

CHAPTER I

REGULAR-STAR SEMIGROUPS AND STAR-REGULAR SEMIGROUPS

Semigroups which are *-regular have been studied by Drazin in [3]. Nordahl and Scheiblich have studied regular-* semigroups in [10]. In this chapter, various general properties of *-semigroups are introduced. In particular, we study regular-* semigroups and *-regular semigroups in general. Many important properties satisfied by both or by one but not the other are introduced. Various examples are also given.

Recall that a map * from a semigroup S into S is an involution of S if

$$(a*)* = a \text{ and } (ab)* = b*a*$$

for all $a, b \in S$, and a *-semigroup is a semigroup with an involution. Observe that an involution of a *-semigroup is a one-to-one and onto map on S.

Let S be a *-semigroup. Then for any subset A of S, $(A^*)^* = A$. If A is a subsemigroup of S, then A* is clearly a subsemigroup of S. If e is an idempotent of S, then $e^* = (ee)^* = e^*e^* \in E(S)$. Thus $(E(S))^* \subseteq E(S)$, so $E(S) = ((E(S))^*)^* \subseteq (E(S))^* \subseteq E(S)$ which implies $(E(S))^* = E(S)$. If S has a zero 0, then for all $a \in S$, $0^*a = (a^*0)^* = 0^*$ and $a0^* = (0a^*)^* = 0^*$, and hence $0^* = 0$. If S has an identity 1, then for all $a \in S$, $1^*a = (a^*1)^* = (a^*)^* = a$ and $a1^* = (1a^*)^* = (a^*)^* = a$, and thus $1^* = 1$.

Let A and B be subsets of a *-semigroup S. Then the following are clearly obtained: $(A \cup B)* = A* \cup B*$ and (AB)* = B*A*. Thus we have that (SA)* = A*S, (AS)* = SA*, and if $a \in S$, then $(S^1a)* = (Sa \cup \{a\})* = a*S \cup \{a*\} = a*S^1$, $(aS^1)* = (aS \cup \{a\})* = Sa* \cup \{a*\} = S^1a*$ and $(S^1aS^1)* = (SaS \cup Sa \cup aS \cup \{a\})* = Sa*S \cup a*S \cup Sa* \cup \{a*\} = S^1a*S^1$. Hence we have the following theorem:

1.1 Theorem. Let S be a *-semigroup and A ⊆ S. Then:

- (i) If A is a left [right] ideal of S, then A* is a right [left] ideal of S. If A is the principal left [right] ideal of S generated by a ∈ S, then A* is the principal right [left] ideal of S generated by a*.
- (ii) If A is an ideal of S, then so is A*. If A is the principal ideal of S generated by a, then A* is the principal ideal of S generated by a*.

The next theorem shows properties of the Green's relations of any *-semigroup.

1.2 Theorem. Let S be a *-semigroup and a \in S. Then the following hold:

- (i) $R_a^* = L_{a^*}$
- (ii) $L_a^* = R_{a^*}$
- (iii) $H_a^* = H_{a^*}$
- (iv) $D_a^* = D_{a*}$,
- $(v) \quad J_a^* = J_{a^*}.$

Proof: (i) and (ii) have been proved in [10].

(iii) Because $H_x = R_x \cap L_x$ for all $x \in S$, it follows from (i) and (ii) that $H_a^* = H_{a*}$.

(iv) Let $x \in D_a^*$. Then $x^* \in D_a$, so $(x^*, a) \in \mathcal{D}$. Thus $(x^*, u) \in \mathcal{L}$ and $(u, a) \in \mathcal{R}$ for some $u \in S$. By (ii), $(x, u^*) \in \mathcal{R}$, and by (i), $(u^*, a^*) \in \mathcal{L}$, so $(x, a^*) \in \mathcal{R} \circ \mathcal{L} = \mathcal{D}$ which implies $x \in D_{a^*}$. Thus $D_a^* \subseteq D_{a^*}$. This proves that $D_x^* \subseteq D_{x^*}$ for all $x \in S$. Hence $D_a \subseteq (D_{a^*})^* \subseteq D_{(a^*)^*} = D_a$, and therefore $D_a^* = D_{a^*}$.

(v) Let $x \in J_{a}^{*}$. Then $x^{*} \in J_{a}$, so $S^{1}x^{*}S^{1} = S^{1}aS^{1}$. Since $S^{1}xS^{1} = (S^{1}x^{*}S^{1})^{*} = (S^{1}aS^{1})^{*} = S^{1}a^{*}S^{1}$, it follows that $x \in J_{a^{*}}$, hence $J_{a}^{*} \subseteq J_{a^{*}}$. This shows that $J_{x}^{*} \subseteq J_{x^{*}}$ for all $x \in S$. Thus $J_{a} \subseteq J_{a^{*}}^{*} \subseteq J_{(a^{*})^{*}} = J_{a}$. Therefore $J_{a}^{*} = J_{a^{*}}$.

For any semigroup S, G is a maximal subgroup of S if and only if $G = H_e$ for some $e \in E(S)$. If S has an identity 1, then H_l is the unit group of S.

1.3 <u>Corollary</u>. Let S be a *-semigroup. Then the involution * of S preserves the maximal subgroups of S, that is, if G is a maximal subgroup of S, then G* is a maximal subgroup of S. In particular, if S has an identity, then the involution * of S fixes the unit group of S, that is, if G is the unit group of S, then G* = G.

Proof: It follows from the fact that (E(S))* = E(S), $(H_e)* = H_{e*}$ for all $e \in E(S)$ and l* = l where l is the identity of S. #

Recall that a *-semigroup S is a regular-* semigroup if

a = aa*a for all elements a in S. A *-semigroup S is a proper

*-semigroup if for a, b \in S, a*a = a*b = b*a = b*b implies a = b;

or equivalently, for a, b \in S, aa* = ab* = ba* = bb* implies a = b.

A *-semigroup S is a *-regular semigroup if S is proper and for each

a \in S, there exists x \in S such that a = axa, x = xax, (ax)* = ax,

(xa)* = xa.

Let S be a semigroup. For a \in S, let V(a) denote the set of all inverses of a, that is, 004932

 $V(a) = \{x \in S \mid a = axa \text{ and } x = xax\}.$

Let S be a *-semigroup and a \in S. If a' \in V(a), then a = aa'a and a' = a'aa', so a* = a*(a')*a* and (a')* = (a')*a*(a')* which implies (a')* \in V(a*). This proves that (V(a))* \subseteq V(a*) for all a \in S. Hence for a \in S, V(a) \subseteq (V(a*))* \subseteq V((a*)*) = V(a), and thus (V(a*))* = V(a) which implies (V(a))* = V(a*). If S is an inverse semigroup, then for all a \in S, V(a) = $\{a^{-1}\}$, hence (a^{-1}) * = $(a*)^{-1}$ for all a \in S.

Every inverse semigroup is both regular-* and *-regular.

Let S be an inverse semigroup. Define $a^* = a^{-1}$ for all a in S.

Then S is a *-semigroup since $(a^{-1})^{-1} = a$ and $(ab)^{-1} = b^{-1}a^{-1}$ for all a, b in S. If $a \in S$, then $a = aa^{-1}a = aa^*a$. Hence S is regular-*.

If $a \in S$, then $a = aa^{-1}a$, $a^{-1} = a^{-1}aa^{-1}$, $(aa^{-1})^* = (a^{-1})^*a^* = (a^{-1})^{-1}a^{-1} = aa^{-1}$ and $(a^{-1}a)^* = a^*(a^{-1})^* = a^{-1}(a^{-1})^{-1} = a^{-1}a$.

Suppose $a, b \in S$ such that $a^{-1}a = a^{-1}b = b^{-1}a = b^{-1}b$. Since $(ab^{-1})(ab^{-1}) = ab^{-1}ab^{-1} = aa^{-1}ab^{-1} = ab^{-1}$, $ab^{-1} \in E(S)$. Thus

 $ab^{-1} = aa^{-1}ab^{-1} = ab^{-1}aa^{-1} = aa^{-1}aa^{-1} = aa^{-1}$, so $ba^{-1} = aa^{-1}$. Hence $a = aa^{-1}a = ba^{-1}a = bb^{-1}b = b$. This proves that S is *- regular.

A regular-* semigroup need not be a *-regular semigroup and a *-regular semigroup need not be a regular-* semigroup. They are shown by the following examples:

Example: Let X be a set such that $|X| \ge 2$ and let $S = X \times X$ be the semigroup with the operation defined by (a, b)(c, d) = (a, d) for all $a, b, c, d \in X$. Define the map * on S by (a, b) * = (b, a) for all $a, b \in X$. Then * is an involution on S. Since for $a, b \in X$, (a, b)(b, a)(a, b) = (a, b), it follows that S is a regular-* semigroup.

Next, we show that S is not a *-regular semigroup. Suppose S is a *-regular semigroup under an involution *. Let $a \in X$. Then (a, a)* = (x, y) for some $x, y \in X$. Thus (x, y)* = (a, a) and hence (x, a)* = ((x, y)(a, a))* = (a, a)*(x, y)* = (x, y)(a, a) = (x, a). Similarly, we can show that (a, y)* = (a, y). Thus (a, y) = (a, y)*(a, y) = (a, y)*(x, y) = (x, y)*(a, y) = (x, y)*(x, y). Since S is a proper *-semigroup, (a, y) = (x, y), so x = a. Thus (a, y) = (a, y)* = (x, y)* = (a, a), so y = a. This proves that (a, a)* = (a, a) for all $a \in X$.

Let a, b be two distinct elements of X. Then $(a, a)^* = (a, a)$ and $(b, b)^* = (b, b)$. Hence $(a, b) = (a, a)(b, b) = (a, a)^*(b, b)^* = ((b, b)(a, a))^* = (b, a)^*$ which implies $(a, b)^* = (b, a)$. Thus $(a, b)^*(a, b) = (a, b)^*(b, b) = (b, b)^*(a, b)^*(a, b) = (b, b)^*(a, b)$

(b, b)*(b, b) = (b, b). Because S is a proper *-semigroup, it follows that (a, b) = (b, b) which implies a = b, a contradiction.

Therefore S is not a *-regular semigroup. #

Example. Let I be a set such that |I| = 2, Z the set of integers, and $S = I \times Z \times I$. Let P: $I \times I \rightarrow Z$ be the map such that

$$(a, b)P = p_{ab} \text{ and } p_{ab} = \begin{cases} 0 & \text{if } a = b, \\ 1 & \text{if } a \neq b. \end{cases}$$

Then $p_{ab} = p_{ba}$ for all a, b \in I. Define a multiplication on S by $(a, n, b)(c, m, d) = (a, n+p_{bc}+m, d)$. Then S is a semigroup. Define the map * on S by

$$(a, n, b)* = (b, n, a)$$
 $(a, b \in I, n \in Z).$

Then the map * is an involution on S, so S is a *-semigroup. To show that S is a *-regular semigroup, suppose a, b, c, d \in I, n, m \in Z such that (a, n, b)*(a, n, b) = (a, n, b)*(c, m, d) = (c, m, d)*(a, n, b) = (c, m, d)*(c, m, d). Then (b, n, a)(a, n, b) = (b, n, a)(c, m, d) = (d, m, c)(a, n, b) = (d, m, c)(c, m, d) which implies (b, 2n, b) = (b, n+pac+m, d) = (d, m+pca+n, b) = (d, 2m, d), so b = d, n = m and n+pac+m = 2m. Thus pac = 0 which implies a = c. Hence (a, n, b) = (c, m, d). This proves that S is a proper *-semi-group. Because (a, n, b) = (a, n, b)(b, -n, a)(a, n, b), (b, -n, a) = (b, -n, a)(a, n, b)(b, -n, a), ((a, n, b)(b, -n, a))* = (a, 0, a)* = (a, 0, a) = (a, n, b)(b, -n, a) and ((b, -n, a)(a, n, b))* = (b, 0, b)* = (b, 0, b) = (b, -n, a)(a, n, b). Hence S is a *-regular semigroup.

Next, to show that S is not a regular-* semigroup, suppose S is a regular-* semigroup under an involution *. Let a, b be two distinct elements of I. Then $I = \{a, b\}$. Let $x, y \in I, m \in \mathbb{Z}$ such that (a, 1, b)* = (x, m, y). Then (a, 1, b) = (a, 1, b)(x, m, y)(a, 1, b)= $(a, 1+p_{bx}+m, y)(a, 1, b) = (a, 2+m+p_{bx}+p_{ya}, b)$. It follows that $1 = 2+m+p_{bx}+p_{ya}$, so $m = -1-p_{bx}-p_{ya}$. Thus (a, 1, b)* = $(x, -1-p_{bx}-p_{ya}, y)$ and hence $(x, -p_{bx}, b)* =$ $((x, -1-p_{bx}-p_{ya}, y)(a, 1, b))* = ((a, 1, b)*(a, 1, b))* =$ $(a, 1, b)*(a, 1, b) = (x, -p_{bx}, b)$ and $(a, -p_{ya}, y)* =$ $((a, 1, b)(x, -1-p_{bx}-p_{ya}, y))* = ((a, 1, b)(a, 1, b)*)* =$ $(a, 1, b)(a, 1, b)* = (a, -p_{ya}, y)$. Because $(x, -p_{bx}+1-p_{ya}, y) =$ $(x, -p_{bx}, b)(a, -p_{ya}, y) = ((a, -p_{ya}, y)*(x, -p_{bx}, b)*)* =$ $((a, -p_{ya}, y)(x, -p_{bx}, b))* = (a, -p_{ya}+p_{yx}-p_{bx}, b)*$ and S is a regular-* semigroup, it follows that $(a, -p_{ya}+p_{yx}-p_{bx}, b) =$ $(a, -p_{ya}+p_{yx}-p_{bx}, b)(a, -p_{ya}+p_{yx}-p_{bx}, b)*(a, -p_{ya}+p_{yx}-p_{bx}, b) =$ $(a, -p_{ya}+p_{yx}-p_{bx}, b)(x, -p_{bx}+1-p_{ya}, y)(a, -p_{ya}+p_{yx}-p_{bx}, b) =$ $(a, -2p_{ya}+p_{yx}-p_{bx}+1, y)(a, -p_{ya}+p_{yx}-p_{bx}, b) = (a, -2p_{ya}+2p_{yx}-2p_{bx}+1, b)$ which implies $-p_{ya}+p_{yx}-p_{bx} = 2(-p_{ya}+p_{yx}-p_{bx}) + 1$. Hence $p_{ya} - p_{yx} + p_{bx} = 1$ which implies $y = x = a \neq b$, $y = x = b \neq a$, or $x = a \neq b = y \text{ since } I = \{a, b\}.$ Case $y = x = a \neq b$. Then (a, 1, b)* = (a, -2, a). Hence (a, 1, b)(a, 1, b)* = (a, 1, b)(a, -2, a) = (a, 0, a) = (a, 0, a)*and (a, 1, b)*(a, 1, b) = (a, -2, a)(a, 1, b) = (a, -1, b) =(a, -1, b)*. Thus (a, 0, a) = (a, -1, b)(a, 0, a) =(a, -1, b)*(a, 0, a)* = ((a, 0, a)(a, -1, b))* = (a, -1, b)* =

(a, -l, b), a contradiction.

Case $y = x = b \neq a$. Then (a, 1, b)* = (b, -2, b), and hence (a, 1, b)*(a, 1, b) = (b, -2, b)(a, 1, b) = (b, 0, b) = (b, 0, b)* and (a, 1, b)(a, 1, b)* = (a, 1, b)(b, -2, b) = (a, -1, b) = (a, -1, b)*. Thus <math>(b, 0, b) = (b, 0, b)* = ((b, 0, b)(a, -1, b))* = (a, -1, b)*(b, 0, b)* = (a, -1, b)(b, 0, b) = (a, -1, b), a contradiction.

Case $x = a \neq b = y$. Then $(a, 1, b)^* = (a, -3, b)$ and so $(a, 1, b)^*(a, 1, b) = (a, -3, b)(a, 1, b) = (a, -1, b) = (a, -1, b)^*.$ From $(a, -3, b) = (a, 1, b)^* = ((a, 0, a)(a, 1, b))^* =$ $(a, 1, b)^*(a, 0, a)^* = (a, -3, b)(a, 0, a)^*,$ we have that $(a, 0, a)^* = (a, -1, b)$ or (b, 0, b). If $(a, 0, a)^* = (a, -1, b)$, then (a, -1, b) = $(a, -1, b)^* = (a, 0, a)$, a contradiction. If $(a, 0, a)^* = (b, 0, b)$, then $(a, 0, a)(a, 0, a)^* = (a, 0, a)(b, 0, b) = (a, 1, b) = (a, -3, b)^*$ and thus $(a, -3, b) = (a, 0, a)(a, 0, a)^* = (a, 1, b)$, a contradiction.

This proves that S is not a regular-* semigroup. #

A regular-* semigroup and a *-regular semigroup are regular semigroups. But a regular semigroup S which is a *-semigroup need not be a regular-* semigroup and need not be a *-regular semigroup under the involution of S. They are shown by the following examples:

Example. Let $\mathbb C$ be the set of all complex numbers and let $M_2(\mathbb C)$ be the set of all 2*2 matrices over $\mathbb C$. Then $M_2(\mathbb C)$ is a *-semigroup with matrix multiplication and $A^* = A^t$ (A-transpose). Next, to show $M_2(\mathbb C)$ is regular, let $A \in M_2(\mathbb C)$. From [1, Theorem 25] there exist

nonsingular matrices P and Q such that PAQ = $\begin{pmatrix} \mathbf{I_r} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$ where $\mathbf{I_r} = \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$ or $\begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix}$. Let $\mathbf{A'} = \mathbf{Q} \begin{pmatrix} \mathbf{I_r} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$ P. It is easy to verify that $\mathbf{A} = \mathbf{AA'A}$. This proves that $\mathbf{M_2}(\mathbf{C})$ is regular. Since $\begin{pmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \neq \begin{pmatrix} \mathbf{2} & \mathbf{2} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} + \mathbf{M_2}(\mathbf{C})$ is not a regular-* semigroup under the involution *. #

Example. Let X be a set such that |X| > 2 and let $S = X \times X$ be the semigroup with an operation defined by (a, b)(c, d) = (a, d) for all $a, b, c, d \in X$. Then the map * on S defined by (a, b) * = (b, a), $(a, b \in X)$, is an involution on S, so S is a *-semigroup. Since (a, b) = (a, b)(b, a)(a, b) for all $a, b \in X$, S is regular. We have shown that S is not a *-regular semigroup under any involution *. #

A homomorphic image of a regular *-semigroup is not necessarily regular-*. Also, a homomorphic image of a *-regular semigroup need not be *-regular.

Example. Let X be a set such that $|X| \ge 2$ and let $S = X \times X$ be the semigroup with the operation defined by (a, b)(c, d) = (a, d) for all a, b, c, d \in X. Define the map * on S by (a, b) * = (b, a) for all a, b \in X. We have shown that S is a regular-* semigroup under the involution *. Let $a \in X$ and let $\psi : S \to S$ be the map such that $(x, y)\psi = (a, y)$, for all $x, y \in X$. The $a \times X$ is a homomorphic image of S. For $x, y \in X$, (a, x) = (a, y)(a, x) and (a, y) = (a, x)(a, y), then $(a, x) \mathcal{R}(a, y)$ in $a \times X$. Thus the semigroup $a \times X$ has only one \mathcal{R} -class, so $\mathcal{D} = \mathcal{R}$. Hence the semigroup $a \times X$ has only

one \mathcal{D} -class which has only one \mathcal{R} -class. For x, y \in X, if (a, x) $\mathcal{L}(a, y)$ in a×X, then (a, x) = (a, u)(a, y) for some $u \in X$, thus x = y. Hence the cardinality of the set of \mathcal{L} -classes in the semigroup a×X is |X| > 1. Therefore the semigroup a×X has a \mathcal{D} -class D such that the cardinality of the set of \mathcal{R} -classes in D and the cardinality of the set of \mathcal{L} -classes in D are not equal, so by [10, Corollary 2.4], the semigroup a×X is not a regular-* semigroup. #

Example. Let I be a set such that |I| = 2, Z the set of integers, and $S = I \times Z \times I$. Let $P : I \times I \to Z$ be the map such that $(a, b)P = p_{ab}$ and $p_{ab} = \begin{cases} 0 & \text{if } a = b, \\ 1 & \text{if } a \neq b. \end{cases}$ Define a multiplication on S by

 $(a, n, b)(c, m, d) = (a, n+p_{bc}+m, d),$

and define the map * on S by (a, n, b)* = (b, n, a) $(a, b \in I, n \in Z)$. We have shown that S is a *-regular semigroup under involution *.

Let T = I×I be the semigroup with the operation defined by (a, b)(c, d) = (a, d). Then T is a semigroup. Let $\psi : S \to T$ be defined by $(a, n, b)\psi = (a, b)$. Then ψ is a homomorphism from S onto T. But we have shown that T is not a *-regular semigroup. This proves that a homomorphic image of a *-regular semigroup need not be *-regular. #

Let S be a *-regular semigroup. Let $a \in S$. Then there exists $x \in S$ such that a = axa, x = xax, $(ax)^* = ax$ and $(xa)^* = xa$. For each $a \in S$, such x is unique and it is denoted by a^{\dagger} which is called the Moore-Penrose generalized inverse (or, more briefly, the MP inverse)

of a. To show the uniqueness of x, let a, x, y \in S such that a = axa = aya, x = xax, y = yay, (ax)* = ax, (ay)* = ay, (xa)* = xa and (ya)* = ya. Then x = xax = xayax = (xa)*(ya)*x = ((ya)(xa))*x = (ya)*x = yax = yayax = y(ay)*(ax)* = y((ax)(ay))* = y(ay)* = yay = y. Observe that if $e \in E(S)$ such that e* = e (that is, e is a projection of S), then $e^{\dagger} = e$.

Let S be a proper *-semigroup. Then S is *-regular if and only if for all a \(\) S, aa* and a*a are both regular. Let a \(\) S and assume that aa* and a*a are both regular. Then there exist x, y \(\) S such that aa* = aa*xaa* and a*a = a*aya*a, so aa* = aa*xaa* = aa*x*aa* and a*a = a*aya*a = a*ay*a*a. Thus a*a = a*(aya*a) = (a*ay*a*)a = (a*ay*a*)a = (a*ay*a*)a = (a*ay*a*)a, aa* = a(a*xaa*) = (aa*x*a)a* = (aa*x*a)(a*xaa*) and aa* = a(a*x*aa*) = (aa*xa)a* = (aa*xa)(a*x*aa*). Since S is proper, it follows that a = aya*a = ay*a*a = aa*xaa = aa*xa. Let z = a*xaya*. Claim that z = a\(\). From aza = aa*xaya*a = aya*a = a, zaz = a*xaya*aa*xaya* = a*xaya*aya*a = ay*a*a = ay*a*aya*a = a*xaa*xa = a*xaa*xa = (aya*)*(aya*) = (az)* and za = a*xaya*a = a*xa = a*xaa*xa = a*xaa*xa = (a*xa)(a*xa)* = (za)*, it follows that z = a\(\). Hence S is *-regular.

A *-semigroup S is *-regular if and only if S is regular and S is proper. If S is regular and S is proper, then for all $a \in S$, aa*, a*a are regular, and hence, from the above proof, S is *-regular.

It has been shown by Nordahl and Scheilblich in [10] that in any regular-* semigroup S, the involution * fixes one and only one idempotent per \mathcal{R} -class, a \mathcal{R} b implies aa* = bb* and each \mathcal{D} -class D

of S are square; that is, the cardinality of the set \mathcal{R} -classes in D and the cardinality of the set \mathcal{L} -classes in D are equal. Similar results are true for *-regular semigroups.

1.4 Theorem. Let S be a *-regular semigroup. Then for a \in S, aa is one and only one idempotent in R_a which is fixed by the involution *.

Proof: Let $a \in S$. Then $a = aa^{\dagger}a$, $a^{\dagger} = a^{\dagger}aa^{\dagger}$, $(aa^{\dagger})^* = aa^{\dagger}$ and $(a^{\dagger}a)^* = a^{\dagger}a$. Thus $aa^{\dagger} \in E(S)$, $(aa^{\dagger})^* = aa^{\dagger}$ and $aa^{\dagger} \in R_a$. Suppose $e \in E(S)$, $e \in R_a$ such that $e^* = e$. Then $e = e^* \in (R_a)^* = (R_{aa}^{\dagger})^* = L_{(aa^{\dagger})^*} = L_{aa^{\dagger}}$, so e, $aa^{\dagger} \in R_{aa}^{\dagger} \cap L_{aa^{\dagger}} = H_{aa^{\dagger}}$ and hence $e = aa^{\dagger}$.

The dual of Theorem 1.4 is as follows: For a *-regular semigroup S, if a \in S, then a a is one and only one idempotent in L_a which is fixed by the involution *.

1.5 Corollary. Let S be a *-regular semigroup, Then for a, b \in S, a \Re b if and only if aa † = bb † .

<u>Proof</u>: Let $(a, b) \in \mathcal{R}$. Because $(a, aa^{\dagger}) \in \mathcal{R}$ and $(b, bb^{\dagger}) \in \mathcal{R}$. It follows that $(aa^{\dagger}, bb^{\dagger}) \in \mathcal{R}$. Since $aa^{\dagger}, bb^{\dagger} \in E(S)$, $(aa^{\dagger})* = aa^{\dagger}$ and $(bb^{\dagger})* = bb^{\dagger}$, it follows by Theorem 1.4 that, $aa^{\dagger} = bb^{\dagger}$.

The converse follows from the fact that for all a \in S, a \mathcal{R} aa † . #

By the dual of Theorem 1.4, we also have that in a *-regular semigroup S, for a, b \in S, a \mathscr{L} b if and only if $a^{\dagger}a = b^{\dagger}b$.

1.6 <u>Corollary</u>. For any \mathcal{D} -class D of a *-regular semigroup S, the set of \mathcal{R} -classes in D and the set of \mathcal{L} -classes in D have the same cardinality.

Proof: Let $a \in S$. Let $C = \{e \in D_a \mid e = e^2 = e^*\}$, $A = \{L_x \mid x \in D_a\}$ and $B = \{R_x \mid x \in D_a\}$. Then by Theorem 1.4, $A = \{L_e \mid e \in C\}$, $B = \{R_e \mid e \in C\}$, and |A| = |B| by the map $L_e \mapsto R_e$ ($e \in C$). #

It was shown by Nardahl and Scheiblich in [10, Theorem 2.5] that the product of two projections in a regular-* semigroup is an idempotent. However, the product of two projections in a *-regular semigroup need not be an idempotent.

Example. Let I be a set such that |I| = 2, \mathbb{Z} the set of integers.

Let $S = I \times \mathbb{Z} \times I$ and $P : I \times I \to \mathbb{Z}$ the map such that $(a, b)P = P_{ab}$ and $P_{ab} = \begin{cases} 0 & \text{if } a = b, \\ 1 & \text{if } a \neq b. \end{cases}$

Define a multiplication on S by

 $(a, n, b)(c, m, d) = (a, n+p_{bc}+m, d),$

and define the map * on S by (a, n, b)* = (b, n, a) $(a, b \in I, n \in \mathbb{Z})$. We have shown that S is a *-regular semigroup. Let a, b be two distinct elements in I. Then (a, 0, a) and (b, 0, b) are projections of S. But (a, 0, a)(b, 0, b) = (a, 1, b) which is not an idempotent

of S. #

In any *-regular semigroup S, it is true that $(a^{\dagger})^{\dagger} = a$ for all a \in S, but it is not true that (ab) † = $b^{\dagger}a^{\dagger}$ for all a, b \in S. From the above example, (a, 0, a)(a, 0, a)(a, 0, a) = (a, 0, a), ((a, 0, a)(a, 0, a))* = (a, 0, a)(a, 0, a), (b, 0, b)(b, 0, b)(b, 0, b)= (b, 0, b), ((b, 0, b)(b, 0, b)) * = (b, 0, b)(b, 0, b), (a, 1, b) =(a, 1, b)(b, -1, a)(a, 1, b), (b, -1, a) = (b, -1, a)(a, 1, b)(b, -1, a),((a, 1, b)(b, -1, a))* = (a, 1, b)(b, -1, a) and ((b, -1, a)(a, 1, b))*= (b, -1, a)(a, 1, b), we have that $(a, 0, a)^{\dagger} = (a, 0, a), (b, 0, b)^{\dagger}$ = (b, 0, b) and $(a, 1, b)^{\dagger} = (b, -1, a)$. But $(b, -1, a) = (a, 1, b)^{\dagger}$ = $((a, 0, a)(b, 0, b))^{\dagger}$ and (b, 1, a) = (b, 0, b)(a, 0, a) = $(b, 0, b)^{\dagger}(a, 0, a)^{\dagger}$, so $((a, 0, a)(b, 0, b))^{\dagger} \neq (b, 0, b)^{\dagger}(a, 0, a)^{\dagger}$.

Theorem. Let S be a *-regular semigroup. Then for $a \in S$,

(i)
$$(a^*)^{\dagger} = (a^{\dagger})^*,$$

(ii)
$$(a^{\dagger})^{\dagger} = a$$
,

Proof: (i) Let $a \in S$. Then $aa^{\dagger}a = a$, $a^{\dagger}aa^{\dagger} = a^{\dagger}$, $(aa^{\dagger})^* = aa^{\dagger}$ and $(a^{\dagger}a)^* = a^{\dagger}a$ and thus $a^* = (aa^{\dagger}a)^* = a^*(a^{\dagger})^*a^*$, $(a^{\dagger})^* = (a^{\dagger}aa^{\dagger})^* = (a^{\dagger})^*a^*(a^{\dagger})^*, (a^*(a^{\dagger})^*)^* = a^{\dagger}a = (a^{\dagger}a)^* = a^*(a^{\dagger})^*$ and $((a^{\dagger})*a*)* = aa^{\dagger} = (aa^{\dagger})* = (a^{\dagger})*a*$. Hence $(a*)^{\dagger} = (a^{\dagger})*$. (ii) For $a \in S$, $a^{\dagger}aa^{\dagger} = a^{\dagger}$, $aa^{\dagger}a = a$, $(a^{\dagger}a)^* = a^{\dagger}a$ and $(aa^{\dagger})^* = aa^{\dagger}$, it follows that $(a^{\dagger})^{\dagger} = a$.

(iii) For $a \in S$, aa^{\dagger} and $a^{\dagger}a$ are projections, and

hence $(a^{\dagger}a)^{\dagger} = a^{\dagger}a$ and $(aa^{\dagger})^{\dagger} = aa^{\dagger}$. #

By an <u>ordered semigroup</u> we shall mean a semigroup S on which is defined a partial order \leq in such a way that for any a, b of S, a \leq b implies ax \leq bx and xa \leq xb for each element x of S.

Let S be an inverse semigroup. The relation \leq on S defined by $a \leq b \iff aa^{-1} = ab^{-1}$ is a partial order on S and it is called the <u>natural partial order</u> on S. The inverse semigroup S is an ordered semigroup under the natural partial order. If an inverse semigroup S is a *-semigroup, then the natural partial order \leq on S satisfies the property that for a, b \in S, a \leq b implies a* \leq b* because a \leq b if and only if $a^{-1} \leq b^{-1}$.

Let P be a partially ordered set. The greatest lower bound of the subset $\{a_i \mid i \in \Lambda\}$ of P, if it exists, is denoted by $\bigcap_{i \in \Lambda} a_i$ and $\bigcap_{i \in \Lambda} a_i$ denotes the least upper bound of the subset $\{a_i \mid i \in \Lambda\}$ of P, if it exists. For a, b \in P, a \bigwedge b and a \bigvee b denote the greatest lower bound of $\{a, b\}$ and the least upper bound of $\{a, b\}$; respectively.

- 1.8 Theorem. Let S be an ordered *-semigroup with the property that $a \le b$ implies $a^* \le b^*$. Let $\{a_i \mid i \in I\}$ be a subset of S. Then the following hold:
 - (i) If $\bigwedge_{i \in I} a_i$ exists, then $\bigwedge_{i \in I} a_i^*$ exists and $(\bigwedge_{i \in I} a_i^*)^* = \bigwedge_{i \in I} a_i^*$.
 - (ii) If $\bigvee_{i \in I} a_i$ exists, then $\bigvee_{i \in I} a_i^*$ exists and $(\bigvee_{i \in I} a_i)^* = \bigvee_{i \in I} a_i^*$.

 $\frac{\text{Proof}}{\text{for all j in I, }} (i) \text{ Assume that } \bigwedge_{i \in I} a_i \text{ exists. Because } \bigwedge_{i \in I} a_i \leq a_j$ for all j in I, so $(\bigwedge_{i \in I} a_i)^* \leq a_i^*$ for all j in I, so $(\bigwedge_{i \in I} a_i)^*$ is a lower

bound of the set $\{a_i^* \mid i \in I\}$. Let c be a lower bound of the set $\{a_i^* \mid i \in I\}$. Then $c \leq a_j^*$ for all j in I, so $c^* \leq a_j$ for all j in I. Therefore c* is a lower bound of the set $\{a_i \mid i \in I\}$. Thus $c^* \leq i \land I^a_i$, so $c \leq (i \land I^a_i)^*$. This proves that $(i \land I^a_i)^* = i \land I^a_i$. (ii) Assume that $i \nmid I^a_i$ exists. Then $a_j \leq i \nmid I^a_i$ for all $j \in I$. Thus $a_j^* \leq (i \nmid I^a_i)^*$ for all $j \in I$, so $(i \nmid I^a_i)^*$ is an upper bound of the set $\{a_i^* \mid i \in I\}$. Let c be an upper bound of the set $\{a_i^* \mid i \in I\}$. Then $a_j^* \leq c$ for all $j \in I$, so $a_j \leq c^*$ for all $j \in I$. Hence c^* is an upper bound of $\{a_i \mid i \in I\}$ which implies $i \nmid I^a_i \leq c^*$, and therefore $(i \nmid I^a_i)^* \leq c$. This shows that $(i \nmid I^a_i)^*$ is the least upper bound of $\{a_i^* \mid i \in I\}$. Hence $(i \nmid I^a_i)^* = i \nmid I^a_i^*$. #

- 1.9 Corollary. Let S be an ordered *-semigroup with the property that a < b implies a* < b*. Then the following hold:
- (i) For a, b \in S, if a Λ b exists, then a* Λ b* exists and $(a\Lambda b)* = a*\Lambda b*$.
- (ii) For a, b \in S, if aVb exists, then a*Vb* exists and (aVb)* = a*Vb*.

งกรณ่มหาวิทยาลัย