 >0 Such that

hillPe R[5 < ca(BE NP R™ = RYIG s + hic|Lf = F2116 1)

+ cperr? (K).
Proof. Let K € M™ and i be the element bubble function for the element K.

Define w = ¢ - Px R". Note that w € P;(K) since ¢ and PxR™ are polynomials.
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By proposition of bubble function, so

1
C PR}k < lWEPxR"|[§ x = (PkR", w)ox

Since w|y, = 0, we can extend w to the full domain Q by letting w = 0 outside

element K, so that w € H(Q).

Thus, (PxR",w)o = (PK

By the Lemma 4.10,

(R w)ox = ( » S wo o+ (VU = U), Vw)ox

Thus, we get the -.ﬁ,,....,.;..,

. rr'l
J
1||PKR"|E < (PxR"—R" w)0K+ h_ W)oK

AuL InEhingng -
Then we a Cauchy—Schwarz fhequality tofhe above ineqfialit
ooy NS L Al ummmﬂ

lwllo,e < |[PrR"||o,x-

Apply Cauchy-Schwarz and get

[Pk Rlox < C([|PxR"* — R |ox + [|f7 — fillox)

0 (11222 o + B U2~ Uplri)




25

We multiply the inequality by hx and get

hi||Pr R o < O(hK||PKR"—R“||0K+hK||f,?—ff||0,K)
+C (Pl 2 o e + U2 = Ui

From the fact, if a,b,c > 0 and a < b+ ¢ then a® < 2(b* + ¢?). We square the

both sides of the inequality to ‘
2 n||2 » 2 : n||2
hKH,PKR ||0,K . F ' h ||fh f*“O,K)
B Ry

Now, by definition of err:

Lemma 4.12. Forn > L a 'd.‘- \ timate, there exist constants

c3, ¢4 > 0 such that

f Fabadamis "J 2

hilIRMG k< ﬁ?@?
Yo

Proof. By triangle ineq‘h -

el - FWEIWFHWW'MR" Putl
" R HRATO NI G

PR [ s < 200 | [P R"([§ i + hic||R™ — P R"[[g x)-

Uk + A — fR1R &)

Apply the Lemma 4.11 and complete the proof. O
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4.2.2 Estimate of J

Let P, : L%*(e) — Pi(e) be a L?-projection onto the space of polynomials on e of

degree <.

Lemma 4.13. For any n >

hel[Pe 2[5 e

Proof. Let e € B" and £ bble . | . edge e.
Since J' is a functio -t ' ge €, We . extend J!' constantly along the
normal of e to w,.
Define w = 1. - P.J}'. Since 1 : ve can extend w by w = 0 outside w,
so that w € H} (). Noge
By proposition o ‘bibble funct r.
m

J I
U)o T4 es
WA RS U A N8y

(Jlw)oe = (fF = fiw)ow. + (R" w)ow,

ur—un
—( = 3

By the Lem
q

7w)0,we - (G,V(U,:l - U}?)a Vw)O,wea
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SO
C_1||P6J:||g,e < (P w)oe
= (PeJ? = J2w)oe + (J2' w)oe
= (PeJg = L w)oe + (fi = il wow. + (B w)ow.
~(F5E w)ow, — (@V(UL = Up), Vo,
We apply Cauchy-Schwarz ineq proposition of bubble function such that
then
[PeJello. < ClPe 265 € vic (LSS = TR lloser + [ B [o,xcr)
1
U = Ul )
We multiply the Above inequali ..‘E’ ‘

'I
..J
hWﬂ%escmWﬂ ﬂm+32hmwnﬁ

fl Uﬂ;? nﬂmmﬂm

K'Cwe

s(mﬂtmadﬂm‘lmyum’a NYIRY

K7)

hel [P Re < Chel[Pedl = J2N3e +C Y Bier (I1£2 = fE Ml ser + 11R"IIG 1cr)

K'Cwe

h2
+C Y (BI0r = UpIB e + U = UpB e ) -

K'Cwe

By definition of err?(K’), we complete the proof. O
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Lemma 4.14. For anyn > 1 and e € B", the h.||J?|[§, can be bounded by

hellJPNR, < cshel|Ped? — J2loe+co Y err2(K')

K'Cwe

+Cloz h%{/HRnHOK/"‘h Ay = £

K'Cwe

27).

Proof. By triangle inequality, so

e/g; lo.e + 1118 = Pe!loe-

7"
We multiply the in ] y \ a \ th sides to get

4.2.3 Estimate of t

Define an oscillation ﬁ_.r_‘l.“

AT ﬁ%ﬁ%w@ﬁi'ﬁ% "
ARAINIANRIEINAE

KCwg

and

Theorem 4.15. (Local Lower Bound) There exist constants C1,Cy > 0 depending on

Lipschitz constant L, such that for any K € M", the following estimate holds

(nk)?> < Chosc®(wi) + Cs Z err?(K")

K'Cwgk



29

Proof. By definition of % in (4.1) and Lemma 4.14, we get

(M) < hlIR|x+C ) {heIIPle — 0I5

eCOK

+ > [ (17 = Sl + IR o) + erri (K7)] }

K'Cwe

Since wy = U We,

eCOK

By Lemma 4.12 and Lipsc éo lition of | \ f, we get

AULINENINYINT
PAIATUAMINYAE



CHAPTER V

ADAPTIVE FINITE ELEMENT ALGORITHM

* l//

In this Chapter, we designe for finite element methods for

obtaining sequences of e algorithm in this Chapter is

designed based on the ed in the previous Chapter.

1 time discretization. We control

(5.1)

We used equi- distributﬂechnique (equally distributiomof errors on all elements) in

order to controlﬂwn'jf ﬂhﬁ“ﬂ ﬁ”wglﬂ 73
ammmfﬂﬂmﬂwmaﬂ “‘”

for all n =1,2,...,m, to guarantee (5.1).

Given 0; € (0,1) and d; > 1, we use d; to shorten the time-step size 7, in order
to reduce the time error indicator, and if the error indicator is too small, we expand
the time-step size with d, in order to improve the performance.

Typically, the smaller time-step size, the more accuracy we get. But if the time-
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step size is too small, it will reduce the performance of the program, namely, more

loops in the program. So we may control the time error indicator in such a way that

etimeTOLtime 2 TOLtime
- n < — .
T — (ntzme) — T (5 3)
where Gyme € (0,1) is a chosen para Typically, the value of 6y, is 0.5)
The following is an algorit table time-step size 7, with given
parameters T'O Lyipme, 01,
Time Step Contro
1. Set 7, = T—1.
2. Solve for U} and coub rs Nieme-
3. If (5.3) is satisfy, th
else go to the next step.
4. IF (np,,.0)? > 19 "—---—n,———--—".— ------ go to step 2.5
Y N
else 7, = 057, amﬁo b0 S @
¢ o/ o
Remark 5.1. ﬁsﬁyﬁ wrﬂtﬂ ?%anﬁf? in finite steps.
U
¢ o o/
2 RRWTRNTUURIINYIA Y
q
We balance between accuracy and performance by the controlling parameter
Ospace € (0,1) by checking the condition
espaceTOLspace 2 TOLspace
< (n™ < A4
T — (nspace) — T (5 )
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With mesh M", we refine the mesh in order to increase accuracy and coarsen the
mesh for maintaining performance. Let T'OLgp,.. be the tolerance for the space error
control,

Adaptive Finite Element Algorithm

1. Set M"™ = ML,

2. Find the suitable 7, usin ol Algorithm.

Compute the error i
3.t =t"" 4 7,
4. While (5.4) is not

(a) Refine/Coarsen
(b) Solve for U}

(c) Compute the erro indicators

5. Check 7,. If 0} V ﬁb\‘ e go to step 2.
T
J - J

From the algorithm, we will.be looping in gteps 2 to 4 until the error estimates are

ot s b3 W BRI TS

Refine/ Coarsen Algorithm ¢

th%l&.r]eﬁ,ﬂoae:igu) ;‘l wm’lg ylrEJ fl @ Ejor each element
K € M", we sort the element by value of error indicator. We refine the first 0, fine /N
elements and coarsen the last 0.04r5en/N €lements to obtain a new mesh where N is

the total number of element in M™.



CHAPTER VI

CONCLUSION

7

al tech

In this work, we used standa lerive a posteriori error estimate

for semi-linear paraboli er and local lower bound, we
see the true errors th
time derivative, from tk
control the errors by u
the nonlinear function, 1tz onditior 'der to absorb this error to the
error in the system.

From the upper bound, it sh twe carn control the total error by controlling
the error indicators arid, est 'he local lower bound shows

that the local error can'b J al error indicators; we can

reduce the local errors lm reﬁning elements with high emjr indicators, assuming that
the oscillation a ﬁr%/ e finally use the result
from the upper aml aﬂj)wer bouﬂ o design an a;Trlje a gorlthm to control the
" ARIRIA ﬁ‘mdﬁﬁﬁ TNYIN Y
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