
\.' 

QJ 1" 1 1" ... ~111UUfll'.i l1fl~l1UU 1W ''If'.i~U1UlflUl1''1tJ'.i~U1U 

~ 0' rI ~ Q.I 

flW ~ 1'Y1t11ffl'N~'.i ~Wl"\lfl'.i W lJ1111'Y1 (.11m) 

Ufll'.iffmn 2553 

1111111111111 111111 
5 1 7 244 2 0 2 3 

• 



MULTI-HYPERPLANE SCORING MODEL 

Mr. Wasakorn Laesanklang 

A Thesis Submitted in Partial Fulfillment of the Requirements 

for the Degree of Master of Science Program in Computational Science 

Department of Mathematics, 

Faculty of Science, Chulalongkorn University 

Academic Year 2010 

Copyright of Chulalongkorn University 

530610 



Thesis Title MULTI-HYPERPLANE SCORING MODEL 

By Mr. Wasakorn Laesanklang 

Field of Study Computational Science 

Thesis advisor Boonyarit Intiyot, Ph.D. 

Thesis co-advisor Assistant Professor Krung Sinapiromsaran, Ph.D. 

Accepted by the Faculty of Science, Chulalongkorn University in 

Partial Fulfillment of the Requirements for the Master's Degree 

· . 5. . ~ .~~ Dean of the Faculty of Science 

(Professor Supot Hannongbua, Dr.rer.nat.) 

THESIS COMMITTEE 

· ..... ~ (~ ...... . ... . . ...... . .. Chairman 

(Khamron Mekchay, Ph.D.) 

........ ~ .. . .. ~ ............. Thesis advisor 

(~OO~Y~7Yr..D) ............... Thesis c~advmor 
(Assistant Professor Krung Sinapiromsaran, Ph.D.) 

· ... "1?Tt~ .. ~~0 ~ .... .... .... Examiner 

(Assistant Professor Jaruloj Chongstitvatana, Ph.D.) 

el~ · . ....................................... External Examiner 

(Assistant Professor Chawalit Jeenanunta, Ph.D.) 



IV 

In'm mn1l.lmn\l : ';11Luunn1l1'fl~1Ll.ll.ll~fJHj~l.l1Ulnl.llH11fJj~l.llU. (Multi-hyperplane 

scoring model) tl.~llim111'VlV1ii'VIl.lilHfn : ~j . 1Jt1Jt]'Vl~ Vl.lVifJI1, tl.~llim111'VlfJlii'VIl.li 

, " 
_I "~I '11" ........... '1'" ." 
uj~lj)'Vl'\JVlJC'llull1lJlfJn'V\I n CUJ ~fJ 'lfj~ l.l1U'Vlll1lJl~ 'Vl n'~'Vlflll.l\l ()\lfll 'lf1l1fJ'\JV\I nlHl11L l.l n'\J VlJC'l 
"'. 'I '" 

~~'VIm~ j~l.llulnl.li\lnftllllu\lmj)iJvvnL~l.lU~I1WUlmlC'l~U~110mu 1l.l,rl.lmn ';lIIUnf\ll1lJ~()n 
~ ~ 

~fJ\I,i1iu l~fJ1i'LVl.ll mil 1~fJ~fJ\l1l1nTil,rt:)fJiu5\1TillJln 1l1mTl.l ';lI1Ujfl~ \ll1~\lll~()n Hn'~l ·n:::l.l1U 
'II 

rl'~ i U 1l1nnljlmfJUI'YifJUUj~ff'Vl~I11'V1'\JV\I';1L1UU nlj 1 l1'fl~Lll.ll.ll~fJ1 i'j~l.llUlnl.ll1mfJj~l.l1u nU';l 

llUU nn 1 l1'fl ~11l.ll.l ffl.ll;VllUUn'V\I,rl.l ~C'l nlj'Vl~n'VU'VIU11 ';111 uunn 1 l1'fl:::lll.ll.ll ~fJ1 i'j~l.l1Ulnl.l 
SI SI , 

11C'llfJj~l.llUnmllJl1,Jl.lfh~nl1';11LUUllUUn'V\I'lil.l l.lVn1l1nU ~C'llii~1l1n';1I1Uu1l1,JnmllJll,Jmh 

1 nft'lfl1 fJ\I nUlfl~V\lij V~l.l '1 vth\l i j n~ llJ ';111 UU 1 11,J nll1lJl~n'lJ 1 l.l nlj 1 i'~111l.l nu j:::Ij)'Vl~ m.!C'l~n 
d..\ '" 1" 1 _I ," '\Jl.ll~nm\lIlC'l~'\Jl.ll~lC'ln Il.lV\l1l1nmllUU 'lfl1m l.lnnuj~lJ1C'l~C'lflVl.l'\Jl\ln'\I 

'" 

I11fll'lfl ......... ... flru~fYln'~f. .. ....... .. ... ...... . mfJijv;viiff~ ... ................................... 3..~ ........ .... . 
n'l'\Jll'lfl .... .... .. l'VlV1nljflWl.ll ...... ... ..... ... C'llfJijV~V V.lillinflll'VlV1ii'VIl.lil1C'fn ... ~~ ... ~ .... . 
il 

~ ...... ..-~ ... .. .. , ~ ....... . 
nnrrnfll ..... .. .. .... 2553 ................ ............ mfJlJV'lfV v .'Vlmnflll'VlV1l.l'VIl.l1ijllJ ................. ..... .. ..... ... . . 



v 

# # 5172442023 : MAJOR COMPUTATIONAL SCIENCE 

. KEYWORDS: CLASSIFICATION / OPTIMIZATION PROBLEM/ MIXED IN-
" 

TEGER PROGRAMMING 

WASAKORN LAESANKLANG : MULTI-HYPERPLANE SCORING MODEL 

THESIS ADVISOR: BOONYARIT INTIYOT, Ph.D. THESIS CO-ADVISOR 

: ASST. PROF. KRUNG SINAPIROMSARAN, Ph.D., 65 pp. 

Multi-hyperplane scoring model is a decision model that classifies target data 

sets into a positive group and a negative group by minimizing the misclassification 

error using multiple hyperplanes. A collection of hyperplanes are used to divide 

a space into positive and negative regions. Each hyperplane is created in order 

to minimize the misclassification rate. Initially, all variables are ranked according 

to their entropies. The first half of variables with lower entropies is selected 

to generate the first pair of hyperplanes. The rest of variables are used during 

the subsequent stages. Our experiments compare the performance of a multi-

hyperplane scoring model with a two-stage least cost credit scoring model. The 

result shows that our model has better accuracy than a two-stage least cost credit 

scoring model. Moreover, our model has comparable accuracy with decision tree, 

multilayer perceptron, linear discriminant analysis and support vector machine. 

However, we suggest using this model with small and medium size data sets since 

the construction of this model requires a long computation time. 

Department : .... Mathematics ..... ........ .... . . Student's Signature : ... .. :5. .~ ... 

Advisor:s s:gnature • "'~Jf:f 
Co-AdVIsor s SIgnature.. . . ... ....... . 

Field of Study : .... Computational Science ... 

Academic Year: .. .. ...... 2010 ....................... .. . 



VI 

ACKNOWLEDGEMENTS 

Firstly, I am very grateful to Dr. Boonyarit Intiyot, my advisor and Assistant 

Professor Dr. Krung Sinapiromsaran, my co-advisor for their suggestion and 

guidance. Without their suggestion, this research would never been completed. 

In addition, I would like to give a thank to Mr. Siwat Ruangpipop who helped 

me write the Perl code for this thesis. 

Moreover, I want to thank my sponsor, Development and Promotion of Science 

and Technology talents project (DPST), Institute for the Promotion of Teaching 

Science and Technology (IPST) , for their scholarship and expenses for 2009 Inter­

national Conference on Financial Theory and Engineering in Dubai, U AE. 

Finally, I would like to thank my friends: Panote Songwatanasiri, Wor Wiengsamut 

and Piyamabhorn Utamang for giving me some important advice. And the last 

but not least, I feel very grateful to my family for their compassion and untired 

encouragement throughout my life. 



CONTENTS

Page

ABSTRACT IN THAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ABSTRACT IN ENGLISH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTER

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation and literature surveys . . . . . . . . . . . . . . . . . . 1

1.2 Research objective . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

II BACKGROUND KNOWLEDGE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Hyperplanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Mathematical programming . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Linear programming . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Mixed integer programming . . . . . . . . . . . . . . . . . 9

2.3 Measures of impurity . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Decision tree . . . . . . . . . . . . . . . . . . . . . . . . . 15



viii

2.4.2 Multilayer perceptron . . . . . . . . . . . . . . . . . . . . . 16

2.4.3 Linear discriminant analysis . . . . . . . . . . . . . . . . . 17

2.4.4 Support vector machine . . . . . . . . . . . . . . . . . . . 17

2.5 Evaluation techniques . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.1 Performance measures . . . . . . . . . . . . . . . . . . . . 18

2.5.2 Cross validation . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.3 Cost-based evaluation . . . . . . . . . . . . . . . . . . . . 21

IIIMULTI-HYPERPLANE SCORING MODEL . . . . . . . . . . . . . . . . . . 22

3.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Model constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Model objective function . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Representation of the model . . . . . . . . . . . . . . . . . . . . . 28

3.5 Entropy multi-hyperplane scoring model . . . . . . . . . . . . . . 29

IV EXPERIMENTS AND RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Data set description . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1.1 Johnson and Wickern data set . . . . . . . . . . . . . . . . 32

4.1.2 Japanese bank data set . . . . . . . . . . . . . . . . . . . . 33

4.1.3 Iris data set . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.4 Haberman’s survival data set . . . . . . . . . . . . . . . . 35

4.1.5 Johns Hopkins University ionosphere data set . . . . . . . 35

4.1.6 Blood transfusion service center data set . . . . . . . . . . 36

4.2 Results of the experiments . . . . . . . . . . . . . . . . . . . . . . 36

4.2.1 Johnson and Wickern data set . . . . . . . . . . . . . . . . 37

4.2.2 Japanese bank data set . . . . . . . . . . . . . . . . . . . . 39

4.2.3 Iris data set . . . . . . . . . . . . . . . . . . . . . . . . . . 41



ix

4.2.4 Haberman’s survival data set . . . . . . . . . . . . . . . . 45

4.2.5 Johns Hopkins University ionosphere data set . . . . . . . 46

4.2.6 Blood transfusion service center data set . . . . . . . . . . 48

V CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

APPENDIX A : JOHNSON AND WICKERN DATA SET . . . . . . . 56

APPENDIX B : GAMS CODE FOR MULTI-HYPERPLANE SCOR-

ING MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

BIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



LIST OF TABLES

2.1 Buys computer classification data set . . . . . . . . . . . . . . . . 13

2.2 Confusion matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Sample data of credit applicant . . . . . . . . . . . . . . . . . . . 30

4.1 Univariate statistics of Johnson and Wickern data set . . . . . . . 33

4.2 Univariate statistics of Japanese bank data set . . . . . . . . . . . 34

4.3 Univariate statistics of four iris variables . . . . . . . . . . . . . . 35

4.4 Univariate statistics of blood transfusion service center . . . . . . 36

4.5 Comparisons of misclassification error of Johnson and Wickern dataset 38

4.6 Confusion matrix of Japanese banks data set using a multi-hyperplane

scoring model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.7 Misclassification errors, sensitivities, specificities of Japanese banks 40

4.8 Confusion matrix of iris-setosa using a multi-hyperplane scoring

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.9 Comparisons of misclassification error of iris-setosa . . . . . . . . 41

4.10 Confusion matrix of iris-virginica using a multi-hyperplane scoring

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.11 Comparisons of misclassification error of iris-virginica . . . . . . . 43

4.12 Confusion matrix of iris-versicolor using a multi-hyperplane scoring

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.13 Comparisons of misclassification error of iris-versicolor . . . . . . 44

4.14 Confusion matrix of Haberman’s survival data set using a multi-

hyperplane scoring model . . . . . . . . . . . . . . . . . . . . . . . 45

4.15 Comparisons of misclassification error of Haberman’s survival . . 46



xi

4.16 Confusion matrix of Johns Hopkins University ionosphere using a

multi-hyperplane scoring model . . . . . . . . . . . . . . . . . . . 46

4.17 Comparisons of misclassification error of Johns Hopkins University

ionosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.18 Confusion matrix of blood transfusion service center using a multi-

hyperplane scoring model . . . . . . . . . . . . . . . . . . . . . . . 48

4.19 Comparisons of misclassification error of blood transfusion service

center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



LIST OF FIGURES

3.1.1 Two-dimensional graphic of multi-hyperplane scoring model . . . 23

4.2.1 Misclassification error of a two-stage least cost credit scoring model

and a multi-hyperplane scoring model . . . . . . . . . . . . . . . . 37



CHAPTER I

INTRODUCTION

1.1 Motivation and literature surveys

Classification is one of major branches in data mining [1]. A classification

technique separates data into groups based on the previously labeled samples

appearing in a training set. Its applications can be seen in various fields such

as credit scoring, computer vision, drug discovery and development, handwriting

recognition, biometric identification, and more. The classification consists of two

processes which are a learning step, namely a model construction step, and a

predictive step, namely model prediction step. In the model construction step,

the sample data set, called training set, is used to construct the model which can

be represented as classification rules, decision trees, or mathematical formulae. In

the predictive step, the model is used to classify unknown objects.

The accuracy of a classification model is estimated from test data, which are

excluded from the model construction step, to predict the known labels. The

performance of classification model greatly depends on the characteristic of the

data set.

There are several types of classifiers used in data mining researches such as

neural networks, bayesian networks, decision trees, quadratic classifiers and linear

classifiers. One of the linear classifiers is the linear discriminant analysis [2],

proposed by Fisher in 1936.

This linear classifier demonstrates measurement functions to maximize the
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ratio of the difference among the means of sample data. The linear discrimi-

nant analysis can be used to classify taxonomic data such as species or genders.

The concept of this method is to construct a simple linear measurement function

that separates the data set into subgroups by finding the shortest distance of a

hyperplane between two-group instances. According to the experiment results,

the method can classify linearly separable data but the misclassification occurred

when two target groups are overlapped.

There are many publications using mathematical programming discriminant

analysis techniques, which use mathematical programming to create measurment

functions, to classify various data sets. These techniques generate discriminant

functions that separate the training data into the specified classes optimally.

A cost minimization approach to classification [3], proposed by Gehrlein and

Gempesaw in 1991, is a mathematical programming discriminant model. The

model is developed by using a mixed integer programming whose objective func-

tion is to minimize the cost of misclassification, to obtain a simple credit scoring

model. The model constructs only one hyperplane to partition a data set into the

two groups. The experiment results show that this model gives 100% accuracy

for a linearly separable data set, but in the real world only a few data sets are

linearly separable.

Hence, a two-stage least cost credit scoring model [4], proposed by Gehrlein

and Wagner in 1997 , is developed to aviod such problems. The two-stage least

cost credit scoring model uses two decision stages of classifying data based on

mixed integer programming while minimizing the cost of misclassifying samples.

The model classifies data into three groups called positive, negative and unknown

groups in the first stage. In the second stage, the model classifies the unknown

group, into a positive group and a negative group. From the experiments, this
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model is clearly superior in performance to the Gehrlein and Gempesaw’s model

[3], especially for credit scoring data sets. But its disadvantage is higher compu-

tation time and lower accuracy than statistical techniques.

An iterative mixed integer programming method for classification accuracy

maximizing discriminant analysis [5], proposed by Glen in 2000, is a mixed integer

programming (MIP) model which generates a linear discriminant function. The

objective of the MIP is to maximize the number of correctly classified instances.

Compare to Fisher’s linear discriminant analysis [2], a logistic regression, a k -

nearest neighbor and a kernel density, the accuracy of this method is not better

on Australian credit approval data set. Moreover, it is recommended that this

method is restricted to small data sets due to its long computational times.

The extended DEA-discriminant analysis [6], developed by Sueyoshi in 2000,

is a mixed integer programming model which identifies the overlap of two-group

data set and avoids the specification of a separation function by producing two

steps of piece-wise linear discriminant functions: one for overlapping identification

and another for classification. A Japanese bank data set, which is real world data

set, is used to evaluate this model. The results of this research show that the

method has high accuracy compared to other discriminant analysis methods.

Mathematical programming models for piece-wise linear discriminant analysis

[7], proposed by Glen in 2003, are methods for classification problem. These

models use at least two piece-wise linear functions to classify a two-group data set

while the objective is to minimize the misclassification error. The model is tested

using the Japanese bank data set which is a two-group problem. The results show

that these models give good hit-rate in this data set. According to the author,

these models are more practical than the former Glen’s model [5].

A classification by vertical and cutting multi-hyperplane decision tree induc-
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tion [8], proposed by Better, Glover and Samorani in 2010, is motivated by math-

ematical programming models for piece-wise linear discriminant analysis. The

models use multiple hyperplanes, together with a decision tree. Their meth-

ods used a piece-wise linear approach by eliminating some requirements that one

group must lie in a convex region and avoiding the transformation mapping to

a higher dimension. The basic concept of this method is a multivariate decision

tree which is a binary tree whose internal nodes are splitted by a hyperplane and

a leaf node is associated with only one group. A vertical decision tree is defined

as a multivariate decision tree whose individual internal node is a parent of at

least one leaf node. And a cutting decision tree is define as a vertical decision

tree whose misclassification data at the intermediate leaves are not allowed. The

model is hyperplane-based and classifies two-group data set by constructing mul-

tiple hyperplanes based on a mixed integer program whose goal is to minimize the

misclassification errors. The speed and the accuracy of the model are compared

with Glen’s mathematical programming models for piece-wise linear discriminant

analysis using Japanese bank data set which is distributed by Sueyoshi and the

Wisconsin breast cancer data set from the UCI data management repository [9].

The results show that the new model is better than Glen’s models in both accu-

racy and speed. However, this model is not be suitable for classifying very large

data sets.

In our research study presented in this thesis, we develop a new classification

model based on the minimization of the cost of misclassification errors. Our model

is an extension of Gehrlein and Wagner’s two-stage least cost credit scoring model,

which employs a mixed integer program for minimizing the cost of misclassification

errors. Morover, our model splits the decision process into multiple stages, which

are equivalent to determining the multiple optimal hyperplanes to be used as
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classifiers. In fact, our model is not limited to classifying credit scoring data set.

The model can be applied to other types of data sets as well.

1.2 Research objective

The goal of this research is to extend the two-stage least cost credit scoring

model by minimizing the cost of misclassification errors.

1.3 Thesis overview

The rest of the thesis is organized as follows.

In Chapter II, we present the background knowledge used in this thesis, which

includes the mathematical programming, entropy, classifiers and evaluation tech-

niques.

In Chapter III, we present the multi-hyperplane scoring model by describing

the model construction and explaining how to apply the entropy into the model.

In Chapter IV, we present the experiments and results.

In Chapter V, we discuss the results and draw the conclusion from the study.

Some future research suggestions are also included in this chapter.



CHAPTER II

BACKGROUND KNOWLEDGE

This chapter provides background knowledge that is important to this thesis.

It consists of five main sections.

First, we introduce the hyperplane which is used to separate the space into

regions. The hyperplane is a basic concept of the multi-hyperplane scoring model.

Second, we introduce the mathematical programming concept which includes

linear programming problem and mixed integer programming problem.

Third, we describe the measures of impurity which are used in this thesis to

prioritize variables.

Fourth, classifiers are described. In chapter IV, we compare their performance

with a multi-hyperplane scoring model.

Fifth, we introduce the evaluation techniques that are used in our experiments.

The cross validation is the main accuracy evaluating technique for this thesis.

2.1 Hyperplanes

A multi-hyperplane scoring model constructs multiple hyperplanes in the Eu-

clidean space. The following definitions describe the notation of hyperplane.

Definition 2.1.1. Let R denote the field of real numbers. For any non-negative

integer n, the space of all n-tuples of real numbers forms an n-dimensional vector

space over R which is denoted by Rn.

An element of Rn is written as x = (x1, x2, . . . , xn), where each xi is a real
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number.

Definition 2.1.2. Let R denote the field of real numbers. The hyperplane in an

n-dimensional space is defined by

a1x1 + a2x2 + ... + anxn + c = 0 (2.1)

where x1, x2, ..., xn are variables and a1, a2, ..., an, c ∈ R which a1, a2, ..., an are not

all 0.

A hyperplane also divides the space into exactly two half-spaces.

Definition 2.1.3. Let Rn be the Euclidian space. The hyperplane

a1x1 + a2x2 + ... + anxn + c = 0 (2.2)

divides space Rn into two half-spaces which are

a1x1 + a2x2 + . . . + anxn + c ≤ 0 (2.3)

and

a1x1 + a2x2 + . . . + anxn + c ≥ 0. (2.4)

Since a hyperplane divides a space into two regions, we can develop a two-

group classifier. A random hyperplane is not an appropriate classifier because it

produces unpredictable results. Hence, in this thesis, the hyperplanes are created

by using a mathematical programming technique to guarantee that the classifier

creates the optimal hyperplanes that partition a two-group data.

2.2 Mathematical programming

Mathematical programming is one branch of operations research which was

established in England during World War II [14]. At that time, British operations
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researchers made the best utilization on war material. After the war, these tech-

niques were adopted in many fields such as transportation, routing, supply chain

management, scheduling, allocation problem and decision making.

Mathematical programming formulation is composed of an objective function

and constraints. The goal of the mathematical programming is to find the best

possible solution of the system. When the solution satisfies all constraints, it is

called a feasible solution. The best of the feasible solutions is called the optimal

solution. There are many types of mathematical programming problems. The

most well-known problem is the linear programming problem, which is a mathe-

matical programming problem whose objective and constraints can be described

by linear functions. When the mathematical programming problem requires all

or some variables to be integers, the problem is called integer programming prob-

lem and mixed integer programming problem respectively. When the objective

function or some constraints in the problem are not linear, it is called a nonlinear

programming problem.

In our research, the model is designed as a mixed integer programming prob-

lem. The following subsections describe the concept of a mixed integer program-

ming problem as well as a linear programming problem.

2.2.1 Linear programming

Linear programming is a major branch of a mathematical programming. This

method determines the best outcome of linear mathematical models which is com-

posed of a linear objective function and linear constraints [10]. The simplex

method, proposed by George B. Danzig in 1963, is a powerful method to solve

linear programming. The analysis of the simplex method shows the weak point

of this method. The simplex method may solves a problem in exponential time.
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However, the interior point method, proposed by Narenda Karmaka in 1984, can

solved a linear programming in polynomial time.

2.2.2 Mixed integer programming

When a mathematical programming problem contains integer variables, inte-

ger programming or mixed integer programming is applied to the problems. A

pure integer program contains only integer variables while the mixed integer pro-

gram requires some variables to be integer. Many real world problems such as

capital budgeting, set-covering problem, job sequencing problem, sales and oper-

ations planning and classification problem require a mixed integer programming

technique. A mixed integer programming is not only used for formulating discrete

varaible problems but also applied to the model whose constraints are not satisfied

simultaneously such as either-or constraints and off-on constraints.

Normally, a mathematical programming solution must satisfy all constraints.

Therefore a group of constraints must be consistent. Specifically, the real world

problems sometimes require a choice to be made, for example, in credit approval

problem, a loaner must decide to approve or deny an applicant’s loan. If this

problem is designed as a common mathematical programming, the solution of

this problem must satisfy both constraints which are the denying loan constraint

and the approving loan constraint. This conflict provides the infeasibility of the

problem. Then the mixed integer programming can be applied to the credit scoring

problem as in Example 2.2.1.

Example 2.2.1. Mathematical model for a credit scoring problem

The objective of this problem is to find a set of scoring parameters of the

function which minimizes the misclassification of the labeled credit applicants.

The credit applicant can be classified as a payer or a defaulter. The scoring
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function of the applicant i is composed of the weight wj which is a coefficient

of the given attribute Aij. The cut-off value xc is used to split samples into the

payers and defaulters. Given that the data set has K credit applicants with N

variables.

Let P be a group of payers;

D be a group of defaulters; and

Aij be a credit data in attribute j of applicant i.

The scoring function, is the sum of the product of the weight wj and the given

attribute Aij, defined as follows

f(i) =
N∑

j=1

wjAij

Using the cut-off value xc, the applicant’s score is either f(i) ≥ xc or f(i) ≤
xc − ε when ε is a small positive real number. Since mathematical programs

deal with simultaneous constraints, the either-or scoring constraints will be trans-

formed by applying a binary variable Ii for each applicant i:

Ii =





0, if f(i) ≥ xc

1, if f(i) ≤ xc − ε

For sufficiently large constant M , the either-or scoring constraint is trans-

formed into the following simultaneous constraints

f(i) + MIi ≥ xc and

f(i)−M(1− Ii) ≤ xc − ε

The transformation assures that only one of two constraints can be activated

for each applicant i. If Ii = 0, the first constraint is active while the second

constraint is redundant because the large M makes f(i)−M smaller than xc− ε.
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Similarly, if Ii = 1, the first constraint is redundant and the second constraint is

active.

The objective of the credit scoring problem is to minimize the number of the

misclassified applicants. When the applicant is a payer, the score of the payer

should be larger than or equal to xc. The model misclassifies a payer when the

score of the payer is less than xc causing Ii = 1. On the other hand, the model

misclassifies a defaulter when the score is more than or equal to xc which means

that Ii = 0. Then the number of misclassified applicants is

∑
i∈D

(1− Ii) +
∑
i∈P

Ii.

The mixed integer programming model to minimize the number of misclassified

applicants is

Minimize
∑
i∈D

(1− Ii) +
∑
i∈P

Ii

subject to

f(i) =
J∑

j=0

wjAij , for i ∈ P ∪D

f(i) + MIi ≥ xc , for i ∈ P ∪D

f(i)−M(1− Ii) ≤ xc − ε , for i ∈ P ∪D

Ii integer

f(i), wj, xc unrestricted

2.3 Measures of impurity

There are many techniques to measure the impurity of data. Gini index and

entropy measure are the most popular measures which are usually used in a deci-

sion tree or a decision forest.
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Entropy

Entropy is a measure of the uncertainty asscociated with a random variable

[16]. This concept is widely used in physics and chemistry. Historically, this

concept was proposed in early 1850s by Rudolf Clausius [17]. It is originally used

in thermodynamic systems to explain why some processes are spontaneous and

others are not. In 1948, Claude Shannon [18] developed the concept of information

entropy, which is used in information theory, to find the statistical nature of lost

information in phone-line signals. He introduced the function H(D) as

H(D) = −
n∑

i=1

p(xi) logb p(xi), (2.5)

where D is a database of all messages and p(xi) is the probability that a

particular message is transmitted successfully. From this function, he measured

how much information was in the message.

The entropy concept is also applied in machine learning known as information

gain. Information gain is used in decision tree learning especially in ID3 (Iterative

Dichotomiser 3) algorithm [19]. The algorithm chooses the variable with minimum

entropy or maximum information gain to split the data set. Suppose we split a

data set D by the values of variable A into m partitions, say D1, D2, ..., Dm. The

information entropy of a data set with splitting variable A is defined by

HA(D) = −
m∑

j=1

|Dj|
|D| H(Dj). (2.6)

And the information gain of data set by branching variable A defined as

Gain(A) = H(D)−HA(D). (2.7)

Example 2.3.1. Entropy measure

This example shows how to calculate the entropy and information gain. Let

buys computer be the target class. Define class P as buys computer = “yes” and

class N as buys computer = “no”.
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age income student credit rating buys computer

<= 30 high no fair no

<= 30 high no excellent no

31..40 high no fair yes

> 40 medium no fair yes

> 40 low yes fair yes

> 40 low yes excellent no

31..40 low yes excellent yes

<= 30 medium no fair no

<= 30 low yes fair yes

> 40 medium yes fair yes

<= 30 medium yes excellent yes

31..40 medium no excellent yes

31..40 high yes fair yes

> 40 medium no excellent no

Table 2.1: Buys computer classification data set

The entropy of target class is

H(D) = − 9

14
log2

(
9

14

)
− 5

14
log2

(
5

14

)

= 0.940

Suppose that we split the data set using the variable “student” then the en-

tropy of target class after split by the variable “student” is

Hstudent(D) =
7

14
Hstudent=“no”(D) +

7

14
Hstudent=“yes”(D).

Since

Hstudent=“no”(D) = −|P ||D| log2

( |P |
|D|

)
− |N |
|D| log2

( |N |
|D|

)
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= −3

7
log2

(
3

7

)
− 4

7
log2

(
4

7

)
= 0.9852281

and

Hstudent=“yes”(D) = −|P ||D| log2

( |P |
|D|

)
− |N |
|D| log2

( |N |
|D|

)

= −6

7
log2

(
6

7

)
− 1

7
log2

(
1

7

)
= 0.5916728.

Then Hstudent(D) = 0.7884505, and the information gain is Gain(student) =

0.1515.

Gini Index

Gini index is one of impurity measure which is used in CART algorithm by

Breiman et al [20]. The index is defined by

I(A) = 1−
m∑

k=1

p2
k. (2.8)

Example 2.3.2. Gini index measure

From table 2.1, we use the Gini index to measure the impurity of the buy com-

puter classification data set. Let P be the class of instances, where buy computer

= “yes” and N be the class of instances, where buy computer = “no”. The Gini

index of all instance of data set is

I(D) = 1−
((

5

5 + 9

)2

+

(
9

5 + 9

)2
)

= 0.46

Suppose that the data set has been split using the variable “student”, the Gini

index of two classes after split by the variable “student” is

I(D) =

(
7

14
Istudent = “yes”(D) +

7

14
Istudent=“no”(D)

)
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Since

Istudent = “yes”(D) = 1−
((

6

7

)2

+

(
1

7

)2
)

= 0.24

and

Istudent = “no”(D) = 1−
((

3

7

)2

+

(
4

7

)2
)

= 0.49

then

I(D) =

(
7

14
0.24 +

7

14
0.49

)

= 0.37

Then the Gini index of a data set after split by the variable “student” is 0.37

which is less impurity than the original data set.

2.4 Classifiers

In this section, we introduce the general concept of the classifiers which are

used to compare with a multi-hyperplane scoring model. These classifiers are a

decision tree, a multilayer perceptron, a linear discriminant analysis and a support

vector machine.

2.4.1 Decision tree

A decision tree or a classification tree is a tree-like classifier. A decision tree

consists of internal nodes and leaves. An internal node represents the conjunction

of features that are used in the classification and a leave represents the class

instances.
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In 1984, a decision tree was developed by Breiman et al [20]. They implemented

their tree procedures named CART (classification and regression tree). Later,

Ross Quinlan (1993) developed a famous classifier named C4.5 [19].

C4.5 algorithm builds a decision tree from a training data set. This algorithm

constructs a tree in top-down recursive divide-and-conquer manner. All of data

are considered at root node. Then the samples are partitioned into child nodes

recursively based on selected splitting variables and splitting values. The splitting

variable and the splitting value at each node are the ones that give the least data

impurity among its children nodes. The impurity can be measured using the

information gain or Gini index. The partitioning step stops when it reach the

following criteria are met.

1. all samples in the leaf node belong to the same class;

2. there are no samples left to partition; and

3. all variables are used in partitioning.

2.4.2 Multilayer perceptron

A multilayer perceptron is one of the artificial neural networks [21]. An arti-

ficial neural network is the mathematical model which mimics the properties of

biological neurons. A multilayer perceptron uses multilayer feedforward networks

which are an important class of neural networks. The network usually consists of

a set of source nodes, that constitute the input layer, one or more hidden layers

of computation nodes and the output layer of output nodes.

The highly popular algorithm of multilayer perceptron is known as back-

propagation algorithm. The algorithm is based on the error-correction learning

rule. Basically, back-propagation consists of two passes of computation process
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through the different layers of networks which are forward pass and backward

pass. In the forward pass, the algorithm functions through the source nodes and

spreads through the network layer by layer. During the forward pass, the weights

of all networks are fixed. The error of the output of the forward pass is computed

and feeded back to the network by the backward pass. In the backward pass, the

error signal is spread backward from the output node to the source node. With

this pass, the weights of the network are adjusted. The forward and backward

pass are computed iteratively until the stopping criterion is met, which is either

reaching iterations limit or acceptable error gap.

The back-propagation algorithm can solve some of difficult problems by train-

ing in a supervised manner. The development of this algorithm is now a landmark

in neural networks because it provides an efficient computational method for train-

ing of multilayer perceptrons.

2.4.3 Linear discriminant analysis

A linear dicriminant analysis is the statistical classifier [20]. This method uses

measurement functions to classify unknown data. In general, this method finds

the best separating function which measures the distance of the classes. The

linear discriminant analysis creates the coefficients which are associated with the

variables in the linear form.

When the data set is linearly separable, this method is the most powerful and

robust model. On the other hand, this method is very sensitive to the outliers.

2.4.4 Support vector machine

A support vector machine is a classifier which uses a linear optimal separat-

ing hyperplane [1]. When a data set is not linearly separable, this method uses
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actual value

p n Total

prediction outcome p̃ True Positive False Positive P̃

ñ False Negative True Negative Ñ

Total P N

Table 2.2: Confusion matrix

nonlinear mapping to transform the original data into the higher dimension and

determines the linear optimal separating hyperplane. The data from these classes

are always separated by a hyperplane when the appropriate mapping is applied.

The support vector machine concept is not only finding the separating hyperplane

but also maximizing the margin of the hyperplane and the support vectors.

The complexity of a trained classifier is characterized by the number of sup-

port vectors which are the essential training data lying closest to the separating

hyperplane. When all other training data are removed and the process is repeated,

the separating hyperplane is not changed.

2.5 Evaluation techniques

In this section, we introduce the evaluation measures of the model and some

of the assessing techniques which are involved in this thesis.

2.5.1 Performance measures

A confusion matrix is typically used in supervised learning [1]. Each row of the

matrix represents the predicted instances and each column represents the actual

instances. The confusion matrix, which reports the amount of true positives, false

positives, false negatives and true negatives, is shown in Table 2.2.
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Accuracy measure

The accuracy is a percentage of samples that are correctly classified by the

model [1]. From the confusion matrix, the accuracy is

Accuracy = True Positive+True Negative
Amount of samples

.

Conversely, the opposite of the accuracy is a misclassification rate. The mis-

classification rate is defined as follow

Misclassification rate = False Negative+False Positive
Amount of samples

= 1− Accuracy.

Sensitivity and specificity

Sensitivity measures the proportion of actual positives which are correctly

classified. A high sensitivity model classifies many positive instances correctly.

From confusion matrix, we can define the sensitivity as

Sensitivity = True Positive
True Positive + False Negative

.

Like sensitivity, specificity is a measure of negative class. It shows the pro-

portion of correctly classified of negative instances. The formulae of specificity is

defined as

Specificity = True Negative
True Negative + False Positive

.

2.5.2 Cross validation

Cross validation is a technique for assessing how the models generalize to an

independent data set [1]. The cross validation is mainly used to estimate how

accurate a predictive model performs in practice. Each round of cross validation
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involves partitioning samples and creating the model on one subset called a train-

ing set, and validating the model on the other subset called a testing set. This

method usually is performed in multiple rounds with different partitions. The

validation results are averaged over the rounds. The common types of cross vali-

dation are repeated random sub-sampling validation, K -fold cross validation and

leave-one-out cross validation.

Repeated random sub-sampling validation

Repeated random sub-sampling validation randomly splits the data set into

a training set and a test set. For each split, the model is created by fitting the

training set, then predictive accuracy is evaluated on the test set. The advantage

of this method over the K-fold cross validation is that the proportion of the

training set and the test set is independent on the number of iterations. On the

other hand, the disadvantage of this method is that some observations may never

be selected as a test sample and others may be selected more than once. In other

words, the test subsets may be overlapped. Note that the results vary if the

analysis is repeated with different random splits.

K -fold cross validation

In K -fold cross validation, the original data set is randomly partitioned into

K subsets [1]. From the K subsets, only one subset is retained as the test set,

and the remaining K - 1 subsets are used as the training set. The cross validation

process is repeated K times, with each of the K subsets used only once as the test

set. The K results from the folds are averaged or combined to produce a single

estimation. The advantage of this method over the repeated random sub-sampling

is that all observations are used for both a training set and a test set, and each
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observation is used for test the model exactly once. The commonly used K is 10.

In K -fold cross validation, the folds are selected so that the mean response

value is approximately equal in all the folds. In other words, each fold maintains

the same proportion of the groups in the data set.

Leave-one-out cross validation

Leave-one-out cross validation (LOOCV) uses only one sample from the origi-

nal data set as the test set, and the remaining samples as the training set [1]. This

method is repeated such that each sample is used once as the test set. In other

words, this method is the same as a K -fold cross validation with K is a number

of samples of the data set. A leave-one-out cross validation is computationally

expensive because the large number of the training process is repeated.

2.5.3 Cost-based evaluation

The cost-based evaluation is a technique to evaluate the classification model

especially in a bias data set such as a credit data set. In a credit data set, there

is a bias among a defaulter and a payer. Leonard and Banks [26] suggested that

the cost of five misclassification payers can be approximated as the cost of one

misclassification defaulter. This means that the classification of the credit data

set should emphasize on the accuracy in the defaulters than in the payers. From

this type of data set, the evaluation technique is adopted to evaluate the model

by using the misclassification cost of instances.

It is proper to set the misclassification cost of each type differently. As in the

credit data set, the defaulter misclassification should cost about five time higher

than the payer misclassification. For example, if the payer misclassification cost

is 100, the defaulter misclassification cost is 500.



CHAPTER III

MULTI-HYPERPLANE SCORING MODEL

In this chapter, we propose the methodology which describes how to formulate

the multi-hyperplane scoring problem as a mixed integer programming model.

Moreover, this chapter explains how to apply an entropy measure into a multi-

hyperplane scoring model.

3.1 Model description

A multi-hyperplane scoring model is a classification model which uses multiple

hyperplanes to classify a two-group data set. This model creates a collection of

separating hyperplanes. The collection consists of two types of hyperplanes, which

are parallel hyperplanes and a final hyperplane.

A pair of parallel hyperplanes divides the space into three regions which are

positive, negative and unknown regions. The unknown region lies between the pair

of parallel hyperplanes, while the others lie on the either side of two hyperplanes.

The first pair of hyperplanes is constructed by using a half of variables in the data

set. Then another pair of hyperplane is applied to the unknown region which

is separated this region into another positive, negative and unknown regions.

The later pair of hyperplanes required more variables which include the former

variables. The new pair of parallel hyperplanes is applied to the new unknown

region until there is only one unused variable left.

The other type of hyperplane is a final hyperplane which is applied to the model
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Figure 3.1.1: Two-dimensional graphic of multi-hyperplane scoring model

to make the final decision for the unknown region producing from the previous pair

of parallel hyperplanes. This hyperplane separates the unknown region into two

regions which are a positive region and a negative region. The final hyperplane

is constructed by all variables from the data set. Figure 3.1.1 shows the two-

dimensional space which is separated by a pair of parallel hyperplanes and a final

hyperplane.

From figure 3.1.1, the thick line is created from parts of a pair of parallel

hyperplanes and a final hyperplane. This line divides the space into two regions

which are identified as a positive region and a negative region. From the figure,

assume that the region 1 is a negative region and region 2 is a positive region.

This model classifies the instances whose lie on the positive region as a positive

group instances and classifies the instances whose lie on the negative region as

negative group instances.

In this thesis, the collection of optimal hyperplanes is constructed by using

a mixed integer programming. The corresponding objective function and con-

straints are generated from the tranning data set. For better understanding, we
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will explain the constraints of the model and then the objective function.

3.2 Model constraints

There are three types of constraints of a multi-hyperplane scoring model, which

are score constraints, parallel hyperplanes constraints and final hyperplane con-

straints.

First, the score constraints are defined according to the sample i in stage t.

Let E be the maximum number of decision stages of the model;

nt be the number of variables in stage t;

At
ij be the value of variable j of sample i in stage t;

wt
j be the weight of variable j in stage t; and

Ft(i) be the score of sample i in stage t.

So Ft(i) is defined by

Ft(i) =
nt∑

j=1

wt
jA

t
ij. (3.1)

Second, the model requires the cut-off values to classify the samples. A pair

of the parallel hyperplanes has two cut-off values that partition a space into 3

regions which are positive, negative and unknown regions. Define X t
P and X t

N

as the cut-off values in the stage t where X t
P > X t

N . The sample whose score is

more than or equal to X t
P is classified as a positive and the sample whose score

is less than or equal to X t
N is classified as a negative. The rest is classified as an

unknown.

From the above explanation, we formulate the parallel hyperplanes constraints
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in stage t as

Ft(i)−MI2t−1
i −M

(
2t− 2−

2t−2∑

k=1

Ik
i

)
≤ X t

N (3.2)

Ft(i) + MI2t
i + M

(
2t− 2−

2t−2∑

k=1

Ik
i

)
≥ X t

P (3.3)

Ft(i)−M

(
2t−

2t∑

k=1

Ik
i

)
≥ X t

N + ε (3.4)

Ft(i) + M

(
2t−

2t∑

k=1

Ik
i

)
≤ X t

P − ε (3.5)

where Ik
i is a binary variable for k ∈ 1, 2, 3, ..., 2t. The sample is classified as a

positive in stage t when I2t
i = 0 and I2t−1

i = 1 and is classified as a negative when

I2t
i = 1 and I2t−1

i = 0. The rest is classified in the next stage when I2t
i = 1 and

I2t−1
i = 1. Hence, the correctly classified positive sample has I2t

i = 0 and I2t−1
i = 1

while incorrectly classified positive sample has I2t
i = 1 and I2t−1

i = 0. On the

other hand, the correctly classified negative sample has I2t
i = 1 and I2t−1

i = 0

while incorrectly classified negative sample has I2t
i = 0 and I2t−1

i = 1. We keep on

creating the parallel hyperplanes until we have E−1 pairs of parallel hyperplanes.

Third, a final hyperplane requires only one cut-off value to classify the un-

known. Let Xc be the cut-off value of the final stage. The sample whose score is

more than Xc is classified as a positive else it is classified as a negative. In the

final stage, the final hyperplane is used to classify the unknown samples from the

last pair of parallel hyperplanes. We create the constraints of the final hyperplane

as

FE(i)−MI2E−1
i −M

(
2E − 2−

2E−2∑

k=1

Ik
i

)
≤ Xc − ε, i ∈ N, (3.6)

FE(i) + MI2E−1
i + M

(
2E − 2−

2E−2∑

k=1

Ik
i

)
≥ Xc + ε, i ∈ P, (3.7)

The sample is correctly classified in the final stage when I2E−1
i = 0.
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3.3 Model objective function

The objective function of this model is defined by the misclassification cost

and the information cost. The misclassification cost occurs when the model made

a wrong decision. There are two types of misclassifications which are classifying

a positive sample as a negative sample and classifying a negative sample as a

positive sample.

Let P be the set of instances that are positive;

N be the set of instances that are negative;

Cpn be the cost of misclassify P as N ; and

Cnp be the cost of misclassify N as P .

In the parallel hyperplanes decision stage, the model is said to make wrong

decision when the positive sample i has I2t−1
i = 0 or the negative sample i has

I2t
i = 0. Then, the misclassification cost of stage t is define as

Cnp

∑
i∈N

(
1− I2t

i

)
+ Cpn

∑
i∈P

(
1− I2t−1

i

)
. (3.8)

In the final stage, the model is said to misclassify a sample i when IE−1
i = 1. The

misclassification cost of the last stage is define as

Cnp

∑
i∈N

(
I2E−1
i

)
+ Cpn

∑
i∈P

(
I2E−1
i

)
. (3.9)

The information cost is the cost of the model when it assigns the samples into

a higher stage which requires more information. Define Ct as the information cost

of stage t. The sample i in stage t requires additional information in stage t + 1

when I2t
i = 1 and I2t−1

i = 1. Then the information cost is

Ct+1

n∑
i=1

(
I2t
i + I2t−1

i − 1
)
. (3.10)

We combine the model constraints and the objective function to get



27

Minimize

∑
i∈N

(
CnpI

2E−1
i +

E∑
i=1

(Ct+1 − Cnp)I
2t−1
i +

E∑
t=1

Ct+1I
2t
i

)

+
∑
i∈P

(
CpnI

2E−1
i +

E∑
t=1

(Ct+1 − Cpn)I2t
i +

E∑
t=1

Ct+1I
2t−1
i

)

subject to

F1(i) =

n1∑
j=1

w1
jA

1
ij,

F1(i)−MI1
i ≤ X1

N ,

F1(i) + MI2
i ≥ X1

P ,

F1(i) + M

(
2−

2∑

k=1

Ik
i

)
≥ X1

N + ε,

F1(i)−M

(
2−

2∑

k=1

Ik
i

)
≤ X1

P − ε,

X1
P −X1

N ≥ 2ε,

...

FE−1(i) =

nE−1∑
j=1

wE−1
j AE−1

ij ,

FE−1(i)−MI2E−3
i −M

(
2E − 4−

2E−4∑

k=1

Ik
i

)
≤ XE−1

N ,

FE−1(i) + MI2E−2
i + M

(
2E − 4−

2E−4∑

k=1

Ik
i

)
≥ XE−1

P ,

F1(E − 1) + M

(
2−

2E−2∑

k=1

Ik
i

)
≥ XE−1

N + ε,

F1(i)−M

(
2−

2E−2∑

k=1

Ik
i

)
≤ XE−1

P − ε,

XE−1
P −XE−1

N ≥ 2ε,
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FE(i) =

nE∑
j=1

wE
j AE

ij,

FE(i)−MI2E−1
i −M

(
2E − 2−

2E−2∑

k=1

Ik
i

)
≤ Xc − ε, i ∈ N,

FE(i) + MI2E−1
i + M

(
2E − 2−

2E−2∑

k=1

Ik
i

)
≥ Xc + ε, i ∈ P.

3.4 Representation of the model

The multi-hyperplane scoring model is a collection of piece-wise score func-

tions. These score functions use the coefficient of a pair of parallel hyperplanes

that partition a space into positive, negative and unknown regions. Since we use

linear hyperplane, the score functions are also linear. Consider the following pair

of parallel hyperplanes H t
P and H t

N .

H t
P = at

1h1 + at
2h2 + at

3h3 + ... + at
nhn + bP = 0 (3.11)

H t
N = at

1h1 + at
2h2 + at

3h3 + ... + at
nhn + bN = 0 (3.12)

The score function Ft(x) can be defined as

Ft(x) = at
1x1 + at

2x2 + ... + at
nxn. (3.13)

and the cut-off values of a positive group and a negative group are bP and bN ,

respectively.

When Ft(x) ≥ bP , the instance x is classified as P . On the other hand, when

Ft(x) ≤ bN , the instance x is classified as N . When bN < Ft(x) < bP , the instance

x is classified as an unknown which is classified by using other score functions.

Similar to the concept of a pair of parallel hyperplanes, the final hyperplane

can be also transformed into the score function. Since the final hyperplane is a
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single hyperplane, the final decision has only one cut-off value. Define HE as a

final hyperplane.

HE = aE
1 h1 + aE

2 h2 + aE
3 h3 + ... + aE

n hn + bE = 0 (3.14)

The score function FE(x) can be defined as

FE(x) = aE
1 x1 + aE

2 x2 + ... + aE
n xn. (3.15)

and the cut-off value between a positive group and a negative group is bE.

When FE(x) ≥ bE, the instance x is classified as P . On the other hand, when

FE(x) < bE, the instance x is classified as N .

3.5 Entropy multi-hyperplane scoring model

The entropy multi-hyperplane scoring model improves the multi-hyperplane

scoring model by ranking decision variables based on entropy. Randomly ordered

variables effect both computation time and accuracy of the model. The appropri-

ate order of variables depend on how each variable effect the grouping of a positive

group and a negative group. A variable that splits samples into a positive group

and a negative group perfectly is the most preferable variable. Note that the data

set, which is splitted into a positive group and a negative group perfectly, has zero

entropy.

Example 3.5.1. Table 3.1 shows the data set of credit applicant which has four

applicant with two variables.

Let P be a group of accepted applicant; and

N be a group of rejected applicant.

Consider the entropy of data set after splitting with variable income and family

size.
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applicant ID income family size loan

1 180 2 accepted

2 130 4 accepted

3 30 1 rejected

4 81 3 rejected

Table 3.1: Sample data of credit applicant

Hincome(D) =
2

4
Hincome≤105(D) +

2

4
Hincome>105(D).

Hincome≤105(D) = −|P ||D| log2

( |P |
|D|

)
− |N |
|D| log2

( |N |
|D|

)

= −2

2
log2

(
2

2

)
− 0

2
log2

(
0

2

)
= 0

Hincome>105(D) = −|P ||D| log2

( |P |
|D|

)
− |N |
|D| log2

( |N |
|D|

)

= −0

2
log2

(
0

2

)
− 2

2
log2

(
2

2

)
= 0

Hence Hincome(D) = 0.

Hfamily size(D) =
1

4
Hfamily size≤1(D) +

3

4
Hfamily size>1(D).

Hfamily size≤1(D) = −|P ||D| log2

( |P |
|D|

)
− |N |
|D| log2

( |N |
|D|

)

= −0

1
log2

(
0

1

)
− 1

1
log2

(
1

1

)
= 0

Hfamily size>1(D) = −|P ||D| log2

( |P |
|D|

)
− |N |
|D| log2

( |N |
|D|

)

= −2

3
log2

(
2

3

)
− 1

3
log2

(
1

3

)
= 0.918

Hence Hfamily size(D) =
1

4
(0) +

3

4
(0.918) = 0.688.

From table 3.1, a variable “income” is sufficient to split the data set into accepted

and rejected since the entropy is zero. Note that the cut-off value is 105 for
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“income” classifies the sample into two groups which are “income” ≤ 105 as

rejected and “income” > 105 as accepted. On the other hand, if we use the

variable “family size”, more complicated split is required. For example, we use

“family size” with “income” to generate three hyperplanes, which are “family size”

= 1, “family size” = 3 and “income” = 105, to classify the samples. In the first

stage, we classified the samples into three groups, which are “family size” ≤ 1 as

rejected, “family size” ≥ 4 as accepted and 1 < “family size” < 4 as unknown.

In the second stage, the unknown group is classified into two groups which are

“income” ≤ 105 as rejected and “income” > 105 as accepted.

Example 3.5.1 shows that the order of variables used in creating the model

affects the complexity of the model. Note that the entropy can measure the

impurity of splitting by a group of variables. The smaller the entropy is, the

better the splits are. From table 3.1, variable income splits the samples into

accepted and rejected groups perfectly and uses only one hyperplane. Hence, the

entropy of data set which is splited by using income is zero.



CHAPTER IV

EXPERIMENTS AND RESULTS

In this chapter we show our experiments and results comparing the accuracy

of our model with the former two-stage least cost credit scoring model and some

well known classifiers which are a decision tree, a support vector machine (SVM),

a linear discriminant analysis (LDA), a multilayer perceptron and a vertical multi-

hyperplane decision tree induction (VDT).

A multi-hyperplane scoring model is solved by GAMS 23.4 with Intelr CoreTM2

Duo E6750 2.67 GHz CPU and 2GB of RAM on Microsoft Window 7 operating

system.

4.1 Data set description

In this experiment, we use not only credit data sets, which are a Johnson

and Wickern [22] and a Japanese bank data set[6], but also noncredit data sets,

which are an iris data set [2], a Haberman’s survival dataset [23], a Johns Hopkins

University ionosphere data set [24] and a blood transfusion service center data set

[25].

4.1.1 Johnson and Wickern data set

This data set is a credit data set with 4 variables and 46 firms (21 defaulters

and 25 payers) [22]. First, our experiment uses all 46 firms as training data to

compare the training accuracy with Gehrlein and Wagner’s [4] paper. Moreover,
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we applied 10-fold cross validation to compare our model’s accuracy with other

classifiers.

The variables of this data set are

1. CFTD = cash flow
total debt

2. NITA = net income
total assets

3. CACL = current assets
current liabilities

4. CANS = current assets
net sales

Table 4.1 describes the univariate statistics of four variables.

Min Max Mean SD

CFTD -0.5633 0.5808 0.1160 0.2533

NITA -0.4106 0.138 -0.0075 0.1236

CACL 0.331 5.0594 2.0340 1.0062

CANS 0.1268 0.9494 0.4318 0.1837

Table 4.1: Univariate statistics of Johnson and Wickern data set

In our experiment, we use CACL and CFTD in the first stage and CACL,

CFTD and NITA in the second stage. In the last stage, we use all variables.

Moreover, we assign the defaulters as N and the payers as P .

4.1.2 Japanese bank data set

The Japanese bank data set [6] contains the data from 100 financial institutions

with 7 index variables.

1. return on total asset = total profits
average total assets

,

2. equity to total asset = total equity
average total assets

,
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3. cost-profit ratio = total operating expenditures
total profits

,

4. return on total domestic assets = total domestic profits
average total domestic assets

,

5. bad loan ratio = total bad loans
total loans

,

6. loss ratio of bad loan = bad loans deperciated as loss
total bad loans

, and

7. return on equity = earning available for common
average equity

.

Table 4.2 describes the univariate statistics of this data set.

Min Max Mean SD

return on total asset 0.40 1.72 0.79 0.23

equity to total asset 3.46 13.61 7.79 2.52

cost-profit ratio 48.28 79.26 65.26 6.38

return on total domestic assets 0.19 1.13 0.56 0.19

bad loan ratio 0.27 6.94 2.28 1.47

loss ratio of bad loan 19.53 155.20 52.31 17.00

return on equity 9.43 110.00 21.84 11.97

Table 4.2: Univariate statistics of Japanese bank data set

We separate all samples into two groups as the top 50 banks group (P group)

and the bottom 50 banks group (N group).

4.1.3 Iris data set

Iris data set [2] is used to classify types of an iris plant. The data set contains

three types of iris plants. Each has 50 samples. One class is linearly separable

from the other and the rest are mixed. Because our model only determines two

groups, we classify one type against the others. With this data set, we set up

three experiments which are
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1. Iris-setosa and non-iris-setosa,

2. Iris-virginica and non-iris-virginica,

3. Iris-versicolor and non-iris-versicolor.

This data set has 4 numerical variables which are a sepal length in cm, a sepal

width in cm, a petal length in cm and a petal width in cm. Table 4.3 shows the

univariate statistics of all variables of this data set.

Min Max Mean SD

Sepal length 4.3 7.9 5.84 0.83

Sepal width 2.0 4.4 3.05 0.43

Petal length 1.0 6.9 3.76 1.76

Petal width 0.1 2.5 1.20 0.76

Table 4.3: Univariate statistics of four iris variables

4.1.4 Haberman’s survival data set

Haberman’s survival data set [23] is a data set from UCI Machine Learning

Repository. It contains cases from a study that was conducted between 1958 and

1970 at the University of Chicago’s Billings hospital on the survival of patients

who had undergone surgery for breast cancer. This data set has 3 variables and

306 samples with no missing values. All three variables are integer.

4.1.5 Johns Hopkins University ionosphere data set

Johns Hopkins University ionosphere data set [24] is a radar data set which

collected by a system in Goose Bay, Labrador. The targets of this data set are

the free electrons in the ionosphere. If there are some types of structure in the



36

ionosphere, the radar returns Good else it return Bad. This data set has 34

continuous variables and 351 samples with no missing values. We defined the

good ionosphere group as P and the bad ionosphere group as N .

4.1.6 Blood transfusion service center data set

Blood transfusion service center data set is the study of donor database of

blood transfusion service center in Hsin-Chu city in Taiwan [25]. This data set

study the marketing demonstration to predict the blood donor who donated blood

in March 2007. It consists of 748 samples and 4 real value variables with no missing

value. We defined the group of blood donors who donate in March 2007 as P and

the group of blood donors who do not donate in March 2007 as N .

Measurement unit Min Max Mean SD

Recency Months 0.03 74.4 9.74 8.07

Frequency Times 1 50 5.51 5.84

Monetary c.c. blood 250 12500 1378.68 1459.83

Time Months 2.27 98.3 34.42 24.32

Donated blood 1=yes 0=no 0 1 1 (24%) 0 (76%)

Table 4.4: Univariate statistics of blood transfusion service center

Table 4.4 shows the statistics of the blood transfusion service center data.

The target has 24% donated blood in March 2007. The inputs of the model are

recency, frequency, monetary and time.

4.2 Results of the experiments

In this part, we compare the accuracy of the new model with the statistical

classification tools and a vertical decision tree induction. In this part, the cross
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Figure 4.2.1: Misclassification error of a two-stage least cost credit scoring model

and a multi-hyperplane scoring model

validation technique is applied to evaluate these models, which we describe in

Chapter II. The 10-fold cross validation is appropriate and return the accurated

results [27]. There are some notations which are used in the experiments.

Let p be the amount of actual positive samples;

n be the amount of actual negative samples;

p̃ be the amount of predicted positive samples; and

ñ be the amount of predicted negative samples.

4.2.1 Johnson and Wickern data set

Firstly, we compare a two-stage least cost credit scoring model with our multi-

hyperplane scoring model by classifying a Johnson and Wickern credit data set.

Figure 4.2.1 shows the misclassification error of a two-stage least cost credit

scoring model and a multi-hyperplane scoring model. The result shows that the

misclassification error of a multi-hyperplane scoring model for all three misclas-

sification cost are 2.173%. And the misclassification error of a two-stage least
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cost credit scoring model when misclassification cost Cpn = 100 and Cnp = 500;

Cpn = 300 and Cnp = 300; and Cpn = 500 and Cnp = 100 are 8.656%, 2.173% and

6.521% respectively.

Moreover, we test this data set with other techniques by the cross validation

which the result is showed in Table 4.5.

Method Error (%) Sensitivity (%) Specificity (%)

Multi-hyperplane 21.73 76.00 80.95

Vertical decision tree 21.73 100.00 52.38

Decision tree (C4.5) 26.08 76.00 71.43

Multilayer perceptron 13.04 84.00 90.48

Linear discriminant analysis 15.21 88.00 80.95

Support vector machine 21.73 84.00 71.43

Two-stage least cost 24.00 95.24 60.00

Table 4.5: Comparisons of misclassification error of Johnson and Wickern dataset

Table 4.5 represents misclassification errors, sensitivities and specificities of a

Johnson and Wickern data set of all techniques. A misclassification error of a

multilayer perceptron is the smallest which is 13.04% and it has 84% sensitivity

and 90.48% specificity. The second best is a linear discriminant analysis whose

error is 15.21% with 88.00% sensitivity and 80.95% specificity. The third is a

support vector machine, a vertical decision tree induction and a multi-hyperplane

scoring model whose error is 21.73%. A support vector machine has 84.00%

sensitivity and 71.43% specificity while a vertical decision tree induction has 100%

sensitivity and 52.38% specificity. A multi-hyperplane scoring model has 76%

sensitivity and 80.95% specificity. A two-stage least cost credit scoring model

has larger error than a multi-hyperplane scoring model. It has 24.00% error with
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95.24% sensitivity and 60.00% specificity. The largest error is a decision tree

which has 26.08% error with 76% sensitivity and 71.43% specificity.

From this data set, a multi-hyperplane scoring model has less misclassification

error than a two-stage least cost credit scoring model because there are many

overlapped samples in the second stage. A two-stage least cost credit scoring

model is forced to classified all samples in two stages while a multi-hyperplane

scoring model uses additional hyperplanes.

4.2.2 Japanese bank data set

With 10-fold cross validation, we random the above two classes and separate

into each fold. Table 4.6 is the result of a multi-hyperplane scoring model in

confusion matrix.

actual value

p n Total

prediction outcome p̃ 44 4 48

ñ 6 46 52

Total 50 50 100

Table 4.6: Confusion matrix of Japanese banks data set using a multi-hyperplane

scoring model

From Table 4.6, our model predicts 44 P group samples as P and 6 P group

samples as N . Moreover, it predicts 46 N group samples as N and 4 N group

samples as P . The average misclassification error of a multi-hyperplane scoring

model to this data set is 10.00%.

Table 4.7 shows the cross validation of misclassification errors, sensitivities and

specificities of a Japanese banks dataset. The result shows that a multi-hyperplane
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Method Error (%) Sensitivity (%) Specificity (%)

Multi-hyperplane 10.00 92.00 88.00

Vertical decision tree 22.00 86.00 70.00

Decision tree (C4.5) 25.00 74.00 76.00

Multilayer perceptron 13.00 90.00 84.00

Linear discriminant analysis 11.00 94.00 84.00

Support cector machine 17.00 94.00 72.00

Two-stage least cost 10.00 94.00 86.00

Table 4.7: Misclassification errors, sensitivities, specificities of Japanese banks

scoring model and a two-stage least cost credit scoring model are the best, which

has 10.00% misclassification error while a multi-hyperplane scoring model has

92.00% sensitivity and 88.00% specificity and a two-stage least cost credit scoring

model has 94.00% sensitivity and 86.00% specificity. The second best is a linear

discriminant analysis which has 11.00% error with 94.00% sensitivity and 84.00%

specificity. The third is a multilayer perceptron which has 13.00% error and the

forth is a support vector machine with 17.00% error. A vertical decision tree has

22.00% error. And the largest error model is a decision tree which misclassifies

up to 25.00%.

For this data set, a multi-hyperplane scoring model and a two-stage least cost

credit scoring model are the best classifiers. One of the reason is this data set is

the credit data set whose variables are suitable for multiple hyperplanes classifiers.

Note that only three hyperplanes or a two-stage model is sufficient for this data

set.
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4.2.3 Iris data set

The following is the result of a multi-hyperplane scoring model in confusion

matrix.

Iris-setosa and non-iris-setosa

actual value

p n Total

prediction outcome p̃ 49 0 49

ñ 1 100 101

Total 50 100

Table 4.8: Confusion matrix of iris-setosa using a multi-hyperplane scoring model

From Table 4.8, this data set has 150 samples. Our model predicts 49 samples

of iris-setosa as iris-setosa and 1 sample of iris-setosa as non-iris-setosa. In addi-

tion, it predicts all non-iris-setosa samples correctly. Then the misclassification

error of the iris-setosa is 0.667%.

Method Error (%) Sensitivity (%) Specificity (%)

Multi-hyperplane 0.67 98.00 100.00

Vertical decision tree 0.67 100.00 99.00

Decision tree (C4.5) 0.00 100.00 100.00

Multilayer perceptron 0.67 98.00 100.00

Linear discriminant analysis 0.00 100.00 100.00

Support vector machine 0.00 100.00 100.00

Two-stage least cost 0.67 98.00 100.00

Table 4.9: Comparisons of misclassification error of iris-setosa
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Table 4.9 shows the cross validation misclassification errors, sensitivities and

specificities of the iris-setosa. The result shows that all classifiers have at most

0.67% of misclassification error. All classifiers classify this data set correctly

because the iris-setosa data is separated from other iris types.

Iris-virginica and non-iris-virginica

actual value

p n Total

prediction outcome p̃ 46 4 50

ñ 4 96 100

Total 50 100

Table 4.10: Confusion matrix of iris-virginica using a multi-hyperplane scoring

model

Table 4.10 shows the classification of a multi-hyperplane scoring model. The

model predicts 46 samples of iris-virginica as iris-virginica and 4 samples of iris-

virginica as non-iris-virginica. Moreover, it predicts 96 samples of non-iris-virginica

as non-iris-virginica and 4 samples of non-iris-virginica as iris-virginica. Then the

misclassification error of a multi-hyperplane scoring model to classify the iris-

virginica is 5.33%.

Table 4.11 compares the misclassification errors, the sensitivities and the speci-

ficities of a multi-hyperplane scoring model with the other tools. The result shows

that the best classifier is a multilayer perceptron which has 3.33% error with

96.00% sensitivity and 93.00% specificity. The second best has 4.00% error which

is a support vector machine that has 90.00% sensitivity and 96.00% specificity

and a two-stage least cost credit scoring model has 96.00% sensitivity and 96.00%
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Method Error (%) Sensitivity (%) Specificity (%)

Multi-hyperplane 5.33 92.00 96.00

Vertical decision tree 14.67 74.00 91.00

Decision tree (C4.5) 7.33 88.00 95.00

Multilayer perceptron 3.33 96.00 97.00

Linear discriminant analysis 8.00 90.00 93.00

Support vector machine 4.00 90.00 99.00

Two-stage least cost 4.00 96.00 96.00

Table 4.11: Comparisons of misclassification error of iris-virginica

specificity. A multi-hyperplane scoring model has 5.33% of misclassification error,

which is the third, while produces 92.00% sensitivity and 96.00% specificity.

The result shows that all classifiers classify the iris-virginica from other two

iris types with some error because some of the iris-virginica data is overlapped

with iris-versicolor.

Iris-versicolor and non-iris-versicolor

actual value

p n Total

prediction outcome p̃ 46 5 51

ñ 4 95 99

Total 50 100

Table 4.12: Confusion matrix of iris-versicolor using a multi-hyperplane scoring

model

From table 4.12, a multi-hyperplane scoring model predicts 46 samples of

iris-versicolor as iris-versicolor and 4 iris-versicolor samples as non-iris-versicolor.
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Moreover, it predicts 95 non-iris-versicolor samples as non-iris-versicolor and 5

non-iris-versicolor samples as iris-versicolor. Then the misclassification error of a

multi-hyperplane scoring model to classify iris-versicolor is 6.67%.

Method Error (%) Sensitivity (%) Specificity (%)

Multi-hyperplane 6.67 92.00 95.00

Vertical decision tree 66.67 100.00 0.00

Decision tree (C4.5) 8.00 90.00 93.00

Multilayer perceptron 13.33 72.00 94.00

Linear discriminant analysis 26.00 52.00 85.00

Support vector machine 33.33 2.00 99.00

Two-stage least cost 10.00 86.00 92.00

Table 4.13: Comparisons of misclassification error of iris-versicolor

The misclassification errors, the sensitivities and the specificities of iris-versicolor

are shown in table 4.13. The result shows that a multi-hyperplane scoring model

has the least error which is 6.67% with 92.00% sensitivity and 95.00% specificity.

The second best classifier is a decision tree (C4.5) which has 8.00% error with

90.00% sensitivity and 93.00% specificity. The third is a two-stage least cost

credit scoring model which has 10.00% error with 86.00% sensitivity and 92.00%

specificity. Finally, the largest error is a vertical decision tree which error is 66.67%

with 100.00% sensitivity and 0.00% specificity.

Due to the result, a vertical decision tree induction has 100.00% sensitivity and

0.00% specificity. This means any non-iris-versicolor is recognized as iris-versicolor

and all of iris-versicolor is recognized as iris-versicolor, since it is two-class data

set, this model predicts all samples as iris-versicolor. Moreover, the result of a

support vector machine is similar to a vertical decision tree. The support vector
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machine has 2.00% sensitivity and 99.00% specificity, which means it predicts

only 2.00% of iris-versicolor correctly. Then, both of a vertical decision tree and

a support vector machine cannot classify iris-versicolor from other two iris types.

4.2.4 Haberman’s survival data set

actual value

p n Total

prediction outcome p̃ 186 46 232

ñ 39 35 74

Total 225 81

Table 4.14: Confusion matrix of Haberman’s survival data set using a multi-

hyperplane scoring model

Table 4.14 shows the average result of a multi-hyperplane scoring model predic-

tion. The result shows that a multi-hyperplane scoring model predict 186 survival

patients as survival and 39 survival patients as unsurvival. Moreover, it predicts

35 unsurvival patients as unsurvival and 46 unsurvival patients as survival. From

this result, this model predicts Haberman’s survival data set with 27.77% error.

Table 4.15 shows the misclassification errors, the sensitivities and the specifici-

ties of Haberman’s survival data set. The best model is a multilayer perceptron

with 24.83% error when sensitivity is 91.56% and specificity is 29.62%. The sec-

ond best is a linear discriminant analysis with 25.16% error, 95.56% sensitivity

and 17.28% specificity. The third is a support vector machine with 26.47% er-

ror, 99.55% sensitivity and 0% specificity. A multi-hyperplane scoring model has

27.77% error, 82.66% sensitivity and 43.21% specificity which is less than a deci-

sion tree (28.43% error), a two-stage least cost credit scoring model (28.46%) and
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Method Error (%) Sensitivity (%) Specificity (%)

Multi-hyperplane 27.71 82.66 43.21

Vertical decision tree 34.72 78.22 29.62

Decision tree (C4.5) 28.47 85.33 33.33

Multilayer perceptron 24.80 91.56 29.62

Linear discriminant analysis 25.13 95.56 17.28

Support vector machine 26.47 99.55 0.00

Two-stage least cost 28.46 86.22 30.86

Table 4.15: Comparisons of misclassification error of Haberman’s survival

a vertical decision tree (34.72%).

The result shows that all classifiers perform less than 50% on specificity es-

pecially a support vector machine whose specificity is 0.00% since the unsurvival

class is minority class which is a class whose samples is less than the other. Never-

theless, a multi-hyperplane scoring model has highest specificities which is 43.21%.

4.2.5 Johns Hopkins University ionosphere data set

actual value

p n Total

prediction outcome p̃ 212 38 250

ñ 13 88 101

Total 225 126

Table 4.16: Confusion matrix of Johns Hopkins University ionosphere using a

multi-hyperplane scoring model

Table 4.16 shows the confusion matrix of a multi-hyperplane scoring model
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prediction of 10-fold cross validation in Johns Hopkins University ionosphere data

set. The p group samples represent the good ionosphere and n group samples

represent the bad ionosphere. The result shows that the model predicts 212 good

ionospheres as good and 13 good ionospheres as bad. Moreover, it predicts 88

bad ionospheres as bad and 38 bad ionospheres as good. With this prediction,

the model has 14.50% misclassification error.

Method Error (%) Sensitivity (%) Specificity (%)

Multi-hyperplane 14.50 94.22 69.84

Vertical decision tree 38.39 60.00 64.29

Decision tree (C4.5) 9.67 95.56 80.95

Multilayer perceptron 14.27 96.44 66.67

Linear discriminant analysis 12.83 98.22 67.46

Support vector machine 11.88 96.89 72.87

Two-stage least cost 12.26 89.33 84.92

Table 4.17: Comparisons of misclassification error of Johns Hopkins University

ionosphere

Table 4.17 shows the average of misclassification errors, sensitivities and speci-

ficities of Johns Hopkins University ionosphere data set. From the result, a de-

cision tree shows the least average error which is 9.68% while the sensitivity is

95.56% and specificity is 80.95%. The second best is a support vector machine

which has 11.88% error. The third is a two-stage least cost credit scoring model

whose error is 12.26% with 89.33% sensitivity and 84.92% specificity. The fourth

and the fifth least error are a linear discriminant analysis and a multilayer per-

ceptron which perform 12.83% and 14.27% error respectively. A multi-hyperplane

scoring model has 14.52% error which less than a vertical decision tree whose has
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38.46% error. The multi-hyperplane scoring model constructs 94.22% sensitivity

and 69.84% specificity.

4.2.6 Blood transfusion service center data set

actual value

p n Total

prediction outcome p̃ 46 77 123

ñ 138 487 625

Total 184 564

Table 4.18: Confusion matrix of blood transfusion service center using a multi-

hyperplane scoring model

Table 4.18 shows the prediction of a multi-hyperplane scoring model in blood

transfusion data set. The p group samples represent the blood donors who donate

in March 2007 and n group samples represent as the blood donors who do not

donate in March 2007. The model predicts 46 donated donors as donated and

138 donated donors as undonated. Moreover, it predicts 487 undonated donors

as undonated and 77 undonated donors as donated. From this prediction, this

model has 28.74% misclassification error.

Table 4.19 shows the misclassification errors, the sensitivities and the speci-

ficities of blood transfusion service center data set. The result shows a multilayer

perceptron has 20.84% error, 29.21% sensitivity and 94.74% specificity, a decision

tree has 21.25% error, 38.76% sensitivity and 91.23% specificity, a two-stage least

cost credit scoring model has 22.18% of error, 29.21% sensitivity and 92.98% speci-

ficity, a support vector machine has 23.78% error, 0% sensitivity, 100% specificity,

a linear discriminant analysis has 25.53% error, 13.48% sensitivity and 93.51%
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Method Error (%) Sensitivity (%) Specificity (%)

Multi-hyperplane 28.74 25.00 86.35

Vertical decision tree 57.60 84.83 29.12

Decision tree (C4.5) 21.25 38.76 91.23

Multilayer perceptron 20.84 29.21 94.74

Linear discriminant analysis 25.52 13.48 93.51

Support vector machine 23.78 0.00 100.00

Two-stage least cost 22.18 29.21 92.98

Table 4.19: Comparisons of misclassification error of blood transfusion service

center

specificity, a multi-hyperplane scoring model has 28.74% error, 25% sensitivity

and 86.35% specificity and a vertical decision tree has 57.60% error, 84.83% sen-

sitivity and 29.12% specificity.

Since the support vector machine has 0.00% sensitivity and 100.00% specificity,

this classifier predicts all blood donors who donated in March 2007 wrong and

predict all blood donors who do not donated in March 2007 correct. From this

information, a support vector machine predicts that all donors do not donate

blood in March 2007.



CHAPTER V

CONCLUSION

A multi-hyperplane scoring model is a classifier that predicts two classes of

data by using multiple hyperplanes. The hyperplanes are derived from a mixed

integer programming problem. In our experiment, we compare our model with a

two-stage least cost credit scoring model, a vertical multi-hyperplane decision tree

induction, a decision tree C4.5, a linear discriminant analysis, a support vector

machine, and a multilayer perceptron using different types of data sets.

The result shows that on some data sets, our model yeilds less misclassifica-

tion errors than the two-stage least cost credit scoring model because our model

uses more hyperplanes. Generally, a multi-hyperplane scoring model fits the data

better than a two-stage least cost credit scoring model.

The multi-hyperplane scoring model performs well on the credit data sets,

which are the Johnson and Wickern data set and the Japanese bank data set.

The multi-hyperplane scoring model gives the highest accuracy in a Japanese bank

data set. However, in the Johnson and Wickern data set, it gives better accuracy

than the decision tree, the support vector machine and the two-stage least cost

credit scoring model. As for the noncredit data sets, which include the iris data

set, the Haberman survival data set, the Johns Hopkins University ionosphere

data set and the blood transfusion service center data set, the multi-hyperplane

scoring model yeilds larger misclassification errors than a multilayer perceptron

but performs better than the rest. Moreover, the multi-hyperplane scoring model

has similar accuracy on both linearly separable data sets, such as the iris-setosa,



51

and non linearly separable data sets, such as iris-versicolor, the Johns Hopskins

University ionosphere data set. In addition, the multi-hyperplane scoring model

performs well for the imbalance data sets, such as a Haberman survival data set

and a blood transfusion service center data set.

The vertical multi-hyperplane decision tree induction and the multi-hyperplane

scoring model both employ mathematical programming to construct the classifier.

Our experiment results show that the multi-hyperplane scoring model is superior

accuracy to the vertical decision tree induction in all data sets except for the John-

son and Wickern data set and the iris-setosa. However, the weak point of these

models are their high computation times since the branch-and-bound algorithm

is applied to determine separating hyperplanes.

By design, our model constructs the separating hyperplanes using all training

data instances. For small or medium sized data sets, the resulting mathemati-

cal programs is small enough to be solved normally in practical lenght of time.

However, for large-sized data sets, the mixed integer grogram is large and it may

take a considerably long time to find the solution. In that case, we recommend

applying some preprocessing before solving the mixed integer program.
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APPENDIX A : JOHNSON AND WICKERN DATA SET

CFTD NITA CACL CANS TARGET

1 0.4485 -0.4106 1.0865 0.4526 Defaulter

2 -0.5633 -0.3114 1.5134 0.1642 Defaulter

3 0.0643 0.0156 1.0077 0.3978 Defaulter

4 -0.0721 -0.0930 1.4544 0.2589 Defaulter

5 -0.1002 -0.0917 1.5644 0.6683 Defaulter

6 -0.1421 -0.0651 0.7066 0.2794 Defaulter

7 0.0351 0.0147 1.5046 0.7080 Defaulter

8 -0.0653 -0.0566 1.3737 0.4032 Defaulter

9 0.0724 -0.0076 1.3723 0.3361 Defaulter

10 -0.1353 -0.1433 1.4196 0.4347 Defaulter

11 -0.2298 -0.2961 0.3310 0.1824 Defaulter

12 0.0713 0.0205 1.3124 0.2497 Defaulter

13 0.0109 0.0011 2.1495 0.6969 Defaulter

14 -0.2777 -0.2316 1.1918 0.6601 Defaulter

15 0.1454 0.0500 1.8762 0.2723 Defaulter

16 0.3703 0.1098 1.9941 0.3828 Defaulter

17 -0.0757 -0.0821 1.5077 0.4215 Defaulter

18 0.0451 0.0263 1.6756 0.9494 Defaulter
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CFTD NITA CACL CANS TARGET

19 0.0115 -0.0032 1.2602 0.6038 Defaulter

20 0.1227 0.1055 1.1434 0.1655 Defaulter

21 -0.2843 -0.2703 1.2722 0.5128 Defaulter

22 0.5135 0.1001 2.4871 0.5368 Payer

23 0.0769 0.0195 2.0069 0.5304 Payer

24 0.3776 0.1075 3.2651 0.3548 Payer

25 0.1933 0.0473 2.2506 0.3309 Payer

26 0.3248 0.0718 4.2401 0.6279 Payer

27 0.3132 0.0511 4.4500 0.6862 Payer

28 0.1184 0.0499 2.5210 0.6925 Payer

29 -0.0173 0.0233 2.0538 0.3484 Payer

30 0.2169 0.0779 2.3489 0.3970 Payer

31 0.1703 0.0695 1.7973 0.5174 Payer

32 0.1460 0.0518 2.1692 0.5500 Payer

33 -0.0985 -0.0123 2.5029 0.5778 Payer

34 0.1398 -0.0312 0.4611 0.2643 Payer

35 0.1379 0.0728 2.6123 0.5151 Payer

36 0.1486 0.0564 2.2347 0.5563 Payer

37 0.1633 0.0486 2.3080 0.1978 Payer

38 0.2907 0.0597 1.8381 0.3786 Payer

39 0.5383 0.1064 2.3293 0.4835 Payer

40 -0.3330 -0.0854 3.0124 0.4730 Payer
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CFTD NITA CACL CANS TARGET

41 0.4785 0.0910 1.2444 0.1847 Payer

42 0.5603 0.1112 4.2918 0.4443 Payer

43 0.2029 0.0792 1.9936 0.3018 Payer

44 0.4746 0.1380 2.9166 0.4487 Payer

45 0.1661 0.0351 2.4527 0.1370 Payer

46 0.5808 0.0371 5.0594 0.1268 Payer

Table 6.1 : Data set of Johnson and Wickern
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APPENDIX B : GAMS CODE FOR

MULTI-HYPERPLANE SCORING MODEL

GAMS(the General Algebraic Modeling System) is a high-level modeling sys-

tem for mathematical programming and optimization which support both PC and

UNIX platform. It consists of a language compiler and a high performance solvers.

GAMS is design for complex and large scale modeling application.

The trial version software can be download from web site

http://www.gams.com/download/

The installation note, user’s guide, tutorial and other documentation can be

found in http://www.gams.com/docs/document.htm

The basic component of GAMS is composed of

• set

• data

• variable

• equations

• model and solve statements

• display stagement (optional)

The following is GAMS code for multi-hyperplane scoring model. The italic

in the code means the path of data file.

* Model for Multi-hyperplane scoring model

* Set declaration

set ATTRIBUTE "Set of all attribute"/

$batinclude Attribute File/;
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set ATT(ATTRIBUTE) "Set of attribute in the first pair of

parallel hyperplane"/

$batinclude First stage attribute File/;

set SEC(ATTRIBUTE) "Set of attribute in the second pair of

parallel hyperplane"/

$batinclude Second stage attribute File

/;

set THR(ATTRIBUTE) "Set of attribute in the third pair of

parallel hyperplane"/

$batinclude Third stage attribute File/;

set FULLDATA "Set of all data"/

$batinclude Total instance declaration File/;

set OBS(FULLDATA) "Set of observation data using in

construction step"/

$batinclude Training instance declaration File/;

* parameter declaration

table A(FULLDATA,ATTRIBUTE) "all data set"

$batinclude Data set File;

scalar Cdp "misclassify defaulter cost"/

300/;

scalar Cpd "misclassify payer cost"/

300/;

scalar Css "addition second hyperplane pair cost"/

10/;

scalar Cts "addition final hyperplane cost"/

10/;
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scalar M1 "Big M of first pair hyperplane"/

1000/;

scalar M2 "Big M of second pair hyperplane"/

1000/;

scalar M3 "Big M of final hyperplane"/

1000/;

scalar epsilon1 "epsilon of first pair hyperplane"/

0.04/;

scalar epsilon2 "epsilon of second pair hyperplane"/

0.04/;

scalar epsilon3 "epsilon of last hyperplane"/

0.04/;

* variable declaration

variable w(ATT) "weight of the first pair of hyperplane";

variable u(THR) "weight of the second pair of hyperplane";

variable v(SEC) "weight of the final pair of hyperplane";

variable F1(OBS) "the first stage score";

variable F2(OBS) "the second stage score";

variable F3(OBS) "the final stage score";

variable Xp "payer cut-off value of the first pair

of hyperplane";

variable Xd "defaulter cut-off value of the first pair

of hyperplane";

variable X2p "payer cut-off value of the second pair

of hyperplane";

variable X2d "defaulter cut-off value of the second pair
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of hyperplane";

variable Xts "cut-off value of the final hyperplane";

variable cost;

binary variable I1(OBS) "binary variable of the first

pair hyperplane";

binary variable I2(OBS) "binary variable of the first

pair hyperplane";

binary variable I3(OBS) "binary variable of the second

pair hyperplane";

binary variable I4(OBS) "binary variable of the second

pair hyperplane";

binary variable I5(OBS) "binary variable of the final

hyperplane";

equation

obj "objective function"

score1EQ "score function of the first pair hyperplane"

PEQ "payer group constraint of the first pair hyperplane"

DEQ "defaulter group constraint of the first

pair hyperplane"

SEQ1 "unknown group constraint of the first

pair hyperplane"

SEQ2 "unknown group constraint of the first

pair hyperplane"

RANGE1 "range of defaulter and payer of the first

pair hyperplane"

score2EQ "score function of the second pair hyperplane"



63

SPEQ "payer group constraint of the second

pair hyperplane"

SDEQ "defaulter group constraint of the second

pair hyperplane"

TEQ1 "unknown group constraint of the second pair hyperplane"

TEQ2 "unknown group constraint of the second pair hyperplane"

RANGE2 "range of defaulter and payer in the second

pair hyperplane"

score3EQ "score function of the finalhyperplane"

TPEQ "payer group constraint of the final hyperplane"

TDEQ "defaulter group constraint of the final hyperplane"

ValidEQ1 "valid inequality"

ValidEQ2 "valid inequality"

ValidEQ3 "valid inequality" ;

*objective

obj.. cost =e= sum((OBS)$(A(OBS,’TARGET’) EQ 0)

,(Cdp*I5(OBS)+Cdp*(1-I1(OBS))+Cdp*(1-I3(OBS))+

Css*(I1(OBS)+I2(OBS)-1)+Cts*(I3(OBS)+I4(OBS)-1)))+

sum((OBS)$(A(OBS,’TARGET’) EQ 1)

,(Cpd*I5(OBS)+Cpd*(1-I2(OBS))+Cpd*(1-I4(OBS))+

Css*(I1(OBS)+I2(OBS)-1)+Cts*(I3(OBS)+I4(OBS)-1)));

* constraints

score1EQ(OBS).. F1(OBS)=e=sum((ATT),w(ATT)*A(OBS ATT));

PEQ(OBS).. F1(OBS)+M1*I1(OBS)=g=Xp;

DEQ(OBS).. F1(OBS)-M1*I2(OBS)=l=Xd;

SEQ1(OBS).. F1(OBS)-M1*(2-I1(OBS)-I2(OBS))=l=Xp-epsilon1/2;
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SEQ2(OBS).. F1(OBS)+M1*(2-I1(OBS)-I2(OBS))=g=Xd+epsilon1/2;

RANGE1 .. Xp-Xd=g=epsilon1;

score2EQ(OBS).. F2(OBS)=e=sum((SEC),v(SEC)*A(OBS SEC));

SPEQ(OBS).. F2(OBS)+M2*I3(OBS)+M2*(2-I1(OBS)-I2(OBS))=g=X2p;

SDEQ(OBS).. F2(OBS)-M2*I4(OBS)-M2*(2-I1(OBS)-I2(OBS))=l=X2d;

TEQ1(OBS).. F2(OBS)-M2*(4-I1(OBS)-I2(OBS)-I3(OBS)-I4(OBS)

=l=X2p - epsilon2/2;

TEQ2(OBS).. F2(OBS)+M2*(4-I1(OBS)-I2(OBS)-I3(OBS)-I4(OBS))

=g=X2d + epsilon2/2;

RANGE2 .. X2p-X2d=g=epsilon2;

score3EQ(OBS).. F3(OBS)=e=sum((THR),u(THR)*A(OBS THR));

TDEQ(OBS)$(A(OBS,’TARGET’)EQ 0)..

F3(OBS)-M3*I5(OBS)-M3*(4-I1(OBS)-I2(OBS)-I3(OBS)-I4(OBS))

=l= Xts-epsilon3/2;

TPEQ(OBS)$(A(OBS,’TARGET’)EQ 1)..

F3(OBS)+M3*I5(OBS)+M3*(4-I1(OBS)-I2(OBS)-I3(OBS)-I4(OBS))

=g= Xts+epsilon3/2 ;

validEQ1(OBS)..I1(OBS)+I2(OBS)=g=2*I5(OBS);

validEQ2(OBS)..I3(OBS)+I4(OBS)=g=2*I5(OBS);

validEQ3(OBS)..I1(OBS)+I2(OBS)=g=I3(OBS)+I4(OBS);

model hyperplane /all/;

option optcr=0.20,optca=90;

solve hyperplane using mip minimizing cost;
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