ค่าประมาณความผิดพลาดภายหลังชนิดตกค้างของสมการเชิงอนุพันธ์ย่อยเชิงพาราโบลาแบบกึ่งเชิงเส้น

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต
สาขาวิชาคณิตศาสตร์ ภาควิชาคณิตศาสตร์
คณะวิทยาศาสตร์ จุพาลงกรณ์มหาวิทยาลัย
ปีการศึกษา 2553
ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title

By

Field of Study Thesis Advisor

RESIDUAL TYPE A POSTERIORI ERROR ESTIMATES FOR SEMI-LINEAR PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS Mr. Rawin Youngnoi Mathematics Khamron Mekchay, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements fer the Master's Degree

Dean of the Faculty of Science (ProfessonSupot Hamongha, Dr.rer.nat.)

THESIS COMMITTEE

รวินทร์ ยังน้อย : ค่าประมาณความผิดพลาดภายหลังชนิดตกค้างของสมการเชิงอนุพันธ์ย่อย เชิงพาราโบลาแบบกึ่งเชิงเส้น. (RESIDUAL TYPE A POSTERIORI ERROR ESTIMATES FOR SEMI-LINEAR PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS) อ.ที่ ปรึกษาวิทยานิพนธ์หลัก: อ. ดร. คำรณ เมมฉาย, 36 หน้า.

การวิเคราะห์ค่าความผิดพลาคภายหลังเึ้นหดักการที่สำคัญสำหรับวิธีสมาชิกจำกัดแบบ ปรับตัวได้สำหรับการประมาณค่าผลเฉลยของสมกรเจังอนพ้นธ์ข่อยแบบต่างๆ ในวิทยานิพนธ์นี้เรา ให้ความสนใจในการวิเคราะห์ความผิดพลาดภาขหลังสำหรับสมการเชิงอนุพันธ์ข่อยเชิงพาราโบลา แบบกึ่งเชิงเส้นบนโดเมนรูปไต่ยเหลยคตน 2 มิติภายใด้เงื่อนไขค่าขอบแบบดีรีเคล โดยแสดง ประสิทธิภาพและความน่าเชื่อถือของวํารระมานความติดพลาดภายหลัง โดยหาขอบเขตบนและ ขอบเขตล่างด้วยตามวิธีการประมานชน่ดติกีฉฉมม่าตรฐามกายใต้เงื่อนไขที่ว่าฟังก์ชันไม่เชิงเส้น f เป็นฟังก์ชันลิพชิทซ์ของตัวแปร u ศดดท้วแเรโได้กร้างขั้นตอนวิธีสมาชิกจำกัดแบบปรับตัวได้โดย อาศัยข้อมูลจากการประมาณค่ความผิดพลาศษยหสิง

จุหาลงกรณ์มหาวิทยาลัย

ภาควิชา \qquad .คณิตศาสตร์. \qquad สาขาวิชา \qquad คณิตศาสตร์ \qquad ลายมือชื่อนิสิต. sivns gising ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์หลัก. \qquad
\# \# 5172416823 : MAJOR MATHEMATICS
KEYWORDS : ADAPTIVE FINITE ELEMENTS / A POSTERIORI ERROR ESTIMATE / STANDARD RESIDUAL ESTIMATOR / SEMI-LINEAR PARABOLIC PARTIAL DIFFERENTIAL EQUATION

RAWIN YOUNGNOI : RESIDUAL TYPE A POSTERIORI ERROR ESTIMATES FOR SEMI-LINEAR PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS. THESIS ADVISOR : KHAMRON MEKCHAY, Ph.D., 36 pp.

A posteriori error analysis is the key idea for adaptive finite element methods for solving partial differential equations(PDEs). In this thesis, we are interested in a posterieri error analysis for semi-linear parabolic PDEs over polygonal domain in 2-D with Dirichlet boundary condition. We showed theeffieiency and reliability of a posteriori error estimator by deriving the apper and local lower bounds based on the standard residual estimator finder the assumption that the nonlinear function f is Lipschivz with yespect to the variable u. We also constructed an algorithm for adaptive finite element method based on a posterior error estimations.

Academic Year: \qquad 2010 ศูนย์วิทยทรัพยากร
\qquad

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Khamron Mekchay, Ph.D., my thesis advisor, for his invaluable comments, suggestions and consistent encouragement throughout the preparing and writing this thesis. Without his suggestions and knowledgeable guidance in this study, this research would never have successfully been completed. Sincere thanks and deep appreciation are also extended to Associate Professor Pornchai Satravaha, Ph.D., the chairman, Assistant Professor Anusorn Chonwerayuth, Ph.D.. and Assistant Professor Settapat Chinviriyasit, Ph.D., the commitee members, for their conments and suggestions.

I am also grateful to the Royal Bangkok Sports Club (R.B.S.C.) for providing me support throughout my gradnate study. Thank to all of my friends for giving me happiness.

Finally, I woule like to express my greatly gratitude to my family for their love and encouragement during my study.

ศูนย์วิทยทรัพยากร

จุหาลงกรณ์มหาวิทยาลัย

CONTENTS

page
ABSTRACT (THAI) iv
ABSTRACT (ENGLISH) v
ACKNOWLEDGEMENTS vi
CONTENTS vii
CHAPTER I INTRODUCTION 1
CHAPTER II PRELIMINARY 3
2.1 Sobolev Space 3
2.2 Standard Finite Element 5
 7
CHAPTER III MODEL PROBLEM 10
CHAPTER IV A POSTERIORI ERROR ESTIMATES 15
4.1 Upper Bound 16
 22
CHAPTER V ADAPTIVE FINITE ELEMENT ALGORITHM 30
 30
5.2 Space Errors Control 31
CHAPTER VI CONCLUSION 33
REFERENCES 34
VITA 36

CHAPTER I

INTRODUCTION

Finite element method is a standard numerical technique for obtaining approximate solutions which are based on variational formulation of partial differential equations(PDEs). The finite element method is widely used in many applications in science and engineering, for example, mechanical engineering, structural simulation, aeronautical, biomechanical, automotive industries, etc.

Adaptivity is one of the key idea for improving accuracy and performance for finite element methods in an efficient way. Adaptive finite element method was first introduced in late 70's by I. Babuska 2.2. Adaptive finite element method is more efficient and less work than finite element method if high accuracy is required especially in the presence of singularities or boundary layers, for examples.

A posteriori error analysis is the main idea for designing adaptive algorithm for finite element methods. In the adaptive algorithm, weruse a posteriori error estimates
methods. in the adaptive algorithm, we wase-a posteriori error estimates as indicators, which are computable quantities of known data. The adaptive algorithm solves for finite element Solutions and selects somelements for fefiniment and some elements for coarsening depending on the error indicators on each element.

An adaptive finite element method will loop the following procedure

$$
\ldots \rightarrow \text { Solve } \rightarrow \text { Estimate } \rightarrow \text { Refine/Coarsen } \rightarrow \ldots
$$

With a given initial mesh,

Solve finds finite element solution based on current mesh.

Estimate computes the error indicators on each element based on known data and solution.

Refine/Coarsen repartitions the current mesh to maintain the accuracy and performance in the system based on the error indicators.

The analysis and convergence results about adaptive finite element method is begun by the work of W. Dorfler [8] in 1996 for Poisson's equation. In 2002, P. Morin et al[11] extended [8] to elliptic PDEs ywith piecewise constant coefficient A. They also introduced the concept of oscillators. K. Mekchay and R. H. Nochetto[10] worked on general second order linear elliptic PDEs in 2005.

For parabolic PDE, Z. Chen and Fi. Jia[5] derived a posteriori error estimates for linear parabolic PDEs in 2004. Here, the considered the model problem,

$$
\begin{aligned}
& \frac{\partial u}{\partial t}-\nabla \cdot(a(x) \nabla u)=f(x, t) \quad \text { in } \Omega \times(0, T) \\
& u=0 \quad \text { on } \partial \Omega \times(0, T), \quad u(x, 0)=u_{0}(x) \quad \text { in } \Omega,
\end{aligned}
$$

where $u \in L^{2}(\Omega), a(x)$ is a piecewise constant function and $f \in L^{2}\left(0, T ; L^{2}(\Omega)\right)$, i.e., $f:(0, T) \rightarrow L^{2}(\Omega)$.

In this thesis, we extended the work frôn Z. Chen and F. Jia by considering a

where $a(x)$ is now a positive function in $L^{\infty}(\Omega)$ and f is non-linear Lipschitz function of u.

We derived the upper and local lower bounds based on the standard residual technique to show that a posteriori error estimators are reliable and efficiency, and also constructed an adaptive algorithm for the finite element methods.

CHAPTER II

PRELIMINARY

In this Chapter, we provided some basic knowledge of finite element analysis including definitions and theorems used in the proof of the main results. The proofs of theorems in this Chapter are omitted but canbe found in the provided references. This Chapter consists of 3 parts: the Sobolev spaces, the construction of the finite element space, and some approximation results.

2.1 Sobolev Spaces

This section provides some basic knowledge about Sobolev spaces required later in this thesis. To obtain the variational problem from the given PDE problem one need to use functions in some Sobolev spaces. More details about Soblev spaces can found in Chapter 2 of [3]

Let Ω be an Open subset.of \mathbb{R}^{d} with piecewisessooth boundary. $L^{2}(\Omega)$ is a set of function $u(x)$ which is square-integrable in the Lebesgue sensenver Ω. It is known that $L^{2}(\Omega)$ is a Hilbert space with inner product $[3] /$ है? 6

$$
(u, v)_{0}=\int_{\Omega} u v d x \quad \forall u, v \in L^{2}(\Omega)
$$

with the norm defined by

$$
\|u\|_{0}=\sqrt{(u, u)_{0}} .
$$

Definition 2.1. Given an integer $m \geq 0$, let $H^{m}(\Omega)$ be the set of all functions u in $L^{2}(\Omega)$ which possess weak derivatives $\partial^{\alpha} u$ for all $|\alpha| \leq m$. We can define a scalar product on $H^{m}(\Omega)$ by
with the norm

And the semi-norm

$$
(u, v)_{m}=\sum\left(\partial^{\alpha} u, \partial^{\alpha} v\right)_{0},
$$

In this thesis, we are interested functions in $H^{1}(\Omega)$.

Definition 2.2. The completion of $C_{0}^{\infty}(\Omega)$ with respect to the Sobolev norm $\|\cdot\|_{m}$ is denoted by $H_{0}^{m}(\Omega)$.

Note 2.3. $H^{m}(\Omega)$ and $H_{0}^{m}(\Omega)$ are Hilbert spaces.
Note 2.4. In this thesis, weconlyl use the spaces $H^{1}(\Omega)$ and $H_{0}^{1}(\Omega)$.
Theorem 2.5. Suppose $\sqrt[F]{ }$ is Gounded and containedingad dimensional cube with side lengthls. Then

$$
\|v\|_{0} \leq s|v|_{1} \quad \forall v \in H_{0}^{1}(\Omega) .
$$

Proof. The proof can be found in the book by D. Braess [3].

Theorem 2.6. If Ω is bounded, then $|\cdot|_{m}$ is a norm on $H_{0}^{m}(\Omega)$ which is equivalent to $\|\cdot\|_{m}$. In addition, if Ω is contained in a cube with side length s, then

$$
|v|_{m} \leq\|v\|_{m} \leq(1+s)^{m}|v|_{m} \quad \forall v \in H_{0}^{1}(\Omega)
$$

Proof. The proof can be found in the book by D. Braess [3].
Definition 2.7. Let H be a Hilbert space with norm $\|\cdot\|_{H}$.
A bilinear form $b: H \times H \rightarrow \mathbb{R}$ is called continuous provided there exists $c>0$ such that

$$
|b(u, v)| \leq c\|u\|_{H}\|v\|_{H} \quad \forall u, v \in H .
$$

A bilinear form $b(\cdot, \cdot)$ is called coercive for a subspace V in H, provided for some $\alpha>0$,
$\forall v \in V$

Remark 2.8. We can define an energy-norm on V with coercive bilinear form $b(\cdot, \cdot)$ $b y\|v\|_{b}=\sqrt{b(v, v)}$. The norm $\|\cdot\|_{b}$ is equivalent to the norm of the Hilbert space $\|\cdot\|_{H}$, namely, there exist a constant $C_{e}>0$ such that

The goal for this section is to build a finite element space V, a finite dimensional subspace of $H_{0}^{1}(\Omega)$, and to introduce some approximation results.

Let Ω be a bounded polygonal domain in \mathbb{R}^{2}.
Definition 2.9. A partition $\mathcal{M}=\left\{K_{1}, K_{2}, \ldots, K_{N}\right\}$ of Ω into triangular subdomains K_{i} is called a triangulation of Ω if the following properties holds:

1. $\bar{\Omega}=\bigcup_{i=1}^{N} K_{i}$.
2. If $K_{i} \cap K_{j}$ consists of exactly one point, then it is a common vertex of K_{i} and K_{j}.
3. If for $i \neq j, K_{i} \cap K_{j}$ consists of more than one point, then $K_{i} \cap K_{j}$ is a common edge of K_{i} and K_{j}.

Definition 2.10. A family of triangulation $\left\{\mathcal{M}_{k}\right\}_{k \geq 0}$ is called shape regular provided that there exists a number $k>0$ such that every K in \mathcal{M}_{k} and for every k contains a circle of radius ρ_{K} with \Rightarrow)
where h_{K} is the diameter of element K

To define a finite element space 1 for fixed a non-negative integer h, let \mathcal{M}_{h} be a shape-regular triangutation of $\Omega \subset \mathbb{R}^{2}$ and \mathbb{P}_{1} denote the set of polynomials of degree $\leq l$. Let V be a finite element spaces consisting of continuous piecewise linear functions, defined by

$$
\begin{aligned}
& V=\left\{v \in H^{1}(\Omega)|v|_{K} \in \mathbb{P}_{1}, \forall K \in \mathcal{M}_{h}\right\} .
\end{aligned}
$$

Here, we use linear Lagrange elements with nodal basis functions, i.e., for each node x_{j} of element K, the nodal basis for node x_{j} is $\phi_{j}\left(x_{i}\right)=\delta_{i j}$. For each $v \in V$, $v(x)=\sum_{i=1}^{N} v\left(x_{i}\right) \phi_{i}(x)$ where N is the total number of node.

Figure 2.1: Example of nodal basis and a continuous piecewise linear function

2.3 Approximation Results

Let \mathcal{B} be the set of all inter-element boundaries (interior sides) of all elements $K \in$ \mathcal{M}_{h}. We denoted patches as follows:

Figure 2.2: The example of the patch ω_{e} for the edge e

Figure 2.3: The left picture is the patch ω_{K} and the right picture is the patch $\widetilde{\omega}_{K}$

We state some important theorems and properties used in the proof of the main results as follows.

Theorem 2.11. (Clement Interpolation Approximation) Let \mathcal{M}_{h} be a shape-regular triangulation of Ω. Then there exists atinear mapping $\mathcal{I}_{h}: H^{1}(\Omega) \rightarrow V$ such that

$$
\begin{gather*}
\left\|v-\mathcal{I}_{h} v\right\|_{0, K} \leq c h_{\mathrm{K}}+\hat{l_{1}, \omega_{K}} \forall v \in H^{1}(\Omega), K \in \mathcal{M}_{h}, \tag{2.1}\\
\left\|v-\mathcal{I}_{h} v\right\|_{0, g} \leq c h_{K}^{\frac{1}{2}}\|v\|_{1, \tilde{\omega}_{K}} \quad \forall v \in H^{1}(\Omega), e \rho \tag{2.2}\\
\end{gather*}
$$

Proof. The proof can bē found in [6] by Ph. Clement.
The Clement's interpofation approximations are the main ingredients for obtaining the upper bound in the error estinates. To obtain the local lower bound, we used the ideas of bubble functions. There are 2 types of bubble functions, element bubble
functions and edge bubble functions. The definitions and properties are given below.

Definition 2.12. Let $K \in \mathcal{M}_{h}$ and $e \in \mathcal{B}$. The functions ψ_{K}, ψ_{e} are the bubble functions corresponding to K and e, respectively, with properties:

$$
\psi_{K} \in \mathbb{P}_{3}, \operatorname{supp} \psi_{K}=K, 0 \leq \psi_{K} \leq 1, \max \psi_{K}=1,
$$

and

$$
\psi_{e} \in \mathbb{P}_{2}, \text { supp } \psi_{e}=\omega_{e}, 0 \leq \psi_{e} \leq 1, \max \psi_{e}=1 .
$$

Proposition 2.13. Let \mathcal{M}_{h} be a shape-regular triangulation. Then there exists a constant c which depends only on the shape parameter κ such that

where $E: L^{2}(e) \rightarrow L^{2}\left(\omega_{e}\right)$ is an extension function on an edge e and h_{e} is the length of the edge e.

Proof. The proof can be found in [14] by R. Verfurth and [1] by M. Ainsworth and J.T. Oden.

CHAPTER III

MODEL PROBLEM

In this Chapter, we introduced the mode problem, a semi-linear parabolic PDE with some assumptions used in this thesis. Thereafter, we formulated the variational problem and discretized the problemf in order to use a finite element method.

3.1 Model Problen

Let Ω be a bounded polygonal domain in \mathbb{R}^{2} with boundary denoted by $\Gamma=\partial \Omega$ and a final time $T>0$. We consider semi-linear parabolic PDE

where $u_{0} \in L^{2}(\Omega), a(x) \in L^{\infty}(\Omega)$ is a positive function $(a(x) \geq \gamma$ for some $\gamma>0)$ and the function $f(u(),) \in^{2} L^{2}(\Omega)$ satisfying the Qipsehitz condition, i.e., there exists a constant $L>0$ such that for each fixed t,

To obtain the weak form, we multiply the PDE by $\varphi \in H_{0}^{1}(\Omega)$ and apply Green's theorem (see [9] page 459) to get

$$
\begin{equation*}
\left(\frac{\partial u}{\partial t}, \varphi\right)_{0}+(a \nabla u, \nabla \varphi)_{0}=(f, \varphi)_{0} \tag{3.2}
\end{equation*}
$$

where $(v, w)_{0}=\int_{\Omega} v w d x$.
We define bilinear form $b(\cdot, \cdot)$ by

$$
b(v, w)=(a(x) \nabla v, \nabla w)_{0}=\int_{\Omega} a(x) \nabla v \cdot \nabla w d x \quad \forall v, w \in H_{0}^{1}(\Omega) .
$$

Lemma 3.1. The bilinear form $b(\cdot, \cdot)$ is a continuous symmetric and coercive on $H_{0}^{1}(\Omega)$.

Proof. First, we will show that a bilinear $b(\cdot, \cdot)$ is a continuous. We need to show that there exists $c>0$ such that $|b(u, v)| \leq c \mid u u\left\|_{1}\right\| v \|_{1}$ for any $u, v \in H_{0}^{1}(\Omega)$.

Let $u, v \in H_{0}^{1}(\Omega)$. Since $a(x) \in L^{\infty}(\Omega)$ in bounded domain Ω, so

$$
\sigma a \leq c\|u\|_{1}\|v\|_{1},
$$

where the last 2 steps follow from the Cauchy-Schwarz inequality and the norm equivalent of $\left\|_{\cdot} \cdot\right\|_{1}$ and $d \cdot \|_{1}$ on $H_{0}^{1}(\Omega)$, (see Theorem 2.6.) Nofe/that the constant $c:=\|a\|_{L \alpha}(\Omega)$ depends only onfunction $a(x)$. 9% ?

Next, we will show that a bilinear form $b(\cdot, \cdot)$ is a symmetric and coercive in $H_{0}^{1}(\Omega)$. It easy to see that $b(\cdot, \cdot)$ is a symmetric by the definition. To show that $b(\cdot, \cdot)$ is coercive in $H_{0}^{1}(\Omega)$. Let $v \in H_{0}^{1}(\Omega)$. Since $a(x)$ is a positive function in $L^{\infty}(\Omega)$, so

$$
a(x) \geq \gamma>0 \text { a.e. } x \in \Omega \text { and }
$$

$$
b(v, v)=\int_{\Omega} a(x) \nabla v \cdot \nabla v d x
$$

$$
\geq \gamma \int_{\Omega} \nabla v \cdot \nabla v d x
$$

$$
=\gamma \int_{\Omega}^{\infty}|\nabla v|^{2} d x
$$

Since semi-norm $|\cdot|_{1}$ and norm $1 / \|_{1}$ on $H_{0}^{1}(\Omega)$ are equivalent, so by Theorem 2.6 with $m=1,|v|_{1} \geq \frac{1}{(1+s)}\|v\|_{1}$ and
$b(v, v) \frac{x}{\sqrt{k} \frac{1}{(1+s)^{2}}}\|v\|_{1}^{2}$.

Hence, $b(\cdot, \cdot)$ is coercive in $H_{0}^{1}(\Omega)$ with coercive constant $\alpha=\frac{\gamma}{(1+s)^{2}}$.

Since $b(\cdot, \cdot)$ is coercive and continuous in $H_{0}^{1}(\Omega)$, the energy norm
is equivalent to $\|\&\|_{1}$-norm by Remark 2.8.
Lemma 3.2, For any $9 \in H_{0}^{1}(\Omega)$ the 9 ex exists a constant $C_{p} \rightarrow 60$ such that

$$
\|\varphi\|_{0} \leq C_{p}\|\varphi\| .
$$

Proof. Let $\varphi \in H_{0}^{1}(\Omega)$. By Theorem 2.5 and Remark 2.8,

$$
\|\varphi\|_{0} \leq s|\varphi|_{1} \leq s\|\varphi\|_{1} \leq s C_{e}\|\varphi\|
$$

where $C_{p}:=s C_{e}$.

In order to approximate weak solution, we assume the uniqueness and existence of weak solution in (3.2). To obtain the discrete problem, we divided this procedure into 2 steps.

1. Discretization on time $(0, T)$.

First, we partition ($0, T$) into N subintervals $\left(t^{n-1}, t^{n}\right), n=1,2, \ldots, N$ where $t^{0}=0$ and $t^{N}=T$.

We define the n-th time-step size by

It follows that

$$
\text { for } n=1,2, \ldots, N
$$

$$
t^{m}=\sum_{n=1}^{m} \tau_{n}, d, \ldots, N
$$

Consider at the time $t=t^{n}$, from the weak form in (3.2)

$$
\left(\frac{\partial \bar{u}}{\partial t}\left(t^{n}\right), \varphi\right)_{0}+b\left(u^{n}, \varphi\right)=\left(f^{n}, \varphi\right)_{0} \forall \varphi \in H_{0}^{1}(\Omega),
$$

Next, we approximate $\frac{\partial u}{\partial t}$ by the backward Euler, namely, $\frac{\partial u}{\partial t} \|_{t=t^{n}} \approx \frac{u^{n}-u^{n-1}}{\tau_{n}}$, so

$$
\begin{align*}
& \left(\frac{u^{n}-u^{n-1}}{\tau_{n}}, \varphi\right)_{0}+b\left(u^{n}, \varphi\right) \approx\left(f^{n}, \varphi\right)_{0} \quad \forall \varphi \in H_{0}^{1}(\Omega) . \tag{3.3}
\end{align*}
$$

This approximation is used in the finite element scheme.
2. Discretization on space Ω.

With a given initial triangulation \mathcal{M}^{0} of Ω, for $n \geq 1$, let $\left\{\mathcal{M}^{n}\right\}$ be a conforming
and shape-regular family of triangulations where \mathcal{M}^{n} is obtained from \mathcal{M}^{n-1}, does not need to be nested. Let V^{n} be a Lagrange finite element space of a continuous piecewise linear functions over the triangulation \mathcal{M}^{n} and $V_{0}^{n}=$ $V^{n} \cap H_{0}^{1}(\Omega)$. Let $\mathcal{P}_{n}: H_{0}^{1}(\Omega) \rightarrow V_{0}^{n}$ be a projection operator for mesh \mathcal{M}^{n} and define $U_{h}^{0}=\mathcal{P}_{0} u_{0}$. With initial information $U_{h}^{n-1} \in V_{0}^{n-1}$, we seek an approximation $U_{h}^{n} \in V_{0}^{n}$ satisfying the discrete weak form

$$
\begin{equation*}
\left(\frac{U_{h}^{n}-U_{h}^{n-1}}{\tau_{n}, v}\right)_{0}+b\left(U_{h}^{n}, v\right)=\left(f_{h}^{n}, v\right)_{0} \quad \forall v \in V_{0}^{n} \tag{3.4}
\end{equation*}
$$

where $f_{h}^{n}:=f\left(U_{h}^{n}\right)$
Note 3.3. We take $U_{h}^{n-1} \in V_{0}^{n-1} \subseteq \bar{H}_{0}^{1}(\Omega)$, a solution from the $(n-1)$-th step to be an initial information for the n-th step in (3.4).

To approximate $u(x, t)$ for $t \in\left(t^{n-1}, t^{n}\right)$, we interpolate linearly between U_{h}^{n-1} and U_{h}^{n}, namely, for each $x \in \Omega$

 which use in the mext Chapter.

จุหาลงกรณ์มหาวิทยาลัย

CHAPTER IV

A POSTERIORI ERROR ESTIMATES

In this Chapter, we derived the upper and local lower bounds for the errors using the standard residual technique. The upper bound gives the bound of the global error in term of the estimator to ensure that the finite element solution is acceptable. The local lower bound gives the relation between the local errors and their estimators with some other quantities.

To obtain a posteriori error estimates, we employed the standard residual technique. We used area-based residualion element $K \in \mathcal{M}^{n}$ and edge-based residual on edge e on the element K to estimate the error on the element K.

We defined the area-based residual for element $K \in \mathcal{M}^{n}$ at fixed $t=t^{n}$ by

$$
B^{n}:=f_{h}^{n}-\frac{U_{h}^{n}-U_{h}^{n-1}}{\tau_{n}}+\nabla \cdot\left(a \nabla U_{h}^{n}\right)
$$

and the edge-based residual cor interior side e e $\in \mathcal{B}^{\frac{\ell}{n}}$ by $\ \uparrow \approx$

Note 4.1. Since U_{h}^{n} is a piecewise linear function, so $\triangle U_{h}^{n}=0$ and

$$
\nabla \cdot\left(a \nabla U_{h}^{n}\right)=\nabla a \cdot \nabla U_{h}^{n}+a \Delta U_{h}^{n}=\nabla a \cdot \nabla U_{h}^{n} .
$$

Note that, we need $\nabla a(x)$ to be well defined, i.e., $a(x)$ is differentiable in K, for each
$K \in \mathcal{M}_{h}$, thus we need to assume in additional that $a(x)$ is piecewise differentiable on Ω, i.e., $\left.a\right|_{K}$ is differentiable for all $K \in \mathcal{M}_{h}$.

We define the local error indicator η_{K}^{n} for any $K \in \mathcal{M}^{n}$ by

$$
\begin{equation*}
\eta_{K}^{n}=\left(h_{K}^{2}\left\|R^{n}\right\|_{0, K}^{2}+\sum_{e \subset \partial K} h_{e}\left\|J_{e}^{n}\right\|_{0, e}^{2}\right)^{\frac{1}{2}} . \tag{4.1}
\end{equation*}
$$

For each element $K \in \mathcal{M}^{n}$, we use η_{K}^{n} as an indieator for refinement or coarsening. To check the error of the approximation on Ω to ensure that the finite element solution is acceptable, we defined the global error estimator on the space for fixed $t=t^{n}$ by

We use $\eta_{\text {space }}^{n}$ as a stopping criteria of the current loop of discrete system at time $t=t^{n}$. To start the next discrete system time $t=t^{n+1}$, we need to find the suitable time step size that is not too large or too small. So we defined error estimators $\eta_{\text {time }}^{n}$ to control time step size by

This $\eta_{\text {time }}^{n}$ is usedfor finding a suitable τ_{n}.

 4.1 Upper Bound

To analyze the upper bound, we measured the error by the energy norm in space and L^{2}-norm in time. First, we estimated the error at a fixed time $t=t^{n}$, and then combined for all time in $(0, T)$.

Note 4.2. Since a constant C in each inequalities can change from line to line, we
will use the same C to indicate a constant for convenience.

Lemma 4.3. For any integer $n \geq 1$,

$$
\begin{aligned}
\left(\frac{\partial\left(u-U_{h}\right)}{\partial t}, \varphi\right)_{0}+ & b\left(u-U_{h}^{n}, \varphi\right) \\
& =\left(f-f_{h}^{n}, \varphi\right)_{0}+\sum_{K \in \mathcal{M}^{n}} \int_{K} R^{n}(\varphi-v) d x+\sum_{e \in \mathcal{B}^{n}} \int_{e} J_{e}^{n}(\varphi-v) d s
\end{aligned}
$$

for all $\varphi \in H_{0}^{1}(\Omega), v \in V_{0}^{n}$.

Proof. Let $\varphi \in H_{0}^{1}(\Omega)$ and $v \in V_{0}^{n}$. From the discrete weak form (3.4)

$$
\begin{aligned}
& \left(\frac{U^{n}-U^{n-1}}{\tau_{n}}, \varphi\right)_{0}+b\left(U_{h}^{n}, \varphi\right) \\
& \quad=\left(\frac{U_{h}^{n}-U_{h}^{n-1}}{\tau_{n}}, \varphi\right)_{0}+b\left(U_{h}^{n}, \varphi\right)+\left(f_{h}^{n}, v\right)_{0}-\left(\frac{U_{h}^{n}-U_{h}^{n-1}}{\tau_{n}}, v\right)_{0}-b\left(U_{h}^{n}, v\right) \\
& \quad=\left(f_{h}^{n}, \varphi\right)_{0}-\left(f_{h}^{n}, \varphi-v\right)_{0}+\left(\frac{U_{h}^{n}-U_{h}^{n-1}}{\tau_{n}}, \varphi-v\right)_{0}+b\left(U_{h}^{n}, \varphi-v\right)
\end{aligned}
$$

We apply Green's theorem to term $\left(U_{h}^{n}, \varphi-v\right)$, on each element $K \in \mathcal{M}^{n}$,

$$
b\left(U_{h}^{n}, \varphi-v\right)=-\sum_{K \in \mathcal{M}^{n}} \int_{K} \nabla\left(a \| U_{h}^{n}\right)(\varphi-v) d x-\sum_{e \in \mathcal{B}^{n}} \int_{e} J_{e}^{n}(\varphi-v) d s
$$

Substituting the above equality to get

$$
\begin{aligned}
& \left(\frac{U^{n}-U^{n-1}}{\tau_{n}}, \varphi\right)_{0} \\
& =\left(f_{h}^{n}, \varphi\right)_{0}-\left(f_{h}^{n}, \varphi-v\right)_{0}+\left(\frac{U_{h}^{n}-U_{h}^{n-1}}{\tau_{n}}, \bar{\varphi}-v\right)_{0}
\end{aligned}
$$

We subtract the meak form (3.2) byethe aboverequation to complete the proof.
Lemma 4.4. For any $n \geq 1$,

$$
b\left(u-U_{h}^{n}, u-U_{h}\right)=\frac{1}{2}\left(\left\|u-U_{h}^{n}\right\|^{2}+\left\|u-U_{h}\right\|^{2}-\left\|U_{h}-U_{h}^{n}\right\|^{2}\right) .
$$

Proof.
$b\left(u-U_{h}^{n}, u-U_{h}\right)$
$=b\left(u-U_{h}^{n}, u-U_{h}^{n}\right)-b\left(u-U_{h}^{n}, U_{h}-U_{h}^{n}\right)$
$=\left\|u-U_{h}^{n}\right\|^{2}-b\left(U_{h}-U_{h}^{n}, U_{h}-U_{h}^{n}\right)+b\left(U_{h}-u, U_{h}-U_{h}^{n}\right)$
$=\left\|u-U_{h}^{n}\right\|^{2}-\| \| U_{h}-U_{h}^{n} \|^{2}+b\left(U_{h}-u, U_{h}-u\right)$ $-b\left(U_{h}-u, U_{h}^{n}-u\right)$
$=\left\|u-U_{h}^{n}\right\|^{2}+\left\|u-U_{h}\right\|^{2}-\left\|U_{h}-U_{h}^{n}\right\|^{2}-b\left(u-U_{h}^{n}, u-U_{h}\right)$

Thus, $b\left(u-U_{h}^{n}, u-U_{h}\right)=\frac{1}{2}\left(\left\|u-U_{h}^{n}\right\|^{2}+\left\|u-U_{h}\right\|^{2}-\left\|U_{h}-U_{h}^{n}\right\|^{2}\right)$.

Now, we use 2 above Lemmas to bound the error at time $t=t^{n}$ in the following Lemma.

Lemma 4.5. For fixed time $t=t^{n}, 2 f e^{2\left(C_{p} L\right)^{2} t}\left\|u-U_{h}\right\|_{0}^{2}$ is an increasing function of then there exists a constant $G+0$ such that

where L is the Lipschitz constant of the function $f(u)$ in (3.1).
Proof. By Clement'sapproximations, there exists the interpolation function \mathcal{I}^{n} : $H_{0}^{1}(\Omega) \rightarrow V_{00}^{n}$ satisfying Clement's.inequalities $(2,1)$ and (2.2)

Applying the Cauchy-Schwarz inequality to Lemma 4.3 and $\operatorname{set} v=\mathcal{I}^{n} \varphi$, we get $\left(\frac{\partial\left(u-U_{h}\right)}{\partial t}, \varphi\right)_{0}+b\left(u-U_{h}^{n}, \varphi\right)$

$$
\begin{aligned}
\leq & \left\|f-f_{h}^{n}\right\|_{0}\|\varphi\|_{0}+\sum_{K \in \mathcal{M}^{n}}\left\|R^{n}\right\|_{0, K}\left\|\varphi-\mathcal{I}^{n} \varphi\right\|_{0, K} \\
& +\sum_{e \in \mathcal{B}^{n}}\left\|J_{e}^{n}\right\|_{0, e}\left\|\varphi-\mathcal{I}^{n} \varphi\right\|_{0, e} .
\end{aligned}
$$

By the Lipschitz continuity of f and Clement's approximations (2.1) and (2.2),

$$
\begin{aligned}
\left(\frac{\partial\left(u-U_{h}\right)}{\partial t},\right. & \varphi)_{0}+b\left(u-U_{h}^{n}, \varphi\right) \\
\leq & L\left\|u-U_{h}^{n}\right\|_{0}\|\varphi\|_{0} \\
& +\sum_{K \in \mathcal{M}^{n}} C h_{K}\left\|R^{n}\right\|_{0, K}\|\nabla \varphi\|_{0, \tilde{\omega}_{K}}+\sum_{e \in \mathcal{B}^{n}} C h_{e}^{\frac{1}{2}}\left\|J_{e}^{n}\right\|_{0, e}\|\nabla \varphi\|_{0, \widetilde{\omega}_{K}} \\
\leq & L\left\|u-U_{h}^{n}\right\|_{0}\|\varphi\|_{0}+C\left(\sum_{K \in \mathcal{M}_{n}^{n}}\left(\eta_{K}^{n}\right)^{2}\right)^{\frac{1}{2}}\|\nabla \varphi\|_{0} \\
\leq & L\left\|u-U_{h}^{n}\right\|_{0}\|\varphi\|_{0}+C \eta_{\text {space }}^{n}\|\varphi\|
\end{aligned}
$$

where the second inequality follows from Cauchy-Schwarz inequality.
Set $\varphi=u-U_{h}$, then use the Lemma 4.4, we get

$$
\begin{align*}
& \frac{d}{d t}\left\|u-U_{h}\right\|_{0}^{2}+\left(\left\|u-U_{h}^{n}\right\|^{2}+\| u\left(\overline{U_{h}} \|^{2}\right)\right. \tag{4.2}\\
& \quad \leq 2 L\left\|u-U_{h}^{n}\right\|_{0} \cdot\left\|u-\overline{U_{h}}\right\|_{0}+C \eta_{s p a c e}^{n}\left\|u-U_{h}\right\|+\left\|U_{h}-U_{h}^{n}\right\|^{2}
\end{align*}
$$

By the Young's inequality, namely, for any $a, b>0$

we separate terms $2 L\left\|u-U_{h}\right\|_{0}$ from $\left\|u-U_{h}^{n}\right\|_{0}$ and the terms $\left\|u-U_{h}\right\|$ from $\eta_{\text {space }}^{n}$, by

Note, in (4.3), we used $\varepsilon=2$ and in (4.4) we used $\varepsilon=\frac{1}{C_{p}^{2}}$.
By Lemma 3.2, so $\frac{\left\|u-U_{n}^{n}\right\|_{0}^{2}}{2 C_{p}^{2}} \leq \frac{\left\|u-U_{n}^{n}\right\|^{2}}{2}$.
Substituting them in main inequality and cancelling the term $\left\|u-U_{h}\right\|^{2}$ in both sides,
we get

$$
\frac{d}{d t}\left\|u-U_{h}\right\|_{0}^{2}+\frac{1}{2}\left\|u-U_{h}^{n}\right\|^{2} \leq 2\left(C_{p} L\right)^{2}\left\|u-U_{h}\right\|_{0}^{2}+C_{1}\left(\eta_{\text {space }}^{n}\right)^{2}+\left\|U_{h}-U_{h}^{n}\right\|^{2}
$$

Since $0 \leq \frac{d}{d t}\left(e^{-2\left(C_{p} L\right)^{2} t}\left\|u-U_{h}\right\|_{0}^{2}\right)$ and

$$
\begin{aligned}
\frac{d}{d t}\left(e^{-2\left(C_{p} L\right)^{2} t}\left\|u-U_{h}\right\|_{0}^{2}\right) & \leq e^{2}\left(C_{p} L\right)^{2} t \frac{d}{d t}\left(e^{-2\left(C_{p} L\right)^{2} t}\left\|u-U_{h}\right\|_{0}^{2}\right) \\
& =\frac{d}{d t}\left\|u=U_{h}\right\|_{0}^{2}-2\left(C_{p} L\right)^{2}\left\|u-U_{h}\right\|_{0}^{2},
\end{aligned}
$$

then we obtain the result

$$
\frac{d}{d t}\left(e^{-2\left(C_{p} L\right)^{2} t}\left\|u-U_{h}\right\|_{0}^{2}\right)+\frac{1}{2}\left\|\frac{u-U_{h}^{n} \|^{2}}{} \leq C_{1}\left(\eta_{\text {space }}^{n}\right)^{2}+\right\| U_{h}-U_{h}^{n} \|^{2}
$$

Corollary 4.6. If $L<\frac{1}{\sqrt{2 C_{p}^{2}}}$, then

$$
\frac{d}{d t}\left\|u-U_{n}\right\|_{0}^{2}+\frac{1}{2}\left\|u-U_{n}^{n}\right\|^{2} \leq C_{2}\left(\eta_{\text {space }}^{n}\right)^{2}-\left\|U_{h}-U_{h}^{n}\right\|^{2}
$$

Proof. From the inequality (4.2) in the proof of Lemma (4.5), we have

$$
\begin{aligned}
& \leq 2 L\left\|u-U_{h}^{n}\right\|_{0} \cdot\left\|u \notin U_{h}\right\|_{0}+C \eta_{\text {space }}^{n}\left\|u-U_{h}\right\| \quad \text { t}\left\|U_{h}-U_{h}^{n}\right\|^{2} .
\end{aligned}
$$

We apply foungs inequality tothe first 2 terms on the right side by

$$
\begin{gather*}
2 L\left\|u-U_{h}^{n}\right\|_{0} \cdot\left\|u-U_{h}\right\|_{0} \leq \frac{L^{2}}{2 \varepsilon_{1}}\left\|u-U_{h}\right\|_{0}^{2}+2 \varepsilon_{1}\left\|u-U_{h}^{n}\right\|_{0}^{2} \tag{4.5}\\
C \eta_{\text {space }}^{n}\left\|u-U_{h}\right\| \leq \frac{C}{2 \varepsilon_{2}}\left(\eta_{\text {space }}^{n}\right)^{2}+\frac{\varepsilon_{2} C}{2}\left\|u-U_{h}\right\|^{2} \tag{4.6}
\end{gather*}
$$

where we choose ε_{1} and ε_{2} such that $\frac{\left(C_{p} L\right)^{2}}{2 \varepsilon_{1}}+\frac{C \varepsilon_{2}}{2} \leq 1$. This implies that we have to
choose

$$
\varepsilon_{1}>\frac{\left(C_{p} L\right)^{2}}{2}
$$

By (4.5), (4.6) and Lemma 3.2 we get,

$$
\frac{d}{d t}\left\|u-U_{h}\right\|_{0}^{2}+\left\|u-U_{h}^{n}\right\|^{2} \leq 2 C_{p}^{2} \varepsilon_{1}\left\|u-U_{h}^{n}\right\|^{2}+\frac{C}{2 \varepsilon_{2}}\left(\eta_{\text {space }}^{n}\right)^{2}+\left\|U_{h}-U_{h}^{n}\right\|^{2}
$$

Since $L<\frac{1}{\sqrt{2} C_{p}^{2}}$, so $\frac{\left(C_{p} L\right)^{2}}{2} \leq \frac{1}{4 C_{p}^{2}}$, and by choosing $\varepsilon_{1}=\frac{1}{4 C_{p}^{2}}$, then

$$
\frac{d}{d t}\left\|u-U_{h}\right\|_{0}^{2}+\frac{1}{2}\left\|u-U_{h}^{n}\right\|^{2} \leq C_{2}\left(\eta_{s p a c e}^{n}\right)^{2}+\left\|U_{h}-U_{h}^{n}\right\|^{2}
$$

Theorem 4.7. (Upper Bound) For any integer $1 \leq m \leq N$, under the assumption of Lemma 4.5, there exists a constant $C_{1} \geqslant 0$ depending only on the shape constant κ of meshes \mathcal{M}^{n}, the coefficient $\bar{a}(x)$, Lipschitz constant L and domain Ω such that the following error estimate holds

$$
\begin{aligned}
& \left.e^{-2\left(C_{p} L\right)^{2} t^{m}}\left\|u^{m}-\bar{y}_{h}^{m}\right\|_{0}^{2}+\frac{1}{2} \sum_{n=1}^{m} \int_{t^{n-1}}^{t^{n}}\left\|u-U_{h}^{n}\right\|^{2} d t\right]
\end{aligned}
$$

Proof. From the Lemmas 4.5 we eambined the errors from time $t=0$ to time $t=t^{n}$. Integrating to collect the error from $t=0$ to $t=t^{m}$, we get

$$
\begin{aligned}
e^{-2\left(C_{p} L\right)^{2} t^{m}}\left\|u^{m}-U_{h}^{m}\right\|_{0}^{2} & +\frac{1}{2} \sum_{n=1}^{m} \int_{t^{n-1}}^{t^{n}}\left\|u-U_{h}^{n}\right\|^{2} d t \\
\leq & \left\|u_{0}-U_{h}^{0}\right\|_{0}^{2}+\sum_{n=1}^{m} \int_{t^{n-1}}^{t^{n}}\left\|U_{h}-U_{h}^{n}\right\|^{2} d t+C_{1} \sum_{n=1}^{m} \tau_{n}\left(\eta_{\text {space }}^{n}\right)^{2} .
\end{aligned}
$$

Note that $\int_{t^{n-1}}^{t^{n}}\left\|U_{h}-U_{h}^{n}\right\|^{2} d t=\int_{t^{n-1}}^{t^{n}}\left(\frac{t-t^{n}}{\tau_{n}}\right)^{2}\left\|U_{h}^{n}-U_{h}^{n-1}\right\|^{2} d t=\tau_{n}\left(\eta_{\text {time }}^{n}\right)^{2}$.

Corollary 4.8. If we assume $L<\frac{1}{\sqrt{2 C_{p}^{2}}}$, we obtain a sharper estimate,(without the assumption of Lemma 4.5)
$\left\|u^{m}-U_{h}^{m}\right\|_{0}^{2}+\frac{1}{2} \sum_{n=1}^{m} \int_{t^{n-1}}^{t^{n}}\left\|u-U_{h}^{n}\right\|^{2} d t \leq\left\|u_{0}-U_{h}^{0}\right\|_{0}^{2}+\sum_{n=1}^{m} \tau_{n}\left(\eta_{\text {time }}^{n}\right)^{2}+C_{2} \sum_{n=1}^{m} \tau_{n}\left(\eta_{\text {space }}^{n}\right)^{2}$.
Proof. We integrate Corollary 4.6 from $t=0$ to $t=t^{m}$ to get the result.

4.2 Local Lower Bound

The local lower bound is used for improving the finite element solutions at the fixed time $t=t^{n}$, with the given initial data as the solution from the previous time step $U_{h}^{n-1} \in V_{0}^{n-1}$. To compare the error, we consider $U_{*}^{n} \in H_{0}^{1}(\Omega)$, a solution of the auxiliary problem

$$
\begin{equation*}
\left(\frac{U_{*}^{n}-U_{h}^{n-1}}{\tau_{n}}, \varphi\right)_{0}+b\left(U_{*}^{n}, \varphi\right)=\left(f_{*}^{n}, \varphi\right)_{0} \bigcup \forall \varphi \in H_{0}^{1}(\Omega), \tag{4.7}
\end{equation*}
$$

Note 4.9. Therequation in (4.7) is the corresponding oweak form for the discrete problem (3,4) where $H_{0}^{1}(\Omega)$ is approximated by V_{0}^{n}.

Again, we measured the local error $U_{*}^{n}-U_{h}^{n}$ using the L^{2}-norm. Since error indicators η_{K}^{n} consist of 2 parts, the area-based and edge-based residuals, to bound the error indicators, we estimated the two residuals using the idea of element and edge bubble functions.

For convenience, we denote the square of error on element $K \in \mathcal{M}^{n}$ by

$$
\operatorname{err}_{n}^{2}(K)=\frac{h_{K}^{2} \| U_{*}^{n}-\left.U_{h}^{n}\right|_{0, K} ^{2}}{\tau_{n}^{2}}+\left|U_{*}^{n}-U_{h}^{n}\right|_{1, K}^{2} .
$$

Lemma 4.10. (Error Representation) For any $\varphi \in H_{0}^{1}(\Omega)$,

$$
b\left(U_{*}^{n}-U_{h}^{n}, \varphi\right)=\left(f_{*}^{n}-f_{h}^{n}, \varphi\right)_{0}-\left(\frac{U_{*}^{n}-U_{h}^{n}}{\tau_{n}}, \varphi\right)_{0}+\sum_{K \in \mathcal{M}^{n}} \int_{K} R^{n} \varphi d x+\sum_{e \in \mathcal{B}^{n}} \int_{e} J_{e}^{n} \varphi d s
$$

Proof. Let $\varphi \in H_{0}^{1}(\Omega)$.

$$
b\left(U_{*}^{n}-U_{h}^{n}, \varphi\right)
$$

$$
=b\left(U_{*}^{n}, \varphi\right)-b\left(U_{h}^{n} ; \varphi\right)
$$

$$
=\left[\left(f_{*}^{n}, \varphi\right)_{0}-\frac{\left(U^{n}-U_{n}^{n-1}\right.}{)_{\tau_{n}}(\nu), \varphi\right)_{0}}\right]+\sum_{K \in \mathcal{M}^{n}} \int_{K} \nabla \cdot\left(a \nabla U_{h}^{n}\right) \varphi d x
$$

$$
+\sum_{e \in \mathcal{B}^{n}} \int_{e} J_{e}^{n} \varphi d s
$$

$$
=\left(f_{*}^{n}-f_{h}^{n}, \varphi\right)
$$

4.2.1 Estimate of R^{n}

First, let $\mathcal{P}_{K}: L^{2}(K) \rightarrow \mathbb{P}(K)$ be a L^{2}-projection to a space of polynomials of degree $\leq l$ on K.
 $c_{1}, c_{2}>0$ such that

$$
\begin{aligned}
h_{K}^{2}\left\|\mathcal{P}_{K} R^{n}\right\|_{0, K}^{2} \leq & c_{1}\left(h_{K}^{2}\left\|\mathcal{P}_{K} R^{n}-R^{n}\right\|_{0, K}^{2}+h_{K}^{2}\left\|f_{h}^{n}-f_{*}^{n}\right\|_{0, K}^{2}\right) \\
& +c_{2} \operatorname{err} r_{n}^{2}(K) .
\end{aligned}
$$

Proof. Let $K \in \mathcal{M}^{n}$ and ψ_{K} be the element bubble function for the element K. Define $w=\psi_{K} \cdot \mathcal{P}_{K} R^{n}$. Note that $w \in \mathbb{P}_{l}(K)$ since ψ_{K} and $\mathcal{P}_{K} R^{n}$ are polynomials.

By proposition of bubble function, so

$$
C^{-1}\left\|\mathcal{P}_{K} R^{n}\right\|_{0, K}^{2} \leq\left\|\psi_{K}^{\frac{1}{2}} \mathcal{P}_{K} R^{n}\right\|_{0, K}^{2}=\left(\mathcal{P}_{K} R^{n}, w\right)_{0, K}
$$

Since $\left.w\right|_{\partial K}=0$, we can extend w to the full domain Ω by letting $w=0$ outside element K, so that $w \in H_{0}^{1}(\Omega)$.

Thus, $\left(\mathcal{P}_{K} R^{n}, w\right)_{0}=\left(\mathcal{P}_{K} R^{n}, w\right)_{0, K}$.
By the Lemma 4.10, we $\operatorname{set} \varphi \equiv w$, so
and
$\left(\mathcal{P}_{K} R^{n}, w\right)_{0, K}$

$$
\begin{aligned}
= & \left(\mathcal{P}_{K} R^{n}-R^{n}, w\right)_{0}, K-\left(R_{R}^{n}, w\right)_{0, K} \\
= & \left(\mathcal{P}_{K} R^{n}-R^{n}, w\right)_{0, K}+\left(f_{h}^{n}-f_{*}^{n}, w\right)_{0, K} \\
& +\left(\frac{U_{*}^{n}-U_{h}^{n}}{\tau_{n}}, w\right)_{0, K}+\left(a \nabla\left(U_{*}^{n}-U_{h}^{n}\right), \nabla w\right)_{0, K}
\end{aligned}
$$

Thus, we get the inequality

$$
\begin{aligned}
& C^{-1}\left\|\mathcal{P}_{K} R^{n}\right\|_{0, K}^{2} \leq\left(\mathcal{P}_{K} R^{n}-R^{n}, w\right)_{0, K}+\left(f_{h}^{n}-f_{*}^{n}, w\right)_{0, K}
\end{aligned}
$$

Then we apply Cauchy-Schwarz inequality to the above ineqtiality.
By proposition of the bubble function and $w \in \mathbb{T}_{l}$, SO $\|\nabla w\|_{0, K} \leq c h_{K}^{-1}\|w\|_{0, K}$ and $\|w\|_{0, K} \leq\left\|\mathcal{P}_{K} R^{n}\right\|_{0, K}$.

Apply Cauchy-Schwarz and get

$$
\begin{aligned}
\left\|\mathcal{P}_{K} R^{n}\right\|_{0, K} \leq & C\left(\left\|\mathcal{P}_{K} R^{n}-R^{n}\right\|_{0, K}+\left\|f_{h}^{n}-f_{*}^{n}\right\|_{0, K}\right) \\
& +C\left(\left\|\frac{U_{*}^{n}-U_{h}^{n}}{\tau_{n}}\right\|_{0, K}+h_{K}^{-1}\left|U_{*}^{n}-U_{h}^{n}\right|_{1, K}\right) .
\end{aligned}
$$

We multiply the inequality by h_{K} and get

$$
\begin{aligned}
h_{K}| | \mathcal{P}_{K} R^{n} \|_{0, K} \leq C & \left(h_{K}| | \mathcal{P}_{K} R^{n}-R^{n}\left\|_{0, K}+h_{K}| | f_{h}^{n}-f_{*}^{n}\right\|_{0, K}\right) \\
& +C\left(h_{K}\left|\frac{U_{*}^{n}-U_{h}^{n}}{\tau_{n}} \|_{0, K}+\left|U_{*}^{n}-U_{h}^{n}\right|_{1, K}\right) .\right.
\end{aligned}
$$

From the fact, if $a, b, c \geq 0$ and $a \leq b+c$ then $a^{2} \leq 2\left(b^{2}+c^{2}\right)$. We square the both sides of the inequality to get

$$
\begin{array}{r}
h_{K}^{2}\left\|\mathcal{P}_{K} R^{n}\right\|_{0, K}^{2} \leq C\left(h_{K}^{2}\left\|\mid \mathcal{P}_{K} R^{n}-R^{n}\right\|_{0, K}^{2}+h_{K}^{2}\left\|f_{h}^{n}-f_{*}^{n}\right\|_{0, K}^{2}\right) \\
+C\left(h_{\tau_{n}^{2}}^{2}\left\|U_{*}^{n}-U_{h}^{n}\right\|_{0, K}^{2}+\left|U_{*}^{n}-U_{h}^{n}\right|_{1, K}^{2}\right) .
\end{array}
$$

Now, by definition of $\operatorname{err}_{n}^{2}(K)$, we complete the proof.

Lemma 4.12. For $n \geq 1$ and $K \in \mathcal{M}^{n}$, we have the estimate, there exist constants $c_{3}, c_{4}>0$ such that

$$
h_{K}^{2}\left\|R^{n}\right\|_{0, K}^{2} \leq c_{3}\left(h_{K}^{2}\left\|\mathcal{P}_{K} R^{n}-R^{n}\right\|_{0, K}^{2}+h_{K}^{2}\left\|f_{h}^{n}-f_{*}^{n}\right\|_{0, K}^{2}\right)
$$

Proof. By triangle inequality,

We multiply the anequality fy hid andsquare on ofoth side toget

$$
h_{K}^{2}\left\|R^{n}\right\|_{0, K}^{2} \leq 2\left(h_{K}^{2}\left\|\mathcal{P}_{K} R^{n}\right\|_{0, K}^{2}+h_{K}^{2}\left\|R^{n}-\mathcal{P}_{K} R^{n}\right\|_{0, K}^{2}\right) .
$$

Apply the Lemma 4.11 and complete the proof.

4.2.2 Estimate of J_{e}^{n}

Let $\mathcal{P}_{e}: L^{2}(e) \rightarrow \mathbb{P}_{l}(e)$ be a L^{2}-projection onto the space of polynomials on e of degree $\leq l$.

Lemma 4.13. For any $n \geq 1$ and $e \in \mathcal{B}^{n}$, the $h_{e}\left\|\mathcal{P}_{e} J_{e}^{n}\right\|_{0, e}^{2}$ can be bounded by

$$
h_{e}\left\|\mathcal{P}_{e} J_{e}^{n}\right\|_{0, e}^{2} \leq c_{5} h_{e}\left\|_{\mathcal{P}_{e}} J_{e}^{n}-J_{e}^{n}\right\|_{0, e}+c_{6} \sum_{K^{\prime} c \omega_{e}} e r r_{n}^{2}\left(K^{\prime}\right)
$$

Proof. Let $e \in \mathcal{B}^{n}$ and ψ_{e} be the bubble function for the edge e.
Since J_{e}^{n} is a function define on the edge e, we can extend J_{e}^{n} constantly along the normal of e to ω_{e}.

Define $w=\psi_{e} \cdot \mathcal{P}_{e} J_{e}^{n}$. Since $\operatorname{supp} w=\omega_{e}$, we can extend w by $w=0$ outside ω_{e}, so that $w \in H_{0}^{1}(\Omega)$. Note that $w \in \mathbb{P}_{l}\left(\omega_{e}\right)$ since ψ_{e} and $\mathcal{P}_{e} J_{e}^{n}$ are both polynomials.

By proposition of bribble function for the edge e,

$$
\begin{aligned}
\left(J_{e}^{n}, w\right)_{0, e}= & \left(f_{*}^{n}-f_{h}^{n}, w\right)_{0, \omega_{e}}+\left(R^{n}, w\right)_{0, \omega_{e}} \\
& -\left(\frac{U_{*}^{n}-U_{h}^{n}}{\tau_{n}}, w\right)_{0, \omega_{e}}-\left(a \nabla\left(U_{*}^{n}-U_{h}^{n}\right), \nabla w\right)_{0, \omega_{e}},
\end{aligned}
$$

$$
\begin{aligned}
C^{-1}\left\|\mathcal{P}_{e} J_{e}^{n}\right\|_{0, e}^{2} \leq & \left(\mathcal{P}_{e} J_{e}^{n}, w\right)_{0, e} \\
= & \left(\mathcal{P}_{e} J_{e}^{n}-J_{e}^{n}, w\right)_{0, e}+\left(J_{e}^{n}, w\right)_{0, e} \\
= & \left(\mathcal{P}_{e} J_{e}^{n}-J_{e}^{n}, w\right)_{0, e}+\left(f_{*}^{n}-f_{h}^{n}, w\right)_{0, \omega_{e}}+\left(R^{n}, w\right)_{0, \omega_{e}} \\
& -\left(\frac{U_{*}^{n}-U_{h}^{n}}{\tau_{n}}, w\right)_{0, \omega_{e}}-\left(a \nabla\left(U_{*}^{n}-U_{h}^{n}\right), \nabla w\right)_{0, \omega_{e}}
\end{aligned}
$$

We apply Cauchy-Schwarz inequality and proposition of bubble function such that
then

$$
\begin{aligned}
& \left\|\mathcal{P}_{e} J_{e}^{n}\right\|_{0, e} \leq C\left\|\mathcal{P}_{e} J_{e}^{n}-J_{e}^{n}\right\|_{0, e} \mathbb{C} \subset C \sum_{K^{\prime} \in \omega_{e}} h_{K^{\prime}}^{\frac{1}{2}}\left(\left\|f_{*}^{n}-f_{h}^{n}\right\|_{0, K^{\prime}}+\left\|R^{n}\right\|_{0, K^{\prime}}\right) \\
& +C \sum_{K^{\prime} \subset \omega_{e}}\left(\frac{h_{K^{\prime}, 1}^{\frac{U_{n}^{n}-U_{n}^{n}}{\tau_{n}}} \|_{0, K^{\prime}}}{}+h_{e}^{-\frac{1}{2}}\left|U_{*}^{n}-U_{h}^{n}\right|_{1, K^{\prime}}\right) .
\end{aligned}
$$

We multiply the above inequality by $h_{e}^{\frac{1}{2}}$ and get

$$
h_{e}^{\frac{1}{2}}\left\|\mathcal{P}_{e} J_{e}^{n}\right\|_{0, e} \leq C h_{e}^{2}\left\|\mathcal{P}_{\underline{e}} J_{e}^{n}-J_{e}^{n}\right\|_{0, e}+C \sum h_{K^{\prime}}\left(\left\|f_{*}^{n}-f_{h}^{n}\right\|_{0, K^{\prime}}+\left\|R^{n}\right\|_{0, K^{\prime}}\right)
$$

Square the both sides of inequatity and get 9 O 9 ?

$$
\begin{aligned}
h_{e}\left\|\mathcal{P}_{e} J_{e}^{n}\right\|_{0, e}^{2} \leq & C h_{e}\left\|\mathcal{P}_{e} J_{e}^{n}-J_{e}^{n}\right\|_{0, e}^{2}+C \sum_{K^{\prime} \subset \omega_{e}} h_{K^{\prime}}^{2}\left(\left\|f_{*}^{n}-f_{h}^{n}\right\|_{0, K^{\prime}}^{2}+\left\|R^{n}\right\|_{0, K^{\prime}}^{2}\right) \\
& +C \sum_{K^{\prime} \subset \omega_{e}}\left(\frac{h_{e}^{2}}{\tau_{n}^{2}}\left\|U_{*}^{n}-U_{h}^{n}\right\|_{0, K^{\prime}}^{2}+\left|U_{*}^{n}-U_{h}^{n}\right|_{1, K^{\prime}}^{2}\right) .
\end{aligned}
$$

By definition of $\operatorname{err}{ }_{n}^{2}\left(K^{\prime}\right)$, we complete the proof.

Lemma 4.14. For any $n \geq 1$ and $e \in \mathcal{B}^{n}$, the $h_{e}\left\|J_{e}^{n}\right\|_{0, e}^{2}$ can be bounded by

$$
\begin{aligned}
h_{e}\left\|J_{e}^{n}\right\|_{0, e}^{2} \leq & c_{8} h_{e}\left\|\mathcal{P}_{e} J_{e}^{n}-J_{e}^{n}\right\|_{0, e}+c_{9} \sum_{K^{\prime} \subset \omega_{e}} e r r_{n}^{2}\left(K^{\prime}\right) \\
& +c_{10} \sum_{K^{\prime} \subset \omega_{e}}\left(h_{K^{\prime}}^{2}\left\|R^{n}\right\|_{0, K^{\prime}}^{2}+h_{K^{\prime}}^{2}\left\|f_{h}^{n}-f_{*}^{n}\right\|_{0, K}^{2}\right) .
\end{aligned}
$$

Proof. By triangle inequality, so

$$
\left\|J_{e}^{n}\right\|_{0, e}=\left\|\mathcal{P}_{e} J_{e}^{n}+\left(J_{e}^{n}-\mathcal{P}_{e} J_{e}^{n}\right)\right\|_{0, e} \leq\left\|\mathcal{P}_{e} J_{e}^{n}\right\|_{0, e}+\left\|J_{e}^{n}-\mathcal{P}_{e} J_{e}^{n}\right\|_{0, e}
$$

We multiply the inequality by $h_{e}^{\frac{2}{2}}$ and square on both sides to get

$$
h_{e}\left\|J_{e}^{n}\right\|_{0, e}^{2} \leq 2\left(h_{e}\left\|\mathcal{P}_{e} J_{e}^{n}\right\|_{0, K}^{2}+h_{e}\left\|J_{e}^{n}-\mathcal{P}_{e} J_{e}^{n}\right\|_{0, K}^{2}\right) .
$$

Apply the Lemma 4.13 and complete the proof.

4.2.3 Estimate of the error indicator η_{K}^{n}

Define an oscillation on $K \in \mathcal{M}^{n}$ by

$$
\begin{aligned}
& \operatorname{osc}^{2}(K)=h_{K}^{2}\left\|\mathcal{P}_{K} R^{n}-R^{n}\right\|_{0, K}^{2}+\sum_{\text {a }} h_{e}\left\|\mathcal{P}_{e} J_{e}^{n}-J_{e}^{n}\right\|_{0, e}^{2}
\end{aligned}
$$

and

Theorem 4.15. (Local Lower Bound) There exist constants $\hat{C}_{1}, \hat{C}_{2}>0$ depending on
Lipschitz constant L, such that for any $K \in \mathcal{M}^{n}$, the following estimate holds

$$
\left(\eta_{K}\right)^{2} \leq \hat{C}_{1} o s c^{2}\left(\omega_{K}\right)+\hat{C}_{2} \sum_{K^{\prime} \subset \omega_{K}} e r r_{n}^{2}\left(K^{\prime}\right)
$$

Proof. By definition of η_{K}^{n} in (4.1) and Lemma 4.14, we get

$$
\begin{aligned}
\left(\eta_{K}^{n}\right)^{2} \leq & h_{K}^{2}\left\|R^{n}\right\|_{0, K}^{2}+C \sum_{e \subset \partial K}\left\{h_{e}\left\|\mathcal{P}_{e} J_{e}^{n}-J_{e}^{n}\right\|_{0, e}^{2}\right. \\
& \left.+\sum_{K^{\prime} \subset \omega_{e}}\left[h_{K^{\prime}}^{2}\left(\left\|f_{*}^{n}-f_{h}^{n}\right\|_{0, K^{\prime}}^{2}+\left\|R^{n}\right\|_{0, K^{\prime}}^{2}\right)+e r r_{n}^{2}\left(K^{\prime}\right)\right]\right\}
\end{aligned}
$$

Since $\omega_{K}=\bigcup_{e \subset \partial K} \omega_{e}$,

By Lemma 4.12 and Lipschitz condition of function f, we get
 ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

CHAPTER V

ADAPTIVE FINITE ELEMENT ALGORITHM

In this Chapter, we designed an adaptive algorithm for finite element methods for obtaining sequences of approximate solution $\left\{U_{h}^{n}\right\}$. The algorithm in this Chapter is designed based on the a posterioni error estimations obtained in the previous Chapter.

5.1 Time Error Control

Let $T O L_{\text {time }}$ be the tolerance for the error control on time discretization. We control the error on time discretization aceording to

We used equi-distribute technique (equally distribution of errors on all elements) in order to control thentime éror dudicators $\eta_{\text {time }}^{\sim}$ by checking \approx
for all $n=1,2, \ldots, m$, to guarantee (5.1).
Given $\delta_{1} \in(0,1)$ and $\delta_{2}>1$, we use δ_{1} to shorten the time-step size τ_{n} in order to reduce the time error indicator, and if the error indicator is too small, we expand the time-step size with δ_{2} in order to improve the performance.

Typically, the smaller time-step size, the more accuracy we get. But if the time-
step size is too small, it will reduce the performance of the program, namely, more loops in the program. So we may control the time error indicator in such a way that

$$
\begin{equation*}
\frac{\theta_{\text {time }} T O L_{\text {time }}}{T} \leq\left(\eta_{\text {time }}^{n}\right)^{2} \leq \frac{T O L_{\text {time }}}{T} \tag{5.3}
\end{equation*}
$$

where $\theta_{\text {time }} \in(0,1)$ is a chosen parameter. (Typically, the value of $\theta_{\text {time }}$ is 0.5)
The following is an algorithm for obtaining a suitable time-step size τ_{n} with given parameters $T O L_{\text {time }}, \delta_{1}, \delta_{2}$ and τ_{n-1}, where $\delta_{1} \delta_{2}<1$.

Time Step Control Algorithm

1. Set $\tau_{n}=\tau_{n-1}$.
2. Solve for U_{h}^{n} and compute the error time indicators $\eta_{\text {time }}^{n}$.
3. If (5.3) is satisfy, then exit the loop,
else go to the next step.
4. If $\left(\eta_{\text {time }}^{n}\right)^{2}>\frac{T O L_{\text {time }}}{T T}$ do $\tau_{n}=\delta_{1} \tau_{n}$ and go to step 2,
else $\tau_{n}=\delta_{2} \tau_{n}$ and go to step 2.

Remark 5.1. Thiscalgorithm gyquantees thato(5.3) is-satisfied in finite steps.

We balance between accuracy and performance by the controlling parameter
$\theta_{\text {space }} \in(0,1)$ by checking the condition

$$
\begin{equation*}
\frac{\theta_{\text {space }} T O L_{\text {space }}}{T} \leq\left(\eta_{\text {space }}^{n}\right)^{2} \leq \frac{T O L_{\text {space }}}{T} . \tag{5.4}
\end{equation*}
$$

With mesh \mathcal{M}^{n}, we refine the mesh in order to increase accuracy and coarsen the mesh for maintaining performance. Let $T O L_{\text {space }}$ be the tolerance for the space error control,

Adaptive Finite Element Algorithm

1. Set $\mathcal{M}^{n}=\mathcal{M}^{n-1}$.
2. Find the suitable τ_{n} using Time Step Control Algorithm.

Compute the error indicators η_{K}^{n} and estimator $\eta_{\text {space }}^{n}$.
3. $t^{n}=t^{n-1}+\tau_{n}$.
4. While (5.4) is not satisfied do
(a) Refine/Coarsen the meshy \mathcal{M}^{n} to obtain a new \mathcal{M}^{n}.
(b) Solve for U_{h}^{n}.
(c) Compute the error indicators η_{K}^{n} for all $K \in \mathcal{M}^{n}$.
5. Check τ_{n}. If $\eta_{t i m e}^{n}$ is satisfied then exited this loop, else go to step 2.

From the algorithm, we will be looping in steps 2 to 4 until the error estimates are in the ranges we set, then exit the loops instep $5 \cdot \int \cap \bigcap \widetilde{\sigma}$

Refine/Coarsen Algorithm

 $K \in \mathcal{M}^{n}$, we sort the element by value of error indicator. We refine the first $\theta_{\text {refine }} N$ elements and coarsen the last $\theta_{\text {coarsen }} N$ elements to obtain a new mesh where N is the total number of element in \mathcal{M}^{n}.

CHAPTER VI

CONCLUSION

In this work, we used standard residual technique to derive a posteriori error estimate for semi-linear parabolic PDEs. From the results in upper and local lower bound, we see the true errors that occur in the system come from the approximation of the time derivative, from the finite element space and from the nonlinear function f. We control the errors by using adaptive technique on time and space. But the error from the nonlinear function, we use Lipschitz condition in order to absorb this error to the error in the system.

From the upper bound, it shows that we can control the total error by controlling the error indicators and estimators from time and space. The local lower bound shows that the local error can be controlled by controlling the loeal error indicators; we can reduce the local errors by refining elements with high error indicators, assuming that the oscillation and error fromnenlinear funetion f aresmall. We finally use the result from the upper and locallower bounds to design an adaptive algorithm to control the error in the system pased on timerand space error indicatdrs. 6

REFERENCES

[1] M. Ainsworth and J.T. Oden, A posteriori error estimation in finite element analysis, Wiley-Interscience, New York, 2000.
[2] I. Babuska, W.C. Rheinboldt, A posteriori error estimates for the finite element method, Int. J. Numer. Meth. Engre. 12(1978), 1597-1615.
[3] D. Braess, Finite elements, Cambridge University Press, New York, 2001.
[4] J. M. Cascon, Ch. Kreuzer, R. H. Nochetto, and K. G. Siebert, Quasi-optimal convergence rate for an adaptive finite element method, SIAM J. Numer. Anal. 46 (2008), no. 5, 2524-2550.
[5] Z. Chen and F. Jia, An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems, Math. Comp.
[6] Ph. Clement, Approximation by finite element functions using local regularization, RAIRO Anal. Numer. 9(1975), 77-84.
[7] L. Diening and ch. Kreuzer, Convergence of an adaptive finite element method for the p-taplaciancequation SiAM S. Namer Anab 46(2008) pro. 2, 614-638.
[8] W. Dorfler, A convergence adaptive algorithm for Poisson's equation, SIAM J. Numer. Anal. 33,1106-1124(1996).
[9] E. Kreyszig, Advanced Engineering Mathematics, John Wiley \& Sons, Inc., Singapore, 2006.
[10] K. Mekchay and R.H. Nochetto, Convergence of adaptive finite element methods for general second order linear elliptic PDEs, SIAM J. Numer. Anal. 43, 18031827(2005).
[11] P. Morin, R. H. Nochetto, and K. G. Siebert, Convergence of adaptive finite element methods, SIAM Review 44(2002), 631-658.
[12] P. Morin, R. H. Nochetto, and K. G. Siebert, Data oscillation and convergence of adaptive FEM, SIAM J. Numer. Anal. 38 (2000), 466-488.
[13] W. Rudin, Real \& complex analysis, Tata McGraw-Hill, Delhi, 2006.
[14] R. Verfurth, A review of a posteriori error estimation and adaptive meshrefinement techniques, Ady. Numer. Math., John Wiley, Chichester, UK, 1996.

VITA

Name Mr. Rawin Youngnoi

Date of Birth 25 December 1983

Place of Birth Bangkok, Thailand

Education B.Eng. (Computer Engineering),

