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CHAPTER I 
INTRODUCTION 

Background and rationale 

Oral cancer is an aggressive disease occurs in oral cavity and causes 

morbidity and mortality. The malignant cells may originate from any normal cells in the 

mouth, including epithelium, connective tissue, cartilage, bone, muscle, salivary gland, 

nerve, and vascular system. They can invade nearby structures and metastasis to 

distant organs. The treatments of the progressive stage diseases are still complicated 

and leave miserable disabilities. Many patients have poor quality of life due to difficulties 

in eating, chewing, swallowing, speaking and unaesthetic looking. Moreover, second 

primary tumors or recurrence were reported frequently. The 5-year survival rate is still 

low, approximately 50% in early stage and less than 20% in late stage. Early detection 

and diagnosis are very important ways for better results of the treatment and lesser the 

physical and mental disabilities.  The etiology and pathological mechanisms of this 

disease are still unclear; however many evidences support the roles of environment and 

genes. Smoking, alcohol drinking and betel chewing are well-documented 

environmental factors causing higher risk to develop oral cancers. The genetic 

aberrations in oral cancers include the changes in genetic and epigenetic mechanisms 

controlling gene expression. Genetic alterations refer to the changes in nucleotide 

sequences, for example point and gross mutations, can cause malignant transformation. 

Epigenetic modification is a mechanism controlling gene expression without affecting 

the DNA sequences. In recent years, DNA methylation has become intensive 

investigation of epigenetics in cancers. Paradoxical alterations of DNA methylation, local 

hypermethylation of certain genes as well as global (genome-wide) hypomethylation, are 

reported in some cancers such as hepatocellular carcinoma and urothelial carcinoma. 

Increased methylation in promoter can inactivate tumor suppressor genes.  However, 

the role of global hypomethylation, the decreased methylation levels of the entire 

genome, is less documented. The DNA hypomethylation may induce genomic instability 

and lead to malignant transformation.  
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Generally, methylation in genome locates in CpG dinucleotides, which are 

dispersed throughout the whole genome, in both noncoding repetitive sequences and 

genes (2-5). However, it seems that methylation in repetitive elements constitute the 

major part for the reason that repetitive elements comprise about 45% of the human 

genome (6, 7). LINE-1s (long intersperse nuclear element-1s) are the most abundant 

retrotransposons in the human genome (8) which are highly repetitive mobile DNA 

sequences distributed across the entire genome. Recent study demonstrated that LINE-

1 hypomethylation related to genome hypomethylation (9-11). Hypomethylation of LINE-

1s has been reported in many types of cancers including neuroendocrine tumors (12), 

carcinoma of the breast, lung, liver, esophagus, stomach, colon, urinary bladder 

prostate, and head and neck (8, 10, 13-19). Moreover, hypomethylation levels of LINE-

1s can be used as a prognostic marker for epithelial ovarian cancers (20) cervical 

cancers (21) and hepatocellular carcinoma (22). Normal tissues from different organs 

possess different LINE-1 methylation levels and ranges (10). In addition, carcinogenic 

tissues have significantly lower levels of LINE-1 methylation than their normal tissue 

counterparts except in cancer of kidney, thyroid and lymph node (10). These data 

implied that methylation levels may be important for cellular function. Surprisingly, 

methylation levels of each LINE-1 in specific location varied in the same tissue type (23). 

Nevertheless, head and neck cancer cell lines revealed positive correlations of specific 

LINE-1s methylation levels with each other and with the genome-wide levels but differed 

from normal oral epithelium (23). Therefore, although global hypomethylation can 

generally deplete LINE-1 methylation levels, LINE-1 methylation in each location can be 

influenced differently. However, global methylation in normal oral tissues and 

malignancies is still to be clarified.  

This study aims to investigate global methylation level in oral epithelium and 

evaluate global hypomethylation in oral squamous cell carcinomas (OSCCs). The 

combined bisulphite restriction analysis (COBRA) of genome-wide LINE-1s 

(COBRALINE-1) was used. Moreover, methylation levels of LINE-1s in some specific loci 

were also studied, using COBRA unique to LINE-1 (CU-L1) technique which the primers 

were designed for amplifying specific LINE-1s.  
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Research questions 

1. Whether LINE-1 methylation levels in normal oral epithelium differ from those 

of normal blood leukocytes.  

2. Do OSCCs possess genome-wide LINE-1 hypomethylation? 

3. Whether the genome-wide LINE-1 hypomethylation correlates with clinico-

pathological features of OSCCs. 

4. Whether the aberrant methylation levels of LINE-1s can be detected in oral 

rinses of OSCC patients.  

5. Whether the loss of methylation of LINE-1s in OSCCs is locus specific. 

Objectives 

1. To investigate LINE-1 methylation levels, both genome-wide and specific 

loci, in normal oral epithelium and OSCCs. 

2. To clarify the relationship of global hypomethylation levels in various 

clinicopathological features of OSCCs. 

3. To detect LINE-1 hypomethylation in oral rinses of OSCC patients. 

Hypothesis 

1. Normal oral epithelium possesses different levels of LINE-1 methylation from 

normal white blood cells. 

2. OSCCs acquire genome-wide LINE-1 hypomethylation. 

3. Genome-wide LINE-1 hypomethylation in OSCCs correlates with the clinico-

pathological features. 

4. Genome-wide LINE-1 hypomethylation can be detected in oral rinses of 

OSCC patients. 

5. Loss of methylation of LINE-1s in OSCCs is locus specific. 
Key words 

oral squamous cell carcinomas (OSCCs), oral rinses, global hypomethylation, 

methylation, long intersperse nuclear element-1s (LINE-1s), combined bisulphite 

restriction analysis (COBRA) 
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Definition 

Hypomethylation is methylation levels that lower than methylation levels found 

in specimens collected from normal individuals. 

Hypermethylation is methylation levels that higher than methyaltion levels 

found in specimens collected from normal individuals. 

Expected benefit 

1. If LINE-1 hypomethylation presents in OSCCs and/or relates to 

clinicopathological characters of OSCCs, it may be used as a biomarker for OSCCs.   

2. If the aberrant methylation levels of LINE-1s can be detected in oral rinses of 

OSCC patients, a sensitive, non invasive technique for detection of OSCCs can be 

developed. 

3. The better understanding of the molecular pothogenesis of OSCCs may 

leads to earlier and more accurate diagnosis, effective treatment and prevention of 

OSCCs.  

Research methodology framework 
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Research methodology framework (continued) 
 
 
 

 
 
 
 

 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 



CHAPTER II 
REVIEWS AND RELATED LITERATURES 

Oral cancers 

Introduction 

Oral cancers, according to the International Classification of Diseases, ninth 

revision (ICD9), refer to malignant neoplasm that develop at the lip (ICD9 140), tongue 

(ICD9 141), gum (ICD9 143), floor of mouth (ICD9 144), cheek mucosa, vestibule of 

mouth, palate, uvula, retromolar area (ICD9 145) and oropharynx (ICD9 146). Oral 

cancers can be classified by cellular origins. Carcinoma is a cancer originating from 

epithelium, while sarcoma has mesenchymal origin, including muscle, connective tissue, 

neurovascular system, cartilage or bone. The most common cancer in the oral cavity is 

squamous cell carcinoma (24). Oral squamous cell carcinoma (OSCC) is an aggressive 

disease; it can invade nearby structures, metastases to distant organs and cause 

lethality. It also has highly recurrent rate and second primary lesion can be frequently 

detected.  

Epidemiology 

Commonly, OSCCs occur in individuals older than 40 years of age, but 

currently, the incidence in people younger than 40 years of age is increasing (25). In 

2002, cancers of the oral cavity were found to be the 9th ranking among global cancers 

by site. They occurred in about 274 000 patients, not only in developing countries but 

also in the developed ones (26). The incidence of oral cancers has demographic 

variation. While 40,000 new cases are record in the European Union (27) it accounts 2-

4% of all cancers diagnosed and approximately 30,000 cases occur annually in the 

United States (28). In Thailand, it ranges from 3.1 to 8.4 per 100,000. Generally, males 

had higher incidence than females, except in Khon Kaen Registry (Table 2.1) (29). 

Despite arrival of molecular biology leading to effective treatment in many types of 

cancers, the treatment results of oral cancers are still not satisfactory. The standard 

treatment, surgery, not only causes facial disfiguration and difficulty in eating and 

speaking, but also achieve  a low five-year survival rate, which improved by only 5% 
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(from 54% in 1974-1976 to 59% in 1995-2000) (28). Although OSCCs are easily seen, 

most patients were detected in advanced stages which results in poor survival rates 

(30). Early detection and diagnosis is important and results in better outcome of 

treatment (31).  

Table 2.1 Incidence of oral cancers in Thailand (29). 

Registry Incidence (per 100,000) 

  Female Male 

Bangkok  3.1 4.4 

Chiang Mai 5.3 7.3 

Khon Kaen 7.3 3.6 

Songkhla 4.5 8.4 

Etiology  

The development of OSCCs is still unclear; however it is a multifactorial 

process influenced by environmental effects as well as patient’s genetic predisposition 

(32). Carcinogenesis environments, including viral infection such as Epstein-Barr virus 

(EBV), human papillomavirus (HPV) (33, 34); chemical agents such as paint fumes, 

plastic by products, wood dust, asbestos, gasoline fumes, methyl isocyanate (35) and 

formaldehyde (36) have been considered as possible risk factors. Chronic 

inflammations such as irritation from poorly fitting dentures and poor oral hygiene also 

have been implicated (37). Smoking, the use of tobacco products, excessive alcohol 

consumption and betel chewing have been well-documented as major risk factors in 

OSCCs (29, 34, 37, 38). Numerous genetic events that alter normal function of genes 

are also discovered in OSCCs. These genetic modifications include both genetic and 

epigenetic mechanisms. Genetic mechanism influences gene expression by sequence 

of the nucleotides. The alteration of DNA sequence; known as mutation in proto-

oncogenes or tumor suppressor genes results in malignant transformation, 

uncontrollable proliferation and invasion of tumor cells (39-41). Epigenetic mechanism 

controls gene activity in the absence of DNA sequence change. Over the recent years, 

DNA methylation is one of the extensive studied epigenetic alterations in cancers.  
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Paradoxically aberrant methylation in cancers, promoter hypermethylation and global 

hypomethylation occurred in the same cancer. In OSCCs, hypermethylation of tumor 

suppressor genes such as p16, O6-methylguanine-DNA methyltransferase (MGMT) (42) 

(43), E-cadherin (44), p14 (45), adenomatous polyposis coli (APC) (46) has been 

reported. However, status of global hypomethylation is still to be clarified. 

Clinicopathological features 

The prognosis for patients with OSCC depends on both histological subtype 

(grade) and clinical extent (stage) of tumor. The grading of a tumor is the microscopic 

determination of the differentiation of the tumor cells. Three histological features of 

OSCC cells are well-, moderately-, and poorly-differentiation. Well-differentiated lesions 

generally have a less aggressive biologic course and better prognosis than poorly 

differentiated lesions. The clinical staging of OSCCs is known as the TNM system (table 

2.2). T is a measure of the primary tumor size, N is an estimation of the regional lymph 

node metastasis, and M is a determination of distant metastases. As the clinical stage 

advances from I to IV, prognosis worsens (47). 
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Table 2.2 TNM staging system for OSCC (47)  

Stage I Stage II Stage III Stage IV 

T1N0M0 T2N0M0 T3N0M0 All N2 

  T1N1M0 All N3 

  T2N1M0 All T4 

  T3N1M0 All M1 

Description and abbreviations 

T-Tumor   T1-tumor less than 2 cm in diameter 

T2-tumor 2-4 cm in diameter 

T3-tumor greater than 4 cm in diameter 

T4-tumor invades adjacent structures 

N-Node    N0-no palpable nodes 

N1-ipsilateral palpable nodes 

N2-contralateral or bilateral nodes 

N3-fixed palpable nodes 

M-Metastasis  M0-no distant metastasis 

M1-clinical or radiographic evidence of metastasis 

 

Detection and diagnosis 

Unfortunately, most of OSCCs were found in advanced stages even if they 

located in easily seen area, which result in high morbidity and mortality rate. The 5-year 

survival rate is still low, but it may be improved if the patient was early detected and 

underwent treatment before the spreading of cancer to the lymph node. The gold 

standard of diagnosis is histological study of scalpel-biopsied tissue which requires 

expertise.  Nevertheless, oral examination by well-trained staff can help screening intra-

oral pathology. In recent years, many technique were developed, such as methylene  

blue (48), tolonium chloride (49) or toluidine blue staining (50-52); chemiluminescence 

(53); exfoliative cytology using brush biopsy (54-56) or oral scraping (57); studies of 

salivary biochemistry (58, 59); and also molecular biology including tumor markers (60-
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63). But none can replace surgical biopsy, only adjunctive screening tools. Therefore, it 

is important to further explore and to improve non-invasive methods for reliable early 

detection oral malignancies. 

Treatment 

Goals of treatment consist of removal of cancer load, maintenance of quality of 

life, and prevention of secondary cancer. Classically, treatment involves surgical 

removal the primary tumor and the metastasized lymph nodes, while non-metastasized 

lymph nodes are frequently removed to prevent tumor spreading (64, 65). Pre-operative 

and/or post-operative radiotherapy combine with surgery can improve success rate of 

treatment (66). Chemotherapy may be used as adjuvant therapy in advanced cases. 

However, the outcomes of treatment are still unsatisfied due to the high morbidity and 

mortality rates. The patients always have poor quality of life after tumor ablation and 

suffer from difficulties in chewing, swallowing, speaking and facial disfigurement (67). 

The radiotherapy results in rampant dental caries, jaw stiffness, xerostomia, poor intra-

oral wound healing and osteoradionecrosis of the jaw bones (68-70). Though the 

innovations in cancer treatment modalities including immunotherapy and gene therapy 

have progressed and been able to improve treatment outcomes in many kinds of 

cancers, but in oral cancers, this modality is still a trial. Nowadays, researchers are 

trying hard to study molecular biology of cancers in order to better understand the 

pathological mechanisms which may lead to treatment success. Unfortunately, the 

molecular biology of oral cancers is still a mystery. However, the global alteration may 

give more information for oral cancer pathological processes. 

Epigenetics in cancers 

Generally, expression of genes is controlled by genetic and/or epigenetic 

mechanisms. Genetic mechanism refers to sequence of the nucleotides, including 

adenine (A), thymine (T), cytosine (C), and guanine (G). Epigenetics refers to heritable 

phenotypic alterations in the absence of DNA sequence changes. DNA methylation is 

one of the most commonly occurring epigenetic events taking place in the mammalian 

genome (71). Aberrant DNA methylation, including promoter hypermethylation of tumor 
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suppressor genes and paradoxically, genome-wide (global) hypomethylation has been 

reported in many kinds of cancers including head and neck cancers (17).  

DNA methylation in cancers 

DNA methylation is an evolutionally conserved mechanism to regulate gene 

expression in mammals. In vertebrates, addition of methyl group at 5-carbon position of 

cytosine (72) usually occurs at the 5’cytosine in CpG dinucleotides (73, 74) (Figure 2.1). 

It has shown to be associated with transcriptional silencing of the genes in normal 

development (75). The DNA methylation is maintained by heritability after DNA 

replication (76, 77). Distinct DNA methylation patterns are developmentally and tissue 

specific, both in overall 5-methylcytosine content and in the sites at specific genes (78-

81).  

 
 

Figure 2.1 Methyl cytosine. Addition 

of methyl group at 5-carbon position 

of cytosine usually occurs at the 

5’cytosine in CpG dinucleotides (82).  

 

 

Cytosine methylation has a number of functions, including X chromosome 

inactivation, genomic imprinting, immobilization of mammalian transposons, suppression 

of transcriptional noise and maintaining genomic stability (83-87). Methylation may 

inactivate one or both alleles of the tumor suppressor genes in sporadic cancers and 

can potentially act as a second hit during the development of hereditary cancers (Figure 

2.2) (83, 88). Methylation that occurs within gene deficient regions, such as in 

pericentromeric heterochromatin, appears crucial for maintaining the conformation and 

integrity of the chromosome (4, 5). Methylation has also been proposed as a genome 

defence against surreptitious mobile genetic elements (89). 
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Figure 2.2 Diagram demonstrated methylation as a second hit. Epigenetic and genetic 

mechanisms may act in combination to cause inactivation of gene during the 

development of hereditary cancers (83). 

Figure 2.2 Diagram demonstrated methylation as a second hit. Epigenetic and genetic 

mechanisms may act in combination to cause inactivation of gene during the 

development of hereditary cancers (83). 
  

Many studies demonstrated that epigenetic mutations involving an imbalance 

in cytosine methylation are detected in cancers. It is well established that two kinds of 

changes in the DNA methylation pattern occur in many cancers, regional 

hypermethylation of specific genes and global hypomethylation. These imbalances can 

present together in a single tumor, though the net effect is usually a decrease in total 

methylation levels (89-91). This paradoxical coexistence of a global decrease in 

methylation with regional hypermethylation implies that independent and different 

processes are responsible for hypomethylation and hypermethylation. If these defects 

precede malignancy, indicating that they are not simply a consequence of the malignant 

state. In case of methylation imbalance contributes directly to tumor initiation, the 

alteration should occur in early stages of cancer or in premalignant cells. If it contributes 

directly to tumor progression, methylation defects should increase in frequency and/or 

severity coordinately with increasing malignancy grades. 

Many studies demonstrated that epigenetic mutations involving an imbalance 

in cytosine methylation are detected in cancers. It is well established that two kinds of 

changes in the DNA methylation pattern occur in many cancers, regional 

hypermethylation of specific genes and global hypomethylation. These imbalances can 

present together in a single tumor, though the net effect is usually a decrease in total 

methylation levels (89-91). This paradoxical coexistence of a global decrease in 

methylation with regional hypermethylation implies that independent and different 

processes are responsible for hypomethylation and hypermethylation. If these defects 

precede malignancy, indicating that they are not simply a consequence of the malignant 

state. In case of methylation imbalance contributes directly to tumor initiation, the 

alteration should occur in early stages of cancer or in premalignant cells. If it contributes 

directly to tumor progression, methylation defects should increase in frequency and/or 

severity coordinately with increasing malignancy grades. 

While hypermethylation inactivates tumor suppressor genes, global losses of 

methylation in cancer may lead to the alterations in the expression of proto-oncogenes 

critical to carcinogenesis (75, 92). It may also facilitate chromosomal instability (4, 5, 93-

While hypermethylation inactivates tumor suppressor genes, global losses of 

methylation in cancer may lead to the alterations in the expression of proto-oncogenes 

critical to carcinogenesis (75, 92). It may also facilitate chromosomal instability (4, 5, 93-
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97) and may activate the latent retrotransposons (16, 98-101). The extent of genome 

wide hypomethylation in tumors parallels closely to the degree of malignancy, though it 

is tumor type dependent. In breast, ovarian, cervical, brain and prostate tumors, for 

example, hypomethylation increases progressively with increasing malignancy grade 

(90, 102-105). Thus hypomethylation may serve as a biological marker with prognostic 

value. The human genome is not methylated uniformly and contains regions of 

unmethylated segments interspersed by methylated regions (71). Genome-wide 

hypomethylation has been demonstrated by downregulation of methylated CpG 

dinucleotides, which disperse throughout the whole genomes both in noncoding 

repetitive sequences and genes. However, hypomethylation of the repetitive sequences, 

such as LINE seems to constitute the major part of the global hypomethylation of the 

LINE-1 re

cancer genome (11, 106). 

trotransposons  

Mammalian transposable elements compose of DNA transposons and 

retrotransposons (Figure 2.3). DNA transposons encode a transposase activity and 

generally move through DNA intermediate by a cut and paste mechanism utilizing the 

transposase. Although roughly 3% of the human genome is composed of DNA 

transposons, they are remnants or fossils of ancient elements and it is unlikely that any 

remain transpositionally active. Retrotransposons encode a reverse transcriptase activity 

and move by a copy and paste process involving RNA intermediate thus the original 

retrotransposon is maintained in situ where it is transcribed. The transcript is then 

reverse transcribed and integrated into a new genomic location. Approximately 42% of 

the human genome composes of retrotransposons and although most of these elements 

are inactive, some retain the ability of retrotransposition. Retrotransposable elements 

can be classified as autonomous retrotransposons when they encode certain proteins 

necessary for their mobility and nonautonomous retrotransposons such as Alu, 

processed pseudogenes and SVA elements which do not encode any protein. There are 

two classes of autonomous retrotransposons, LTR (long terminal repeat) and non-LTR 

retrotransposons. LINEs (long interspersed nucleotide elements) are non-LTR 
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retrotransposons and com here are inactive LINE 

elements such as LINE-2 and active LINE elements, such as LINE-1 (107). 

Figure 2.

ompose of transposons and retrotransposons. 

LINE-1 is a kind of autonomus, non-LTR retrotransposons and comprise about 

malian transposable elem

prise 21% of the human genome. T

ents (45%) Mam

DNA transposons (3%) 
 

Retrotransposons (42%) 
 

Autonomous Nonautonomous 

LTR 
(long terminal repeat) 

Non-LTR

-mouse intracisternal A-particles 

-human endogenous retrovirures

LINEs (21%) 
 -LINE-1 (17%) 

SINEs (13%) 

-Alu (11%) 

-Processed pseudogenes 

 

3 Mammalian transposable elements. Transposable elements comprise about 

45% of human genome and c

 -LINE-2 

-SVA 

17% of human genome (107). 

 

LINE-1 retrotransposons, the most abundant sequences in human genomes 

are self-replicating human transposable elements. Over evolutionary time, they have not 

only expanded greatly in number but also have other roles. Some of which are quite 

useful to the organisms whereas others are detrimental to individual members of the 

species. They are estimated 600,000 copies and comprise of at least 17% of the human 

genomes. Some of these elements are within genes (107). Over 75% of human genes 

contain at least one LINE-1 insertion, usually as part of introns, 5′UTR sequences or 

3′UTR sequences (108). Most LINE-1 elements are retrotransposition defective because 

they are 5′ truncated; contain internal rearrangement and harbor mutations within their 

open reading frames (6). Full-length LINE-1s are about 2,000 copies, but only 30-60 
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copies may be competent for transposition (89, 109). When the full length, non-mutated 

LINE-1 is transcribed and then reverse transcribed, it might integrate in and disrupt 

important gene functions (8, 108). Germline mutations where LINE-1 retrotranspositions 

impair the functional gene are known in several hereditary disorders, including the factor 

VIII in hemophilia A, the dystrophin gene in Duchenne muscular dystrophy, the fukutin 

gene in Fukuyama-type congenital muscular dystrophy, the cytochorme b558 heavy 

chain gene in X-linked chronic granulomatous disease, and the type IV collagen genes 

in Alport syndrome (110). DNA methylation at the CpG site in LINE-1 promoter is the 

normal mechanism for silencing of its potentially harmful retrotransposing activity in the 

mammalian genome (111, 112). In addition, hypomethylation of LINE-1 promoter can 

cause genome instability by inactivating the tumor suppressor genes such as APC in 

colon cancer or by activating the oncogenes such as c-MYC in breast cancer (113, 114) 

And there is also evidenced that hypomethylation of LINE-1 can cause chromosome 

instability (115, 116). Hypomethylation of LINE-1s has been reported in several 

malignancies, including neuroendocrine tumors (12), carcinoma of the breast, lung, 

liver, esophagus, stomach, colon, urinary bladder prostate, and head and neck (8, 10, 

13-19). Moreover, hypomethylation levels of LINE-1s can be used as a prognostic 

marker for epithelial ovarian cancers (20), cervical cancers (21) and hepatocellular 

carcinoma (22). Full length LINE-1 is 6 kb and contains a 5′ untranslated region 

(5′UTR), a 1 kb ORF1 that encodes a nucleic acid binding protein, a 4 kb ORF2 which 

encodes a protein with endonuclease and reverse transcriptase activities, allowing their 

mobilization in genomes through an RNA intermediate, a 3′ untranslated region (3′UTR), 

a poly(A) tail (Figure 2.4). Within LINE-1 5′UTR, they contain not only a sense strand 

promoter for their own transcription, but also an antisense promoter (ASP) (117). This 

ASP has been shown to provide an alternative transcription start site for a number of 

human genes including c-MET, a receptor tyrosine kinase whose activation can lead to 

transformation and tumorigenicity in a variety of tumors (118-120). Since LINE-1 

elements are constituted most of the human genome and distributed across the entire 

enome, LINE-1 sequences are well suited to study changes in genome methylation.  
 

g
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4 Diagram illustrated full-length LINE-1 element.  Full length LINE-1 is 6 kb and 

contains a 5′ untranslated region (5′UTR), a 1 kb ORF1 that encodes a nucleic 

acid binding protein, a 4 kb ORF2 which encodes a protein with endonuclease 

(EN) and reverse transcriptase activities (RT), C represents a conser

 

Figure 2.
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SPOCK3 locus (Figure 2.6) (23).  Therefore it was interesting to clarify the methylation 

character of specific LINE-1s in OSCCs in an attempt to seek for molecular markers. 

cytosine-rich motif, a 3  untranslated region (3 UTR), and a poly(A) tail. LINE-1 

elements are often flanked by 7-20 bp target site duplications (TSD) (107) 
 

In previous study demonstrated that COBRALINE-1 could efficiently evaluate 

the genome-wide methylation status of LINE-1s in genomic DNA and it represents the 

whole genome methylation status (10, 121). In addition, the methylation levels of 

genome-wide LINE-1s varied among types of normal tissues and also had variation in 

ranges but did not depend on age and gender (10). Some tissues such as thyroid and 

esophagus demonstrated wider ranges of the methylation levels than others. Moreover, 

most of cancer tissues including head and neck cancers have hypomethylation of LINE-

1s, comparing with their normal tissue counterparts except cancers of kidney, thyroid 

and lymph mode (Figure 2.5). This evidence supports that LINE-1 methylation level is 

specific to tissue types and the hypomethylation of LINE-1s is also specific to types of 

cancers. However, the information of LINE-1 methylation in oral cancers; mostly are 

OSCCs, the malignant tumor of oral epithelial origin, has still n

tudy methylation levels of LINE-1s in OSCCs, the same type of tissues should 

be compared. Therefore, normal oral epithelium should be used. 

Interestingly, although sequences of every LINE-1s are homologous, 

methylation levels of individual LINE-1at each locus are different. The study of 17 

selected full-length intronic LINE-1s (using CU-L1 technique) revealed different 

methylation levels among specific LINE-1s in each normal individual and also different 

between normal oral epithelium and normal WBC. However, HNSCCs occupied lower 

methylation levels than normal oral epithelium almost all studied loci, except LINE-1
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Figure 2.5 LINE-1 hypomethylation levels in several tissue types (10). Circles, triangles, 

and squares are levels of COBRALINE-1 from normal, malignant, and 

premalignant tissues, respectively. The vertical axis displays percentage levels 

of LINE-1 hypomethylation. Sample types are labeled. (a–d) are the 

hypomethylation levels of leukocytes, cancers, microdissected colonic tissues, 

and sera, respectively. Single, double, and triple asterisks indicate significant 

differences in hypomethylation levels between normal tissues and the tested 

samples at P<0.05, <0.01, and <0.001, respectively. HNSC stands for head 

and neck squamous cell. N and T are normal and malignant tissues, 

respectively. 
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Figure 2.6 (continue to next page for Figure legend) 
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Figure 2.6 Mean of hypomethylation compared among each cell type within all 17 

specific LINE-1s (CU-L1) and COBRALINE-1 (COBRAL1). Vertical axis 

represents levels of hypomethylation. Each bar represents hypomethylation 

levels of each cell type, including HNSCC cell lines, leukemic cell lines, 

epithelial cell lines, HNSCC microdissected cells, normal oral rinse cells and 

normal white blood cells. CU-L1 methylation varied in levels and ranges 

among loci and among tissue types. COBRALINE-1 had narrower range of 

methylation levels than CU-L1. Interestingly all studied malignancies have 

genome-wide hypomethylation than both kinds of normal cells (23). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



CHAPTER III 
MATERIALS AND METHODS 

Samples  

Normal oral epithelium 

Because of the availability of shed oral epithelium, the normal oral epithelial 

cells can be collected from oral rinses of healthy volunteers who have no intra-oral 

lesions (55, 122, 123). Twenty milliliters of sterile 0.9% sodium chloride solution were 

rinsed and gargled for 15 seconds then spitted into a sterile 50-ml sterile closed 

container and kept at 4oC until processed to collect DNA, within 1 hour.   

Primary OSCC tissues 

Specimens from patients diagnosed and histological confirmed to be  

OSCC were collected at the time patients receiving surgical excision. The 

specimens were kept in sterile phosphate buffered saline (PBS) at -30oC until processed 

to collect DNA. 

OSCC oral rinses 

Twenty milliliters of sterile 0.9% sodium chloride solution were rinsed and 

gargled for 15 seconds by patients presented OSCC lesions. Then the rinsed solution 

was spitted into a sterile 50-ml sterile closed container and kept at 4oC until processed 

to collect DNA, within 1 hour.   

Genomic DNA extraction 

Cells in oral rinses (from normal individuals or OSCC patients) were pelleted 

by centrifuging at 2500g for 15 minutes at 4oC. The supernatant was discarded and cell 

pellets were washed twice in sterile PBS. Then the cell pallets were placed in 1% 

SDS/proteinase K 0.5 mg/ml DNA extraction buffer and incubated at 50oC overnight. 

OSCC tissues were thawed on ice. After the thawed tissues were washed twice in sterile 

PBS, they were chopped into small pieces and placed in 1% SDS/proteinase K 0.5 

mg/ml DNA extraction buffer, incubated at 50oC overnight. The digested cell pellets or 
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tissues and fluids were then subjected to phenol-chloroform extraction and ethanol 

precipitation. The precipitated DNA was resuspended in Tris-EDTA treated water.  

COBRA  

This quantitative technique is used to determine methylation level in small 

amounts of DNA. COBRA consists of a standard sodium bisulphite treatment followed 

by polymerase chain reaction (PCR), then restriction digestion and quantitation.  

Sodium bisulphite treatment 
Principle  
Bisulphite deaminates unmethylated cytosines and converts them to uracils, 

but leaving methylated cytosines unchanged (Figure 3.1, 3.2). After bisulphite treatment, 

the methylated sequence can be differentiated from unmethylated sequence by further 

analysis, such as sequencing, methylation specific PCR, restriction enzyme analysis.  

 
Figure 3.1 Schematic diagram of the bisulphite conversion reaction. 

The deamination of cytosine by sodium bisulphite involves the following steps: 

(step 1) addition of bisulphite to the 5-6 double bond of cytosine, (step 2) 

hydrolytic deamination of the resulting cytosine-bisulphite derivative to give a 

uracil-bisulphite derivative, and (step 3) removal of the sulphonate group by a 

subsequent alkaline treatment, to give uracil (124).  
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Figure 3.2 Complementary DNA strand after bisulfite reaction. After the bisulphite 

reaction, the two DNA strands are no longer complementary and therefore can 

be amplified independently. The two complementary strands in the original 

DNA are labeled as (a) and (b). Cytosine residues and their corresponding 

uracil and thymine conversion products are shown in bold type (124).  
 

Technique  

Genomic DNA 2 μg in 50 μl water was denatured in 0.2 M NaOH at 37oC for 10 

minutes, and then incubated with 30 μl of 10 mM hydroquinone and 520 μl of 3 M 

sodium bisulphite at 50oC, 16-20 hours. After that, bisulphite-treated DNA was desalted 

with DNA Clean-Up system (Promega, Madison, WI). Subsequently, it was desulfonated 

by 0.3 M NaOH and precipitated with ethanol. Finally the DNA was resuspended in 20 μl 

of water (125). 
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PCR and specific restriction enzyme digestion 
Principle  
After DNA is treated with sodium bisulphite, PCR is performed to amplify LINE-

1 sequences. In this step the bisulphite converted uracils in DNA sequence will be 

amplified as thymines, whereas unconverted cytosines will be amplify as cytosines. 

Thus after PCR, the DNA sequences which contain unmethylated cytosines will be 

changed from their original sequences; while the ones that contain methylated cytosines 

will retain their original sequences. Then the PCR products will be digested with 

restriction enzyme that is specific to methylated or unmethylated sequence (Figure 3.3).  
  

 
 

Methylated DNA sequence containing 

TaqI recognition site 

CCmGA 

UCmGA 

TCGA 

Bisulphite 

treatment 

PCR 

Unmethylated DNA sequence losing TaqI 

recognition site 

CCGA 

UUGA 

TTGA 

Bisulphite 

treatment 

PCR 

Figure 3.3 Example of restriction site of TaqI enzyme. This enzyme recognizes TCGA 

sequence. After PCR amplifying sodium bisulphite treated DNA; the 

methylated DNA retains the cutting site whereas unmethylated DNA loses the 

cutting site. 
 

Technique   

The 5′UTR of LINE-1.2 from NCBI Accession number M80343 was used for 

COBRALINE-1 (10) and specific LINE-1s were selected by blat using L1.2 sequence to 

http://genome.ucsc.edu. Full length intronic LINE-1s with the representative 

COBRALINE-1 CpG dinucleotides were selected; from these criteria, 17 specific LINE-

1s were selected (22). All selected LINE-1 were listed in table 3.1. Bisulphite-treated 

DNA 0.2 μg were subjected to 35 cycles of PCR with a couple of primers, as listed in 

table 3.2 (23). These DNA were denatured at 95 oC, 1 minute, annealed at of 53 oC, 1 

 

http://genome.ucsc.edu/
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minute and extended at 72 oC, 1 minute. The PCR amplicon sizes were 160 bp and 

approximately 300-500 bp for COBRALINE-1 and CU-L1, respectively. Then the PCR 

amplicons were digested in 10 μl reaction volume with 2 U of TaqI and 8 U of TasI in 1X 

TaqI buffer (MBI fermentas, Flamborough, Ontario, Canada) at 65oC overnight, then 

electrophoresed in 8% nondenaturing polyacrylamide gel and stained with SYBRī green 

I nucleic acid gel stain (Sigma-Aldrich, St. Louis, Missouri).  

TaqI restriction enzyme recognize TCGA sequence which C was protected 

from bisulphite conversion by methylation, while TasI restriction enzyme recognize AATT 

sequence which the last T was unmethylated CpG before treated with bisulphite.  For 

COBRALINE-1, the methylated amplicons can be digested by TaqI and yielded two 80 

bp fragments, whereas unmethylated amplicons can be digested by TasI and yielded 

62 bp and 98 bp fragments (Figure 3.4, 3.5). CU-L1 amplicons contain both 

representative CpG dinucleotides and usually have additional TaqI site(s) and TasI 

site(s).  Therefore, there are more methylated, unmethylated and also control bands 

which has no candidate CpG restriction sequence (Figure 3.6 and Table 3.2). However, 

methylation levels of each methylated or unmethylated bands have linear correlations in 

the same sample (23). 
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Table 3.1 General characteristics of the selected specific LINE-1s (23). 

Gene Gene location LINE-1 location LINE-1 orientation 

COL24A1     1p22.3 intron 24 Antisense 

FAM49A     2p24.3-2p24.2 intron 2 Sense 

CNTNAP5     2q14.3 intron 11 Antisense 

PKP4     2q24.1 intron 1 Sense 

LRP2     2q31.1 intron 19 Antisense 

MGC42174     2q37.1 intron 8 Antisense 

EPHA3     3p11.1 intron 5 Antisense 

EPHA3     3p11.1 intron 15 Antisense 

ANTXR2     4q21.21 intron 16 Antisense 

SPOCK3     4q32.3 intron 7 Antisense 

LOC133993     5q12.3 intron 3 Antisense 

PPP2R2B     5q32 intron 8 Antisense 

LOC286094     8q24.22 intron 1 Sense 

PRKG1     10q21.1 intron 9 Sense 

ADAMTS20     12q12 intron 7 Antisense 

CDH8     16q21 intron 7 Antisense 

LOC284395     19q12 intron 1 Antisense 
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Table 3.2 Oligonucleotide sequences and amplicon sizes for CU-L1 and COBRALINE1  

(23) 

Gene 

 

COBRA unique and 

LINE-1 sequence oligoes Size(bp) 

Methylated 

bands (bp) 

Unmethylated 

bands (bp) 

COL24A1 GTTAAAGGGTTAAGAATGTGTGTAG 336 47,151,60,54,80 294,98 

 GTAAAACCCTCCGAACCAAATATAAA     

FAM49A GTTTTAAAAAAAAATAAAGTTGG 385 41,151,113,80 287,98 

 GTAAAACCCTCCGAACCAAATATAAA     

CNTNAP5 GATTAAATTTTAATTGAATTAGAG 403 43,151,60,53,80 289,98 

  GTAAAACCCTCCGAACCAAATATAAA     

PKP4 GGTATGATTTTAAAAAAAGAGAT 392 48,211,53,80 294,98 

  GTAAAACCCTCCGAACCAAATATAAA     

LRP2 GGTATATAATTTTTATGGTGTTG 435 44,150,60,53,80 289,98 

  GTAAAACCCTCCGAACCAAATATAAA     

MGC42174 ATTGAGGTGTATTAAGAGATGGA  553 181,60,53,80 276, 98 

  GTAAAACCCTCCGAACCAAATATAAA     

EPHA3- TGTTATTGGAATATATGGAGATT 386 42,151,60,53,80 288,98 

 IVS5 GTAAAACCCTCCGAACCAAATATAAA     

EPHA3- TAAGGATAAAAATTTTTGAAGTT 464 60,150,60,53,80 305,98 

 IVS15 GTAAAACCCTCCGAACCAAATATAAA     

ANTXR2 TATTGAGTATTAATTATGTATTTAGTAT 416 28,150,60,53,80 273,98 

  GTAAAACCCTCCGAACCAAATATAAA     

SPOCK3 GTGTAATTTTTTTAGATTTTGTAG 492 300,60,36,17,80 262,98 

  GTAAAACCCTCCGAACCAAATATAAA    

LOC133993 TTAGGATATTTTTTATTTTGGGA 446 101,264,80 347,98 

  GTAAAACCCTCCGAACCAAATATAAA    
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Table 3.2 Oligonucleotide sequences and amplicon sizes for CU-L1 and COBRALINE1 

(continued) (23). 

Gene 

 

COBRA unique and 

LINE-1 sequence oligoes Size(bp) 

Methylated bands 

(bp) 

Unmethylated 

bands (bp) 

PPP2R2B GGGGAAAAAATTGAAAGTT 590 8,24,151,60,53,80 270,98 

  GTAAAACCCTCCGAACCAAATATAAA    

LOC286094 TATGTAAGTATGGAAATTTGAGG 429 43,151,60,53,80 290,98 

  GTAAAACCCTCCGAACCAAATATAAA    

PRKG1 AAAATTTTTAGTTGTTAAATGG 374 152,60,53,80 247,98 

  GTAAAACCCTCCGAACCAAATATAAA    

ADAMTS20 AAGTTGTGTGGTTTTTTGTAAAT 468 81,151,60,36,17,80 328,98 

  GTAAAACCCTCCGAACCAAATATAAA    

CDH8 GGATTTGGGAGTTGGATAGTTAG 405 21,211,53,38 276,56 

  GTAAAACCCTCCGAACCAAATATAAA    

LOC284395 GAGAAATAGAATAGGTATGATTGATAA 473 23,151,60,53,80 270,98 

  GTAAAACCCTCCGAACCAAATATAAA    

Genomewide CCGTAAGGGGTTAGGGAGTTTTT 160 80 62, 98 

(COBRA LINE-1) RTAAAACCCTCCRAACCAAATATAAA    
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Figure 3.4 COBRALINE-1 PCR amplicon with TaqI recognition site (TCGA nucleotide 

sequences). After bisulfite treatment and PCR, methylated CCGA will be 

converted to TCGA (TaqI site). A methylated 160-bp amplicon of COBRALINE-

1 yields two 80-bp TaqI-digested fragments. 
 
 

 

 

 

 
 
 
 
 
 

Figure 3.5 COBRALINE-1 PCR amplicon with TasI recognition site (AATT nucleotide 

sequences). After bisulfite treatment and PCR, unmethylated AACCG will be 

converted to AATTG (TasI site). An unmethylated 160-bp amplicon of 

COBRALINE-1 yields a 98-bp and a 62-bp TasI-digested fragment. 
 

160 bp 

AACCG CCGA 

AATTG TTGA 

TasI 

98 bp 

62 bp 

Unmethylated PCR 

amplicon (160 bp) 

TasI digested products, 

98 bp and 62 bp fragments 

AACCmG 

AATCG T  

TaqI 

CGA 

80 bp 

80 bp 

Methylated PCR 

amplicon (160 

BP) 

160 bp 

CCmGA 
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Figure 3.6 The schematic representation and examples of CU-L1 (left) and COBRALINE-

1 (right). LINE-1 sequence in relation with 5’ unique sequence is shown. 

AACCG and CCGA are LINE-1 sequences; when treated with bisulfite and 

PCR, unmethylated AACCG will be converted to AATTG (TasI site) and 

methylated CCGA to TCGA (TaqI site). The amplicon sizes of CU-L1 are 

approximately 300 to 500 bp while of COBRALINE-1 are 160 bp. After 

digestion, COBRALINE-1 yielded 62- and 98-bp TasI-digested unmethylated 

LINE-1 sequences and 80-bp TaqI-digested methylated LINE-1 sequences. 

CU-L1 usually has additional TaqI site(s) and AATT sequences. Therefore, 

there are more methylated and unmethylated bands. A typical example of 

results from COBRALINE-1 and CU-L1 are also shown. The ranges of intensity 

between methylated and unmethylated bands of CU-L1 were wider than 

COBRALINE-1. M is standard size marker, O is negative control. Several 

samples of HN (head and neck squamous cell carcinoma cell lines) are 

demonstrated (23).  

Methylation levels of LINE-1 

Intensities of DNA fragments in the electrophoresed gel were measured by 

PhosphorImager, using Image Quant Software (Molecular Dynamics, Pharmacia 

Amersham). LINE-1 methylation level was calculated as a percentage of the intensity of 

the methylated LINE-1 digested by TaqI, devided by the sum of unmethylated LINE-1 
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digested by TasI and the TaqI- positive amplicons (Figure 3.7) (10). The same 

preparation of genomic DNA from HeLa, Daudi, and K562 cell lines was used as 

positive controls in all the experiments and to adjust for interassay variations. 

 
 

TaqI 80 bp  (band2) 

TasI 62 bp (band3) 

TasI 98 bp (band1) 

samples 
10 bp  

marker 
 

 
 
 
 

 
Figure 3.7 Schematic illustrations of digested PCR products and methylation level 

quantitation. Digested LINE-1 PCR products on the electrophoresed 

nondenaturing polyacrylamide gel were quantitated for methylation levels. The 

LINE-1 methylation level was calculated as a percentage (the intensity of 

methylated (TaqI-positive, 80 bp) amplicon, divided by the sum of the 

unmethylated (TasI-positive, 98 bp and 62 bp) amplicons and the methylated  

amplicons) (10). 
 Band 2 

Statistical analysis 

Statistical analyses were performed using SPSS software for Windows 11.5 

(SPSS Inc., Chicago, IL). Values were calculated using Student’s t-test, analysis of 

variance (ANOVA), Brown-Forsythe test or Kruskal-Wallis test as indicated. A p-value of 

<0.05 was considered significant.  

Student’s t-test was used to test the null hypothesis that the means of two 

normally distributed populations are equal. And also both populations must be assumed 

to have equal variances. The null hypothesis was rejected if p-value is less than 0.05. 

One-way ANOVA was used to test the null hypothesis that the means among 

three populations or more are equal. This analysis was used under the assumption of (1) 

Band 1+2+3 
% methylation  = X 100 
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population is independent, (2) the distributions in each population are normal and (3) 

the variance should be the same (equal variances). The null hypothesis was rejected if 

p-value is less than 0.05. 

The Kruskal-Wallis test is a nonparametric analysis. This method was used to 

test the null hypothesis that the means among three populations or more are equal when 

the populations do not rely on an assumption of distribution normality. The null 

hypothesis was rejected if p-value is less than 0.05. 

Brown-Forsythe test was used instead of ANOVA when the populations have 

heterogeneity of variances. 
 

 



CHAPTER IV 
RESULTS 

 

Methylation status of genome-wide LINE-1s in normal oral epithelium 
Even though males and females possess different sets of sex chromosome 

and aging may influence the methylation levels (126); previous study exhibited that 

levels of LINE-1 methylations in WBC did not depend on gender or age (10).  In order to 

clarify this phenomenon in oral tissues, methylation levels between genders and 

between the young (not older than 40 years of age) and the elderly (older than 40 years 

of age) were studied, using COBRALINE-1. Normal oral rinses were collected from 37 

volunteers (13 males and 24 females); mean methylation levels ± SD were 42.61% ± 

3.50 and 41.33% ± 2.36 in males and females, respectively. Of these 37 volunteers, 22 

were classified as the young group (mean age was 30.45 years, range 20-40 years) and 

15 as the elderly group (mean age was 61.73 years, range 42-75 years). Mean 

methylation levels ± SD were 42.13% ± 3.12 and 41.26% ± 2.37 in the young and the 

elderly, respectively. There was no significant difference of mean methylation levels 

between males and females (p-value = 0.191) and between the young and the elderly 

(p-value = 0.37) using Student’s t-test (table 4.1). However, when compared with normal 

WBCs (mean methylation level ± SD = 46.15% ± 1.48, N = 12, (23) ); methylation levels 

of normal oral epithelium (mean methylation level ± SD = 41.77% ± 2.83, N = 37) was 

lower than of normal WBCs significantly (p-value < 0.001, figure 4.1). 
 

Table 4.1 Methylation status of genome-wide LINE-1s in normal oral epithelium  
 N % methylation of LINE-1s p-value 

  Mean S.D. Minimum Maximum  

Total 37 41.77 2.83 36.83 49.46  

Between genders      0.191 

Males 13 42.61 3.50 37.69 49.46  

Females 24 41.33 2.36 36.83 46.97  

Between age groups      0.37 

40 years old or younger 22 42.13 3.12 36.83 49.46  

Older than 40 years old 15 41.26 2.37 37.69 48.07  
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Figure 4.1 Methylation levels of genome-wide LINE-1s in each group of samples. The 

horizontal line indicates the mean of methylation levels. Normal oral rinses 

(n=37), OSCC tissues (n=69), OSCC oral rinses (n=38), OSCC microdissected 

tissues (n=9) and normal WBCs (n=12) had mean methylation levels ± SD of 

41.78% ± 2.84, 35.88% ± 6.60, 37.53% ± 2.61, 30.95% ± 6.03, and 46.15% ± 

1.48, respectively. Normal oral rinses had lower methylation level than normal 

WBCs significantly (p-value < 0.01). All OSCC samples had lower methylation 

levels than normal oral rinses, significantly (p-value < 0.01) but no difference 

from each others (p-value > 0.05).  
 

Genome-wide LINE-1 hypomethylation in primary OSCC tissues and oral rinses of 
OSCCs patients 

Primary OSCC tissues were obtained from 69 OSCC patients (32 males and 37 

females); mean methylation levels ± SD were 35.73% ± 6.36 and 36.01% ± 6.88 in males 

and females, respectively. OSCC oral rinses were from 38 OSCC patients (24 males and 

14 females); mean methylation levels ± SD were 37.87% ± 2.98 and 39.95% ± 1.75 in 

males and females, respectively. There was also no difference of LINE-1s methylation 

levels between genders in OSCC oral rinses and OSCC tissues (p-value = 0.297 and 
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0.862, respectively using Student’s t-test). Therefore, LINE-1 methylation levels in normal 

and malignant oral tissues have no difference between genders. However, methylation 

levels of LINE-1s in primary OSCC tissues and in oral rinses of OSCC patients (mean 

methylation levels ± SD were 35.88% ± 6.6 and 37.53% ± 2.61, respectively) were lower 

than those of normal oral rinses, significantly (p-value < 0.001, Figure 4.1, Table 4.2, 

4.3). Surprisingly, methylation levels of OSCCs from primary lesions and from oral rinses 

were not different (p-value = 0.518). Consequently, OSCCs possessed genome-wide 

hypomethylation of LINE-1s and this alteration could be detected in oral rinses of OSCC 

patients.  

In order to clarify whether the contamination of normal cells in OSCC tissues 

and OSCC oral rinses may affect levels of methylation, the genomic DNA from 9 OSCC 

microdissected samples which had more homogeneity of cancerous cells were also 

included in this analysis. Although methylation levels of OSCC microdissected samples 

(mean methylation level ± SD was 30.95% ± 6.03) were lower than others, but it was not 

statistically different from primary OSCC tissues and OSCC oral rinses (p-value > 0.05, 

Figure 4.1, Table 4.2, 4.3). This finding suggested that normal cells had little or no effect 

on hypomethylation levels of cancerous cells. 
 

Table 4.2 Methylation levels of genome-wide LINE-1s in each sample group 

Types of samples N Methylation level (%) 

  Mean S.D. Minimum Maximum 

normal oral rinses 37 41.78 2.84 36.83 49.46 

OSCC primary tissues 69 35.88 6.60   7.62 47.13 

OSCC oral rinses 38 37.53 2.61 31.60 43.36 

OSCC microdissected   9 30.95 6.03 20.51 37.96 

normal WBCs 12 46.15 1.48 44.21 48.74 
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Table 4.3 Comparisons of methylation levels among groups  

p-value normal OSCC OSCC OSCC normal WBCs 

 oral rinses tissues oral rinses microdissected  

normal oral rinses  0.00000005* 0.000000032* 0.00547* 0.00000037* 

OSCC tissues 0.00000005*  0.518 0.361 0.000000000* 

OSCC oral rinses 0.000000032* 0.518  0.106 0.000000000* 

OSCC microdissected 0.00547* 0.361 0.106  0.00048206* 

normal WBCs 0.00000037* 0.000000000* 0.000000000* 0.00048206*  

* The mean difference is significant at < .05 level. 

Genome-wide LINE-1 hypomethylation is independent from clinico-pathological features 
of OSCCs  

Mean methylation levels in tumor stage I (36.62% ± 6.81), II (37.47% ± 3.84), III 

(35.40% ± 7.78) and IV (36.43% ± 4.96) did not differ from each others, p-value = 0.681 

(one-way ANOVA, Figure 4.2). Tumors which had histological features of well-

differentiated, moderately-differentiated, and poorly-differentiated cells had no different 

levels of methylation, p-value = 0.924 (Kruskal-Wallis test), mean methylation levels were 

36.19% ± 6.06, 37.05% ± 4.28, and 36.50% ± 3.86, respectively (Figure 4.3). OSCCs 

occurred at tongue, gum, buccal mucosa, floor of the mouth, palate, lip, or oropharynx 

had no difference of mean methylation levels, p-value = 0.464 (Kruskal-Wallis test), 

mean methylation levels were 36.33% ± 6.57, 35.88% ± 5.88, 36.37% ± 4.42, 35.67% ± 

5.74, 39.07% ± 2.00, 37.30% ± 5.74, and 43.11, respectively. Patients, who did not 

smoke, drink alcohol or chew betel quid had no significant difference of methylation 

levels with patients who exposed to any of these risk factors, p-value = 0.427 (Brown-

Forsythe test) (Table 4.4).  
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Figure 4.2 Methylation levels of genome-wide LINE-1s in each cancer stage. All stages 

showed hypomethylation levels. The mean methylation levels did not 

statistically differ among stages (ANOVA p-value = 0.681). Normal oral rinses 

(n=37), OSCC stage I (n=10), II (n=23), III (n=21) and IV (n=53) had mean 

methylation levels ± SD of 41.78% ± 2.84, 36.62% ± 6.81, 37.47% ± 3.84, 

35.40% ± 7.78, and 36.43% ± 4.96, respectively.  
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Figure 4.3 Methylation levels of genome-wide LINE-1s in each histological grade. All 

three grades of malignant cells had hypomethylation. There was no statistical 

difference in methylation levels among grades (Kruskal-Wallis test p-value = 

0.924). Means methylation levels ± SD of normal oral rinses (n=37), well-

differentiated (n=75), moderately-differentiated (n=28), and poorly-

differentiated (n=3) were 41.78% ± 2.84, 36.19% ± 6.06, 37.05% ± 4.28, and 

36.50% ± 3.86, respectively. 
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Table 4.4 Genome-wide LINE-1 methylation levels in different clinical stages, 

histological grades, tumor locations and risk factors 
 N (%) % Methylation 

  Mean SD 95% CI p-value 

OSCC samples* 107 (100)     

  Stage     0.681 

     I   10 (  9.35) 36.62   6.81 (31.75 - 41.49)  

     II   23 (21.50) 37.47   3.84 (35.81 - 39.13)  

     III   21 (19.63) 35.40   7.78 (31.85 - 38.94)  

     IV   53 (49.53) 36.43   4.96 (35.07 - 37.80)  

  Histological grading**     0.924 

     Well-differentiated   75 (70.09) 36.19   6.06 (34.87 - 37.63)  

     Moderately-differentiated   28 (26.17) 37.05   4.28 (35.39 - 38.71)  

     Poorly-differentiated     3 (  2.80) 36.50   3.86 (26.91 - 46.10)  

  Location     0.464 

     Tongue   30 (28.04) 36.33   6.57 (33.88 - 38.78)  

     Gum   24 (22.43) 35.88   5.88 (33.40 - 38.37)  

     Buccal mucosa   21 (19.63) 36.37   4.42 (34.35 - 38.38)  

     Floor of mouth   16 (14.95) 35.67   5.74 (32.61 - 38.73)  

     Palate     8 (  7.48) 39.07   2.00 (37.40 - 40.73)  

     Lip     7 (  6.54) 37.30   5.74 (31.99 - 42.61)  

     Oropharynx     1 (  0.93) 43.11 † †  

  Risk factors     0.427 

     No   18 (16.82) 36.84   6.63 (33.54 - 40.13)  

     Betel   30 (28.04) 35.54   4.60 (33.82 - 37.25)  

     Smoking   13 (12.15) 38.77   4.62 (35.98 - 41.57)  

     Alcohol     6 (  5.61) 32.21 12.77 (18.81 - 45.61)  

     Smoking+alcohol   34 (31.78) 36.55   4.08 (35.12 - 37.97)  

     Smoking+betel     5 (  4.67) 39.70   2.95 (36.03 - 43.36)  

     Smoking+alcohol+betel     1 (  0.93) 34.47 † †  

*OSCC samples include OSCC tissues ( n=69) and OSCC oral rinses (n=38) 

**Data was not available in one case     

† Data could not obtained due to n< 2 and were excluded from the statistical analysis  
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Methylation levels of specific LINE-1s vary among location and individuals 

Methylation levels of the same normal oral epithelium sample differed among 

17 studied loci. There were methylation level variations, for example LINE-1s at PKP4, 

EPHA3, COL24A1 introns were nearly completely methylated, whereas LINE-1s at 

PPP2R2B and PKG1 owned about 30-50% methyation. In addition, the ranges of 

methylation levels were also different among loci. While most of specific LINE-1 had 

about 5% range, LINE-1 at SPOCK3, LRP2, FAM49, Loci284395 and Loci286094 had 

wider range, about 20-30% (Figure 4.4).  

Characteristics of LINE-1 hypomethylation in OSCCs 

 Specific LINE-1s were studied in OSCC tissues; the informative 14 loci were 

selected. We found that methylation levels of OSCC tissues had wider range than 

normal oral epithelium. However, most of OSCC tissues demonstrated lower methylation 

levels from normal oral epithelium, except at CNTNAP5 locus which OSCCs were 

hypermethylated. Moreover, some OSCC samples owned hypomethylation and some 

owned hypermethylation of LINE-1s at MGC42174 locus (Figure 4.4).  

When means of methylation levels of each locus were compared between 

normal oral epithelium and OSCC tissues, 12 of 14 loci had significant differences 

(Student t-test, p-value < 0.05) (Table 4.5). Interestingly, 2 loci which were 

hypermethylated and hyper/hypomethylated; CNTNAP5 and MGC42174, respectively 

had no statistical difference of the means. 

Although each OSCC did not show alteration of LINE-1 methylation levels in all 

loci, surprisingly; each individual possessed at least 1 aberrant methylation-level locus 

(data not shown). The aberrant methylation in all 14 loci revealed no correlation with 

clinico-pathological features of OSCCs (ANOVA, p-value >0.05). 
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Figure 4.4 Methylation levels of specific LINE-1s. NOR is normal oral epithelium. OSCC 

tissues are primary OSCC tissues. The value at 0 means that the DNA could 

not successful amplified, not the 0% methylation. 
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Table 4.5 Compare means of methylation levels of specific LINE-1 in each locus 

Loci Type N 

Mean of 

methylation 

levels (%) S.D. p-value 

CNTNAP5 normal 12 73.79 4.33 0.223 

 OSCC 65 68.94 30.13  

ANTXR2 normal 12 94.86 2.38 0.000 

 OSCC 64 64.90 27.79  

FAM49 normal 12 79.72 8.41 0.003 

 OSCC 62 68.93 18.14  

COL24A1 normal 12 92.00 3.72 0.000 

 OSCC 68 77.24 18.57  

ADAMTS20 normal 12 90.19   2.07 0.000 

 OSCC 67 67.88 21.92  

LOC normal   7 81.36   9.07 0.002 

284395 OSCC 42 62.74 26.74  

LOC normal 12 79.54   6.92 0.000 

286094 OSCC 65 60.32 23.93  

LRP2 normal 12 78.02 10.90 0.000 

 OSCC 53 56.30 24.32  

CDH8 normal 12 77.38   6.30 0.000 

 OSCC 68 48.51 22.03  

LOC normal 12 59.25   7.83 0.000 

133993 OSCC 67 40.14 14.50  

MGC42174 normal 12 86.14   3.90 0.694 

 OSCC 67 85.23 16.48  

SPOCK3 normal 12 87.09 10.73 0.000 

 OSCC 64 57.43 21.45  

EPHA3- normal 12 95.02   4.01 0.000 

IVS15 OSCC 68 71.16 22.46  

EPHA3- normal 12 94.15   2.84 0.000 

IVS5 OSCC 65 81.54 18.03  



CHAPTER V 
CONCLUSION AND DISCUSSION 

Conclusion 

Methylation levels of genome-wide LINE-1s in normal oral epithelium differed 

from those of normal blood leukocytes but did not depend on age and genders. The 

results from this study not only confirmed that age and genders had no influence to 

methylation levels of genome-wide LINE-1, but also this kind of epigenetic mechanisms 

was specific to tissue types, as the methylation levels in 2 types of normal tissues; 

normal oral epithelium and normal WBCs were significantly different. OSCCs, like most 

of other malignancies, also possess genome-wide LINE-1 hypomethylation. 

Interestingly, the hypomethylation of genome-wide LINE-1s can be detected in oral 

rinses of OSCCs patients, at the same level of those detected in OSCC primary tissues. 

However, this epigenetic aberration (both found in OSCC tissues and OSCC oral rinses) 

does not depend on tumor stages, histological grades, sites of tumor or the well-

documented risk factors, including smoking, alcohol abused and betel chewing. 

When specific LINE-1s were studied, normal oral epithelium showed different 

methylation levels of specific LINE-1 among individuals and loci. Some loci owned high 

methylation levels, while others acquired lower levels. This finding revealed that not all 

LINE-1s were completely methylation. Each individual of normal oral epithelium 

occupied different methylation levels in the same locus, and it also differed from other 

loci. Although the entire genome methylation levels were decreased in OSCCs but this 

alteration did not distribute equally in every LINE-1s. In OSCCs, alteration of methylation 

levels of specific LINE-1s studied here had no specific pattern. Each individual OSCC 

had aberrant methylation levels in different loci and different magnitudes. Although most 

of OSCCs lost methylated CpG, some gained methylated CpG. Thus the alterations of 

methylation of LINE-1s in cancerous tissues were not specific to locus. Moreover, the 

aberrant LINE-1 methylations were not influenced by clinical stages, histological grades, 

tumor sites and risk factors. However, methylation levels of specific LINE-1s were 

significantly different between normal oral epithelium and OSCCs tissues.  
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Discussion 
The efficiency of current treatment modalities for OSCCs depends strongly on 

the time of diagnosis, with better chance of survival and less morbidity if a tumor has 

been detected at an early stage. Thus, there is an urgent need for rapid and efficient 

early detection methods. Detection of cancers in the oral cavity still requires expertise. 

Up till now, the accurate diagnosis of oral cancers depends on surgical biopsy and 

histological studies which are difficult to apply in large populations. However, there are 

attempts to develop simple and reliable tools for early discovery of oral cancers. During 

this decade, the use of saliva or mouthwashes/oral rinses for malignancy detection has 

been a focus of interest. Evidence suggested that epithelial cells in saliva provide 

suitable materials for head and neck squamous cell carcinomas (HNSCCs) genetic 

analysis (123). Exfoliated oral mucosal cells and also malignant cells can be easily 

collected via saliva or oral rinses. This procedure is not invasive, not expensive, and 

does not require expertise. Moreover, the shed cancer cells in saliva and primary 

cancerous tissues had the same results of microsatellite alterations (55), and aberrant 

promoter methylation (127). Saliva or oral rinses of HNSCC patients exhibited 

telomerase activity (122), increased mitochondrial DNA content (128), and promoter 

hypermethylation (129). Loss of heterozygosity (LOH) was found in mouthwashes of 

OSCC patients but not found in those of healthy individuals (130). Comprehensive 

salivary analysis revealed an overall altered salivary composition in OSCCs (58, 59) and 

also an increase in tumor markers including Cyfra 21-1, tissue polypeptide antigen, 

CA125, and IL-8 (60, 61). Three species of bacteria in saliva were found to be increased 

in OSCC patients (131). Salivary transcriptome study revealed elevation of 7 transcripts 

including DUSP1, H3F3A, IL1B, IL8, OAZ1, SAT, and S199P in OSCCs (132, 133). 

Accordingly, biomarkers in oral rinse represent a possible screening tool capable to 

apply in massive population to identify high risk individuals instead of current screening 

methods which require specialties. However, the above biomarkers are still not 

efficiently applied in clinical screening. This may be due to the nature of cancer 

development is a multistep process; the use of specific markers may be insufficient for 

detection. Thus, this study was performed in order to seek for a biomarker which can 
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detect malignant change at any steps, whether early or late stage; and the global 

hypomethylation might be a good candidate. 

Epigenetic alterations including global (genome-wide) hypomethylation were 

reported in many types of cancers (134-137). Although there were evidences that 

supported the epigenetic involvement in oral malignancies, global hypomethylation has 

not been reported yet (138-141). Some studies revealed global hypomethylation in 

HNSCCs which included carcinomas in oral cavity, nose, sinuses, pharynx, and larynx 

(18, 19). But previous study pointed out that methylation level of LINE-1s, which reflect 

global methylation levels, had tissue specification. Different kinds of tissue from the 

same organ system possess different methylation levels, for instance esophagus and 

stomach, or bladder and kidney (10). Furthermore, tumors of larynx/hypopharynx and 

oral cavity had different levels of soluble CD44 (62), as well as the incidence of LOH 

(142). Accordingly, we proposed that OSCCs which originate from mucosa in oral cavity 

may have different methylation levels from carcinomas originate from other locations in 

head and neck regions. For that reason, we studied LINE-1 hypomethylation in OSCC 

patients by using oral epithelium of normal individuals as controls. The easiest and 

noninvasive way to collect oral epithelium is from oral rinses. From this study, LINE-1 

hypomethylations could detect OSCCs not only at early occurrence but also at any 

hidden site of the oral cavity and in any histological type. It was independent of 

smoking, alcohol consumption and betel chewing. This finding differed from the study of 

Smith et al., which reported that global hypomethylation in HNSCC associated with 

smoking, alcohol consumption and stage (17). Therefore, our LINE-1 methylation study 

suggested that OSCCs may have different natures from HNSCCs and the methylation 

levels of LINE-1s are specific to types of tissues. Perhaps the global loss of methylation 

in OSCC occurs since early onset of carcinogenesis and does not continue with the 

tumor progression is another possibility contributes to the reason that LINE-1 

hypomethylation did not relate to clinico-pathological status. In spite of the fact that oral 

rinses of OSCC patients consist of few shed cancerous cells and contaminated with 

normal epithelium and some immune cells; surprisingly, the hypomethylation could be 

detected in oral rinses of OSCC patients and did not statistically differ from those found 

in primary OSCC tissues and OSCC microdissected samples. Thus, COBRALINE-1 of 
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OSCC oral rinses could reflect the majority of OSCC methylation levels. Consequently, 

COBRALINE-1 of oral rinse appears to have a role in oral cancers screening. However, 

the sensitivity and specificity of this technique in identification of OSCCs are to be 

proved. 

In contrast to general believe that LINE-1 should have been completely 

methylated, the results from this study in normal oral epithelium revealed partial 

methylation levels of genome wide LINE-1s. In addition, the lower methylation levels of 

some CU-L1s in normal oral epithelium proved that not all LINE-1s are completely 

methylated. Another interesting finding was that although the methylation levels of 

genome-wide LINE-1s had significantly decreased in OSCCs but, the methylation did 

not loss evenly in all loci. From the study of 14 selected specific LINE-1s in OSCCs, 

some loci were hypermethylated and some were hypomethylated and some were within 

normal range. The alterations of methylation level were not the same in every OSCCs. 

Each individual OSCC had aberration in different loci and in different degrees. These 

findings suggested that methylated CpG dinucleotides of 5’ LINE-1 had randomly 

changed in OSCCs. Even though a little proportion of specific LINE-1s was studied, in 

OSCCs we found that at least one locus showed aberrant methylation. These 

aberrations also had no correlation with clinico-pathological features. Then CU-L1 may 

be useful in detection OSCCs and may increase sensitivity power of the test from 

COBRALINE-1. 

In conclusion, this study revealed that OSCCs had hypomethylation of LINE-1s 

and this aberration could be found in oral rinses of the patients. Our findings suggested 

the potential use of COBRALINE-1 of oral rinses as a non invasive tool for OSCCs 

detection. However, CU-L1 may provide more accuracy information of OSCCs. These 

simple PCR techniques still need further study in an attempt to improve sensitivity and 

specificity, eventually becomes a reliable investigation technique. 
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Future study 

Since CU-L1 is a very interesting technique for detection aberrant methylation 

of specific LINE-1s and oral rinse can be used as a source of oral cancer cells 

collection. Further study of CU-L1 in oral rinses of OSCC patients may give some more 

accuracy and reliability for developing a simple and non-invasive screening or 

diagnostic tool. However, CU-L1 amplifies specific LINE-1 which has less copy than 

genome-wide LINE-1s; more amount of cancerous DNA may be needed. The amount of 

cancerous DNA collected from patient’s oral rinses depend on shed cancerous cells 

and aberrant methylation levels may be masked by those of normal cells, therefore CU-

L1 in oral rinses may give a less sensitive result. The large numbers of OSCC oral rinse 

samples may be required to warrant the sensitivity and specificity of this test before 

apply as a screening modality. 

Another interesting aspect may be the methylation levels of leukocytes of 

cancerous patients, since leukocytes contribute to host defense mechanisms against 

malignant cells. Also the methylation status of LINE-1s in precancerous lesions is not 

reported. Moreover, the mechanisms and roles of loss or gain methylated CpG 

dinucleotides of specific LINE-1s in malignancies are still needed elucidation. 
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