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CHAPTER I

INTRODUCTION

1.1 Research Motivation

In power system operation and control, it is widely known (see, e.g., [1–6]) that large load variation

greatly influences the system’s stability and dynamic performances. In designing a compensator so as

to improve the stability and the dynamic performances, the load characteristics should be taken into

account.

More specifically, the fluctuation of the load has an impact on the rotor angle, the terminal

voltage, the speed deviation of the generator, and the voltages of the nearby buses. For example,

the operation of an electric arc furnace causes the fluctuation of load voltage in the power system

and can significantly deteriorate the stability and the performances of a nearby generating unit. In

order to keep the system in stable operation with satisfactory performances, it is necessary that the

outputs of interest be kept within their prescribed bounds in the presence of load voltage fluctuation.

Any violation of these bounds can give rise to the system instability and, consequently, may cause

blackout in widespread area.

In this connection, the improvement of the power system’s stability and performances can be

carried out by utilizing devices such as Power System Stabilizer (PSS), Static Compensator (STAT-

COM), Static VAR Compensator (SVC) and Super Conducting Magnetic Energy Storage (SMES).

When the system is subject to the load that fluctuates all the times (within a reasonably large range),

the problem of tuning parameters for these compensation devices is not easy to solve.

Most of available control theories are based on properties defined in terms of the system out-

puts in response to certain deterministic test inputs (e.g., the unit-step function). When the load has

uncertain characteristics, such control theories no longer provide effective tools for compensating the

power system. This is mainly because the design problem is not formulated in a realistic manner.

For this reason, to arrive at an accurate and realistic formulation, the design problem should take into

account the characteristics of the input (which is the fluctuating behavior of the load).

1.2 Literature Review

There have been many researches on how to improve the dynamic performances of power systems

subject to load voltage fluctuation. Some of them are as follows.

� Wu et al [1, 2] propose the improvement of dynamic performances of synchronous generators

near electric arc furnace loads. They employ the step response criterion for determining the

adjustable parameters of the static excitation system.
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� Chen et al [3] investigate the voltage fluctuation problem of a large steel plant. They compen-

sate the power system by using adaptive control of exciter and governor of the cogenerator.

� Sensarma et al [5] make use of STATCOM for compensating the power system. The design

method used is based on frequency domain analysis. They perform simulations of compensated

power systems with the test input being the step change in voltage reference.

� Zhao and Jiang [6] present the use of SVC for improving the performances of the power system.

The design parameters of SVC are determined by using the robust optimization techniques.

After obtaining the design parameters, a fault in the transmission line applies to the power

system so as to test the performances of the compensated system.

� Tay and Conlon [7] describe how to use an SMES in compensating the fluctuation of the load.

They assume that the SMES is connected in parallel with the disturbing loads. The SMES

compensates the power system by providing the active and reactive power for the fluctuating

load. The compensation is carried out by using optimization strategy.

� Sakamoto et al [8] study the development of Superconducting Generator (SCG) for mitiga-

tion of the voltage fluctuation in power systems with a wind power generator. The operational

impedance-based method, see the references therein for details, is adopted for obtaining the

mathematical model of SCG. After that, they demonstrate the effectiveness of SCG by per-

forming simulations of the operation of the wind generator equipped with SCG.

Apparently, no one has considered the uncertain characteristics of the load fluctuation. Evi-

dently, the design formulations employed by those researchers are not realistic in practice. For ex-

ample, the system responses to a step input cannot be used to accurately describe the performance of

the system subject to the load voltage fluctuating randomly. To assess the actual performance of the

system, design engineers may have to perform simulations with a number of possible load waveforms

after obtaining a design result, so as to check whether the system can performs satisfactorily or not.

This usually involves repeated redesign and simulation of performances, a process that can be very

time-consuming.

1.3 Thesis Objective

The objective of this thesis is to design a compensator for improving the stability and the dynamic

performance of a power system operating under load fluctuation, in which all possible load volt-

age variations are modelled as persistent functions satisfying certain norm-bounding conditions (see

(2.3)). As a result, the system’s stability and performances are guaranteed to be maintained within

their acceptable ranges as long as the load voltage variation satisfies the bounding conditions.

The design methodology adopted in this work is an adjunct to Zakian’s framework [15], which

comprises the principle of matching [14] and the method of inequalities [10, 12]. The principle of
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matching suggests what kind of design criteria should be used so that the design problem is formu-

lated in an accurate and realistic manner, whereas the method of inequalities requires that the design

problem be cast as a set of inequalities that can be solved in practice.

In this thesis, in order to illustrate how the framework can be used in improving the system’s

stability and performances, the compensation will be carried out by using PSS and SVC. However, it

is important to note that the framework adopted here is not only applicable to the design of PSS and

SVC but also the design of other types of compensator.

1.4 Scope of Thesis

1. The model of power systems used in this research is based on the model of a single machine

connecting to an infinite bus.

2. The linearized model is used for designing compensators for power systems.

3. Load voltage fluctuation is modelled as persistent functions having uniform bounds on magni-

tude and derivative.

1.5 Methodology

1. Collect and study literature on the design of compensators for improving the dynamic perfor-

mances of power systems subject to load voltage fluctuation.

2. Formulate the design problem such that the design objectives are in the form of inequalities and

the voltage of the load satisfies bounding norm conditions.

3. Employ the principle of mathcing and the method of inequalites to the design problem.

1.6 Contributions

1. A method for designing compensators for improving dynamic performances of a power system

which operates under load voltage fluctuation

2. A case study of compensation of a single machine power system subject to load voltage fluctu-

ation which can be extended to the case of multi-machine power systems.

1.7 Structure of Thesis

The organization of the thesis is as follows. In the next chapter, the fundamental design theory is

explained. Chapter 3 presents the improvement of the power system’s stability and performances by

using PSS. Chapter 4 describes the enhancement of the power system’s stability and perfomances by

using SVC. In the last chapter, conclusions are given.



CHAPTER II

FUNDAMENTAL DESIGN THEORY

In this chapter, an overview of the fundamental theory used in designing compensators of power

systems is described.

Consider a linear, time-invariant and causal system whose input � � � � � and outputs

�� � � � � are related by the convolution integral

����� �� �

� �

��

	���� 
���
��
 �� � �� 	� � � � ��� (2.1)

where 	� � � � � denotes the impulse response of ��, and 	���� � 
 �� � 
. In this work, suppose

that

	���� � ��Æ��� � 	������ (2.2)

where �� is a real number, Æ denotes Dirac delta function and 	�� � � � � is bounded and piecewise

continous.

Assume that the input � � � � � is known only to the extent that it belongs to the set �
described by

� � �� � ���� �	� � ���� � 
�� (2.3)

where 	 and 
 are some positive numbers. The set � , called the possible set, contains all the inputs

that happen or can happen or are likely to happen in practice.

A chief design objective is to ensure that the outputs �� remain within prescribed bounds in the

presence of disturbance acting to the system. That is to say,

������ ��� � �� �� �� �� � �� 	� � � � ��� (2.4)

where ����� �� denote the value of outputs �� in response to a possible input � at time � and �� are

the largest values of �� that can be accepted. Notice that the crieria (2.4) are not computationally

tractable.

Define

��� � ��
	��

��
���

������ ��� �� � �� 	� � � � ��� (2.5)

where the performance measures ��� are sometimes called the peak outputs for the possible set � . It

is easy to see that the condition (2.4) is equivalent to

��� � �� �� � �� 	� � � � ��� (2.6)

Consequently, the inequalities (2.6) become practical conditions only if the peak outputs ��� are com-

putable.
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2.1 Computation of Performance Measures

It is shown [9, 16] that the problem of computing ��� for (2.1) can be rewritten as

��� � �������� � �  ��� (2.7)

where ����� is the cost function given by

����� �

� �

��

	���
���
��
� (2.8)

It is shown [16] that if the system is BIBO stable, then the improper integral in (2.8) is well approxi-

mated as

����� � ����
� �

� 


�


	����
���
��
� � � 
 (2.9)

for a sufficiently large � . From (2.9), one can easily compute ����� using finite difference approxi-

mation schemes.

2.1.1 Cost Function Approximation

For �  ���� � �, the trajectories 	����� and ���� are represented by the vectors �	�  ����� and
��  ��� such that

�	� �
�
	���� 	

�
����� � � � � 	

�
���� 	

�
�

�

(2.10)

and
�� � ����� ������ ������ � � � � ����� ���


 � (2.11)

where 	�� � 	������ and �� � �����. The time point �� is given by

��� � ��
���� � �� � � for � � ������ �� � � � � �� ��

where the uniform difference � � ��� is used.

It is important to note that the optimization in (2.7) is convex and that there are more than

one maximal inputs (i.e., the inputs that give the peak output). In order to make the maximal inputs

obtained from solving (2.7) unique, it is necessary to set up ��� � 
 (see [16] for details). Hence,

(2.11) is rewritten as
�� � �
� ������ ������ � � � � ����� ���


 � (2.12)

Next, we use Simpson’s rule in approximating the truncated integral in (2.8). If the positive

number � is chosen to be even, then we have

����� � �


�
�� � ��� ���� (2.13)

where the vector ��  ��� in (2.13) is given by

�� �
�

�

�
�	����� 		

�
���� � � � � �	

�
���

���
�

� 	��� 
���

�

� (2.14)
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2.1.2 Constraints Approximation

Let � � � denote componentwise inequality between vectors � and �. The inequality ���� � 	
can be replaced by

� �� �	�� and � � �� �	��� (2.15)

where � and �� denote the identity matrix and a vector with all components being one, respectively.

Similarly, the inequality � ���� � 
 can be rewritten as

�� �� � 
�� and ��� �� � 
��� (2.16)

where ��  ������ is the matrix used in approximating the derivative by first-order forward differ-

ence formula

�� �
�

�

�
��������

� 
 
 � � � 
 
 

�� � 
 � � � 
 
 


 �� � � � � 
 
 

...

...
...

. . .
...

...
...


 
 
 � � � �� � 


 
 
 � � � 
 �� �

	







�
�

Accordingly, an approximant of ��� is the solution of the following large-scale optimization

problem

��� �� ������� ��� � �� satisfies �	���� and �	������ (2.17)

The optimization problem in (2.17) has two important properties. First, it is shown in [16] that when

both Simpson’s rule and the first order forward difference formula are used, the problem (2.17) is

convex for any difference � � 
. Second, the matrices associated with (2.17) are sparse.

Nowadays, large-scale convex optimization problems can readily be solved by efficient numer-

ical algorithms. Therefore, (2.17) can be solved efficiently in practice for any value of � � 
 used. In

this work, we use the package called “SeDuMi” [17] to solve the convex optimization problem (2.17).

2.2 Convenient Upper Bounds of the Peak Outputs

Note that the calculation of ��� is sophisticated. Thus, for simplicity in demonstrating the idea and

the usefulness of the design framework, one may consider using conveniet upper bounds ��� of ��� (i.e.

��� � ���) given by

��� � ������ � ��� � ������� (2.18)

where �� are the responses �� due to the unit step input � (i.e., ����� � �������) and ��� denotes the

steady-state values of ��. See [14] for the derivation of formula (2.18).

2.3 Stabilization of Performance Measures

Let �  �� denote a vector of design parameters. In solving the inequalities

������ � �� �� � �� 	� � � � �� (2.19)
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by numerical methods, it is necessary to obtain a stability point—that is, a point �  �� such that

������ �� ��� (2.20)

This is because search algorithms, in general, are able to seek a solution of (2.20) only if they start

from such a point (see [13, 15] for the details). In order to formulate the problem of determining a

stability point so that it is suitable for solution by numerical method, it is necessary to replace (2.20)

by an equivalent statement that is soluble by numerical methods.

Assume that a state-space realization of the system is ���������. Then one can easily prove

that ������ �� for all � if all the eigenvalues of � lie in the open left half of the complex plane; that

is to say, if

���� � 
� (2.21)

where ���� is called the spectral abscissa of � and given by

���� � ���
�
�Re  ����� (2.22)

and  ���� denotes an eigenvalues of �. Notice that ���� � � for all values of �  �� and that �

can be computed economically in practice. Accordingly, the inequality (2.21) is always soluble by

numerical methods [10], [14], [13].



CHAPTER III

ENHANCEMENT OF POWER SYSTEM’S STABILITY AND

PERFORMANCES BY USING PSS

This chapter describes the enhancement of stability and performances of power system operating

under load voltage fluctuation by using PSS in the excitation system of the generator.

3.1 Power System Model

The power system model used in this study is taken from [4], which is a standard textbook, and is

modified by adding a local load at bus 2. The system consists of a transmission network, a generator,

an excitation system and a governor control loop. Each of them will be modelled individually and

thereafter grouped as an interconnected system.

The single line diagram of the system is shown in Figure 3.1, where �
 denotes the generator

current, !
 the terminal voltage of the generator, !� the voltage at the infinite bus, "� the load voltage,

#�� an inductance of a tranformer connecting the generator to bus 2 and #� an inductance of the

transmission line connecting bus 2 to the infinite bus.

Figure 3.1: Power system model under varying load voltage conditions

3.1.1 The Transmission Network Model

Assume that the power system operates under three-phase balanced condition. The transmission

network model is derived from the equivalent circuit of the single-line diagram shown in Figure 3.1.

From the equivalent circuit (in the $%& reference frame) shown in Figure 3.2, one easily obtains

!
 � #��
��

��

� "�� (3.1)

where
!
 ��� � '
 ��� ���(�� )��
"���� � ����� ���(�� )��
�
 ��� � �
 ��� ���(�� )��

�
� � (3.2)
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Figure 3.2: Equivalent circuit of single-line diagram of power system

and )� �� � �� 	� �� are the phase angles of !
 , "� and �
 at the steady state.

In the following, the network variables in the $%& reference frame will be transformed into

the �*+ reference frame (see, for example, [4] for the details). By using such a transformation, the

mathematical model of the system with the �*+ variables is described by time-invariant differential

equations, as opposed to time-varying differential equations in the $%& reference frame. See Appendix

A for details.

It is easy to verify that the transmission network is described by

�����
��

� �
���

�'
�� � ����� � (�
��
�����
��

� �
���

�'
�� � ������ (�
��

�
� � (3.3)

where (�
��, ����, '
��) and (�
��, ����, '
��) are the �- and *-components of (�
 , ��, '
 ), respec-

tively and the voltage magnitude in the $%& reference frame is related to the voltage magnitude in the

�*+ reference frame by

�
 ��� �
�
��
����� � ��
�����

����� �
�
� �
������ � � �

������

'
 ��� �
�
'�

����� �'�


�����

����
����
� (3.4)

3.1.2 The Synchronous Generator Model

The nonlinear mathematical model of a synchronous generator, expressed in terms of �- and *-flux

linkages [4], is given by the following equations:

���

�

��
� �


 �
��
��'�

� � �,� �, �
���
�� �'fd�

���

�

��
� �


 ���
��'�

� � �,� �, �
���
���

�Æ
��

� (��( � (� � (��(

���
��

� �
�� ��� � �� �-��(�

�� � '�
��
�� �'�

��
�� � �, �
� �, �

���
���
��

���������
���������
� (3.5)

where '�� and '�� are the transient electromotive forces, ���� and � ��� are the open circuit field time

constants, ,� and ,� are the reactances, ,�
� and , �

� are the transient reactances, 'fd is the field

voltage, Æ is the rotor angle of the generator, ( is the angular speed of the generator, . is the inerita

constant, �� is the mechanical input torque, �� is the electrical input torque and -� is the damping

coefficient of the generator.
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3.1.3 The Excitation System Model

The excitation system comprises a voltage transducer, an automatic voltage regulator (AVR) and a

power system stabilizer (PSS). The block diagram of the excitation system is given in Figure 3.3 and

its state-space representation is

���
��

� �

�

�'
 � "��

���
��

� -
���
��

� �

	

"�
���
��

� �

�

���
���
��

� "� � "��

���
��

� �

�

���
���
��

� "� � "��

'fd � -���ref � "� � "��

��������
��������
� (3.6)

where "� and �� �� � �� � � � � �� denote, respectively, the state variables and the lead-lag time constants

of the excitation system, �� is the transducer time constant, �� is the washout time constant, - is

the PSS gain, and " is the output signal of the PSS described by

" �

��
�

"min
 � "� � "min

 �
"�� "min

 � "� � "max
 �

"max
 � "� � "max

 �
(3.7)

-

	

��
	
��
�
��
�

��
�
��
�

-�
�

��
�
�

� � � �

�

� ��
�

�

�
�
�

PSS

�( "� "� "�"

�
min
�

�
max
�

�ref

"�'
 'fd�

�
�

Figure 3.3: Block diagram of excitation system

It is worth noting that, in order to ensure that the PSS model always operates in the linear range,

the stabilizer control signal " needs to satisfy

"min
 � " � "max

 � (3.8)

where "min
 and "max

 are some constants.

3.1.4 The Governor Control Model

Figure 3.4 shows the block diagram of the governor control loop. The differential equations describ-

ing this subsystem are given by

���
��

� �


�
�(

���
��

� �

�

���
�

� /� � /��

���
��

� �

�

�/� � /��

�� � �ref � /�

������
������
� (3.9)
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where /� �� � �� 	� �� are the state variables, -� is the integrator gain, 0 is the droop constant, � is

the governor time constant, and �! is the prime mover time constant.

�

�

��

�

�

�����

�

�����
� �� ��
�

� � �
�

���

�� �� ��

�ref

��

�
�

�
�

Figure 3.4: Block diagram of governor loop

3.1.5 The Interconnected Power System Model

On combining (4.3), (3.3), (4.4), and (4.6), the interconnected power system is therefore described by

the following nonlinear differential equations

��

��
� ���1��� 2� �'2� (3.10)

where �  ������ and '  ����� are constant matrices given in Appendix B. The state vector

� � � � ��� , the input vector 2 � � � �� and the vector 1 � ��� � �� � ��� and are given by

� �
�
Æ �( '�

� '�
� �
�� �
�� "� "� "� "� /� /� /�

�

�

1 �
�

 �� 
 
 �� �	 �
 �� �� ��� 
 
 


�

�

2 �
�
�ref �ref ���� ����

�

�

where the nonzero elements of 1 are as follows:

�� � � �
�� �'�

��
�� �'�
��
�� � �, �

� �, �
���
���
����

�� � �(�
���

�	 � ��(�
���

�
 � �

�

�
'�

�� �'�


���

�� � ��

�� �'�
��
�� �'�

��
�� � �, �
� �, �

���
���
����

�� � ��
�
��
�

�'�
��
�� �'�

��
�� � �, �
� �, �

���
���
����

��� � ��
�
�
��
�
�

�'�
��
�� �'�

��
�� � �, �
� �, �

���
���
����

By defining as an output vector � as

� �
�
Æ '
 �( "

�

�

the output equation of the interconnected system is described by

� � 3������ 2�� (3.11)
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where 3 and � are given by

3 �

�
���

� 
 
 
 
 
 
 
 
 
 
 
 


 
 
 
 
 
 
 
 
 
 
 
 


 � 
 
 
 
 
 
 
 
 
 
 


 
 
 
 
 
 
 
 
 � 
 
 


	


� �

� �
�


�
'�

�� �'�


�� 
 

�


�

The generator parameters (in per unit with respect to 			
 MVA base) are shown in Tab. 4.1,

and the power system is in the steady state with the following conditions:

4� � 
�� pu� �� � 
���� pu and '
� � ��
 pu�

By applying the steady-state analysis given in [4], one obtains a nominal operating point

�� �
�
Æ� �(� '�

�� '�
�� �
��� �
��� "�� "�� "�� "�� /�� /�� /��

�

� (3.12)

where Æ� � ����Æ, '�
�� � ��
	� pu, '��� � 
��		 pu, �
��� � 
��	� pu, �
��� � 
���
 pu and others

are zero.

Linearizing (3.10) and (3.11) about the operating point (3.12) yields

��"
��

� ������2

�� � ������2

�
� (3.13)

where �, �, � and � are constant matrices given in Appendix B. Since �ref and �ref are constant, the

incremental inputs in �2 are ����� and �����.

Table 3.1: Generator parameters in per unit base

-� = �
 . = ��� sec -� = �



-� = ��� #�� = 
��� pu #�� = 
�� pu

#�� = 
��� pu � ��� = ��
 sec � ��� = ��
 sec

� = 
�	 sec �! = 
�� sec �� = 
�
�� sec

0 = 
�
� 0 = 
�

� pu ,� = ���� pu

,� = ���� pu , �
� = 
��
 pu , �

� = 
��� pu

3.2 Characterization of the Possible Set

This section describes how to characterize the possible set 4 , which contains all the possible load

voltage deviations in the power system. From the previous section, one can see that the (incremental)

inputs in the linearized model consists of ����� and �����, which are the �- and *-components of

the load voltage deviation ���.
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�

��
�

�
�

�
�

�
�

��

��

�
�
��

�
�
�
�
�

�
�
��

�
�




�����

�����
����

���

����

���

Figure 3.5: Region of possible ����� and ����� satisfying (3.19)

Assume that the power system is in the steady state for � � 
 and the load voltage changes for

� � 
. That is,

"���� �

�
��� ���(�� )��� � � 


��� ���(�� )�� � �"����� � � 


�
� (3.14)

where ��� is constant and )� is the phase angle of "� at the steady state (see (4.1)). The term �"� is

viewed as the disturbance to the power system and is written as

�"���� � ������ ���(�� )�� for � � 
� (3.15)

In practice, the deviation of the load voltage �"���� is bounded by some positive value. That

is to say,

��"����� � 	 �� � 
� (3.16)

where � is a positive constant. According to (3.15), it readily follows that

�������� � 	� (3.17)

Let ��� and ��� denote the �- and *-components of ���, which can be obtained in the linearization of

(3.10). Using (3.17), one obtains����
�

������ � ����� � ������ � ����� � ���

���� �	� (3.18)

Normally, the load voltage deviates about 1–5% from its nominal value. This is to say, the

bound � is much smaller than ���. Hence, the terms 	�, �� �
��� and �� �

��� are sufficiently small

to be neglected in the calculation. The inequality (3.18) can be therefore simplified as

�������� � �������� �	���� (3.19)

Figure 3.5 shows the region in which the load voltage deviations ����� and ����� satisfy the

condition (3.19). We can see that the possible maximum values of ����� and ����� are, respectively,
�#��
#��

and �#��
#��

. For simplicity, the bounding conditions used in this work are set to be equal by using
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the minimum value of
�
�#��
#��

� �#��
#��

�
. Accordingly, the possible input set � used in the subsequent

design is defined as

� �
�
������������� �

�������� �	�� �� ������� � 
��
�������� �	�� �� ������� � 
�

�
� (3.20)

where 	�,	� , 
� and 
� are some positive numbers.

Since there are two components of disturbances (����� and �����), The calculation of the

upper bounds ��� and ��� defined in (2.18) and (2.17) can be extended in a straightforward manner.

Using the properties of linear systems, it can be verified that

��� �
������������ � ������ � ����

���
�

� �

������������ � ������ � ����

���
�

�� (3.21)

where ��� denote the responses �� when ����� � � and ����� � 
, and ��� denote the responses

�� when ����� � 
 and ����� � �. and ������ �
�
��� denote the steady-state values of ��� and ��� ,

respectively.

It may be noted that ������ �
�
��� are computed by using the final value theorem, step responses

are calculated by using Zakian’s ��� recursion [11] (which is economical and reliable even if the

system is very stiff), and the one-norm is computed by using the trapezoidal rule of integration.

3.3 Design Formulation

In the subsequent design, a PSS is used as a case study for improving the performance of the power

system, where the speed deviation of the generator �( is fedback to the PSS. The configuration of

the feedback control system is shown in Figure 3.6.

Governor Loop

Excitation System
(AVR & PSS)

Generator

Network

�

�

��

�

�

�

�

�

�

�

� �

� �

�

�

'fd

��

���

'


�(

Æ

�


Figure 3.6: Configuration of the power system with certain outputs fedback to PSS

To ensure the good performances of the power system, the following requirements (which is

based on a practical operating criteria [4]) should be taken into design consideration:

� the change of any generator’s rotor angle should not be too high, for example, ��Æ–�
Æ;
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� the change of terminal voltage of the generator should be maintained within ��� from its

nominal value;

� the speed deviation of the generator should be restricted within�
�� Hz from its nominal value;

� the control signal " should remain within the linear range of operation of �
�	 pu.

From the above requirements, the principal design specifications are expressed by the following set

of inequalities:
5���� � ���� � ��Æ

5���� � ���� � 
�
� pu
5���� � ���� � 
�

	 pu
5���� � ���� � 
�	 pu

���
��� � (3.22)

where � �
�
- �� �� �� �� ��

�

is the vector of design parameters in the PSS.

From the requirements in (3.22), it is clear that the design problem indeed has several objec-

tives, as suggested by the method of inequalities. In this work, inequalities (3.22) are solved by a

numerical search algorithm called the moving boundaries process (MBP). See [10, 15] for the details

of the algorithm.

3.4 Numerical Results

This section presents the numerical results of the design problem formulated in Section . In this work,

assume that the deviation of load voltage ����� and ����� is bounded by 0.05 pu of their nominal

value and the rate of change is bounded by 0.02 pu/s. So, the bound 	�, 	�, 
� and 
� are given

as follows:

	� �	� � 
�
� pu and 
� � 
� � 
�
	 pu/s�

3.4.1 Design of PSS by Using the Upper Bounds of the Peak Outputs

In this subsection, we make use of the upper bounds of the peak outputs ��� as performance measures.

By using the MBP algorithm, the following design is obtained

� �
�
����
 
�
	� 
�	�
 
�
�
 
�
�� 
���


�

�

and the corresponding performance measures are

5� � �����Æ �� ��Æ��
5� � 
�
	�	 pu �� 
�
� pu��
5� � 
�

�	 pu �� 
�

	 pu��
5� � 
�
��� pu �� 
�	 pu��

In the following simulation, suppose that the power system is in the steady state at the beginning

and the disturbances apply to the power system. To verify the design results, a random test input is

generated using the function rand in MATLAB (where the time interval used is one second) such that
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its magnitude and the magnitude of its slope are bounded by 
�
� pu and 
�
	 pu/s, respectively. The

waveform of random test inputs is shown in Figure 3.7.

The system’s output responses to the test inputs are shown in Figure 3.8. Furthermore, it is

found that the results so obtained agree with those obtained from the simulation of the actual nonlinear

systems.

3.4.2 Design of PSS by Using the Peak Outputs

In this subsection, we use of the peak outputs ��� defined in chapter 2 as performance measures. By

using the MBP algorithm, the satisfactory design parameters are the same as those obtained in the

previous subsection and the corresponding performance measures are

5� � ���	�Æ �� ��Æ��
5� � 
�
	�� pu �� 
�
� pu��
5� � 
�

�	 pu �� 
�

	 pu��
5� � 
�
��� pu �� 
�	 pu��

Table 3.2 shows the peak outputs of the system with the PSS’ parameters obtained in the design

by using the upper bounds of peak outputs as performance measures. Note that the value of peak

outputs are less than or equal to thier upper bounds.

Accordingly, using the peak outputs ��� as performance measures can reduce conservatism in

the design and hence yield a better solution. To demonstrate the advantage of using ��� as performance

measures, the following �� are redefined, for example, by

5���� � ���� � ��Æ

5���� � ���� � 
�
	� pu
5���� � ���� � 
�

	 pu
5���� � ���� � 
�	
 pu

���
��� � (3.23)

By using the MBP algorithm, an acceptable design

� �
�
����
 
�
�
 
���
 
�
�
 
�
�� 
��



�

�

is found and the corresponding performance measures are

5� � �����Æ �� ��Æ��
5� � 
�
	�	 pu �� 
�
	� pu��
5� � 
�

�� pu �� 
�

	 pu��
5� � 
�
��� pu �� 
�	
 pu��

The system’s output responses to the test inputs are shown in Figure 3.9.
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Table 3.2: Comparison of system’s performances obtained by using ��� and ���

� ���� ����

� ���	�Æ � �����Æ

	 
�
	�� pu � 
�
	�	 pu
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�

�	 pu � 
�

�	 pu
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�
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�
��� pu
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Figure 3.7: Test input waveform
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Figure 3.8: Output responses due to the test input (by using upper bounds as performance measures)
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Figure 3.9: Output responses due to the test input (by using peak outputs as performance measures)



CHAPTER IV

ENHANCEMENT OF POWER SYSTEM’S STABILITY AND

PERFORMANCES BY USING SVC

This chapter presents the improvement of stability and performances of power system subject to load

voltage fluctuation by using SVC installed at the nearby bus.

4.1 Power System Model

The power system considered in this study is modelled as a single generator connecting to an infinite

bus with an SVC installed at bus 2. The single line diagram of the system is shown in Fig. 4.1,

where �
 denotes the generator current, !
 the terminal voltage of the generator, !� the voltage at the

infinite bus, "� the voltage at bus 2, "� the load voltage at bus 4, #��� an inductance of a transformer

connecting the generator to bus 2, #��� an inductance of a transformer connecting the bus 2 to bus 4

and #� an inductance of the transmission line connecting bus 2 to the infinite bus.

By assuming that the power system operates under three-phase balanced condition, it follows

that
!
 ��� � '
 ��� ���(�� )��
"���� � ����� ���(�� )��
"���� � ����� ���(�� )��
�
 ��� � �
 ��� ���(�� )��

���
��� � (4.1)

where )� �� � �� � � � � �� are the phase angles of !
 , "�, "� and �
 at the steady state.

Let ('
��, ����, ����, �
��) and ('
��, ����, ����, �
��) denote the �- and *-components of ('
 ,

��, ��, �
 ), respectively. One can readily show that the variables in the $%& reference frame is related

Figure 4.1: Power system configuration with an SVC installed at bus 2
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to the �*+ reference frame by

'
 ��� �
�
'�

����� �'�


�����

����� �
�
� �
������ � � �

������

����� �
�
� �
������ � � �

������

�
 ��� �
�
��
����� � ��
�����

�������
�������
� (4.2)

The power system considered here consists of a generator, an excitation system, a governor

control loop and SVC. In the following subsections, models of each component are developed and

then grouped as an interconnected system.

4.1.1 The Synchronous Generator Model

The generator is modelled as the following nonlinear differential equations [4]

���

�

��
� �


 �
��
��'�

� � �,� �, �
���
�� �'fd�

���

�

��
� �


 ���
��'�

� � �,� �, �
���
���

�Æ
��

� (��( � (� � (��(

���
��

� �
�� ��� � �� �-��(�

�� � '�
��
�� �'�

��
�� � �, �
� �, �

���
���
��

���������
���������
� (4.3)

where '�� and '�� are the transient electromotive forces, ���� and � ��� are the open circuit field time

constants, ,� and ,� are the reactances, ,�
� and , �

� are the transient reactances, 'fd is the field

voltage, Æ is the rotor angle of the generator, ( is the angular speed of the generator, . is the inertia

constant, �� is the mechanical input torque, �� is the electrical input torque and -� is the damping

coefficient of the generator.

4.1.2 The Excitation System Model

The excitation system comprises a voltage transducer, an automatic voltage regulator (AVR) and a

power system stabilizer (PSS). The block diagram of the excitation system is given in Fig. 4.2 and its

state-space representation is

���

��
� �


�
�'
 ���

���

��
� -

���
��

� �

	

�

���

��
� �


�
���

���

��
�� ���

���

��
� �


�
���

���

��
�� ���

'fd � -���ref �� � "��

��������
��������
� (4.4)

where � �� � �� � � � � �� denote the state variables, ��� �� the lead-lag time constants of the excitation

system, �� is the transducer time constant, �� is the washout time constant, - is the PSS gain, and
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" is the output signal of the PSS described by

" �

��
�

"min
 � � � "min

 �
�� "min

 � � � "max
 �

"max
 � � � "max

 �
(4.5)

where "min
 and "max

 are some constants.
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Figure 4.2: Block diagram of excitation system of power system with SVC installed at bus 2

4.1.3 The Governor Control Model

Fig. 4.3 shows the block diagram of the governor control loop. The differential equations describing

this subsystem are given by
���
��

� �

�

���
�
� /��

���
��

� �

�

�/� � /��

�� � �ref � /�

���
��� � (4.6)

where /� �� � �� 	� are the state variables, -� is the integrator gain, 0 is the droop constant, � is

the governor time constant, and �! is the prime mover time constant.

�
�

�
��
�

�
��
�

�� � � � � ���

�� ��

�ref

��

��

Figure 4.3: Block diagram of governor loop of power system with SVC installed at bus 2

4.1.4 The SVC Model

In this study, the SVC model as shown in Fig. 4.4 is taken from [23]. The model of the SVC is given

by
��
��

� �

�

�-����� � ���� ���

��
��

� �

��

����
��
��

� �� � ���

��
��

� �

�

��ref ���

���
��� � (4.7)

where ��� is the voltage of bus 2 at the steady state, -� is the SVC gain, �� is the SVC time constant,

�� �� � �� 	� are the state variables, ����� ���� are the lead-lag time constants, �� is the thyristor
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firing time constant, � is the susceptance of the SVC and �ref is the output susceptance of the voltage

regulator given by

�ref �

��
�

�min� �� � �min�
��� �min � �� � �max�
�max� �� � �max�

(4.8)
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�max
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Figure 4.4: Block diagram of SVC

It is worth noting that, in order to ensure that the PSS and SVC models always operate in the

linear ranges, the control signals � and �� need to satisfy

"min
 � � � "max



�min � �� � �max

�
� (4.9)

where "min
 , "max

 , �min and �max are some constants.

4.1.5 The Overall System Model

Owing to the very fast transient responses of the transmission network [4,23], it is sufficient to repre-

sent the transmission network with the algebraic equation

���� � � � 6��� (4.10)

where � is the state vector, � is the bus voltage vector and � is the current injection vector.

Accordingly, the overall system equations, including the differential equations for all the de-

vices and the algebraic equations for the transmission network (4.10), are expressed as

��

��
� 7��� � �� (4.11)

where 7 is a vector of corresponding nonlinear function.

Define the output vector of interest �, the input vector 2 and the state vector � as follows:

� �
�
Æ '
 �� � ��

�

2 � ���8

� �
�
Æ �( '�

� '�
� � � � � /� /� �� �� ��

�

��
�� � (4.12)

where ���8 is the phasor of the voltage of bus 2.

The generator parameters (in per unit with respect to 			
 MVA base) are shown in Tab. 4.1,

and the power system is in the steady state with the following conditions:

4� � 
�� pu� �� � 
���� pu� '
� � ��
 pu� '�� � 
�� pu ��� � 
���	 pu�

By applying the steady-state analysis given in [4], one obtains a nominal operating point
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�� �
�
Æ� �(� '�

�� '�
�� �� �� �� �� /�� /�� ��� ��� ���

�

� (4.13)

where Æ� � ���	�Æ , '�
�� � 
����
 pu, '��� � ��
��� pu and all others are zero.

Equation (4.11) is linearized about the nominal operating point in (4.13) and the incremental

linear model is given by
��"
��

� ������2
�� � ������2

�
� (4.14)

where �, �, � and � are constant matrices, and �2, ��, and �� are the incremental input, state,

and output vectors, respectively.

4.2 Characterization of the Possible Set

This section describes how to characterize the possible set � . Assume that the power system is in the

steady state for � � 
 and the load voltage changes for � � 
. That is,

"���� �

�
��� ���(�� 8�� � � 


���� � ������� ���(�� 8�� � � 


�
� (4.15)

where ��� is constant and depends upon the nominal operating condition of the system. Accordingly,

the set � is defined as

� �
�
��� � ����
� � 
� ������ �	� �� ����� � 


�
� (4.16)

where 	 and 
 are some positive numbers.

4.3 Design Formulation

In the following design, assume that the load voltage variation ��� applies to the power system for

� � 
. The SVC will be used for improving the performance of the power system where the signal

��� is fedback to the SVC. The configuration of the feedback control system is shown in Fig. 4.5.

To ensure good performances for the power system, it is required that, for any disturbance

���  � and for all time � � 
,

Table 4.1: Generator parameters in per unit base

-� = �
 . = ��� sec -� = �



- = ���
� #�� = 
��� pu #�� = 
�� pu

#�� = 
��� pu � ��� = ��
 sec � ��� = ��
 sec

� = 
�	 sec �! = 
�� sec �� = 
�
�� sec

�� = 
���� sec �� = 
���� sec �� = 
�
�� sec

�� = 
�		� sec �� = 
���� sec 0 = 
�
�

,� = ���� pu ,� = ���� pu 0 = 
�

� pu

, �
� = 
��
 pu , �

� = 
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Figure 4.5: Configuration of the power system with SVC installed at bus 2

� the incremental rotor angle, the incremental terminal voltage of the generator and the incre-

mental voltage of the nearby bus remain strictly within the prescribed bounds;

� the signals � and �� remain within their linear ranges of operation.

Let � and * denote the design parameter vectors of the PSS and the SVC, respectively. That is to say,

� �
�
- �$ �� �� �� ��

�

� * �

�
-� �� ��� ���

�

�

From the above requirements, the principal design specifications are expressed as

5���� � ���� � ��
5���� � ���� � ��
5���� � ���� � ��
5���� � ��� � ��
5���� � ��� � ��

�����
�����
� (4.17)

where �� �� � �� � � � � �� are the largest values of 5� that are acceptable. In this work, the following

bounds �� (which is based on a practical operating criteria [4]) are used:

�� � 	
Æ� �� � 
�
� pu� �� � 
�
� pu� �� � 
�	 pu� �� � � pu� (4.18)

Notice that (4.17) shows the multiobjective nature of the design problem.

4.4 Numerical Results

At this point, the possible set � needs to be defined. Accordingly, the bound	 is chosen with respect

to the change of real power of the load bus that used to happen or is likely to happen in practice.

The bound 
 is related to the rate of change of the power flow from the transmission network to

the fluctuating load. In this study, the bounds used are chosen, for example, by 	 � 
�	 pu and


 � 
�	 pu/s.
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To shed some light on the physical meaning of only the condition 	 � 
�	 pu, suppose that

the system was in sinusoidal steady-state. Recall that the power base of the generator is 			
 MW. By

performing load-flow calculation, it is found that if the load voltage decreased (or increased) 
�	 pu

from its nominal value, then the real power would be drawn from (or injected into) the load bus by

	����� MW (or 	�
��
 MW). This would give a rough idea of the change of the power flow in the

system. However, for more accurate information of the change of the power flow in connection with

	 � 
�	 pu and 
 � 
�	 pu/s, more work needs to be done and this would be a topic worth of

further investigation.

4.4.1 Design of SVC by Using the Upper Bounds of the Peak Outputs

In this subsection, we make use of the upper bounds of the peak outputs ��� as performance measures.

Consider the power system without the SVC. The system has only the PSS in the excitation

system. In this regard, the PSS is to be tuned first so as to satisfy the specifications 5� �� � �� � � � ��

of (4.17). After a number of trials, it appears that the MBP algorithm cannot locate a vector � such

that the requirements 5� �� � �� � � � �� of (4.17) are satisfied. By performing a number of iterations,

the following � is obtained

� �
�
����
 
�
	� 
�	�
 
�
�
 
�
�� 
���


�
�

and the corresponding performances of the system with respect to the requirements (4.18) are given

by
5� � ����	Æ �� 	
Æ�
5� � 
�
	� pu �� 
�
� pu�
5� � 
�
�	 pu �� 
�
� pu�
5� � 
�
�� pu �� 
�	 pu�

���
��� � (4.19)

It can be seen from (4.19) that only 5� does not satisfy the requirement. In this case, it clearly shows

that the power system without the SVC cannot be used to limit the voltage fluctuation of the nearby

bus.

Accordingly, in order to provide sufficient damping in compensation for load voltage fluctu-

ation, the SVC (see (4.7)) is installed at the nearby bus and is then taken into a design process. By

starting from * � �
� 
� 
� 
�
 and after a number of iterations, the MBP algorithm locates a design

solution of inequalities (4.17).

* �
�
	��
 
���
 
���� 
�
��

�

� (4.20)

and the corresponding performance measures are

5� � ����Æ �� 	
Æ�
5� � 
�

� pu �� 
�
� pu�
5� � 
�
�� pu �� 
�
� pu�
5� � 
�

� pu �� 
�	 pu�
5� � 
��� pu �� � pu�

�����
�����
� (4.21)
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To verify the design results, a random test input is generated as a piecewise linear function such

that its magnitude and its slope are bounded by 
�	 pu and 
�	 pu/s, respectively. The waveform of a

random test input is shown in Fig. 4.6. The system’s responses to the test input for the system without

and with the SVC are shown in Figs. 4.7 and 4.8, respectively.

By using the linearized model based on small signal assumption, it is suggested that the distur-

bance impinging on the system be less than or equal �� from its nominal value. Although the voltage

deviation of 
�	 pu from its nominal value is considered as a large disturbance (with respect to the

			
 MW base of the generator), the simulation results so obtained agree well with those obtained

from the actual nonlinear systems. Hence, the linearized model used in this work is still valid.

Clearly, the system with the SVC provides a better damping to the system so that all outputs of

interest satisfy the design specification.

4.4.2 Design of SVC by Using the Peak Outputs

In this subsection, we use of the peak outputs ��� defined in chapter 2 as performance measures. By

using the MBP algorithm, the satisfactory design parameters are the same as those obtained in the

previous subsection and the corresponding performance measures are

5� � ����Æ �� 	
Æ�
5� � 
�

� pu �� 
�
� pu�
5� � 
�
�� pu �� 
�
� pu�
5� � 
�

� pu �� 
�	 pu�
5� � 
��	 pu �� � pu�

�����
�����
� (4.22)

Table 4.2 shows the peak outputs of the system with the SVC parameters obtained in the design

by using the upper bounds of peak outputs as performance measures. Note that the value of peak

outputs are less than or equal to thier upper bounds.

Table 4.2: Comparison of performances of power system with SVC obtained by using ��� and ���

� ���� ����

� ����Æ � ����Æ

	 
�

� pu � 
�

� pu

� 
�
�� pu � 
�
�� pu

� 
�

� pu � 
�

� pu

� 
��	 pu � 
��� pu

Accordingly, using the peak outputs ��� as performance measures can reduce conservatism in

the design and hence yield a better solution.
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Figure 4.7: Responses of the power system without SVC due to the test input
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Figure 4.8: Responses of the power system with SVC due to the test input



CHAPTER V

CONCLUSIONS

5.1 Summary

This thesis describes a general procedure for designing a device such as PSS and SVC for power

systems subject to load voltage variations by Zakian’s framework, comprising the principle of match-

ing and the method of inequalities. The framework is effective and facilitates a realistic formulation

of the design problem. The numerical results clearly show that all the outputs �� of interest can be

ensured to remain strictly within the prescribed bounds. Moreover, by virtue of the framework, the

stability and the satisfactory performances of the power system can be ensured as long as the load

voltage variation satisfies (2.3).

To improve the system’s performances in the generating unit (e.g., the rotor angle, the terminal

voltage and the speed deviation of the generator), only PSS in the excitation system can effectively

compensate those performances of power systems. Once the system’s performance of interest is not

in the generating unit, the performance may not be met the design specification by using only PSS.

For instance, when the voltage of the nearby load bus is taken into consideration, only PSS fails to

limit the voltage fluctuation due to the large load variation. It is necessary to make use of an SVC to

provide sufficient damping to the system.

By using the convenient upper bounds of the peak outputs as the performance measures in the

design process, MBP can sometimes fail to find the solution of the set of design inequalities. This

may be due to the conservatism in using the upper bounds as the performance measures. Accordingly,

it is suggested that the exact peak outputs be used instead of their upper bounds so as to avoid the

conservatism due to the performance measures used.

5.2 Further Improvements

This section introduces some further improvements that will help enhance the virtue of this research

work.

1. Because of the potential in the framework, it will be fruitful to develop a practical method

for determining 	 and 
, for example, for applications in which an electric arc furnace is

in operation and causes voltage fluctuation. By assuming that the power system was in the

sinusoidal steady-state, one can perform the power-flow criterion to determine the bounds 	
and 
, given the physical data of the consumed (or injected) real power at the load bus.

2. In this thesis, the proposed method of designing compensators deals with the power system

having a single operating point. However, in practical power systems, the operating point may
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change from one to another according to the conditions which the power system is subjected

to. Hence, when the operating condition of power systems changes, a new design with respect

to the new operating condition can be obtained systematically by using the framework adopted

in this work.

3. In Chapter 3, the power system’s model includes the dynamic behavior of the transmission

network. Although the transmission network has very fast transient responses and can be ne-

glected, the methodology of computing the performance measures used in this thesis is still

valid to the full model (which considers the dynamic effect of the network) as well as large

interconnected power systems in practice.

5.3 Possible Extensions

1. The PSS and the SVC are used in this thesis for improving stability and dynamic performances

of power systems. However, the framework adopted here is also applicable to other types of

compensator.

2. In practice, the power system consists of a number of generators, which is called the multi-

machine system. The Zakian’s framework can deal with the multi-machine system as well.
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APPENDIX A

Park’s Transformation

Let � denote a network variable (current or voltage) of interest and subscripts �$� %� &� be the

components of � in the phases �$� %� &�. The transformation of (�%, ��, �&) into (9�, 9� , 9�) is call

Park’s transformation and is given by

9��� � -�8��%�&� (1)

where 8 � (� denotes the rotor angle position of the generator, the vector �%�& and 9%�& is defined as

�%�& �
�
�% �� �&

�

� 9��� �

�
9� 9� 9�

�

� (2)

and -�8� is given by

-�8� �
	

�

�
�  ! 8  !�8 � �'

� �  !�8 � �'
� �

� �� 8 � ���8 � �'
� � � ���8 � �'

� �
�
�

�
�

�
�

	
� � (3)

It is important to note that the three-phase system under the assumption of balanced condition

yields the following statements.

� One can define ��%� ��� �&� as

�%��� � 9%��� ���(�� )%�
����� � 9���� ���(�� )��
�&��� � 9&��� ���(�� )&�

�
� � (4)

where ( is the angular speed of the generator, and ()%, )�, )&) are the phase angles of (�%, ��,

�&) at the steady state.

� The components �9%� 9�� 9&� are equal (i.e., 9% � 9� � 9&).

� There exist only components of the �- and *-variables and the o-component is zero, i.e., 9���� �


.

� The component 9% can be written in terms of 9� and 9� as

9% �
�
9 �
� � 9 �

� � (5)

By applying the transformation (1) to the variables !
 , �
 and "� (which are all in the $%&

reference frame under the condition that the three phase system is balanced) in (3.1), one can take the

following steps to derive the transmission network model in the �*+ reference frame. First, we write

(3.1) in the matrix form�
�!
�%!
��
!
�&

	
� �

�
� #�� 
 



 #�� 


 
 #��

	
� �

��

�
��
�%�
��
�
�&

	
��

�
�"��%"���
"��&

	
� � (6)
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After rewriting (6) in terms of the �*+ variables, we have

-��

�
�'
��'
��
'
��

	
� �

�
� #�� 
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Multiplying - on both sides of (7) gives�
�'
��'
��
'
��

	
� �

�
� #�� 
 



 #�� 


 
 #��

	
�
�
� �

��

�
��
���
��
�
��

	
��-

�-��

��

�
��
���
��
�
��

	
�
�
 �

�
���������
����

	
� � (8)

Substituting - ����

��
into (8) yields

�
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��'
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� � (9)

Hence, under the condition that the system is balanced, the o-component vanishes and the model of

the transmission network is described by (3.3).
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APPENDIX B

Corresponding Matrices of Power System Model described in the chapter 3

The constant matrices �  ������ and '  ����� of (3.10) developed in Section 3.1.5 are

given by
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After linearizing (3.10) and (3.11) around a nominal point, the corresponding matrices �, �,

� and � are expressed as follows:
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����������������������������������


 (� 
 
 
 
 



 ���

�� $��� $��� $��� $��	 



 
 � �

 �
��


 �(��(�

�


 �
��


 ���


 �
��


 
 
 � �

 ���



(��(

�

�


 ���




 $��� 
 �
���

� �
���

$��	 



 $	��
�
���


 $	�� � �
���





 
 $
�� $
�� $
�� $
�	 � �

�


 ����

�� $��� $��� $��� $��	 



 ����
�
��
�

$��� $��� $��� $��	 



 ����
�
�
��
�
�

$���� $���� $���� $���	 



 �


�

 
 
 
 



 �
�
�


 
 
 
 



 
 
 
 
 
 



 
 
 
 
 



 
 
 
 
 � �
��


 
 ��


 ���

 
 



 
 
 
 
 



 
 
 
 
 



 
 
 
 
 



 
 
 
 
 


� �

	


 
 
 
 ��

��

�

�

��� 
�

	

� � �

�


 
 
 ��
�
��
�

�� � 
�
�

	

�

�
� �� � �


�

 
 ��
�
�

��
�
�


 
 
 
 
 



 
 
 �

�

� �

�





 
 
 
 �

�

� �

�

	































�

�

� � '�

� �

�
���

� 
 
 
 
 
 
 
 
 
 
 
 


 
 &��� &��� &��� &��	 
 
 
 
 
 
 


 � 
 
 
 
 
 
 
 
 
 
 


 
 
 
 
 
 
 
 
 � 
 
 


	


� �

� � 9�



38

where
$��� � � �������
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