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ABSTRACT

In this thesis, various properties of regular-* semigroups
“and *-regular semigroups are compared. The main purpose of this thesis
is to show that for any set_X, the partial transformation semigroup,
fhe full tranéformation semigroup, the semigroup of almost identical
partial transformations or the semigroup of almost idehtical full
transformations on thé set X is regular-% or %*-regular if and only if
the cardinality of X is less than or equal to one. Moreover;, we in-
troduce well-known coﬁgruences which pteserve * on some *-semigroups.
The following are shown.: {The minimum semilattice congruence on any
*-gemigroup, the maximum idempotent—separa;ing-congruence on an
orthodox semigroup ‘which! is aA*-sémigroup, the minimum (group con-
gruence on an inverse semigroup which is a *—semigrohp, the minimum
inverse congruence on an orthodox semigroup which is a *-semigroup
and the maximum congruence contained in the Green's relation K of a

regular semigroup which is a *-semigroup are all *-congruences.
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- INTRODUCTION

~ o™
el

Let S be a semigroup. An element a of S is called an idem-

1

potent .of § if a2 a. For a semigroup S, let E(S) denote the set
of all idempotents of S, that is,
E(S) - {a€ s | a2 < al.

A semigroup S is a semilattice if a2 = a and ab = ba for all elements
a, b of S, j

An element z of assemigroup S.is called a Eﬁiﬂ of S if :.w
Xz = zx = z for all x € Si An element e of a semigroup S is called
an identity of S if ex = xe = x for all x € S, A zero and an identity
of a semigroup are ﬁnique, if exist, and they are usually denoted by

0 and 1, fespectively.

A semigroup S with zero O is called a zero semigroup if

ab = 0 for all a, b &S,

Let S be a sémigfoué,bgnd let 1 be a symbol not representing
any element of $. (The notatioﬁ SVl «denotes |the«semigroup obtained
by éxtending the(binary operation on S to 1 by defining 1.1 =1 and
l.a = a.l/= 4for all. & €\Sv For @ semigroup 'S, the notation él
denotes the following sémigroup : | '

S if S has an identity,
S\U'1 if S has no identity.
Then for any element a of a semigroup S, Sla = Sa\J {al}, aS1 =

1 .1

aS\J'{a} and S aS" = SaSU"Sa‘U‘aS U{a}.



A nonempty subset G of a semigroup S is a subgroup of S if
it is a group under the saﬁe operation of S,
Let S be a semigroup with identity 1. An element a of S is
called a unit of S if there exists a“€ S such that aa” = a“a = 1.
Let G be the set of all units of S, that is,
G = {ae s | aa” =a"a =1 for some a” € S}.

Then G is the greatest subgroup of S having il as its identity, and

it is called the group ofsunits or the unit group of the semigroup S.

An element a of a semigroup S is regular if a = axa for
some x € S. ‘A semigroup S is regular if every element of S is
regular.

In any semigroup S, if a, x € S such that a = axa, then ax
and xa are idempotents of S. Hence, if S is a regular semigroup,
then E(S) # ¢.

Let a be an-element of a semigrbup S, An'element x of S:is
called an inverse of'a if a = axa and x = xax, “If a is a regular
eleﬁent of a semigroup| S, ;hen a =raxa for (some X Efs; and hence
xax is an inverse of a, Tﬁerefore a semigroup S is regular if and

only if evety elementliof’Sthas, an! inverse( ™ A semigroup, S' is called

an inverseé) semigroup if every element of S has a unique inverse, and
the unique inverse of the element a of S is denoted by a—l. A semi-
group S is an inverse semigroup if and only if S is regular and any
two idempotents of S commute [2, Theorem 1.17]. Hence, if S is an

inverse semigroup, then E(S) is a semilattice. If S is an inverse



semigroup, then for a, b Q‘S, and e.€ E(S), -
e =4¢e¢, (a )—1 = a and (ab)_1 = b—la_1
[2, Lemma 1.18]. 2
Every group is an inverse semigroup and the identity of a
group is its only idempotent.

An orthodox semigroup is a regular semigroup S such that

E(S) is a subsemigroup of S. Then every inverse semigroup is an

orthodox semigroup.

A nonempty subset Alof 'a semigroup S is called a left ideal
of § if SAE A.l A right/ideal of a semigroup S is defined dually.
Anligggl of a semigroup S is both a left ideal and a right ideal
of S,

Let S be a semigroup. An arbitrary intersection of left
ideals [right ideals] of S if nonémpty, is a left ideal [right ideal]
of S. An arbitrary dintersection of ideals of S if noneﬁpty, is an
ideal of S.

Let A be a nonémpty subset ofga semigroup S. The lEfE,iﬂEil
of S generated by Alis the intersection of (all left ddeals éf S con-
taining A, The right.ideal of § generated:cby A’is'defined duglly. |
The ideal of § generated by Al is the intersection of all ideals of é

containing A. A principal left ideal of S is the left ideal of S

generated by a set of one element of S.- A principal right ideal and
a principal ideal of S are defined similarly. Then a left-ideal

[right ideal, ideal] A of S is principal if and only if A = Sla



[A = aSl, A = Slasl] for some a € S, and we call A the principal left

ideal [principal right ideal, principal idéal] 6f S generated by a.
If a is a regular element of S, then Sla = Sa, aSl = aS and SlaS1 =
SaS, If a, x are elements of S such that a = axa, then Sa = Sxa,

aS = axS and SaS = SaxS = SxaS, Hence, every principal left ideél,
every principal right ideal and every principal ideal of a regular

semigroup has (an idempotent, gehefétqp‘._

Let S be a semigroups / Define the relations & , R X D

and # on S as follows

ahb e—> Sla 3

il
7]
o

fap & a8 - bs'\

x VR

D Lo, |

" that is, & = {(a, b)€ SxSlA(a, c)éX’ and (e, b)ER for .soméhc-:“;é-_’s}. "

a b e= slast = slbsl,

The relations ¥ , % , ¥ , & and ;nare called Green's
relations on S, By [2y Lemma 2.1],-@ = Ro¥. All t-hze.Gi.;een'As
“relations of S are.equivalence|relations on s,%’géeg:o@ gf and
X.C..RE‘Q gé’ . Equivalent definitions ofzithe Green's relat(:}ons &,
R and'g on a semigroup S(are given as follow|:

adlb &> a =xb, b =ya for some x, yé Sl.

ay for some x, y € Sl.

]
]

a®b &> a=bx, b
agb <\‘—=‘>l a = xby, b = ras for some x, y, r, s € Sl.

If S is a regular semigroup and a, b € S, then



a¥b &==> a =xb, b =ya for some X, y € S,
aRb &> a = bx, b = ay for some X, yé S,
and agb #==> a = xby and b = ras for some X, y, T, S ¢ s.

- For a semigroup S, a, x € S such that a = axa, we have that

a¥xa and aRax.,

For a 'semig'roup Sand for a €Sy let La denote the ¥-class
of S containing a, and let Ba, H , D, and I L‘;J denote’} similarly.

In a semigroup Sy aay ¢ ~class of S contains a't- rﬁost onéﬂ
idempotent [2, Lemma 245 LgF # =class of S containing an idempotent
e of S is a subgroup of S/[2, Theorem 2,16], and it is the greatest
sixbgroup‘ of S having e as dte identity. Hence, every subgroup of a
semigroup S is contained in He for some idempotent e of S. If a

semigroup S has an identity 1, then H1 is the unit group of S.

@

Let X be a set. A partial transformation of X is a map

which its domain and” its range are subsets of X.» If o is a partial
transformation of X, let Aa and Vo denote the domain and the range

of ay respectively. Thecempty transformation of X is referred as a

map with empty domain,. and it is denoted By 0.  Let ’& denote the
set of all partial> transformatibns of X including the empty f.réné—
formation 0. "For'aw, B € TX’ define the producE aB as'follows

If VoM AB = ¢, let af = 0.‘\ If Va/\AB # ¢, let aB be the composi-
tion map of"a|(yahl AB)a-l ;cx restricted to (Va:'ﬂ.;AB)oc-"l)-and :
T.hen for a, B € TX, A_OLB = (VoM AB)a_lc_:: Ao and

8l (vo 1y 08) "

VoB = (VafY AB)B<= VB, Thus TX is a semigroup and it is called the

1 172410954



;

partial transformation semigroup on the set X. Hence the empty

trans%ormation of-X, b,iis thé zero of xx_and the identity map on' X
which is denoted by 1 is‘the ident}ty of the semigroup TX. For any
set X, the sgmigrOup TX is a regular semigroup. AFor o QV?X’ a is’

. an idempotent of Tx if and only>if Va g;Aa'énd X0 = X for all x € Vo,
Hence E(Txv)__=.b {agé Ty | Va & Ao and xo =% for all x € Val,

An element o € Ix'is called a 1=1 partial transformation of

X if o is a one-to-one map. Let ;X denote the'set of all 1-1 partial
transforﬁations of X, tﬁat is,

L = flo € ?X | @ is_oneeto-one}, |
Then Ix is’ an inverse subsemigroup of ?x with identity 1 and zero O,

- and it is called the_symmetrié inverse'éemiggpup on the ‘set X and
for a € Iy, the iﬁverse-map.a-l, is the inverse of a.in Iy, S0
‘Aa—l = Va,_Vq-l = Aa, For o & ;x,“a is an idempotent of ;X if and
only if o is the identity map on Aa. Then

E(Ix) = fo€ Ix'l o is the identity map on Aal,

An element u,é ?X is called a fuil trangfoxmation of X if

Ao = X, Let yx dénote | the (sétof)all: full transformations of X; -
that is,°

NS {ozéTXIAa=X}.
Then 5§ isl a regular subsemigroup of T, with identity 1 and it is

called the full transformation semigroup on thé set X, Therefore,

E( 3§), = {a € §§ | aa = a for all a € Va},

For any set A, let |A| denote the ‘cardinality of A.



Let X be a set. A partial transformation o of X is said to

be almost identical if there exists at most a finite number of ele-

ments X in the domain of a such that xa # x. Therefore, a partial
transformation o of X is almost idenfical if and only if the set

{x € ba | xa # x} is finite. Let /

U, = {a € Tx | o is almest identicall,
Ve = {a € ﬂ;.l o is almost identical}
and Wy = Ao g T4 | & is almost identicall,

It has been proved in[6, Proposition 1.1, Propesition 1.5] that UX

is'a regular subsemigroup of T, VX is a regular subsemigroup of SFX

and Wx is an inverse subsemigroup of Ix. ' The semigroups .U, VX and -

Wx are called the semig;oup of almost identical partial transforma-’

tions on X, the semigroup gf_almoét identical full transformations

on X and the semigroup of almost identical 1-1 partial transformations
on X; respectively.

Let S and .T be semigroups and ¢ a map from S into T. The map

¥ is a homomorphism from'S' into T if

~(ab)y =1 (ap) (b¥)

for all ay b€ S, A semigroup. T is, a homomorphic image of a semi-

group S if there exists a homomorphism from S onto T.

Let S be a semigroup. A relation p on S is called left com-

patible if for a, b, ¢ € S, apb implies capcb. A right compatibility

is defined dually. An equivalence relation p on S is called a



congruence on S if it is both left compatible and right compatible.

An arbitrary intersection of congruences on a semigroﬁp S is a con-

gruence on S, If p is a congruence on a semigroup S,‘then the setl
s/fp = {ap | a € s}

with the operation defined by |

(ap)(bp) = /(ab)Pp (a, b € 8)

. is a semigroup, and it is called the.qpotignt sem}group ;elatiVe Lo
the congruence p; | N
Let S be a semigroup and A an ideal of S. Then the .relation
Pa defined by
'apAb if andlonly if a,-b €Aora=hb | (a, b € 5)

is a congruence on S and it s called the Rees congruence on S induced

by A and S/p, is the Rees guotient semigroup induced by A and it is
LA A . : - X
denoted by S/A. Hence

{a} if a ¢ A,

ap = .
= A if a € A,

A congruence p on.a semigroup $,is called (i) a semilattice

congruence on S if |S/p is .a semilattice, (ii) an inverse congruénce

on S if S/p is . an inverse semigroup and (iii) a group cengruence on S

if S/p is“a group.

A congruence p on a semigroup S is a semilattice congruence
if and only if apa2 and abpba for all a, b € S. Then an arbitrary
intersectioﬁ of semilattice congruences on a semigroup S is a semi-

lattice congruence on S, and hence the intersection of all semilatice



congruences on a semigroup S is the minimum semilattice congruence

on S,

A congruence p on a semigroup S is an ideqpotent-seggratig&
congruence on S if each p-ciass of S contains at most one idempotent,
Howie has proved in [6] that the maximum idempotent-separating con-
gruenée on any inverse semigroup exists,  Genmerally, it has been
shown by Meakin.in [8] that the maximum idemﬁotent—separating con-
gruencé on any orthodox semigroup exists.

Hall has shown _dn (4] 'that the minimum inverse congruence
on an orthodox semigroup’ exists, and it has.been proved by Munn in

[9] that any inverse semigroup has a minimum group congruence,

An involution on a semigroup S is a map a — a* of S into
S such that

for all a, b€ S, A *-semigroup is a semigroup with an involution,

An idempotent e of a *-gemigroup is a projection if e* = e,

A *-semigr9up Sfie,a regular-* semigrqu-if a = aa*a for ail
a € S. |

The iﬂ§olutioﬁ * of a *-Bemigroup S=is said to be proper if
for all a, b éAS, a*a = a*b(=/b*a (=/b*b implies|a = bl; or lequiva-
lently, for all a, b € S, aa* = ab* = ba* = bb* implies a = b, A

- =
proper *-semigroup is a *-semigroup with a proper involution. A

*-semigroup S is a *-regular semigroup if S is proper and for each
a € S, there exists x é S such that a = axa, X = xax, (ax)* = ax,

(xa)* = xé.
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A congruence p on.a *-semigroup S is a *-congruence on S if

for a, b € S, apb implies a*pb*,

Nordahl and Scheiblich have studied regular - * semigroupsjn,[j_(ﬂ3
and *-fegular semigroups have been studied by Drazin in [3]. 1In the
first chapter, general properties of *=-semigroups are studied. In
particular, properties of regular-* semigroups and *-regular semi-
groups are compared, Many eXamples ére given.

We characterize weldl-kpown transformation semigroups'which
are regular-* or *-regular in Chapter II. It is shown in th}s chapter
that the partial transformation semigroup, the full ﬁransformation_
semigroup, the semigroup of almost identical partial.tfahsformationé
or the semigroup of almost identical full transformations on a set X
is regular;* or *-regular if 'and only if the cardinality of X is less
than or equal to 1,

In the last-chaptef, *-éongruences en—*-semigroups are studies.
We characterize a Rees congruence which is a *-congruence on a
- *-gemigroup. It is proved that for any, ideal A of a *—semigrbup S,
the Rees'congruence Pa of. S is a #*-congruence if and only if A* is
contained inAA. The following are proved in this chapter. The mini-
mum semilattice comgruence on,any, *-semigroup, the maximum idempotent-
separating congruence on an orthodox semigroup which is a *-semigroup,
the minimum group cong?ueneé on an invgrse gemigroup which is a
*—semigroup; the minimum inverse conéruence on an orthodox semigroup

which is a *-semigroup and the maximum congruence contained in the
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Green's relation K of a regular semigroup which is a *-semigroup

are all *-congruences.

AULINENTNEINS
ARIAATUUMINYAE



	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Introduction

