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CHAPTER I

INTRODUCTION

Time series data mining is an active research area which involves tasks including classifi-

cation (Ueno et al., 2006; Kasetty et al., 2008; Ratanamahatana and Keogh, 2004; Niennattrakul

and Ratanamahatana, 2007c), clustering (Lin et al., 2004b; Yankov and Keogh, 2006; Niennat-

trakul and Ratanamahatana, 2007b, 2006), anomaly detection (Keogh et al., 2005, 2002; Yankov

et al., 2008a; Niennattrakul et al., 2010a), pattern discovery (Chiu et al., 2003; Yankov et al.,

2007; Mueen et al., 2009), visualization (Lin et al., 2004a; Kumar et al., 2005), association rules

(Sacchi et al., 2007; Wan et al., 2007), and indexing (Keogh et al., 2004; Keogh and Ratanama-

hatana, 2005; Shieh and Keogh, 2009; Niennattrakul et al., 2010b). Time series is a sequence of

real/integer/symbolic values which are sequentially observed, where in some applications, a time

series sequence is also considered to be a very high dimensional data object, where the number

of dimensions is equal to the length of time series. A characteristic that makes time series differ

from other data types is that adjacent dimensions are extremely related; the order of each dimen-

sion cannot be swapped. Time series is ubiquitous, where it is easily found in daily life such as

stock market, electrocardiogram, and a temperature record, as shown in Figure 1.1. Normally,

time series can be collected from scientific measurements such as a star light curve (Protopapas

et al., 2005), respiration (Keogh et al., 2005), and winding (B.L.R., 2010). In addition, a 2-D

image can be transformed to be time series by sequentially measuring distances from the centroid

of an image to the edge (Ye and Keogh, 2011; Yankov et al., 2008b). Therefore, instead of im-

age recognition in 2-D images, time series mining will require much less complexity. A video

can also be transformed to a time series sequence by tracking a coordinate of a point of interest.

Time series can be multivariate, which at the specific time, many channels from different sources

are observed. For example, SmartCane (Wu et al., 2008), a device attached with many types of

sensors to help doctors monitor the walk of elderly people (see Figure 1.2), has eight channels

of data from two pressure sensors, a three-axis accelerometer, and three single-axis gyros. Data

from motion capture (Cai and Ng, 2004) are also considered that each dimension is collected from

movement of each sensor.

Subsequence clustering for time series data streams is an important data mining task which

can return time series patterns in real time. Currently, no streaming subsequence clustering has

yet been proposed. As a subsequence clustering result, cluster representatives can then be used in

rule discovery (Das et al., 1998; Fu et al., 2001; Harms et al., 2002b,a; Hetland, 2002; Jin et al.,
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Figure 1.1: Examples of time series data in real world.

2002b,a; Mori and Kuni, 2001; Osaki et al., 2000; Sarker et al., 2003; Uehara and Shimada, 2002;

Yairi et al., 2001), indexing (Li et al., 1998; Radhakrishnan et al., 2000), classification (Cotofrei,

2002; Cotofrei and Stoffel, 2002), prediction (Schittenkopf et al., 2000), and anomaly detec-

tion (Yairi et al., 2001). However, the current subsequence clustering, Subsequence Time Series

Clustering (STSC), has been proved both theoretically and empirically to produces meaningless

results, i.e., sine waves regardless of input sequences. Figure 1.3 illustrates cluster representatives

from STSC. Therefore, hundreds of works that use STSC as a preprocessing step and a subrou-

tine also produces meaningless results. The causes of meaninglessness are twofold: inappropriate

uses of Euclidean distance measure and Amplitude Averaging function. In other words, Euclidean

distance and Amplitude Averaging cannot handle trivial-matched subsequences which are a set of

contiguous subsequences that are very similar but have shifts in time domain since Euclidean

distance and Amplitude Averaging compute dissimilarity and an averaged result in one-to-one

manner. Figure 1.4 provides some examples of trivial-matched subsequences.
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Figure 1.4: Trivial-matched subsequences of CBF sequence

Recently, many researchers (Keogh and Lin, 2005; Denton, 2005; Chen, 2007a; Goldin

et al., 2006; Fu et al., 2005; Struzik, 2003; Simon et al., 2006; Kumar et al., 2006; Fujimaki et al.,

2008) attempt to overcome this problem by proposing many solutions. However, none of them

propose the right solutions to deal with trivial-matched subsequences, i.e., new distance measures

requires additional parameters and Amplitude Averaging is still used to create a cluster represen-

tative. The distance threshold in Density-based Subsequence Time Series Clustering (DSTSC)

(Denton, 2005), the lag value in Lag-based Subsequence Time Series Clustering (LSTSC) (Si-

mon et al., 2006; Chen, 2007b,a), and the slide length in Phrase-Analysis Subsequence Time

Series Clustering (PASTSC) (Fujimaki et al., 2008), are additional parameters that users must be

specified a priori, depending on characteristics of each dataset, whose values are very sensitive to

clustering results. With incorrect values, outputs of clustering results may be meaningless. In ad-

dition, these values are used to discard trivial-matched subsequences; therefore, some important

trivial-matched subsequences are unexpectedly filtered out. For the meaningfulness measurement,

all previous works used Keogh-Lin Meaningfulness Measurement (KLMM) (Keogh et al., 2003)

to measure clustering output. However, it will be demonstrated in this work that KLMM is an

invalid measurement since it cannot capture similarity of sine waves with different phases and

frequencies.

In this work, a novel subsequence clustering for data streams, Shape-based Streaming Sub-
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sequence Time Series Clustering (3STSC), is proposed to return a meaningful clustering result

in real time. Since all existing subsequence clustering algorithms produce meaningless result,

to make subsequence clustering for data streams meaningful, subsequence clustering that pro-

duces meaningful results must first be introduced. In this work, a novel subsequence cluster-

ing for Shape-based Subsequence Time Series Clustering (2STSC), is firstly proposed. To pro-

duce meaningful clustering results, 2STSC utilizes Dynamic Time Warping (DTW) distance and

Shape-based Averaging as a distance measure and an averaging function to replace Euclidean dis-

tance and Amplitude Averaging, respectively. DTW distance aligns subsequences before distance

calculation; therefore, two trivial-matched subsequences are recognized as similar, and Shape-

based Averaging aligns subsequences before averaging; therefore, a characteristic-preserved av-

eraging result are returned from two trivial-matched subsequences. 2STSC is evaluated in terms

of meaningfulness and this 2STSC is then extended to handle streaming cases in 3STSC.

The remaining of this dissertation is organized as follows. The meaninglessness of Sub-

sequence Time Series Clustering (STSC) with the causes are analyzed and identified in Chapter

2. Shape-based Averaging is first introduced in Chapter 3. The solution to make a clustering

result meaningful by Shape-based Subsequence Time Series Clustering (2STSC) is described and

evaluated in Chapter 4. Incremental Shape-based Averaging is then proposed to extend Shaped-

based Averaging to support streaming applications in Chapter 5. Chapter 6 provides a streaming

subsequence clustering algorithm, Shape-based Streaming Subsequence Time Series Clustering

(3STSC), which is extended from 2STSC to support streaming applications. And finally, this

dissertation is concluded in Chapter 7.

1.1 Objective of the Thesis

The objective of this thesis is to design a novel subsequence clustering algorithm which

produces meaningful clustering results for time series data streams.

1.2 Scopes of the Thesis

The scopes of this thesis are as follows:

• This thesis focuses on subsequence clustering for time series data streams, where the stream

is univariate and a new data point arrives at a constant rate.

• The datasets from the Time Series Data Mining Archive (TSDMA) are used as benchmarks

to evaluate subsequence clustering and streaming clustering, and the datasets from Time

Series Clustering/Classification Page are used as benchmarks to evaluate shape-based aver-
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aging and incremental shape-based averaging.

• Performance measurements used to evaluate the meaningfulness of the subsequence cluster-

ing algorithm is the Shape-based Meaningfulness Measurement (SMM), and the streaming

subsequence clustering is evaluated by an actual time improved from the subsequence clus-

tering.

1.3 Contributions of the Thesis

The contributions of this thesis are as follows:

• A new meaningfulness measurement is introduced.

• A novel subsequence clustering and a novel streaming subsequence clustering are proposed.

• A novel shape-based averaging and a novel incremental shape-based averaging are intro-

duced.

1.4 Research Methodology

• Study background knowledge about time series data mining.

• Survey on potential and related topics including clustering, classification, anomaly detec-

tion, indexing, motif discovery, and subsequence matching.

• Review literatures on subsequence clustering algorithm.

• Identify causes of meaninglessness of the current subsequence clustering algorithm.

• Design the shape-based averaging algorithm as a major subroutine of subsequence clustering

algorithm to solve the meaninglessness, and evaluate the algorithms with the benchmark

datasets.

• Design the shape-based subsequence clustering algorithm that utilizes shape-based averag-

ing algorithm to return a meaningful clustering result, and evaluate the algorithms with the

benchmark datasets.

• Design the incremental shape-based averaging algorithm extended from shape-based aver-

aging algorithm to support a streaming application, and evaluate the algorithms with the

benchmark datasets.

• Design the shape-based streaming subsequence clustering algorithm extended from shape-

based subsequence clustering algorithm to support a streaming application, and evaluate the

algorithms with the benchmark datasets.
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• Compose the thesis.



CHAPTER II

MEANINGLESSNESS OF SUBSEQUENCE TIME SERIES

CLUSTERING

Subsequence Time Series Clustering (STSC) has been proven both empirically (Peker,

2005; Chen, 2007a; Goldin et al., 2006; Denton, 2005; Keogh et al., 2003; Fujimaki et al., 2008;

Kontaki et al., 2008; Chen, 2007b; Simon et al., 2006) and theoretically (Idé, 2006a,b) that its

output is meaningless. Keogh and Lin (Keogh and Lin, 2005) first flagged this issue by observa-

tion that STSC always produced a set of sine waves as cluster representatives instead of expected

patterns from a time series sequence. In addition, they also proposed a meaningfulness measure-

ment, so-called Keogh-Lin Meaningfulness Measurement (KLMM). Specifically, KLMM defines

that cluster representatives should be similar if the representatives are from the same input se-

quence, and cluster representatives should be dissimilar if the representatives are from different

input sequences. However, this thesis argues that KLMM is an invalid measurement for two rea-

sons. First, although cluster representatives from different input sequences are sine waves, these

sine waves may have different phases and frequencies. Second, KLMM only measures cluster-

ing results without considering how similar input sequences are; similarity between two input

sequences are not defined for KLMM. For example, clustering results from two similar sequences

must be very similar, but they are considered meaningless in the view of KLMM, even a clustering

algorithm does produce a meaningful result. In this chapter, the meaninglessness of clustering re-

sults of STSC will be demonstrated, and KLMM will be shown that it is an invalid meaningfulness

measurement.

2.1 Background

In this section, background knowledge of Subsequence Time Series Clustering (STSC),

k-hierarchical clustering, k-means clustering, Euclidean distance, and Amplitude Averaging is

provided to give better understanding of STSC’s the meaninglessness.

2.1.1 Subsequence Time Series Clustering (STSC)

Subsequence Time Series Clustering (STSC) has been proposed to discover patterns or to

group subsequences as a part of a subroutine or a preprocessing step of various mining tasks such

as rule discovery (Das et al., 1998; Fu et al., 2001; Harms et al., 2002b,a; Hetland, 2002; Jin et al.,
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2002b,a; Mori and Kuni, 2001; Osaki et al., 2000; Sarker et al., 2003; Uehara and Shimada, 2002;

Yairi et al., 2001), indexing (Li et al., 1998; Radhakrishnan et al., 2000), classification (Cotofrei,

2002; Cotofrei and Stoffel, 2002), prediction (Schittenkopf et al., 2000), and anomaly detection

(Yairi et al., 2001). Given a time series sequences S = 〈s1, s2, . . . , sn〉 of length n, STSC first

extracts a set S = {S1,S2, . . . ,Si, . . . ,Sn−w+1} of subsequences using a fixed-length sliding

window, where a subsequence Si = 〈si, si+1, . . . , si+w−1〉, 1 ≤ i ≤ n−w+1, andw is the sliding

window length. Then every subsquence is normalized by z-normalization (see Section 2.1.6), and

subsequences are clustered by k-hierarchical clustering or k-means clustering algorithms with

Euclidean distance and Amplitude Averaging as a distance measure and an averaging function.

In addition, Euclidean distance is used to calculate similarity between two subsequences and

Amplitude Averaging function is used to construct a cluster representative for each cluster. STSC

finally returns a set of clusters returned from k-hierarchical clustering or k-means clustering.

Formally, STSC receives a long time series S with two parameters, i.e., the number of clusters

(k) and the length of a sliding window (w), and returns a set C = {C1, C2, . . . , Ci, . . . , Ck} of

clusters, where each cluster Ci = (M, R) contains cluster members M = {Si | Si ∈ S} and a

cluster representative R = 〈r1, r2, . . . , rw〉. Pseudo code of STSC is provided in Table 2.1 and

Figure 2.1 visualizes an overview of STSC.

Table 2.1: Pseudo code of Subsequence Time Series Clustering (STSC)

FUNCTION [C] = SUBSEQUENCETIMESERIESCLUSTERING [S, k, w]

1. S = EXTRACTSUBSEQUENCES(S, w)
2. SNorm = NORMALIZESUBSEQUENCES(S)
3. C = CLUSTERING(SNorm, k) // with Euclidean distance and Amplitude Averaging
4. Return C

…
w

Subsequences

…

…

…

Clustering

(Euclidean distance)

Averaging

(Amplitude Averaging)

Figure 2.1: Overview of Subsequence Time Series Clustering (STSC)
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2.1.2 K-Hierarchical Clustering

K-hierarchical clustering used in STSC is an agglomerative clustering algorithm. AGNES

(AGglomerative NESting) is a well-known hierarchical clustering algorithms that can visualize

relationships among data sequences in a hierarchical structure or a tree-based structure on dis-

tance calculations. Although many variations of hierarchical clustering algorithms have been

introduced such as BIRCH (Zhang et al., 1996) (Balanced Iterative Reducing and Clustering Us-

ing Hierarchies), ROCK (Guha et al., 2000) (A Hierarchical Clustering Algorithm for Categorical

Attributes), and Chameleon (Karypis et al., 1999) (A Hierarchical Clustering Algorithm Using

Dynamic Modeling), AGNES is commonly used due to implementation simplicity.

Specifically, AGNES has been proposed to group data using bottom-up strategy. The

method iteratively merges two atomic clusters into a larger cluster until one single cluster con-

taining every data sequences is achieved. For each iteration, two clusters which have min-

imum inter-cluster distance are merged. However, grouping a dataset into one single clus-

ter for agglomerative clustering is impractical; therefore, the number of clusters (k) is re-

quired. Concretely, pseudo codes of the agglomerative clustering algorithm which receives

a set S = {S1,S2, . . . ,Si, . . . ,Sn} of time series sequences as an input and returns a set

C = {C1, C2, . . . , Ci, . . . , Ck} of k clusters as an output, where each Ci = (M, R) contains

a set M = {Si | Si ∈ S} of time series sequences and a cluster representative R, are shown in

Table 2.2.

Table 2.2: Agglomerative hierarchical clustering algorithm (AGNES)

FUNCTION [C] = AGGLOMERATIVECLUSTERING [S, k]

1. Initialize a set C of clusters which contains one sequence from S
2. While (the size of C > k)
3. distbest = INFINITY
4. For each pair of Ci and Cj in C
5. dist = INTERCLUSTERDISTANCE(Ci, Cj)
6. if (dist < distbest)
7. distbest = dist
8. pairbest = [Ci, Cj ]
9. Endif

10. Endfor
11. [Ci, Cj ] = pairbest
12. Ck = MERGE(Ci, Cj)
13. Remove Ci and Cj from C
14. Add Ck to C
15. Endwhile
16. For each cluster C in C
17. C.R = AVERAGE(C.M)
18. Endfor
19. Return C
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While many similarity functions between two clusters (called inter-cluster distances) have

been proposed, three functions are typically used, i.e., single linkage, complete linkage, and aver-

age linkage inter-cluster distance functions. Single linkage function returns a minimum distance

among all possible pairs between two clusters, while complete linkage function returns a maxi-

mum distance among all possible pairs between two clusters. On the other hand, average linkage

function finds a mean value of all distances. Pseudo codes of single, complete, and average link-

age distance functions are provided in Table 2.3, 2.4, and 2.5, respectively, and these inter-cluster

distances are formalized as follows.

Dsingle(Ci, Cj) = min
S∈Mi,S′∈Mj

Distance(S,S ′) (2.1)

Dcomplete(Ci, Cj) = max
S∈Mi,S′∈Mj

Distance(S,S ′) (2.2)

Daverage(Ci, Cj) =
1

|Mi| |Mj |
∑
c∈Ci

∑
c′∈Cj

Distance(S,S ′) (2.3)

where Dsingle, Dcomplete, and Daverage are single, complete, and average linkage distance func-

tions, respectively, Ci and Cj are any clusters, Mi and Mj are corresponding cluster members of

Ci and Cj , respectively, and S and S ′ are sequences in Mi and Mj , respectively. Distance(S,S ′)

is a distance function that returns a distance between two sequences S and S ′.

Table 2.3: Pseudo code of single linkage distance function

FUNCTION [distbest] = SINGLELINKAGE [Ci, Cj]

1. Mi is a set of cluster member of Ci
2. Mj is a set of cluster member of Cj
3. distbest = INFINITY
4. For each sequence S in Mi

5. For each sequence S ′ in Mj

6. dist = DISTANCE(S, S ′)
7. if (dist < distbest)
8. distbest = dist
9. Endif

10. Endfor
11. Endfor
12. Return distbest

For Subsequence Time Series Clustering (STSC), Euclidean distance and Amplitude Aver-

aging is used as a distance function and an averaging function.
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Table 2.4: Pseudo code of complete linkage distance function

FUNCTION [distbest] = COMPLETELINKAGE [Ci, Cj]

1. Mi is a set of cluster member of Ci
2. Mj is a set of cluster member of Cj
3. distbest = INFINITY
4. For each sequence S in Mi

5. For each sequence S ′ in Mj

6. dist = DISTANCE(S, S ′)
7. if (dist > distbest)
8. distbest = dist
9. Endif

10. Endfor
11. Endfor
12. Return distbest

Table 2.5: Pseudo code of average linkage distance function

FUNCTION [distavg] = AVERAGELINKAGE [Ci, Cj]

1. Mi is a set of cluster member of Ci
2. Mj is a set of cluster member of Cj
3. distavg = 0
4. For each sequence S in Mi

5. For each sequence S ′ in Mj

6. distavg = distavg + DISTANCE(S, S ′)
7. Endfor
8. Endfor
9. distavg = distavg / |Mi||Mj |

10. Return distavg

2.1.3 K-Means Clustering

K-means clustering algorithm (Lloyd, 1982; MacQueen, 1967) is a partitioning clustering

that finds a group of clusters by iteratively refining members in each cluster to have the max-

imum objective value that minimizes summation of distances between a cluster representative

and cluster members for every cluster. Beside k-means clustering, many partitioning clustering

algorithms are proposed including k-medoids clustering (Kaufman and Rousseeuw, 2005) and

CLARANS (Kaufman and Rousseeuw, 2005). Both k-medoids and CLARAN use a median of

cluster members instead of a mean. However, a median cannot reflect all characteristics of all data

sequences of a cluster because a median is selected from one of existing data sequences, while

a mean is a sequence constructed by averaging all data sequences within a cluster. Therefore,

k-means clustering is much more preferable than k-medoids and CLARAN.

Initially, k-means clustering first selects k centers by randomizing existing data sequences

from a set S = {S1,S2, . . . ,Si, . . . ,Sn} of sequences, where Si = 〈s1, s2, . . . , sw〉 is a time se-

ries sequence of length w, and then remaining sequences are assigned to the closest cluster center,
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where k is a user-defined number of clusters. After that, a new cluster center is calculated by av-

eraging all cluster members within each cluster. The algorithm repeats assigning data sequences

to the closest center and recalculating for cluster centers until the clustering result remains un-

changed. When the algorithm terminates, a set C = {C1, C2, . . . , Ci, . . . , Ck} of clusters, where

each cluster Ci = (M, R) contains a set M = {Si | Si ∈ S} of cluster members and a cluster

representative R = 〈r1, r2, . . . , rw〉 is returned. To be more concrete, pseudo code of k-means

clustering is provided in Table 2.6.

Table 2.6: Pseudo code of k-means clustering

FUNCTION [C] = KMEANSCLUSTERING [S, k]

1. Initialize a set C of k cluster centers with existing sequence in S
2. Do
3. For each sequence S in S
4. distbest = INFINITY
5. For each cluster C in C
6. R = Cluster representative of C
7. dist = DISTANCE(S, R)
8. If (dist < distbest)
9. distbest = dist

10. Cbest = C
11. Endif
12. Endfor
13. Assign S to Cbest
14. Endfor
15. For each cluster C in C
16. C.R = AVERAGE(C.M)
17. Endfor
18. While (all cluster members in C change)
19. Return C

Subsequence Time Series Clustering (STSC) with k-means clustering uses Euclidean dis-

tance and Amplitude Averaging as a distance measure and an averaging function, respectively.

2.1.4 Euclidean Distance

Euclidean distance (Keogh and Ratanamahatana, 2005) is a well-known similarity measure

used in many domains including time series data. The distance is calculated in one-to-one manner

shown in Figure 2.2, where the distance is a summation of difference between two data points in

the same dimension. Euclidean distance between two time series sequencesA andB is calculated

by the following equation.

Euclidean(A,B) =

√√√√ n∑
i=1

(ai − bi)2
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where A = 〈a1, a2, . . . , ai, . . . , an〉 and B = 〈b1, b2, . . . , bi, . . . , bn〉 are two time series se-

quences of length n.

A

B

Figure 2.2: Example of Euclidean distance calculation.

For Subsequence Time Series Clustering (STSC), Euclidean distance is used as a distance

measure in k-means clustering and k-hierarchical clustering algorithms. However, at the end

of this chapter (Section 2.4), Euclidean distance will be shown that it is a cause that makes a

clustering result of STSC meaningless.

2.1.5 Amplitude Averaging

Amplitude Averaging function is a method to construct a mean of a set of time series se-

quences, where a value of each dimension of a mean is derived from averaging all values of the

same dimension for all sequences. A mean Z = 〈z1, z2, . . . , zi, . . . , zn〉 from Amplitude Averag-

ing of two time series sequences A = 〈a1, a2, . . . , ai, . . . , an〉 and B = 〈b1, b2, . . . , bi, . . . , bn〉

of length n is calculated by zi = ai+bi

2 . The example is shown in Figure 2.3; a mean sequence

is generated from two sequences A = 〈2, 3, 8, 2, 1, 3〉 and B = 〈3, 1, 2, 8, 3, 2〉 by Amplitude

Averaging function.

1 2 3 4 5 6 7
0

5

10

A B

a) Original sequences A and B

1 2 3 4 5 6 7
0

5

10
Amplitude Averaging

b) Averaged result generated from Amplitude Averaging

Figure 2.3: Example of Amplitude Averaging calculation.

However, if two sequences A = 〈a1, a2, . . . , ai, . . . , an〉 and B = 〈b1, b2, . . . , bi, . . . , bn〉

have different weights, ωA and ωB , respectively, a mean sequence Z = 〈z1, z2, . . . , zi, . . . , zn〉

can be computed by zi = ωA·ai+ωB ·bi

ωA+ωB · . And for averaging a set S = {S1,S2, . . . ,Sj , . . . ,Sm} of
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sequences, a mean sequence Z = 〈z1, z2, . . . , zi, . . . , zn〉 can be computed once by zi =

∑
S∈S

si

|S| ,

and the pseudo code is provided in Table 2.7.

Table 2.7: Pseudo code of Amplitude Averaging function

FUNCTION [Z] = AMPLITUDEAVERAGING [S]

1. Initialize the sequence Z to all zeros
2. For each sequence S in S
3. For each data point si in S
4. zi = zi + si
5. Endfor
6. Endfor
7. For each data point zi in Z
8. zi = zi / |S|
9. Endfor

10. Return Z

For Subsequence Time Series Clustering (STSC), Amplitude Averaging function is used as

an averaging function to construct a cluster representative; however, in this section, Amplitude

Averaging will be shown that it is one of the causes that makes the output of STSC meaningless.

2.1.6 Z-Normalization

Normalization is a function to rescale a sequence to a specific range. In data mining, many

normalization techniques (Han and Kamber, 2000) have been proposed such as min-max nor-

malization, sigmoid normalization, and z-normalization. For time series data, z-normalization

is typically used to remove an offset and imbalanced distribution. In addition, the sequence is

normalized to obtain a mean and a standard deviation of zero and one, respectively. Given a se-

quence A = 〈a1, a2, . . . , ai, . . . , an〉 of length n, a new sequence Z = 〈z1, z2, . . . , zi, . . . , zn〉 is

normalized according to the following equations.

zi =
ai − µA
σA

(2.4)

µA =

n∑
i=1
ai

n
(2.5)

σA =

√√√√√ n∑
i=1

(ai − µA)2

n
(2.6)
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where µA and σA are a mean and a standard deviation of the sequence A, respectively.

Example is shown in Figure 2.4, where the original sequence is normalized to have its mean

and standard deviation of zero and one, respectively.
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10

a) Original sequence

0 20 40 60 80

−10

0

10

b) Normalized sequence

Figure 2.4: Example of z-normalization.

For Subsequence Time Series Clustering (STSC), a set of sequences extracted from a long

time series sequences needs to be normalized before clustering with k-means clustering and k-

hierarchical clustering algorithms. If normalization is not applied, subsequence clustering will

produce undesired results since similarity between subsequences must be independent to mean

and standard deviation of subsequences.

2.2 Related Work

Keogh and Lin have published a paper describing that an output of Subsequence Time Se-

ries Clustering (STSC) is a set of sine waves that is considered meaningless (Keogh and Lin,

2005). This leads to many arguments in data mining community since STSC has been imple-

mented as a subroutine and a preprocessing step of hundreds of mining applications such as rule

discovery (Das et al., 1998; Fu et al., 2001; Harms et al., 2002b,a; Hetland, 2002; Jin et al.,

2002b,a; Mori and Kuni, 2001; Osaki et al., 2000; Sarker et al., 2003; Uehara and Shimada, 2002;

Yairi et al., 2001), indexing (Li et al., 1998; Radhakrishnan et al., 2000), classification (Cotofrei,

2002; Cotofrei and Stoffel, 2002), prediction (Schittenkopf et al., 2000), and anomaly detection

(Yairi et al., 2001). Since Keogh and Lin proved that STSC is meaningless, all the works and

that successors utilized STSC are also considered invalid. Generally, STSC extracts subsequences

from a long time series as an input and returns a set of clusters as an output. Keogh and Lin found

that although an input changes, an output remains the same; in other words, STSC always pro-

duces the similar sine waves as cluster representatives regardless of a data input of the clustering

algorithm.
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Keogh and Lin claim that STSC is meaningless by the following experiment. Thirty each

of three patterns, i.e., Cylinder, Bell, and Funnel (Saito, 1994), of length 128, shown in Figure

2.5, generated from the following equations are concatenated to create a long sequence in Figure

2.6.

c (t) = (6 + η) · χ [a, b] (t) + ε (t) (2.7)

b (t) = (6 + η) · χ [a, b] (t) · (t− a) / (b− a) + ε (t) (2.8)

f (t) = (6 + η) · χ [a, b] (t) · (b− t) / (b− a) + ε (t) (2.9)

χ [a, b] =


0 t < a

1 a ≤ t ≤ b

0 t > b

(2.10)

where η and ε (t) are drawn from a standard normal distribution N (0, 1), a is an integer drawn

uniformly from [16, 32], b − a is an integer drawn uniformly from [32, 96], and t is varied from

1 to 128.

0 20 40 60 80 100 120

−0.2

0

0.2

a) Cylinder

0 20 40 60 80 100 120

−0.2
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0.2

b) Bell

0 20 40 60 80 100 120

−0.2

0

0.2

c) Funnel

Figure 2.5: Examples of Cylinder-Bell-Funnel dataset
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Figure 2.6: Some part of Cylinder-Bell-Funnel sequence

0 20 40 60 80 100 120
−1

0

1

Figure 2.7: Cluster representatives generated from STSC

When this sequence is clustered by STSC, sine-wave-like cluster representatives (see Figure

2.7) are returned, while original patterns are expected to be a result. Keogh and Lin also propose

a meaningfulness measurement, so-called Keogh-Lin Meaningfulness Measurement (KLMM),

defining that the subsequence clustering is meaningful when the clustering algorithm returns sim-

ilar cluster representatives from the same input sequence and dissimilar cluster representatives

from different input sequences. Suppose X = {X1,X2, . . . ,Xn} and Y = {Y1,Y2, . . . ,Yn}

are two sets of clustering results from n different runs of two different datasets, where X ={
X̂1, X̂2, . . . , X̂k

}
and Y =

{
Ŷ1, Ŷ2, . . . , Ŷk

}
are two sets of cluster representatives, respec-

tively. The meaningfulness of KLMM can be calculated from the following equations.

WithinDistance (X) =
∑k
i=1

∑k
j=1ClusterDistance (Xi,Xj)

k2
(2.11)

BetweenDistance (X,Y) =
∑k
i=1

∑k
j=1ClusterDistance (Xi,Yj)

k2
(2.12)

KLMM (X,Y) =
WithinDistance (X)

BetweenDistance (X,Y)
(2.13)

where WithinDistance (X) is a distance between sets of cluster representatives from the

same input sequence, BetweenDistance (X,Y) is a distance between sets of cluster represen-

tatives from different input sequences, and ClusterDistance (A,B) can be calculated from

the summation of minimum distances between two sets of cluster representatives. The re-

sult is meaningful when KLMM returns the value close to zero since WithinDistance (X)

is small and BetweenDistance (X,Y) is very large; otherwise, the result is meaningless.
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ClusterDistance (A,B) can be formalized as the following equation.

ClusterDistance (A,B) =
k∑
i=1

min [EuclideanDistance (Ai, Bj)] , 1 ≤ j ≤ k (2.14)

where A = {A1, A2, . . . , Ai, . . . , Ak} and B = {B1, B2, . . . , Bj , . . . , Bk} are two sets of cluster

representatives.

However, KLMM is an invalid meaningfulness measurement for two reasons. The first

reason is that with the same number of clusters and the same length of sliding window, cluster

representatives of two different input sequences may be sine waves with different phases and

frequencies. STSC always produces sine waves regardless of an input sequence; therefore, if

cluster representatives are sine waves, the clustering result would mistakenly be considered as

meaningless. However, Euclidean distance utilized by KLMM cannot capture similarity between

two sine waves with different phases and frequencies; therefore, KLMM considers clustering

results are meaningful although results are all sine waves.

Secondly, KLMM assumes that two clustering results are meaningful if they are different.

For any meaningful subsequence clustering algorithm, if two input sequences are similar, the

clustering results are expected to be similar as well, and if two input sequences are different,

the clustering results are expected to be different, but KLMM will always flag any two similar

clustering results as meaningless regardless of similarity between two input sequences. Although

a meaningful subsequence clustering algorithm exists, KLMM cannot tell how meaningful they

are.

Many successor papers in finding a meaningful subsequence clustering also unawares use

KLMM as a meaningfulness measurement to evaluate their algorithms; therefore, their experi-

ments become invalid. For theoretical study, Ide (Idé, 2006b) proved that STSC always returns

sine waves regardless of an input sequence. In this thesis, a new meaningfulness measure will

be introduced in Chapter 4 to be used as a meaningfulness measurement for Shape-based Subse-

quence Time Series Clustering (2STSC).

2.3 Experiments

Two following experiments will demonstrate that STSC produces meaningless clustering

results and that KLMM is an invalid meaningfulness measurement. Datasets used in these exper-
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iments are eight time series of length 2000 from the Time Series Data mining Archive (TSDMA)

(Keogh and Folias, 2011) shown in Figure A.1. Figure 2.8 shows Buoy1 and CBF used in the

experiments.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
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Buoy1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−5
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5

CBF

Figure 2.8: Datasets from TSDMA used in the experiments.

2.3.1 First Experiment

The first experiment demonstrates that STSC produces clustering results as sine waves

regardless of an input sequence. The number of clusters (k) and the length of sliding window

(w) vary. In addition, to show that cluster representatives are sine waves, perfect sine waves

are constructed and compared to these cluster representatives. Generally, a sine wave can be

formalized as a following equation (Hazewinkel, 2001).

y(x) = A · sin (ωx+ ϕ) + µ (2.15)

where A is the amplitude, ω = 2πf is the angular frequency (in radian per second), f is the

ordinary frequency (in hertz), ϕ is phase, and µ is an offset of the sine wave.

Given a set R = {R1, R2, . . . , Rk} of k cluster representatives, a new set R′ =

{R′1, R′2, . . . , R′k} of k cluster representatives is constructed by searching for those parameters

by a non-linear equation solver (Balda, 1999) implemented with Levenberg-Marquardt algorithm

(Fletcher, 1971) to minimize Root Mean Square Error (RMSE).

Figures 2.9 and 2.10 show cluster representatives generated from STSC of two datasets,

i.e., Buoy1 and CBF, using k-means clustering and k-hierarchical clustering (with two variations

of inter-cluster distance functions) when k = 3 and w = 64. Note that single linkage distance func-

tion is not used as an inter-distance function in this experiment because k-hierarchical clustering

with single linkage function cannot gracefully handle trivial-matched subsequences, where some

subsequences will never in any groups if these subsequences have the largest nearest neighbor

distance compared with other subsequences. In other words, single linkage group subsequences
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based on the smallest nearest neighbor distance. Therefore, in this study, only two inter-cluster

distance functions are utilized, i.e., complete linkage and average linkage functions. The con-

structed sine waves from cluster representatives generated from STSC of two datasets, i.e., Buoy1

and CBF, using k-means clustering and k-hierarchical clustering are shown in Figures 2.11 and

2.12, respectively, when k = 3 and w = 64, where thick lines are constructed sine waves, and thin

lines are original cluster representatives. The complete experiment results of eight datasets are

provided in Appendix B, where the number of clusters (k) and the length of sliding window (w)

are varied to be (3, 32), (3, 64), (5, 64), (7, 64), and (3, 128), respectively.
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Figure 2.9: Cluster representatives generated from STSC of Buoy1 when k = 3 and w = 64.
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Figure 2.10: Cluster representatives generated from STSC of CBF when k = 3 and w = 64.
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Figure 2.11: Constructed sine waves generated from STSC of Buoy1 when k = 3 and w = 64.
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Figure 2.12: Constructed sine waves generated from STSC of CBF when k = 3 and w = 64.

2.3.2 Second Experiment

The second experiment demonstrates that KLMM is an invalid meaningfulness measure-

ment. From the first experiment, clustering results of STSC are meaningless because STSC pro-

duces sine waves as cluster representatives. However, KLMM does not capture that the result

is a set of sine waves, but KLMM calculates the difference between two cluster representatives

using Euclidean distance. Since STSC has been proven both empirically and theoretically that

it produces sine waves regardless of inputs (Idé, 2006b; Keogh and Lin, 2005), KLMM should

return high values (more than one) for pairs of datasets. The following results show that KLMM

is an invalid measurement since KLMM does not return high values; even though the cluster rep-

resentatives are all sine waves. Figure 2.13 and Figure 2.14 show KLMM of STSC using k-means

clustering and KLMM of STSC using k-hierarchical clustering by varying the number of clusters
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(k) and the length of sliding window (w). From the figures, all pair comparisons of eight datasets

are evaluated. The value of KLMM is represented in gray shade, where black color represents a

high value of KLMM, while white color representing a low value of KLMM. From the experi-

ments, some values are completely white, and some are gray, but not all black; however, the values

are expected to be all black since STSC have been proven that it produces meaningless results.
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Figure 2.13: KLMMs of STSC using k-means clustering.
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Figure 2.14: KLMMs of STSC using k-hierarchical clustering.

2.4 Causes of Meaninglessness

The causes of meaninglessness are inappropriate approaches to handle trivial-matched sub-

sequences. Trivial-matched subsequences are a set of adjacent subsequences in a time series se-

quence, where between two adjacent subsequences, only two data points are different. Formally,

given a time series sequence S = 〈s1, s2, . . . , sn〉 of length n, a set S = {S1,S2, . . . ,Sn−w+1}

of subsequences extracted from a sequence S with a fixed-length sliding window of length w, a

set of trivial-matched subsequences are T = {Si,Si+1, . . .}, where 1 ≤ i ≤ n − w + 1. Trivial-

matched subsequences of CBF sequence are illustrated in Figure 2.15. In addition, inappropriate
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uses of a distance measure and an averaging function to handle trivial-matched subsequences lead

to an undesired clustering output. Specifically, STSC utilizes Euclidean distance and Amplitude

Averaging function as a distance measure and an averaging function, respectively.
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Figure 2.15: Trivial-matched subsequences of CBF sequence

In Euclidean space, two adjacent subsequences may be considered as significantly different

although only two data points are different, and the remaining points are the same. To be more

illustrative, Euclidean distance cannot group different sets of trivial-matched subsequences shown

as a dendrogram in Figure 2.16.
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Figure 2.16: Euclidean distance cannot capture similarity between trivial-matched subsequences

To construct a cluster representative, STSC averages all subsequences within a cluster using

Amplitude Averaging function, where Amplitude Averaging generates an averaged result by com-

puting a mean of each dimension directly. In addition, Amplitude Averaging is inappropriate to

be used as an averaging function of STSC since Amplitude Averaging does not align shifted data
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points of adjacent subsequences. Therefore, in the end, each dimension of the result is averaged

from unrelated dimensions. This leads to undesired smoothened cluster representatives. Three

averaged results of trivial-matched subsequences from CBF sequence generated by Amplitude

Averaging function are shown in Figure 2.17. The averaged result will be smoother and more

convergent to sine waves; therefore, trivial-matched subsequence clustering can be meaningful

when appropriate distance measure and average function are used instead of Euclidean distance

and Amplitude Averaging function.
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Figure 2.17: Amplitude Averaging produces an smoothened averaged result.

2.5 Conclusion

Subsequence Time Series Clustering (STSC) with both k-means and k-hierarchical cluster-

ing algorithms produces sine waves as cluster representatives regardless of an input sequence. To

measure meaningfulness, Keogh and Lin have proposed a meaningfulness measurement, called

KLMM, which is shown to be invalid because it returns that the result is meaningful even though

cluster representatives are sine waves. The causes of meaninglessness are identified as twofold,

i.e., an inappropriate distance measure and an inappropriate averaging function, where STSC

utilizes Euclidean distance and Amplitude Averaging function as a distance measure and an av-

eraging function. Therefore, the use of appropriate a distance measure and an averaging function

can return a meaningful result.



CHAPTER III

SHAPE-BASED AVERAGING

Since the causes of having cluster representatives, the outputs generated from a Subse-

quence Time Series Clustering (STSC) with both k-means clustering and k-hierarchical cluster-

ing, becoming all sine waves are inappropriate uses of Euclidean distance and Amplitude Aver-

aging as a distance measure and an averaging function, respectively, in this chapter, Shape-based

Averaging is proposed to use instead of Amplitude Averaging in STSC to correctly generate a clus-

ter representative from trivial-matched subsequences. Unlike other typical data types, time series

data need Shape-based Averaging instead of Amplitude Averaging since correlations among ad-

jacent dimensions exist (Niennattrakul and Ratanamahatana, 2007a,b). Additionally, Amplitude

Averaging produces an undesired mean, where this leads to an inaccurate cluster representative.

Figure 3.1 shows the results from averaging of two time series sequences A and B using Am-

plitude Averaging and Shape-based Averaging, respectively. The sequence generated from the

Amplitude Averaging shows an undesired averaged result that contains two events, where both

original sequences A and B consist of only one event. The sequence generated from Shape-based

averaging preserves characteristics of these two data sequences that only one event exists.
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Figure 3.1: Comparision between two averaged results generated from Amplitude Averaging and Shape-
based Averaging.

However, constructing an accurate shape-based mean is still controversial because data

sequences are averaged in Dynamic Time Warping (DTW) distance space not in the Euclidean

space. Unfortunately, no optimal solution has been proposed. Over a decade ago, Gupta et al.
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proposed a heuristic solution called NLAAF (Gupta et al., 1996), while only a handful number of

work has been adapted to time series data mining domain (Ratanamahatana and Keogh, 2005a;

Salvador and Chan, 2007). Particularly, NLAAF does not produce good averaged results since

an averaged result is always longer than the original sequence and has large errors. In this the-

sis, a new averaging scheme with two averaging functions, Cubic-Spline Dynamic Time Warping

(CDTW) averaging and Iterative Cubic-Spline Dynamic Time Warping (ICDTW) averaging, is

introduced. With the proposed construction algorithm, a very well-formed mean is generated.

Averaged results generated from NLAAF, CDTW, and ICDTW are compared and evaluated in

terms of SUMDIST, a summation of distances between the averaged result and all original se-

quences.

3.1 Background

This section provides essential background knowledge, i.e., Dynamic Time Warping

(DTW) distance and Dynamic Time Warping (DTW) averaging function, to understand proposed

methods in this chapter.

3.1.1 Dynamic Time Warping (DTW) Distance

DTW distance (Berndt and Clifford, 1994; Ratanamahatana and Keogh, 2005b) is a well-

known shape-based similarity measure that uses a dynamic programming technique to find an

optimal warping path between two time series sequences. To calculate the distance, it first creates

a distance matrix, where each element in the matrix is a cumulative distance of the minimum value

of three surrounding neighbors. Given two time series sequences A = 〈a1, a2, . . . , ai, . . . , an〉

and B = 〈b1, b2, . . . , bj , . . . , bm〉, an n-by-m matrix is first created, and then each (i, j) element

γi,j of the matrix is defined as:

γi,j = |ai − bj |p + min {γi−1,j−1, γi−1,j , γi,j−1} (3.1)

where γi,j is the summation of |ai − bj |p and the minimum cumulative distance of three elements

surrounding the (i, j) element, and p is the dimension of Lp-norms. When all elements in the

matrix are filled, DTW distance is determined from the last element γn,m of the matrix. For time

series domain, p = 2, equipping to Euclidean distance, is typically used. Since DTW distance is

important background knowledge for this thesis, a pseudo code is provided in Table 3.1 and an

illustrative example of DTW distance calculation is shown in Figure 3.2.
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Table 3.1: Pseudo code of Dynamic Time Warping distance measure

FUNCTION [dist] = DTW-DISTANCE [A, B]

1. Let n be the length of time series A
2. Let m be the length of time series B
3. Let p be the dimension of Lp-norms
4. Initialize D = ARRAY[n][m]
5. For (i = 1 to n)
6. For (j = 1 to m)
7. If (i = 1 and j 6= 1)
8. min = Di,j−1

9. Else if (i 6= 1 and j = 1)
10. min = Di−1,j

11. Else
12. min = MIN(Di,j−1, Di−1,j , Di−1,j−1)
13. End if
14. Di,j = min + |ai − bj |p
15. End for
16. End for
17. Return dist = p

√
Dn,m

A

B

Figure 3.2: Alignment obtained from a DTW distance calculation.

3.1.2 Dynamic Time Warping (DTW) Averaging

DTW averaging was first introduced by Gupta et al. (Gupta et al., 1996) to find an av-

eraged result between two time series sequences. Unlike DTW distance, DTW averaging uses

another matrix to store an index of the minimum distance among adjacent elements. The path

matrix is created to store an index of the adjacent element that has minimum cumulative distance,

and a path is traced back from the last element to the first element. An averaged result is then

calculated along the path. Suppose the path W = 〈w1, w2, . . . , wk, . . . , wN 〉 of length N , where

wk is kth coordinate (ik, jk) in the optimal path of sequences A = 〈a1, a2, . . . , ai, . . . , an〉 and

B = 〈b1, b2, . . . , bj , . . . , bm〉, where ik and jk are indices of data points in sequences A and B,

rethespectively. Therefore, a new sequence Z = 〈z1, z2, . . . , zk, . . . , zN 〉 is derived from ele-

ments zk = aik
·ωA+bjk

·ωB

ωA+ωB
, where ωA and ωB are the weights of sequences A and B, respectively.

We also provide a concrete pseudo code of DTW averaging in Table 3.2. For example in Fig-

ure 3.3, two sequences A = 〈2, 3, 8, 2, 3, 1, 3〉 and B = 〈3, 1, 2, 3, 8, 3, 2〉 are averaged by DTW

averaging algorithm to produce an averaged result Z = 〈2.5, 1.5, 2, 3, 8, 2.5, 3, 1.5, 2.5〉.
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Figure 3.3: Result generated from DTW Averaging

Table 3.2: Pseudo code of Dynamic Time Warping averaging function

FUNCTION [W ] = DTW-AVERAGING [A, B, ωA, ωB]

1. W = WARPINGPATH(A, B)
2. Let N be a length of the path W
3. Let Z be a time series sequence of length N
4. For (k = 1 to N )
5. [i, j] = wk
6. zk = ai·ωA+bj ·ωB

ωA+ωB

7. Add zk to Z
8. End for
9. Return Z

It is important to note that DTW averaging function is an operation which has only com-

mutative property with no associative property (Niennattrakul and Ratanamahatana, 2007a). In

the other words, if there are three sequences A, B, and C, a result of averaging A and B, then C

is not necessarily equal to a result of averaging B and C, then A. A sequence ordering can largely

affect the averaged result. In addition, an averaging sequence will always be longer or equal to

the original sequences. If a large dataset is to be averaged, averaging sequences will be very long

which will definitely decrease a system performance. Therefore, in this chapter, two new shape-

based averaging functions to resolve this problem and a new averaging scheme to efficiently order

averaging sequences are proposed.

3.2 Related Work

Over a decade ago, Gupta et al. proposed a heuristic shape-averaging scheme called

NLAAF (Gupta et al., 1996), which was first introduced in signal processing community, and

later has been utilized in data mining tasks (Ratanamahatana and Keogh, 2005a; Salvador and

Chan, 2007). Specifically, NLAAF uses DTW averaging to produce a mean between a pair of

time series sequences. NLAAF consists of two averaging schemes, i.e., NLAAF1 and NLAAF2.

NLAAF1 averages sequences in hierarchical manner. Suppose there are eight sequences, i.e., A1
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Table 3.3: Pseudo code of generating a warping path

FUNCTION [W ] = WARPINGPATH [A, B]

1. Initialize distance matrix DM and path matrix PM
2. For each ai in A and bj in B
3. DM [i, j] = |ai − bj |p
4. If (i = 1 and j 6= 1)
5. DM [i, j] += DM [i, j − 1]
6. PM [i, j] = 1
7. Else if (i 6= 1 and j = 1)
8. DM [i, j] += DM [i− 1, j]
9. PM [i, j] = 2

10. Else if (i 6= 1 and j 6= 1)
11. dist = MIN(DM [i, j − 1], DM [i− 1, j], DM [i− 1, j − 1])
12. If (dist = DM [i, j − 1])
13. PM [i, j] = 1
14. Else if (dist = DM [i− 1, j])
15. PM [i, j] = 2
16. Else
17. PM [i, j] = 3
18. End if
19. DM [i, j] += dist
20. Else
21. PM [i, j] = 3
22. Endif
23. Endfor
24. Let n be a length of the sequence X
25. Let m be a length of the sequence Y
26. While (n 6= 0 and m 6= 0)
27. wk = [n, m]
28. If (PM [n, m] = 1)
29. m = m - 1
30. Else if (PM [n, m] = 2)
31. n = n - 1
32. Else
33. m = m - 1; n = n - 1
34. End if
35. End while
36. W = Reverse order of W
37. Return W

to A8. A1 and A2 are averaged to produce A1,2, and A3 and A4 are averaged to produce A3,4,

and so on. Then, in the next level, A1,2 and A3,4 are averaged to produce A(1,2),(3,4), and so

on. Limitation of NLAAF1 is that it requires that the number of sequences must be a power of

two. Unlike NLAAF1, NLAAF2 averages sequences in sequential manner. A1 and A2 are first

averaged to produce A1,2, and then A1,2 and A3 are averaged to produce A(1,2),3, and so on.

Since NLAAF1 has limitation that it requires the number of sequences to be a power of two,

Gupta et al. recommend to use combination of both NLAAF1 and NLAAF2. For example, to aver-

age 100 sequences, 4 sequences will be discarded, and the rest of the sequences will be separated

into three groups of 32 sequences, each of which will be averaged using NLAAF1. Therefore,
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three averaged sequences produced from NLAAF1 will then be averaged using NLAAF2. Since

DTW averaging function does not have an associative property, different orderings of sequences

in both NLAAF1 and NLAAF2 will lead to different averaged results. Additionally, an averaged

sequence from NLAAF will be very long since DTW averaging function will always produce a

longer or equal sequence to its original sequences. In this chapter, two new DTW averaging func-

tions and an averaging scheme which produce a more accurate averaged result are proposed, and

when this result is used in subsequence clustering, it produces more meaningful clustering results.

3.3 Shape-based Averaging

To average a set of sequences, an averaging scheme to construct an averaged result is pro-

posed since the shape-based averaging does not have an associative property (Niennattrakul and

Ratanamahatana, 2007a). Instead of averaging sequences in a random order as done in NLAAF, a

heuristic solution is introduced to return a good averaged result by averaging a pair of sequences

which are the most similar first. After the averaged result is generated, a pair of sequences from

the remaining data including the previous averaged result is determined for the next iteration. The

scheme keeps going until only one sequence remains. A pseudo code of the averaging scheme is

provided in Table 3.4.

Table 3.4: Pseudo code of Shape-based Averaging scheme

FUNCTION [W ] = AVERAGINGSCHEME [S]

1. Initialize a weight ω = 1 for each sequence S in S
2. While (SIZE(S) > 1)
3. [A, B] = Most similar sequences in S
4. Z = AVERAGINGFUNCTION(A, B, ωA, ωB)
5. Remove A and B from S
6. ωZ = ωA + ωB
7. Add Z to S
8. End while
9. Return Z

In this chapter, two novel averaging functions, i.e., Cubic-Spline Dynamic Time Warping

(CDTW) and Iterative Cubic-Spline Dynamic Time Warping (ICDTW) are introduced. Either one

of these two averaging functions can be used as the AVERAGINGFUNCTION in Line 4 of Table

3.4.

3.3.1 Cubic-Spline Dynamic Time Warping (CDTW) Averaging

CDTW averaging function produces a more accurate averaged result by considering both

position and amplitude of each data point of a new averaged sequence, while DTW averaging

function (Table 3.1) considers only amplitude. In other words, DTW averaging function equally
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treats every new data point in a new sequence, while CDTW averaging function additionally de-

termines where a new data point should be placed. Specifically, a position and an amplitude of

a data point in the sequence can be observed as x- and y- coordinate in time series. Therefore,

the sequence generated from CDTW function is more useful since it preserves both position and

amplitude from the warping path. Figure 3.4 shows the comparision between averaged results gen-

erated from CDTW and DTW averaging functions, where two inputs are A = 〈2, 3, 8, 2, 3, 1, 3〉

and B = 〈3, 1, 2, 3, 8, 3, 2〉.
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b) Averaged result generated from DTW averaging
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c) Averaged result generated from CDTW averaging

Figure 3.4: Comparison between DTW averaging and CDTW averaging functions

Suppose the pathW = 〈w1, w2, . . . , wk, . . . , wN 〉 , where wk = (ik, jk) is kth coordinate in

the optimal path of sequencesA andB. Therefore, a position z′kx
of a data point in a new sequence

Z ′ is determined by z′kx
= ωA·ik+ωB ·jk

ωA+ωB
, and an amplitude z′ky

of a data point in a new sequence

Z ′ is determined by z′ky
= ωA·aik

+ωB ·bjk

ωA+ωB
, where ωA and ωB are the weights of sequences A and

B, respectively.

However, the length of the sequence Z ′ is always equal to or longer than two original

sequences; therefore, re-sampling is required. In this thesis, CDTW averaging function uses a

cubic-spline interpolation (Burden et al., 1997) since it requires no parameter and outperforms

other interpolation techniques in re-sampling of natural sequences. Additionally, CDTW function

re-samples positions of averaged result to integer values. As illustrated in Figure 3.5, the sequence

Z ′ of 9 data points is re-sampled to the sequence Z of 7 data points. A concrete pseudo code of

CDTW function is provided in Table 3.5.
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Figure 3.5: Averaged results before and after re-sampling in CDTW averaging function.

Table 3.5: Pseudo code of Cubic-Spline Dynamic Time Warping (CDTW) averaging function

FUNCTION [Z] = CDTW-AVERAGING [A, B, ωA, ωB]

1. W = WARPINGPATH(A, B)
2. Let N ′ be the length of the path W
3. Let N be the equal length of time series A and B
4. Let Z be a time series sequence of size N
5. Let Z ′ be a time series sequence of size N ′

6. For (k = 1 to N ′)
7. [i, j] = wk
8. x = i·ωA+j·ωB

ωA+ωB

9. y = ai·ωA+bj ·ωB

ωA+ωB

10. Add [x, y] to Z ′

11. End for
12. Z = CUBICSPLINE(Z ′)
13. Return Z

3.3.2 Iterative Cubic-Spline Dynamic Time Warping (ICDTW) Averaging

Although CDTW function produces a good averaged result since it considers both position

and amplitude, another essential but not necessary condition for averaging is that the averaged

result should be in the middle of two original sequences. In other words, DTW distances between

the sequences and the result should be equal. Therefore, an iterative approach for CDTW averag-

ing function called Iterative Cubic-Spline Dynamic Time Warping (ICDTW) averaging function

is proposed. ICDTW function can truly represent characteristics of a set of subsequences.

It is important to emphasize that the distances between the generated result from CDTW

function and two original time series sequences are not always equal; therefore, the averaged result

needs to be slightly adjusted. Obviously, since all elements in the sequence are real numbers, it

is very difficult to obtain the sequence that satisfies this condition; therefore, a heuristic and

deterministic solution is proposed, i.e., ICDTW averaging function mentioned above. To average

two time series sequences A and B, ICDTW function will find new weights βA and βB which

make the averaged result Z be the center between the sequencesA andB. Obviously, finding both
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weights βA and βB is not very practical since the weights βA and βB are real numbers. A binary

search is used instead to find only the weight βA, when the weight βB is fixed. Specifically, for

each iteration, a new weight βA is checked whether or not the generated averaged result Z has an

equal DTW distances to the sequences A and B. If the distances are equal, ICDTW terminates.

In other words, only weight βA is necessary to search, while weight βB can be fixed as a constant

because two sets of weights are equivalent. For example, for {βA, βB} = {4, 5}, it can be reduced

to {0.8, 1} when the weight βB is fixed to 1; therefore, searching for βA is enough to find any

pair of weights {βA, βB}. Pseudo code of ICDTW averaging function is provided in Table 3.6.

Note that two initial weights of A, βA1 and βA2 , are set to be 10−5 and 105. These numbers can

be initialized to any numbers, where βA1 must be much smaller than βA2 , so the algorithm can be

converged.

Table 3.6: Pseudo code of Iterative Cubic-Spline Dynamic Time Warping (ICDTW) averaging function

FUNCTION [Z] = ICDTW-AVERAGING [A, B, ωA, ωB]

1. Initialize weights βA1 = 10−5, βA2 = 105, and βB = 1

2. Initialize weight βA3 = (βA1+βA2)
2

3. Z = CDTW-AVERAGING(A, B, βA3 , βB)
4. dZ,A = DTWDISTANCE(Z, A) · ωA
5. dZ,B = DTWDISTANCE(Z, B) · ωB
6. βA3 = dZ,A < dZ,B ? βA1 : βA2

7. While (|dZ,A − dZ,B | > 0)

8. βA3 = (βA1+βA2)
2

9. Z = CDTW-AVERAGING(A, B, βA3 , βB)
10. dZ,A = DTWDISTANCE(Z, A) · ωA
11. dZ,B = DTWDISTANCE(Z, B) · ωB
12. If (dZ,A < dZ,B)
13. βA2 = βA3

14. Else
15. βA1 = βA3

16. End if
17. End while
18. Return Z

Note that both CDTW and ICDTW averaging functions can be used in subsequence clus-

tering. However, to preserve characteristics of an averaged result, ICDTW function is more pre-

ferred. For CDTW function, the averaged result preserves shape-based averaging process which

considers both position and amplitude of the warping alignment, while ICDTW averaging returns

more accurate characteristics of the averaged result by calibrating the resulted sequence having

the same distance between the result and original sequences. Performance of CDTW and ICDTW

functions will be demonstrated in the experiment evaluation.
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3.4 Experimental Evaluation

The following experiment will demonstrate the superiority of the proposed averaging func-

tions over the current existing approaches, where the accuracies of the proposed shape-based

averaging method, i.e., a new averaging scheme with two proposed CDTW and ICDTW algo-

rithms, comparing with those of NLAAF, are reported. Our proposed methods are evaluated with

20 datasets from the UCR classification/clustering page (Keogh et al., 2011). Table A.1 shows the

number of classes, the length of each time series sequence, and the size of the datasets, and Figure

A.2 shows some examples of each dataset. Figure 3.6 shows examples of some classes used in

this evaluation.
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Figure 3.6: Examples of some classes in evaluated datasets.

For each dataset, training data and test data are all combined, and then all sequences are

averaged. Note that sequences are averaged within their own classes to achieve maximum utili-

ties. The averaged results are evaluated using SUMDIST function, defined as a summation of all

distances between the averaged result and each of the original sequences in the dataset. If a value

from SUMDIST is small, it means that this method generates a good averaged result. SUMDIST

function is provided as follows.

SumDist
(
Ŝ, S

)
=
|S|∑
i=1

DTWDistance
(
Ŝ,Si

)
(3.2)

where S is a dataset, Ŝ is the averaged result, and Si is each data sequence in the dataset S.

Table 3.7 shows the SUMDIST comparison between NLAAF and our proposed meth-

ods, CDTW and ICDTW functions, where SUMDIST reported in Table 3.7 is a summation of

SUMDISTs of all classes. From the experiment results, it is apparent from the experiment results

that CDTW and ICDTW functions achieve lower SUMDIST values since all sequences are aver-

aged using a new averaging schemes, while the scheme of NLAAF averages sequences in random

manner, and no resampling method is adopted in NLAAF to scale the averaged sequence to the

same length. Averaged results from CDTW, ICDTW, and NLAAF of CBF and ECG are shown

in Figures 3.7 and 3.8, respectively, where the results from other datasets are provided in Figures
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C.1 to C.3 in Appendix C.

Table 3.7: SUMDIST of each averaging method

Dataset NLAAF CDTW ICDTW
50words 4277.6 2348.2 2360.5

Adiac 353.9 285.9 284.3
Beef 384.7 219.9 222.5
CBF 8730.6 4007.1 3821.0

Coffee 69.5 43.0 43.6
ECG 1160.8 528.4 519.4

Face (all) 18339.0 8748.6 8670.4
Face (four) 945.0 613.4 604.4

Fish 516.9 297.3 284.4
Gun-Point 1375.0 466.0 468.4
Lighting-2 2606.9 1195.5 1183.3
Lighting-7 1142.0 858.4 865.1

Oliveoil 6.8 6.5 6.5
OSULeaf 6309.6 2797.4 2805.9

SwedishLeaf 2510.6 1452.8 1415.1
Synthetic 3472.5 2063.1 2050.5

Trace 469.9 221.0 248.5
TwoPatterns 46392.0 1911.4 1874.2

Wafer 635545.3 53026.4 52723.1
Yoga 117113.2 16924.0 16947.9

0 20 40 60 80 100 120
−2

0

2

0 20 40 60 80 100 120
−2

0

2

CDTW ICDTW

0 1000 2000 3000 4000 5000
−2

0

2

NLAAF

Figure 3.7: Averaged results of CBF
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Figure 3.8: Averaged results of ECG
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3.5 Averaging Trivial-Matched Subsequences

Trivial-matched subsequences are a set of adjacent subsequences whose differences are

only a few points. For example, from a CBF dataset, in Figure 3.9, three sets of trivial-matched

subsequences are extracted and shown in Figure 3.9. Therefore, Amplitude Averaging function is

inappropriate to average these subsequences since Amplitude Averaging function does not align

subsequences before averaging. If Amplitude Averaging is used, the averaged result will be

smoothened and the output of subsequence clustering will be meaningless. Figure 3.10 shows the

averaged results when Amplitude Averaging averages three sets of trivial-matched subsequences.

Since CDTW and ICDTW averaging functions align subsequences before averaging, the averaged

result preserves all characteristics, as shown in Figure 3.11 and Figure 3.12, respectively. There-

fore, CDTW and ICDTW averaging functions are more appropriate to use to construct cluster

representatives in subsequence clustering than Amplitude Averaging function. Either CDTW or

ICDTW averaging function can be used to generate cluster representatives in subsequence clus-

tering, where according to experiments, ICDTW provides more accurate averaged results.
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b) Three sets of trivial-matched subsequences

Figure 3.9: Trivial-matched subsequences b) extracted from a) CBF sequence.

3.6 Conclusion

This thesis proposes CDTW and ICDTW functions to generate an accurate averaged re-

sult. Since time series data have correlation among dimensions, CDTW and ICDTW functions

are more appropriate than Amplitude Averaging function. In addition, CDTW and ICDTW func-

tions are shown to outperform NLAAF, and they should be used as an averaging function for

subsequence clustering.
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Figure 3.10: Averaged results generated from Amplitude Averaging.
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Figure 3.11: Averaged results generated from Shape-based Averaging with CDTW function.
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Figure 3.12: Averaged results generated from Shape-based Averaging with ICDTW function.



CHAPTER IV

2STSC: SHAPE-BASED SUBSEQUENCE TIME SERIES

CLUSTERING

Since Keogh and Lin proved that the clustering results of Subsequence Time Series Clus-

tering (STSC) are meaningless (Lin et al., 2003; Keogh and Lin, 2005), many other methods,

e.g., Density-based Subsequence Time Series Clustering (DSTSC) (Denton, 2005), Lag-based

Subsequence Time Series Clustering (LSTSC) (Simon et al., 2006; Chen, 2007a,b), and Phrase-

Analysis Subsequence Time Series Clustering (PASTSC) (Fujimaki et al., 2008), have been pro-

posed in order to solve this meaninglessness. These previous works introduce additional param-

eters to discard or filter out trivial-matched subsequences. For DSTSC, a distance threshold is

proposed to eliminate groups of clusters that have distances below this threshold, while LSTSC

and PASTSC propose a lag value and a slide length to select only some subsequences from a

large set of extracted subsequences. These parameters, however, are very sensitive to a clustering

result that if inappropriate parameter values are chosen, the clustering results will still be mean-

ingless. In addition, those works have too strict assumption that the time series sequence must be

cyclic, where this assuption scarely satisfies in real-world data. Obviously, these previous work

do not solve at the right point. Firstly, inappropriate parameter values may discard some useful

subsequences, and secondly, distance measures used in those clustering algorithms are based on

Euclidean distance that cannot capture similarity between two adjacent subsequences of trivial-

matched subsequences. Lastly, a cluster representative generated from those clustering algorithms

are from typical statistical values such as a mean or a median, where a mean is an averaged result

of all cluster members generated from Amplitude Averaging, and a median is selected from an

existing data sequence. Although a median can produce a meaningful clustering representative

since it is selected from the existing sequence, the median is still not preferred to be used as a

cluster representative because the median is usually sensitive to an imbalanced dataset, while the

mean, on the other hand, does preserve characteristics of all data objects in the averaging.

In this chapter, Shape-based Subsequence Time Series Clustering (2STSC) is proposed to

produce meaningful clustering results. Since trivial-matched subsequences are contiguous subse-

quences which have shifts in a time domain, an appropriate distance measure and an averaging

function, i.e., Dynamic Time Warping (DTW) distance and Shape-based Averaging, are used to

find the optimal alignment before distance calculation and averaging. Suppose there are three sets
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of trivial-matched subsequences as shown in Figure 4.1, Figure 4.2 demonstrates that Euclidean

distance cannot capture the similarity of trivial-matched subsequences by identifying that subse-

quences from the same set of trivial-matched subsequences are different. Compared to Euclidean

distance, DTW distance, on the other hand, can correctly group three sets of trivial-matched sub-

sequences because Euclidean distance calculates a distance in one-to-one manner, while DTW

distance finds an optimal alignment before distance calculation. Given the same three sets of sub-

sequences as in Figure 4.3, the Amplitude Averaging produces an averaged result whose shapes

are smoothened, while Shape-based Averaging still preserves all characteristics of the sequences,

especially the peaks and valleys of the sequences.
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Figure 4.1: Three sets of trivial-matched subsequences.

To be more illustrative, a simple experiment demonstrates that STSC produces meaningless

results. The test sequence is generated from concatenation of thirty sequences of three patterns,

i.e., Cylinder, Bell, and Funnel, from the CBF dataset. The clustering results of STSC and 2STSC

are shown in Figure 4.4, where the number of clusters (k) and the length of sliding window (w)

are set to be 3 and 128, respectively. Clustering results of STSC are all sine waves, while 2STSC

returns meaningful patterns. Note that 2STSC does not return three patterns, i.e., Cylinder, Bell,

and Funnel, as expected cluster representatives because other patterns including joints between

the patterns also do exist in the long time series sequence. With this proposed solution that uti-

lizes DTW distance and Shape-based Averaging as a distance measure and an averaging function,

2STSC will demonstrate that it produces meaningful results in an experimental evaluation section.

4.1 Related Work

In this section, related works are reviewed and described to show that subsequence cluster-

ing is challenging and still an open problem. So far, no proposed work has yet efficiently solved

the problem. This thesis will be the first work to introduce meaningful subsequence clustering

algorithm.

Since Keogh and Lin have reported the shocking finding that the output of STSC was mean-
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a) Euclidean distance b) DTW distance

Figure 4.2: a) Euclidean cannot capture the similarity of trivial-matched subsequences, while b) DTW can.

ingless (Lin et al., 2003; Keogh and Lin, 2005), hundreds of works and their successors that use

STSC as a subroutine or a preprocessing step are also considered producing meaningless outputs.

Keogh and Lin also proposed a tentative solution (Lin et al., 2003; Keogh and Lin, 2005) by using
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a) Amplitude Averaging
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b) Shape-based Averaging

Figure 4.3: a) Amplitude Averaging cannot construct meaningful representatives of trivial-matched subse-
quences, while b) Shape-based Averaging can.
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Figure 4.4: a) STSC produces a meaningless clustering result, while b) 2STSC produces a meaningful
clustering result.

motif discovery (Mueen et al., 2009) to remove trivial-matched subsequences, and the remaining

subsequences are then clustered using k-hierarchical clustering and k-means clustering. However,

the motif discovery is parameter-laden in that a real-value distance threshold must be specified in

advance to define which sequences are motifs or trivial matches, and using any preprocessing
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steps to filter out these trivial-matched sequences may lead to an error because some important or

desired subsequences are discarded.

Density-based Subsequence Time Series Clustering (DSTSC) (Denton, 2005) has then been

proposed by using a kernel function to model trivial-matched subsequences as noises, and a dis-

tance threshold has been used to discover the clusters and eliminate noises. Nevertheless, the

distance threshold has to be manually defined by users, and its cluster representative is selected

from a median of cluster members. However, a median is an undesired cluster representative be-

cause a median is affected from imbalance distribution of cluster members that all cluster members

should be averaged instead of just selecting one existing sequence. Therefore, a mean is more ap-

propriate than other statistical values, i.e., a mode or a median, since a mean can better reflect

characteristics of an interesting data collection by averaging all data sequences.

Lag-based Subsequence Time Series Clustering (LSTSC) (Simon et al., 2006; Chen,

2007b,a) is a subsequence clustering algorithm that re-samples subsequences to a specific lag

value using a new distance measure (Chen, 2007b), and a cluster representative is derived from

a mean (Chen, 2007b; Simon et al., 2006) or a median (Chen, 2007a). LSTSC requires a lag

value by assuming that an input sequence is cyclic. However, a perfect cyclic sequence is scarcely

found in real-world data; the output of LSTSC is meaningless if an improper value is chosen

(Chen, 2007a). In other words, LSTSC works well when a good lag value is provided by users.

To achieve a cluster representative, LSTSC uses a mean or a median of cluster members. Since

resampling of subsequences using a lag value cannot be done easily, the cluster representative

derived from the mean is still meaningless. In addition, using a median instead of a mean is not

a good solution. Although a median selected from an existing sequence is not a sine wave, a

median is still not suitable to be a cluster representative due to lack of reflection of data charac-

teristics. Note that some papers (Chen, 2007b) utilize lag-based approach, but subsequences are

not normalized before clustering; those papers are, therefore, considered meaningless as well.

Phrase-Analysis Subsequence Time Series Clustering (PASTSC) (Fujimaki et al., 2008)

utilizes Discrete Fourier Transform (DFT) to convert a time series sequence to a frequency do-

main before clustering. For efficient transformation, PASTSC selects the phase which gives the

maximum power spectrum as a parameter in DFT. After all subsequences are transformed, those

data are clustered using k-means clustering or k-hierarchical clustering algorithms, and then a

cluster representative for each clustering is identified in the frequency domain. After clustering

is finished, a cluster representative is transformed back to the original time domain. PASTSC has

an important parameter, i.e., a slide length that is a number of overlapping subsequences allowed.

Since the slide length is used to eliminate trivial-matched subsequences, an inappropriate value
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still leads to meaninglessness as well. Although the slide length is set so that the output is not

meaningless, the cluster representative is not generated from all sequences that some important

subsequences are discarded by the slide length.

Perceptually Important Point (PIP) (Fu et al., 2005) has been proposed to reduce the number

of dimensions of subsequences before clustering, where PIP captures peaks and valleys of sub-

sequences. Specifically, extracted subsequences are first reduced using PIP, and then redundant

subsequences which have the same PIP will be removed, where trivial-matched subsequences

normally have similar PIPs. The parameter of this dimensionality reduction is the number of

points that is used to represent a subsequence. Additionally, this method is suitable for noisy time

series sequences but not smooth sequences since peaks and valleys are hard to be identified in

the smooth sequences. However, their paper does not evaluate their clustering results with mean-

ingfulness measurement. Similar to PIPs, many other representation techniques, e.g., Discrete

Cosine Transform (DCT) (Kumar et al., 2006) and Discrete Fourier Transform (DFT) (Fujimaki

et al., 2008), are also proposed to represent extracted subsequences to be an input of subsequence

for clustering algorithms instead of using raw subsequences. However, data representations are

not suitable since they require parameters, and precisions of clustering results are lost after these

transformations.

These related works (Keogh and Lin, 2005; Denton, 2005; Chen, 2007a; Goldin et al., 2006;

Fu et al., 2005; Struzik, 2003; Simon et al., 2006; Kumar et al., 2006; Fujimaki et al., 2008) do not

propose the right solutions to deal with trivial-matched subsequences, i.e., new distance measures

requires additional parameters and Amplitude Averaging is still used to construct a cluster repre-

sentative. The distance threshold in DSTSC, the lag value in LSTSC, the slide length in PASTSC,

and PIP are additional parameters that users must specify depending on characteristics of each

dataset, where these values are sensitive to clustering results. With incorrect values, outputs of

clustering results may be meaningless. In addition, these values are used to discard trivial-matched

subsequences; therefore, some important trivial-matched subsequences are unexpectedly filtered

out. For the meaningfulness measurement, all previous works used Keogh-Lin Meaningfulness

Measurement (KLMM) to measure clustering output. As shown in Chapter 2, KLMM turns out

to be an invalid measurement since it cannot completely capture similarity of two cluster repre-

sentatives, when the outputs are all sine waves with different phases and frequencies; the outputs

will always be intepreted as meaningless.

In this chapter, the issues of similarity between trivial-matched subsequences and cluster

representative construction are solved by using the well-known DTW distance and the proposed

Shape-based Averaging instead of Euclidean distance and Amplitude Averaging, respectively.



47

With DTW distance and Shape-based Averaging, the proposed subsequence clustering, Shape-

based Subsequence Time Series Clustering (2STSC) will be the first meaningful subsequence

clustering algorithm in terms of Shape-based Meaningfulness Measurement (SMM) demonstrated

in an experimental evaluation section.

4.2 Shape-based Subsequence Time Series Clustering (2STSC)

Shape-based Subsequence Time Series Clustering (2STSC), a meaningful subsequence

clustering algorithm, is proposed in this thesis, where 2STSC utilizes Dynamic Time Warp-

ing (DTW) distance and Shape-based Averaging to correctly measure similarity between sub-

sequences and average cluster members for a cluster representative. Shape-based Averaging pro-

posed in this chapter has two variations, i.e., Cubic-Spline Dynamic Time Warping (CDTW) and

Iterative Cubic-Spline Dynamic Time Warping (ICDTW) averaging functions. Both CDTW and

ICDTW functions use cubic spline interpolation function (Burden et al., 1997) to re-sample x-

axis of an averaged sequence, but ICDTW function is more accurate that an averaged result is

guaranteed to be in the middle of two original sequences.

To solve the problem of trivial-matched subsequences, contiguous subsequences with small

time shifts, 2STSC integrates DTW distance and Shape-based Averaging in k-hierarchical clus-

tering. Specifically, like STSC, 2STSC receives a long time series sequence S = 〈s1, s2, . . . , sn〉

as an input, and then this sequence is extracted to be a set S = {S1,S2, . . . ,Si, . . . ,Sn−w+1}

of subsequences by a sliding window of length w, where Si = 〈si, si+1, . . . , si+w−1〉 and

1 ≤ i ≤ n − w + 1. This set of subsequences is then normalized under z-normalization (Han

and Kamber, 2000) and clustered with k-hierarchical clustering algorithm, where DTW distance

and Shape-based Averaging are used as a distance measure and an averaging function in the al-

gorithm. Finally, 2STSC returns a set C = {C1, C2, . . . , Ck} of k clusters, where each cluster

C = (M, R) contains a set M = {Si | Si ∈ S} of cluster members and a cluster representative

R = 〈r1, r2, . . . , rw〉 from k-hierarchical clustering. Beside an input, 2STSC requires two typical

parameters which are the number of clusters (k) and the length of sliding window (w). Visually,

an overview of 2STSC is illustrated in Figure 4.5.

K-hierarchical clustering used in 2STSC are agglomerative clustering which uses bottom-

up strategy. Specifically, agglomerative clustering iteratively combines atomic clusters to one

large cluster. K-hierarchical clustering requires an inter-cluster distance function which is used

to calculate a distance between two clusters. In this thesis, 2STSC uses two inter-cluster distance

functions, i.e., complete linkage and average linkage distance functions, where complete linkage

and average linkage functions are maximum and mean distances, respectively, among all subse-
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Figure 4.5: Overview of 2STSC using DTW distance and Shape-based Averaging.

quences pairs between two cluster members. More details of agglomerative clustering algorithms

are provided in Section 2.1.2. Concretely, 2STSC with the agglomerative algorithm is shown in

Table 4.1. Note that 2STSC does not use the single linkage function as an inter-cluster distance

function because the single linkage function cannot handle trivial-matched subsequences. Specifi-

cally, some subsequences will never be in any group if these subsequences have the largest nearest

neighbor distance. Although an average distance of that subsequence is smaller than others, single

linkage will only group based on the smaller nearest neighbor distance. Therefore, in this thesis,

only two inter-cluster distance functions are utilized, i.e., complete linkage and average linkage

distance functions.

Table 4.1: Pseudo code of Shape-based Subsequence Time Series Clustering (2STSC)

FUNCTION [C] = 2STSC [S, k, w]

1. S = EXTRACTSUBSEQUENCES(S, w)
2. SNorm = NORMALIZESUBSEQUENCES(S)
3. C = CLUSTERING(SNorm, k) // with DTW distance and Shape-based Averaging
4. Return C

4.3 Experimental Evaluation

Shape-based Subsequence Time Series Clustering (2STSC) is evaluated by comparing with

STSC in terms of meaningfulness. STSC used in this experiment is implemented on k-means

clustering and k-hierarchical clustering with Euclidean distance and Amplitude Averaging, while

2STSC is implemented with k-hierarchical clustering with DTW distance and Shape-based Aver-

aging (CDTW and ICDTW functions). Eight datasets from the Time Series Data Mining Archive

(TSDMA) (Keogh and Folias, 2011) used in this experiment are normalized and shown in Ap-
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pendix A, where each dataset contains 2000 data points. Two datasets, i.e., Buoy1 and CBF, used

to illustrated in this experiment is shown in Figure 4.6.
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Figure 4.6: Datasets used to evaluate meaningfulness of STSC and 2STSC

The proposed 2STSC is compared with STSC in terms of meaningfulness. However,

Keogh-Lin Meaningfulness Measurement (KLMM) (Lin et al., 2003; Keogh and Lin, 2005) is

invalid by the following reasons. First, the assumption of KLMM is that clustering results from

the same input sequence should be similar; otherwise, the clustering results should be dissimilar.

KLMM, therefore, only compares the distances between the distance of clustering results from

the same input and the distance of clustering results from the different inputs. However, KLMM

does not have any measurement of similarity between two inputs. Given two similar sequences,

clustering reuslts from those two inputs are expected to be similar, but KLMM considers that the

results are meaningless although the algorithm produces meaningful results. The second reason

is that KLMM cannot capture the similarity of sine waves with different phases or frequencies

since KLMM utilizes Euclidean distance to calculate distance between two cluster representa-

tives. Therefore, these cluster results are dissimilar in terms of KLMM although the clustering

results are sine waves. In Chapter 2, KLMM has been shown that it is considered to be an invalid

meaningfulness measurement.

In this experiment, a novel meaningfulness measurement, Shape-based Meaningfulness

Measurement (SMM), is introduced to calculate meaningfulness of clustering results. The ba-

sic idea of SMM is that clustering results are meaningful if clustering results truly represent

subsequences in the time series sequence. In other words, if an input sequence is not a sine

wave, cluster representatives should not be sine waves, and if an input sequence is a sine wave,

clustering representatives should be sine waves; otherwise, the clustering results are considered

meaningless. Unlike KLMM, SMM calculates the meaningfulness between an input sequence

and an output clustering result, while KLMM calculates meaningfulness between clustering re-

sults from two different datasets. Given an input sequence S = 〈s1, s2, . . . , sn〉 and an output set

C = {C1, C2, . . . , Ck} of k clusters, a set S = {S1,S2, . . . ,Si, . . . ,Sn−w+1} of subsequences

are extracted from the input sequence S by a sliding window of length w, where each cluster



50

C = (M, R) contains a set M = {Si | Si ∈ S} of cluster members and a cluster representative

R = 〈r1, r2, . . . , rw〉. A set R = {R1, R2, . . . , Rk} of cluster representatives are cluster rep-

resentatives of all clusters. Specifically, SMM is a summation of minimum distances between

each subsequence and cluster representatives. The meaningfulness value can be calculated as the

following equation.

SMM (S,C) =
|S| · w

|S|∑
i=1

min (Distance (Si, Rj)) , ∀Rj ∈ R
(4.1)

where Distance (Si, Rj) is a DTW distance between two sequences Si and Rj .

SMM ranges from zero to positive infinity and is a relative value that SMM must be com-

pared between two algorithms at the same set of parameters to identify that with a given dataset,

which subsequence clustering algorithm produces more meaningful clustering results.

Two parameters, i.e., the length of sliding window (w) and the number of clusters (k), are

varied to demonstrate the meaningfulness of clustering results of seven variations of subsequence

clustering algorithms. Figures 4.7 and 4.8 show SMMs of two datasets when the number of clus-

ters (k) is 3 and the length of sliding window (w) is varied to be 32, 64, and 128, and Figures 4.9

and 4.10 show SMMs of two datasets when the length of sliding window (w) is 64 and the number

of clusters (k) is varied to be 3, 5, and 7. Figures 4.11 and 4.12 show cluster representatives of

2STSC of Buoy1 and CBF, respectively, when the number of clusters (k) is 3 and the length of

sliding window (w) is 64. The results of other parameter settings and datasets are reported in

Appendix D.
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Figure 4.7: SMMs of Buoy1 when the number of clusters (k) is 3 and the length of sliding window (w) is
varied.
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Figure 4.8: SMMs of CBF when the number of clusters (k) is 3 and the length of sliding window (w) is
varied.



52

3 5 7
0

2

4

6

8

10

12

14

16

Number of clusters (k)

S
M

M

 

 

STSC (k−means)
STSC (k−hierarchical + CL)
STSC (k−hierarchical + AL)
2STSC (k−hierarchical + CDTW + CL)
2STSC (k−hierarchical + CDTW + AL)
2STSC (k−hierarchical + ICDTW + CL)
2STSC (k−hierarchical + ICDTW + AL)

Figure 4.9: SMMs of Buoy1 when the length of sliding window (w) is 64 and the number of clusters (k) is
varied.
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Figure 4.10: SMMs of CBF when the length of sliding window (w) is 64 and the number of clusters (k) is
varied.
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Figure 4.11: Cluster representatives generated from 2STSC of Buoy1 with complete linkage (left) and
average linkage (right) when k = 3 and w = 64.
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Figure 4.12: Cluster representatives generated from 2STSC of CBF with complete linkage (left) and average
linkage (right) when k = 3 and w = 64.

4.4 Conclusion

DTW distance and Shape-based Averaging are proposed to be used as a distance measure

and an averaging function in Shape-based Subsequence Time Series Clustering (2STSC) instead

of Euclidean distance and Amplitude Averaging in Subsequence Time Series Clustering (STSC).

Instead of discarding trivial-matched subsequences as in many other proposed works, 2STSC

uses appropriate distance measure and averaging function that uses DTW distance to capture the

similarity between a set of contiguous subsequences and Shape-based Averaging to construct a

characteristic-preserved cluster representative. In addition, the cluster results from 2STSC are

meaningful in terms of Shape-based Meaningfulness Measurement (SMM) which measures how

well a clustering result truly represents characteristics of an input time series sequence. Cluster

representatives generated from 2STSC do reflect the characteristics of input sequences, while

STSC produces undesired outputs like sine waves. In addition, 2STSC requires no additional

parameter like other proposed subsequence clustering algorithms, and 2STSC is extensible to

support data streams in Chapter 6.



CHAPTER V

INCREMENTAL SHAPE-BASED AVERAGING

From Chapter 3, Shaped-based Averaging is the best solution to construct a representative

of a set of subsequences. For streaming applications, a new incoming sequence arrives sequen-

tially in constant time, where an averaged result must be returned for every new incoming se-

quence. Generally, Shape-based Averaging constructs an averaged result by averaging an entire

set of previous sequences. This is obviously impractical for the streaming case, where compu-

tational time of constructing an averaged result should not depend on the number of previous

sequences which is usually large. Specifically, if there are a lot of previous subsequences, it is not

possible to guarantee that a new averaged result will be constructed in time before the next sub-

sequence arrives. Instead of averaging all previous sequences for every new incoming sequence,

Iterative Shape-based Averaging creates an averaged result only with a small set of stored se-

quences. Therefore, time complexity of Incremental Shape-based Averaging depends only on the

number of stored subsequences, where the number is much smaller than the number of previous

subsequences.

In this chapter, Incremental Shape-based Averaging with two averaging functions, Cubic-

Spline Dynamic Time Warping (CDTW) and Iterative Cubic-Spline Dynamic Time Warping

(ICDTW) averaging functions, is proposed. The experiments will show that Incremental Shape-

based Averaging is much faster than Shape-based Averaging in orders of magnitude, while Incre-

mental Shape-based Averaging maintains low averaging distortion.

5.1 Incremental Shape-based Averaging

Incremental Shape-based Averaging is a method used to incrementally construct averaged

result when a set of stored sequences is given with a new incoming sequence. For streaming ap-

plications, constructing an averaged result from all previous sequences for every single incoming

sequence with limited computational power and storage is simply impractical. Therefore, only

some sequences are stored and used to generate an averaged result.

Given a set T = {T1, T2, . . . , Tt} of stored sequences, a set W = {w1, w2, . . . , wt} of

weights of stored sequences, a new incoming sequence S, and the maximum allowance in the

number of stored sequences α, where t is a number of stored sequences, Incremental Shape-based

Averaging returns an averaged result C. Initially, sets T and W are empty, and α is a user-defined
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parameter. When a new incoming sequence S arrives, the sets T and W are first updated. If the

number of stored sequences t is less than the maximum allowance α, S is added to T, and the

weight of S, which is initially assigned to 1, is added to the set W; otherwise, a stored sequence

Ti which is the most similar to the sequence S under DTW distance is replaced with the averaged

result between the sequences Ti and S with weights of wi and 1, respectively. Therefore, the

sets T and W are updated with the sequence S, as shown in Table 5.2. After the sets T and W

are updated, Incremental Shape-based Averaging constructs an averaged result from the copies

of T and W, i.e., Ttemp and Wtemp, by iteratively averaging the most similar pair of sequences

within Ttemp until only one sequence is left. Its pseudo code is shown in Table 5.3. Note that

when the maximum allowance α is positive infinity, to update an averaged result, all previously

stored sequences are calculated; therefore, Shape-based Averaging is a special case of Incremental

Shape-based Averaging when the maximum allowance α = ∞ . Pseudo code of Incremental

Shape-based Averaging is provided in Table 5.1.

Table 5.1: Pseudo code of Incremental Shape-based Averaging

FUNCTION [C] = INCREMENTALSHAPE-BASEDAVERAGING [T, W, S, α]

1. [T, W] = UPDATESTOREDSEQUENCES(T, W, S)
2. C = AVERAGESTOREDSEQUENCES(T, W)
3. Return C

Table 5.2: Updating stored sequences in Incremental Shape-based Averaging

FUNCTION [T, W] = UPDATESTOREDSEQUENCES [T, W, S, α]

1. Let t be a number of stored sequences in T
2. If (t < α)
3. Add S in T
4. Add w = 1 in W
5. Else
6. distBest = INFINITY
7. For each stored sequence Ti in T and wi in W
8. dist = DTW-DISTANCE(Ti, S)
9. If (dist < distBest)

10. distBest = dist
11. TBest = Ti
12. wBest = wi
13. End if
14. End for
15. Savg = AVERAGINGFUNCTION(TBest, S, wBest, 1)
16. Replace TBest with Savg
17. Replace wBest with wBest + 1
18. End If
19. Return [T, W]
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Table 5.3: Averaging stored sequences in Incremental Shape-based Averaging

FUNCTION [Tk] = AVERAGESTOREDSEQUENCES [T, W]

1. Let Ttemp be a copy of T
2. Let Wtemp be a copy of W
3. While (SIZE(Ttemp) > 1)
4. [Ti, Tj] = Most similar pair of sequences in Ttemp
5. Tk = AVERAGINGFUNCTION(Ti, Tj , wi, wj)
6. Remove Ti and Tj from Ttemp
7. Remove wi and wj from Wtemp

8. wk = wi + wj
9. Add Tk to Ttemp

10. Add wk to Wtemp

11. End while
12. Return Tk

5.2 Experimental Evaluation

Iterative Shape-based Averaging constructs a new averaged result from only the stored

sequences and a new incoming sequence instead of constructing from all previous sequences.

Two experiments are designed to demonstrate that Incremental Shape-based Averaging is suitable

for streaming applications. The first experiment shows that Incremental Shape-based Averaging

is much faster than Shape-based Averaging in orders of magnitude, and the second experiment

demonstrates that Incremental Shape-based Averaging, with available storage and computational

power, achieves comparable accuracy to Shape-based Averaging with very small distortion, while

Incremental Shape-based Averaging is still faster than Shape-based Averaging. Twenty datasets

used in this experiment are from the Time Series Clustering/Classification datasets (Keogh et al.,

2011). The details of each dataset are provided in Table A.1 in Appendix A, and the examples

of each datasets are shown in Figure A.2. In this expeirmental evaluation, two datasets, i.e., CBF

and ECG, are mainly used as shown in Figure 5.1.
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Figure 5.1: Examples of some classes in evaluated datasets.

5.2.1 First Experiment

The first experiment shows the significant speedup of Incremental Shape-based Averag-

ing over Shape-based Averaging, where the maximum allowance α is set to one. For every new

incoming sequence, Incremental Shape-based Averaging calculates an averaged result from the
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stored sequence, and then this averaged result is used for the next incoming sequence. For Shape-

based Averaging, an averaged result is created from all previous sequences for every new incom-

ing sequence which is impractical from streaming data. Figure 5.3 shows time consumption of

Incremental Shape-based Averaging compared with Shape-based Averaging using two averaging

functions, i.e., CDTW and ICDTW, respectively. From the result, Incremental Shape-based Av-

eraging requires only constant time to update an averaged result, while computational time of

Shape-based Averaging grows exponentially. In addition, Incremental Shape-based Averaging is

nearly 107 times faster. Additional results of this experiment are provided in Appendix E.
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Figure 5.2: Computational time of Incremental Shape-based Averaging and Shape-based Averaging when
a new incoming sequence arrives.

5.2.2 Second Experiment

The second experiment shows SUMDIST distance when Incremental Shape-based Averag-

ing is used instead of Shape-based Averaging. Since Shape-based Averaging has no associative

property, the updated averaged result from Incremental Shape-based Averaging is not equal to

that from averaging all sequences using Shape-based Averaging, where SUMDIST distance can

be calculated by the following equation.

SumDist
(
Ŝ, S

)
=
|S|∑
i=1

DTWDistance
(
Ŝ,Si

)
(5.1)

where is a dataset S, Ŝ is the averaged result, and Si is each data sequence in the dataset S.

In this experiment, with available computational power and storage, Incremental Shape-
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based Averaging can achieve SUMDIST close to Shape-based Averaging, where Shape-based Av-

eraging is a special case of Incremental Shape-based Averaging when the maximum allowance

number α is set to a positive infinity. Each class in a dataset is separately evaluated, and SUMDIST

of each dataset is reported by summarizing SUMDIST of every class. Difference of SUMDISTs

and speedup of Buoy1 and CBF when k = 3, w = 64, and the maximum allowance number α

are varied in percentage to the size of dataset are shown in Figure 5.3 and 5.4, respectively. Fig-

ures 5.5 and 5.6 show averaged results generated from Incremental Shape-based Averaging with

CDTW and ICDTW, respectively. From the experiment results, Incremental Shape-based Aver-

aging can return averaged results much faster than Shape-based Averaging with only small dis-

tortions. Speedup and difference of SUMDIST measured in this experiment is calculated from the

time used to update and average sequence of static dataset when the maximum allowance number

is varied.
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Figure 5.3: Difference of SUMDIST and speedup of Buoy1 when the number of stored sequences to an
original dataset is varied.
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Figure 5.4: Difference of SUMDIST and speedup of CBF when the number of stored sequences to an
original dataset is varied.
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Figure 5.5: Averaged results of some classes of CBF from Incremental Shape-based Averaging.
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Figure 5.6: Averaged results of some classes of ECG from Incremental Shape-based Averaging.

5.3 Conclusion

Incremental Shape-based Averaging with Cubic-Spline Dynamic Time Warping (CDTW)

and Iterative Cubic-Spline Dynamic Time Warping (ICDTW) averaging functions are fast and

accurate. To update the averaged result, the stored sequence with its weight is updated to generate

a new sequence in constant time. Therefore, instead of constructing an averaged result from all

previous data sequences for each and every incoming sequence, Incremental Shape-based Aver-

aging updates only once which reduces computational time in orders of magnitude. In addition,

Incremental Shape-based Averaging is proposed to be able to store more than one sequence to

increase accuracy if more computational power or storage is available. Moreover, Incremental

Shape-based Averaging can be widely extended to construct a shape-based averaged result in

streaming applications, whose idea of sequence updates in Shape-based Streaming Subsequence

Time Series Clustering (3STSC) is explained in Chapter 6.



CHAPTER VI

3STSC: SHAPE-BASED STREAMING SUBSEQUENCE TIME

SERIES CLUSTERING

In time series domain, streaming clustering algorithms are divided into two categories, i.e.,

streaming whole clustering (Rodrigues et al., 2006, 2008) and streaming subsequence clustering.

For the streaming whole clustering, the new whole sequence is used to update the clustering result

or cluster representatives, while for the streaming subsequence clustering, after the new data point

is concatenated, a subsequence is extracted from a fixed-length sliding window, subsequence is

normalized, and then the cluster representatives are updated from this subsequence. The naïve al-

gorithm of the streaming problem is that the output of the algorithm is calculated from all previous

input subsequences for every new incoming sequence. In this chapter, the streaming subsequence

clustering is focused.

As shown in Chapter 2, Keogh and Lin have proved that outputs from Subsequence Time

Series Clustering (STSC) are meaningless; therefore, currently, no meaningful naïve algorithm

for streaming clustering algorithm exists. In Chapter 4, 2STSC is proposed to return a meaningful

clustering result, where Dynamic Time Warping (DTW) distance and Shape-based Averaging

function are used as a distance measure and an averaging function instead of Euclidean distance

and Amplitude Averaging function as in STSC, respectively. In this chapter, 2STSC is considered

as a naïve algorithm of a streaming application. Since 2STSC calculates a clustering result from

all previous subsequences, it is impractical since the computational time depends on the number

of previous subsequences which increases over time.

In this chapter, Streaming Shape-based Subsequence Time Series Clustering (3STSC) is

proposed to efficiently update the clustering result in constant time to the number of previous

subsequences. Instead of calculating the clustering result from all previous subsequences as in

2STSC, 3STSC calculates the clustering result from the small number of stored subsequences.

The algorithm of updating stored subsequences in 3STSC is the same as that of the Incremental

Shape-based Averaging , where the number of stored subsequences is maintained not to exceed

the maximum allowance number of stored subsequences. 3STSC then groups these stored subse-

quences into clusters using k-hierarchical clustering with Dynamic Time Warping (DTW) distance

and Shape-based Averaging function as a distance measure and an averaging function. In other

words, 3STSC returns a clustering result from a small set of stored subsequence which is much
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faster than 2STSC which returns a clustering result from all previous subsequences.

In experimental evaluation, 3STSC shows superiority over 2STSC in terms of computa-

tional time, and the clustering result of 3STSC is also compared in terms of Shape-based Mean-

ingfulness Measurement (SMM) when the parameters, i.e., the number of clusters (k), the length

of sliding window (w), and the maximum allowance number of stored subsequences (α), are

varied.

6.1 Related Work

Clustering time series data streams is divided into two categories, i.e., streaming whole

clustering and streaming subsequence clustering. Streaming whole clustering is an incremental

clustering, where a whole time series sequence arrives constantly. No sliding windows are in-

volved in the algorithm. A new arriving whole sequence is used to update a clustering structure

such as a tree of hierarchical clustering. Rodrigues et al. have proposed Online Divisive Agglom-

erative Clustering (ODAC) (Rodrigues et al., 2008) for time series data streams which implements

splitting and merging operations for updating a tree-like hierarchy of clusters that do not depend

on the number of data objects in the data stream. For streaming subsequence clustering, a set of

clusters is returned for every incoming data point. However, no existing algorithm has been pro-

posed yet. Although many subsequence clustering algorithms are proposed such as Density-based

Subsequence Clustering (DSTSC) (Denton, 2005), Lag-based Subsequence Time Series Cluster-

ing (LSTSC) (Simon et al., 2006; Chen, 2007b,a), and Phrase-Analysis Subsequence Time Series

Clustering (PASTSC) (Fujimaki et al., 2008), no extension of streaming applications has been

introduced. In addition, as mentioned in Chapter 4, these subsequence clustering algorithms still

do not produce meaningful clustering results.

Many problems on time series data streams such as subsequence matching, motif discovery,

and stream monitoring have been increasingly the topics of interest. For subsequence matching

(Sakurai et al., 2005; Niennattrakul and Ratanamahatana, 2009; Niennattrakul et al., 2009), a

template query is given and a set of nearest subsequences is returned. Motif discovery for data

streams (Mueen and Keogh, 2010) is a method to maintain the best-matched subsequence pair in a

given time series sequence. Stream monitoring (Kontaki et al., 2008; Dai et al., 2006) is a method

to find correlations among data streams.

In this study, streaming subsequence clustering is considered the first streaming subse-

quence clustering algorithm that produces meaningful clustering results.
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6.2 Shape-based Streaming Subsequence Time Series Clustering

Shape-based Streaming Subsequence Time Series Clustering (3STSC) is an incremental

subsequence clustering algorithm that returns a set of cluster representatives for every new data

point arrival. Specifically, 3STSC first concatenates a new data point with the previous time series

sequence. A new subsequence is then extracted with a fixed-length sliding window, and then the

subsequence is normalized by z-normalization. Since the maximum allowance number of stored

subsequences needs to be maintained, the set of stored subsequences is updated by a new sequence

not to exceed the maximum allowance number. After the set of stored subsequences is updated,

3STSC then finds a clustering result using k-hierarchical clustering on these stored subsequences

with Dynamic Time Warping (DTW) distance and Shape-based Averaging function as a distance

measure and an averaging function, respectively. Additionally, the updating algorithm of the

stored subsequences is similar to the Incremental Shape-based Averaging function. Note that the

maximum allowance number of the stored subsequences is a user-defined parameter depending

on the availability of computational power and storage. The overview of 3STSC is provided in

Figure 6.1.

…
w

Subsequences

…

…

…

Clustering

(DTW distance)

Averaging

(Shape-based Averaging)

…

Stored subsequences

Updating

Figure 6.1: Overview of Shape-based Streaming Subsequence Time Series Clustering (3STSC).

Given a new data point st, the number of clusters k, the length of sliding window w, and

the maximum allowance α of stored subsequences, 3STSC returns a set C = {C1, C2, . . . , Ck} of

clusters. 3STSC first concatenates st to a streaming time series S = 〈s1, s2, . . . , st−1〉, and then

a new subsequence S = 〈st−w+1, . . . , st−1, st〉 is extracted with the fixed-length sliding window
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of length n. In addition, this new subsequence Snorm is normalized by z-normalization. 3STSC

updates a set T = {T1, T2, . . . , Tα} of stored subsequences using an updating algorithm from

Incremental Shape-based Averaging. After the set T is updated, subsequences in the set T are

clustered and return a set C = {C1, C2, . . . , Ck} of clusters using k-hierarchical clustering with

Dynamic Time Warping (DTW) distance and Shape-based Averaging is returned. Each cluster

C contains a set M = {Ti | Ti ∈ T} of stored subsequences and a cluster representative R. The

pseudo code of 3STSC is provided in Table 6.1.

Table 6.1: Pseudo code of Shape-based Streaming Subsequence Time Series Clustering (3STSC)

FUNCTION [C] = 3STSC [T, W st, k, w, α]

1. Update a streaming time series S by adding a new arriving data point st
2. S = EXTRACTLASTESTSUBSEQUENCE(S, w)
3. Snorm = ZNORMALIZE(S)
4. T = UPDATESTOREDSUBSEQUENCE(T, W, Snorm,α)
5. C = KHIERARCHICALCLUSTERING(T, k)
6. Return C

K-hierarchical clustering used in 3STSC can be used with either complete linkage or av-

erage linkage function as an inter-cluster distance function which calculates the distance between

two clusters defined as the following equations.

Dcomplete(Ci, Cj) = max
S∈Mi,S′∈Mj

Distance(S,S ′) (6.1)

Daverage(Ci, Cj) =
1

|Mi| |Mj |
∑
c∈Ci

∑
c′∈Cj

Distance(S,S ′) (6.2)

where Dcomplete and Daverage are complete and average linkage functions, respectively, Ci and

Cj are any clusters, Mi and Mj are cluster members of Ci and Cj , respectively, and S and S ′ are

sequences in Mi and Mj , respectively. Distance(S,S ′) returns a DTW distance between two

sequences S and S ′.

To update stored subsequences, 3STSC utilizes the updating algorithm that is similar to

Incremental Shape-based Averaging , where the number of stored subsequences is maintained not

to exceed the maximum allowance number (α). Specifically, the smallest possible number of the

maximum allowance number (α) is equal to the number of clusters (k). When a new subsequence

Snorm arrives, the nearest stored subsequence TBest to the new subsequence Snorm is averaged

and the nearest stored subsequence TBest is replaced with the averaged result, where the weight

of the averaged result is increased by one. Pseudo code of the updating algorithm is provided in
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Table 6.2.

Table 6.2: Updating stored sequences in 3STSC

FUNCTION [T, W] = UPDATESTOREDSEQUENCES [T, W, Snorm, α]

1. Let n be a number of stored sequences in T
2. If (n < α)
3. Add Snorm in T
4. Add w = 1 in W
5. Else
6. distBest = INFINITY
7. For each stored sequence Ti in T
8. dist = DTW-DISTANCE(Ti, S)
9. If (dist < distBest)

10. distBest = dist
11. TBest = Ti
12. wBest = wi
13. End if
14. End for
15. Savg = AVERAGINGFUNCTION(TBest, Snorm, wBest, 1)
16. Replace TBest with Savg
17. Replace wBest with wBest + 1
18. End If
19. Return [T, W]

Note that 2STSC is a special case of 3STSC when the maximum allowance number of

stored subsequences (α) is set to positive infinity.

6.3 Experimental Evaluation

Shape-based Streaming Subsequence Time Series Clustering (3STSC) is proposed to find

a set of cluster representatives incrementally. 3STSC is evaluated in two experiments. The first

experiment shows speedup of 3STSC over 2STSC, where 3STSC updates a cluster representa-

tive for every new incoming sequence in constant time, but 2STSC recalculates a set of cluster

representatives in every new incoming sequence. Since the result of 2STSC and 3STSC are not

the same due to the incremental algorithm of 3STSC, the second experiment demonstrates the

difference of clustering results between 2STSC and 3STSC. The last experiment shows that if

computational power and memory storage are available, the clustering result of 3STSC will be

close to that of 2STSC. Eight datasets used in these experiments are from the Time Series Data

Mining Archives (TSDMA) (Keogh and Folias, 2011) shown in A.1 in Appendix A, where each

dataset contains 2000 data points. Two examples of each dataset are provided in Figure 6.2.

6.3.1 First Experiment

The first experiment shows that 3STSC can return a set of clusters much faster than the

naïve algorithm using 2STSC. At every new incoming data point, time to update cluster repre-
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Figure 6.2: Some datasets from TSDMA used in the experiment.

sentatives of 3STSC and the naïve algorithm are captured. The number of clusters (k) and the

sliding window (w) are varied, and the maximum allowance number (α) is set to be the number of

clusters. In this experiment, two inter-cluster distances of k-hierarchical clustering, i.e., complete

linkage and average linkage functions, and two averaging functions, i.e., CDTW and ICDTW,

are utilized. Figures 6.3 and 6.4 show the computational time of between 3STSC and the naïve

2STSC algorithm when k = 3 and w = 64. The complete results are provided in Appendix G.
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Figure 6.3: Computational time of 3STSC and 2STSC of Buoy1 when a new incoming sequence arrives.
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Figure 6.4: Computational time of 3STSC and 2STSC of CBF when a new incoming sequence arrives.
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6.3.2 Second Experiment

The second experiment shows the quality of clustering results generated from 3STSC, when

the maximum allowance number (α) is varied; the quality of clustering results increases when

there is availability of computational power and storage. However, the quality of clustering re-

sults is a tradeoff to clustering time; the number of clusters (k) and the sliding window (w) are

varied, and the maximum allowance number (α) are also varied to show speedup and clustering

quality. The clustering quality is measured by Shape-based Meaningfulness Measurement (SMM)

proposed in Chapter 4, which can be calculated from the following equation.

SMM (S,C) =
|S| · w

|S|∑
i=1

min (Distance (Si, Rj)) , ∀Rj ∈ R
(6.3)

where Distance (Si, Rj) is a DTW distance between two sequences Si and Rj .

SMM ranges from zero to positive infinity and is a relative value that SMM must be com-

pared between two algorithms at the same set of parameters to identify that with a given dataset

which subsequence clustering algorithm produces more meaningful clustering results.
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Figure 6.5: Percentage difference of SMM and speedup of 3STSC of Buoy1 when k = 3, w = 64, and
number of stored sequences are varied.
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Figure 6.6: Percentage difference of SMM and speedup of 3STSC of CBF when k = 3, w = 64, and number
of stored sequences are varied.

In this experiment, two inter-cluster distances of k-hierarchical clustering, i.e., complete

linkage and average linkage functions, and two averaging functions, i.e., CDTW and ICDTW,

are utilized. Figures 6.5 and 6.6 show SMM difference and the computational time of 3STSC

of Buoy1 and CBF when inter-cluster distance and averaging function are varied. From the ex-

periment results, SMM of both 3STSC and 2STSC are similar, which means 3STSC produces

meaningful cluster representatives, while 3STSC can increase calculation speedup by 400 times.

6.4 Conclusion

In this chapter, Streaming Shape-based Subsequence Time Series Clustering (3STSC) is

proposed to return a clustering result in real time, where the calculation complexity is constant

to the number of previous subsequences. 3STSC is much faster than 2STSC in orders of mag-

nitude, and with availability of computational power and storage, 3STSC returns comparable

clustering quality to the naïve algorithm using 2STSC. In addition to 2STSC, 3STSC has the

maximum allowance number of stored sequences to calculate a clustering result on this set of

stored sequences, where the maximum allowance number is much smaller than the number of

previous subsequences. 3STSC utilizes the updating algorithm of stored subsequences from the

Incremental Shape-based Averaging, and k-hierarchical clustering with Dynamic Time Warping

(DTW) distance and Shape-based Averaging as a distance measure and an averaging function,
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respectively, where two inter-cluster distances, i.e., complete linkage and average linkage, and

two averaging functions, i.e., CDTW and ICDTW, are utilized in 3STSC. 3STSC is considered

the first streaming subsequence clustering that returns meaningful clustering results.



CHAPTER VII

CONCLUSION

In this thesis, Shape-based Streaming Subsequence Time Series Clustering (3STSC) is pro-

posed to return clustering results in constant time when a new data point arrives in time series data

stream. In addition, 3STSC is extended from the proposed Shape-based Subsequence Time Series

Clustering (2STSC) which produces more meaningful clustering results in terms of Shape-based

Meaningfulness Measurement (SMM). To make 2STSC produce meaningful results, 2STSC uti-

lizes Dynamic Time Warping (DTW) distance measure and Shape-based Averaging function.

An intuitive idea is that DTW distance and Shape-based Averaging can handle a set of trivial-

matched subsequences which are contiguous subsequences that have small differences because

of time shift. Therefore, DTW distance aligns subsequences to find the optimal warping path be-

tween two sequences before distance calculation and Shape-based Averaging aligns subsequences

to find an optimal warping path between two sequences before averaging. DTW distance and

Shape-based Averaging are superior to the Euclidean distance and Amplitude Averaging used in

Subsequence Time Series Clustering (STSC) in that Euclidean distance cannot capture the sim-

ilarity between two subsequences, and Amplitude Averaging cannot preserve characteristics for

producing averaged result. In other words, Euclidean distance in clustering algorithm can lead to

incorrect grouping of trivial-matched subsequences, and Amplitude Averaging can lead to unde-

sirable smoothing of trivial-matched subsequences. STSC has been proven as meaningless both

theoritically and empirically that STSC will always produce sine waves as cluster representatives

regardless of input sequences, where these sine waves are unusable. Therefore, in this thesis,

2STSC is proposed to overcome this problem, and then 3STSC is then proposed to support data

streams.

This thesis can be extended to improve the performance further in many data mining tasks.

Shape-based Averaging and Incremental Shape-based Averaging can be extended to be used in

template matching problem and classification. 2STSC and 3STSC can be used as a preprocess-

ing or a subroutine of many data mining tasks such as association rules, classification, pattern

discovery, and visualization.

To improve the algorithms proposed in this thesis, a new methodology of sequence align-

ment and re-sampling technique can be designed for Shape-based Averaging algorithm, and the

averaging scheme can be modified to find the optimal averaging result. Incremental Shape-based
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Averaging can be improved by adding decremental algorithm so that the characteristics of an

averaged result can be removed by a specific sequence. In addition, 2STSC can be improved

by speeding up an algorithm and utilizing other clustering algorithm and removing user-defined

parameters that are the number of clusters and the length of sliding window. For 3STSC, other

than the number of clusters and the length of sliding window that should be removed, the update

algorithm of stored subsequences should be improved to reduce distortion of meaningfulness of

clustering results.
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Figure A.1: Datasets from TSDMA used in the experiments of Chapters 2, 4, and 6.
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Figure A.2: Examples of some classes of the UCR classification/clustering datasets used in Chapters 3 and
5.
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Table A.1: Details of the UCR classification/clustering datasets used in Chapters 3 and 5

Dataset Number of classes Length Size of datasets
50words 50 270 905

Adiac 37 176 781
Beef 5 470 60
CBF 3 128 930

Coffee 2 286 56
ECG 2 96 200

Face (all) 14 131 2250
Face (four) 4 350 112

Fish 7 463 350
Gun-Point 2 150 200
Lighting-2 2 637 121
Lighting-7 7 319 143

Oliveoil 4 570 60
OSULeaf 6 427 442

SwedishLeaf 15 128 1125
Synthetic 6 60 600

Trace 4 275 200
TwoPatterns 4 128 5000

Wafer 2 152 7174
Yoga 2 426 3300
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Figure B.1: Cluster representatives generated from STSC using k-means clustering when k = 3 and w = 32.
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Figure B.2: Cluster representatives generated from STSC using k-means clustering when k = 3 and w = 64.
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Figure B.3: Cluster representatives generated from STSC using k-means clustering when k = 3 and w =
128.
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Figure B.4: Cluster representatives generated from STSC using k-means clustering when k = 5 and w = 64.
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Figure B.5: Cluster representatives generated from STSC using k-means clustering when k = 7 and w = 64.
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Figure B.6: Constructed sine waves generated from STSC using k-means clustering when k = 3 and w =
32.
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Figure B.7: Constructed sine waves generated from STSC using k-means clustering when k = 3 and w =
64.
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Figure B.8: Constructed sine waves generated from STSC using k-means clustering when k = 3 and w =
128.



94

0 10 20 30 40 50 60
−2

0

2

0 10 20 30 40 50 60
−2

0

2

AEM2 TOR96

0 10 20 30 40 50 60

−1

0

1

0 10 20 30 40 50 60
−2

0

2

Buoy1 CBF

0 10 20 30 40 50 60
−2

0

2

0 10 20 30 40 50 60

−1

0

1

ERP Field4

0 10 20 30 40 50 60
−2

0

2

0 10 20 30 40 50 60
−2

0

2

Fortune5004 MITDBX108

Figure B.9: Constructed sine waves generated from STSC using k-means clustering when k = 5 and w =
64.
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Figure B.10: Constructed sine waves generated from STSC using k-means clustering when k = 7 and w =
64.
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Figure B.11: Cluster representatives generated from STSC using k-hierarchical clustering with complete
linkage (left) and average linkage (right) inter-distance functions when k = 3 and w = 32.
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Figure B.12: Cluster representatives generated from STSC using k-hierarchical clustering with complete
linkage (left) and average linkage (right) inter-distance functions when k = 3 and w = 64.



97

0 20 40 60 80 100 120
−2

0

2

0 20 40 60 80 100 120
−2

0

2

AEM2

0 20 40 60 80 100 120
−2

0

2

0 20 40 60 80 100 120
−2

0

2

TOR96

0 20 40 60 80 100 120
−1

0

1

0 20 40 60 80 100 120
−1

0

1

Buoy1

0 20 40 60 80 100 120
−2

0

2

0 20 40 60 80 100 120
−2

0

2

CBF

0 20 40 60 80 100 120
−2

0

2

0 20 40 60 80 100 120
−2

0

2

ERP

0 20 40 60 80 100 120
−1

0

1

0 20 40 60 80 100 120
−1

0

1

Field4

0 20 40 60 80 100 120
−2

0

2

0 20 40 60 80 100 120
−2

0

2

Fortune5004

0 20 40 60 80 100 120
−2

0

2

0 20 40 60 80 100 120
−2

0

2

MITDBX108

Figure B.13: Cluster representatives generated from STSC using k-hierarchical clustering with complete
linkage (left) and average linkage (right) inter-distance functions when k = 3 and w = 128.
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Figure B.14: Cluster representatives generated from STSC using k-hierarchical clustering with complete
linkage (left) and average linkage (right) inter-distance functions when k = 5 and w = 64.
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Figure B.15: Cluster representatives generated from STSC using k-hierarchical clustering with complete
linkage (left) and average linkage (right) inter-distance functions when k = 7 and w = 64.
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Figure B.16: Constructed sine waves generated from STSC using k-hierarchical clustering with complete
linkage (left) and average linkage (right) inter-distance functions when k = 3 and w = 32.
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Figure B.17: Constructed sine waves generated from STSC using k-hierarchical clustering with complete
linkage (left) and average linkage (right) inter-distance functions when k = 3 and w = 64.
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Figure B.18: Constructed sine waves generated from STSC using k-hierarchical clustering with complete
linkage (left) and average linkage (right) inter-distance functions when k = 3 and w = 128.
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Figure B.19: Constructed sine waves generated from STSC using k-hierarchical clustering with complete
linkage (left) and average linkage (right) inter-distance functions when k = 5 and w = 64.
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Figure B.20: Constructed sine waves generated from STSC using k-hierarchical clustering with complete
linkage (left) and average linkage (right) inter-distance functions when k = 7 and w = 64.
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Figure C.1: Averaged results generated from CDTW function of each dataset
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Figure C.2: Averaged results generated from ICDTW function of each dataset
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Figure C.3: Averaged results generated from NLAAF of each dataset.
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Figure D.1: SMMs of AEM2 when the number of clusters (k) is 3 and the length of sliding window (w) is
varied.
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Figure D.2: SMMs of TOR96 when the number of clusters (k) is 3 and the length of sliding window (w) is
varied.
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Figure D.3: SMMs of Buoy1 when the number of clusters (k) is 3 and the length of sliding window (w) is
varied.
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Figure D.4: SMMs of CBF when the number of clusters (k) is 3 and the length of sliding window (w) is
varied.
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Figure D.5: SMMs of ERP when the number of clusters (k) is 3 and the length of sliding window (w) is
varied.
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Figure D.6: SMMs of Field4 when the number of clusters (k) is 3 and the length of sliding window (w) is
varied.
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Figure D.7: SMMs of Fortune5004 when the number of clusters (k) is 3 and the length of sliding window
(w) is varied.
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Figure D.8: SMMs of MITDBX108 when the number of clusters (k) is 3 and the length of sliding window
(w) is varied.
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Figure D.9: SMMs of AEM2 when the length of sliding window (w) is 64 and the number of clusters (k) is
varied.
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Figure D.10: SMMs of TOR96 when the length of sliding window (w) is 64 and the number of clusters (k)
is varied.
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Figure D.11: SMMs of Buoy1 when the length of sliding window (w) is 64 and the number of clusters (k)
is varied.

3 5 7
0

2

4

6

8

10

12

14

16

Number of clusters (k)

S
M

M

 

 

STSC (k−means)
STSC (k−hierarchical + CL)
STSC (k−hierarchical + AL)
2STSC (k−hierarchical + CDTW + CL)
2STSC (k−hierarchical + CDTW + AL)
2STSC (k−hierarchical + ICDTW + CL)
2STSC (k−hierarchical + ICDTW + AL)

Figure D.12: SMMs of CBF when the length of sliding window (w) is 64 and the number of clusters (k) is
varied.
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Figure D.13: SMMs of ERP when the length of sliding window (w) is 64 and the number of clusters (k) is
varied.
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Figure D.14: SMMs of Field4 when the length of sliding window (w) is 64 and the number of clusters (k)
is varied.
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Figure D.15: SMMs of Fortune5004 when the length of sliding window (w) is 64 and the number of clusters
(k) is varied.
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Figure D.16: SMMs of MITDBX108 when the length of sliding window (w) is 64 and the number of
clusters (k) is varied.
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Figure D.17: Cluster representatives generated from 2STSC with complete linkage (left) and average link-
age (right) using CDTW function when k = 3 and w = 32.
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Figure D.18: Cluster representatives generated from 2STSC with complete linkage (left) and average link-
age (right) using CDTW function when k = 3 and w = 64.
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Figure D.19: Cluster representatives generated from 2STSC with complete linkage (left) and average link-
age (right) using CDTW function when k = 3 and w = 128.
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Figure D.20: Cluster representatives generated from 2STSC with complete linkage (left) and average link-
age (right) using ICDTW function when k = 5 and w = 64.
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Figure D.21: Cluster representatives generated from 2STSC with complete linkage (left) and average link-
age (right) using ICDTW function when k = 7 and w = 64.
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Figure D.22: Cluster representatives generated from 2STSC with complete linkage (left) and average link-
age (right) using ICDTW function when k = 3 and w = 32.
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Figure D.23: Cluster representatives generated from 2STSC with complete linkage (left) and average link-
age (right) using ICDTW function when k = 3 and w = 64.
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Figure D.24: Cluster representatives generated from 2STSC with complete linkage (left) and average link-
age (right) using ICDTW function when k = 3 and w = 128.
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Figure D.25: Cluster representatives generated from 2STSC with complete linkage (left) and average link-
age (right) using ICDTW function when k = 5 and w = 64.
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Figure D.26: Cluster representatives generated from 2STSC with complete linkage (left) and average link-
age (right) using ICDTW function when k = 7 and w = 64.
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Figure E.1: Computational time of Incremental Shape-based Averaging and Shape-based Averaging with
CDTW function when a new incoming sequence arrives.



130

0 20 40 60 80 100 120
10

0

10
5

10
10

Number of incoming sequences

T
im

e 
(m

ill
is

ec
on

d)

 

 

SA with CDTW
ISA with CDTW

0 20 40 60 80 100 120 140
10

0

10
5

10
10

Number of incoming sequences

T
im

e 
(m

ill
is

ec
on

d)

 

 

SA with CDTW
ISA with CDTW

Lighting-2 Lighting-7

0 10 20 30 40 50 60
10

0

10
5

10
10

Number of incoming sequences

T
im

e 
(m

ill
is

ec
on

d)

 

 

SA with CDTW
ISA with CDTW

0 100 200 300 400
10

0

10
5

10
10

Number of incoming sequences

T
im

e 
(m

ill
is

ec
on

d)

 

 

SA with CDTW
ISA with CDTW

OliveOil OSU Leaf

0 200 400 600 800 1000
10

0

10
5

10
10

Number of incoming sequences

T
im

e 
(m

ill
is

ec
on

d)

 

 

SA with CDTW
ISA with CDTW

0 100 200 300 400 500 600
10

0

10
5

10
10

Number of incoming sequences

T
im

e 
(m

ill
is

ec
on

d)

 

 

SA with CDTW
ISA with CDTW

Swedish Leaf Synthetic Control

0 50 100 150 200
10

0

10
5

10
10

Number of incoming sequences

T
im

e 
(m

ill
is

ec
on

d)

 

 

SA with CDTW
ISA with CDTW

0 1000 2000 3000 4000 5000
10

0

10
5

10
10

Number of incoming sequences

T
im

e 
(m

ill
is

ec
on

d)

 

 

SA with CDTW
ISA with CDTW

Trace Two Patterns

0 1000 2000 3000 4000 5000 6000 7000
10

0

10
5

10
10

Number of incoming sequences

T
im

e 
(m

ill
is

ec
on

d)

 

 

SA with CDTW
ISA with CDTW

0 500 1000 1500 2000 2500 3000
10

0

10
5

10
10

Number of incoming sequences

T
im

e 
(m

ill
is

ec
on

d)

 

 

SA with CDTW
ISA with CDTW

Wafer Yoga

Figure E.2: Computational time of Incremental Shape-based Averaging and Shape-based Averaging with
CDTW function when a new incoming sequence arrives. (cont.)
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Figure E.3: Computational time of Incremental Shape-based Averaging and Shape-based Averaging with
ICDTW function when a new incoming sequence arrives.
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Figure E.4: Computational time ofthan Shape-based Averaging around Incremental Shape-based Averaging
and Shape-based Averaging with ICDTW function when a new incoming sequence arrives.
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Figure F.1: Difference of SUMDIST of Incremental Shape-based Averaging with CDTW when the number
of stored sequences to an original dataset is varied.
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Figure F.2: Difference of SUMDIST of Incremental Shape-based Averaging with CDTW when the number
of stored sequences to an original dataset is varied. (cont.)
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Figure F.3: Difference of SUMDIST of Incremental Shape-based Averaging with ICDTW when the number
of stored sequences to an original dataset is varied.
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Figure F.4: Difference of SUMDIST of Incremental Shape-based Averaging with ICDTW when the number
of stored sequences to an original dataset is varied. (cont.)
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Figure F.5: Speedup of Incremental Shape-based Averaging with CDTW when the number of stored se-
quences to an original dataset is varied.
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Figure F.6: Speedup of Incremental Shape-based Averaging with CDTW when the number of stored se-
quences to an original dataset is varied. (cont.)
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Figure F.7: Speedup of Incremental Shape-based Averaging with ICDTW when the number of stored se-
quences to an original dataset is varied.
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Figure F.8: Speedup of Incremental Shape-based Averaging with CDTW when the number of stored se-
quences to an original dataset is varied. (cont.)
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Figure F.9: Averaged results of some classes from Incremental Shape-based Averaging with CDTW when
α = 1.
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Figure F.10: Averaged results of some classes from Incremental Shape-based Averaging with CDTW when
α is 25% of total number of each class.
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Figure F.11: Averaged results of some classes from Incremental Shape-based Averaging with CDTW when
α is 50% of total number of each class.
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Figure F.12: Averaged results of some classes from Incremental Shape-based Averaging with CDTW when
α is 100% of total number of each class.
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Figure F.13: Averaged results of some classes from Incremental Shape-based Averaging with ICDTW when
α = 1.
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Figure F.14: Averaged results of some classes from Incremental Shape-based Averaging with ICDTW when
α is 25% of total number of each class.
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Figure F.15: Averaged results of some classes from Incremental Shape-based Averaging with ICDTW when
α is 50% of total number of each class.
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Figure F.16: Averaged results of some classes from Incremental Shape-based Averaging with ICDTW when
α is 100% of total number of each class.
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Figure G.1: Computational time of 3STSC and 2STSC with CDTW function and complete linkage when a
new incoming sequence arrives, where k = 3 and w = 64.
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Figure G.2: Computational time of 3STSC and 2STSC with CDTW function and complete linkage when a
new incoming sequence arrives, where k = 3 and w = 32
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Figure G.3: Computational time of 3STSC and 2STSC with CDTW function and complete linkage when a
new incoming sequence arrives, where k = 5 and w = 64.
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Figure G.4: Computational time of 3STSC and 2STSC with CDTW function and complete linkage when a
new incoming sequence arrives, where k = 7 and w = 64.



155

0 500 1000 1500
10

0

10
5

10
10

Number of incoming sequences

T
im

e 
(m

ill
is

ec
on

d)

 

 

2STSC with CDTW + CL
3STSC with CDTW + CL

0 500 1000 1500
10

0

10
5

10
10

Number of incoming sequences

T
im

e 
(m

ill
is

ec
on

d)

 

 

2STSC with CDTW + CL
3STSC with CDTW + CL

AEM2 TOR96

0 500 1000 1500
10

0

10
5

10
10

Number of incoming sequences

T
im

e 
(m

ill
is

ec
on

d)

 

 

2STSC with CDTW + CL
3STSC with CDTW + CL

0 500 1000 1500
10

0

10
5

10
10

Number of incoming sequences

T
im

e 
(m

ill
is

ec
on

d)

 

 

2STSC with CDTW + CL
3STSC with CDTW + CL

Buoy1 CBF

0 500 1000 1500
10

0

10
5

10
10

Number of incoming sequences

T
im

e 
(m

ill
is

ec
on

d)

 

 

2STSC with CDTW + CL
3STSC with CDTW + CL

0 500 1000 1500
10

0

10
5

10
10

Number of incoming sequences

T
im

e 
(m

ill
is

ec
on

d)

 

 

2STSC with CDTW + CL
3STSC with CDTW + CL

ERP Field4

0 500 1000 1500
10

0

10
5

10
10

Number of incoming sequences

T
im

e 
(m

ill
is

ec
on

d)

 

 

2STSC with CDTW + CL
3STSC with CDTW + CL

0 500 1000 1500
10

0

10
5

10
10

Number of incoming sequences

T
im

e 
(m

ill
is

ec
on

d)

 

 

2STSC with CDTW + CL
3STSC with CDTW + CL

Fortune5004 MITDBX108

Figure G.5: Computational time of 3STSC and 2STSC with CDTW function and complete linkage when a
new incoming sequence arrives, where k = 3 and w = 128.
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Figure G.6: Computational time of 3STSC and 2STSC with CDTW function and average linkage when a
new incoming sequence arrives, where k = 3 and w = 64.
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Figure G.7: Computational time of 3STSC and 2STSC with CDTW function and average linkage when a
new incoming sequence arrives, where k = 3 and w = 32.
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Figure G.8: Computational time of 3STSC and 2STSC with CDTW function and average linkage when a
new incoming sequence arrives, where k = 5 and w = 64.
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Figure G.9: Computational time of 3STSC and 2STSC with CDTW function and average linkage when a
new incoming sequence arrives, where k = 7 and w = 64.
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Figure G.10: Computational time of 3STSC and 2STSC with CDTW function and average linkage when a
new incoming sequence arrives, where k = 3 and w = 128.
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Figure G.11: Computational time of 3STSC and 2STSC with CDTW function and complete linkage when
a new incoming sequence arrives, where k = 3 and w = 64.
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Figure G.12: Computational time of 3STSC and 2STSC with CDTW function and complete linkage when
a new incoming sequence arrives, where k = 3 and w = 32.
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Figure G.13: Computational time of 3STSC and 2STSC with CDTW function and complete linkage when
a new incoming sequence arrives, where k = 5 and w = 64.
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Figure G.14: Computational time of 3STSC and 2STSC with CDTW function and complete linkage when
a new incoming sequence arrives, where k = 7 and w = 64.
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Figure G.15: Computational time of 3STSC and 2STSC with CDTW function and complete linkage when
a new incoming sequence arrives, where k = 3 and w = 128.
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Figure G.16: Computational time of 3STSC and 2STSC with CDTW function and average linkage when a
new incoming sequence arrives, where k = 3 and w = 64
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Figure G.17: Computational time of 3STSC and 2STSC with CDTW function and average linkage when a
new incoming sequence arrives, where k = 3 and w = 32.



168

0 500 1000 1500
10

0

10
5

10
10

Number of incoming sequences

T
im

e 
(m

ill
is

ec
on

d)

 

 

2STSC with ICDTW + AL
3STSC with ICDTW + AL

0 500 1000 1500
10

0

10
5

10
10

Number of incoming sequences

T
im

e 
(m

ill
is

ec
on

d)

 

 

2STSC with ICDTW + AL
3STSC with ICDTW + AL

AEM2 TOR96

0 500 1000 1500
10

0

10
5

10
10

Number of incoming sequences

T
im

e 
(m

ill
is

ec
on

d)

 

 

2STSC with ICDTW + AL
3STSC with ICDTW + AL

0 500 1000 1500
10

0

10
5

10
10

Number of incoming sequences

T
im

e 
(m

ill
is

ec
on

d)

 

 

2STSC with ICDTW + AL
3STSC with ICDTW + AL

Buoy1 CBF

0 500 1000 1500
10

0

10
5

10
10

Number of incoming sequences

T
im

e 
(m

ill
is

ec
on

d)

 

 

2STSC with ICDTW + AL
3STSC with ICDTW + AL

0 500 1000 1500
10

0

10
5

10
10

Number of incoming sequences

T
im

e 
(m

ill
is

ec
on

d)

 

 

2STSC with ICDTW + AL
3STSC with ICDTW + AL

ERP Field4

0 500 1000 1500
10

0

10
5

10
10

Number of incoming sequences

T
im

e 
(m

ill
is

ec
on

d)

 

 

2STSC with ICDTW + AL
3STSC with ICDTW + AL

0 500 1000 1500
10

0

10
5

10
10

Number of incoming sequences

T
im

e 
(m

ill
is

ec
on

d)

 

 

2STSC with ICDTW + AL
3STSC with ICDTW + AL

Fortune5004 MITDBX108

Figure G.18: Computational time of 3STSC and 2STSC with CDTW function and average linkage when a
new incoming sequence arrives, where k = 5 and w = 64.
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Figure G.19: Computational time of 3STSC and 2STSC with CDTW function and average linkage when a
new incoming sequence arrives, where k = 7 and w = 64.
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Figure G.20: Computational time of 3STSC and 2STSC with CDTW function and average linkage when a
new incoming sequence arrives, where k = 3 and w = 128.
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Figure H.1: Percentage difference of SMM and speedup of 3STSC with CDTW function and complete
linkage when k = 3, w = 64, and number of stored sequences are varied.
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Figure H.2: Percentage difference of SMM and speedup of 3STSC with CDTW function and complete
linkage when k = 3, w = 32, and number of stored sequences are varied.
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Figure H.3: Percentage difference of SMM and speedup of 3STSC with CDTW function and complete
linkage when k = 5, w = 64, and number of stored sequences are varied.
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Figure H.4: Percentage difference of SMM and speedup of 3STSC with CDTW function and complete
linkage when k = 7, w = 64, and number of stored sequences are varied.
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Figure H.5: Percentage difference of SMM and speedup of 3STSC with CDTW function and complete
linkage when k = 3, w = 128, and number of stored sequences are varied.
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Figure H.6: Percentage difference of SMM and speedup of 3STSC with CDTW function and average
linkage when k = 3, w = 64, and number of stored sequences are varied.
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Figure H.7: Percentage difference of SMM and speedup of 3STSC with CDTW function and average
linkage when k = 3, w = 64, and number of stored sequences are varied.
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Figure H.8: Percentage difference of SMM and speedup of 3STSC with CDTW function and average
linkage when k = 5, w = 64, and number of stored sequences are varied.



180

0 500 1000 1500
−20

0

20
D

iff
er

en
t

S
M

M
 (

%
)

Number of stored sequences
0 500 1000 1500

0

100

200

S
pe

ed
up

Number of stored sequences

AEM2

0 500 1000 1500
−20

0

20

D
iff

er
en

t
S

M
M

 (
%

)

Number of stored sequences
0 500 1000 1500

0

100

200

S
pe

ed
up

Number of stored sequences

TOR96

0 500 1000 1500
−20

0

20

D
iff

er
en

t
S

M
M

 (
%

)

Number of stored sequences
0 500 1000 1500

0

100

200

S
pe

ed
up

Number of stored sequences

Buoy1

0 500 1000 1500
−20

0

20

D
iff

er
en

t
S

M
M

 (
%

)

Number of stored sequences
0 500 1000 1500

0

100

200
S

pe
ed

up

Number of stored sequences

CBF

0 500 1000 1500
−20

0

20

D
iff

er
en

t
S

M
M

 (
%

)

Number of stored sequences
0 500 1000 1500

0

100

200

S
pe

ed
up

Number of stored sequences

ERP

0 500 1000 1500
−20

0

20

D
iff

er
en

t
S

M
M

 (
%

)

Number of stored sequences
0 500 1000 1500

0

100

200

S
pe

ed
up

Number of stored sequences

Field4

0 500 1000 1500
−20

0

20

D
iff

er
en

t
S

M
M

 (
%

)

Number of stored sequences
0 500 1000 1500

0

100

200

S
pe

ed
up

Number of stored sequences

Fortune5004

0 500 1000 1500
−20

0

20

D
iff

er
en

t
S

M
M

 (
%

)

Number of stored sequences
0 500 1000 1500

0

100

200

S
pe

ed
up

Number of stored sequences

MITDBX108

Figure H.9: Percentage difference of SMM and speedup of 3STSC with CDTW function and average
linkage when k = 7, w = 64, and number of stored sequences are varied.
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Figure H.10: Percentage difference of SMM and speedup of 3STSC with CDTW function and average
linkage when k = 3, w = 128, and number of stored sequences are varied.
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Figure H.11: Percentage difference of SMM and speedup of 3STSC with ICDTW function and complete
linkage when k = 3, w = 64, and number of stored sequences are varied.
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Figure H.12: Percentage difference of SMM and speedup of 3STSC with ICDTW function and complete
linkage when k = 3, w = 32, and number of stored sequences are varied.
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Figure H.13: Percentage difference of SMM and speedup of 3STSC with ICDTW function and complete
linkage when k = 5, w = 64, and number of stored sequences are varied.
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Figure H.14: Percentage difference of SMM and speedup of 3STSC with ICDTW function and complete
linkage when k = 7, w = 64, and number of stored sequences are varied.



186

0 500 1000 1500
−20

0

20
D

iff
er

en
t

S
M

M
 (

%
)

Number of stored sequences
0 500 1000 1500

0

20

40

S
pe

ed
up

Number of stored sequences

AEM2

0 500 1000 1500
−20

0

20

D
iff

er
en

t
S

M
M

 (
%

)

Number of stored sequences
0 500 1000 1500

0

20

40

S
pe

ed
up

Number of stored sequences

TOR96

0 500 1000 1500
−20

0

20

D
iff

er
en

t
S

M
M

 (
%

)

Number of stored sequences
0 500 1000 1500

0

20

40

S
pe

ed
up

Number of stored sequences

Buoy1

0 500 1000 1500
−20

0

20

D
iff

er
en

t
S

M
M

 (
%

)

Number of stored sequences
0 500 1000 1500

0

20

40
S

pe
ed

up

Number of stored sequences

CBF

0 500 1000 1500
−20

0

20

D
iff

er
en

t
S

M
M

 (
%

)

Number of stored sequences
0 500 1000 1500

0

20

40

S
pe

ed
up

Number of stored sequences

ERP

0 500 1000 1500
−20

0

20

D
iff

er
en

t
S

M
M

 (
%

)

Number of stored sequences
0 500 1000 1500

0

20

40

S
pe

ed
up

Number of stored sequences

Field4

0 500 1000 1500
−20

0

20

D
iff

er
en

t
S

M
M

 (
%

)

Number of stored sequences
0 500 1000 1500

0

10

20

S
pe

ed
up

Number of stored sequences

Fortune5004

0 500 1000 1500
−20

0

20

D
iff

er
en

t
S

M
M

 (
%

)

Number of stored sequences
0 500 1000 1500

0

20

40

S
pe

ed
up

Number of stored sequences

MITDBX108

Figure H.15: Percentage difference of SMM and speedup of 3STSC with ICDTW function and complete
linkage when k = 3, w = 128, and number of stored sequences are varied.
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Figure H.16: Percentage difference of SMM and speedup of 3STSC with ICDTW function and average
linkage when k = 3, w = 64, and number of stored sequences are varied.
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Figure H.17: Percentage difference of SMM and speedup of 3STSC with ICDTW function and average
linkage when k = 3, w = 32, and number of stored sequences are varied.
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Figure H.18: Percentage difference of SMM and speedup of 3STSC with ICDTW function and average
linkage when k = 3, w = 64, and number of stored sequences are varied.
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Figure H.19: Percentage difference of SMM and speedup of 3STSC with ICDTW function and average
linkage when k = 7, w = 64, and number of stored sequences are varied.
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Figure H.20: Percentage difference of SMM and speedup of 3STSC with ICDTW function and average
linkage when k = 3, w = 128, and number of stored sequences are varied.
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