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CHAPTER

INTRODUCTION

Time series data mining is an active research area which involves tasks including classifi-
cation (Ueno et al., 2006; Kasetty et al., 2008; Ratanamahatana and Keogh, 2004; Niennattrakul
and Ratanamahatana, 2007c), clustering (Lin: et al., 2004b; Yankov and Keogh, 2006; Niennat-
trakul and Ratanamahatana, 2007b, 2006), anomaly detection (Keogh et al., 2005, 2002; Yankov
et al., 2008a; Niennattrakul et al.; 2010a), pattetn”disc¢overy (Chiu et al., 2003; Yankov et al.,
2007; Mueen et al., 2009), visualization (Lin et al., 2004a; Kumar et al., 2005), association rules
(Sacchi et al., 2007; Wan et al.,.2007), and indexing (Keogh et al., 2004; Keogh and Ratanama-
hatana, 2005; Shieh and Keoghs2009; Niennattrakul et al.; 2010b). Time series is a sequence of
real/integer/symbolic valu€s whicharg sequentially observed, where in some applications, a time
series sequence is also considered o be a Veryjhig_h dimensional data object, where the number
of dimensions is equal to theflength of time seri‘%isj "A characteristic that makes time series differ
from other data types is that adjacent dimension'sia‘re‘-Textremely related; the order of each dimen-
sion cannot be swapped. Time series is'ubiquito:&:é,fwhere it 1s easily found in daily life such as
stock market, electrocardiogram, and a'temperauiée;il’écord, as shown in Figure 1.1. Normally,
time series can be collected from scientific measUiéﬁﬁnts such as a star light curve (Protopapas
et al., 2005), respiration ¢Keogh et al., 2005), and winding (B.L.R., 2010). In addition, a 2-D
image can be transformed to be time series by sequentially measuring distances from the centroid
of an image to the edge (Ye and Keogh, 2011; Yankov et al., 2008b). Therefore, instead of im-
age recognition in_2-D images;-time series mining' will require much less complexity. A video
can also be transformed;to/a time series sequence by tracking a coordinate of a point of interest.
Time series can be multivariate, which at the specific time, many channels.from different sources
are obseryed.  For example, SmartCane (Wu et al;; 2008)] a device attacheéd ‘with many types of
sensors to help doctors monitor the walk of elderly people (see Figure 1.2), has eight channels
of data from two pressure sensors, a three-axis accelerometer, and three single-axis gyros. Data
from motion capture (Cai and Ng, 2004) are also considered that each dimension is collected from

movement of each sensor.

Subsequence clustering for time series data streams is an important data mining task which
can return time series patterns in real time. Currently, no streaming subsequence clustering has
yet been proposed. As a subsequence clustering result, cluster representatives can then be used in

rule discovery (Das et al., 1998; Fu et al., 2001; Harms et al., 2002b,a; Hetland, 2002; Jin et al.,
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results, i.e., sme waves regardless of input sequences. Figure 1.3 illustrates cluster representatives
from STSC. Therefore, hundreds of works that use STSC as a preprocessing step and a subrou-
tine also produces meaningless results. The causes of meaninglessness are twofold: inappropriate
uses of Euclidean distance measure and Amplitude Averaging function. In other words, Euclidean
distance and Amplitude Averaging cannot handle trivial-matched subsequences which are a set of
contiguous subsequences that are very similar but have shifts in time domain since Euclidean
distance and Amplitude Averaging compute dissimilarity and an averaged result in one-to-one

manner. Figure 1.4 provides some examples of trivial-matched subsequences.
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et al., 2006; Fu et al., 2005; Struzik, dOQLSlmon:eféf{ 2006 Kumar et al., 2006; Fujimaki et al.,

2008) attempt to overcome this prdblemrby prop«bﬁhg many solutions. However, none of them

. g“',,'e‘s, i.e., new distance measures

propose the right solutit?'rié [0
requires additional para;’heffzrs and Amplitude Averaging is stilLused to create a cluster represen-
tative. The distance threshfj)ld in Density-based Subsequence Fime Series Clustering (DSTSC)
(Denton, 2005), the lag value in*Lag-based Subsequence Time Series Clustering (LSTSC) (Si-
mon et al., 20063 Cheng 2007bsa), land! the sliderlength [in' PhrasezAnalysis Subsequence Time
Series Clustering (PASTSC) (Fujimaki etal., 2008), are additional parameters that users must be
specified a prioti, deépending on characteristics of each datasef, whose valugs aré very sensitive to
clustering results. With incorrect values, outputs of clustering results may be meaningless. In ad-
dition, these values are used to discard trivial-matched subsequences; therefore, some important
trivial-matched subsequences are unexpectedly filtered out. For the meaningfulness measurement,
all previous works used Keogh-Lin Meaningfulness Measurement (KLMM) (Keogh et al., 2003)
to measure clustering output. However, it will be demonstrated in this work that KLMM is an
invalid measurement since it cannot capture similarity of sine waves with different phases and

frequencies.

In this work, a novel subsequence clustering for data streams, Shape-based Streaming Sub-



sequence Time Series Clustering (3STSC), is proposed to return a meaningful clustering result
in real time. Since all existing subsequence clustering algorithms produce meaningless result,
to make subsequence clustering for data streams meaningful, subsequence clustering that pro-
duces meaningful results must first be introduced. In this work, a novel subsequence cluster-
ing for Shape-based Subsequence Time Series Clustering (2STSC), is firstly proposed. To pro-
duce meaningful clustering results, 2STSC utilizes Dynamic Time Warping (DTW) distance and
Shape-based Averaging as a distance measure and an averaging function to replace Euclidean dis-
tance and Amplitude Averaging, respectively. DTW distance aligns subsequences before distance
calculation; therefore, two trivial-matched subsequences are recognized as similar, and Shape-
based Averaging aligns subsequences before averaging:; therefore, a characteristic-preserved av-
eraging result are returned from two trivial-matched subsequences. 2STSC is evaluated in terms

of meaningfulness and this 258%FSC 1s.then extended to handle streaming cases in 3STSC.

The remaining of this dissertation is organized as follows. The meaninglessness of Sub-
sequence Time Series Clusterifig (STSC) with the canses are analyzed and identified in Chapter
2. Shape-based Averaging is first/introduced fn Chapter 3. The solution to make a clustering
result meaningful by Shape-based Subsequence ,"l[_in.le Series Clustering (2STSC) is described and
evaluated in Chapter 4. Incremental Shape-based Averaging is then proposed to extend Shaped-
based Averaging to support streaming applicatioff!:s{ in Chapter 5. Chapter 6 provides a streaming
subsequence clustering algorithm, Shapé—based Strealr;ung Subsequence Time Series Clustering
(3STSC), which is extended from 2STSC to supporf' streaming applications. And finally, this

dissertation is concluded iirChapter-7:
1.1 Objective of the Thesis

The objective of this.thesis 1s to'design a hovel subsequence clustering algorithm which

produces meaningful clustering results for time series data streams.
1.2 Scopes of'the Thesis

The scopes of this thesis are as follows:

e This thesis focuses on subsequence clustering for time series data streams, where the stream

is univariate and a new data point arrives at a constant rate.

e The datasets from the Time Series Data Mining Archive (TSDMA) are used as benchmarks
to evaluate subsequence clustering and streaming clustering, and the datasets from Time

Series Clustering/Classification Page are used as benchmarks to evaluate shape-based aver-
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aging and incremental shape-based averaging.

Performance measurements used to evaluate the meaningfulness of the subsequence cluster-
ing algorithm is the Shape-based Meaningfulness Measurement (SMM), and the streaming
subsequence clustering is evaluated by an actual time improved from the subsequence clus-

tering.

Contributions of the Thesis

The contributions of this thesis are as follows:

A new meaningfulness méasurement is introduced:
A novel subsequence clustering and a novel streaming subsequence clustering are proposed.

A novel shape-based ayeraging and a novel incremental shape-based averaging are intro-

duced. 3

Research Methodology

Study background knowledge about time ségi_qs data mining.

; #2204 : I
Survey on potential and related topics including clustering, classification, anomaly detec-

tion, indexing, motif discovery;aiid subsequence matching.
Review literatures onrSubsequence clustering algorithim:
Identify causes of meaninglessness of the current subsequence clustering algorithm.

Design the shape-based averaging algorithm'as a major subroutine of subsequence clustering
algorithm to solye'the meaninglessness,|and evaluate the algorithms with the benchmark

datasets.

Design the shape-based [subsequence clustering algerithm that utilizes shape-based averag-
ing algorithm to return a meaningful clustering result, and evaluate the algorithms with the

benchmark datasets.

Design the incremental shape-based averaging algorithm extended from shape-based aver-
aging algorithm to support a streaming application, and evaluate the algorithms with the

benchmark datasets.

Design the shape-based streaming subsequence clustering algorithm extended from shape-
based subsequence clustering algorithm to support a streaming application, and evaluate the

algorithms with the benchmark datasets.



e Compose the thesis.
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CHAPTER II

MEANINGLESSNESS OF SUBSEQUENCE TIME SERIES
CLUSTERING

Subsequence Time Series Clustering (STSC) has been proven both empirically (Peker,
2005; Chen, 2007a; Goldin et al., 2006; Denton, 2005; Keogh et al., 2003; Fujimaki et al., 2008;
Kontaki et al., 2008; Chen, 2007b; Simon et al.;y2006) and theoretically (Id€, 2006a,b) that its
output is meaningless. Keogh and Lin (Keogh and Ling2005) first flagged this issue by observa-
tion that STSC always produced-a'set of sine waves as cluster representatives instead of expected
patterns from a time series sequenge. Inaddition, they also proposed a meaningfulness measure-
ment, so-called Keogh-Lin Meaningfulness Measurement (KLMM). Specifically, KLMM defines
that cluster representatives should be similar if the representatives are from the same input se-
quence, and cluster representatives should be cﬁssimilar if the representatives are from different
input sequences. However, this thesis argues thae KLMM 1s an invalid measurement for two rea-
sons. First, although cluster representatlves from dlfferent input sequences are sine waves, these
sine waves may have different phases and frequer__lclfasj Second, KLMM only measures cluster-
ing results without considering how.similar inplnj-sg;c;uences are; similarity between two input
sequences are not definedifor KLMM For exampie.,-:é-la_stjering results from two similar sequences
must be very similar, but they are considered meaningless in the view of KLMM, even a clustering
algorithm does produce ar meaningful result. In this chapter, the meaninglessness of clustering re-
sults of STSC will be demonstrated, and KLMM will be shown that it is an invalid meaningfulness

measurement.
2.1 Background

In this section, background knowledge of Subsequence Time Series Clustering (STSC),
k-hierarchical clustering, k-means clustering, Euclidean distance, and Amplitude Averaging is

provided to give better understanding of STSC’s the meaninglessness.
2.1.1 Subsequence Time Series Clustering (STSC)

Subsequence Time Series Clustering (STSC) has been proposed to discover patterns or to
group subsequences as a part of a subroutine or a preprocessing step of various mining tasks such

as rule discovery (Das et al., 1998; Fu et al., 2001; Harms et al., 2002b,a; Hetland, 2002; Jin et al.,



2002b,a; Mori and Kuni, 2001; Osaki et al., 2000; Sarker et al., 2003; Uehara and Shimada, 2002;
Yairi et al., 2001), indexing (Li et al., 1998; Radhakrishnan et al., 2000), classification (Cotofrei,
2002; Cotofrei and Stoffel, 2002), prediction (Schittenkopf et al., 2000), and anomaly detection
(Yairi et al., 2001). Given a time series sequences S = (s1, So, ..., S,) of length n, STSC first
extracts a set S = {S1,82,...,Si,...,Sn—w+1} of subsequences using a fixed-length sliding
window, where a subsequence S; = (s;, Sit1, ..., Sitw—1), 1 < i < n—w-+1, and w is the sliding
window length. Then every subsquence is normalized by z-normalization (see Section 2.1.6), and
subsequences are clustered by k-hierarchical clustering or k-means clustering algorithms with
Euclidean distance and Amplitude Averaging as a distance measure and an averaging function.
In addition, Euclidean distance is used to calculate similarity between two subsequences and
Amplitude Averaging function is used to consgruct a-cluster representative for each cluster. STSC
finally returns a set of clusters'returned from k-hierarchical clustering or k-means clustering.
Formally, STSC receives adong timesseties &: with two parameters, i.e., the number of clusters
(k) and the length of a sliding windew (w), a%}d returns a set C = {C1,Co,...,C;, ..., Ci} of
clusters, where each cluster £; = (M, R) coﬁEﬁns cluster members M = {S; | S; € S} and a
cluster representative R = (rgiroy. .« ,',rw;. Ps'S:ud‘o code of STSC is provided in Table 2.1 and

Figure 2.1 visualizes an overview of STSC.

FRAd g
a

Table 2.1: Pseudo code of Subsequetfce‘Tlme Series Clustering (STSC)
,u
FuNcTION [C] = SUBSEQUENCETleSbR ZILUSTERING [S, k, w]

-2
ol

1. S =EXTRAGTSUBSEQUENCES(S, )

2. SNorm = NORMALIZESUBSEQUENCES(S)

3. C=CLu STERING(S Norms k) /1 with Euclidean dlstance’and Amplitude Averaging
4 '

Return C
m Subsequences

Clustering
(Euclidean distance)

_____

. % Averaging
"~ - . .
Semme T ammmm— ~«. (Amplitude Averaging)

77—
V — %
{ —> /\
N —
N, 4
td
- —— ~~~_——d’
PN

——————

Figure 2.1: Overview of Subsequence Time Series Clustering (STSC)
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2.1.2 K-Hierarchical Clustering

K-hierarchical clustering used in STSC is an agglomerative clustering algorithm. AGNES
(AGglomerative NESting) is a well-known hierarchical clustering algorithms that can visualize
relationships among data sequences in a hierarchical structure or a tree-based structure on dis-
tance calculations. Although many variations of hierarchical clustering algorithms have been
introduced such as BIRCH (Zhang et al., 1996) (Balanced Iterative Reducing and Clustering Us-
ing Hierarchies), ROCK (Guha et al., 2000) (A Hierarchical Clustering Algorithm for Categorical
Attributes), and Chameleon (Karypis et al.; 1999) (A Hierarchical Clustering Algorithm Using

Dynamic Modeling), AGNES is commonly used due'toimplementation simplicity.

Specifically, AGNES has been propoied to group data using bottom-up strategy. The
method iteratively merges two atemie clusters into a larger cluster until one single cluster con-
taining every data sequences_is achigved. Flor each iteration, two clusters which have min-
imum inter-cluster distance are” merged.. However, grouping a dataset into one single clus-
ter for agglomerative clustering is 1mpract1ca-} therefore, the number of clusters (k) is re-
quired. Concretely, pseudoscodes of the aggdomeratlve clustering algorithm which receives
asetS = {S1,82,...,Si,. &, Sy jrof time Serles sequences as an input and returns a set
C = {C1,Cy,...,Ci,...,Ck} of k clusters as ar;- output, where each C; = (M, R) contains
aset M = {S; | S; € S} of time series sequences and a cluster representative I?, are shown in

Table 2.2. Fe

Table 2.2 Agglomerative hierarchical clustering algori-thm (AGNES)

FUNCTION [C] = AGGLOMERATIVECLUSTERING [S, k]

1 Initialize.a set C of clusters which contains one sequence from S
2. ..r While (the ‘size of.C > k)

3 distpes: = INFINITY

4 Por'each pair of C;"and C; in'C

5. dist = INTERCLUSTERDISTANCE(C;, C))

6 if(dist, <«distpest)

7 distpest. = dist

3 pairbest = [Cz; Cj]

9

Endif
10. Endfor
11. [Ci, O] = pairpest

12. Cr. = MERGE(C;, CJ)

13. Remove C; and C; from C
14. Add Cj to C

15. Endwhile

16. For each cluster C'in C

17. C.R = AVERAGE(C.M)
18.  Endfor

19. Return C
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While many similarity functions between two clusters (called inter-cluster distances) have
been proposed, three functions are typically used, i.e., single linkage, complete linkage, and aver-
age linkage inter-cluster distance functions. Single linkage function returns a minimum distance
among all possible pairs between two clusters, while complete linkage function returns a maxi-
mum distance among all possible pairs between two clusters. On the other hand, average linkage
function finds a mean value of all distances. Pseudo codes of single, complete, and average link-
age distance functions are provided in Table 2.3, 2.4, and 2.5, respectively, and these inter-cluster

distances are formalized as follows.

D g, okt SGMmg'leM Distance(S,S’) 2.1
Dgffer J€ 40 ) =2 ma . Distange(S, S) 2.2)
;' ~
174 .
Daver 8 CHCH = WZ > Distance(S,S") (2.3)
Wl cec;
-:J'ce et

where Dgingies Deompietes and Dgyerage are singlg","gcilﬁlplete, and average linkage distance func-
tions, respectively, C; and C; are any-clusters, M; and Mi; are corresponding cluster members of
C; and C}, respectively, and S and S are sequences in M and M tespectively. Distance(S,S’)

is a distance function that'returns a distance between two sequences S and S'.

Table 2.3: Pseudo code of single linkage distance function

FUNCTION [distpeqt ] = SINGLELINKAGE [0, C}]

1. M is a set of cluster member of C;
2. M is a set of cluster memberof C;
34 “distyes: '= INFINITY:
4% For edchisequence S'in M,
5. For each sequence S’ in Mj;
6. dist = DISTANCE(S, S8’)
7. if (dist < distpest)
8. distpest = dist
9. Endif
10. Endfor
11.  Endfor
12.  Return distpes:

For Subsequence Time Series Clustering (STSC), Euclidean distance and Amplitude Aver-

aging is used as a distance function and an averaging function.
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Table 2.4: Pseudo code of complete linkage distance function

FUNCTION [distpest] = COMPLETELINKAGE [C;, C]

1. M is a set of cluster member of C;
2. M is a set of cluster member of C};
3. distpest = INFINITY

4. For each sequence S in M

5. For each sequence S’ in M;

6 dist = DISTANCE(S, S")

7 if (dist > distpest)

8. distpest = dist

9. Endif

10. Endfor
11. Endfor

12.  Retuin distpest

)

Table 2.5:.Pseudo code of average linkage distance function

FUNCTION'[d#8%4, ] = AVERAGELINKAGE [C;, C;]
: L

1. 4V, is'a setof cluster member of C;

2. My isa set of.cluster member of €
3. sl FE Y e
47" For each sequence S, indV;
5. For each sequence’S’ in M;
6. difft gpq = di5taug i+ DISTANCE(S, S')
7. JfEndfor” * =
8. Endfor | ¥/
9. d’L‘Sta,Ug_? dig_Stm,g / |M1”Mﬂ
10. Return dest o, =

......

2.1.3 K-Means Clustering

K -means clustering é}lgorithm (Lloyd, 1982; MacQueen, 1967) is a partitioning clustering
that finds a group of clust;:rs by iteratively refining members 1n each cluster to have the max-
imum objective value:that-minimizes summation, of distances between a cluster representative
and cluster members for every cluster. Beside k-means clustering, many partitioning clustering
algorithms, are proposed including.k-medoids clustering. (Kaufman .and.Rousseeuw, 2005) and
CLARANS (Kaufman'and*Roussecuw, 2005). Both k-medoids'and CLLARAN use a median of
cluster members instead of a mean. However, a median cannot reflect all characteristics of all data
sequences of a cluster because a median is selected from one of existing data sequences, while
a mean is a sequence constructed by averaging all data sequences within a cluster. Therefore,

k-means clustering is much more preferable than k-medoids and CLARAN.

Initially, k-means clustering first selects k centers by randomizing existing data sequences
froma set S = {S1,82,...,S;,...,Sn} of sequences, where S; = (s1, S2, ..., Sy) is a time se-

ries sequence of length w, and then remaining sequences are assigned to the closest cluster center,
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where k is a user-defined number of clusters. After that, a new cluster center is calculated by av-
eraging all cluster members within each cluster. The algorithm repeats assigning data sequences
to the closest center and recalculating for cluster centers until the clustering result remains un-
changed. When the algorithm terminates, a set C = {C1,Cs,...,C;, ..., Cy} of clusters, where
each cluster C; = (M, R) contains a set M = {S; | S; € S} of cluster members and a cluster
representative R = (ry,79,...,ry,) is returned. To be more concrete, pseudo code of k-means

clustering is provided in Table 2.6.

Table 2.6: Pseudo code of k-means clustering

FUNCTION [C] = KMEANSCLUSTERING.[S, k]

1. Initialize aset C of & cluster centers with-existing sequence in S
2. Do o’

3 For cachrsequenee.S in §

4, distpeg= INFINITY

5. Fer cachsCluster (fin €

6 RE Clistef representative of C'

7 disti= DISTANCE(Sy R)

8 Li(dist <jdist,c )=

9. dift . i 7
10. .4 % )
11. Endif id
12. Endfor ,
13. Assign §to Chesi i
14. Endfor — —3
15. For each clusier:Cin C #2250
16. C.R = AVERAGE(C'M)
17. Endfor - = o=
18.  While (all cluster members in C change)
19. Reéurn-C .

Subsequence Time Series Clustering (STSC) with k-means clustering uses Euclidean dis-

tance and Amplitude Averagingtas a distance measure and an averaging function, respectively.

2.1.4 Euclidean Distance

Euclidean distance (Keogh and Ratanamahatana, 2005) is a well-known similarity measure
used in many domains including time series data. The distance is calculated in one-to-one manner
shown in Figure 2.2, where the distance is a summation of difference between two data points in
the same dimension. Euclidean distance between two time series sequences A and B is calculated

by the following equation.

Euclidean(A, B) =
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where A = (aj,as,...,ai,...,a,) and B = (b1, ba,...,b;, ..., b,) are two time series se-

quences of length n.

Figure 2.2: Example T )’dean distance calculation.
|

@lidean distance is used as a distance
—

For Subsequence Time ering (
measure in k-means clusteriﬁﬁ' era*hic ng algorithms. However, at the end
of this chapter (Section 2.4) ' % that it is a cause that makes a
clustering result of STSC me l;;‘\ )

Amplitude Averagi ioh is a’ ) ‘mean of a set of time series se-

d from averaging all values of the

same dimension for all sequences. A; can 2. = (21,49, ..., Zi, . . . , z) from Amplitude Averag-
—
ing of two time series sequences A = {ay, a2, yap) and B = (b1,ba, ..., bi, ..., by)
e }J;}(—'_- -, »

¢
‘example is shown i Figure 2.3; a mean sequence

of length n is calculatq@)y % — %;—bl The
3,1,2,8,3,2) by Amplitude

is generated from two _ E

Averaging function. D

a) Origifal sequences Aand B o/

U
ARTANARREGHATINYR E

1 2 3 4 5 6 7

0

b) Averaged result generated from Amplitude Averaging

Figure 2.3: Example of Amplitude Averaging calculation.

However, if two sequences A = (a1, a9,...,a;,...,a,) and B = (by,ba,... b, ..., by)

have different weights, w4 and wp, respectively, a mean sequence Z = (21, 22,...,2i,...,2n)

can be computed by z; = £aact@nb. - And for averaging a set S = {S;,So, . .. ,Sjy...,Sm}of

watwp:
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>_si
sequences, a mean sequence Z = (21, 22,...,2i,...,2,) can be computed once by z; = %,

and the pseudo code is provided in Table 2.7.

Table 2.7: Pseudo code of Amplitude Averaging function

FUNCTION [Z] = AMPLITUDEAVERAGING [S]

1. Initialize the sequence Z to all zeros
2. For each sequence Sin S
3. For each data point s; in S
4. Zi=%2; +8;
5.
6.
7.
8.
9.
10.

For Subsequence Time i de Averaging function is used as

an averaging function to constit cluster re esentati however, in this section, Amplitude

Averaging will be shown that it iS one 01 ; | nakes the output of STSC meaningless.
2.1.6 Z-Normalization

Normalization is a functio esca quence specific range. In data mining, many

normalization techniques (Han and K have been proposed such as min-max nor-
—P:;{;:ﬂ:( % o ol -

malization, sigmoid nmitlahzatmn and z-n i ime series data, z-normalization

is typically used to re 9": an offse (mbal | distr ,n,_.j In addition, the sequence is

normalized to obtain a meﬁ and a's ero al one, respectively. Given a se-

quence A = (aj,aq,.. ay,) of length n, a new sequence Z = (21,29,...,2i,...,2n) 18

a’h" s

(11 Fhi ﬁ“Wﬁ NN
QW’lﬂﬁﬂﬁmH%@?ﬂMEﬂﬂ e

pa == (2.5)

(2.6)
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where 114 and o4 are a mean and a standard deviation of the sequence A, respectively.

Example is shown in Figure 2.4, where the original sequence is normalized to have its mean

and standard deviation of zero and one, respectively.

0 Zb 4b Gb Bb
a) Original sequence

0 20 Y40 60 80
b) Normalized sequence

Figure 2.4/ Example of z-normalization.
1

h

For Subsequence Time Seties Clustering‘QS'TSC), a set of sequences extracted from a long
time series sequences needs to be/normalized b‘lefo're clustering with k-means clustering and k-
hierarchical clustering algorithms. [If _no_rmalizaﬁ_gnd_is not applied, subsequence clustering will
produce undesired results since similarity betwe_‘éh sﬁbsequences must be independent to mean

and standard deviation of subsequences.. et dy

2.2 Related Work =

Keogh and Lin have published a paper describing that an_output of Subsequence Time Se-
ries Clustering (STSC) is+a set of sine waves that is considered meaningless (Keogh and Lin,
2005). This leads to many argiments in data mihing community since STSC has been imple-
mented as a subroutine.and a preprocessing step of hundreds of mining applications such as rule
discovery (Das et al., 1998; Fu et al., 2001; Harms et_al., 2002b,a; Hetland, 2002; Jin et al.,
2002b,a; Mori and Kumi, 2001 Osaki etlal., 2000; Sarker et al., 2003; Uehara 'and Shimada, 2002;
Yairi et al.,i2001), indexing (Li et al., 1998; Radhakrishnan et al., 2000), classification (Cotofrei,
2002; Cotofrei and Stoffel, 2002), prediction (Schittenkopf et al., 2000), and anomaly detection
(Yairi et al., 2001). Since Keogh and Lin proved that STSC is meaningless, all the works and
that successors utilized STSC are also considered invalid. Generally, STSC extracts subsequences
from a long time series as an input and returns a set of clusters as an output. Keogh and Lin found
that although an input changes, an output remains the same; in other words, STSC always pro-
duces the similar sine waves as cluster representatives regardless of a data input of the clustering

algorithm.
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Keogh and Lin claim that STSC is meaningless by the following experiment. Thirty each
of three patterns, i.e., Cylinder, Bell, and Funnel (Saito, 1994), of length 128, shown in Figure
2.5, generated from the following equations are concatenated to create a long sequence in Figure

2.6.

c(t) = (6+mn) - x[a,b] (t) +€(t) 2.7)

(b—a)+€(t) (2.8)

)/ (b=a) + € (¢) (2.9)

(2.10)

where 7 and € (¢) are drawn from a st NO distribution N (0,1), a is an integer drawn
uniformly from [16, 32],'

1 to 128.

n[32, 96], and ¢ is varied from

!r‘ x WA
40 60 8

Aus TRBngNEan

q wwaﬁnmﬂwﬁ 1

b) Bell
0.2
-0.2
0 20 40 60 80 100 120
¢) Funnel

Figure 2.5: Examples of Cylinder-Bell-Funnel dataset
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1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 2.6: Some part of Cylinder-Bell-Funnel sequence

20 40 60 80 100 120

Figure 2.7: Cluster representatives generated from STSC

When this sequence is clustered-by STS—i‘,, sine-wayve-like cluster representatives (see Figure
2.7) are returned, while originalspatterns are expected to be a result. Keogh and Lin also propose
a meaningfulness measurement, se-called Kel'pgh—Lin Meaningfulness Measurement (KLMM),
defining that the subsequence clustering is' meaningful when the clustering algorithm returns sim-
ilar cluster representatives‘from the sa_qle’inpujlf ‘ sequence and dissimilar cluster representatives
from different input sequenges. SuppdseX :‘i{er, Ao X and Y = {)4,)h,..., U0}
are two sets of clustering results from n diffeft;_':-ﬁt runs of two different datasets, where X =
{Xl, Xg, e ,Xk} and Y = {)71,?2,":,.‘. - Yk}d;etyvo sets of cluster representatives, respec-

iy

tively. The meaningfulness of KLMM can be calei_léi‘t °d from the following equations.

= ol

WithinD"ils_tance (X)

= TSR SCERP fonce (%, %;)

g (2.11)
k E :
LY S Gluster Distance (X5, Y5
BetweenDistance (X, Y) = L1 LA P2 (%5, 25) (2.12)
Shih K
KLMM (X,Y) = WithinDistance (X) (2.13)

~ BetweenDistance (X, Y)

where WithinDistance (X) is a distance between sets of cluster representatives from the
same input sequence, BetweenDistance (X,Y) is a distance between sets of cluster represen-
tatives from different input sequences, and ClusterDistance (A, B) can be calculated from
the summation of minimum distances between two sets of cluster representatives. The re-
sult is meaningful when KLMM returns the value close to zero since WithinDistance (X)

is small and BetweenDistance (X,Y) is very large; otherwise, the result is meaningless.
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Cluster Distance (A, B) can be formalized as the following equation.

k
Cluster Distance (A, B) = me [EuclideanDistance (A;, By)),1 < j <k (2.14)
i=1

where A = {A1,As,...,A;,..., Ay} and B = {By, B, ..., Bj, ..., By} are two sets of cluster

representatives.

However, KLMM is an invalid meaningfulnesssmeasurement for two reasons. The first
reason is that with the same number of clustgrs and thessame length of sliding window, cluster
representatives of two different.input sequences may be. sine waves with different phases and
frequencies. STSC always _produges sine waves regardless of an input sequence; therefore, if
cluster representatives are sine waves, /the ch;zstering result would mistakenly be considered as
meaningless. However, Euclidean/distance utilized by KLLMM cannot capture similarity between
two sine waves with différent/phases and frecfuex}cies; therefore, KLMM considers clustering

4
results are meaningful althoagh results are all sine waves.

Secondly, KLMM assumes that WO Clustér{frg results are meaningful if they are different.
For any meaningful subsequence chistéring algogl]ill{l, if two input sequences are similar, the
clustering results are expected to-be Simiilar as {&;éfl;-: and.if two input sequences are different,
the clustering results aré expected to be different, but KEMM will always flag any two similar
clustering results as meaningless regardless of similarity between two input sequences. Although
a meaningful subsequence-Clustering algorithm exists, KLMM-cannot tell how meaningful they

arec.

Many successor papers in finding a meaningful subsequence clustering also unawares use
KLMM asya meaningfolness measurement(to] evaluate sthein) algorithmsy therefore, their experi-
ments become invalid.” For theoretical study, Ide (Idé, 2006b) proved ‘that'STSC always returns
sine waves regardless of an input sequence. In this thesis, a new meaningfulness measure will
be introduced in Chapter 4 to be used as a meaningfulness measurement for Shape-based Subse-

quence Time Series Clustering (2STSC).
2.3 Experiments

Two following experiments will demonstrate that STSC produces meaningless clustering

results and that KLMM is an invalid meaningfulness measurement. Datasets used in these exper-
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iments are eight time series of length 2000 from the Time Series Data mining Archive (TSDMA)
(Keogh and Folias, 2011) shown in Figure A.1. Figure 2.8 shows Buoyl and CBF used in the

experiments.
5
0
-5 1 1 1 1 1 1 1 1 1 |
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Buoyl
5
0
-5 1 1 1 | 1 1 1 1 1 |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 2.8: Datasets from TSDMA used in the experiments.

2.3.1 First Experiment

|

The first experimengdemensirates that STSC produces clustering results as sine waves
regardless of an input sequence./The number _of clusters (%) and the length of sliding window
(w) vary. In addition, to show that claster regre's'entatives are sine waves, perfect sine waves
are constructed and compared (o these clusier fe_:pr__esentatives. Generally, a sine wave can be
formalized as a following equation (Hazewinkel,_zoi().l).

i

B ZEA il (o 2.15)

where A is the amplitude, w = 27 f is the angular frequency (in radian per second), f is the

ordinary frequency (in hertz),. is phase, and y is an offset of the sine wave.

Given a set R¥e=L{R 1Ry, |. \eRy} 'of 'k cluster represenfatives, a new set R’ =
{R},R5, ..., R} of k cluster representatives is construeted by searching for those parameters
by a non-linear equation solver (Balda, 1999) implemented with Eevenbérg-Marquardt algorithm

(Fletcher, 1971) to minimize Root Mean Square Error (RMSE).

Figures 2.9 and 2.10 show cluster representatives generated from STSC of two datasets,
i.e., Buoyl and CBF, using k-means clustering and k-hierarchical clustering (with two variations
of inter-cluster distance functions) when k = 3 and w = 64. Note that single linkage distance func-
tion is not used as an inter-distance function in this experiment because k-hierarchical clustering
with single linkage function cannot gracefully handle trivial-matched subsequences, where some
subsequences will never in any groups if these subsequences have the largest nearest neighbor

distance compared with other subsequences. In other words, single linkage group subsequences
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based on the smallest nearest neighbor distance. Therefore, in this study, only two inter-cluster
distance functions are utilized, i.e., complete linkage and average linkage functions. The con-
structed sine waves from cluster representatives generated from STSC of two datasets, i.e., Buoy1
and CBEF, using k-means clustering and k-hierarchical clustering are shown in Figures 2.11 and
2.12, respectively, when k = 3 and w = 64, where thick lines are constructed sine waves, and thin
lines are original cluster representatives. The complete experiment results of eight datasets are
provided in Appendix B, where the number of clusters (k) and the length of sliding window (w)
are varied to be (3, 32), (3, 64), (5, 64), (7, 64), and (3, 128), respectively.

0 A\ S0 "
kage

10 ;‘49{:; 0

F-hicdrchical efusicringh
Figure 2.9: Cluster representati\fﬁég‘::nﬂat SC of Buoyl when k =3 and w = 64.

“"p}al‘:"l"l-" 7
e I’,j’,__— .

20 30 40 50
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k-hiearchical clustering with average linkage

Figure 2.10: Cluster representatives generated from STSC of CBF when k =3 and w = 64.
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k-means clustering
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k-hiearchical clustering with complete linkage
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0 10 20 30 40 50 60
k-hiearchical clustering with average linkage

Figure 2.11: Constructed sine waves generated from.STSC of Buoyl when k = 3 and w = 64.
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Figure 2.12: Consfru“ét_ed sine waves generated from STSC of C_)BF when k =3 and w = 64.

2.3.2 Second Experiment

The.second experiment. demonstrates, that KLMM is_ an invalid meaningfulness measure-
ment. From the'first egperiment, clusteringiresults of STSC are meaningless because STSC pro-
duces sine waves as cluster representatives. However, KLMM does not capture that the result
is a set of sine waves, but KLMM calculates the difference between two cluster representatives
using Euclidean distance. Since STSC has been proven both empirically and theoretically that
it produces sine waves regardless of inputs (Idé, 2006b; Keogh and Lin, 2005), KLMM should
return high values (more than one) for pairs of datasets. The following results show that KLMM
is an invalid measurement since KLMM does not return high values; even though the cluster rep-
resentatives are all sine waves. Figure 2.13 and Figure 2.14 show KLMM of STSC using k-means

clustering and KLMM of STSC using k-hierarchical clustering by varying the number of clusters
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(k) and the length of sliding window (w). From the figures, all pair comparisons of eight datasets
are evaluated. The value of KLMM is represented in gray shade, where black color represents a
high value of KLMM, while white color representing a low value of KLMM. From the experi-
ments, some values are completely white, and some are gray, but not all black; however, the values

are expected to be all black since STSC have been proven that it produces meaningless results.

1 1
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Figure 2.13: KLMMs of STSC using k-means clustering.



24

1 1

2 2 5
3 3

4 o 4 ]

5 5

6 6 o
7 7

8 8
12345678 123456738

k=3w=32 k=3w=128

0 ~NO O WN P

AT
« CARARIAIUNNINYIAY

The causes of meaninglessness are inappropriate approaches to handle trivial-matched sub-
sequences. Trivial-matched subsequences are a set of adjacent subsequences in a time series se-
quence, where between two adjacent subsequences, only two data points are different. Formally,
given a time series sequence S = (si, S2,...,S,) of length n, aset S = {S1,S2,...,Sn—w+1}
of subsequences extracted from a sequence S with a fixed-length sliding window of length w, a
set of trivial-matched subsequences are T = {S;, Sj+1,...}, where 1 < i < n — w + 1. Trivial-

matched subsequences of CBF sequence are illustrated in Figure 2.15. In addition, inappropriate
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uses of a distance measure and an averaging function to handle trivial-matched subsequences lead
to an undesired clustering output. Specifically, STSC utilizes Euclidean distance and Amplitude

Averaging function as a distance measure and an averaging function, respectively.

1 1 1 1 1 |
0 200 400 600 800 1000 1200 1400 1600 1800 2000
a) Some part of CBF sequence
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Figure 2.16: Euclidean distance cannot capture similarity between trivial-matched subsequences

To construct a cluster representative, STSC averages all subsequences within a cluster using
Amplitude Averaging function, where Amplitude Averaging generates an averaged result by com-
puting a mean of each dimension directly. In addition, Amplitude Averaging is inappropriate to

be used as an averaging function of STSC since Amplitude Averaging does not align shifted data
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points of adjacent subsequences. Therefore, in the end, each dimension of the result is averaged
from unrelated dimensions. This leads to undesired smoothened cluster representatives. Three
averaged results of trivial-matched subsequences from CBF sequence generated by Amplitude
Averaging function are shown in Figure 2.17. The averaged result will be smoother and more
convergent to sine waves; therefore, trivial-matched subsequence clustering can be meaningful
when appropriate distance measure and average function are used instead of Euclidean distance

and Amplitude Averaging function.

0 20 40 60 80 100 120

h

Figure 2.17: Amplitude Averaging pfg)&uces an smoothened averaged result.

2.5 Conclusion ,.

a2 M4

Subsequence Time Series Cluéfering (STS%iih both k-means and k-hierarchical cluster-

ing algorithms produces sine waves as cluster repfé-ééﬂfaiives regardless of an input sequence. To
measure meaningfulness,~Keogh-and-Ein-have -proposed-a-meaningfulness measurement, called
KLMM, which is shown tobe invalid because it returns that thetesult is meaningful even though
cluster representatives are sine waves. The causes of meaningl€ssness are identified as twofold,
i.e., an inappropriate (distance .measuresand; an inappropriate-averaging function, where STSC
utilizes Euclidean distance-and Amplitude Averaging funetion ‘as a'distance measure and an av-
eraging function. Therefore, the use of appropriate a distance measure andian averaging function

can returiia meaningfuliresult.



CHAPTER III

SHAPE-BASED AVERAGING

Since the causes of having cluster representatives, the outputs generated from a Subse-
quence Time Series Clustering (STSC) with both k-means clustering and k-hierarchical cluster-
ing, becoming all sine waves are inappropriate uses of Euclidean distance and Amplitude Aver-
aging as a distance measure and an averaging function, respectively, in this chapter, Shape-based
Averaging is proposed to use instead of Amplitude Averaging in STSC to correctly generate a clus-
ter representative from trivial-matched subse(j}uences. Unlike other typical data types, time series
data need Shape-based Averaging'instead of Amplitude Averaging since correlations among ad-
jacent dimensions exist (Niennattrakul and Ra!tanamahatana, 2007a,b). Additionally, Amplitude
Averaging produces an undesiged mean, where this leads to an inaccurate cluster representative.
Figure 3.1 shows the results from averaging 0f“‘tw_0 time series sequences A and B using Am-
plitude Averaging and Shape-based AVéragingg feépectively. The sequence generated from the
Amplitude Averaging shows an undesired avere_tgéd‘result that contains two events, where both
original sequences A and B consist of orﬂy one é\v‘éht. The sequence generated from Shape-based

. LA )] .
averaging preserves characteristics of these two data sequences that only one event exists.

1 2 3 4 5 pr ==

a) Original sequences A and B

Amplituc]e Averaéing
5 . L
[ D

1 2 3 4 5 6 7

b) Averaged result generated from Afiiplitude Averaging

10

Shape—t;ased Avéraging . ‘ '
5 . 4
q b

0 i i i i
1 2 3 4 5 6 7

¢) Averaged result generated from Shape-based Averaging

Figure 3.1: Comparision between two averaged results generated from Amplitude Averaging and Shape-
based Averaging.

However, constructing an accurate shape-based mean is still controversial because data
sequences are averaged in Dynamic Time Warping (DTW) distance space not in the Euclidean

space. Unfortunately, no optimal solution has been proposed. Over a decade ago, Gupta et al.
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proposed a heuristic solution called NLAAF (Gupta et al., 1996), while only a handful number of
work has been adapted to time series data mining domain (Ratanamahatana and Keogh, 2005a;
Salvador and Chan, 2007). Particularly, NLAAF does not produce good averaged results since
an averaged result is always longer than the original sequence and has large errors. In this the-
sis, a new averaging scheme with two averaging functions, Cubic-Spline Dynamic Time Warping
(CDTW) averaging and Iterative Cubic-Spline Dynamic Time Warping (ICDTW) averaging, is
introduced. With the proposed construction algorithm, a very well-formed mean is generated.
Averaged results generated from NLAAF, CDTW, and ICDTW are compared and evaluated in
terms of SUMDIST, a summation of distances between the averaged result and all original se-

quences.
3.1 Background

This section provides essential background knowledge, i.e., Dynamic Time Warping
(DTW) distance and Dynamic Fime Warping (DTW) averaging function, to understand proposed
methods in this chapter. -

3.1.1 Dynamic Time Warping (DTW) Distal_i'c_g

DTW distance (Berndt and Clifford, 1994;-1-_1-ia1§1.‘namahatana and Keogh, 2005b) is a well-
known shape-based similarity measure that uses'§d§namic programming technique to find an
optimal warping path between two time series sequenées To calculate the distance, it first creates
a distance matrix, where edach element in the mafrix is a cumulative distance of the minimum value
of three surrounding neighbors. Given two time series sequences A = (a1, ag,...,ai,...,a0y)
and B = (b1, b2,...,bj,...,by), an n-by-m matrix is first created, and then each (4, j) element

7i,; of the matrix iS defined’as:

gy a4 30511 & thih -1 5wl 499,50 ¥ 3.1

where ~; ; is the summation of |a; — b;|” and the minimum cumulative distance of three elements
surrounding the (7, j) element, and p is the dimension of L,-norms. When all elements in the
matrix are filled, DTW distance is determined from the last element -, ,,, of the matrix. For time
series domain, p = 2, equipping to Euclidean distance, is typically used. Since DTW distance is
important background knowledge for this thesis, a pseudo code is provided in Table 3.1 and an

illustrative example of DTW distance calculation is shown in Figure 3.2.
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Table 3.1: Pseudo code of Dynamic Time Warping distance measure

FUNCTION [dist] = DTW-DISTANCE [A, B]

1. Let n be the length of time series A
2. Let m be the length of time series B
3. Let p be the dimension of L,-norms
4. Initialize D = ARRAY[n][m]

5. For(i=1ton)

6. For (j = 1tom)

7. If(¢=1andj#1)

8. min = Di,jfl

9. Elseif (i #1land j = 1)

10. min = Di—l,j

11. Else

12. minzMIN(Dm;l, Di—l,j,Difl,jfl)
13. End if

14. Di,j =min -F)]CLZ' - j'p

15. End for

16. Eadfos

179 Reuin di st 500/ B, by,

W b N“
L “h‘h
| I

- - o

Figure 3.2: Alignment obfained from aDTW distance calculation.

3.1.2 Dynamic Time Warping (DTW) Averaging v

DTW averaging was first introduced by Gupta et al. (Gupta et al., 1996) to find an av-
eraged result betweenitwortime-series sequences:+ Unlike DIFW.distance, DTW averaging uses
another matrix to'store an“index of the"minimum’ distance’among ‘adjacent elements. The path
matrix is created to store an index of the ddjacent elementithat has minimuin/cumulative distance,
and a pathiis traced back from the.last element to the first element. An,averaged result is then
calculated along the path. Suppose the path W = (wy, wa, ..., w,...,wy) of length N, where
wy, 18 k" coordinate (i, Jji) in the optimal path of sequences A = (aj,ag,...,a;,...,a,) and
B = (b1,b2,...,bj,...,by), where i and jj, are indices of data points in sequences A and B,

rethespectively. Therefore, a new sequence Z = (z1,22,...,2k,...,2n) is derived from ele-

aiy, watb;, wp
watwp

We also provide a concrete pseudo code of DTW averaging in Table 3.2. For example in Fig-

ure 3.3, two sequences A = (2,3,8,2,3,1,3) and B = (3,1,2,3,8, 3,2) are averaged by DTW

ments 2 = , where w4 and wp are the weights of sequences A and B, respectively.

averaging algorithm to produce an averaged result Z = (2.5,1.5,2,3,8,2.5,3,1.5,2.5).
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a) Original sequences

1 2 3 4 5 6 7 8 9

b) Averaged result

Figure 3.3: Result generated from DTW Averaging

Table 3.2: Pseudo eode of Dynamic Time Warping averaging function

FUNCTION [ =D TW=AVERAGING [ 4, B, w4, wz]

1. W = WARBRINGPATH(A, B)

2. Jset' N be'alength ofithe path 117

3. Lew bed tifmé Series sequence of length N
4. JFor (= Wtolly) | ' ;

5. [ ] # wk+b e

6. “r g wj:+_u_{JB% Ti’ 4

7. Alld o gz e

8. End for i id

9. Retufh ZF 4 44 7 Ai 4

P Ydia
It is important to note that DTW- averaging}ﬁﬁj&tion is an operation which has only com-
mutative property with no associative property (Nie_@g;trakul and Ratanamahatana, 2007a). In

the other words, if therc_ é_i[e three sequences A, B, and C, a resuﬁ ,gf averaging A and B, then C'

is not necessarily equal tO:%l result of averaging B and C/, then A._:A-'sequence ordering can largely
affect the averaged result. In addition, an averaging sequence will always be longer or equal to
the original sequences. If a large. dataset is to be averaged, averaging sequences will be very long
which will definitely decrease a system performance. Therefore, in this chapter, two new shape-
based averaging functions to resolve this problem and a new averaging scheme to efficiently order

averagingsequences areypropesed:
3.2 Related Work

Over a decade ago, Gupta et al. proposed a heuristic shape-averaging scheme called
NLAAF (Gupta et al., 1996), which was first introduced in signal processing community, and
later has been utilized in data mining tasks (Ratanamahatana and Keogh, 2005a; Salvador and
Chan, 2007). Specifically, NLAAF uses DTW averaging to produce a mean between a pair of
time series sequences. NLAAF consists of two averaging schemes, i.e., NLAAF; and NLAAF;.

NLAAF; averages sequences in hierarchical manner. Suppose there are eight sequences, i.e., A1
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Table 3.3: Pseudo code of generating a warping path

FUNCTION [W] = WARPINGPATH [ A, B]

1. [Initialize distance matrix DM and path matrix PM

2. Foreacha;in Aand b; in B

3. DM[i, j] = |(li — bj|p

4. If(i=1andj#1)

5. DM]{i, j] += DM]i, j — 1]

6. PMJi, j1=1

7. Elseif (i # 1 and j = 1)

8. DMTi, j1+= DMT[i — 1, j]

9. PMTi, j1=2
10. Elseif (: # 1 and j # 1)
11. dist = MIN(DM[i, j — 1)d DM — 1, 71, DM[i — 1, j — 1])
12. If (dist = DMli, j — 1])
13. P Mgl =1

14. Else ifs(dist=DM[i =1, j])
15. DAMHirTT=2

16. Else

17. PN (i =83 .
18. End if ]
19. DM i, g1 += dist ' &
20. Else o
21. BMTi, j1=8 y 4
22.  Endif " )
23.  Endfor id

24. Letn be alength of the sequeneé;..-X*.i
25.  Let m be alength of the'sequence YV’
26. While (n # 0 and m=£0) “

27. wy, = [n, m] A 22k
28. If (PM[n, m]=1) -

29. m=m - e e
30. Elseiif (PM[n, m] = 2)

31. = ———————

32. Else

33, m=m-lin=n-1

34, End+f

35. End while
36. W= Reyerse-order-of JV.
37. " Return W

to Ag. ApandgAy-are-averaged to-producesAy o, -and, As, and+Ay aresaveraged;to produce As 4,
and so on." Then, in the next level, A1y and A3 are averaged-to produce A(172)7(374), and so
on. Limitation of NLAAF; is that it requires that the number of sequences must be a power of
two. Unlike NLAAF;, NLAAF, averages sequences in sequential manner. A; and Ay are first

averaged to produce A 2, and then A  and A3 are averaged to produce A ; 7) 3, and so on.

Since NLAAF; has limitation that it requires the number of sequences to be a power of two,
Gupta et al. recommend to use combination of both NLAAF; and NLAAF,. For example, to aver-
age 100 sequences, 4 sequences will be discarded, and the rest of the sequences will be separated

into three groups of 32 sequences, each of which will be averaged using NLAAF;. Therefore,
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three averaged sequences produced from NLAAF; will then be averaged using NLAAF;. Since
DTW averaging function does not have an associative property, different orderings of sequences
in both NLAAF; and NLAAF; will lead to different averaged results. Additionally, an averaged
sequence from NLAAF will be very long since DTW averaging function will always produce a
longer or equal sequence to its original sequences. In this chapter, two new DTW averaging func-
tions and an averaging scheme which produce a more accurate averaged result are proposed, and

when this result is used in subsequence clustering, it produces more meaningful clustering results.
3.3 Shape-based Averaging

To average a set of sequences, an averaging.scheme to construct an averaged result is pro-
posed since the shape-based averaging does not have an associative property (Niennattrakul and
Ratanamahatana, 2007a). Instead-of averaging sequences in a random order as done in NLAAF, a
heuristic solution is introduced o refuum a'good averaged result by averaging a pair of sequences
which are the most similar first" A fter the averaged result 1s generated, a pair of sequences from
the remaining data including theprevious averaged result is determined for the next iteration. The
scheme keeps going until only one sequenee reﬁla{ﬁs. A pseudo code of the averaging scheme is
provided in Table 3.4. -

2 7
all ol il

Table 3.4: Pseudo code of Shape‘-@g[_sed Averaging scheme

FUNCTION [V |= AVERAGINGS’QHEME [S]

1. Initialize a weight w = 1 for each sequence S in S
20 = While(SIZE(S)y>"1) [
3 [A, B] = Most similar sequences in S
4. Z = AVERAGINGFUNCTION(A, B, wa, wp)
5. Remove A and B from S
6 Wz.— wa +wp

7 Add, Zto)S

8.. (End while

9. Return Z

In this chapter, (two 'novel averaging functions, i.e.s Cubic-Spline Pynamic Time Warping
(CDTW) and Iterative Cubic-Spline Dynamic Time Warping (ICDTW) are introduced. Either one
of these two averaging functions can be used as the AVERAGINGFUNCTION in Line 4 of Table

3.4.

3.3.1 Cubic-Spline Dynamic Time Warping (CDTW) Averaging

CDTW averaging function produces a more accurate averaged result by considering both
position and amplitude of each data point of a new averaged sequence, while DTW averaging

function (Table 3.1) considers only amplitude. In other words, DTW averaging function equally
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treats every new data point in a new sequence, while CDTW averaging function additionally de-
termines where a new data point should be placed. Specifically, a position and an amplitude of
a data point in the sequence can be observed as z- and y- coordinate in time series. Therefore,
the sequence generated from CDTW function is more useful since it preserves both position and
amplitude from the warping path. Figure 3.4 shows the comparision between averaged results gen-

erated from CDTW and DTW averaging functions, where two inputs are A = (2,3,8,2,3,1, 3)

and B = (3,1,2,3,8,3,2).
AT AL A_ B
5@(’%4
01 v, é “l- é 6 7

a) Original sequences™4 and B

J
10 : : : ‘
5, 4
ﬁ\_,’/"-—- \ )
o 2 3 il 6 7 8 9

b) Averaged result generated from DTW averaging
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51;— Lo o /J‘_\‘\.——ﬂ

: T :
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0 i . i ;
1 24 3 fAAs 45 5 6 7

c) Averaged result generat{:g}__from CDTW averaging

Figure 3.4: Comparison between:DTW avérégifig and CDTW averaging functions

.q‘l""-r -

T e d

Suppose the path WA= (wy, wa, ... wg, ..., wy) , where ujk_: (ig, jr) is k' coordinate in

the optimal path of sequentes A and B. Therefore, a position z,’u ©f‘a data point in a new sequence

/s : ! L WAtk tWE Ik
Z' is determined by zj == =778

waai, +wp-bj,
waswp

, and an amplitude z,’cy of a data point in a new sequence
Z' is determined by z,/cy = , where w4 and wp are the weights of sequences A and

B, respectively.

However, the length of the sequence Z'.is alwdys equal.to or longer than two original
sequences; therefore, ‘te-sampling fis required. In'this thesis, CDITW averaging function uses a
cubic-spline interpolation (Burden et al., 1997) since it requires no parameter and outperforms
other interpolation techniques in re-sampling of natural sequences. Additionally, CDTW function
re-samples positions of averaged result to integer values. As illustrated in Figure 3.5, the sequence
Z' of 9 data points is re-sampled to the sequence Z of 7 data points. A concrete pseudo code of

CDTW function is provided in Table 3.5.
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b) Averaged result after re-sampling

Figure 3.5: Averaged results before and after re-sampling in CDTW averaging function.

Table 3.5: Pseudo code of Cubic-Spline Dynamic. TimeWarping (CDTW) averaging function

FUNCTION [Z] = CDTW_‘—TAVERAGING [A, B, wa, wg]

1. W = WARPINGPATH(A, B)

2. et N gbe theflength ofithe path W/

3. Let*N be'the equal lg'tngth of time series A and B
4. #fLet 4fbesa time series sequence of size 'V

5. Let Z' jbe a time series sequence of size N’
6

7

8

iFor (IF il 6 Nt

[7:’ .]] “__ wk :‘}
-4 1WA+ wWB f
Wa+wp -
10. Add|z, y] 0’ Z' '-_f'J.r__
11.  End for = ——
12.  Z =CuUBIESPEINE(Z/y 2 )
13. Return Z T—
3.3.2 Iterative Cubic-Spiine-Dynamie Time Warping (I€DTW) Averaging

Although CDTW function produces a good averaged result since it considers both position
and amplitude, another esseftialsbut not necessaty/condition for averaging is that the averaged
result should be in the middle of two original sequences. In other words, DTW distances between
the sequences and the result should be equal. Therefore, an iterative approach for CDTW averag-
ing function called Iterative Cubic=Sphine Dynamic ‘Time Warping (ICDEW ) averaging function

is proposedy ICDTW function can truly represent characteristics of a set of subsequences.

It is important to emphasize that the distances between the generated result from CDTW
function and two original time series sequences are not always equal; therefore, the averaged result
needs to be slightly adjusted. Obviously, since all elements in the sequence are real numbers, it
is very difficult to obtain the sequence that satisfies this condition; therefore, a heuristic and
deterministic solution is proposed, i.e., ICDTW averaging function mentioned above. To average
two time series sequences A and B, ICDTW function will find new weights G4 and Sp which

make the averaged result Z be the center between the sequences A and B. Obviously, finding both
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weights 54 and (g is not very practical since the weights 34 and §p are real numbers. A binary
search is used instead to find only the weight 34, when the weight Oy is fixed. Specifically, for
each iteration, a new weight 34 is checked whether or not the generated averaged result Z has an
equal DTW distances to the sequences A and B. If the distances are equal, ICDTW terminates.
In other words, only weight 3 4 is necessary to search, while weight Sp can be fixed as a constant
because two sets of weights are equivalent. For example, for {54, 65} = {4, 5}, it can be reduced
to {0.8,1} when the weight g is fixed to 1; therefore, searching for 34 is enough to find any
pair of weights {34, Sp}. Pseudo code of ICDTW averaging function is provided in Table 3.6.
Note that two initial weights of A, 54, and [, are set to be 1075 and 10°. These numbers can
be initialized to any numbers, where 34, must be'much'smaller than 34,, so the algorithm can be

)

converged.

Table 3.6: Pseudo code of Iterative’Cubic-Spline Dynamic Time Warping (ICDTW) averaging function

FUNCTION [Z]= ICDTW—A]VERAGING [A, B, w4, wp]

1. Initialize weight§ 84, =102, G4y = 10°, and Gz = 1
LﬁAl +,3A2)

2. Inifialize weight 15 =
3. Z=@DIW- AVERAGINg,(A B BAs, BB)
4. dzy=DTWDISTANCE(Z, A) - wa
5. dzp =3IDTWDISTANCE(Z)B) - wp
6. Ba, Fdzh < dz B BALIOA,
7. While (|dz A —dZBl - of

8 ([Ml +d 42) e ".lj_"

. ﬁ Az —

0. Z = CDTW- AVERAGING(A B, B4, BB)
10. dz 4 = DFWDISTANCE(Z, A) - wa
11. -4 dz p = DTWDISTANCE(Z, B) - wp

12. | = If(dz a4 <dzB)
13' ﬁ il /6A3
14. Else

15. T Ba, = Ba,
16. End if

178 [End while

18. .+ Return Z

Note, that both CDTW «andAICDTW dverdging functions| can/ betused ifi subsequence clus-
tering. However, to preserve characteristics of an averaged result, ICDTW' function is more pre-
ferred. For CDTW function, the averaged result preserves shape-based averaging process which
considers both position and amplitude of the warping alignment, while ICDTW averaging returns
more accurate characteristics of the averaged result by calibrating the resulted sequence having
the same distance between the result and original sequences. Performance of CDTW and ICDTW

functions will be demonstrated in the experiment evaluation.
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3.4 Experimental Evaluation

The following experiment will demonstrate the superiority of the proposed averaging func-
tions over the current existing approaches, where the accuracies of the proposed shape-based
averaging method, i.e., a new averaging scheme with two proposed CDTW and ICDTW algo-
rithms, comparing with those of NLAAF, are reported. Our proposed methods are evaluated with
20 datasets from the UCR classification/clustering page (Keogh et al., 2011). Table A.1 shows the
number of classes, the length of each time series sequence, and the size of the datasets, and Figure
A.2 shows some examples of each dataset. Higure 3.6 shows examples of some classes used in

this evaluation.

i
2 ) g
0
Sliyentech 2
-2 : : : : ‘ 4 : : : :
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CBE
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|
Figure3.6: Bxamples of some classes in evaluated datasets.

Y
For each dataset, traifiing daga and fest d.'::i:t?.. are all combined, and then all sequences are
averaged. Note that sequences are averaged w1thJ1n tileir own classes to achieve maximum utili-
ties. The averaged results are evaluated using SUMﬁ}?T function, defined as a summation of all
distances between the averaged result and cach oftTe original sequences in the dataset. If a value

d -l

from SUMDIST is small, it means that this method generates a good averaged result. SUMDIST

function is provided as fqilavs.

SumDist (S ) S) H %DTW'Distance (S‘ \ Si) 3.2)

i=1
where S iS"a dataset; S7s thie averaged-resulfy and §,/is each/data/Sequencciinithé dataset S.

Table 3.7 shows the SUMDIST comparison between NLAAF and our proposed meth-
ods, CDTW and ICDTW functions, where SUMDIST reported in Table 3.7 is a summation of
SUMDISTs of all classes. From the experiment results, it is apparent from the experiment results
that CDTW and ICDTW functions achieve lower SUMDIST values since all sequences are aver-
aged using a new averaging schemes, while the scheme of NLAAF averages sequences in random
manner, and no resampling method is adopted in NLAAF to scale the averaged sequence to the
same length. Averaged results from CDTW, ICDTW, and NLAAF of CBF and ECG are shown

in Figures 3.7 and 3.8, respectively, where the results from other datasets are provided in Figures



C.1to C.3 in Appendix C.

Table 3.7: SUMDIST of each averaging method

Dataset

[ NLAAF | CDTW | ICDTW

50words
Adiac
Beef
CBF
Coffee
ECG
Face (all)

Lighti
.. .l,,
Olj
U

Face (four) 9
Fish | i
1
Gun-P \\\:\t\ 13

"l-:

42717.6
353.9
384.7

8730.6

69.5

1160.8

18339.0

2. || 2606.

. 2() s S

23482 | 23605
2859 | 2843
2199 | 2225

4007.1 | 3821.0

43.0 43.6
5284 | 5194

8748.6 | 8670.4
6134 |  604.4
2973 | 2844

56.0 | 468.4
1183.3

865.1

S —3 | 6.5
. 2805.9
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Figure 3.8: Averaged results of ECG
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3.5 Averaging Trivial-Matched Subsequences

Trivial-matched subsequences are a set of adjacent subsequences whose differences are
only a few points. For example, from a CBF dataset, in Figure 3.9, three sets of trivial-matched
subsequences are extracted and shown in Figure 3.9. Therefore, Amplitude Averaging function is
inappropriate to average these subsequences since Amplitude Averaging function does not align
subsequences before averaging. If Amplitude Averaging is used, the averaged result will be
smoothened and the output of subsequence clustering will be meaningless. Figure 3.10 shows the
averaged results when Amplitude Averaging averages three sets of trivial-matched subsequences.
Since CDTW and ICDTW averaging functions al@gﬁﬁﬁ)sequences before averaging, the averaged
result preserves all characteristies, as shown ‘1-1’1 Figﬁre’{Ll-aand Figure 3.12, respectively. There-

fore, CDTW and ICDTW a\:grg,gi-&g functions are mere appropriate to use to construct cluster

representatives in subsequeM

ICDTW averaging function

ring thap Amplitude Averaging function. Either CDTW or

begused (o generate cluster representatives in subsequence clus-

— ol

1 1 1 s | = 1 ] 1 1 ]

> # A

0 200 4000 600,800 1000, 1200 1400 1600 1800 2000
a)-Some part of CBF sequence

et A}

b) Three sets of‘trivial-matched subsequences

Figure 3.9%Iriyial-matched subsequences b) extracted from a) CBE sequence.

3.6 Conclusion

This thesis proposes CDTW and ICDTW functions to generate an accurate averaged re-
sult. Since time series data have correlation among dimensions, CDTW and ICDTW functions
are more appropriate than Amplitude Averaging function. In addition, CDTW and ICDTW func-
tions are shown to outperform NLAAF, and they should be used as an averaging function for

subsequence clustering.
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Figure 3.10: Averag enerate m Amplitude Averaging.
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Figure 3.12: Averaged results generated from Shape-based Averaging with ICDTW function.



CHAPTER IV

2STSC: SHAPE-BASED SUBSEQUENCE TIME SERIES
CLUSTERING

Since Keogh and Lin proved that the clustering results of Subsequence Time Series Clus-
tering (STSC) are meaningless (Lin et al., 2003; Keogh and Lin, 2005), many other methods,
e.g., Density-based Subsequence Time Series Clustesing (DSTSC) (Denton, 2005), Lag-based
Subsequence Time Series Clustering (LSTSC__) (Simonretal., 2006; Chen, 2007a,b), and Phrase-
Analysis Subsequence Time Series Clustering (PASTSC) (Fujimaki et al., 2008), have been pro-
posed in order to solve this meaninglessness. These previous works introduce additional param-
eters to discard or filter outdrivial-matched sﬁbsequences. For DSTSC, a distance threshold is
proposed to eliminate groupssof clusters that ﬁa{fé distances below this threshold, while LSTSC
and PASTSC propose a lag value/and -a slide fength to select only some subsequences from a
large set of extracted subsequencges. These paraljn_eters, however, are very sensitive to a clustering
result that if inappropriate parameter values are-éﬁo;én, the clustering results will still be mean-
ingless. In addition, those works‘have tdo strict a;éﬁﬁ}lgtion that the time series sequence must be
cyclic, where this assuption scarely satisfies in reT‘r.Fj}v-;orld data. Obviously, these previous work
do not solve at the right*point. Fifs;tiy, inappropr-i.a-‘i-e_:_;)_aiameter values may discard some useful
subsequences, and secondly; distance measures used in those ¢lustering algorithms are based on
Euclidean distance that cénnot capture similarity between two adjacent subsequences of trivial-
matched subsequences. Lastly, a cluster representative generated from those clustering algorithms
are from typical statistical ¥#aluesisuch agia meanor dimediah; Where asmean is an averaged result
of all cluster members generated from Amplitude Averaging, and a median is selected from an
existing data sequence. Although a median can produc¢é*a meaningful clustering representative
since it is"selected from the existing sequence, the median is still not preferred to be used as a
cluster representative because the median is usually sensitive to an imbalanced dataset, while the

mean, on the other hand, does preserve characteristics of all data objects in the averaging.

In this chapter, Shape-based Subsequence Time Series Clustering (2STSC) is proposed to
produce meaningful clustering results. Since trivial-matched subsequences are contiguous subse-
quences which have shifts in a time domain, an appropriate distance measure and an averaging
function, i.e., Dynamic Time Warping (DTW) distance and Shape-based Averaging, are used to

find the optimal alignment before distance calculation and averaging. Suppose there are three sets
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of trivial-matched subsequences as shown in Figure 4.1, Figure 4.2 demonstrates that Euclidean
distance cannot capture the similarity of trivial-matched subsequences by identifying that subse-
quences from the same set of trivial-matched subsequences are different. Compared to Euclidean
distance, DTW distance, on the other hand, can correctly group three sets of trivial-matched sub-
sequences because Euclidean distance calculates a distance in one-to-one manner, while DTW
distance finds an optimal alignment before distance calculation. Given the same three sets of sub-
sequences as in Figure 4.3, the Amplitude Averaging produces an averaged result whose shapes
are smoothened, while Shape-based Averaging still preserves all characteristics of the sequences,

especially the peaks and valleys of the sequencés,,r /

i

Figure 4. I Three sefs of tiff/'ial-matched subsequences.
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To be more illustrative, a mp}p{é{xperimeﬁ T}i'ljonstfates that STSC produces meaningless

results. The test sequence is generated fiom con@feﬁpﬁon of thirty sequences of three patterns,
et s ]

i.e., Cylinder, Bell, and Fihlnel, from the CBF dataset. The clusteﬁr.lg results of STSC and 2STSC
L —

are shown in Figure 4.4;;?_here the number of clusters (k) and th-:e;'length of sliding window (w)
are set to be 3 and 128, re%).éctively. Clustering results of STS_C: are all sine waves, while 2STSC
returns meaningful patterns. Note that 2STSC dogs,not return three patterns, i.e., Cylinder, Bell,
and Funnel, as expected cluster representatives because ‘other patterns, including joints between
the patterns also d@ exist in the long time series sequence. With this proposed solution that uti-
lizes DT W-distance,and,Shape-based Averaging-as,a-distance measuresand-an;averaging function,

2STSC will demonstrate'that it produces meaningful results in an‘experimental-evaluation section.
4.1 Related Work

In this section, related works are reviewed and described to show that subsequence cluster-
ing is challenging and still an open problem. So far, no proposed work has yet efficiently solved
the problem. This thesis will be the first work to introduce meaningful subsequence clustering

algorithm.

Since Keogh and Lin have reported the shocking finding that the output of STSC was mean-
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a) Euclidean distance b) DTW distance

Figure 4.2: a) Euclidean cannot capture the similarity of trivial-matched subsequences, while b) DTW can.

ingless (Lin et al., 2003; Keogh and Lin, 2005), hundreds of works and their successors that use
STSC as a subroutine or a preprocessing step are also considered producing meaningless outputs.

Keogh and Lin also proposed a tentative solution (Lin et al., 2003; Keogh and Lin, 2005) by using
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Figure 4.4: a) STSC produces a meaningless clustering result, while b) 2STSC produces a meaningful
clustering result.

motif discovery (Mueen et al., 2009) to remove trivial-matched subsequences, and the remaining
subsequences are then clustered using k-hierarchical clustering and k-means clustering. However,
the motif discovery is parameter-laden in that a real-value distance threshold must be specified in

advance to define which sequences are motifs or trivial matches, and using any preprocessing
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steps to filter out these trivial-matched sequences may lead to an error because some important or

desired subsequences are discarded.

Density-based Subsequence Time Series Clustering (DSTSC) (Denton, 2005) has then been
proposed by using a kernel function to model trivial-matched subsequences as noises, and a dis-
tance threshold has been used to discover the clusters and eliminate noises. Nevertheless, the
distance threshold has to be manually defined by users, and its cluster representative is selected
from a median of cluster members. However, a median is an undesired cluster representative be-
cause a median is affected from imbalance distribution of cluster members that all cluster members
should be averaged instead of just selecting one existing sequence. Therefore, a mean is more ap-
propriate than other statistical walues, i.e., a mode-of a.imedian, since a mean can better reflect

characteristics of an interesting data-collection by averaging all data sequences.

Lag-based SubsequencesTime Series Clustering (LSTSC) (Simon et al., 2006; Chen,
2007b,a) is a subsequence clustering algorithm that re-samplcs subsequences to a specific lag
value using a new distanceimeasure (Chens; 20€-}7b), and a cluster representative is derived from
a mean (Chen, 2007b; Simon et al.; 2006) or d_éedian (Chen, 2007a). LSTSC requires a lag
value by assuming that an input sequence is cycli;i;.-However, a perfect cyclic sequence is scarcely
found in real-world data; the output of LSTSC:i"sameaningless if an improper value is chosen
(Chen, 2007a). In other words, LSTSC works wei \;i’zjﬂen a good lag value is provided by users.
To achieve a cluster representative; LSTSC uses a melanr or a median of cluster members. Since
resampling of subsequences using a lag value cannot be done Casily, the cluster representative
derived from the mean is'still meaningless. In addition, using a median instead of a mean is not
a good solution. Although’a median selected from an existing sequence is not a sine wave, a
median is still not suitable to'béva cluster represefitative due to lack of reflection of data charac-
teristics. Note that some papers (Chen, 2007b) utilize lag-based approach, but subsequences are

not normalized before clustering; those papers are, therefore, considered meaningless as well.

Phrase-Analysis’ Subsequence Time ‘Series 'Clustering (PASTSC)“(Fujimaki et al., 2008)
utilizes Discrete Fourier Transform (DFT) to convert a time series sequence to a frequency do-
main before clustering. For efficient transformation, PASTSC selects the phase which gives the
maximum power spectrum as a parameter in DFT. After all subsequences are transformed, those
data are clustered using k-means clustering or k-hierarchical clustering algorithms, and then a
cluster representative for each clustering is identified in the frequency domain. After clustering
is finished, a cluster representative is transformed back to the original time domain. PASTSC has
an important parameter, i.e., a slide length that is a number of overlapping subsequences allowed.

Since the slide length is used to eliminate trivial-matched subsequences, an inappropriate value
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still leads to meaninglessness as well. Although the slide length is set so that the output is not
meaningless, the cluster representative is not generated from all sequences that some important

subsequences are discarded by the slide length.

Perceptually Important Point (PIP) (Fu et al., 2005) has been proposed to reduce the number
of dimensions of subsequences before clustering, where PIP captures peaks and valleys of sub-
sequences. Specifically, extracted subsequences are first reduced using PIP, and then redundant
subsequences which have the same PIP will be removed, where trivial-matched subsequences
normally have similar PIPs. The parameter of this dimensionality reduction is the number of
points that is used to represent a subsequence. Additionally, this method is suitable for noisy time
series sequences but not smooth sequences since peaks.and valleys are hard to be identified in
the smooth sequences. However, their paper cioes not evaluate their clustering results with mean-
ingfulness measurement. Simalar to'PIPs. many other representation techniques, e.g., Discrete
Cosine Transform (DCT) (Kumar et al ; 2006) and Discrete Fourier Transform (DFT) (Fujimaki
et al., 2008), are also proposedifo tépresent cxtracted subsequences to be an input of subsequence
for clustering algorithms instead of using raw, E“ubis_equences. However, data representations are
not suitable since they require parameters, and 15,r_ecisions of clustering results are lost after these

transformations. ‘
s r

These related works (Keogh and Ein, 2005; D_enifon, 2005; Chen, 2007a; Goldin et al., 2006;
Fu et al., 2005; Struzik, 2003; Simen'etal:, 2006; Kufnér et al., 2006; Fujimaki et al., 2008) do not
propose the right solutions to deal with trivial-matched subsequefices, i.e., new distance measures
requires additional parameters and Amplitude Averaging is still-used to construct a cluster repre-
sentative. The distance threshold in DSTSC, the lag value in LSTSC, the slide length in PASTSC,
and PIP are additional parameters that users must-8pecify depending on characteristics of each
dataset, where these values are sensitive to clustering results. With incorrect values, outputs of
clustering results may be meaningless. In addition, these values are used to discard trivial-matched
subsequences; therefore) some important trivialsmatched subsequences ai¢ unexpectedly filtered
out. For the meaningfulness measurement, all previous works used Keogh-Lin Meaningfulness
Measurement (KLMM) to measure clustering output. As shown in Chapter 2, KLMM turns out
to be an invalid measurement since it cannot completely capture similarity of two cluster repre-
sentatives, when the outputs are all sine waves with different phases and frequencies; the outputs

will always be intepreted as meaningless.

In this chapter, the issues of similarity between trivial-matched subsequences and cluster
representative construction are solved by using the well-known DTW distance and the proposed

Shape-based Averaging instead of Euclidean distance and Amplitude Averaging, respectively.
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With DTW distance and Shape-based Averaging, the proposed subsequence clustering, Shape-
based Subsequence Time Series Clustering (2STSC) will be the first meaningful subsequence
clustering algorithm in terms of Shape-based Meaningfulness Measurement (SMM) demonstrated

in an experimental evaluation section.
4.2 Shape-based Subsequence Time Series Clustering (2STSC)

Shape-based Subsequence Time Series Clustering (2STSC), a meaningful subsequence
clustering algorithm, is proposed in this thesis, where 2STSC utilizes Dynamic Time Warp-
ing (DTW) distance and Shape-based Averaging o correctly measure similarity between sub-
sequences and average cluster members for a clustef representative. Shape-based Averaging pro-
posed in this chapter has two variations, i.e., Cubic-Spline Dynamic Time Warping (CDTW) and
Iterative Cubic-Spline Dynamic FimeWarping (ICDTW) averaging functions. Both CDTW and
ICDTW functions use cubic spline interpolatipn function (Burden et al., 1997) to re-sample z-
axis of an averaged sequence, but ICDTW function is more accurate that an averaged result is

guaranteed to be in the middle of two original sequences.

To solve the problem of trivial-matched sdE_s@quences, contiguous subsequences with small

time shifts, 2STSC integrates' DTW distance andJ_S_}ilape—based Averaging in k-hierarchical clus-

tering. Specifically, like STSC, 2STSC receives a long time series sequence S = (s1, S2,. .., Sp)
as an input, and then this sequence is exiracted t0. beasetS = {51,82,...,Si,. ., Sn—wi1}
of subsequences by a sliding window of length w, where S/ = (s;, Sit1,...,Sitw—1) and

1<i<n—w+1. Thjé set of subsequences is then normalized under z-normalization (Han
and Kamber, 2000) and clustered with k-hierarchical clustering algorithm, where DTW distance
and Shape-based Averaging are used as a distance measure and an averaging function in the al-
gorithm. Finally, 2STSC returns a'set € = {C1,C5,\. . 5Cy } of & clusters, where each cluster
C = (M, R) contains a set M = {S; | S; € S} of cluster members and a cluster representative
R = (r1m9, sy from j-hierarehieal clustering. Bestde aminput,2STSC requires two typical
parameters which are the number of clusters (k) and the length ofsliding window (w). Visually,

an overview of 2STSC is illustrated in Figure 4.5.

K-hierarchical clustering used in 2STSC are agglomerative clustering which uses bottom-
up strategy. Specifically, agglomerative clustering iteratively combines atomic clusters to one
large cluster. K -hierarchical clustering requires an inter-cluster distance function which is used
to calculate a distance between two clusters. In this thesis, 2STSC uses two inter-cluster distance
functions, i.e., complete linkage and average linkage distance functions, where complete linkage

and average linkage functions are maximum and mean distances, respectively, among all subse-
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Figure 4.5: Overviewof 2STSCusing DTW distance and Shape-based Averaging.

|
quences pairs between twoseluster members. More details of agglomerative clustering algorithms

are provided in Section 2.1.2: Concretely, 728"1;:8‘('3 with the agglomerative algorithm is shown in
Table 4.1. Note that 2STSC does not use the si‘pgle linkage function as an inter-cluster distance
function because the single linkage functlon cannot handle trivial-matched subsequences. Specifi-
cally, some subsequences will'never be i in any grdup if these subsequences have the largest nearest
neighbor distance. Although an average distance of that subsequence is smaller than others, single

linkage will only group based on the smaller nearest nelghbor distance. Therefore, in this thesis,

only two inter-cluster dlstance functlons are utlhzed ie., complete linkage and average linkage

distance functions. . g )

Table 4.1: Pseudo code of Shape-based Subsequence Time Series Clustering (2STSC)

FUNCTION[C}=12STIS€{ S5 k) w]

S = EXTRACTSUBSEQUENCES(.S, w)

SNorm'= NORMALIZESUBSEQUENCES(S)

C = CLUSTERING(S N oz, k) // with DTW distance and Shape-based Averaging
Refurn C

e

4.3 Experimental Evaluation

Shape-based Subsequence Time Series Clustering (2STSC) is evaluated by comparing with
STSC in terms of meaningfulness. STSC used in this experiment is implemented on k-means
clustering and k-hierarchical clustering with Euclidean distance and Amplitude Averaging, while
2STSC is implemented with k-hierarchical clustering with DTW distance and Shape-based Aver-
aging (CDTW and ICDTW functions). Eight datasets from the Time Series Data Mining Archive
(TSDMA) (Keogh and Folias, 2011) used in this experiment are normalized and shown in Ap-
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pendix A, where each dataset contains 2000 data points. Two datasets, i.e., Buoyl and CBF, used

to illustrated in this experiment is shown in Figure 4.6.

-5 | | | | | | | | 1
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Figure 4.6: Datasets used to evaluate meaningfulness of STSC and 2STSC

The proposed 2STSC is compared with STSC ifi terms of meaningfulness. However,
Keogh-Lin Meaningfulness Measurement (KILMM) (Lin et al., 2003; Keogh and Lin, 2005) is
invalid by the following reasons.” Firse, the assumption of KLMM is that clustering results from
the same input sequence should'be Similar; oth@rsyvise, the clustering results should be dissimilar.
KLMM, therefore, only compaies the distances between the distance of clustering results from
the same input and the distance of clustéring regldllJt'S from the different inputs. However, KLMM
does not have any measurement of similarity bcﬁzveen two inputs. Given two similar sequences,
clustering reuslts from those two inputs ‘are expéé:—f'eel_ to be similar, but KLMM considers that the
results are meaningless although the'algorithm ptgdﬁéés meaningful results. The second reason
is that KLMM cannot capture the-sinilarity of ﬁﬁé-@vcs with different phases or frequencies
since KLMM utilizes Eup@can distance to calculate distance between two cluster representa-
tives. Therefore, these cluster results are dissimilar in terms of KLMM although the clustering
results are sine waves. In €hapter 2, KLMM has been shown that it is considered to be an invalid

meaningfulness measurement.

In this experiment, a novel meaningfulness measurement, Shape-based Meaningfulness
Measurement)(SMM)sis intreduced toycalculate imeaningfulness of-clusteringjresults. The ba-
sic idea of .SMM is that clustering resultsare meaningful "if" clustering results truly represent
subsequences in the time series sequence. In other words, if an input sequence is not a sine
wave, cluster representatives should not be sine waves, and if an input sequence is a sine wave,
clustering representatives should be sine waves; otherwise, the clustering results are considered
meaningless. Unlike KLMM, SMM calculates the meaningfulness between an input sequence
and an output clustering result, while KLMM calculates meaningfulness between clustering re-
sults from two different datasets. Given an input sequence S = (s1, So, . . ., S, ) and an output set
C = {C1,Cy,...,Cy} of k clusters, a set S = {S1,S2,...,Si,...,Sn—w+1} of subsequences

are extracted from the input sequence S by a sliding window of length w, where each cluster
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C = (M, R) contains a set Ml = {S; | S; € S} of cluster members and a cluster representative
R = (ri,re,...,1y). Aset R = {Ry, Ry,..., Ry} of cluster representatives are cluster rep-
resentatives of all clusters. Specifically, SMM is a summation of minimum distances between
each subsequence and cluster representatives. The meaningfulness value can be calculated as the

following equation.

@.1)

where Distance (S;, R;) is a i quences S; and R;.

SMM ranges from Zeroff w W value that SMM must be com-

pared between two algorithms

varied to demonstrate the meani Iness of ¢ i seven variations of subsequence
clustering algorithms. Figures 4.7 @ “‘ —, J_t datasets when the number of clus-
ters (k) is 3 and the length of sli 1ng‘s&1§§1@) w) is varied to be 32, 64, and 128, and Figures 4.9
: | 0f sliding window (w) is 64 and the number

of clusters (k) is Varledﬁbe 3,5, and 7 Flgures how cluster representatives of

2STSC of Buoyl and : respectively, w
sliding window (w) is 64jl‘he resu

ﬂUEJ’JVlEJT‘]‘ﬁWEJ']ﬂ‘ﬁ
awmﬂﬂmum’mmaﬂ

ers (k) is 3 and the length of
cter settings and datasets are reported in

Appendix D.
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Figure 4.11: Cluster representatives generated from 2STSC of Buoyl with complete linkage (left) and
average linkage (right) when £ = 3 and w = 64.
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Figure 4.12: Cluster representatives generated from ZSTSC of CBF with complete linkage (left) and average
linkage (right) when k = 3 and w =64. -

4.4 Conclusion

DTW distance and-Shape=based-Averaging-are-proposed 0 be used as a distance measure
and an averaging function-m Shape-based Subsequence Time Series Clustering (2STSC) instead
of Euclidean distance and Amplitude Averaging in Subsequence Time Series Clustering (STSC).
Instead of discardingtrivial-matched, subsequencessas; in, many .other.proposed works, 2STSC
uses appropriate distance measure and averaging function-that uses'DTW distance to capture the
similarity between a set of contiguous subsequences andyShape-based Averaging to construct a
characteristic-pteserved: cluster representative. In addition, the cluster tesults from 2STSC are
meaningful’in terms of Shape-based Meaningfulness Measurement (SMM) which measures how
well a clustering result truly represents characteristics of an input time series sequence. Cluster
representatives generated from 2STSC do reflect the characteristics of input sequences, while
STSC produces undesired outputs like sine waves. In addition, 2STSC requires no additional
parameter like other proposed subsequence clustering algorithms, and 2STSC is extensible to

support data streams in Chapter 6.



CHAPTER V

INCREMENTAL SHAPE-BASED AVERAGING

From Chapter 3, Shaped-based Averaging is the best solution to construct a representative
of a set of subsequences. For streaming applications, a new incoming sequence arrives sequen-
tially in constant time, where an averaged result must be returned for every new incoming se-
quence. Generally, Shape-based Averaging constuucis an averaged result by averaging an entire
set of previous sequences. This 1S ebviously impracueal for the streaming case, where compu-
tational time of constructing an averaged result should fiot depend on the number of previous
sequences which is usually largesSpecifically, if there are a lot of previous subsequences, it is not
possible to guarantee that a new ayeraged result will be constructed in time before the next sub-
sequence arrives. Instead of ayeraging all.previous sequences for every new incoming sequence,
Iterative Shape-based Averaging cieates an averaged result only with a small set of stored se-
quences. Therefore, time complexity of Incremé'gtél Shape-based Averaging depends only on the
number of stored subsequences, whete the numbér is much smaller than the number of previous

o
subsequences. : Al

In this chapter, Incremental Shape-based Av_c?ra_'ging with two averaging functions, Cubic-
Spline Dynamic Time Warping (CDTW) and Iterative Cubic-Spline Dynamic Time Warping
(ICDTW) averaging functibns, is proposed. The experiments will-show that Incremental Shape-
based Averaging is much faster than Shape-based Averaging in orders of magnitude, while Incre-

mental Shape-based Averaging maintains low averaging distortion.
5.1 Incremental Shape-based Averaging

Inctemengal Shape-based Averaging 18 a method used fo incrementally construct averaged
result when'a set of stored sequences is given with a new incoming sequence. For streaming ap-
plications, constructing an averaged result from all previous sequences for every single incoming
sequence with limited computational power and storage is simply impractical. Therefore, only

some sequences are stored and used to generate an averaged result.

Given a set T = {T3,Ts,...,T;} of stored sequences, a set W = {w,ws,...,w} of
weights of stored sequences, a new incoming sequence .S, and the maximum allowance in the
number of stored sequences «, where ¢ is a number of stored sequences, Incremental Shape-based

Averaging returns an averaged result C'. Initially, sets T and W are empty, and « is a user-defined
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parameter. When a new incoming sequence S arrives, the sets T and W are first updated. If the
number of stored sequences ¢t is less than the maximum allowance «, S is added to T, and the
weight of S, which is initially assigned to 1, is added to the set W; otherwise, a stored sequence
T; which is the most similar to the sequence S under DTW distance is replaced with the averaged
result between the sequences 7; and S with weights of w; and 1, respectively. Therefore, the
sets T and W are updated with the sequence S, as shown in Table 5.2. After the sets T and W
are updated, Incremental Shape-based Averaging constructs an averaged result from the copies
of T and W, i.e., Tiemp and Wieyy,y,, by iteratively averaging the most similar pair of sequences
within T¢.,, until only one sequence is left. Its'pseudo code is shown in Table 5.3. Note that
when the maximum allowance « is positive infinity, to update an averaged result, all previously
stored sequences are calculated; therefore, Shape-based Averaging is a special case of Incremental
Shape-based Averaging whensthe maximum allowance &= oo . Pseudo code of Incremental

Shape-based Averaging is provided in/Table 5.1.

|

Table 5.1: Pseudo code.of Incremental Shape-based Averaging

FUNCTION [€ = INCREMENTALSHAPE-BASEDAVERAGING [T, W, S, ]

1. [T,W]= UPDATESTOREDSEQ%CES(’]T, W, S)
2. C = AVERAGESTOREDSEQUENGES(T, W)
3. Return C , £

TP -y

s il
Table 5.2: Updating storéd sequences in Ineremental Shape-based Averaging

el

FUNCTIQN [T, Wj ='"UP1:)ATESToﬁE'DgE(_)UENCEs,[T, W, S, a]

1. Lett beanumber of stored sequencesin i . ‘

2. H(t<aw) ot
3. Add S'in'T '
4, Addw=1in W -
5. Else
6. distpesy, =" INFINITY:
7. For each stored sequence 7; in'T and w; in W,
8. dist = DTW-DISTANCE(T;, S)
9. If (dist < dist gest)
10, distgese= dist
11, TBest = "
12. WRest = W;
13. End if
14. End for
15. Savg = AVERAGINGFUNCTION(T Best, S, WBests 1)
16. Replace T'gest With Sy
17. Replace wpest With wpegy + 1
18. EndIf

19. Return [T, W]
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Table 5.3: Averaging stored sequences in Incremental Shape-based Averaging

FUNCTION [T}] = AVERAGESTOREDSEQUENCES [T, W]

1. Let T¢cmp be acopy of T
2. Let Wy¢p,p, be a copy of W
3. While (S1ZE(Ttemp) > 1)
4. [T;, T;] = Most similar pair of sequences in Tey,y
5. T}, = AVERAGINGFUNCTION(T;, T}, w;, wj)
6 Remove T; and T} from Tyep,p
7 Remove w; and w; from Wyep,p
8. Wy = Wi + w;
9. Add T}, to Tyemyp
10. Add wy t0o Wiepp
11. End while
12.  Return 7}

5.2 Experimental Evaluation

Iterative Shape-based Averaging const}‘.ucts a new averaged result from only the stored
sequences and a new incoming sgquence instead of constructing from all previous sequences.
Two experiments are designed (o0 demonstrate tﬁﬁt Incremental Shape-based Averaging is suitable
for streaming applications. The first experiment ,shows that Incremental Shape-based Averaging
is much faster than Shape-based Averagmg m orders of magnitude, and the second experiment
demonstrates that Incremental Shape -based Averaglng, with available storage and computational
power, achieves comparable accuracy to Shape based XVeragmg with very small distortion, while
Incremental Shape-based Averaging is still faster ‘thaﬁ _Shape-baged Averaging. Twenty datasets
used in this experiment 'aﬁé—frem—the—'ﬁme—Seﬂes—GLus&eﬁﬂg/Gassiﬁcation datasets (Keogh et al.,
2011). The details of each-dlataset are provided in Table A.1 in Kppendix A, and the examples

of each datasets are shown'in Figure A.2. In this expeirmental €valuation, two datasets, i.e., CBF

and ECG, are mainly used as,shown in Figure,S.1-

0 20 40 60 80

ECG

Figure 5.1: Examples of some classes in evaluated datasets.

5.2.1 First Experiment

The first experiment shows the significant speedup of Incremental Shape-based Averag-
ing over Shape-based Averaging, where the maximum allowance « is set to one. For every new

incoming sequence, Incremental Shape-based Averaging calculates an averaged result from the
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stored sequence, and then this averaged result is used for the next incoming sequence. For Shape-
based Averaging, an averaged result is created from all previous sequences for every new incom-
ing sequence which is impractical from streaming data. Figure 5.3 shows time consumption of
Incremental Shape-based Averaging compared with Shape-based Averaging using two averaging
functions, i.e., CDTW and ICDTW, respectively. From the result, Incremental Shape-based Av-
eraging requires only constant time to update an averaged result, while computational time of
Shape-based Averaging grows exponentially. In addition, Incremental Shape-based Averaging is

nearly 107 times faster. Additional results of this experiment are provided in Appendix E.
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Figure 5.2: Computational time of Incremental Shapeﬁsed Averaglng and Shape-based Averaging when
a new incoming sequence arrives. . = . sl

5.2.2 Second Experiment

The secondexperiment shows' SUMDIST distance when Incremental Shape-based Averag-
ing is used instead‘of Shape-based Averaging. Since Shape-based Averaging has no associative
property, the jupdated ;ayverageds result-fromsIncremental-Shape-baseds Averaging is not equal to
that from averaging' all sequences sing Shape-based 'Averaging;~where-"SUMBDIST distance can

be calculated by the following equation.

SumDist ( ) %DTWDlstance (S S) 5.1)
=1

where is a dataset S, S is the averaged result, and S; is each data sequence in the dataset S.

In this experiment, with available computational power and storage, Incremental Shape-
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based Averaging can achieve SUMDIST close to Shape-based Averaging, where Shape-based Av-
eraging is a special case of Incremental Shape-based Averaging when the maximum allowance
number « is set to a positive infinity. Each class in a dataset is separately evaluated, and SUMDIST
of each dataset is reported by summarizing SUMDIST of every class. Difference of SUMDISTSs
and speedup of Buoyl and CBF when k£ = 3, w = 64, and the maximum allowance number «
are varied in percentage to the size of dataset are shown in Figure 5.3 and 5.4, respectively. Fig-
ures 5.5 and 5.6 show averaged results generated from Incremental Shape-based Averaging with
CDTW and ICDTW, respectively. From the experiment results, Incremental Shape-based Aver-
aging can return averaged results much faster than Shape-based Averaging with only small dis-
tortions. Speedup and difference of SUMDIST measuzed in this experiment is calculated from the
time used to update and average sequence of static dataset when the maximum allowance number

1s varied.
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Figure 5.3: Difference of SUMDIST and speedup of Buoyl when the number of stored sequences to an
original dataset is varied.
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Incremental Shape-based Averagmg with Gub'lc Spline Dynamic Time Warping (CDTW)

and Iterative Cubic- Sphne Dynamlc “Time Warplhg UCDTW) averaglng functions are fast and
accurate. To update the averaged—resuh—ﬁwstored—scm:rence—wﬁ-h -}tS welght is updated to generate

a new sequence in constant time. Therefore, instead of constructlng an averaged result from all

previous data sequences for each and every incoming sequence, Incremental Shape-based Aver-

aging updates only-once;which-reduces,computational time insorders-of magnitude. In addition,

Incremental Shape-baséd Averaging is proposed‘to be'able to'store miore than one sequence to

increase accuracy if more computational‘power or storage is available. Meoreover, Incremental

Shape-based Averaging can be widely extended to construct a;shape-based averaged result in

streaming applications, whose idea of sequence updates in Shape-based Streaming Subsequence

Time Series Clustering (3STSC) is explained in Chapter 6.



CHAPTER VI

3STSC: SHAPE-BASED STREAMING SUBSEQUENCE TIME
SERIES CLUSTERING

In time series domain, streaming clustering algorithms are divided into two categories, i.e.,
streaming whole clustering (Rodrigues et al., 2006, 2008) and streaming subsequence clustering.
For the streaming whole clustering, the new whole sequence is used to update the clustering result
or cluster representatives, while forthe streaming subsequence clustering, after the new data point
is concatenated, a subsequencesis‘extracted from a fixed-length sliding window, subsequence is
normalized, and then the cluster representatives are updated from this subsequence. The naive al-
gorithm of the streaming problem.is that the ou|tput of the algorithm is calculated from all previous
input subsequences for every new incoming seduénce. In this chapter, the streaming subsequence

clustering is focused. \

As shown in Chapter 2, Keogh and Lin hé}kfé proved that outputs from Subsequence Time
Series Clustering (STSC) are meganingless: theréforg,_ currently, no meaningful naive algorithm
for streaming clustering algorithm eXists.In Chapté_r 2i?JZSTSC is proposed to return a meaningful
clustering result, where Dynamic Trime-Warping (DTW) distance and Shape-based Averaging
function are used as a distance-measuic-and-an-averaging-function-instead of Euclidean distance
and Amplitude Averaging function as in STSC, respectively. In-this chapter, 2STSC is considered
as a naive algorithm of a streaming application. Since 2STSC calculates a clustering result from
all previous subsequences,_ it is impractical since.the computational time depends on the number

of previous subsequences whichiincreases over time.

In/this‘chapter, Streaming ‘Shape-based Subsequence! Time [Series. Clustering (3STSC) is
proposed to efficiently update the clustering result in constant time to the number of previous
subsequences. Instead of calculating the clustering result from all previous subsequences as in
2STSC, 3STSC calculates the clustering result from the small number of stored subsequences.
The algorithm of updating stored subsequences in 3STSC is the same as that of the Incremental
Shape-based Averaging , where the number of stored subsequences is maintained not to exceed
the maximum allowance number of stored subsequences. 3STSC then groups these stored subse-
quences into clusters using k-hierarchical clustering with Dynamic Time Warping (DTW) distance
and Shape-based Averaging function as a distance measure and an averaging function. In other

words, 3STSC returns a clustering result from a small set of stored subsequence which is much
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faster than 2STSC which returns a clustering result from all previous subsequences.

In experimental evaluation, 3STSC shows superiority over 2STSC in terms of computa-
tional time, and the clustering result of 3STSC is also compared in terms of Shape-based Mean-
ingfulness Measurement (SMM) when the parameters, i.e., the number of clusters (k), the length
of sliding window (w), and the maximum allowance number of stored subsequences («), are

varied.
6.1 Related Work

Clustering time series data streams is divided‘into two categories, i.e., streaming whole
clustering and streaming subsequence clustering. Streaming whole clustering is an incremental
clustering, where a whole time series sequence arrives constantly. No sliding windows are in-
volved in the algorithm. Afnew arriying Whol|¢ sequence is used to update a clustering structure
such as a tree of hierarchical clustering: Rodrizo;ui:s et al. have proposed Online Divisive Agglom-
erative Clustering (ODAC) (Rodtigues et al.. 2028) for time series data streams which implements
splitting and merging operations for updating a"}re‘é—like hierarchy of clusters that do not depend
on the number of data objects in the data strearﬁ:-_.__l_:q}r streaming subsequence clustering, a set of
clusters is returned for every incoming data poinij-‘ttlowever, no existing algorithm has been pro-
posed yet. Although many subsequence elustering fangrithms are proposed such as Density-based
Subsequence Clustering (DSTSC)Q(I?_e_nton, ZOOSEngpased Subsequence Time Series Cluster-
ing (LSTSC) (Simon et ral., 2006; Chen, 2007b,a),iand Phrase-Analysis Subsequence Time Series
Clustering (PASTSC) (FiljiTﬁaki et al., 2668), no extension of -streaming applications has been
introduced. In addition, as rrrr_nentioned i Chapter 4, these subsequence clustering algorithms still

do not produce meaningful clustering results.

Many problems on time seties data'streams such as subsequence matching, motif discovery,
and stream monitoring have been increasingly the topiesef interest. For 'subsequence matching
(Sakurai et al., 2005; Niennattrakul and Ratanamahatana, 2009; Niennattrakul et al., 2009), a
template query is given and a set of nearest subsequences is returned. Motif discovery for data
streams (Mueen and Keogh, 2010) is a method to maintain the best-matched subsequence pair in a
given time series sequence. Stream monitoring (Kontaki et al., 2008; Dai et al., 2006) is a method

to find correlations among data streams.

In this study, streaming subsequence clustering is considered the first streaming subse-

quence clustering algorithm that produces meaningful clustering results.
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6.2 Shape-based Streaming Subsequence Time Series Clustering

Shape-based Streaming Subsequence Time Series Clustering (3STSC) is an incremental
subsequence clustering algorithm that returns a set of cluster representatives for every new data
point arrival. Specifically, 3STSC first concatenates a new data point with the previous time series
sequence. A new subsequence is then extracted with a fixed-length sliding window, and then the
subsequence is normalized by z-normalization. Since the maximum allowance number of stored
subsequences needs to be maintained, the set of stored subsequences is updated by a new sequence
not to exceed the maximum allowance number: After the set of stored subsequences is updated,
3STSC then finds a clustering result using k-hierarchical clustering on these stored subsequences
with Dynamic Time Warping (BDTW) distancg and Shape-based Averaging function as a distance
measure and an averaging functiony respectively. Additionally, the updating algorithm of the
stored subsequences is similaito the'ITncremental Shape-based Averaging function. Note that the
maximum allowance numberof the stored su‘i-)sequences 15 a user-defined parameter depending
on the availability of computational power and storage. The overview of 3STSC is provided in

Figure 6.1. ) |

Clustering
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Shape-based Averaging)
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Figure 6.1: Overview of Shape-based Streaming Subsequence Time Series Clustering (3STSC).

Given a new data point s;, the number of clusters &, the length of sliding window w, and
the maximum allowance « of stored subsequences, 3STSC returns a set C = {C4,Cy, ..., Cy} of
clusters. 3STSC first concatenates s; to a streaming time series S = (s1, S2, ..., S;—1), and then

a new subsequence S = (S¢_qy41,-..,St—1, S¢) is extracted with the fixed-length sliding window
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of length n. In addition, this new subsequence Sy, 1S normalized by z-normalization. 3STSC
updates a set T = {T1,T5,...,T,} of stored subsequences using an updating algorithm from
Incremental Shape-based Averaging. After the set T is updated, subsequences in the set T are
clustered and return a set C = {C1,C>, ..., Ct} of clusters using k-hierarchical clustering with
Dynamic Time Warping (DTW) distance and Shape-based Averaging is returned. Each cluster
C contains a set M = {T; | T; € T} of stored subsequences and a cluster representative R. The

pseudo code of 3STSC is provided in Table 6.1.

Table 6.1: Pseudo code of Shape-based Streaming Subsequence Time Series Clustering (3STSC)

FUNCTION [C] =3STSC [T, W s;, k, w, o]

Update a streaming time series .S by adding a.new arriving data point s,
S = EXTRACTILASTESTS UBSEQUENECE(STw)

Snorm = ZNORMATIZE(S)

T = UPDATES TOREDSUBSEQUENCE(T, W, S;07m,0)

C = KHIERARCHICAECI.USTERING(T, £)

Return C |

A

K-hierarchical clusteringsised in 35FS€ can be used with either complete linkage or av-
erage linkage function as an ifterscluster distanee function which calculates the distance between

two clusters defined as the following equations. ¢

Dcomplete(@l_(?j) 7 2 Ngln%_)'(eM Distance(S, S 6.1)
1 J
Daverage (Ci, Cj) = W Z Z Distance(S,S’) (6.2)
g J CECiC'EC]‘

where D ompiete and Dy eraye dve completeland average'linkage fundiions, respectively, C; and
C; are any clusters, M[; and M are cluster members of @g,and C, respectively, and S and S’ are
sequencesiin Mi; and I \respectiyely. | Distance(S,S’) returns'a DTW'distance between two

sequences S and S’.

To update stored subsequences, 3STSC utilizes the updating algorithm that is similar to
Incremental Shape-based Averaging , where the number of stored subsequences is maintained not
to exceed the maximum allowance number (o). Specifically, the smallest possible number of the
maximum allowance number («) is equal to the number of clusters (k). When a new subsequence
Snorm arrives, the nearest stored subsequence T'g.s: to the new subsequence Syorm, 1S averaged
and the nearest stored subsequence 1.5, is replaced with the averaged result, where the weight

of the averaged result is increased by one. Pseudo code of the updating algorithm is provided in



65

Table 6.2.

Table 6.2: Updating stored sequences in 3STSC

FuNCTION [T, W] = UPDATESTOREDSEQUENCES [T, W, S,,0rm.» @]

1. Let n be a number of stored sequences in T
2. If(n<a)

3 Add S, in T

4. Addw=1in W

5. Else

6 dist Best = INFINITY

7 For each stored sequence 7; in T
8. dist = DTW-DISTANCE(Z;, .S)
9. If (dist < distpest)

10. dist gest = dist

11. TBest = T‘z

12. WPRBest = W; s

13. End.if

14. End for

15. Savg= AUBRAGING FUNCTION(T B osis Onorm» WBest 1)
16. ReplageT oy With/S .

17. Replace wp g With wpes +1

18. EndIf "

19. Retura' [T, W] v i

)

Note that 2STSC is a special gaseof 3STS@ when the maximum allowance number of

stored subsequences («) is set to positivednfinity.
6.3 Experimental Evaluation

Shape-based Streaming Subsequence Tiie Series Clustering (3STSC) is proposed to find
a set of cluster representéltiVes incrementally. 3STSC is evaluated in two experiments. The first
experiment shows speedup of 3STSC over 2STSC, where 3STSC updates a cluster representa-
tive for every new incoming|sequence in constant time, but 2STSC srecalculates a set of cluster
representatives in'every new incoming sequence. - Since the result of 2STSC and 3STSC are not
the same due to the incremental algorithm of 3STSC, the second experithent demonstrates the
difference of clustering results between.2STSC and 3STSC. The last experiment shows that if
computational power and memory storage are available, the clustering result of 3STSC will be
close to that of 2STSC. Eight datasets used in these experiments are from the Time Series Data
Mining Archives (TSDMA) (Keogh and Folias, 2011) shown in A.1 in Appendix A, where each

dataset contains 2000 data points. Two examples of each dataset are provided in Figure 6.2.
6.3.1 First Experiment

The first experiment shows that 3STSC can return a set of clusters much faster than the

naive algorithm using 2STSC. At every new incoming data point, time to update cluster repre-
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Figure 6.2: Some datasets from TSDMA used in the experiment.
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sentatives of 3STSC and the naive algorithm are captured. The number of clusters (k) and the

sliding window (w) are varied, and the maximum allewance number («) is set to be the number of

clusters. In this experiment, twe-nter-cluster-distanees of k=hierarchical clustering, i.e., complete

linkage and average linkage functionss and two averaging functions, i.e., CDTW and ICDTW,

are utilized. Figures 6.3 and 6.4#show, the coi’Pputational time of between 3STSC and the naive

2STSC algorithm when k=73 and w=64. Thé._cgmplete results are provided in Appendix G.
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Figure 6.4: Computational time of 3STSC and 2STSC of CBF when a new incoming sequence arrives.
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6.3.2 Second Experiment

The second experiment shows the quality of clustering results generated from 3STSC, when
the maximum allowance number («) is varied; the quality of clustering results increases when
there is availability of computational power and storage. However, the quality of clustering re-
sults is a tradeoff to clustering time; the number of clusters (k) and the sliding window (w) are
varied, and the maximum allowance number («) are also varied to show speedup and clustering
quality. The clustering quality is measured by Shape-based Meaningfulness Measurement (SMM)

proposed in Chapter 4, which can be calculated from the following equation.

o lS| tw

SMM (STey= 6.3)

IS
721 min (Distance(S;, R;)),VR; € R

|

where Distance (S;, R;j)is a DTWidistance between two sequences S; and R;.

SMM ranges from zergito positive inﬁnit'y and is a relative value that SMM must be com-
pared between two algorithms at the same set df:pagameters to identify that with a given dataset

which subsequence clustering algorithm produces s more meaningful clustering results.
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Figure 6.5: Percentage difference of SMM and speedup of 3STSC of Buoyl when k = 3, w = 64, and
number of stored sequences are varied.
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In this experiment, two inter-cluster distances' of k-=hierarchical clustering, i.e., complete
linkage and average linkage functlons and two averagmg functions, i.e., CDTW and ICDTW,

are utilized. Figures 6.5vand 6.6 show SMM dlfference and.thescomputational time of 3STSC

of Buoyl and CBF Whenﬁlnter—cluster distance and averaging functlon are varied. From the ex-
periment results, SMM of both 3STSC and 2STSC are similar, Wthh means 3STSC produces

meaningful cluster representatives, while 3STSC can increase calculation speedup by 400 times.

6.4 Conclusion

Insthisfehapter, Streaming Shape-based Subsequénce! Tinie [Seties Clustering (3STSC) is
proposed to return a clustering result in real time, where the calculation complexity is constant
to the number of previous subsequences. 3STSC is much faster than 2STSC in orders of mag-
nitude, and with availability of computational power and storage, 3STSC returns comparable
clustering quality to the naive algorithm using 2STSC. In addition to 2STSC, 3STSC has the
maximum allowance number of stored sequences to calculate a clustering result on this set of
stored sequences, where the maximum allowance number is much smaller than the number of
previous subsequences. 3STSC utilizes the updating algorithm of stored subsequences from the
Incremental Shape-based Averaging, and k-hierarchical clustering with Dynamic Time Warping

(DTW) distance and Shape-based Averaging as a distance measure and an averaging function,
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respectively, where two inter-cluster distances, i.e., complete linkage and average linkage, and
two averaging functions, i.e., CDTW and ICDTW, are utilized in 3STSC. 3STSC is considered

the first streaming subsequence clustering that returns meaningful clustering results.

AULINENINYINg
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CHAPTER VII

CONCLUSION

In this thesis, Shape-based Streaming Subsequence Time Series Clustering (3STSC) is pro-
posed to return clustering results in constant time when a new data point arrives in time series data
stream. In addition, 3STSC is extended from the proposed Shape-based Subsequence Time Series
Clustering (2STSC) which produces more meaningful clustering results in terms of Shape-based
Meaningfulness Measurement (SMM). To make 2S8TS€ produce meaningful results, 2STSC uti-
lizes Dynamic Time Warping (DTW) distafice measure and Shape-based Averaging function.
An intuitive idea is that DTW distance and Shape-based Averaging can handle a set of trivial-
matched subsequences which are coniiguous subsequences that have small differences because
of time shift. Therefore, DTW distance aligns subsequences to find the optimal warping path be-
tween two sequences befoze distance calculatiorfan;l Shape-based Averaging aligns subsequences
to find an optimal warping path between two é'gqllences before averaging. DTW distance and
Shape-based Averaging are superior to the Euclidéaﬂ distance and Amplitude Averaging used in
Subsequence Time Series Clustering (STPSC) in H;a{ Euclidean distance cannot capture the sim-
ilarity between two subsequences, ahd Amplituder__-A-‘\’;éraging cannot preserve characteristics for
producing averaged result. In other words, Euclidé'él'ri-@‘listance in clustering algorithm can lead to
incorrect grouping of trivial-matched subsequences, and Amphitude Averaging can lead to unde-
sirable smoothing of trivial-matched subsequences. STSC has becn proven as meaningless both
theoritically and empirically that STSC will always produce sine waves as cluster representatives
regardless of input sequences,‘where these sine 'waves are unusable. Therefore, in this thesis,
2STSC is proposed to evercome-this problem, and then 3STSC is then proposed to support data

streams.

This thesis can be'extended to improve the performance further in many"data mining tasks.
Shape-based Averaging and Incremental Shape-based Averaging can be extended to be used in
template matching problem and classification. 2STSC and 3STSC can be used as a preprocess-
ing or a subroutine of many data mining tasks such as association rules, classification, pattern

discovery, and visualization.

To improve the algorithms proposed in this thesis, a new methodology of sequence align-
ment and re-sampling technique can be designed for Shape-based Averaging algorithm, and the

averaging scheme can be modified to find the optimal averaging result. Incremental Shape-based
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Averaging can be improved by adding decremental algorithm so that the characteristics of an
averaged result can be removed by a specific sequence. In addition, 2STSC can be improved
by speeding up an algorithm and utilizing other clustering algorithm and removing user-defined
parameters that are the number of clusters and the length of sliding window. For 3STSC, other
than the number of clusters and the length of sliding window that should be removed, the update
algorithm of stored subsequences should be improved to reduce distortion of meaningfulness of

clustering results.
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Figure A.1: Datasets from TSDMA used in the experiments of Chapters 2, 4, and 6.
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Figure B.2: Cluster representatives generated from STSC using k-means clustering when k =3 and w = 64.
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Figure B.12: Cluster representatives generated from STSC using k-hierarchical clustering with complete
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Figure B.14: Cluster representatives generated from STSC using k-hierarchical clustering with complete

linkage (left) and average linkage (right) inter-distance functions when k =5 and w = 64.
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Figure C.1: Averaged results generated from CDTW function of each dataset
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Figure C.2: Averaged results generated from ICDTW function of each dataset
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Figure C.3: Averaged results generated from NLAAF of each dataset.
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Figure D.19: Cluster representatives generated from 2STSC with complete linkage (left) and average link-
age (right) using CDTW function when k£ = 3 and w = 128.
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Figure D.21: Cluster representatives generated from 2STSC with complete linkage (left) and average link-
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Figure D.22: Cluster representatives generated from 2STSC with complete linkage (left) and average link-
age (right) using ICDTW function when k£ = 3 and w = 32.
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Figure D.23: Cluster representatives generated from 2STSC with complete linkage (left) and average link-
age (right) using ICDTW function when k = 3 and w = 64.
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Figure D.24: Cluster representatives generated from 2STSC with complete linkage (left) and average link-
age (right) using ICDTW function when k£ = 3 and w = 128.
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Figure D.25: Cluster representatives generated from 2STSC with complete linkage (left) and average link-
age (right) using ICDTW function when k£ =5 and w = 64.
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Figure E.1: Computational time of Incremental Shape-based Averaging and Shape-based Averaging with
CDTW function when a new incoming sequence arrives.
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Figure E.2: Computational time of Incremental Shape-based Averaging and Shape-based Averaging with
CDTW function when a new incoming sequence arrives. (cont.)
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Figure E.3: Computational time of Incremental Shape-based Averaging and Shape-based Averaging with
ICDTW function when a new incoming sequence arrives.
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Figure F.1: Difference of SUMDIST of Incremental Shape-based Averaging with CDTW when the number
of stored sequences to an original dataset is varied.
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Figure F.2: Difference of SUMDIST of Incremental Shape-based Averaging with CDTW when the number
of stored sequences to an original dataset is varied. (cont.)
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Figure F.3: Difference of SUMDIST of Incremental Shape-based Averaging with ICDTW when the number
of stored sequences to an original dataset is varied.
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Figure F.4: Difference of SUMDIST of Incremental Shape-based Averaging with ICDTW when the number
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Figure F.5: Speedup of Incremental Shape-based Averaging with CDTW when the number of stored se-
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Figure F.6: Speedup of Incremental Shape-based Averaging with CDTW when the number of stored se-
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Figure F.8: Speedup of Incremental Shape-based Averaging with CDTW when the number of stored se-
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Figure F.9: Averaged results of some classes from Incremental Shape-based Averaging with CDTW when
a=1.
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Figure F.10: Averaged results of some classes from Incremental Shape-based Averaging with CDTW when
o is 25% of total number of each class.
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Figure F.11: Averaged results of some classes from Incremental Shape-based Averaging with CDTW when
o is 50% of total number of each class.
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Figure F.12: Averaged results of some classes from Incremental Shape-based Averaging with CDTW when
o is 100% of total number of each class.
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Figure F.13: Averaged results of some classes from Incremental Shape-based Averaging with ICDTW when
a=1.
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Figure F.14: Averaged results of some classes from Incremental Shape-based Averaging with ICDTW when
« is 25% of total number of each class.
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Figure F.15: Averaged results of some classes from Incremental Shape-based Averaging with ICDTW when

« is 50% of total number of each class.
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Figure F.16: Averaged results of some classes from Incremental Shape-based Averaging with ICDTW when

« is 100% of total number of each class.
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Figure G.2: Computational time of 3STSC and 2STSC with CDTW function and complete linkage when a
new incoming sequence arrives, where k =3 and w = 32
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Figure G.3: Computational time of 3STSC and 2STSC with CDTW function and complete linkage when a
new incoming sequence arrives, where k =5 and w = 64.
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Figure G.4: Computational time of 3STSC and 2STSC with CDTW function and complete linkage when a
new incoming sequence arrives, where k =7 and w = 64.
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Figure G.5: Computational time of 3STSC and 2STSC with CDTW function and complete linkage when a
new incoming sequence arrives, where k =3 and w = 128.
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Figure G.6: Computational time of 3STSC and 2STSC with CDTW function and average linkage when a

new incoming sequence arrives, where k£ = 3 and w = 64.
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Figure G.7: Computational time of 3STSC and 2STSC with CDTW function and average linkage when a
new incoming sequence arrives, where k =3 and w = 32.
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Figure G.8: Computational time of 3STSC and 2STSC with CDTW function and average linkage when a
new incoming sequence arrives, where k =5 and w = 64.
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Figure G.9: Computational time of 3STSC and 2STSC with CDTW function and average linkage when a

new incoming sequence arrives, where k =7 and w = 64.
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Figure G.10: Computational time of 3STSC and 2STSC with CDTW function and average linkage when a

new incoming sequence arrives, where k =3 and w = 128.
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Figure G.11: Computational time of 3STSC and 2STSC with CDTW function and complete linkage when

a new incoming sequence arrives, where k = 3 and w = 64.
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Figure G.12: Computational time of 3STSC and 2STSC with CDTW function and complete linkage when
a new incoming sequence arrives, where k = 3 and w = 32.
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Figure G.13: Computational time of 3STSC and 2STSC with CDTW
a new incoming sequence arrives, where k£ = 5 and w = 64.
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Figure G.14: Computational time of 3STSC and 2STSC with CDTW function and complete linkage when
a new incoming sequence arrives, where k = 7 and w = 64.
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Figure G.15: Computational time of 3STSC and 2STSC with CDTW function and complete linkage when
a new incoming sequence arrives, where k = 3 and w = 128.
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Figure G.16: Computational time of 3STSC and 2STSC with CDTW function and average linkage when a
new incoming sequence arrives, where k =3 and w = 64
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Figure G.17: Computational time of 3STSC and 2STSC with CDTW function and average linkage when a

new incoming sequence arrives, where k = 3 and w = 32.



168

—— 2STSC with ICDTW + AL —— 2STSC with ICDTW + AL
— 3STSC with ICDTW + AL —— 3STSC with ICDTW + AL
T 10" T 10';
< c
[e] Q
(5] 153
.g 5 . % 5 .
=10 r =10
£ a L E
g \ g
0 ! 0
£ 10 . . . &= . . .
= 0 500 1000 15 500 1000 1500
Number of incoming sequenc / . Number of incoming sequences
AEM2 / TOR96
W'+ A 2STSC with ICDTW + AL
Mg#AL | —— 3STSC with ICDTW + AL
T 10"
j
[=]
(5]
]
= 10°
E
g
[= 10° y y
0 1000 1500
Number of incoming sequences
CBF
—— 2STSC with ICDTW + AL
—— 3STSC with ICDTW + AL
= 10
Z10
[=]
(%]
b
8 .
= 10°
E
g
= 10° ‘ ‘
0 500 1000 1500

Number of inco T'_ ‘ﬂ of incoming sequences

ERFE .m Field4

—— 2STSC with ICDTW + AL
H D with ICDTW + AL

____Qf =@

~ . 0 ; |
(o] 1500
Number of ilcoming sequ r of incomi ences

q Fortune5004 MITDBX108

Time (millisecond)
5

Figure G.18: Computational time of 3STSC and 2STSC with CDTW function and average linkage when a
new incoming sequence arrives, where k =5 and w = 64.
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Figure G.19: Computational time of 3STSC and 2STSC with CDTW function and average linkage when a

new incoming sequence arrives, where k =7 and w = 64.
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Figure G.20: Computational time of 3STSC and 2STSC with CDTW function and average linkage when a
new incoming sequence arrives, where k =3 and w = 128.
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Figure H.1: Percentage difference of SMM and speedup of 3STSC with CDTW function and complete
linkage when k = 3, w = 64, and number of stored sequences are varied.
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Figure H.2: Percentage difference of SMM and speedup of 3STSC with CDTW function and complete
linkage when k = 3, w = 32, and number of stored sequences are varied.
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Figure H.3: Percentage difference of SMM and speedup of 3STSC with CDTW function and complete
linkage when k =5, w = 64, and number of stored sequences are varied.
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Figure H.4: Percentage difference of SMM and speedup of 3STSC with CDTW function and complete
linkage when k = 7, w = 64, and number of stored sequences are varied.
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Figure H.5: Percentage difference of SMM and speedup of 3STSC with CDTW function and complete
linkage when k = 3, w = 128, and number of stored sequences are varied.
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Figure H.6: Percentage difference of SMM and speedup of 3STSC with CDTW function and average
linkage when k = 3, w = 64, and number of stored sequences are varied.
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Figure H.7: Percentage difference of SMM and speedup of 3STSC with CDTW function and average
linkage when k = 3, w = 64, and number of stored sequences are varied.
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Figure H.8: Percentage difference of SMM and speedup of 3STSC with CDTW function and average
linkage when k =5, w = 64, and number of stored sequences are varied.
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Figure H.9: Percentage difference of SMM and speedup of 3STSC with CDTW function and average
linkage when k = 7, w = 64, and number of stored sequences are varied.
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Figure H.10: Percentage difference of SMM and speedup of 3STSC with CDTW function and average
linkage when k = 3, w = 128, and number of stored sequences are varied.
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Figure H.11: Percentage difference of SMM and speedup of 3STSC with ICDTW function and complete
linkage when k = 3, w = 64, and number of stored sequences are varied.
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Figure H.12: Percentage difference of SMM and speedup of 3STSC with ICDTW function and complete
linkage when k = 3, w = 32, and number of stored sequences are varied.
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Figure H.13: Percentage difference of SMM and speedup of 3STSC with ICDTW function and complete
linkage when k =5, w = 64, and number of stored sequences are varied.
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Figure H.14: Percentage difference of SMM and speedup of 3STSC with ICDTW function and complete
linkage when k = 7, w = 64, and number of stored sequences are varied.
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Figure H.15: Percentage difference of SMM and speedup of 3STSC with ICDTW function and complete
linkage when k = 3, w = 128, and number of stored sequences are varied.
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Figure H.16: Percentage difference of SMM and speedup of 3STSC with ICDTW function and average
linkage when k = 3, w = 64, and number of stored sequences are varied.
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Figure H.17: Percentage difference of SMM and speedup of 3STSC with ICDTW function and average
linkage when k = 3, w = 32, and number of stored sequences are varied.
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Figure H.18: Percentage difference of SMM and speedup of 3STSC with ICDTW function and average
linkage when k = 3, w = 64, and number of stored sequences are varied.
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Figure H.19: Percentage difference of SMM and speedup of 3STSC with ICDTW function and average
linkage when k = 7, w = 64, and number of stored sequences are varied.
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Figure H.20: Percentage difference of SMM and speedup of 3STSC with ICDTW function and average
linkage when k = 3, w = 128, and number of stored sequences are varied.
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