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CHAPTER I

INTRODUCTION

1.1 Problem and Motivation

Nowadays, there are many computational methods have been proposed for predicting protein-

protein interactions. Meanwhile, with the increasing of the number of protein sequences, several

sequence-based methods have shown that the information of amino acid sequences alone may be

sufficient for predicting protein-protein interactions.

Although using only protein sequences may be sufficient for predicting, there are three major

problems in the prediction of protein-protein interactions by classifying technique such as supervised

neural network. The first one is extracting the feature of protein pair sequences to form a feature

sequence. The second problem is conserving the informationwhen equalizing the lengths of feature

sequences before classifying into interacting and non-interacting classes. The third is generating

artificial data to improve the performance of prediction. Topredict protein-protein interactions by

boosting neural network, both positive and negative interactions are required for training. Unlike

positive interactions, negative protein pairs are not available. The negative protein pairs are generated

from the assumption that protein pairs with different sub-cellular localizations do not interact or there

is no explicit evidence of an interaction. This assumption generates a much larger number of negative

protein pairs than positive protein pairs. Thus, this problem concerns with imbalanced learning data.

Standard machine learning algorithms fail to classify imbalanced data which produce high predictive

accuracy over negative protein pairs but low predictive accuracy on positive protein pairs because

they are learned from imbalanced training data and the output hypothesis are fitted to the majority

data. Consequently, test data belonging to the positive protein pairs are misclassified more often than

belonging to the negative protein pairs.

From these problems, the new method was proposed to predict protein-protein interactions

from amino acid sequences using only artificial boundary data generation and boosting procedures to

improve the prediction accuracies of both positive and negative protein pairs. Our feature extraction is

based on the correlation coefficients of physicochemical properties, the statistical means and standard

deviations of secondary structures and protein properties, i.e.alpha-helix, beta-sheet, beta-turn, coil,
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parallel beta strand, amino acid composition, hydrophobicity, average area buried, and polarity. To

form the new training features by finding the new distribution direction of these features. Then Self-

Organizing Map (SOM) was applied to find subclusters in the new training features. The important

data which lie into the boundary of each subcluster were onlyused to generate the artificial boundary

data. The artificial boundary data were generated by using bootstrap resampling technique. Finally,

the only artificial boundary data of both positive and negative protein pairs were predicted by boosting

method based on neural network classifier. The empirical study has shown that our proposed method

yielded better prediction accuracy than the sequence-based methods [1], and [2] when performed on

Yeast Saccharomyces Cerevisiaedata set. Moreover, the number of feature and the number of training

data are less than others. We also evaluated the prediction models by cross-species data as the test

sets. The result showed that our proposed method also capable to predict with the good performance

on cross-species data.

1.2 Objective

The objectives of this dissertation are the following :

1. To predict protein-protein interactions from amino acidsequences using adaboost neural net-

work.

2. To improve the prediction power of classifier against protein pairs using only artificial boundary

data.

1.3 Scope and Limitations

1. This proposed method was performed onYeast Saccharomyces Cerevisiaefrom core subset of

database of interacting proteins (DIP).

2. The results ofYeast Saccharomyces Cerevisiaedata set before and after generating artificial

boundary data based on adaboost neural network were compared with the method of predict-

ing protein pairs using support vector machine combined with auto covariance [1] and local

descriptor [2].

3. In another evaluation after generating artificial boundary data, we tested the ability of our pro-

posed method for predicting protein-protein interactionsin one species using the interactions

from different species. Our proposed model was trained on theYeast Saccharomyces Cerevisiae
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and we chose the other five species as our cross-species test data sets. The five species data sets

areDrosophila Melanogaster, Caenorhabditis elegans, Eshcherichia coli, Homo sapiens, and

Mus musculus.

4. The performance on cross-species data sets were comparedwith the method of predicting pro-

tein pairs using support vector machine combined with auto covariance [1] and local descrip-

tor [2].

1.4 Contributions

The main contributions of this dissertation are a new feature extraction from only protein se-

quences for predicting protein-protein interactions based on the correlation coefficients of physio-

chemical properties combined with statistical means and standard deviations of protein secondary

structures and protein properties, i.e.alpha-helix, beta-sheet, beta-turn, coil, parallel beta strand,

amino acid composition, hydrophobicity, average area buried, and polarity. Moreover, the impor-

tant protein data which lay at the boundary were only used. Then, the artificial boundary data were

generated by using bootstrap resampling technique. Finally, the boosting method based on neural

network classifier was used to predict artificial boundary protein pairs into interacting class and non-

interacting class.

1.5 Methodology

1. Review and study related works and documents of predicting protein-protein interactions.

2. Propose a new method for prediction of protein-protein interactions.

3. Experiment with protein pairs data and compare with othertechniques.

4. Review and study related works and documents of learning from imbalanced data for improving

the performance of prediction.

5. Propose a new method for learning from imbalanced data.

6. Experiment with benchmark data sets for handling imbalanced data and compare with the other

techniques.

7. integrate a proposed method of learning from imbalanced data with a proposed method of

predicting protein-protein interactions to improve the performance of predicting protein pairs.
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8. Experiment with protein pairs data and compute with othertechniques.

9. Analyse experimental results and conclude the results.

1.6 Dissertation Organization

This thesis is organized as follows. Chapter I provides a brief introduction of the scope

and methodology. Chapter II explains the concept of Neural Network, Adaptive Boosting, Self-

Organizing Map, Principal Component Analysis and Bootstrap resampling technique. Moreover,

briefly reviews related works. Chapter III presents the proposed method of predicting protein-protein

interactions. Chapter IV summarizes the experimental results with discussion. The conclusion is in

Chapter V.



CHAPTER II

RELATED WORKS AND BACKGROUND

2.1 Related Works

Proteins carry out the majority of the biological processesin cells and have a large variety

of functions which can be categories into many kinds such as antibody, hormone, enzyme, signal

protein, and so on [3]. Different kinds of proteins must interact with one another to perform various

biological functions. The information of protein-proteininteractions help to improve knowledge of

the functions, understand biological processes in a cell, and potentially make the discovery of novel

drug targets.

Previously, although the protein interaction pairs were detected by co-immunoprecipitation

or chromatography, the determination of the protein-protein interactions cannot follow the growth

of the newly found proteins and many protein pairs. Hence, various experimental methods have

been developed for the large scaled protein-protein interactions analysis such as yeast two-hybrid

systems [4] , mass spectrometry [5], protein chip [6] and so on. But these methods are costly and

time consuming. Many computational methods have been proposed for predicting protein-protein

interactions which are based ongenomic context, biological context, andstructural contextof proteins

[7].

Genomic context approaches. Complete genome sequencing provided a wealth of genomic

information. Therefore, there are many methods used for predicting protein-protein interaction such

as protein phylogenetic profiles [8], conservation of gene neighborhood [9], and gene fusion events

[10].

Biological context approaches. Many of high-throughput methods for investigating the biolog-

ical context of genes, such as gene expression have been proposed. It has been indicated that many

interacting proteins are co-expressed according to microarray analyses [11,12].

Structural context approaches. This approach can determine not only protein pair interaction

but also the physical characteristics of the interaction sites at the protein interfaces [7]. Analysis of

hydrophobicity of amino acids can be used to predict interaction site [13,14]. Another study [15] pro-

posed the residue composition can be used to analyze six types of protein-protein interfaces. In [16],
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they used structure matching technique to predict protein-protein interactions. Moreover, the infor-

mation of binding sites and binding motifs [17–19] for improving prediction have been considered.

Recently, several sequence-based methods have shown that the information of amino acid se-

quences alone may be sufficient for predicting protein-protein interactions [20–22]. Moreover, the

re-occurring of short polypeptide sequences [23] can also identify novel protein-protein interaction.

However, many methods of sequence-based to predict protein-protein interactions have been pro-

posed, these methods achieved the highest accuracy only 80%. In addition, some statistical method

for extracting the protein sequence features [24] and usingsupport vector machine (SVM) combined

with auto covariance [1] have been proposed to improve the accuracy of prediction. This method [1]

predicted protein-protein interaction based on seven physicochemecal and auto covariance withYeast

Saccharomyces Cerevisiae. First, amino acid sequences were transformed into numerical values by

representing physicochemical properties as vectors with each amino acid represented by normalized

valued of seven physicochemical properties. Then Auto Covariance was used to transform numerical

vectors into fixed length. After each protein sequence was represented as a vector of auto covariance

variable, a protein-protein interaction was characterized by concatenating the feature vectors of two

proteins. Finally, predicting protein-protein interactions by support vector machine. Moverover, local

descriptor (LD) [2] used an alignment-free approach was applied to underlie amino acid groups. For

each local region, three local descriptors, composition (C), transition (T) and distribution (D), were

calculated. C stands for the composition of each amino acid group along a local region. T represents

the percentage frequency with which amino acid in one group is followed by amino acid in another

group. D characterizes the distribution pattern along the entire region by measuring the location of

the first, 25, 50, 75 and 100% of residues of a given group. The calculation of descriptors generates

63 attributes in each local region (7 for C, 21 for T and 35 for D). The descriptors for all local regions

were combined, and formed the features vector which were predicted by SVM.

In many techniques of predicting protein-protein interactions by machine learning methods [1–

3], they failed to classify protein pairs which produced high predictive accuracy over non-interacting

protein pairs (negative class) but low predictive accuracyon interaction protein pairs (positive class).

Thus, the sampling method was used to improve the performance of classification. The objective is

to provide a balanced distribution fromoversamplingand/orundersamplingtechniques to improve

overall classification [25]. In regards to artificial sampling, the artificial positive class oversampling

technique (SMOTE) [26] has used in various applications. The concept of SMOTE is to produce syn-

thetic data in minority class by selecting some of the nearest minority neighbors of a positive data and

generate artificial positive data along with the lines between the positive data and its nearest positive
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neighbors. In [27,28], they proposed adaptive sampling methods to generate artificial data. The main

idea of Borderline-SMOTE technique [27] is to find out the borderline positive samples. Then, artifi-

cial samples were generated along the line between the borderline samples and their nearest neighbors

of the same class. The key idea of the ADASYN algorithm [28] was to use a density distribution as

a criterion to automatically decide the number of artificialdata that need to be generated for each

positive data by adaptively changing the weights of different positive data. In [29], they combined

boosting and artificial data using SMOTE to improve the prediction of the positive class. Moreover,

DataBoost-IM approach [30] was proposed to generate artificial data. The hard examples of both

positive and negative classes were identified during each ofthe iterations of boosting algorithm to

generated artificial training data. These artificial examples were added to the original training set and

are used for farther training to improve the classification.

In this dissertation, we proposed a feasible method to predict protein-protein interactions from

amino acid sequences with boosting neural network. Our feature extraction is based on the cor-

relation coefficients of physicochemical properties and the statistical means, standard deviations of

secondary structures and protein properties, i.e.alpha-helix, beta-sheet, beta-turn, coil, parallel beta

strand, amino acid composition, hydrophobicity, average area buried, and polarity. Then to find the

new distribution direction of these features to form the training data. After that subclusters of each

class were discovered by SOM technique. The important training data which lay into the boundary of

each subcluster were only used to generated artificial boundary data. These artificial boundary data

are generated by using bootstrap resampling technique to improve the performance of classification

not only interaction class bus also non-interacting class.Finally, the only artificial boundary data of

both classes are predicted by boosting method based on neural network classifier.

2.2 Background

2.2.1 Neural Network

Artificial neural network is a model of the brain which transforms inputs into outputs to the

best of performance. The basic model of artificial neuron is based on the functionality of the bio-

logical neuron. The biological neural network is composed of groups of its structure connected or

functionally associated neurons. These are cell body or soma, axon, dendrites, and synapse. Figure

2.1 shows the biological neural network. Cell body or soma isthe heart of the cell which contains

nucleus. There are many dendrites in each neuron that receive signals from other neurons. Generally,

a neuron has only one axon which expands from a part of the cellbody. The main function of axon
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is to proceed electronic signals. At the end of axon is split into several branches which the synapse is

adhered. Synapse is the area of contact between a neuron to the other neurons and gives the strength

of the connection.

Artificial neural network, synapses are weight which represented by a number. Figure 2.2 de-

picts the artificial neural network. In this figure, a neuron with ndimensional input vector{x1,x2,x3, ...,xn}

andb bias value are multiplied by weigh input vector{w11,w12,w13, ...,w1n}. Then these values are

fed into the summing junction. After that the inputv are calculated by Equation 2.1. Finally, the

outputy of the neuron is the outcome from using some activation function ϕ(•) on valuev which is

calculated as Equation 2.2.

v= Σn
i=1xiwi (2.1)

y= ϕ(v) (2.2)

Figure 2.1 The example of biological neural network.

There are many activation functions are used to control the actual output. In general, the three

activation functions are commonly used as shown below :

1. Threshold function
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Figure 2.2 The example of artificial neural network.

ϕ(v) =







1 if v≥ 0

0 if v< 0

2. Sigmoid function

ϕ(v) = 1
1+exp(−av) , a is slope

3. Signum function

ϕ(v) =



















1 if v > 0

0 if v = 0

−1 if v < 0

A Layer of Neurons

1. Single layer neural network.

Figure 2.3 depicts the single layer of neurons. This networkhasn elements of input vector and

s neurons in the layer. The input vector is multiplied by weight vector. Then these inputs are

summarized with bias value in eachith neuron. Thus, theith neuron has a summer to form

its outputyi . Finally, the neuron output layer{y1,y2, ...,ys} are calculated by the activation

function to controls the actual outputs.
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2. Multiple layer neural network.

This multiple layer network in Figure 2.4 hasn elements of input vector ands neurons in the

layer. The input vector is fed into layer 1 to produce output{y1
1,y

1
2, ...,y

1
s}. Then these outputs

are the inputs of the layer 2 that are fed to produce output{y2
1,y

2
2, ...,y

2
s}. After that, these

outputs are become to inputs of the layer 3. Finally,{y3
1,y

3
2, ...,y

3
s}. are the final outputs of this

network. Each layer in the multiple layer network has the different rules. A layer that produces

the final outputs in called theoutput layer. The other layers are calledhidden layers. Fig 2.4

has the one output layer (layer 3) and two hidden layers (layer 1 and layer 2).

Figure 2.3 The example of single layer of neural network.

Learning Rules

The learning rule is applied to train the network by modifying the weights and biases to perform

the better learning. Generally, there are two types of the learning rules that aresupervised learningand

unsupervised learning.

1. Supervised learning.

The training set is provided to learn in the neural network. This training set is composed of

x1t1,x2t2, ...,xQtQ wherex is an input to the neural network,t is a target output, andQ is a

number of training examples. After that, the network outputs are compared with the target
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Figure 2.4 The example of multiple layer of neural network.
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outputs. If the network outputs do not close to the target outputs, then the weights and biases

are adjusted to modify the network outputs closer to the target outputs.

2. Unsupervised learning.

The only inputs are used in this learning. The weight and biases are modified based on the

input patterns. In the final step, the learning will categorize input patterns into a finite number

of clusters.

Neural network architecture

1. Single layer perceptron neural network.The single layer perceptron consists ofs per-

ceptron neurons. Figure 2.5 shows only one perceptron neuron which uses threshold function as its

activation function to produces the network outputy. The perceptron neuron produces network out-

put y= 1 if the inputsv are fed into the activation function is equal to or greater than 1, otherwise it

producesy= 0.

Figure 2.5 The example of single layer perceptron neural network.

Perceptron learning algorithm

The perceptrons neural network are trained on training examples which consist of pairs

of input and output target.

x1t1,x2t2, ...,xQtQ

wherex is an input to the neural network,t is a target output, andQ is a number of training examples.

In each time of learning, the perceptron learning rule try toadapt perceptron’s weights and biases

for reducing the errore which is calculated by the difference between the target output and an actual
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output in Equation 2.3.

e= t −y (2.3)

Moreover, there are three conditions when input vectorx is presented into the network to produce the

actual outputy [31].

Case 1.If an input vector is presented and actual output from the network is correct, then the

weight is not changed.(a= t ande= 0).

Case 2.If an actual output is 0 but the target output is 1 so the actualoutput from the network is

misclassified, then the input vectorx is added to the weight vectorw. This case increases the chance

of the input vector is classified asy = 1 in the future.(y = 0, t = 1 ande= 1).

Case 3.If an actual output is 1 but the target output is 0 so the actualoutput from the network

is misclassified, then the input vectorx is subtracted from the weight vectorw. This case increases

the chance of the input vector is classified asy = 0 in the future.(y = 1, t = 0 ande=−1).

Thus, the perceptron learning algorithm can be summarized as Equation 2.4. The training ex-

amples are presented iteratively to the network and the weights are updated until a maximum number

of iteration is reached.

wnew= wold +exT (2.4)

2. Multilayer perceptron neural network.Classification problem is almost a non-linearly sep-

arable. So neural network with multiple layers and sigmoid activation function are commonly applied

to solve this problem. Figure 2.6 depicts a multilayer perceptron neural network which consists of

input layer, hidden layer, and output layer. The training examples are fed into a layer-by-layer on

the network. Then, backpropagation learning algorithm is used to train the network by changing the

weights of network based on the delta rule(δ ). The purpose of adjustment weights is to reduce the er-

ror between the target output and the actual output. There are two phases in backpropagation learning

algorithm :

Feed-forward.The input vectorx is fed into the network and produced a set of actual output

from the network.

Backpropagation.An errore is run backward through the network. So, the network’s weights

are adjusted to minimize the erroreof the network.

The backpropagation learning algorithm is summarized as :

Case 1.Adjusting the network’s weights between output layer and hidden layer. (at level k

and level j in Figure 2.6.)

wnew
k j = wold

k j +η(δkyk) (2.5)
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Figure 2.6 The example of multilayer perceptron neural network.

whereη is learning rate parameter andδk is calculate from Equation 2.6

δk = ekϕ ′(vk) (2.6)

Case 2.Adjusting the network’s weights between the hidden level and the previous hidden

or input layer. (at level j and level i in Figure 2.6.)

wnew
ji = wold

ji +η(δ jy j) (2.7)

whereδ j is calculated from Equation 2.8

δ j = ϕ ′(v j)Σkδkwold
k j (2.8)

The training examples are presented iteratively to the network and the weights are updated until a

maximum number of iteration is reached.

2.2.2 Adaptive Boosting

Boosting is an ensemble method which focuses on hard examples that are difficult to classify.

The basic idea of boosting is to construct multiple classifiers and the outputs from these classifiers

are combined by weighted voting in the final prediction model[30,32]. Moreover, the variance error

is associated with overfitting model. Thus, for improving the performance of the overfitting, the

combination of classifiers in boosting is used to reduce the variance error [33]. In each step, the

training data are re-weighted. The product of training is a set of easy exampleswith low weights
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and a set ofhard exampleswith high weights. In each iteration, boosting tries to construct the better

classifiers that are able to predict hard examples correctly.

Adaptive Boosting or called AdaBoost is used as boosting method. AdaBoost was introduced

by Freund and Schapire [34]. AdaBoost is widely used becauseit is robust, fast, and flexible to

combine with any method for finding hard examples. In this dissertation, AdaBoost was used with

feed-forward of backpropagation neural network. The algorithm of AdaBoost [32, 35] is given in

Algorithm 1. The algorithm proceeds as follows. The initial weights probability D of all training

examples are set to be 1/m wherem is the number of training examples. In each iteration, the

weight probabilityD of easy examples that are correctly classified by the currenttrained classifier

are unchanging. On the other hand, the weights probabilityD of hard examples are increased by

multiplying with a factor. Then, the weights are renormalized by dividing the normalized constant.

After reaching the last iteration or the error of hypothesisin some iteration of hard examples is higher

than 0.5, the final step is to consider only the correctly output examples in each iteration and maximize

the sum of the weight probabilities on these examples.

In implementation AdaBoost with neural network classifier,there are three possible conditions

to train neural network in each iterationT. The first condition is to train the neural network with a new

training examples by resampling with replacement once fromoriginal training examples according

to the weight probability. The larger weight probability has more chances to be selected in the new

training examples. The second is to use a different trainingexamples at each epoch by resampling

with replacement after each trained epoch, and the third is to combine weight probability with the

cost function of neural network. In this paper, the first condition is used to implement.

Algorithm 1. AdaBoost Algorithm

Input: - m examples(x1,y1), ...,(xm,ym), wherexi ∈ X,

yi ∈Y = {−1,+1}

- trained classifier (feed-forward of backpropagation neural network).

- T specifies the number of iterations.

- sett = 1, errt = -1, whereerrt is an error of hypothesis in

t iteration.

- initial weight probability of each training example,Dt
i = 1/m,

where 1≤ i ≤ m.

1. Do while t ≤ T anderrt < 0.5

2. Train input examples by feed-forward of backpropagationneural network
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with weight probabilityDt
i .

3. Get a hypothesisht : X →Y.

4. Calculate the error of hypothesisht .

errt = Σi:ht (xi) 6=yi
Dt

i

5. Setβ t = errt/(1−errt).

6. Update weight probability of input examples.

Dt+1
i =

Dt
i

Zt ×







β t , i f ht(xi) = yi

1, otherwise

whereZt is a normalization constant.

7. t = t +1.

8. End Do while

Output: the final hypothesish(x) = argmaxy∈YΣT
t=1,ht (x)=ylog 1

βt
.

2.2.3 Self-Organizing Map

Self-Organizing Map or called SOM is an unsupervised neuralnetwork. For each learning iter-

ation, the only winning neuron’s weight and its neighboringneuron’s weight are adjusted. Figure 2.7

depicts an example of SOM architecture. The input layer represents the input vector withn dimen-

sions which is denoted by{x1,x2, ...,xn}. The output layer is usually mapped into two dimensional

output space. Each output neuron is connected to the input layer by weights vector{wj1,wj2 , ...,wjn},

where 1≤ j ≤m. At each iteration of training, SOM finds the best matching winning neuron by using

Euclidean distance. The minimum distance is calculated between each input vector and every weight

vector on the output map. Letc with weight vectorwc is the best matching winning neuron which is

calculated as Equation 2.9.

‖x−wc‖= min j (‖x−wj‖) (2.9)

where‖x−wj‖ =
√

Σm
j=1(x−wj ). After the winning neuronc is selected, the weight vector of the

winning neuron is adjusted by

wnew
j = wold

j +η(x−wold
j ) (2.10)

whereη is the learning rate parameter. Moreover, the weight vectorof neighboring neurons of win-

ning neuronc are also adjusted. In the example of Figure 2.7, the neighboring neurons of winning

neuron that represented by the grey circles are also updated.

The SOM algorithm is summarized as :
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Figure 2.7 The example of SOM architecture.

1. Initialization : Choose the random value of the initial weight vectors on the output map.

2. Sampling : Draw the input vectorx and present into the network.

3. Similarity Matching : Find the best matching winning neuronc by using Euclidean distance

as shown in Equation 2.9.

4. Updating : Adjust the weight vector of the winning neuronsc and the weight vector of the

neighboring neurons by Equation 2.10.

5. Continuation : Repeat steps 2-4 until the weight vectors do not change (convergence).

2.2.4 Principal Component Analysis

The main idea of Principal Component Analysis (PCA) is to reduce the dimensionality of the

data set without much loss of information. The other advantage of PCA is to discover or identify new

meaningful underlying variables. The PCA steps are given below :

1. To calculate mean of dataµX andµY, wheren is the number of data.
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µX = 1
nΣn

i=1Xi

µY = 1
nΣn

i=1Yi

2. To calculate covariance matrix.

cov(X,Y) = Σn
i=1(Xi−µX)×(Yi−µY)

n−1

3. To Calculate the eigenvalues(λ ) and eigenvectors(v) of the covariance matrixcov(X,Y). It is

the way of finding the distribution directions in all features of the data in terms of eigenvectors

of data covariance matrix and their variances in term of eigenvalues of these eigenvectors.

Generally, the eigenvector with thehighest eigenvalueis theprincipal componentof the data

set.

4. To select components from ranked eigenvalue by descending order and form a feature vector.

This step gives the component in order significance. If data set havem dimensions, so calcu-

lating m eigenvectors andm eigenvalues. Then choose only firstp eigenvectors to form onlyp

dimensions of data set.

5. To derive the new data set.

NewData= FeatureVectorT ×Data

In Figure 2.8 shows a plot of original data before using PCA onthe top and a plot of new data after

using PCA on the bottom.

2.2.5 Bootstrap resampling technique

Bootstrap technique was introduced by Efron [36,37] as a computer-based method to estimate

the sampling distribution by repeatedly samplingwith replacementfrom the original example. The

sampling with replacement means the sample data in the original example have a chance to be drawn

more than once or no chance at all. For the sampling distribution in bootstrap technique, it is usually

proposed to derive the estimates of standard errors and to find the confidence intervals of a popula-

tion parameter [37]. The following bootstrap algorithm to find standard error of mean is shown in

Algorithm 2. Moreover, Figure 2.9 shows an example of bootstrap resampling concept which is used

to calculate the standard error of mean. So to find this statistic, we can calculate the mean of eachB

bootstrap samples, whereB specifies the number of iterations to resample, and the standard deviation
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of these means. In this example, the top box is an example of size n = 7 andB = 3. Therefore,

the three lower boxes are the resamples from original example. Some values in the original example

are repeated in the resamples because of using resampling with replacement method. After that, we

calculate the sample mean of these resamples and calculate the standard deviation of all means. The

standard error of mean value is shown at the bottom box.
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Algorithm 2. Bootstrap Algorithm

Input: - m examples(x1, ...,xm), wherexi ∈ X,

- B specifies the number of iteration to do resample.

- sett = 1.

1. Do while t ≤ B

2. Draw the resample(x∗) with replacement fromX.

3. Calculate the resample mean of each resampling iteration(x∗t ).

x∗t =
1
mΣ(x∗)

4. t = t +1.

5. End Do while

6. Calculate the standard error of mean(SEboot).

SEboot =
√

1
B−1ΣB

t=1(x
∗
t −meanboot)2, where

meanboot =
1
BΣB

t=1x∗t .

Output: the standard error of mean (SEboot).
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Figure 2.8: An example of a plot data. (a) a plot original databefore using PCA. (b) a plot new data

after using PCA

.
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mean = 3.11

2.39 4.57 3.19 2.39 2.39 3.91 1.144.43 3.19 2.11 2.11 1.14 3.19 4.57 3.19 2.11 4.57 4.43 2.11 4.43 2.39

standard error of mean = 0.25

mean = 2.85 mean = 3.32mean = 2.96

Figure 2.9 The example of bootstrap resampling to find standard error of mean.



CHAPTER III

PROPOSED METHODOLOGY

In this dissertation, the prediction of protein-protein interaction depends on three major steps.

The first step is to extract the features of sequences in protein pairs to form feature vectors. The

second step is to improve the performance of prediction by generating artificial boundary data on both

interacting class and non-interacting class. The third step is to classify the set of feature sequences

by using AdaBoost with feed-forward neural network into interacting and non-interacting protein

classes. The feature extraction steps are as follows:

1. Representing amino acids by physiochemical properties. Each amino acid is represented by

its seven physiochemical properties.

2. Equalizing lengths of protein sequences. For each protein sequence, the number of extracted

physiochemical features depends on the number of amino acids appearing in the sequence. All

current neural learning techniques cannot handle input patterns with various feature lengths.

So equalizing these feature sequences is the essential part. The length of each feature sequence

extracted from the first step must be equalized by applying the concept of correlation coefficient

between physiochemical feature pair in the sequence.

3. Feature on secondary structures and protein properties. In our preliminary experiment, we

found that the accuracy of predicting protein-protein interactions based on only physiochemical

properties of each amino acid is rather low. The essential factors dictating the interaction must

be the structures and the other properties of the protein. Sothe secondary structures character-

istics and protein properties are used as additional features. The other levels of structure, i.e.

tertiary, quaternary, are not considered in this study.

The artificial boundary data generation step as follows:

4. Finding the distribution direction in terms of eigenvectors and eigenvalues.To identify the

new meaningful of these features before classifying. The features based on physiochemical

properties and structural properties are calculated the new distribution direction and formed the

new feature vectors based on eigenvectors and eigenvalues.
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5. Using Self-Organizing Map to find subclusters.The protein features are recursively divided

into small subclusters by SOM.

6. Finding boundary of each subcluster.To Speed up the training process. It is not necessary to

use all the data. In this dissertation, the only boundary data will be used.

7. Using bootstrap resampling technique to generate artificial boundary data.Artificial bound-

ary data in each subcluster are generated based on the bootstrap of maximum standard devia-

tion.

The classifying step as follows:

8. Predicting Protein-Protein Interactions by Feed-forwardNeural Network with AdaBoosting.

The only artificial boundary data are predicted by a feed-forward neural network with back-

propagation learning rule. AdaBoost algorithm is used to boost the performance of this neural

network.

The detail of each part is discussed in the following sections. LetPi = (pi,1, pi,2, . . . , pi,mi ) be protein

sequencei with a set of amino acidspi,k for 1≤ k≤ mi . mi is the number of amino acids inPi.

3.1 Part 1: Representing Amino Acids by Physiochemical Properties

There are seven physiochemical properties of amino acids [1] reflecting the interaction, which

are hydrophobicity, hydrophicility, volumes of size chains of amino acids, polarity, polarizability,

solvent-accessible surface area, and net charge index of side chains of amino acids. Letbi,k, ci,k, vi,k,

ai,k, r i,k, si,k, andni,k be the hydrophobicity, hydrophicility, volumes of size chains of amino acids,

polarity, polarizability, solvent-accessible surface area, and net charge index of side chains of amino

acids properties of amino acidpi,k in proteinPi, respectively. RepresentingPi by the physiochemical

properties is achieved byAlgorithm 1.

Algorithm 1

1. For pi,k, 1≤ k≤ mi do

2. representpi,k by {bi,k, ci,k, vi,k, ai,k, r i,k, si,k, ni,k}.

3. End

SupposePi = (pi,1, pi,2, pi,3) andPj = (p j,1, p j,2, p j,3, p j,4). After Algorithm 1, Pi andPj become the

sequences as shown in Figure 3.1.
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Protein Amino Acids

Pi (pi,1 pi,2 pi,3)

↓ ↓ ↓

bi,1 bi,2 bi,3

ci,1 ci,2 ci,3

vi,1 vi,2 vi,3

ai,1 ai,2 ai,3

r i,1 r i,2 r i,3

si,1 si,2 si,3

ni,1 ni,2 ni,3

Pj (p j,1 p j,2 p j,3 p j,4)

↓ ↓ ↓ ↓

b j,1 b j,2 b j,3 b j,4

c j,1 c j,2 c j,3 c j,4

v j,1 v j,2 v j,3 v j,4

a j,1 a j,2 a j,3 a j,4

r j,1 r j,2 r j,3 r j,4

sj,1 sj,2 sj,3 sj,4

n j,1 n j,2 n j,3 n j,4

Figure 3.1: An example of representing two protein sequences, Pi andPj , by physiochemical proper-

ties.

3.2 Part 2: Equalizing Lengths of Protein Sequences

Length equalizing process is based on the correlation coefficient computed from the physio-

chemical feature values of two amino acidspi, j andpi,k, j < k. This implies that the distance between

pi, j andpi,k is k− j units apart. EachPi will be represented by only seven features of physiochemical

properties. The following algorithm is used to equalize thelengths of all protein feature sequences ob-

tained fromAlgorithm 1. Let Sbe the total number of protein feature sequences andl i be the number

of amino acids in proteinPi. The correlation coefficients for hydrophobicity, hydrophicility, volumes
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of size chains of amino acids, polarity, polarizability, solvent-accessible surface area, and net charge

index of side chains of amino acids for protein feature sequencei with distanceδ are denoted by these

notations:Cbi ,δ , Cci ,δ , Cvi ,δ , Cai ,δ , Cr i ,δ , Csi ,δ , Cni ,δ , respectively. The use of correlation coefficients

is based on the assumption that all amino acids on a protein sequence must correlate to one another

in terms of physiochemical properties to form the protein sequence. Since the length of each protein

Pi is rather long, it is impractical to consider all possible distances between any pairpi, j andpi,k, for

j < k and(k− j) ∈ {1,2, . . . , l i −1}. In this study, the maximum distance ofk− j is set to 25.

Algorithm 2

1. For each protein feature sequencei, 1≤ i ≤ Scompute

2. bi =
1
li

Σli
j=1bi, j ;

3. ci =
1
li

Σli
j=1ci, j ;

4. vi =
1
li

Σli
j=1vi, j ;

5. ai =
1
li

Σli
j=1ai, j ;

6. r i =
1
li

Σli
j=1r i, j ;

7. si =
1
li

Σli
j=1si, j ;

8. ni =
1
li

Σli
j=1ni, j ;

9. For each distanceδ ∈ {1,2, . . . ,30} compute

10. Cbi ,δ =
Σli−δ

j=1 [(bi, j−bi)×(bi, j+δ−bi)]
√

Σli−δ
j=1 (bi, j−bi)2×Σli−δ

j=1 (bi, j+δ−bi)2
;

11. Cci ,δ =
Σli−δ

j=1 [(ci, j−ci)×(ci, j+δ−ci)]
√

Σli−δ
j=1 (ci, j−ci)2×Σli−δ

j=1 (ci, j+δ−ci)2
;

12. Cvi ,δ =
Σli−δ

j=1 [(vi, j−vi)×(vi, j+δ−vi)]
√

Σli−δ
j=1 (vi, j−vi)2×Σli−δ

j=1 (vi, j+δ−vi)2
;

13. Cai ,δ =
Σli−δ

j=1 [(ai, j−ai)×(ai, j+δ−ai)]
√

Σli−δ
j=1 (ai, j−ai)2×Σli−δ

j=1 (ai, j+δ−ai)2
;

14. Cr i ,δ =
Σli−δ

j=1 [(r i, j−r i)×(r i, j+δ−r i)]
√

Σli−δ
j=1 (r i, j−r i)2×Σli−δ

j=1 (r i, j+δ−r i)2
;

15. Csi ,δ =
Σli−δ

j=1 [(si, j−si)×(si, j+δ−si)]
√

Σli−δ
j=1 (si, j−si)2×Σli−δ

j=1 (si, j+δ−si)2
;

16. Cni ,δ =
Σli−δ

j=1 [(ni, j−ni)×(ni, j+δ−ni)]
√

Σli−δ
j=1 (ni, j−ni)2×Σli−δ

j=1 (ni, j+δ−ni)2
;

17. End

18.End

Since there are 25 distances and 7 correlation coefficients computed from each distanceδ ∈{1,2, . . . ,25}

for each protein sequence, the total number of features after Algorithm 2 is equal to 25× 7 = 175.

To predict the interaction, the features of each protein pair are concatenated to form a single feature
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sequence of length 175×2= 350.

3.3 Part 3: Features on Secondary Structures and Protein Properties

The interaction between protein pairs essentially concerns their structures and other protein

properties. Hence, the statistical information of the structures and the other properties must be con-

sidered. The secondary structures of a protein sequence measured in terms of statistical mean and

standard deviation are additionally used. The types of structures considered in our case are alpha-

helix, beta-sheet, beta-turn, coil, and parallel beta-strand. The relative frequencies of 29 proteins with

4741 residues in alpha-helix, beta-sheet, beta-turn of a set of globular proteins are calculated from

their occurrences based on X-ray crystallographic data [38]. From [39], this technique calculated

the conformational parameter for coil based on the ‘double prediction method’ and consists of a first

prediction of the secondary structure from a new algorithm which uses parameters of the type de-

scribed by Chou and Fasman. Parallel beta-strand were calculated from conformational preference

for parallel beta strand by [40]. Moreover, the protein properties i.e.amino acid composition, hy-

drophobicity, average area buried, and polarity are also used. These statistical means and standard

deviations of secondary structures and these protein properties are concatenated with the correlation

coefficients computed byAlgorithm 2to form a complete feature sequence. Since there are 12 basic

structures and protein properties, each structure and protein properties have two features, i.e. its mean

and standard deviation. Thus, the total number of structural and protein properties features is equal

to 2×12= 24 and, for any protein pair, the total number of structural and protein properties features

becomes 2×24= 48. Finally, the total features are 398 in each protein pair.

3.4 Part 4: Finding the distribution direction in terms of eigenvectors and eigenvalues.

This part is used to identify the new meaningful underlying these features. It is the way of

finding the distribution directions in all features of the data space in terms of eigenvectors of data

covariance matrix and their variances in term of eigenvalues of these eigenvectors. The following

algorithm is shown inAlgorithm 3.

Algorithm 3. Finding the new distribution direction of protein trainingdata.

Input: - X = {X1,X2, ...,Xn}, whereX is the protein training vector ofn features.

- µ = {µ1, µ2, ...,µn}, whereµ is the mean of each protein training vector.

1. Find covariance matrixΣ.
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Σ = E[(X - µ)(X - µ)T ]

2. Calculate the eigenvectors(v) and eigenvalues (λ ) of the covariance

matrix Σ.

Σv = λv

3. Deriving the new protein feature vectorA

A = vX

Output: the new protein feature vectorA.

Figure 3.2 shows a plot of the original training example dataon the top and a plot of new training

data after usingAlgorithm 3at the bottom.

3.5 Part 5: Using Self-Organizing Map to find subclusters.

The aim of this process is to recursively divide the new training data into small subclusters

for both interacting and non-interacting classes. The dividing process can be used SOM. To consider

the example data in Figure 3.3, each subcluster is denoted bya random color. Each ”•” symbol is

represented the data in interacting class and ”×” symbol is represented as the data in non-interacting

class.

3.6 Part 6: Finding boundary of each subcluster.

The main idea of this process is the only important data at theboundary between interacting

class and non-interacting class will be used. In our dissertation, theData Selection[41, 42] method

was applied to find this boundary data. The concept is finding the nearest data or minimum distance

between the data in interacting class and non-interacting class by using the Euclidean distance. The

detail of finding the boundary of each subcluster between interacting class and non-interacting class

is in Algorithm 4.

Algorithm 4. Finding the boundary of each subcluster between interacting class and non-interacting

class.

Input: - q interacting subclusters(smin1, ...,sminq)

- r non-interacting subclusters(sma j1, ...,sma jr )

1. For each interacting subclustersmini , 1≤ i ≤ q

2. For each non-interacting subclustersma jj , 1≤ j ≤ r
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Figure 3.2: Example of a plot training data (a) a plot original training data, (b) a plot new training

data after usingAlgorithm 3.

3. For each datapk ∈ smini , 1≤ k≤ s, wheres is the number of

data insmini
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Figure 3.3 The example of subclusters are recursively divided by SOM.

4. For each dataul ∈ sma jj , 1≤ l ≤ t, wheret is the number of

data insma jj

5. Find the minimum distance betweenpk andpl .

bma j= MIN (‖pk−ul‖), wherebma j is the boundary

data of non-interacting subcluster.

6. End

7. End

8. End

9. End

10.For each non-interacting subclustersma jj , 1≤ j ≤ r

11. For each interacting subclustersmini , 1≤ i ≤ q

12. For each dataul ∈ sma jj , 1≤ l ≤ t, wheret is the number of

data insma jj

13. For each datapk ∈ smini , 1≤ k≤ s, wheres is the number of

data insmini

14. Find the minimum distance betweenpl andpk.

bmin= MIN (‖ul − pk‖), wherebmin is the boundary
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data of interacting subcluster.

15. End

16. End

17. End

18.End

Output: Boundary data of interacting class and non-interacting class in

each subcluster.

(a) (b)

Figure 3.4: An example of finding boundary data of both interacting and non-interacting classes. (a)

An example to find boundary data using Euclidean distance. (b) All boundary data of both interacting

and non-interacting classes after usingAlgorithm 4.

Figure 3.4 displays the boundary data of both interacting and non-interacting classes. Figure

3.4(a) depicts the example to find boundary data which considering subclustersma jr andsminq. The

boundaryu1 in subclustersminq is calculated by finding the distance between datap1 and every data

in subclustersminq. The distance values are 0.5, 1.2, and 0.8, respectively. Thus,u1 is the boundary

data because of the minimum distance value 0.5. Figure 3.4(b) shows the all boundary data of both

interacting and non-interacting classes after usingAlgorithm4.

3.7 Part 7: Using bootstrap resampling technique to generate artificial boundary

data.

In our dissertation, we use a neural network to classify the protein features. The neural network

divides the input space by hyper-planes which are formed by connection weights. These hyper-planes

are adopted to the class boundaries to classify the data. If the initial connection weights are properly
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initialized, the hyper-planes will be located near the class boundaries and will have the sufficiency

of classification. Thus in this dissertation, the only artificial boundary data are used to train with the

neural network.

These artificial boundary data are generated by applying bootstrap resampling technique. From

the background section, bootstrap resampling technique isused to estimate the sampling distribution

of sample data. Typically, the sampling distribution is based on many random samples from the pop-

ulation. In stead of many samples, bootstrap method builds many resamples by repeatedly random

with replacement from only one random sample to represent the sampling distribution. So the boot-

strap distribution is nearly close to the sampling distribution of the original data. Fig. 2.9 depicts an

example of bootstrap resampling concept. The three lower boxes are the resamples with the sample

means which are closed to the mean of the original data in the top box. For this reason, we apply the

bootstrap resampling concept combine with the standard deviation of each subcluster in interacting

and non-interacting classes to generate artificial boundary data. Bootstrap resampling concept are

used to estimate the practical maximum standard deviation from the original sample data in each sub-

cluster. Then the artificial boundary data are generated by this distribution to assure the future unseen

data will fall into these class boundaries. Figure 3.5 showsthe example of artificial boundary data

after using bootstrap resampling method. The detail of using bootstrap resampling technique to gen-

erate artificial boundary data is described inAlgorithm 5. Lines 1-8 compute the standard deviation

of distance within each subcluster of interacting class andnon-interacting class. Lines 9-15 describe

Case 1: If subcluster of interacting class has the maximum standard deviation of distance. Then

calculating the mean of bootstrap standard deviation. After that using the mean of bootstrap standard

deviation to generate the artificial boundary data in both interacting class and non-interacting class

(Line 16-27). Line 28-34 describesCase 2: If subcluster of non-interacting class has the max-

imum standard deviation of distance. Then calculating the mean of bootstrap standard deviation

of this subcluster. After that using the mean of bootstrap standard deviation to generate the artificial

boundary data in both interacting class and non-interacting class (Line 35-47). Figure 3.6 shows an

example of new artificial boundary data. Figure 3.6(a) is theoriginal boundary data and Figure 3.6(b)

depicts the new artificial boundary data after usingAlgorithm 5.

Algorithm 5. Using bootstrap resampling technique to generate artificial boundary data for both

interacting and non-interacting class.

Input: - q interacting subclusters(smin1, ...,sminq)

- r non-interacting subclusters(sma j1, ...,sma jr )
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Figure 3.5 The example of new artificial boundary data.

- standard deviation of data in each interacting subcluster

(SDmin1, ...,SDminq)

- standard deviation of data in each non-interacting subcluster

(SDma j1, ...,SDma jq)

- T = 1, B= 25

Find the standard deviation of distance in each interactingsubcluster and

non-interacting subcluster.

1. For each interacting subclustersmini , 1≤ i ≤ q

2. Calculate the average distance within interacting subclustersmini .

avmini = 1
sΣs

k=1(MIN ∀pm∈smini ;k6=m‖pk−pm‖)

3. Calculate the standard deviation of distance

sdmini =
√

1
s−1Σs

k=1(MIN ∀pm∈smini ;k6=m‖pk−pm‖−avmini)2

4. End

5. For each non-interacting subclustersma jj , 1≤ j ≤ r

6. Calculate the average distance within non-interacting subclustersma jj .

avma jj = 1
t Σt

l=1(MIN ∀pv∈sma jj ;l 6=v‖pl −pv‖)

7. Calculate the standard deviation of distance

sdma jj =
√

1
t−1Σt

l=1(MIN ∀pv∈sma jj ;l 6=v‖pl −pv‖−avma jj)2

8. End

Use bootstrap resampling method to calculate the mean of bootstrap

standard deviation. Supposesdminq is the maximum value.

9. If sdminq is the maximum valueThen

10. Do while T ≤ B

11. Draw the resample data with replacement fromsminq.
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Figure 3.6: Example of a plot of boundary data (a) a plot original boundary data, (b) a plot new

artificial boundary data after usingAlgorithm 5.
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12. Calculate the standard deviation of each resamplestd∗T .

std∗T =
√

1
s−1Σs

k=1(pk−
1
sΣs

k=1pk)2

13. T = T +1

14. End Do while

15. Calculate the mean of bootstrap standard deviationmeanstd∗

meanstd∗ = 1
BΣB

T=1std∗T

Generate artificial boundary data based onmeanstd∗ value for both

interacting and non-interacting classes.

16. For each interacting subclustersmini

17. Calculate new standard deviation of data based onmeanstd∗ .

newSDmini = SDmini +(meanstd∗ −SDminq)

18. For each datapk ∈ smini

19. Generate artificial boundary data.

synk = pk+(newSDmini −SDmini)

20. End

21. End

22. For each non-interacting subclustersma jj

23. Calculate new standard deviation of data based onmeanstd∗ .

newSDma jj = SDma jj +(meanstd∗ −SDminq)

24. For each datapl ∈ sma jj

25. Generate artificial boundary data.

synl = pl +(newSDma jj −SDma jj)

26. End

27. End

Supposesdma jr is the maximum value.

28. Else

29. Do while T ≤ B

30. Draw the resample data with replacement fromsma jr .

31. Calculate the standard deviation of each resamplestd∗T .

std∗T =
√

1
t−1Σt

l=1(pl −
1
t Σt

l=1pl )2

32. T = T +1

33. End Do while
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34. Calculate the mean of bootstrap standard deviationmeanstd∗

meanstd∗ = 1
BΣB

T=1std∗T

Generate artificial boundary data based onmeanstd∗ value for both

interacting and non-interacting classes.

35. For each interacting subclustersmini

36. Calculate new standard deviation of data based onmeanstd∗ .

newSDmini = SDmini +(meanstd∗ −SDma jr)

37. For each datapk ∈ smini

38. Generate artificial boundary data.

synk = pk+(newSDmini −SDmini)

39. End

40. End

41. For each non-interacting subclustersma jj

42. Calculate new standard deviation of data based onmeanstd∗ .

newSDma jj = SDma jj +(meanstd∗ −SDma jr)

43. For each datapl ∈ sma jj

44. Generate artificial boundary data.

synl = pl +(newSDma jj −SDma jj)

45. End

46. End

47. EndIf

Output: - The artificial boundary data of interacting class.

- The artificial boundary data of non-interacting class.

3.8 Part 8: Predicting Protein-Protein Interactions by Feed-forward Neural Network

with AdaBoosting.

The only artificial boundary features of two interacting andnon-interacting proteins are trained

by a feed-forward neural network with backpropagation learning rule which AdaBoost technique has

been applied to this neural network classifier. The interacting protein pairs are assigned to class 1 and

those non-interacting pairs are assigned to class−1.



CHAPTER IV

RESULTS AND DISCUSSION

4.1 Data Sets

4.1.1 Training data set

Yeast Saccharomyces Cerevisiae

In our experiments, we used a data set of physical protein interactions obtained from [1], pro-

tein pairs containing a protein less than 50 amino acids or have ≥ 40% sequence identity were re-

moved. These data are composed by 5594 positive data and 5594negative data. The negative data

were generated by the assumption that proteins with different sub-cellular localizations do not inter-

act. The final data set consists of 11188 protein pairs.

4.1.2 Cross-species data set

For protein pairs ofDrosophila Melanogasterfrom [3], the protein pairs containing a protein

with less than 50 amino acids were removed. So the protein pairs has 4220 entries.

The other data set contains four species (i.e.Caenorhabditis elegans, Escherichia coli, Homo

sapiens, andMus musculus) in DIP database as our cross-species test data set which obtained from

[43]. Caenorhabditis elegansconsists of 4013 protein pairs.Escherichia coliconsists of 6954 protein

pairs.Homo sapiensconsists of 1412 protein pairs, andMus musculusconsists of 313 protein pairs.

4.2 Performance Evaluation

In this dissertation, the performance of a classifier is evaluated by various measures [30, 44],

Overall Accuracy, Sensitivity, Precision, G-MeanandF-Measures. The confusion matrix as shown

in Table 4.1 represents the contingency table [28] for evaluating the performance of machine learn-

ing algorithm on the classification learning problems. Let{p,n} be the positive and negative testing

examples and{Y,N} be the classification results given by a learning algorithm for positive and neg-

ative predictions [28, 44]. In this dissertation uses the interacting class as the positive class and

non-interacting class as the negative class.
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Table 4.1 Confusion Matrix.

Predicted Positve (Y) Predicted Negative (N)

Actual Positive TP FN

(p) (True Positives) (False Negatives)

Actual Negative FP TN

(n) (False Positives) (True Negatives)

Based on Table 4.1,TP is true positive defined as the right recognition of true interacting

protein pairs. TN is true negative defined as the right recognition of true non-interacting protein

pairs. FN is false negative defined as the wrong recognition of true interacting protein pairs.FP is

false positive defined as the wrong recognition of true non-interacting protein pairs. The evaluation

metrics used to assess the prediction protein pairs data sets are defined as:

Overall Accuracy (OA) :

OA=
TP+TN

TP+FP+FN+TN
(4.1)

TP Rate (Sensitiviry):

TPRate=
TP

TP+FN
(4.2)

FP Rate :

FPRate=
FP

FP+TN
(4.3)

Precision :

Precision=
TP

TP+FP
(4.4)

Recall :

Recall=
TP

TP+FN
(4.5)

F-Measure :

F −Measure=
(1+β 2)×Recall×Precision

β 2×Recall+Precision
(4.6)
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whereβ is a coefficient to adjust the relative importance of precision versus the recall (usually

β = 1). F-Measureis high when both therecall and presicionare high. It indicates that theF-

Measureis the measure ofgoodnessof a learning algorithm on the interest class [30].

G-mean :

G−Mean=

√

TP
TP+FN

×
TN

TN+FP
(4.7)

G-Meanis used to evaluate a performance of classifier on the skew data. TP/(TP+FN) is

calledPositive AccuracyandTN/(TN+FP) is calledNegative Accuracy. The idea ofG-Meanis to

maximize the accuracy on each of two classes while these accuracies still balanced [30].

4.3 The proposed method results

4.3.1 Assessment of prediction capability

The result forYeast Saccharomyces Cerevisiaedata set as show in Table 4.2. The final data set

consists of 11188 protein pairs, where half are from the positive data set and half from the negative

data set. Three-fifths of the protein pairs from the positiveand negative data set were respectively

randomly chosen as the training set, and the remaining two-fifths were used as the test set. To mini-

mize data dependence on the prediction model, five training sets and five test sets were respectively

prepared. Each training data set were averaged overfive times experiments. Moreover, each training

set an ensemble oftencomponent classifiers was created. In the experiments, a feed-forward neural

network with backpropagation learning rule was used as based classifier.

We present the results achieved when using Auto covariance [1], Local descriptor [2], and our

proposed method. Our proposed method shows the results of predicting protein-protein interactions

before generating artificial boundary data and after generating artificial boundary data. For each

method in Table 4.2 illustrates the results in terms of theOverall Accuracy, Sensitivity, Precision,

F-measures, G-mean, TP rates, and the average prediction performance across five runs.

Our proposed method(using original training data)which using 398 feature vectors yields a

protein-protein interactions model with the average overall accuracy, sensitivity, precision, F-measures

of both classes, G-Mean, and TP rates of both classes at 90.02%, 88.01%, 91.69%, 89.81%, 90.22%,

90.00%, 88.01% and 92.03%, respectively. The average prediction overall accuracy, sensitivity, pre-

cision, F-measures of both classes, G-Mean, and TP rates of both classes of the Auto covariance

method and the Local descriptor method were also calculated. It can be found that Local descrip-

tor method which using 1260 feature vectors achieves the better performance than Auto covariance
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Table 4.2: Results ofYeast Saccharomyces Cerevisiaedata set :Overall accuracy, Sensitivity, Precision, F-measureof interacting (positive) class,F-

measureof non-interacting (negative) class,G-mean, True Positive rateof interacting (positive) class, andTrue Positive rateof non-interacting (negative)

class using (1) Auto covariance, (2) Local descriptor, and (3) our proposed method.

Methods Number of Number of Test set Overall Sensitivity Precision F-measure of F-measure of G-Mean TP rate of TP rate of

Feature Training Data Accuracy positive class negative class positive class negative class

Auto covariance 420 6713

1 88.66 85.85 90.96 88.33 88.97 88.62 85.85 91.47

2 88.13 85.42 90.31 87.80 88.44 88.08 85.42 90.83

3 88.64 86.67 90.22 88.41 88.86 88.62 86.67 90.61

4 88.66 87.16 89.86 88.49 88.83 88.65 87.16 90.16

5 88.44 86.40 90.07 88.20 88.67 88.42 86.40 90.47

Average 88.51 86.30 90.28 88.25 88.75 88.48 86.30 90.71

Local descriptor 1260 6713

1 89.24 87.19 90.92 89.02 89.46 89.22 87.19 91.29

2 89.29 86.76 91.38 89.01 89.55 89.25 86.76 91.82

3 88.86 87.05 90.32 88.66 89.06 88.84 87.05 90.67

4 89.53 87.48 91.23 89.32 89.75 89.51 87.48 91.59

5 88.55 86.36 90.32 88.29 88.80 88.52 86.36 90.74

Average 89.12 86.97 90.83 88.88 89.35 89.09 86.97 91.26

our proposed method

398 6713

1 89.71 87.68 91.39 89.50 89.91 89.67 87.68 91.74

(original training data)

2 90.59 89.13 91.80 90.45 90.72 90.57 89.13 92.04

3 89.91 87.32 92.09 89.64 90.17 89.87 87.32 92.50

4 89.58 87.30 91.47 89.34 89.81 89.55 87.30 91.86

5 90.32 88.64 91.72 90.15 90.48 90.30 88.64 91.99

Average 90.02 88.01 91.69 89.81 90.22 90.00 88.01 92.03

our proposed method

398 6654

1 90.04 88.62 91.22 89.90 90.18 90.03 88.62 91.47

(artificial boundary data)

2 90.65 88.55 91.80 90.45 90.85 90.63 88.55 92.75

3 90.38 88.13 92.29 90.16 90.59 90.35 88.13 92.63

4 90.63 88.42 92.51 90.42 90.83 90.60 88.42 92.84

5 90.65 88.55 92.44 90.45 90.85 90.63 88.55 92.75

Average 90.47 88.45 92.18 90.28 90.66 90.45 88.45 92.49
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method which using 420 feature vectors. Otherwise, the performance of our proposed method(using

original training data) is better than the other two methods. The overall accuracy, sensitivity, pre-

cision, F-measures of both classes, G-Mean, and TP rates of both classes values obtained from our

proposed method are 1.51%, 1.71%, 1.41%, 1.56%, 1.47%, 1.52%, 1.71% and 1.32% which higher

than the Auto covariance method. Moreover, the overall accuracy, sensitivity, precision, F-measures

of both classes, G-Mean, and TP rates of both classes values obtained from our proposed method

are 0.9%, 1.04%, 0.86%, 0.93%, 0.87%, 0.91%, 1.04% and 0.77%which also higher than the Local

descriptor method. These results show the best performanceof our proposed method compared to the

other two methods.

The average prediction overall accuracy, sensitivity, precision, F-measures of both classes, G-

Mean, and TP rates of both classes of our proposed method(using only artificial boundary data)

are 90.47%, 88.45%, 92.18%, 90.28%, 90.66%, 90.45%, 88.45%and 92.49%, respectively. Our

proposed method using only 6654 artificial boundary training data and 398 feature vectors which less

than Auto covariance and Local descriptor method. Compare to Auto covariance, Local descriptor,

and our proposed method(using original training data), our proposed method which usingonly

artificial boundary dataachieves the best performance. The overall accuracy, sensitivity, precision,

F-measures of both classes, G-Mean, and TP rates of both classes values obtained from our proposed

method are 1.96%, 2.15%, 1.9%, 2.03%, 1.91%, 1.97%, 2.15% and 1.78% which higher than the Auto

covariance method. The performance values obtained from our proposed method are 1.35%, 1.48%,

1.35%, 1.4%, 1.31%, 1.36%, 1.48% and 1.23% which higher thanthe Local descriptor method. This

our result indicated that our proposed method which usingonly artificial boundary datais large

improvement against with Auto covariance and Local descriptor method. Furthermore, to consider

in F-measure of both classes, our proposed method consistently produced higher performance than

other methods. Hence, these results indicate that our proposed method does not only achieve learning

at one class, but also achieve learning at both classes of interacting and non-interacting class against

other methods.

4.3.2 Performance on cross-species data set

In another evaluation, we tested the ability of our proposedmethod for predicting protein-

protein interactions with cross-species data set. The results from sectionAssessment of prediction

capability provide the final five training models. In order to evaluate our training models, we tested

these model against the data sets which are independent of the training data set. Thus, we chose

the other five species as our cross-species test data set. Theperformance of our proposed method is
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summarized in Table 4.3, Table 4.4, Table 4.5, Table 4.6, andTable 4.7. The average performance of

our proposed method which using only artificial boundary data to predict onCaenorhabditis elegans,

Drosophila Melanogaster, Escherichia coli, Homo sapiens, andMus musculusachieved at 81.27%,

79.18%, 76.70%, 84.65%, and 86.77%, respectively. These average performance are shown that our

proposed method can predict correctly in the interacting protein pairs with the accuracy over 80%

on Caenorhabditis elegans, Homo sapiens, andMus musculus. However the average performance on

Drosophila MelanogasterandEscherichia colidata set have lower 80%, the average performance of

our proposed method still outperforms other methods. It claims that our proposed method which using

only artificial boundary data is also able to predict the cross-species data with the better performance

than other two methods.
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Table 4.3: The prediction results ofCaenorhabditis elegansdata set based on final five training models

of Yeast Saccharomyces Cerevisiaedata set using (1) Auto covariance, (2) Local descriptor, and (3)

our proposed method.

Methods Test set Overall Accuracy

Auto covariance

1 73.34

2 72.79

3 74.41

4 74.91

5 72.86

Average 73.66

Local descriptor

1 77.37

2 75.93

3 75.50

4 77.52

5 77.17

Average 76.70

Our proposed method

1 83.10

(artificial boundary data)

2 81.34

3 80.19

4 81.16

5 80.56

Average 81.27
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Table 4.4: The prediction results ofDrosophila Melanogasterdata set based on final five training

models ofYeast Saccharomyces Cerevisiaedata set using (1) Auto covariance, (2) Local descriptor,

and (3) our proposed method.

Methods Test set Overall Accuracy

Auto covariance

1 74.88

2 74.05

3 75.12

4 75.88

5 75.02

Average 74.99

Local descriptor

1 78.08

2 78.25

3 76.64

4 79.43

5 76.54

Average 77.79

Our proposed method

1 82.91

(artificial boundary data)

2 76.94

3 80.50

4 76.78

5 78.79

Average 79.18
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Table 4.5: The prediction results ofEscherichia colidata set based on final five training models of

Yeast Saccharomyces Cerevisiaedata set using (1) Auto covariance, (2) Local descriptor, and (3) our

proposed method.

Methods Test set Overall Accuracy

Auto covariance

1 76.03

2 75.11

3 76.19

4 77.14

5 74.42

Average 75.78

Local descriptor

1 63.50

2 65.14

3 63.29

4 65.11

5 63.34

Average 64.08

Our proposed method

1 77.96

(artificial boundary data)

2 75.47

3 76.68

4 77.73

5 75.68

Average 76.70
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Table 4.6: The prediction results ofHomo sapiensdata set based on final five training models of

Yeast Saccharomyces Cerevisiaedata set using (1) Auto covariance, (2) Local descriptor, and (3) our

proposed method.

Methods Test set Overall Accuracy

Auto covariance

1 78.97

2 79.46

3 79.39

4 79.46

5 79.39

Average 79.33

Local descriptor

1 75.50

2 73.51

3 75.35

4 74.15

5 74.79

Average 74.66

Our proposed method

1 87.89

(artificial boundary data)

2 83.50

3 84.77

4 83.92

5 83.14

Average 84.65



47

Table 4.7: The prediction results ofMus musculusdata set based on final five training models of

Yeast Saccharomyces Cerevisiaedata set using (1) Auto covariance, (2) Local descriptor, and (3) our

proposed method.

Methods Test set Overall Accuracy

Auto covariance

1 79.87

2 81.15

3 83.07

4 83.39

5 83.07

Average 82.11

Local descriptor

1 75.72

2 74.44

3 75.08

4 72.84

5 72.84

Average 74.19

Our proposed method

1 89.46

(artificial boundary data)

2 86.58

3 87.22

4 84.98

5 85.62

Average 86.77
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Our proposed method atthe artificial data generation stepnot only using as the method to

predict protein-protein interactions but also is applied to handle the imbalanced data problem.

Standard machine learning algorithms have an error to classify imbalanced data sets which the

number of data in one (majority) class is larger than the other (minority) classes. The performance of

traditional classifiers produce high predictive accuracy over majority class but low predictive accuracy

on minority class. We proposed a new method for handling the imbalanced data sets. The main idea

of our proposed is based on the fact that only artificial boundary data are generated on both minor-

ity and majority classes and using boosting technique to improve the performance of classification.

Firstly, the new direction distribution of input data sets are calculated and used to form the new input

data. Then using Self-Organizing Map (SOM) to partition these new data into many subclusters of

minority and majority classes. After that only boundary data of each subcluster are used to generate

synthetic boundary data based on bootstrap resampling technique. To increase efficiency of predic-

tion, only artificial boundary data are classified base on Adaptive Boosting (AdaBoost) algorithm.

Our proposed method applied to ten highly imbalanced data sets using feed-forward backpropagation

neural network as base classifier. In addition, theF-measures, G-meanandoverall accuracyare used

to evaluated the merit of classification results. From the experimental results, our proposed method is

very efficient to handle imbalanced data and our performanceis higher than other methods.

4.4 Experimental Results on Imbalanced Data Sets

4.4.1 Benchmark Data Sets

Ten data sets are used to test with our proposed method as summarized in Table 4.8. Table 4.8

shows the number of example in the data set, the number of minority class, the number of majority

class, the class distribution, and the number of input features. These data sets are available from

the UCI Machine Learning Repository [45]. Moreover, these data sets is used to test the learning of

imbalanced data problem from two-class, we made modifications on several of the originals data sets

according to the literary results from similar experiment [28,30]. A brief description of modification

is discussed as follows.

1. Monk Data set.This data set includes 169 examples and 2 classes. Each example is represented

by 6 attributes [30]. There are 105 majority class examples and 64 minority class examples.

2. Ionosphere Data set.This data set includes 351 examples with 2 classes (good radar returns

and bad radar returns). Each example is represented by 34 numeric features. We choose 225
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Table 4.8 Summary of the data sets used in this paper.

Data set Case Min. Maj. Class Feature

Class Class Dist.

Monk2 169 64 105 0.37:0.63 6

Ionosphere 351 126 225 0.35:0.65 34

Breast-W 699 241 458 0.34:0.66 9

Vehicle 846 199 647 0.23:0.77 18

Hepatitis 155 32 123 0.20:0.80 19

Glass 214 29 185 0.13:0.87 9

Vowel 990 90 900 0.09:0.91 13

Abalone 731 42 689 0.06:0.94 8

Yeast 483 20 463 0.04:0.96 8

Car 1728 65 1663 0.04:0.96 6

examples of good radar returns as majority class and 126 examples of bad radar returns as

minority class.

3. Breast Cancer Wisconsin Data set.This data set has a total of 699 examples and 2 classes

(benign, malignant). Each example is represented by 9 attributes. We use benign class as the

majority class and malignant as minority class, which give us 458 majority class examples and

241 minority class examples.

4. Vehicle Data set.This data set has a total of 846 data examples and 4 classes (opel, saab, bus

and van). Each example is represented by 18 attributes. Class Van is selected as the minority

class and the remaining classes is used as the majority class. This gives us an imbalanced

two-class dataset, with 199 minority class examples and 647majority class examples.

5. Hepatitis Data set.This data set includes 199 examples with 2 classes (die and live). Each

example is represented by 19 features. We choose 123 examples of class live as majority class

and 32 examples of class die as minority class.

6. Glass identification Data set.This data set has a total of 214 examples and 6 classes. Each

example is represented by 9 attributes. We choose classheadlampsas the minority class and

the remaining classes are combined as the majority class. This gives an imbalanced two-classes
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dataset, with 29 minority class examples and 185 majority class examples.

7. Vowel recognition Data set.The original dataset includes 990 examples and 11 classes. Each

example is represented by 13 attributes. Since each vowel inthe original data has 10 examples,

we choose the first vowel as the minority class and the remaining examples are in the majority

class [28]. Therefore, there are 90 examples in minority class and 990 examples in majority

class.

8. Abalone Data set.The original dataset includes 4177 examples and 29 classes.Each example in

represented by 8 attributes. We choose class18as the minority class and class9 as the majority

class [28,30]. This gives us 42 minority class examples and 689 majority class examples.

9. Yeast Data set.The original dataset includes 1484 examples and 10 classes.Each example in

represented by 8 attributes. We choose classPOX as the minority class and classCYT as the

majority class [30]. This gives us 20 minority class examples and 463 majority class examples.

10. Car evaluation Data set.The original dataset includes 1728 examples and 4 classes. Each

example in represented by 6 attributes. We choose classv-goodas the minority class and the

remaining class as the majority class. This gives us 65 minority class examples and 1663

majority class examples.

4.4.2 The proposed method result on benchmark data sets

Results for the ten data sets, as shown in Table 4.9 and 4.10. These data sets were averaged

over five standard 10-fold cross validation experiments. For each 10-fold cross validation, the data

set was first partitioned into 10 equal sized sets and each setwas in turn used as the test set while the

classifier trains on the other nine sets [30]. For each fold anensemble often component classifiers

was created. In the experiments, a feed-forward neural network with backpropagation learning rule

was used as based classifier.

For each data set, we present the results achieved when usingthe feed-forward neural network

(NN), AdaBoostM1, SMOTEBoost [29], DataBoost-IM [30], andour proposed method. For each

method, Table 4.9 and 4.10 present the results in terms of theoverall accuracy, F-measures, G-mean

andTP rates.

The results as shown in Table 4.9 indicate that our proposed method performs very well in term

of overall accuracy, F-measuresof both minority and majority classes, andTP rateof majority class.

In some cases, the value ofG-MeanandTP rateof minority class are slightly higher or the same
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Table 4.9: Results of imbalanced data sets :Overall accuracy, F-measureof minority class,F-measureof majority class,G-mean, true positive rateof

minority class,true positive rateand of majority class using (1) the NN classifier, (2) AdaBoostM1, (3) SMOTEBoost, (4) DataBoost-IM, and (5) our

proposed method.

Data set Methods Number of Overall F-measure of F-measure of G-Mean TP rate of TP rate of

Name Training Data Accuracy min. class maj. class min. class maj. class

Hepatitis

NN 140 82.13 59.22 88.30 71.64 60.83 88.01

AdaBoostM1 140 79.46 51.83 86.75 67.12 54.17 86.28

SMOTEBoost 313 80.75 54.83 87.62 70.51 60.83 86.22

DataBoost-IM 140 80.79 54.49 87.59 69.07 57.50 87.12

Our proposed method 120 84.00 59.55 89.94 71.00 57.50 91.15

Ionosphere

NN 316 86.64 78.60 90.23 81.98 71.47 95.14

AdaBoostM1 316 87.21 79.47 90.65 82.39 71.47 96.05

SMOTEBoost 722 85.79 77.39 89.53 81.03 70.64 94.21

DataBoost-IM 785 88.34 80.56 91.62 82.85 70.58 98.22

Our proposed method 258 89.21 81.66 92.33 83.66 71.47 99.11

Vehicle

NN 761 96.34 92.30 97.60 95.32 93.50 97.22

AdaBoostM1 761 96.93 93.43 97.99 95.84 93.97 97.83

SMOTEBoost 1473 96.34 92.34 97.59 95.63 94.47 96.91

DataBoost-IM 1542 97.17 94.07 98.14 96.56 95.50 97.68

Our proposed method 459 97.52 94.70 98.38 96.58 94.95 98.30

Monk2

NN 152 68.70 58.03 74.84 65.67 58.33 75.45

AdaBoostM1 152 74.00 64.31 79.23 70.84 64.29 80.27

SMOTEBoost 290 70.95 56.17 76.39 62.66 55.71 80.09

DataBoost-IM 326 69.25 58.74 75.24 66.24 59.29 75.55

Our proposed method 151 76.43 66.20 81.81 72.79 64.76 84.09

Abalone

NN 658 94.39 39.80 97.06 52.01 35.50 97.97

AdaBoostM1 658 95.49 50.71 97.63 60.68 42.50 98.70

SMOTEBoost 1142 92.20 51.56 95.73 79.47 69.00 93.62

DataBoost-IM 1359 95.08 49.57 97.41 62.25 45.50 98.11

Our proposed method 376 96.17 54.01 98.00 60.30 47.50 99.13
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Table 4.10: Results of imbalanced data sets :Overall accuracy, F-measureof minority class,F-measureof majority class,G-mean, true positive rateof

minority class,true positive rateand of majority class using (1) the NN classifier, (2) AdaBoostM1, (3) SMOTEBoost, (4) DataBoost-IM, and (5) our

proposed method.

Data set Methods Number of Overall F-measure of F-measure of G-Mean TP rate of TP rate of

Name Training Data Accuracy min. class maj. class min. class maj. class

Vowel

NN 891 99.19 95.66 99.55 98.01 96.67 99.44

AdaBoostM1 891 99.09 95.14 99.50 97.96 96.67 99.33

SMOTEBoost 1719 98.89 94.08 99.39 97.84 96.67 99.11

DataBoost-IM 1915 98.59 92.39 99.22 96.14 93.33 99.11

Our proposed method 510 99.39 96.72 99.67 98.64 97.78 99.56

Glass

NN 193 96.26 86.00 97.84 91.72 86.67 97.84

AdaBoostM1 193 95.35 81.57 97.32 89.06 83.33 97.31

SMOTEBoost 561 95.28 84.10 97.22 92.70 90.00 96.17

DataBoost-IM 640 95.35 82.48 97.31 90.69 86.67 96.78

Our proposed method 123 96.28 86.38 97.84 93.20 90.00 97.34

Yeast

NN 435 97.30 49.67 98.61 55.17 45.00 99.57

AdaBoostM1 435 97.30 49.67 98.61 55.17 45.00 99.57

SMOTEBoost 708 95.02 40.67 97.38 58.43 45.00 97.18

DataBoost-IM 901 97.30 49.67 98.61 55.17 45.00 99.57

Our proposed method 311 97.72 61.00 98.82 67.99 60.00 99.35

Breast-W

NN 629 94.84 92.45 96.08 94.10 92.10 96.28

AdaBoostM1 629 95.13 92.98 96.27 94.67 93.35 96.07

SMOTEBoost 1142 95.27 93.07 96.40 94.91 94.17 95.85

DataBoost-IM 1295 95.00 92.72 96.17 94.36 92.53 96.28

Our proposed method 294 95.85 93.87 96.86 95.19 93.35 97.15

Car

NN 1555 99.83 97.79 99.91 99.20 98.57 99.88

AdaBoostM1 1555 99.88 98.46 99.94 99.23 98.57 99.94

SMOTEBoost 2324 99.76 97.03 99.88 99.25 98.57 99.76

DataBoost-IM 2913 99.94 99.09 99.97 99.13 98.33 100.00

Our proposed method 626 99.94 99.23 99.97 99.26 98.57 100.00
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value as other techniques. In Table 4.10, the results of our proposed method perform well in term of

F-measureof minority class andG-Mean. Moreover, theoverall accuraciesof our proposed method

are higher than other techniques. In some cases, the value ofF-measureof majority class andTP rate

of both classes are slightly higher or the same value as othertechniques.

1. Hepatitis Data set.Our proposed method using only 120 training data which less than the

other four methods. Theoverall accuracy, F-measureof both classes andTP rateof majority

class indicate that our proposed method performs very well when comparing with the base

classifier NN, AdaBoostM1, SMOTEBoost, and DataBoost-IM methods. The proposed method

achieved anoverall accuracy84%,F-measuresof both classes at values 59.55%, and 89.94%

respectively,TP rateof majority class at values 91.15%.

2. Ionosphere Data set.There are 258 training data which are used in our proposed method, 316

training data are used in NN and AdaBoostM1, 561 training data are used in SMOTEBoost,

and 640 training data are used in DataBoost-IM. The result shows that our proposed method

performs well in terms ofoverall accuracy, both minority and majority classes ofF-measures,

G-Mean, andTP rateof majority class which are large improvement against with base clas-

sifier NN, AdaBoostM1, SMOTEBoost, and DataBoost-IM methods. The proposed method

achieved anoverall accuracy89.21%, bothF-measuresof minority and majority classes at val-

ues 81.66% and 92.33%,G-Meanof 83.66%, andTP rateof majority class at values 99.11%. In

addition, theTP rateof minority class, our proposed method is the same as NN, AdaBoostM1

but higher than SMOTEBoost, DataBoost-IM.

3. Vehicle Data set.Our proposed method using only 459 training data is less thanother four meth-

ods. Theoverall accuracy, F-measuresof both classes,G-MeanandTP ratesof both classes in

our proposed method is higher than the base classifier NN, AdaBoostM1, and SMOTEBoost.

Otherwise, our theoverall accuracy, F-measuresof both classes,G-MeanandTP ratesof both

classes perform slightly higher than DataBoost-IM. TheTP rateof minority class, our proposed

method is lower than DataBoost-IM by only 0.55%.

4. Monk Data set.In our proposed method, there are only 151 training data are used. Theoverall

accuracy, bothF-measures, G-Mean, and bothTP ratesof minority and majority classes of our

proposed method surpasses of all the other methods. The proposed method achieved anoverall

accuracy76.43%, bothF-measuresof minority and majority classes at values 66.20% and

81.81%,G-Meanof 72.79%, bothTP ratesof minority and majority classes at values 64.76%
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and 84.09%, respectively.

5. Abalone Data set.The only 376 training data are used in our proposed. Our proposed method

achieved 96.17%overall accuracy, F-measuresandTP ratesof both minority and majority at

54.01%, 98%, 47.50%, and 99.13%, respectively which indicate that there are large improve-

ments of our proposed method than NN, AdaBoostM1, and DataBoost-IM.

6. Vowel recognition Data set.There are only 510 training data which are used in our proposed

method. Our proposed method performs 99.39%overall accuracy, 96.72% F-measureof mi-

nority class, 99.67%F-measureof majority class, 98.64% ofG-Mean, 97.78%TP rateof mi-

nority class, and 99.56%TP rateof majority class. The results inF-measureof minority class,

G-MeanandTP rateof minority class surpass that of all the other methods and the majority

class ofF-measureandTP rateare slightly higher than other methods.

7. Glass identification Data set.There are 123 are used for our proposed method. Our perfor-

mance is evaluated byoverall accuracy, G-MeanandF-measuresare comparable with oth-

ers. The proposed method performs 96.28%overall accuracywhich higher than AdaBoostM1,

SMOTEBoost, and DataBoost-IM methods, and slightly higherthan NN method. The values of

bothF-measuresminority and majority class of our proposed method are 86.38% and 97.84%

which higher than AdaBoostM1, SMOTEBoost, and DataBoost-IM or slightly higher than NN

method. Moreover,G-meanvalue andTP rateof minority class of our proposed method are

highest of all other techniques at values 93.20% and 90%, respectively. TP rate of majority

class at 97.34% higher than AdaBoostM1, SMOTEBoost and DataBoost-IM but lower than

NN method by 0.5%.

8. Yeast Data set.There are only 311 training set being used in our proposed method. Ourover-

all accuracyandF-measureof majority class are slightly better than NN, AdaBoostM1, and

DataBoost-IM. Otherwise, our proposed method performs highest in terms ofF-measureof mi-

nority class,G-MeanandTP ratedof minority class which achieved a minority classF-measure

of 61.00%,G-Meanof 67.99% and a minority classTP rateof 60.00%. Furthermore, the per-

formance of all measures in our proposed method are absolutely higher than SMOTEBoost

method.

9. Breast Cancer Wisconsin Data set.There are only 294 training data are used in our proposed

method. The minority classF-measureof 93.87%,G-Meanof 95.19% and the majority class

TP rateof 97.15% show that our proposed method is the highest performance. However in
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terms ofoverall accuracyat 95.85%, F-measureof majority class at 96.86% and the minor-

ity TP rate of 93.35% indicate that our proposed method performs slightly higher than NN,

AdaBoostM1, and DataBoost-IM.

10. Car evaluation Data set.In our proposed method using only 626 training data while there are

at least 1555 training data are used in the other techniques.Our proposed method performs

99.94%overall accuracy, 99.23%F-measureof minority class, 99.97%F-measureof majority

class, 99.26% ofG-Mean, 98.57% TP rateof minority class andTP rateof majority class at

value 100%. Our proposed method produced slightly higher orsimilar to other four methods

in all terms of evaluation. In this data set, our proposed method is obtained that the only 626

training data still achieve with high performance.

In this work, our proposed method using only artificial boundary training data which the num-

ber of training data are less than other four methods. These results show the superiority of our pro-

posed method compared to the others. Moreover, our proposedmethod achieved promising results

when consideringoverall accuracyandF-measuresof both classes. Such as Hepatitis, Ionosphere,

Monks2 and Abalone theoverall accuracyandF-measure of minority classsurpass of all the others.



CHAPTER V

CONCLUSION AND FUTURE WORK

5.1 Conclusion

This dissertation proposes a new feature extraction from only primary protein sequences for

predicting protein-protein interactions. Each protein sequence is characterized by its correlation coef-

ficients with physiochemical properties, statistical information of its secondary structures and protein

properties as additional features. The prediction is achieved by using a feed-forward neural network

with boosting technique. The experimental results indicated that the proposed method performs better

than the others’ method. The number of features ofYeast Saccharomyces Cerevisiaedata in our case

is obviously less than those of the other’s.

Moreover, bootstrap resampling technique is used to generate artificial boundary data. So the

only artificial boundary data are used to construct the final prediction model. The proposed method

can improve the performance of predicting protein-proteininteractions in terms of theOverall Accu-

racy, Sensitivity, Precision, F-measures, G-mean, TP rates. The performance prediction shows the

superiority of proposed method which using only artificial boundary data compared to other meth-

ods. In addition, to consider inF-measureof both classes, these results indicated that our proposed

method does not only improve predicting at one class, but also achieve predicting at both classes of

interacting and non-interacting class.

The prediction performance of the final model which using only artificial boundary was evalu-

ated on cross-species data set to obtain a more reliable assessment. It can be found that the proposed

method is capable of prediction over cross-species which outperforms other methods. Hence these

features from the proposed method can be represented as the features ofCaenorhabditis elegans,

Drosophila Melanogaster, Escherichia coli, Homo sapiens, andMus musculus.

In addition, Our proposed method atthe artificial data generation step not only using as

the method to predict protein-protein interactions but also is applied to handle the imbalanced data

problem. Our results are promising and show that the proposed method compares well in comparison

with a neural network base classifier, a standard boosting algorithm and two advanced boosting-based

algorithms for handling imbalanced data set. The results indicate that the proposed method does not
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achieve one class prediction, but also produce high predictions against both minority and majority

classes.

5.2 Future Work

There are some solutions which can make this research more effective as follows:

• The other physicochemical properties and other protein properties will be considered as feature

representation. Since the number of feature vector of protein pairs may be reduced which still

have the good performance of predictions.

• To speed up the finding boundary data process, the other algorithm to find the boundary data

should be instead.

• Overall, the proposed method is expected to be a powerful tool for expediting the study of

protein interaction networks.
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