CHAPTER II ## TRANSFORMATION SEMIGROUPS The main purpose of this chapter is to characterize the partial transformation semigroup, the full transformation semigroup, the semigroup of almost identical partial transformations and the semigroup of almost identical full transformations on a set X which are regular-* or *-regular in term of the cardinality of X. Let X be a set. Let T_X and \mathcal{T}_X denote the partial transformation semigroup on the set X, and the full transformation semigroup on the set X, respectively. For $\alpha \in T_X$, α is an idempotent of T_X if and only if $\nabla \alpha \subseteq \Delta \alpha$ and $x\alpha = x$ for all $x \in \nabla \alpha$. An inverse semigroup is a regular-* semigroup and a *-regular semigroup. Then the symmetric inverse semigroup on a set X, I_X , is regular-* and *-regular. Recall that for a regular-* semigroup S, the product of two projections of S is an idempotent of S [10, Theorem 2.5]. The two following theorems show that for any set X, T_X is regular-* or *-regular if and only if $|X| \le 1$. 2.1 Theorem. For any set X, the partial transformation semigroup on X, T_X , is regular-* if and only if $|X| \le 1$. \underline{Proof} : Assume that $T_{\underline{X}}$ is a regular-* semigroup with an involution *. Suppose $|X| \ge 2$. Let a, b be two distinct elements in X. For each $x \in X$, let α_x be the element of T_X such that $\Delta \alpha_x = X$, $\nabla \alpha_{x} = \{x\}$, and for x, y $\in X$, let $\beta_{x,y}$ be the element of T_{X} such that $\Delta \beta_{x,y} = \{x\}, \nabla \beta_{x,y} = \{y\}, \text{ Observe that for any } x \in X, \alpha_x \text{ is an idem-}$ potent of T_X , and for x, y $\in X$, $\beta_{x,y}$ is an idempotent of T_X if and only if x = y. Since α_a , $\beta_{a,a} \in T_X$ and T_X is a regular-* semigroup, $\alpha = \alpha \alpha * \alpha$ and $\beta = \beta_{a,a} \beta *_{a,a} \beta_{a,a}$. Because $\alpha = \alpha \alpha = \alpha \alpha * \alpha = \alpha \alpha *_{\alpha} \alpha$ $a\alpha^*\alpha_a$, it follows that $a \in \Delta\alpha^*\alpha_a \subseteq \Delta\alpha^*$, so $a \in \Delta\alpha^*$. Hence $a\alpha^* = c$ for some $c \in X$. Because $\Delta \alpha_a \alpha_a^* = (\nabla \alpha_a \cap \Delta \alpha_a^*) \alpha_a^{-1} = (\{a\} \cap \Delta \alpha_a^*) \alpha_a^{-1} =$ $\{a\}\alpha_a^{-1} = X = \Delta\alpha_c \text{ and } \nabla\alpha_a\alpha_a^* = (\nabla\alpha_a \cap \Delta\alpha_a^*)\alpha_a^* = (\{a\} \cap \Delta\alpha_a^*)\alpha_a^* = \{a\}\alpha_a^* \{a\}\alpha_a^*$ $\{c\} = \nabla \alpha_c$, we have that $\alpha_a \alpha_a^* = \alpha_c$, so $\alpha_c^* = (\alpha_a \alpha_a^*)^* = \alpha_a \alpha_a^* = \alpha_c$. Thus α_c is a projection of T_X . Since $a = a\beta_{a,a} = a\beta_{a,a}\beta * \beta_{a,a}\beta_{a,a} = \beta_{a,a}\beta_{a,a}\beta_{a,a}\beta_{a,a}$ $a\beta *_{a,a}^{\beta}$, $a \in \Delta \beta *_{a,a}^{\beta}$, $a \in \Delta \beta *_{a,a}^{\beta}$, so $a \in \Delta \beta *_{a,a}^{\beta}$. Because $a\beta_{a,a} = a\beta_{a,a}$ $a\beta_{a,a}\beta_{a,a}^*$, $\beta_{a,a}^*$ = $(a\beta_{a,a}^*)\beta_{a,a}^*$, it follows that $a\beta_{a,a}^*$ = a. From $\Delta \beta_{a,a} \beta_{a,a}^* = (\nabla \beta_{a,a} \cap \Delta \beta_{a,a}^*) \beta_{a,a}^{-1} = (\{a\} \cap \Delta \beta_{a,a}^*) \beta_{a,a}^{-1} = \{a\} \beta_{a,a}^{-1} = \{a\}$ = $\Delta \beta_{a,a}$ and $\nabla \beta_{a,a} \beta_{a,a}^* = (\nabla \beta_{a,a} \cap \Delta \beta_{a,a}^*) \beta_{a,a}^* = (\{a\} \beta_{a,$ $\{a\}\beta *_{a,a} = \{a\} = \nabla \beta_{a,a}$, we have that $\beta_{a,a}\beta *_{a,a} = \beta_{a,a}$. Hence $\beta *_{a,a} = \beta_{a,a}$ $(\beta_{a,a}\beta_{a,a}^*)^* = \beta_{a,a}\beta_{a,a}^* = \beta_{a,a}$. Similarly, we can show that $\beta_{b,b}^* =$ $\beta_{b,b}$. Now we have that α_c , $\beta_{a,a}$ and $\beta_{b,b}$ are projections of T_X . By [10, Theorem 2.5], $\beta_{a,a}^{\alpha}$ and $\beta_{b,b}^{\alpha}$ are idempotents of T_X . But $\beta_{a,a}\alpha_{c} = \beta_{a,c}$ and $\beta_{b,b}\alpha_{c} = \beta_{b,c}$. It then follows that c = a and c = b. It is a contradiction since a \neq b. This proves that if T_{χ} is regular-*, then $|X| \le 1$. If $|X| \le 1$, then $T_X = I_X$ which is an inverse semigroup, so it is *-regular. # The next theorem characterizes full transformation semigroups which are *-semigroup. 2.3 Theorem. For any set X, the full transformation semigroup on X, \mathcal{T}_X , is a *-semigroup if and only if $|X| \le 1$. <u>Proof</u>: Let the full transformation semigroup, \mathcal{J}_X , be a *-semigroup with an involution *. Suppose $|X| \geq 2$. For each $x \in X$, Let α_x be an element of T_X such that $\Delta \alpha_x = X$, $\nabla \alpha_x = \{x\}$. Let a, b be two distinct elements in X. Then α_a and α_b are different elements in \mathcal{J}_X . From the definition of α_x , $x \in X$, it follows that for all $\beta \in \mathcal{J}_X$, $\beta \alpha_x = \alpha_x$. In particular, $\alpha_a^* \alpha_a = \alpha_a$, $\alpha_b^* \alpha_b = \alpha_b$ and $\alpha_a = \alpha_b \alpha_a$. Therefore, $\alpha_a = \alpha_a^*$ and $\alpha_b = \alpha_b^*$. Thus $\alpha_a = \alpha_b \alpha_a = \alpha_b^* \alpha_a^* = (\alpha_a \alpha_b)^* = \alpha_b^* = \alpha_b$, which is a contradiction. This proves that if \mathcal{J}_X is a *-semigroup, then |X| < 1. If $|\mathbf{X}| \leq 1$, then $\mathcal{T}_{\mathbf{X}}$ is a trivial semigroup, so it is a *-semigroup. # - 2.4 Corollary. For any set X, the full transformation semigroup on X, \mathcal{J}_{X} , is a regular-* semigroup if and only if $|X| \le 1$. - 2.5 Corollary. For any set X, the full transformation semigroup on X, \mathcal{J}_{x} , is a *-regular semigroup if and only if $|X| \le 1$. A partial transformation α of a set X is <u>almost identical</u> if $x\alpha \neq x$ for a finite number of elements x in the domain of α . For any set X, the semigroup of almost identical 1-1 partial transformations on X, W_X , is an inverse semigroup, so it is regular-* and *-regular. Let X be a set. Since the semigroup of almost identical partial transformations on X, U_X , is a subsemigroup of T_X and the semigroup of almost identical full transformations on X, V_X , is a subsemigroup of \mathscr{T}_X , it follows that $E(U_X) = E(T_X) \cap U_X$ and $E(V_X) = E(\mathscr{T}_X) \cap V_X$. But $E(T_X) = \{\alpha \in T_X \mid \nabla \alpha \subseteq \Delta \alpha \text{ and } \alpha = a \text{ for all } a \in \nabla \alpha \} = \{\alpha \in \mathscr{T}_X \mid \alpha = a \text{ for all } a \in \nabla \alpha \} = \{\alpha \in \mathscr{T}_X \mid \alpha = a \text{ for all } a \in \nabla \alpha \} = \{\alpha \in T_X \mid \nabla \alpha \subseteq \Delta \alpha, \ \alpha = a \text{ for all } a \in \nabla \alpha \text{ and } |\Delta \alpha \setminus \nabla \alpha| < \infty \},$ $E(V_X) = \{\alpha \in \mathscr{T}_X \mid \alpha = a \text{ for all } a \in \nabla \alpha \text{ and } |X \setminus \nabla \alpha| < \infty \}, \text{ that is, } \text{ for } \alpha \in \mathscr{T}_X, \ \alpha \text{ is an idempotent of } U_X \text{ if and only if } \nabla \alpha \subseteq \Delta \alpha, \ \alpha = a \text{ for all } a \in \nabla \alpha \text{ and } |X \setminus \nabla \alpha| < \infty \}, \text{ and idempotent of } V_X \text{ if and only if } \alpha = a \text{ for all } a \in \nabla \alpha \text{ and } |X \setminus \nabla \alpha| < \infty \}.$ The following theorems characterize the semigroup of almost identical partial transformations and the semigroup of almost identical full transformations on a set X which are regular-* or *-regular. 2.6 Theorem. For any set X, the semigroup of almost identical partial transformations on X, U_X , is regular-* if and only if $|X| \le 1$. <u>Proof</u>: If $|X| \le 1$, then $U_X = T_X$, so by Theorem 2.1, U_X is regular-*. Conversely, assume that U_X is regular-*. Suppose $|X| \ge 2$. For x, y \in X, let $\alpha_{x,y}$ be the element of T_X such that $\Delta \alpha_{x,y} = X$, $\nabla \alpha_{x,y} = X \setminus \{y\}, \ y\alpha_{x,y} = x \text{ and } z\alpha_{x,y} = z \text{ for all } z \in X \setminus \{y\}, \text{ and let}$ $\beta_{x,y}$ be the element of T_X such that $\Delta \beta_{x,y} = \{x\}$, $\nabla \beta_{x,y} = \{y\}$. Then for all x, $y \in X$, $\alpha_{x,y} \in E(U_X)$, and $\beta_{x,y} \in E(U_X)$ if and only if x = y. Let a, b be two distinct elements in X. Then $\alpha_{a,b}$, $\beta_{a,b}$, $\beta_{b,b} \in U_X$ and so $\alpha_{a,b}^*$, $\beta_{a,b}^*$, $\beta_{b,b}^*$ exist in U_X . From the proof of Theorem 2.1, we have that $\beta_{a,a}^* = \beta_{a,a}$ and $\beta_{b,b}^* = \beta_{b,b}$. Because $\beta_{a,a}$, $\beta_{b,b} \in E(U_X)$, it follows that $\beta_{a,a}$ and $\beta_{b,b}$ are projections in U_X . Claim that $X \setminus \{b\} \subseteq \Delta \alpha_{a,b}^*$, $a\alpha_{a,b}^* = a$ or b and $x\alpha_{a,b}^* = x$ for all $x \in X \setminus \{a, b\}$. If $y \in X \setminus \{b\}$, then $y = y\alpha_{a,b} = y\alpha_{a,b}\alpha_{a,b}^*\alpha_{a,b}^*\alpha_{a,b} = y\alpha_{a,b}^*\alpha_{a,b}$, so $y \in \Delta \alpha_{a,b}^* \alpha_{a,b} \subseteq \Delta \alpha_{a,b}^*$. Thus $X \setminus \{b\} \subseteq \Delta \alpha_{a,b}^*$. Since $a = a\alpha_{a,b} = a\alpha_{a,b}$ $a\alpha_{a,b}^{\alpha *}\alpha_{a,b}^{\alpha} = (a\alpha_{a,b}^*)\alpha_{a,b}$, we have that $a\alpha_{a,b}^* = a$ or b. If $x \in X \setminus \{a, b\}$, then $x = x\alpha_{a,b} = x\alpha_{a,b}\alpha_{a,b}^*\alpha_{a,b}^* = (x\alpha_{a,b}^*)\alpha_{a,b}^*$, so by the definition of $\alpha_{a,b}$, it follows that $x\alpha_{a,b}^* = x$. Case $a\alpha^* = a$. Then $\alpha_{a,b}\alpha^*_{a,b} = \alpha_{a,b}$, so $\alpha^*_{a,b} = \alpha_{a,b}$. But $\alpha_{a,b} \in E(U_X)$, it follows that $\alpha_{a,b}$ is a projection in U_X . By [10, Theorem 2.5], $\beta_{b,b}^{\alpha}$ is an idempotent in U_X . But $\beta_{b,b}^{\alpha}$ a, b $\beta_{b,a} \notin E(U_X)$. It is a contradiction. Case $a\alpha * = b$. Then $\alpha_{a,b}\alpha * = \alpha_{b,a}$, so $\alpha * = \alpha_{b,a}$. Thus $\alpha_{b,a}$ is a projection of U_X . By [10, Theorem 2.5], $\beta_{a,a}\alpha_{b,a}$ is an idempotent in U_X . But $\beta_{a,a}\alpha_{b,a} = \beta_{a,b} \notin E(U_X)$. It is a contradiction. This proves that if $\mathbf{U}_{\mathbf{X}}$ is a regular-* semigroup, then $|\mathbf{X}| \leq 1$. # 2.7 Theorem. For any set X, the semigroup of almost identical partial transformations on X, U_X , is *-regular if and only if $|X| \le 1$. <u>Proof</u>: If $|X| \le 1$, then $U_X = T_X$, so by Theorem 2.2, U_X is *-regular. Conversely, assume that U_X is *-regular. Suppose $|X| \geq 2$. For x, y \in X, let $\alpha_{x,y}$ and $\beta_{x,y}$ be elements of T_X defined as in the proof of Theorem 2.6, that is, $\Delta\alpha_{x,y} = X$, $\nabla\alpha_{x,y} = X \setminus \{y\}$, $y\alpha_{x,y} = x$, $z\alpha_{x,y} = z$ for all $z \in X \setminus \{y\}$, $\Delta\beta_{x,y} = \{x\}$ and $\nabla\beta_{x,y} = \{y\}$. For x, y, $z \in X$, let $\pi_{x,y,z}$ be the element of T_X such that $\Delta\pi_{x,y,z} = \{x, y\}$, $\nabla\pi_{x,y,z} = \{z\}$. Let a, b be two distinct elements in X. Then $\alpha_{a,b}$, $\beta_{a,a}$, $\beta_{b,b} \in U_X$. By the same proof of the proof of Theorem 2.1, we have that $\beta_{a,a}^* = \beta_{a,a}$ and $\beta_{b,b}^* = \beta_{b,b}$. Since U_X is *-regular, $\alpha_{a,b}^+$, $\beta_{a,a}^+$ exist in U_X . Claim that $X \setminus \{b\} \subseteq \Delta\alpha_{a,b}^+$, $\alpha_{a,b}^+ = \alpha$ or b and $\alpha_{a,b}^+ = \alpha$ for all $x \in X \setminus \{a,b\}$. If $y \in X \setminus \{b\}$, then $y = y\alpha_{a,b} = y\alpha_{a,b}^+ \alpha_{a,b}^- = \alpha_{a,b}^+ \alpha_{a,b}^-$, so $y \in \Delta\alpha_{a,b}^+ \alpha_{a,b}^- = \Delta\alpha_{a,b}^+$, it implies that $\alpha\alpha_{a,b}^+ = \alpha$ or b. If $x \in X \setminus \{a,b\}$, then $x = x\alpha_{a,b}^+ = \alpha_{a,b}^+ \alpha_{a,b}^+ = \alpha_{a,b}^+ \alpha_{a,b}^+ = \alpha_{a,b}^+ \alpha_{a,b}^+ = =$ Case $a\alpha^{\dagger}_{a,b} = a$. Then $\alpha_{a,b}^{}\alpha^{\dagger}_{a,b} = \alpha_{a,b}^{}$. Hence $\alpha_{a,b}^{} = \alpha^{\star}_{a,b}^{}$. It is easily seen that $\eta_{a,b,a}^{} = \alpha_{a,b}^{}\beta_{a,a}^{}$. Thus $\eta^{\star}_{a,b,a}^{} = (\alpha_{a,b}^{}\beta_{a,a}^{})^{\star} = \beta^{\star}_{a,a}^{}\alpha^{\star}_{a,b}^{} = \beta_{a,a}^{}\alpha_{a,b}^{} \beta_{a,a}^{\alpha_{a,b}^{} = \beta_{a,a}^{\alpha_{a,b}^{} = \beta_{a,a}^{}\alpha_{a,b}^{} = \beta_{a,a}^{\alpha_{a,b}^{} = \beta_{a,a}^{}\alpha_{a,b}^{} = \beta_{a,a}^{}\alpha_{a,b}^{\alpha_{a,b}^{} = \beta_{a,a}^{\alpha_{a,b}^{} =$ This proves that if $\mathbf{U}_{\mathbf{X}}$ is a *-regular semigroup, then $|\mathbf{X}| \leq 1. \quad \#$ 2.8 Theorem. For any set X, the semigroup of almost identical full transformations on X, V_X , is regular-* if and only if $|X| \le 1$. <u>Proof</u>: If $|X| \le 1$, then $V_X = \mathcal{T}_X$, so by Corollary 2.4, V_X is regular-*. Conversely, assume that V_X is regular-*. Suppose $|X| \geq 2$. For x, y \in X, let $\alpha_{x,y}$ be the element of T_X defined as in the proof of Theorem 2.6, that is, $\Delta\alpha_{x,y} = X$, $\nabla\alpha_{x,y} = X$ $\{y\}$, $y\alpha_{x,y} = x$ and $z\alpha_{x,y} = z$ for all $z \in X$ $\{y\}$. For x, $y \in X$, let $\lambda_{x,y}$ be the element of T_X such that $\Delta\lambda_{x,y} = X = \nabla\lambda_{x,y}$, $x\lambda_{x,y} = x$, $y\lambda_{x,y} = x$ and $z\lambda_{x,y} = z$ for all $z \in X$ $\{x, y\}$. Let a, b be two distinct elements in X. Then $\alpha_{x,y} = X$ Since X is a regular-* semigroup, $\alpha_{x,y} = x$ and $x\lambda_{x,y} for all $x\lambda_{x,y} = x$ and x^{λ} a, b = x^{λ} a, b x^{λ} a, b = x^{λ} a, b = $(x^{\lambda}$ a, b) x^{λ} a, b, so x^{λ} a, b = x^{λ Next, we claim that $a\alpha_{a,b}^* = a$ or b, and $x\alpha_{a,b}^* = x$ for all $x \in X \setminus \{a, b\}$. Since $a = a\alpha_{a,b} = a\alpha_{a,b}\alpha_{a,b}^* = \alpha_{a,b}\alpha_{a,b}$, it implies $a\alpha_{a,b}^* = a$ or b. For $x \in X \setminus \{a, b\}$, $x = x\alpha_{a,b} = x\alpha_{a,b}\alpha_{a,b}^* = \alpha_{a,b}\alpha_{a,b}^* =$ Hence, the theorem is completely proved. # 2.9 Theorem. For any set X, the semigroup of almost identical full transformations on X, V_X , is *-regular if and only if $|X| \le 1$. <u>Proof</u>: If $|X| \le 1$, then $V_X = \mathcal{T}_X$, so by Corollary 2.5, V_X is *-regular. Conversely, assume that V_X is *-regular. Suppose $|X| \ge 2$. For x, y \in X, let $\lambda_{x,y}$ be the element of T_X defined as in the proof of Theorem 2.8; that is, $\Delta\lambda_{x,y} = X = \nabla\lambda_{x,y}$, $x\lambda_{x,y} = y$, $y\lambda_{x,y} = x$, $z\lambda_{x,y} = z$ for all $z \in X \setminus \{x, y\}$. For x, y, $z \in X$, let $\alpha_{x,y,z}$ be the element of T_X such that $\Delta\alpha_{x,y,z} = X$, $$t\alpha_{x,y,z} = \begin{cases} x & \text{if } t \in \{x, y, z\}, \\ t & \text{otherwise.} \end{cases}$$ Let a, b be two distinct elements in X. Then $\alpha_{a,b,b}$, $\alpha_{b,a,a}$, $\alpha_{a,b,b}$ exist in V_X . Claim that $\lambda_{a,b}^{\dagger} = \lambda_{a,b}$. Because $a\lambda_{a,b} = a\lambda_{a,b}$, $\lambda_{a,b}$, $\lambda_{a,b}$ is one-to-one, $b\lambda_{a,b}^{\dagger} = a$. Similarly, $a\lambda_{a,b}^{\dagger} = b$. If $x \in X \setminus \{a,b\}$, then $x = x\lambda_{a,b} = x\lambda_{a,b}$, $\lambda_{a,b}^{\dagger}$, $\lambda_{a,b}^{\dagger} = (x\lambda_{a,b}^{\dagger})\lambda_{a,b}$, so $x\lambda_{a,b}^{\dagger} = x$. Thus $\lambda_{a,b}^{\dagger} = \lambda_{a,b}$. Next, we show that a $\alpha_{a,b,b}^{\dagger}$ = a or b, $x\alpha_{a,b,b}^{\dagger}$ = x for all $x \in X \setminus \{a, b\}$. Since $a = a\alpha_{a,b,b} = a\alpha_{a,b,b} \alpha_{a,b,b}^{\dagger} \alpha_{a,b,b}^{\dagger} \alpha_{a,b,b} = \alpha_{a,b,b}^{\dagger} \alpha_{a,b}^{\dagger} \alpha_{a,b}^{\dagger} \alpha_{a,b}^{\dagger} \alpha_{a,b}^{\dagger}$ $(a\alpha_{a,b,b}^{\dagger})^{\alpha}$ a,b,b, by the definition of $\alpha_{a,b,b}$, we have that $a\alpha_{a,b,b}^{\dagger}$ a or b. If $x \in X \setminus \{a, b\}$, then $x^{\alpha}_{a,b,b} = x^{\alpha}_{a,b,b}^{\dagger}$, $x^{\dagger}_{a,b,b}^{\alpha}$, $x^{\dagger}_{a,b,b}^{\alpha}$ $(x\alpha^{\dagger}_{a,b,b})^{\alpha}_{a,b,b}$, hence $x\alpha^{\dagger}_{a,b,b} = x$. Similarly, we can show that $b\alpha_{b,a,a}^{\dagger} = a \text{ or } b, \text{ and } x\alpha_{b,a,a}^{\dagger} = x \text{ for all } x \in X \setminus \{a, b\}.$ Case $a\alpha^{\dagger}_{a,b,b} = a$ and $b\alpha^{\dagger}_{b,a,a} = b$. Then $\alpha_{a,b,b}\alpha^{\dagger}_{a,b,b} = \alpha_{a,b,b}$ $\alpha_{a,b,b} = \alpha_{b,a,a} \alpha_{a,b,b}$ and $\alpha_{a,b,b} \alpha_{b,a,a} = \alpha_{b,a,a}$, then $\alpha_{a,b,b} = \alpha_{a,b,b}$ $\alpha_{b,a,a}^{\star}$ $\alpha_{a,b,b}^{\star}$ = $(\alpha_{a,b,b}^{\alpha}\alpha_{b,a,a}^{\alpha})^{\star}$ = $\alpha_{b,a,a}^{\star}$ = $\alpha_{b,a,a}^{\star}$ which is a contradiction because $ba_{a,b,b} = a$ but $ba_{b,a,a} = b$. $\alpha_{b,a,a}^{\alpha_{b,a,a}^{\dagger}} = \alpha_{a,b,b}^{\alpha_{b,a,a}^{\dagger}}$ so $\alpha_{b,a,a}^{\star} = \alpha_{b,a,a}^{\dagger}$ and $\alpha_{a,b,b}^{\star} = \alpha_{a,b,b}^{\dagger}$ Thus $\alpha_{a,b,b} = \alpha_{b,a,a} \alpha_{a,b,b} = \alpha_{b,a,a}^* \alpha_{a,b,b}^* = (\alpha_{a,b,b} \alpha_{b,a,a}^*)^* (\alpha_{a,b,a}^*)^* (\alpha_{a,b$ $\alpha_{b,a,a}^* = \alpha_{b,a,a}$, a contradiction. Case $a\alpha^{\dagger}_{a,b,b} = a$ and $b\alpha^{\dagger}_{b,a,a} = a$. Then $\alpha_{a,b,b}\alpha^{\dagger}_{a,b,b} = \alpha_{a,b,b}$, so $\alpha_{a,b,b}^* = \alpha_{a,b,b}^*$ Hence $\alpha_{a,b,b}^\dagger = \alpha_{a,b,b}^\dagger \alpha_{a,b,b}^{\alpha} \alpha_{a,b,b}^\dagger \alpha_{a,b,b}^{\alpha} \alpha_{a,b,b}^{\alpha$ so $(\alpha_{a,b,b}^{\dagger})^* = \alpha_{a,b,b}^{\dagger}$. It follows that $\alpha_{a,b,b}^{\dagger} = (\alpha_{a,b,b}^{\dagger})^* = (\alpha_{a,b,b}^{\dagger})^* = \alpha_{a,b,b}^{\dagger}$. It follows that $\alpha_{a,b,b}^{\dagger} = (\alpha_{a,b,b}^{\dagger})^* = \alpha_{a,b,b}^{\dagger}$. If $(\alpha_{a,b,b}^{\dagger})^* = \alpha_{a,b,b}^{\dagger}$, $(\alpha_{a,b,b}^{\dagger})^* = \alpha_{a,b,b}^{\dagger}$, $(\alpha_{a,b,b}^{\dagger})^* = \alpha_{a,b,b}^{\dagger}$, $(\alpha_{a,b,b}^{\dagger})^* = \alpha_{a,b,b}^{\dagger}$, so $\alpha_{b,a,a}^{\dagger} = \alpha_{a,b,b}^{\dagger}$, which is a contradiction. Then a $\alpha_{b,a,a}^{\dagger} = \alpha_{b,a,a}^{\dagger}$ is $\alpha_{b,a,a}^{\dagger} = \alpha_{b,a,a}^{\dagger}$, so $\alpha_{b,a,$ Assume that $b\alpha_{b,c,c}^{\dagger} = b$. Then $\alpha_{b,c,c}^{\dagger} \alpha_{b,c,c}^{\dagger} = \alpha_{b,c,c}^{\dagger}$, so $\alpha_{b,c,c}^{*} = \alpha_{b,c,c}^{*}$ and hence $\alpha_{a,b,c}^{*} = (\alpha_{b,c,c}^{*} \alpha_{a,b,b}^{*})^{*} = \alpha_{a,b,b}^{*} \alpha_{b,c,c}^{*} = \alpha_{a,b,b}^{*} \alpha_{b,c,c}^{*} = \alpha_{a,b,c}^{*} \alpha_{a,b,c}^{*} \alpha_{a,b,c}^{*} \alpha_{a,b,c}^{*} = \alpha_{a,b,c}^{*} = \alpha_{a,b,c}^{*} \alpha_{a,b,c}^{*} \alpha_{a,b,c}^{*} \alpha_{a,b,c}^{*} = \alpha_{a,b,c}^{*} \alpha_{a,b,c}^{$ Case $a\alpha^{\dagger}_{a,b,b} = b$ and $b\alpha^{\dagger}_{b,a,a} = b$. A proof to get a contradiction can be given identically to the proof for the case a $\alpha^{\dagger}_{a,b,b} = a$ and $b\alpha^{\dagger}_{b,a,a} = a$, only replacing a by b and b by a; respectively. Hence, the theorem is completely proved.