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CHAPTER I

INTRODUCTION

1.1 Motivation &ﬁ’%e}%

J

— -
Classification is 01(—’ branc '_mming [1]. A classification

technique separates dat

he previously labeled samples
appearing in a trainin e seen in various fields such
as credit scoring, comp 1 f* 1 d development, handwriting
recognition, biometric 1 ification, e classification consists of two

processes which are a learning b, namely odel construction step, and a

predictive step, namely mode ]ﬂ%fc‘
. :_,/,.l.»J :,{ -

# j i
the sample data sq‘g}}:alled training SGM ct the model which can

be represented as ¢

. In the model construction step,

athematical formulae. In

|
kQOWIl objects.

The accuﬁﬁﬁa%fﬁ:i&j wd%'} Wﬂﬂﬂﬁ test data, which are

excluded from“the model construftlon step, to predlct the known labels. The

SN SRV K T Y o o

data Set

the predictive step, the model is used to classify un

There are several types of classifiers used in data mining researches such as
neural networks, bayesian networks, decision trees, quadratic classifiers and linear
classifiers. One of the linear classifiers is the linear discriminant analysis [2],
proposed by Fisher in 1936.

This linear classifier demonstrates measurement functions to maximize the



ratio of the difference among the means of sample data. The linear discrimi-
nant analysis can be used to classify taxonomic data such as species or genders.
The concept of this method is to construct a simple linear measurement function
that separates the data set into subgroups by finding the shortest distance of a
hyperplane between two-group instances. According to the experiment results,
the method can classify linearly separabledata but the misclassification occurred
when two target groups are overlappid.

There are many publieations using mathematical programming discriminant
analysis techniques, whichaise mathef?atical programming to create measurment
functions, to classify varioug data S'eté; « These techniques generate discriminant

functions that separate thie fraining da?a info the specified classes optimally.
A cost minimization approach to cl:'fa:ujsms.if‘i_cation 3], proposed by Gehrlein and

#

Gempesaw in 1991, is a mathem;itical':pfrggramming discriminant model. The
d ) ek 7}.?_'_: .1,1:1
model is developed by using a mixed infeger programming whose objective func-

P g
§ o
el

. . . . . — -‘--v- -: . -'J - . . . . .
tion is to minimize the cost of misclassification, to ebtain a simple credit scoring
- i

model. The model-_'cz)_';r‘lstructs only one hyperplane to I-SJa,-i"tition a data set into the
two groups. The experiment results show that thissmodel gives 100% accuracy
for a linearly separable datassets but-in-the meal ;jworld-only a few data sets are
linearly separable.

Heficell & tWo-Shage least-cost ¢réditigeoring model [4]) prOpeséd by Gehrlein
and Wagner in 1997 , is developed to aviod such problems. The two-stage least
cost credit scoring model uses two decision stages of classifying data based on
mixed integer programming while minimizing the cost of misclassifying samples.
The model classifies data into three groups called positive, negative and unknown
groups in the first stage. In the second stage, the model classifies the unknown

group, into a positive group and a negative group. From the experiments, this



model is clearly superior in performance to the Gehrlein and Gempesaw’s model
3], especially for credit scoring data sets. But its disadvantage is higher compu-
tation time and lower accuracy than statistical techniques.

An iterative mixed integer programming method for classification accuracy
maximizing discriminant analysis [5], proposed by Glen in 2000, is a mixed integer
programming (MIP) model which genevages.a linear discriminant function. The

objective of the MIP is to.maximize the number of correctly classified instances.
J

Compare to Fisher’s linear disetiminant analysis 2], a logistic regression, a k-
nearest neighbor and*a kesnel density'i the accuracy of this method is not better
on Australian credit”approval data set.« Moreover, it"is recommended that this

method is restricted 40 small data getsTlélu,e to its long computational times.
: A

The extended DEA-discriminant an'%il‘ys‘i_s 6], developed by Sueyoshi in 2000,

is a mixed integer programming inodel ;if&iflig:h identifies the overlap of two-group

#

et ety
data set and avoids the specification of a separation function by producing two

e .
Bl
5 J 4y g

. . . . ~] — i v'- d . o . . . .
steps of piece-wise linear discriminant functions: one for overlapping identification
- i

and another for cla;sé;i;f‘ication. A Japanese bank data sé.b‘, which is real world data
set, is used to evaluate this model. The results of*this research show that the
method has high accuracy-compared, to other discriminant-analysis methods.

Mathematigal programming models for piece-wise linear discriminant analysis
[7], proposéd by Gleti i) 2003 arél théthiods fortolagsificatich problem. These
models tise at least two piece-wise linear functions to classify a two-group data set
while the objective is to minimize the misclassification error. The model is tested
using the Japanese bank data set which is a two-group problem. The results show
that these models give good hit-rate in this data set. According to the author,
these models are more practical than the former Glen’s model [5].

A classification by vertical and cutting multi-hyperplane decision tree induc-



tion [8], proposed by Better, Glover and Samorani in 2010, is motivated by math-
ematical programming models for piece-wise linear discriminant analysis. The
models use multiple hyperplanes, together with a decision tree. Their meth-
ods used a piece-wise linear approach by eliminating some requirements that one
group must lie in a convex region and avoiding the transformation mapping to
a higher dimension. The basic concept 6fithis method is a multivariate decision
tree which is a binary tree whose intejnal nodes are splitted by a hyperplane and
a leaf node is associatedswith only oﬁe group. Avwertical decision tree is defined
as a multivariate deeiSion rce Whose“'.lindividual internal node is a parent of at
least one leaf node."And‘a cutting déci,sion tree is define as a vertical decision
tree whose misclassification dafa, at. thé; ‘in:cermediate leaves are not allowed. The

model is hyperplane-based and _.Classiﬁe'sif@yvg-group data set by constructing mul-

tiple hyperplanes based on & mixed inteé‘(ef'_program whose goal is to minimize the

#

o

misclassification errors. The Speed and the accuracy of the model are compared

with Glen’s mathematical prd-g;rainming models for piece-wise linear discriminant

analysis using Japéiiéfse bank data set which is distri_iﬁited by Sueyoshi and the
Wisconsin breast cane¢er data set from the UCI data-management repository [9].
The results shew that, the-new,model-isbetter thanGlen’s-models in both accu-
racy and speedy; However, this model is not be suitable for classifying very large
data séts.

In our research study presented in this thesis, we develop a new classification
model based on the minimization of the cost of misclassification errors. Our model
is an extension of Gehrlein and Wagner’s two-stage least cost credit scoring model,
which employs a mixed integer program for minimizing the cost of misclassification
errors. Morover, our model splits the decision process into multiple stages, which

are equivalent to determining the multiple optimal hyperplanes to be used as



classifiers. In fact, our model is not limited to classifying credit scoring data set.

The model can be applied to other types of data sets as well.

1.2 Research objective

The goal of this research is to, ¢ 1d the two-stage least cost credit scoring

model by minimizing the cost of m

\\:,\1

In Chapter II, we - backgrouns \ "\‘, e used in this thesis, which

includes the mathema nmin tropy, classifiers and evaluation tech-

niques. el
(s .= 12k . s
In Chapter III, we present the mults rplane scoring model by describing
the model construction extplaining h bly the entropy into the model.

In Chapter IV, {78 present e

and draw tl@conclusion from the study.

Some future ?Iﬁ. E‘iﬁsﬁﬁ\ﬁaﬁwﬁ )i ﬁs ﬁhapter.
ARIAINTUNRIINYINY

In Chapter V, W@iscuss € TC



CHAPTER 11

BACKGROUND KNOWLEDGE

This chapter provides bat ve that is important to this thesis.

Fifth, we introduﬁt e eva S a‘mfe used in our experiments.

The cross validation is }h& main accuracwvaluating technique for this thesis.

ﬂumwamwmm

2.1 Hypeﬂ)lanes

A mqlﬁ peﬁ ane scoring model constructs V]l E!e hyperp?zmlnes in the Eu-

clidean space. The following definitions describe the notation of hyperplane.

Definition 2.1.1. Let R denote the field of real numbers. For any non-negative
integer n, the space of all n-tuples of real numbers forms an n-dimensional vector

space over R which is denoted by R™.

An element of R” is written as © = (21, x9,...,%,), where each z; is a real



number.

Definition 2.1.2. Let R denote the field of real numbers. The hyperplane in an

n-dimensional space is defined by

a1y + ana:n +c= (2.1)

ze R which aq, as, ..., a, are not

1 two half-spaces.

where x1, 2, ..., x, are v

all 0.
A hyperplane also

Definition 2.1.3. L e hyperplane

,\*

(2.2)
divides space R" into two
< (2.3)
and i ‘ ‘
!D a1x1 + Aoy + . .. + apx, + 0@ 0. (2.4)

Since & hﬁrﬂxﬂpﬁ%ﬁ% TG G e can devlop a o

group classifier! A random hyperglane is not an appropriate class1ﬁer because it

oy NS YT % ] B B

by usmg a mathematical programming technique to guarantee that the classifier
creates the optimal hyperplanes that partition a two-group data.
2.2 Mathematical programming

Mathematical programming is one branch of operations research which was

established in England during World War II [14]. At that time, British operations



researchers made the best utilization on war material. After the war, these tech-
niques were adopted in many fields such as transportation, routing, supply chain
management, scheduling, allocation problem and decision making.

Mathematical programming formulation is composed of an objective function
and constraints. The goal of the mathematical programming is to find the best
possible solution of the system. When the solution satisfies all constraints, it is
called a feasible solution..T'he best o_f} the feasible solutions is called the optimal
solution. There are many tvpes. of rﬁathematical programming problems. The
most well-known problen s the lineaﬂrJI programming problem, which is a mathe-
matical programming preblem svhose ébjective and constraints can be described
by linear functions. “When the ma‘theﬁgat’ical programming problem requires all
or some variables to b€ ingegers, the prdﬁa}l}erp is called integer programming prob-
lem and mixed integer programiming pfablt;m respectively. When the objective

JEL $7H . . .
function or some constraints in-the problem are not linear, it is called a nonlinear

i .
™ -

programming problem. G

In our researchy the model is designed as a mixed _i}teger programming prob-
lem. The following subsections describe the concept of a mixed integer program-

ming problemeas avellsas a~linear programming problems-

2.2.1~, Lanearprogramming

Linear programming is a major branch of a mathematical programming. This
method determines the best outcome of linear mathematical models which is com-
posed of a linear objective function and linear constraints [10]. The simplex
method, proposed by George B. Danzig in 1963, is a powerful method to solve
linear programming. The analysis of the simplex method shows the weak point

of this method. The simplex method may solves a problem in exponential time.



However, the interior point method, proposed by Narenda Karmaka in 1984, can

solved a linear programming in polynomial time.

2.2.2 Mixed integer programming

When a mathematical programming problem contains integer variables, inte-
ger programming or mixed integer programming is applied to the problems. A
pure integer program contains only infeger variables while the mixed integer pro-
gram requires some variablesto be integer. Many real world problems such as
capital budgeting, set-covering proble}p, job sequencing problem, sales and oper-

ations planning and clagsifigation problem require a mixed integer programming

- =t

technique. A mixed integer prog’r‘ammif}g is not only used for formulating discrete
varaible problems but als@ applied to the model whose constraints are not satisfied

F)

" 4 p._ )
simultaneously such as either-or constraiits and off-on constraints.
i 'f.f'_ .-‘J"J
sl

Normally, a mathematical pr@)gramm‘q}g' solution must satisfy all constraints.

Therefore a group'djf.-_ constraints must be consistent. _."S_peciﬁcally, the real world

problems sometiméS"}equire a choice to be made, for-¢ample, in credit approval
problem, a loaner must decide to approve or deny an applicant’s loan. If this
problem is désighied ‘as 4 common ‘matheniatical programming, the solution of
this problem must satisfy both constraints which are the denying loan constraint
and the approvingiloan constraint. This conflict provides thejinfeasibility of the
problem. Then the mixed integer programming can be applied to the credit scoring

problem as in Example 2.2.1.

Example 2.2.1. Mathematical model for a credit scoring problem
The objective of this problem is to find a set of scoring parameters of the
function which minimizes the misclassification of the labeled credit applicants.

The credit applicant can be classified as a payer or a defaulter. The scoring



10

function of the applicant 7 is composed of the weight w; which is a coefficient
of the given attribute A;;. The cut-off value z. is used to split samples into the
payers and defaulters. Given that the data set has K credit applicants with N

variables.

Let P  be a group of payers;

D be a group of def: =
A;;  be a credi *—-a at apphcant ..

The scoring functlo is.Lhe-sum o thmf the weight w; and the given

attribute A;;, deﬁneW Y

Using the cut-off v plic \ ore is either f(i) > z. or f(i) <

. — ¢ when € is a sm ¢'res \

Since mathematical programs
deal with simultaneous co JFA,P, ~the e or scoring constraints will be trans-
formed by applylng a blnary va ﬁ:}: e h applicant i

V— _—; J

m 1, if f(i) < xc —@
| ‘o Y o -
For sufﬁcﬁtuﬁﬁ’(}%ﬁ%%w&qﬂ% constraint 1s trans-

formed into thmfollowmg s1multara£0us constramts

ARIANN I UAIINYAY

f@)+ MI; > . and
f@)—M(1—-1)<xz.—¢
The transformation assures that only one of two constraints can be activated

for each applicant ¢. If I; = 0, the first constraint is active while the second

constraint is redundant because the large M makes f(i) — M smaller than z, —e.
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Similarly, if I, = 1, the first constraint is redundant and the second constraint is
active.

The objective of the credit scoring problem is to minimize the number of the
misclassified applicants. When the applicant is a payer, the score of the payer

should be larger than or equal to z.. The model misclassifies a payer when the

|
score of the payer is less tha ' W 1. On the other hand, the model
misclassifies a defaulter core i n or equal to x. which means
L ——

that I; = 0. Then th : isclassified applicants is

The mixed integer ize the number of misclassified

applicants is

Minimize
subject to

'm Jfor 1€ PUD

ﬂﬁﬂﬁﬂﬂﬂiﬂﬂﬂﬂ?

for zGP D

’QW'WNT’IT@HNMT)WEH@H

/ ('), Wj, T unrestricted

1€ PUD

2.3 Measures of impurity

There are many techniques to measure the impurity of data. Gini index and
entropy measure are the most popular measures which are usually used in a deci-

sion tree or a decision forest.
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Entropy

Entropy is a measure of the uncertainty asscociated with a random variable
[16]. This concept is widely used in physics and chemistry. Historically, this
concept was proposed in early 1850s by Rudolf Clausius [17]. It is originally used
in thermodynamic systems to explain why some processes are spontaneous and
others are not. In 1948, Clau && , eloped the concept of information
SN

entropy, which is used in i

information in phone-line si in the function H(D) as

where D is a d

.. Lot 4 %
gign is used-iir decisiontr

\

entropy or maximurﬂjnforma o) plit the @ta set. Suppose we split a

data set D by the valués of variable A info'm partitions, say Dy, Ds, ..., D,,. The

s Sy WL ATLE) AELADN R et
RIAINSRI BTNy ey e

9%

And the'information gain of data set by branching variable A defined as
Gain(A) = H(D) — H4(D). (2.7)

Example 2.3.1. Entropy measure
This example shows how to calculate the entropy and information gain. Let
buys_computer be the target class. Define class P as buys_computer = “yes” and

class N as buys_computer = “no”.
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age income | student | credit_rating | buys_computer
<=30| high no fair no
<= 30 high no excellent no
31..40 high no fair yes
>40 | medium | no -~ fair yes
> 40 low yes | | ‘ r yes
> 40 1 . es @ no
31..40 OW " ellent yes
<=30 | medi - Faix _ no
<=30 . S = yes
> 40 | me ‘?’e I—i . ' ' yes
<= 30 | medi 5 ‘ yes
31..40 | mediun m; llent yes
31.40 | high | ;;.,:? i ves
> 40 no

Tablﬂz : ca%n data set
The entrOﬁ of ta ﬁ? Vl }J V](j %]!'] f(]

)= 7!
o9\ 17 ) 32"\ 1

’QW'WNﬂ%WﬁMﬂWEﬂ&EJ

Suppose that we split the data set using the variable “student” then the en-
tropy of target class after split by the variable “student” is

7 7
ﬁHstudentz “no” (D) + ﬂ Hstudent: “yes” (D) .

P [Pl [V [N]
Hs udent=*“no” D) =——lo —lo
eni=ener (D) = =150t002 \ oy ) = by \ ]

H student (D ) =

Since
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3 3 4 4

Hosnsonn (D) — —PLiog (1PLY NI (IV]
student= yes |D| |D| |D| |D|

- —1092 (

and

ST

) = 0.5916728.

Then Hgygent(D) = mation gain is Gain(student) =

0.1515.

(2.8)

Example 2.3.2. Gini index Y

From table 2.1, we > impurity of the buy com-

17

puter classification St o es, where buy_computer

“yes” and N be tlEclass of instances, where buy&mputer = “no”. The Gini

e IFTTJEWVIEWITWEIWﬂ‘i
A mn‘mﬁm)ﬁw%a d

= 0.46

Suppose that the data set has been split using the variable “student”, the Gini

index of two classes after split by the variable “student” is

7 7

I(D) - (ﬁlstudent = “yes” (D) + ﬁlstudentz“no” (D))
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Since
6\2 [1)\2
Isuen:“es”D :1— — —
tudent y() <<7>+<7>>
=0.24
and
))
then
i ‘7 ._
Enﬂ:
Then the Gini index of & d af 5y the variable “student” is 0.37

2.4 Classiﬁe ' 7 .

In this section, we 'antroduce the genvl concept of the classifiers which are

oy 4 AT W) DR T clasitrs ve

decision tree, a multllayer perceptron, a linear discriminant analysis and a support

wor) FININIT M UATINE A Y

2.4.1 Decision tree

A decision tree or a classification tree is a tree-like classifier. A decision tree
consists of internal nodes and leaves. An internal node represents the conjunction
of features that are used in the classification and a leave represents the class

Instances.
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In 1984, a decision tree was developed by Breiman et al [20]. They implemented
their tree procedures named CART (classification and regression tree). Later,
Ross Quinlan (1993) developed a famous classifier named C4.5 [19].

(C4.5 algorithm builds a decision tree from a training data set. This algorithm
constructs a tree in top-down recursive divide-and-conquer manner. All of data
are considered at root node. Then the samples are partitioned into child nodes
recursively based on selected splittinngariables and splitting values. The splitting
variable and the splittingwaltic al each node arethe ones that give the least data
impurity among its ¢hildsen nodes. '.LT he impurity can be measured using the
information gain or Ginifindex.  The partitioning step stops when it reach the
following criteria are‘mets o é

1. all samples in the leaf node-‘belong:.’to‘-'the same class;

’ /N

2. there are no samples leff to partiti(ﬁ;jé;hd

e ) =
g™y =

d -4 el

3. all variables areised in partitioning.

2.4.2 Multilayer perceptron

A multilayér perceptron i§ one of the artificial neural networks [21]. An arti-
ficial neural network is the mathematical model which mimigs the properties of
biologi¢al neurons, | Asmultilayer perceptron uses multilayer feedforward networks
which are an important class of neural networks. The network usually consists of
a set of source nodes, that constitute the input layer, one or more hidden layers
of computation nodes and the output layer of output nodes.

The highly popular algorithm of multilayer perceptron is known as back-
propagation algorithm. The algorithm is based on the error-correction learning

rule. Basically, back-propagation consists of two passes of computation process
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through the different layers of networks which are forward pass and backward
pass. In the forward pass, the algorithm functions through the source nodes and
spreads through the network layer by layer. During the forward pass, the weights
of all networks are fixed. The error of the output of the forward pass is computed
and feeded back to the network by the backward pass. In the backward pass, the
error signal is spread backward from the eutput node to the source node. With
this pass, the weights of the networl; are_adjusted. The forward and backward
pass are computed iterativelyv ungil the stopping eriterion is met, which is either
reaching iterations limit ou acceptablélerror gap.

The back-propagationfalgovithin ca? solve some of difficult problems by train-
ing in a supervised manner. The. de?relo%‘mgznt of this algorithm is now a landmark

in neural networks beeiusg it provides an efficient computational method for train-

“f

ing of multilayer perceptroms. ... Ydda

= b

2.4.3 Linear discrir'ri'i'ﬁént aﬂgi'jf"s_is

A linear dicrimfﬁ'ént analysis is the statistical class_iﬁér [20]. This method uses
measurement functions to classify unknown data. Iii general, this method finds
the best separating function which' measuves the ‘distance of the classes. The
linear discriminant analysis creates the coefficients which are associated with the
variables i the lingar form.

When the data set is linearly separable, this method is the most powerful and

robust model. On the other hand, this method is very sensitive to the outliers.

2.4.4 Support vector machine

A support vector machine is a classifier which uses a linear optimal separat-

ing hyperplane [1]. When a data set is not linearly separable, this method uses
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actual value

P n Total
prediction outcome | p | True Positive | False Positive P
i | False Negative | True Negative | N

Total wnal N

are always separated lan " riate mapping is applied.

The support vector i £ ismot onl the separating hyperplane

2.5 Evaluation techniques

ﬂUH?WQWﬁWBWﬂ

In this section, we introduce the evaluation measures?the model and some

TRRAIRE DI EE 8

2.5.1 Performance measures

A confusion matrix is typically used in supervised learning [1]. Each row of the
matrix represents the predicted instances and each column represents the actual
instances. The confusion matrix, which reports the amount of true positives, false

positives, false negatives and true negatives, is shown in Table 2.2.
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Accuracy measure

The accuracy is a percentage of samples that are correctly classified by the

model [1]. From the confusion matrix, the accuracy is

True Positive+True Negative
Amount of samples

Accuracy =

Conversely, the opposite of the accur a misclassification rate. The mis-

classification rate is defined as follo — |

ve--False Sitiy
e e I = 1 — Accuracy.

Sensitivity measuzes ) e of actus )sitives which are correctly
classified. A high sensitivity m‘%ﬂl class les 11 Iy positive instances correctly.

From confusion matrix, we can define ¢l sitivity as

Like sensitivity, @eciﬁcity 1S a measure o néga@e class. It shows the pro-

) E‘ﬁﬁ %‘Wm i) % s
’&l P17 B S @H

2.5.2 Cross validation

Cross validation is a technique for assessing how the models generalize to an
independent data set [1]. The cross validation is mainly used to estimate how

accurate a predictive model performs in practice. Each round of cross validation
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involves partitioning samples and creating the model on one subset called a train-
ing set, and validating the model on the other subset called a testing set. This
method usually is performed in multiple rounds with different partitions. The
validation results are averaged over the rounds. The common types of cross vali-
dation are repeated random sub-sampling validation, K-fold cross validation and

leave-one-out cross validation.

Repeated random sub-sampling Validation

Repeated random*Sub-saupling qu}lidation randomly splits the data set into
a training set and a“fest sets For_,each split, the model is created by fitting the

training set, then predictive aceuracy isT evaluated on the test set. The advantage
of this method over fhe JK —feld.eross "'\’,zalidation is that the proportion of the
training set and the test set is uldependeh_t on the number of iterations. On the

,

other hand, the dlsadvantage of ﬂfuq methed is that some observations may never

be selected as a test sample and others may be selected more than once. In other

words, the test subsets may be overlapped. Note thdt the results vary if the

analysis is repeated with different random splits.  +~

K-fold cross validation

In /K -fold crossyvalidation, 4he original datay setrisirandomlypartitioned into
K subséts [1]. From the K subsets, only one subset is retained as the test set,
and the remaining K - 1 subsets are used as the training set. The cross validation
process is repeated K times, with each of the K subsets used only once as the test
set. The K results from the folds are averaged or combined to produce a single
estimation. The advantage of this method over the repeated random sub-sampling

is that all observations are used for both a training set and a test set, and each
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observation is used for test the model exactly once. The commonly used K is 10.
In K-fold cross validation, the folds are selected so that the mean response
value is approximately equal in all the folds. In other words, each fold maintains

the same proportion of the groups in the data set.

Leave-one-out cross validation

Leave-one-out cross validation (LOOCV)#ises.only one sample from the origi-
J

nal data set as the test setwand the remaining samples as the training set [1]. This
method is repeated such that.each sa’ﬁnple is used once as the test set. In other
words, this method 1§ theg'same as a K -fold cross validation with K is a number

of samples of the dafa set. JA 1.(;&;6—01;'&-()111] cross validation is computationally
: 3

expensive because thelarge wumbel of the training process is repeated.
. rid v-_.-’a'y 3

g7 F )
sl s dia
2.5.3 Cost-based evahiation

; "Va'-._'vl
L o Jiodi LT
- o el

The cost-based éyaluation is a technique to evalua"'tq the classification model

- -

especially in a bias’ d'éta set such as a credit data set. In a credit data set, there
is a bias among a defaulter and a payer. Leonard aiid Banks [26] suggested that
the cost of five riisclassification payers‘ean belapproximated as the cost of one
misclassification defaulter. This means that the classification of the credit data
set should émphasize on the accuracy in the defaulters than m the payers. From
this type of data set, the evaluation technique is adopted to evaluate the model
by using the misclassification cost of instances.

It is proper to set the misclassification cost of each type differently. As in the
credit data set, the defaulter misclassification should cost about five time higher
than the payer misclassification. For example, if the payer misclassification cost

is 100, the defaulter misclassification cost is 500.



CHAPTER III

MULTI-HYPERPLANE SCORING MODEL

In this chapter, we propose the methodelogy which describes how to formulate
the multi-hyperplane scoring problem as a-mixed integer programming model.
Moreover, this chapter explaias how to apply an entropy measure into a multi-

hyperplane scoring mogdel. |

3.1 Model description”

A multi-hyperplane scouing model is '-'_éxi'_(;_lassiﬁcation model which uses multiple
hyperplanes to classify a two'é'gro'up data;sﬁ".'bjfﬂ This model creates a collection of

separating hyperplanes. The collection conhsists of two types of hyperplanes, which

are parallel hyperﬁlgihes and a final hyperplane.

A pair of parallel ,ilyperplanes divides the space i_ﬁto three regions which are
positive, negative and unknown regions. The unknown region lies between the pair
of parallel hypetplanes; while the others lie on' the either side of two hyperplanes.
The fipst pair of hyperplanes-is.constructed by using-a half-ef y¥ariables in the data
set. Then another pair of hyperplane is applied to the unknown region which
is separated this region into another positive, negative and unknown regions.
The later pair of hyperplanes required more variables which include the former
variables. The new pair of parallel hyperplanes is applied to the new unknown
region until there is only one unused variable left.

The other type of hyperplane is a final hyperplane which is applied to the model
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_____

_____

Figure 3.1.1: T perplane scoring model

to make the final decisiouforthe unknownregion p \“0 cing from the previous pair

of parallel hyperplanes. the unknown region into two

Lbos

regions which are a positiye -~--"—- egative region. The final hyperplane
is constructed by all varlabl ta set. Figure 3.1.1 shows the two-

dimensional space whi el hyperplanes and a final

\7

'F

hyperplane.

From figure 3.1. the thick line is created front’ parts of a pair of parallel

hyperplanes ﬁl uug m}wﬂ wﬁuw ﬂ@fﬂﬁme into two regions

which are idenftified as a positive }eglon and a negatlve reglon From the figure,
€Y G G BT T B Bt ot
This rno%iel classifies the instances whose lie on the positive region as a positive
group instances and classifies the instances whose lie on the negative region as
negative group instances.

In this thesis, the collection of optimal hyperplanes is constructed by using
a mixed integer programming. The corresponding objective function and con-

straints are generated from the tranning data set. For better understanding, we
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will explain the constraints of the model and then the objective function.

3.2 Model constraints

There are three types of constraints of a multi-hyperplane scoring model, which

W constraints and final hyperplane con-

c@ to the sample 7 in stage ¢.
\ stages of the model;
n \\ e t;

are score constraints, parallel hy

straints.

First, the score con

Let E

T \
t : - <0 N .
A beth abl I‘ ) z in stage t;
w§ age t; and
N
F.(i) be the

So Fi(i) is defined

(3.1)

Second, the m de assify the samples. A pair

LY
of the parallel vs ‘ trJ partition a space into 3

regions which are po 1t1ve negative and unknown regions. Define X% and XY

as the cut- oﬂﬂalu EI‘H% %ﬂ Wﬁ%ﬂ’] ﬂﬁample whose score is

more than or &ual to X5 is class‘;ﬁed as a p081t1ve and the sample whose score

= ARARER T RHAVIAS oo

unknow

From the above explanation, we formulate the parallel hyperplanes constraints
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in stage t as

2t—2

Fy(i)— MI*' — M <2t —2-Y IF | < X} (3.2)
2t_—2

F(i)+MI*+ M <2t —2-Y " IF| > X} (3.3)
k=1

| Vy > X +e (3.4)

< XL—¢ (3.5)

where IF is a binq/ . 2, he sample is classified as a

positive in stage ¢t w

ssified as a negative when

I?* =1and I = ; Ta i i ¢ t stage when I?* = 1 and
I?*' = 1. Hence, the lehas [?* =0and I?" ' =1
while incorrectly classi = 1 and I*' = 0. On the
other hand, the correctly clagsified” sample has I?* = 1 and I = 0
while incorrectly classified 11'é:g"£§r¢esk d I?*7' = 1. We keep on

Third, a final hy rplane requ Y one cutg* value to classify the un-

known. Let X, be the €utzoff value of théfinal staﬁ The sample whose score is
1

oy WA A B
“{W‘f N T

2E—-2
Fp(i) — MI*P~' — M <2E —2- )" If) <X,—¢e, i€N,  (3.6)
k=1

2E—-2
Fp(i)+ MI?P=' + M <2E —2-> If) > X.+¢e, i€P (3.7)
k=1

The sample is correctly classified in the final stage when 257! = 0.
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3.3 Model objective function

The objective function of this model is defined by the misclassification cost
and the information cost. The misclassification cost occurs when the model made
a wrong decision. There are two types of misclassifications which are classifying

a positive sample as a negative nd classifying a negative sample as a

positive sample.

Let P be the s

Cyp be the g

odel is said to make wrong
decision when the positi the negative sample ¢ has

I?* = 0. Then, the mis define as

1—1771). (3.8)

In the final stage, the ; Auple i when I =1. The

misclassification costmf the last stage is define as m

AULINENTHYANT »
Thglrwljtﬂ STl W gﬂt‘mm‘]ﬁ Nitd dTﬂ"s' gl smples nto

a higherstage which requires more information. Define Cy as the information cost
of stage t. The sample 7 in stage t requires additional information in stage ¢t + 1

when [? =1 and [?*"! = 1. Then the information cost is

n

Com » (' +177" 1), (3.10)

i=1

We combine the model constraints and the objective function to get



Minimize

E
Cpp 2271 4 Z(Ct+1 — Cpp) 12 2 CyI?

)
)

E
Cpn[z‘zE_l + Z(CtJrl - Cpn)Iz‘gt + Z CtJrllz‘Zt_1

t=1 t=1

ilng
N N

subject to

7]

EAIATBNITNYAA

2E—2

Fl(E—1)+M<2— ZIf) > Xyt +e,
k=1

2E-2

Fi(i)— M (2 - If) < XET1_ ¢
k=1

XE =Xyt > 2,

27



28

ng
F(i) =Y wlAL,
j=1

Fe(i) — MI2E= — M > < X.—¢e,i€N,

2E-2
2E—2- ) If) > X,+ei€P.
k=1

Fg(i)+ MIZE 4+ M

/\/{\_p\
e
: |
()
|

[\

M5

S
S~
=

3.4 Representati ‘ ’ '
' | ——
model Wn of piece-wise score func-

e \ icie air of parallel hyperplanes

The multi-hyperp

tions. These score f

.+ ahy, +bp =0 (3.11)
i by = 0 (3.12)

The score functiom J

¢
§-- SR . AR, (3.13)
A UYTENTHETNT
and the (311’5—0f?ﬂ values of a positive group and=a negative group are bp and by,
el 1ONTIIEUNRTINETIREY
q
When Fi(x) > bp, the instance x is classified as P. On the other hand, when
F,(z) < by, the instance z is classified as N. When by < Fy(z) < bp, the instance
x is classified as an unknown which is classified by using other score functions.
Similar to the concept of a pair of parallel hyperplanes, the final hyperplane

can be also transformed into the score function. Since the final hyperplane is a
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single hyperplane, the final decision has only one cut-off value. Define Hg as a

final hyperplane.

HE:afhl-l-athg-l-afhg,-l-+afhn+bE=0 (314)

The score function Fg(x) can b

(3.15)

and the cut-off value M it negative group is bg.

When Fg(x) > bg, . On the other hand, when
Fg(x) < bg, the instan
3.5 Entropy model

The entropy multi-hy la 6-SCOrin| el improves the multi-hyperplane
scoring model by ranking deeision va 3 ed on entropy. Randomly ordered
variables effect bothZtomputation-time-and-accuracy-of the model. The appropri-

ate order of variables depend on able leffﬁt the grouping of a positive

group and a negative group. A variable that splits samples into a positive group

and a negativﬂruﬂr&t%sﬂeﬂoﬁ%eﬂ@vﬂaﬁe. Note that the data
YU
set, which is splitted into a positiv€ ﬁ%and ﬁﬁtive gl;i)lﬁﬂerfectly, has zero

Example 3.5.1. Table 3.1 shows the data set of credit applicant which has four

applicant with two variables.

Let P be a group of accepted applicant; and

N be a group of rejected applicant.
Consider the entropy of data set after splitting with variable income and family

size.
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applicant ID | income | family size loan
1 180 2 accepted
2 130 4 accepted
3 30 1 rejected
4 3 rejected

{eredit applicant

2
) _ Hlncome> 105 (D) .
v; SN (1]
\ﬁ Y |D| 2\ b
—O
W \N| IN|
9 —lo
% \» ~ o1\ |p
0 2 2
f— 77— 71—

Hence v:;&, |

j
Aug ?;f%ﬂﬁi?’ ﬁ&iﬂj n@
R aﬂﬂ‘iﬂtﬁ?ﬂfﬁﬁﬂfﬁ%‘l

CIPL, (1P _INL, (1N
Haml size D)= -l
ety et 0) = = 102 {1y ) = 11 \ [

2 2 1 1

1 3
1(0) +5(0.918) = 0.688.

Hence Hfamily size (D) = 4

From table 3.1, a variable “income” is sufficient to split the data set into accepted

and rejected since the entropy is zero. Note that the cut-off value is 105 for
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“income” classifies the sample into two groups which are “income” < 105 as
rejected and “income” > 105 as accepted. On the other hand, if we use the
variable “family size”, more complicated split is required. For example, we use
“family size” with “income” to generate three hyperplanes, which are “family size”

=1, “family size” = 3 and “income” = 105, to classify the samples. In the first

%ugs, which are “family size” <1 as

A
stage, we classified the sampl ;
rejected, “family size” > pted
L —

“family size” < 4 as unknown.
In the second stage, assified into two groups which are
“income” < 105 as \ ; .
STy O \\ used in creating the model

affects the complexity Bl INote \that .\’ entropy can measure the

Example 3.5.1 sho

impurity of splitting by ap of va able [he smaller the entropy is, the
ncome splits the samples into

accepted and rejected groups € ' es only one hyperplane. Hence, the

AUEINENTNYINS
AN TUNM NN Y



CHAPTER IV

EXPERIMENTS AND RESULTS

In this chapter we show results comparing the accuracy

)
of our model with the -stage leﬁredlt scoring model and some
well known classifiers whi
a linear discriminant a i -l 1 ptron and a vertical multi-
hyperplane decision tr -
A multi-hyperplane
Duo E6750 2.67 GHz C d 154 ,. 1 Microsoft Window 7 operating

system.

4.1 Data se 4

In this experimenti, we use not credit datﬂets, which are a Johnson

and Wickern [22] a noncredit data sets,
which are an ﬁ Eﬂﬁﬁﬁﬁ %\Ejaj;tle% [23], a Johns Hopkins
n AR TNY RI5 0k (1 M3 e

4.1.1 Johnson and Wickern data set

This data set is a credit data set with 4 variables and 46 firms (21 defaulters
and 25 payers) [22]. First, our experiment uses all 46 firms as training data to

compare the training accuracy with Gehrlein and Wagner’s [4] paper. Moreover,
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we applied 10-fold cross validation to compare our model’s accuracy with other

classifiers.

The variables of this data set are

__ cash flow
1. CFTD = total debt

9 NITA — het income

total assets

4.CANSZW _ -
o 4 | \ .

-
d

-

'\
o
: mm 60| 0.2533

»

R
| Méan | s
N

0.1236

1.0062

OANS | 01268 | 0.9 (01837

L)

Table 4.1: Univa f.‘t- ickern data set

] J
In our experiment, wesuse CACL and/CFTD in the first stage and CACL,

e ana ke LK) FIELVLLD e e e
IRTRES I N

4.1.2 Japanese bank data set

The Japanese bank data set [6] contains the data from 100 financial institutions

with 7 index variables.

1 fi
1. return on total asset = ——otalprofits
average total assets’

. _ total equity
2. equity to total asset = —> 2¢ total assets’
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total operating expenditures
total profits ’

3. cost-profit ratio =

total domestic profits
average total domestic assets’

4. return on total domestic assets =

total bad loans

5. bad loan ratio = *#E 28002

bad loans deperciated as loss
otal bad loans

6. loss ratio of bad loan =

, and

earnin

7. return on equity = ng. \\‘ ble fof bufion
" average oquity/
St /
' ——

Table 4.2 describes mivariate statistics'of'this data set.

7T s [ vieen | 50
///ﬁm\ & | o | o
equity to togdl a l/ﬁl 346, | 779 | 2.52
cost-profit rag Iﬂ %\\ 65.26 | 6.38

0. 19& 0.56 | 0.19

return on total dorx estl(?_@e |

L
¢ amndea ““ ia‘ 4t

bad loan ratio 6.94 2.28 1.47

,'7.'—' 4 + ™
o2 S

loss ratio of bad 52.31 | 17.00

T

return on equity | 9. 00/ | 21.84 | 11.97

nivariate statistics of J apan bank data set

L TP E (T TE A

and the bottom 50 banks group (N group). =,

ARIANN I URIAINYAY

4.1.3 Irls data set

Table 4.

Iris data set [2] is used to classify types of an iris plant. The data set contains
three types of iris plants. Each has 50 samples. One class is linearly separable
from the other and the rest are mixed. Because our model only determines two
groups, we classify one type against the others. With this data set, we set up

three experiments which are
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1. Iris-setosa and non-iris-setosa,

2. Iris-virginica and non-iris-virginica,

3. Iris-versicolor and non-iris-versicolor.

This data set has 4 numerical vari les which are a sepal length in c¢m, a sepal

SD

0.83

0.43

1.76

0.76

Table 4.3: nlﬁ@f@ st’ istics of four iris variables

Haberman’s surv1va.], data set [23] is a data set from UCI Machine Learning

Repository. Iﬂo% %] %%ijaﬂﬁ w&]a’]oﬂ ‘%ed between 1958 and

1970 at the Ugﬂ!\/ersmy of Chicagg’s Billings hgpltal on the vaal of patients

s 8] PR W 3 bead S KR G o

306 samples with no missing values. All three variables are integer.

4.1.5 Johns Hopkins University ionosphere data set

Johns Hopkins University ionosphere data set [24] is a radar data set which
collected by a system in Goose Bay, Labrador. The targets of this data set are

the free electrons in the ionosphere. If there are some types of structure in the
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ionosphere, the radar returns Good else it return Bad. This data set has 34
continuous variables and 351 samples with no missing values. We defined the

good ionosphere group as P and the bad ionosphere group as N.

4.1.6 Blood transfusion service center data set

Blood transfusion servic %‘L&/}és the study of donor database of

blood transfusion serv1ce n P&m— in Taiwan [25]. This data set
T—
study the marketing d( ta pr ‘\emod donor who donated blood

in March 2007. It consis ples v value variables with no missing
value. We defined the & "-"‘ ﬁo X ‘a:te in March 2007 as P and
the group of blood don do r{ot-' ofiate 1 rch 2007 as N.
i
Measur & -4&1@); “Min : Mean SD
Recency onﬁ@j 03 | 744 9.74 8.07
Frequency N Tﬁ;@)’éﬁf;&" ;,", Ll 50 A 5.51 5.84
Monetary RF:\" o 1378.68 1459.83
Time '|j 93,3, 34.42 24.32
Donated blood I=yes 0 100 1| 1(24%) 0 (76%)

o8 AR GAFE VIR e e

The target has 24% donated blood in March 2007. The inputs of the model are

recency, frequency, monetary and time.

4.2 Results of the experiments

In this part, we compare the accuracy of the new model with the statistical

classification tools and a vertical decision tree induction. In this part, the cross
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Misclassification Errors

=
=

i T 0= SEET R
=l ulti-hyperplans

TE—

Misclassification Errors (%)

b =500, Cpn =100

S %
- 200

Figure 4.2.1: Misclassificationfefror of a two-stag \‘ t cost credit scoring model

‘ i (7
and a multi-hyperplangfscoring )

validation technique is v led | Tdate th odels, which we describe in

propriate and return the accurated

results [27]. There are so ed in the experiments.

Let p Dbe EV nt of actual pos ‘-g,‘

be thegnoun of actua

n
p be the arfiomnt of predictedipositive samples; and
s AN NI NS

YU

¢ o o/
420 WA TR ARTINE 1/ Y
9 L . .
Firstly, we compare a two-stage least cost credit scoring model with our multi-
hyperplane scoring model by classifying a Johnson and Wickern credit data set.
Figure 4.2.1 shows the misclassification error of a two-stage least cost credit
scoring model and a multi-hyperplane scoring model. The result shows that the

misclassification error of a multi-hyperplane scoring model for all three misclas-

sification cost are 2.173%. And the misclassification error of a two-stage least
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cost credit scoring model when misclassification cost C,,, = 100 and C,, = 500;
Cpn = 300 and C,,, = 300; and C,,, = 500 and C,,, = 100 are 8.656%, 2.173% and
6.521% respectively.

Moreover, we test this data set with other techniques by the cross validation

which the result is showed in Table 4.5.

Method Error (%) 4 Sensitivity (%) | Specificity (%)
Multi-hyperplane 21.%3 76.00 80.95
Vertical decision tree 21013 100.00 52.38
Decision tree (C4.5) 26.08 76.00 71.43
Multilayer perceptron 130{1-‘ 84.00 90.48
Linear discriminant analysis | © 15.21} J"' 38.00 80.95
Support vector maching b 21731 i 84.00 71.43
Two-stage least cost = 24’1.00.;{?:.;),.) 95.24 60.00

Table 4.5: Comparisons of n_l_i_s_g:_lassiﬁcatioﬁ.._q_i.rr(_)r of Johnson and Wickern dataset

Table 4.5 repreSe_ﬁts misclassification errors, sensiti;rities and specificities of a
Johnson and Wickern data set of all techniques. A“misclassification error of a
multilayer percéptronris the smallest whichnisl 13.04%«and=it has 84% sensitivity
and 90.48% specificity. The second best is a linear discriminant analysis whose
error is 11521% wath “88:00% Sensitivity land 80.95% ‘spécifi¢iliy.” The third is a
support vector machine, a vertical decision tree induction and a multi-hyperplane
scoring model whose error is 21.73%. A support vector machine has 84.00%
sensitivity and 71.43% specificity while a vertical decision tree induction has 100%
sensitivity and 52.38% specificity. A multi-hyperplane scoring model has 76%
sensitivity and 80.95% specificity. A two-stage least cost credit scoring model

has larger error than a multi-hyperplane scoring model. It has 24.00% error with
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95.24% sensitivity and 60.00% specificity. The largest error is a decision tree
which has 26.08% error with 76% sensitivity and 71.43% specificity.

From this data set, a multi-hyperplane scoring model has less misclassification
error than a two-stage least cost credit scoring model because there are many

overlapped samples in the second stage. A two-stage least cost credit scoring

f//wo stages while a multi-hyperplane
4

model is forced to classiﬁedr

4.2.2 Japane

With 10-fold cross val ove two classes and separate

into each fold. Table 46 i yperplane scoring model in

confusion matrix.

Total

48

o2

100

Table 4.6: o, | 1 : i3 AL se ks tllﬂs' g a multi-hyperplane

scoring model

awwaﬂmmumwmaﬂ

From Table 4.6, our model predicts 44 P group samples as P and 6 P group
samples as N. Moreover, it predicts 46 N group samples as N and 4 N group
samples as P. The average misclassification error of a multi-hyperplane scoring
model to this data set is 10.00%.

Table 4.7 shows the cross validation of misclassification errors, sensitivities and

specificities of a Japanese banks dataset. The result shows that a multi-hyperplane
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Method Error (%) | Sensitivity (%) | Specificity (%)
Multi-hyperplane 10.00 92.00 88.00
Vertical decision tree 22.00 86.00 70.00
Decision tree (C4.5) 25.00 74.00 76.00
Multilayer perceptron 90.00 84.00
94.00 84.00
72.00

86.00

h. 94.00% sensitivity and 84.00%

specificity. The th as 13.00% error and the

forth is a support ve@yr mac 0 error-m(\ vertical decision tree has

22.00% error. And the‘lﬂgest error model is a decision tree which misclassifies

wonomf) WE INEUVINEIN
For.thi et 1ti e‘ a) W ] aﬁﬁ’ tage least cost
creditiﬂjoglgrﬂimjggine of tég:]mson ;sEjhis data set is

the credit data set whose variables are suitable for multiple hyperplanes classifiers.
Note that only three hyperplanes or a two-stage model is sufficient for this data

set.




41

4.2.3 Iris data set

The following is the result of a multi-hyperplane scoring model in confusion

matrix.

Iris-setosa and non-iris-setosa

al value

Total

predictig ; 49

/ =
= 3N

Table 4.8: Confusion matrix o 1rls;$3;
XD

-'\F\

101

ti-hyperplane scoring model

*,WJH
From Table 4.8, this data §, ples. Our model predicts 49 samples

of iris-setosa as iris-setosa and-

—=5 -setosa as non-iris-setosa. In addi-
et - -

tion, it predicts all-non-iris-setosa samples correctly. £Then the misclassification
== R

. A
error of the iris-setosaii

-
- -

Method Error (%), Sensitivity (%) | Specificity (%)

Multi- hyperﬁlu&'g Elo‘lé}'j Flodd] 3 [ 10000

Vertical dec131on tree “0.67 = 100.00 99.00
: W MR DM
Decisa;l ue ()Eét)ai I 3 sk goo V1|1 d Hob e |§'i 8 100.00

Multilayer perceptron 0.67 98.00 100.00
Linear discriminant analysis 0.00 100.00 100.00
Support vector machine 0.00 100.00 100.00
Two-stage least cost 0.67 98.00 100.00

Table 4.9: Comparisons of misclassification error of iris-setosa
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Table 4.9 shows the cross validation misclassification errors, sensitivities and
specificities of the iris-setosa. The result shows that all classifiers have at most
0.67% of misclassification error. All classifiers classify this data set correctly

because the iris-setosa data is separated from other iris types.

Iris-virginica and non-iris-virgi ,//
e R |
k""—._ \ N i

e
. @ .ruuuﬁ value
/ |
% Total
W,
predicti k\ ‘ 50
// Em\
Table 4.10: Confusion matix of {;“ Argiftica using a multi-hyperplane scoring
}ﬂ -

model

..—7‘!-—
.P.-l"r.l-"

Table 4.10 shovsﬁthe class1ﬁca‘5101( o e;slane scoring model. The

model predicts 46 ples of iris- rginica and 4 samples of iris-

virginica as non—iris—\mginica. oreover, it predicts 9aamples of non-iris-virginica

as non-iris-vir, ﬁ %‘Wr -virginica. Then the
misclassiﬁcatﬁ 13 oﬁaﬁﬂgﬂ are sﬁj fij: to classify the iris-
mgm’?lWﬁWaﬁﬂ‘ﬁm UN1INLAY

Table 4.11 compares the misclassification errors, the sensitivities and the speci-
ficities of a multi-hyperplane scoring model with the other tools. The result shows
that the best classifier is a multilayer perceptron which has 3.33% error with
96.00% sensitivity and 93.00% specificity. The second best has 4.00% error which

is a support vector machine that has 90.00% sensitivity and 96.00% specificity

and a two-stage least cost credit scoring model has 96.00% sensitivity and 96.00%
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Method Error (%) | Sensitivity (%) | Specificity (%)
Multi-hyperplane 5.33 92.00 96.00
Vertical decision tree 14.67 74.00 91.00
Decision tree (C4.5) 7.33 88.00 95.00
Multilayer perceptron 96.00 97.00
Linear discriminant analysis | ‘\\I !/ 90.00 93.00
. =
Support vector machine —_— 90.00 99.00

Two-stage least cost %m\ J6.00 96.00

Table 4.11: C pa \\\\\ ror of iris-virginica

i:f

specificity. A multi-hyperplane sco J j 3% of misclassification error,
;:é 4 \\
which is the third, whi 3 IO ces& D0% se ity and 96.00% specificity.
DG LI
The result shows that all claﬁﬂiﬁ& s.cla SSlf ' ' iris-virginica from other two

J.rre'

iris types with some error bécau is-virginica data is overlapped

with iris-versicolor.

Iris-versicolor andmo

UL N 1y JrgT

U P aUTTIGY

q 4 95 99

Total 50 100

Table 4.12: Confusion matrix of iris-versicolor using a multi-hyperplane scoring

model

From table 4.12, a multi-hyperplane scoring model predicts 46 samples of

iris-versicolor as iris-versicolor and 4 iris-versicolor samples as non-iris-versicolor.
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Moreover, it predicts 95 non-iris-versicolor samples as non-iris-versicolor and 5
non-iris-versicolor samples as iris-versicolor. Then the misclassification error of a

multi-hyperplane scoring model to classify iris-versicolor is 6.67%.

Method Error (%) | Sensitivity (%) | Specificity (%)
Multi-hyperplane 6:G7 92.00 95.00
Vertical decision tree 66.67 100.00 0.00
Decision tree (C4.5) 8.00 90.00 93.00
Multilayer perceptron 13.83 72.00 94.00
Linear discriminant aunalysis 26.60 92.00 85.00
Support vector machine 3331_’)_‘ 2:00 99.00
Two-stage least cost 10.0(“)':{* . 86.00 92.00

Table 4.13: Comparigons (jﬁf misc.:_'];-éi:ss‘fﬁcation error of iris-versicolor

¥ K
77

-.u-. - ;J . . . . . .
The misclassification errors, the sensitivities and the specificities of iris-versicolor

]

=i

are shown in table 4i13. The result shows that a multihyperplane scoring model

has the least error Whl(’h is 6.67% with 92.00% Sensiti;ity and 95.00% specificity.
The second best classifier is a decision tree (C4.5) ‘which has 8.00% error with
90.00% sensitivity aud) 93:00% specificity. o The third-is<a two-stage least cost
credit scoring fidodel which has 10.00% error with 86.00% sensitivity and 92.00%
specificity: Finalls the largést érror is a vertical deeision tree Wdiich error is 66.67%
with 100.00% sensitivity and 0.00% specificity.

Due to the result, a vertical decision tree induction has 100.00% sensitivity and
0.00% specificity. This means any non-iris-versicolor is recognized as iris-versicolor
and all of iris-versicolor is recognized as iris-versicolor, since it is two-class data
set, this model predicts all samples as iris-versicolor. Moreover, the result of a

support vector machine is similar to a vertical decision tree. The support vector
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machine has 2.00% sensitivity and 99.00% specificity, which means it predicts
only 2.00% of iris-versicolor correctly. Then, both of a vertical decision tree and

a support vector machine cannot classify iris-versicolor from other two iris types.

4.2.4 Haberman’s survival data set

i ‘
w 1 value
— f bgf n Total
PredM e || ’““%\ 46 | 232
, 3‘\35 74
tff &1

Table 4.14: Confusions matri gf“@ ) ‘marn Q"val data set using a multi-
: PAOD ¥ | ‘
hyperplane scoring mo Vi i

4 3 ] e ¥
Table 4.14 shows the averggg:e)—rﬁulg 2 T ti—hyperplane scoring model predic-
tion. The result Sh(;és that a multi-hyp 10del predict 186 survival

patients as surviva val. Moreover, it predicts

35 unsurvival patients as unsurvival and 46 unsurvival patients as survival. From

this result, tkﬂnﬂﬂa%ﬂﬁ%ﬂrgﬁvﬂﬁt with 27.77% error.

Table 4.15 Shows the mlsclassﬁipatron errors the sen81t1V1tles and the specifici-
i QAR D s
with 24.%3% error when sensitivity is 91.56% and specificity is 29.62%. The sec-
ond best is a linear discriminant analysis with 25.16% error, 95.56% sensitivity
and 17.28% specificity. The third is a support vector machine with 26.47% er-
ror, 99.55% sensitivity and 0% specificity. A multi-hyperplane scoring model has
27.77% error, 82.66% sensitivity and 43.21% specificity which is less than a deci-

sion tree (28.43% error), a two-stage least cost credit scoring model (28.46%) and
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Method Error (%) | Sensitivity (%) | Specificity (%)
Multi-hyperplane 27.71 82.66 43.21
Vertical decision tree 34.72 78.22 29.62
Decision tree (C4.5) 28.47 85.33 33.33
Multilayer perceptron 24 ." 91.56 29.62

Linear discriminant analysis | “»; !{’ 95.56 17.28

Support vector machine 99.55 0.00

Two-stage least cost

6 \.. 30.86
N

Table 4.15: Compagiso r of Haberman’s survival

a vertical decision tree (34
The result shows ghat @allic ’ ' _ s less than 50% on specificity es-
pecially a support vecta

class is minority class which i$ki'e 55 whose samples is less than the other. Never-

theless, a multi- hylfsplane SCC o‘f“j ﬁg’me’ el‘has'high ecificities which is 43.21%.

4.2.5 Johns HBpkl ~
Ut eI

onoﬁ)here data set

A TRS VA T8 e

Table 4.16: Confusion matrix of Johns Hopkins University ionosphere using a

multi-hyperplane scoring model

Table 4.16 shows the confusion matrix of a multi-hyperplane scoring model
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prediction of 10-fold cross validation in Johns Hopkins University ionosphere data
set. The p group samples represent the good ionosphere and n group samples
represent the bad ionosphere. The result shows that the model predicts 212 good
ionospheres as good and 13 good ionospheres as bad. Moreover, it predicts 88
bad ionospheres as bad and 38 bad ionospheres as good. With this prediction,

the model has 14.50% misclassification erzors

Method Erron (%) "Sensitivity (%) | Specificity (%)
Multi-hyperplane 14.50 94.22 69.84
Vertical decision tree 53,39 60.00 64.29
Decision tree (C4.5) '"9.677; 95.56 80.95
Multilayer perceptron 14.2%). " 96.44 66.67
Linear discriminant analysis | © 12831 : 98.22 67.46
Support vector machine - T 11887‘;: 96.89 72.87
Two-stage least cost EADY 1226 i _. 89.33 84.92

Table 4.17: Compélfisgns_aﬁmisclassiﬁgaijo_nhermr_of;}ohns Hopkins University

ionosphere - -

Table 4.17shows the average ofimisclassification‘errorsssensitivities and speci-
ficities of John§ Hopkins University ionosphere data set. From the result, a de-
cision‘tree ghowsthe least “avérdage ‘error whichis 9.68% while the sensitivity is
95.56% and specificity is 80.95%. The second best is a support vector machine
which has 11.88% error. The third is a two-stage least cost credit scoring model
whose error is 12.26% with 89.33% sensitivity and 84.92% specificity. The fourth
and the fifth least error are a linear discriminant analysis and a multilayer per-
ceptron which perform 12.83% and 14.27% error respectively. A multi-hyperplane

scoring model has 14.52% error which less than a vertical decision tree whose has
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38.46% error. The multi-hyperplane scoring model constructs 94.22% sensitivity

and 69.84% specificity.

4.2.6 Blood transfusion service center data set

| ®"Mctual Va:Lue .

Predicéme! P - 77 | 123
' ' N 487 625
7/ IR
3 i A 3 o’:i e 64
Table 4.18: Confusionfmatri l 15 \* vice center using a multi-

hyperplane scoring mog ‘]

donors as donated and
138 donated donors as undonated. Moreover, it predicts 487 undonated donors

as undonatecﬁuﬁngﬁr%ﬁ%%}w&]@] ﬁﬁ this prediction, this

model has 28.74% mlsclas&ﬁcatlog. €error.

8 ARSI T RINNAT T B b e e
ficities o% blood transfusion service center data set. The result shows a multilayer
perceptron has 20.84% error, 29.21% sensitivity and 94.74% specificity, a decision
tree has 21.25% error, 38.76% sensitivity and 91.23% specificity, a two-stage least
cost credit scoring model has 22.18% of error, 29.21% sensitivity and 92.98% speci-
ficity, a support vector machine has 23.78% error, 0% sensitivity, 100% specificity,

a linear discriminant analysis has 25.53% error, 13.48% sensitivity and 93.51%
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Method Error (%) | Sensitivity (%) | Specificity (%)
Multi-hyperplane 28.74 25.00 86.35
Vertical decision tree 27.60 84.83 29.12
Decision tree (C4.5) 21.25 38.76 91.23
Multilayer perceptron 2 34 29.21 94.74
Linear discriminant analysi \\ "?L// 13.48 93.51
Support vector maching ‘ ‘M _0.00 100.00
Two-stage least cost /%NK 92.98

Table 4.19: Comparisons of ‘ ‘ . eITO \; blood transfusion service

center

specificity, a multi-hypeérplané scoring . nodel has 28.74% error, 25% sensitivity

and 86.35% specificity and veﬁd : \ as 57.60% error, 84.83% sen-

sitivity and 29.12% specificity/ -

£

. -
Since the support vector machine Las |

this classifier 07@._— ------------------------ ' E’# March 2007 wrong and

ensitivity and 100.00% specificity,

sa

predict all blood dmﬂs who de ped 1n M%h 2007 correct. From this

information, a support vector machine predicts that all donors do not donate

bood n Marﬂzw.lf Al ﬂ NINnEIN3
AR AINIURIINA Y



CHAPTER V

CONCLUSION

A multi-hyperplane scoring model i3 a’classifier that predicts two classes of
data by using multiple hiyperplanes. «The hyperplanes are derived from a mixed
integer programming problem In oy experiment, we compare our model with a

two-stage least cost credrt sgoring modial a vertical multi-hyperplane decision tree

induction, a decision ’gr'ee @15 [ llneeg discriminant analysis, a support vector
/ ' 4
machine, and a multilayer pereeptron using different, types of data sets.

The result shows thaf on S@Iﬁé datd’ﬂé'et"s our model yeilds less misclassifica-
'_l j

tion errors than the two- stage lo;cwt cost eredit scoring model because our model

-

uses more hyperplanes Generally, ) mult‘y—hy.perplane scoring model fits the data

better than a two~stewe least cost credit scoring model
84 v
The multi-hyperplane scoring model performs Well on the credit data sets,

which are the Johnson.and Wickern data _set and tﬁe Japanese bank data set.
The multi-hyperplane scoring model gives the highest accuracy in a Japanese bank
data set. However, in the Johnsonfand Wickern.data set, it gives better accuracy
than the decisionytree; the supportvector machine and the two-stage least cost
credit scoring model. As for the noncredit data sets, which include the iris data
set, the Haberman survival data set, the Johns Hopkins University ionosphere
data set and the blood transfusion service center data set, the multi-hyperplane
scoring model yeilds larger misclassification errors than a multilayer perceptron
but performs better than the rest. Moreover, the multi-hyperplane scoring model

has similar accuracy on both linearly separable data sets, such as the iris-setosa,
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and non linearly separable data sets, such as iris-versicolor, the Johns Hopskins
University ionosphere data set. In addition, the multi-hyperplane scoring model
performs well for the imbalance data sets, such as a Haberman survival data set
and a blood transfusion service center data set.

The vertical multi-hyperplane decision tree induction and the multi-hyperplane

L\\\‘ ,#/ ramming to construct the classifier.

that the m la,ne scoring model is superior

scoring model both employ ma

Our experiment results
accuracy to the vertica ta sets except for the John-
son and Wickern data r, the weak point of these

models are their hig nputation times sin e, tl nch-and-bound algorithm

By design, our mod 1cts l arati g hyperplanes using all training
data instances. For s i Siz tta sets, the resulting mathemati-

4‘_{'2 ?:J:

cal programs is small enough o= el normally in practical lenght of time.
However, for large- zed ;
take a considerabl sf‘ ' that case, we recommend

applying some preprmessing before solving the mix@in‘ceger program.

ﬂumwﬂmwmm
QW']Mﬂ‘im UAIINYAY
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APPENDIX A : JOHNSON AND WICKERN DATA SET

CFTD | NITA | CACL | CANS | TARGET

1 | 0.4485 | -0.4106 | 1.0865 | 0.4526 | Defaulter
2 |-0.5633 | -0.3114 | 1.5134 | 0.1642 | Defaulter
3 | 0.0643 | 0.015 .0077 | 0.3978 | Defaulter
4 1-0.0721 0.2589 | Defaulter
5 | -0. -0.0017 1.5 3 | Defaulter
6 |-0. 94 | Defaulter
7 |1 0. , 1. Defaulter

. 1{1 \
8 | -0. { 3T Defaulter
NGV
o | 0.0881 400076 a7 1 | Defaulter
10 | -0.1 @1@‘ 7 | Defaulter
AT
11 | -0.229 W: 824 | Defaulter
Sy—————1

12| 0.0713 | .0.0205 | 1 0.2497 | Defaulter
13 — ] efaulter
Defaulter

Defaulter

' iggaulter

| Defaulter




CFTD | NITA | CACL | CANS | TARGET
19 | 0.0115 | -0.0032 | 1.2602 | 0.6038 | Defaulter
20 | 0.1227 | 0.1055 | 1.1434 | 0.1655 | Defaulter
21 | -0.2843 | -0.2703 | 1.2722 | 0.5128 | Defaulter
22 | 0.5135 | 0.1001 4871 | 0.5368 Payer
23 | 0.0769 0.5304 Payer
24| 0.371 0.1075 3.2 8 Payer
25| 0. i Payer
26 | 0. 4. Payer
27 | 0. : f 45 Payer
N \
28 | 0.1184 0&9,{‘, \ 5| Payer
29 | -0.0 0:0233 " 103484 | Payer
A N
30 | 0.216 W‘; 970 Payer
——
31| 0.1703 W:M 0.5174 ) Payer
32 - . Payer
33 -(M)Q 7@ Payer
0 1?9& -0.0312 | 0. 6 11 0.2643 Payer
Fm@@ W] I_ZMN B3] Bover
6 0.1486 | 0.0564 | 2.2347 |ﬂ5563 Payerr
| i -
& WA Wobed | Q1095L]) Ba L.
q
38 | 0.2907 | 0.0597 | 1.8381 | 0.3786 Payer
39 | 0.5383 | 0.1064 | 2.3293 | 0.4835 Payer
40 | -0.3330 | -0.0854 | 3.0124 | 0.4730 Payer
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*Data se

CFTD | NITA | CACL | CANS | TARGET
41 | 0.4785 | 0.0910 | 1.2444 | 0.1847 Payer
42 1 0.5603 | 0.1112 | 4.2918 | 0.4443 Payer
43 1 0.2029 | 0.0792 | 1.9936 | 0.3018 Payer
44 1 0.4746 9166 | 0.4487 Payer
45 | 0.1661 |0.C \.V/ / 0.1370 Payer
46 | 0. ‘::.; P 0101263 Payer

son-and Wickern
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ammnmummmaa
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APPENDIX B : GAMS CODE FOR

MULTI-HYPERPLANE SCORING MODEL

GAMS(the General Algebraic Modeling System) is a high-level modeling sys-

tem for mathematical programming and optimization which support both PC and

UNIX platform. It consists of a 1 g

iler and a high performance solvers.
GAMS is design for complex ehng application.
The trial version softwe Web site
http://www.gams.
The installation er documentation can be
found in http://www,

The basic compon
e set

e data

variable 7

ot i HEIRINTNYINT
ﬁ"W”Tgﬂiﬁ ol umIInenae

The %ollowmg is GAMS code for multi-hyperplane scoring model. The italic

in the code means the path of data file.

* Model for Multi-hyperplane scoring model
* Set declaration
set ATTRIBUTE "Set of all attribute"/

$batinclude Attribute File/;



set ATT(ATTRIBUTE) "Set of attribute in the first pair of
parallel hyperplane"/

$batinclude First stage attribute File/;

set SEC(ATTRIBUTE) "Set of attribute in the second pair of

parallel hyperplane"/

$batinclude Second Fl»e File
/s

set THR(ATTRIBUTE) .“

hird pair of
parallel hyperpl
$batinclude

set FULLDATA "Se
$batinclude File/;
set OBS(FULLDATA) " sing in
construction step"/
$batinclude h , instance decls ion File/;

Y]

* parameter decl lafation '}

table A(FULLDATA, EgTRIBUTE) "all data set" Iﬂ

e oo ) AT ﬁﬂ W g3
= AN IUNRINNY

scalar ‘Cpd "misclassify payer cost"/

300/;

scalar Css "addition second hyperplane pair cost"/
10/;

scalar Cts "addition final hyperplane cost"/

10/;
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scalar M1 "Big M of first pair hyperplane"/
1000/;
scalar M2 "Big M of second pair hyperplane"/
1000/;

scalar M3 "Big M of final hyperplane"/

1000/ ;
scalar epsilonl "epsi
0.04/;
scalar epsilon2
0.04/;
scalar epsilon3 "

0.04/;

variable V(SEC)'“{; ght « of hyperplane";

variable F1(0BS) Eﬂhe first stage score";

o e i1AUE
R YR I AN TINGTA

of hypérplane";

variable Xd "defaulter cut-off value of the first pair
of hyperplane";

variable X2p "payer cut-off value of the second pair
of hyperplane";

variable X2d "defaulter cut-off value of the second pair
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of hyperplane";
variable Xts "cut-off value of the final hyperplane";
variable cost;
binary variable I1(0BS) "binary variable of the first

pair hyperplane";

binary variable I2(0BS) ' first

pair hyperplane";

binary variable I3 second

pair hyperplane";

binary variable second

pair hyperplane"; “ (=3

binary variable I binary final
iy

hyperplane"; ‘ﬁﬁﬁf?ﬁ-'
ﬁ ”-r

equation v ‘

. o *ﬁsﬁgﬁ%fﬁ’;nﬂ
obj "objective®
scorelEQ  "score!! ) perplane"

PEQ  "payer grouﬁDconstraint of the first ;ﬂhr hyperplane"

"defaﬁm?;rww%fwmm

pair hyperplan

| W‘Tﬂ%ﬁ“ﬂﬁ’fﬁﬂ%ﬂfﬂﬁﬁ Y
pair Hyperplane"

SEQ2  "unknown group constraint of the first

pair hyperplane"

RANGE1 "range of defaulter and payer of the first
pair hyperplane"

score2EQ  "score function of the second pair hyperplane"
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SPEQ  '"payer group constraint of the second
pair hyperplane"
SDEQ "defaulter group constraint of the second
pair hyperplane"
TEQ1 "unknown group constraint of the second pair hyperplane"
TEQ2 "unknown group constraint ofi the second pair hyperplane"
RANGE2  "range of defaulter and payer in the second
pair hyperplane" -
score3EQ "score*funcition Jof the finalhyperplane"
TPEQ "payer group congtraint of the final hyperplane"
TDEQ "defaulter group constraiﬁ%,pf the final hyperplane"
ValidEQl  "valid dneguality" z
ValidEQ2 "valid idequalityl /.
ValidEQ3 "valid inequalitj” : i;‘
*objective A
obj.. cost =e= sum((0BS)$(A(OBS, TARGET’) EQ.0)

, (Cdp*I5(0BS)+Cdp* (1-I1(0BS))+Cdp* (1-I3(0BS) )+
Css* (I1(0BS)+I2(0BS) 1) +Csx (L3 (OBS)A14 (OBS),—1),) )+
sum ( (0BS) $ (A(DBS, "TARGET’) EQ 1)
, (Cpd*T5(OBS)+CPAX( 15T2C0BS) ) *Cpd*(1=T14(0BJ) )+
Css*(I1(0BS)+I2(0BS)-1)+Cts*(I3(0BS)+I4(0BS)-1)));
* constraints
scorelEQ(OBS) .. F1(0BS)=e=sum((ATT) ,w(ATT)*A(OBS ATT));
PEQ(0BS) .. F1(0BS)+M1*I1(0BS)=g=Xp;
DEQ(OBS) .. F1(0BS)-M1*I2(0BS)=1=Xd;

SEQ1(0BS) .. F1(0BS)-M1*(2-I1(0BS)-I2(0BS))=1=Xp-epsilonl/2;



SEQ2(0BS) .. F1(0BS)+M1*(2-I1(0BS)-I2(0BS))=g=Xd+epsilonl/2;
RANGE1 .. Xp-Xd=g=epsilonl;

score2EQ(0OBS) .. F2(0BS)=e=sum((SEC),v(SEC)*A(0OBS SEC));
SPEQ(OBS) .. F2(0BS)+M2+I3(0BS)+M2*(2-I1(0BS)-I2(0BS))=g=X2p;
SDEQ(OBS) .. F2(0BS)-M2*I4(0BS)-M2*(2-I1(0BS)-I2(0BS))=1=X2d;
TEQ1(0BS) .. F2(0BS)-M2x*(4-11(0BS)-12(0BS)-I3(0BS)-I14(0BS)
=1=X2p - epsilon2/2;

TEQ2(0BS) . . F2(OBS)+M2*(4—11(OBé)—I2(OBS)—I3(OBS)—I4(OBS))
=g=X2d + epsilon2/2;

RANGE2 .. X2p-X2d=g=egpsilon2; |

score3EQ(0BS) . . F8(0BS)<e<sum ((THR), u(THR)*A(OBS  THR));
TDEQ (0BS) $ (A (0BS, *TARGET/ ) EQ O)';?q,
FS(OBS)—M3*I5(OBS)—M3*(4—11(0BS)—iQ(DBS>-I3(033)—I4(0BS))

#e i A

=1= Xts-epsilon3/2; ' ="

P

TPEQ(0BS)$ (A (OBSy TARGETHEQ 1)..

F3(0BS) +M3+15 (0BS) +M3% (4-11 (0BS)-12(0BS) 18 (UBS) -14(0BS))
=g= Xts+epsilon3/2';
validEQ1(0BS)L. nI11 (OBS)+12(0BS)=g=2%15(0BS) ;
validEQ2(0BS): . I3(0BS)+I4 (0BS)=g=2*I5(0BS) ;
validEQ3(GBS)). {111, (0BS) +I2(0BS )=g=<13 (0BS)+I4(0B3)";

model hyperplane /all/;

option optcr=0.20,o0ptca=90;

solve hyperplane using mip minimizing cost;
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