CHAPTER 5

RESULTS AND DISCUSSION

The final structure data for $CoWO_4$ are as follows: monoclinic system; space group P2/c; a = 4.678 ± 0.001 Å, b = 5.684 ± 0.001 Å, c = 4.949 ± 0.001 Å, β = 90.04 ± 0.03°; V = 131.61 Å³; $D_m = 7.75 \pm 0.02$ g.cm⁻³ at 28°C, $D_x = 7.744$ g.cm⁻³ and Z = 2. The atomic coordinates and the thermal parameters are listed in Table 4.11.

5.1 Bond distances and bond angles

The bond distances and bond angles within 4 Å limit, were calculated by DISTAN program. The bond distances in $COWO_4$ structure are shown in Table 5.1.

Table 5.1 Bond distances and their standard deviations (\hat{A} units) in CoWO_A. Distances shorter than 4 \hat{A} included.

Bond	Distance	s.đ.
M- 30 ^{II}	1.814	.031
-20 ₁	1.941	.023
-20 ₁	2.059	.032

Bond	Distance	s.d.
W-2W	3.200	.005
-20 ₁₁	3.289	.039
-2Co	3.520	.003
-2Co	3,522	.003
-20 ₁	3.546	.024
-2Co	3.617	.009
-20 ₁₁	3.727	.015
-2Co	3.745	.009
-20 ₁₁	3.813	.040
Co-20	2.091	.026
-20 ₁	2.103	.029
-20 ₁₁	2.108	.037
-2Co	3.098	.014
-20 _I	3.203	.034
-20 ₁₁	3.410	.028
-2W	3,520	.003
-2W	3.522	.003
-2W	3.617	.009
-20 ₁	3.730	.016
-2W	3.745	.009
-20 ₁	3.836	.036

Table 5.1 (continued)

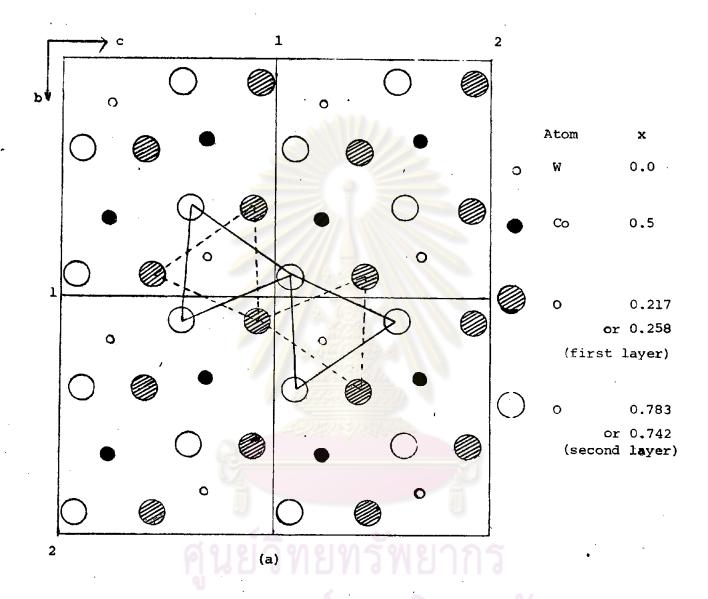
Bond	Distance	s.d.
^{Co-20} 11	3.959	.013
-20 ₁₁	3.966	.020
°1-M	1.941	.022
-w	2.059	.032
-Co	2.103	.029
-0 _I	2.402	.039
-20 _I	2.700	.032
-0 ₁	2.700	.033
-0 _{II}	2.706	<mark>.</mark> 060
-0 ₁₁	2.830	.047
-0 ₁₁	2.876	.037
-0 ₁	2.942	.033
-0 ₁₁	3.000	.060
-0 _{II}	3,059	.036
-0 ₁₁	3.094	.046
-0 ₁	3.192	.028
-Co	3.203	.034
-w	3.546	.024
-Co	3.730	.016
-0 ₁	3.763	.042
-Co	3.836	.036

Table 5.1 (continued)

Bond	Distance S.d.			
0 ¹ -0 ¹¹	3.850	.045		
-0 ₁₁	3.991	.044		
° _{II-W}	1.814 ,	.031		
-Co	2.091	.025		
-Co	2.108	.037		
-0 ₁₁	2.698	.032		
-0 _I	2.706	.060		
-o _{II}	2.823	.031		
-0 _I	2.830	.047		
~20 ₁₁	2.831	.044		
-o _{II}	2.835	.050		
-0 ₁	2.876	.036		
-0 ₁₁	2.957 .048			
-0 _I	3,000	.060		
-o ₁	3.059	.035		
-0 ₁	3.094	.046		
-M	3.289	.038		
-Co	3.410	.028		
-w	3.727	.015		
-W	3.813	.040 .		
-0 _I	3.850	.045		

Table 5.1 (continued)

and the second sec


. .

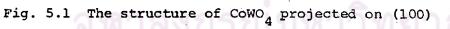
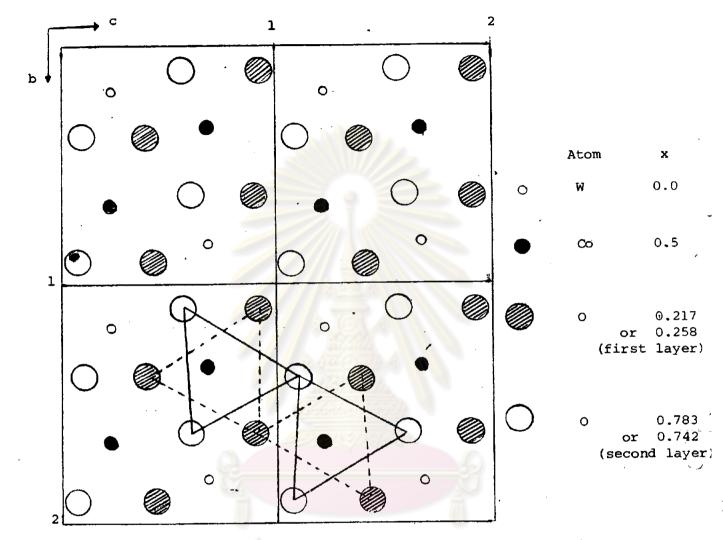

Bond	Distance	S.d.
° ^{II} -Co	3.959	.013
-Co	3.966	· .020
-0 _I	3.991	.044

Table 5.1 (continued)


5.2 Discussion

By considering the arrangement of oxygen atoms in Fig. 5.1, it can be seen that the atoms in the second layer are above the hollows in the first layer. The atoms in the third and fourth layers are vertically above the atoms in the first and second layers respectively and so on. The sequence of layer stacking can be summarized as ABABAB... However, the arrangement is slightly distorted. Therefore, the structure of $CoWO_4$ is based on a distorted hexagonal close packing of oxygen atoms with Co and W atoms each occupying one-fourth of the octahedral holes. The CoO_6 and WO_6 octahedra are joined by corners and the similar octahedra of CoO_6 and WO_6 are joined by edges. The system of CoO_6 and WO_6 octahedra is shown in Fig. 5.2.

- (a) showing WO₆ octahedra.
- (b) showing CoO₆ octahedra.

ศูนย์ ^(๖)ทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย 99 |

ŧ

-

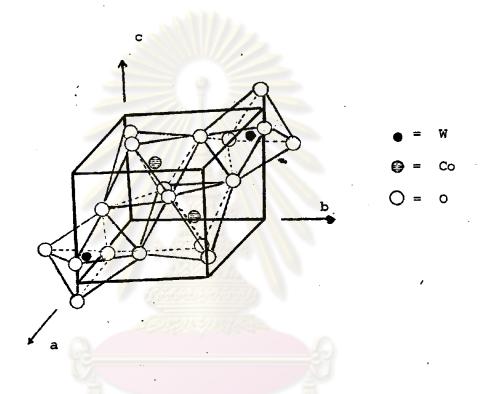
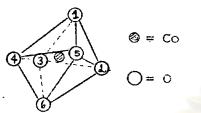


Fig. 5.2 CoO₆ and WO₆ octahédra in CoWO₄.

The tungsten atom is surrounded by six oxygen atoms (Fig. 5.3 (a)). The coordinates of these atoms are listed in Table 5.2(a). The cobalt atom is also surrounded by six oxygen atoms as shown in Fig. 5.3(b). The coordinates of these atoms are listed in Table 5.2(b). For the neighbours: of an oxygen atom, in addition to being contact with six oxygen nearest neighbours in one distorted layer, it is in contact with three oxygen atoms in the layer above and three in the layer below along a, so that it has twelve nearest neighbours, i.e. a coordination number of twelve, as shown in Fig. 5.3(c). The coordinates of these atoms are listed in Table 5.2(c). Interatomic distances of atoms in Fig. 5.3 are given in Table 5.3. Interatomic angles are given in Table 5.4.

Table 5.2(a) The coordinates


of atoms in Fig.

5.3(a).

	Atom	×	У	Z
	W	0.0	0.1785	0.25
	ຸ	-0.217	0.0947	0.570
Fig. 5.3(a) The WO_6 octahedron	0 ₂	-0.258	0.3794	0.102
in CoWO ₄ .	0 ₃	-0-217	-0.0947	0.070
	°4	0.217	-0.0947	0.430
	0 ₅	0.258	0.3794	0.398
	0 ₆	0.217	0.0947	-0.070
	1	1		<u> </u>

	Atom	x	У	z
∅ = Co				
0=0	Co	0.5	0.6644	0.25

atoms in Fig. 5.3(b).

Andrea a second second second

The CoO₆ octa-Fig. 5.3(b) hedron in CoWO₄.

		-	_
Co	0,5	0.6644	0.25
°1	0.742	0.6206	0.602
02	0.217	0.9053	0.430
03	0.258	0.3794	0.398
04	0.742	0.3794	0.102
05	0.783	0.9053	0.070
06	0 .25 8	0.6206	-0.102
	/ · · · · · ·		

Table 5.2(c) The coordinates of

atoms in Fig. 5.3(c).

10		Atom	x	У	Z
7 64 1	$\dot{s} = 0$	°1	0.742	0.3794	0.102
	3. 4	02	0.742	0.6206	0.602
12		03	0.783	0.9053	0.070
13	11 11	0 ₄	0.742	0.6206	-0.398
	หาวงกรร	0 ₅	0.783	0.0947	-0.430
ig. 5.3(c)	The polyhedron	0 ₆	0.783	-0.0947	0.070
-90 -10 (0)	·	0 ₇	0.783	0.0947	0.570
	of the twelve	0 ₈	0.258	0.6206	-0.102
	oxygen neighbours	0 ₉	0.217	0.0947	-0,070
	of an oxygen	o _{l0}	0 .2 58	0.3794	0.398
	er an enygen	0 ₁₁	1.258	0.6206	-0.102
	atom.	0 ₁₂	1.217	0.0947	-0.070
		0 ₁₃	1.258	0.3794	0.398
	1				4

Fi

Bond	Distance,A	Bonđ	Distance,Å	Bond	Distance,A
w - 01	1.9406	0 <u>1</u> - 02	2.8296	0 ₂ - 0 ₆	2.8759
- 0 ₂	1.8140	- '03	2.6999	0 ₃ - 0 ₄	2.7002
- 0 ₃	2.0590	- 0 ₄	2.4021	- 0 ₆	2.4021
- 0 ₄	2,0590	- 0 ₅	2.8759	0 ₄ - 0 ₅	2.7057
- 0 ₅	1.8140	0 ₂ - 0 ₃	2.7057	- ⁰ 6	2.6999 .
- 0 ₆	1.9406	- 0 ₅	2.8227	0 ₅ - 0 ₆	2.8296
		///»	TOTAL		

Table 5.3(a) Interatomic distances of WO₆ octahedron, shorter than $4\overset{0}{A}$, in Fig. 5.3(a).

Table 5.3(b) Interatomic distances of CoO₆ octahedron, shorter than 4Å in Fig. 5.3(b).

Bond	Distance, &	Bond	Distance, Å	Bond	Distance, &
co - 0 ₁	2.0912	0 ₁ - 0 ₂	3.0593	0206	3.0944
- 0 ₂	2.1034	~ 0 ₃	2.3345	0 ₃ - 0 ₄	2.6976
- 0 ₃	2.1079	- 0 ₄	2.8311	- 0 ₆	2.8311
- 0 ₄	2.1079	- 0 ₅	3.0944	0 ₄ - 0 ₅	3.0001
- 0 ₅	2.1034	0 ₂ - 0 ₃	3.0001	- 0 ₆	2.8345
- · 0 ₆	2.0912	- 0 ₅	3.1924	0 ₅ - 0 ₆	3.0593
	J.				

Table 5.3(c) Interatomic distances of distorted hexagonal close packing surrounded an oxygen atom in Fig. 5.3(c). Distances shorter than 4 Å are listed.

Bond	Distance,A	Bond	Distance,A	Bond	Distance,A
0 ₁ - 0 ₂	2.8311	0 ₂ - 0 ₃	3.0944	0 ₅ - 0 ₁₂	2.7002
- 03	3.0001	- 0 ₇	3.0001	0 ₆ - C ₇	2,6999
- 0 ₄	2.8311	- 0 ₁₀	2.8345	- 0 ₉	2,9418
- 0 ₅	3.0944	- 0 ₁₃	2 <mark>.</mark> 9566	- 0 ₁₂	2.4021
- 0 ₆	2.7057	0 ₃ - 0 ₄	2.8296	0 ₇ - 0 ₁₀	3.0593
- 0 ₇	2.8296	- 0 ₈	3.0593	- 0 ₁₃	2.8759
- 0 ₈	2,8345	- 0 ₁₁	2.8759	0 ₈ - 0 ₉	3.0001
- 0 ₉	3.0593	o ₄ - o ₅	3.0001	- 0 ₁₀	2.8311
- 0 ₁₀	2.6976	- 0 ₉	2.6976	0 ₉ - 0 ₁₀	2.8296
1	2.9566	- 0 ₁₁	2.8227	011-012	3.0001
$- 0_{11}$ $- 0_{12}$	2.8759	05-06	2.6999	- 0 ₁₃ .	2.8311
- 0 ₁₃	2.8227	09	3.1924	0 ₁₂ - 0 ₁₃	2.8296
-13	<u>ଣ</u> ଏ		0100 - 011		

<u>จุฬาลงกรณ์มหาวิทยาลัย</u>

Bond	Angle	Bonđ	Angle Bond		Angle
$0_1 - W - 0_2$	97.7 5	0 ₂ - 0 ₁ - 0 ₅	59.30	0 ₁ - 0 ₄ - 0 ₅	68,23
0 _{.3}	84.86	0 ₃ - 0 ₁ - 0 ₄	63.59	- 0 ₆	94.88
~ 0 ₄	73.76	- 0 ₅	87.29	0 ₃ -0 ₄ -0 ₅	90.84
- 0 ₅	99 .93	0 ₄ - 0 ₁ - 0 ₅	60.90	- ° ₆	52.83
- 0 ₅	151.69	0 ₁ - 0 ₂ - 0 ₃	58,34	05-04-06	63.13
0 ₂ - W - 0 ₃	88.39	- 0 ₅	61.17	0 ₁ - 0 ₅ - 0 ₂	59.53
- 0 ₂	167.61	- 0 ₆	82.54	- 0 ₄	50.87
- 0 ₅	102.16	0 ₃ - 0 ₂ - 0 ₅	88,27	- 0 ₆	82.54
- 0 ₆	99.93	- 0 ₆	50.87	0 ₂ -0 ₅ -0 ₄	88.27
$0_3 - w - 0_4$	81.95	0 ₅ - 0 ₂ - 0 ₆	59,53	- ° ₆	61.17
- 0 ₅	167.61	0 ₁ - 0 ₃ - 0 ₂	63.13	0 ₄ -0 ₅ -0 ₆	58.34
- ° ₆	73.76	- 0 ₄	52.83	0 ₂ - 0 ₆ - 0 ₃	60.90
0 ₄ -w-0 ₅	88.39	- 0 ₆	94.88	o ₄	87.29
- 0 ₆	84.36	0 ₂ - 0 ₃ - 0 ₄	90.34	- ° ₅	59.30
0 ₅ -w-0 ₆	97.75	- 0 ₆	68.23	0 ₃ -0 ₆ -0 ₄	63.59
°2 ⁻ °1 ⁻ °3	58.54	04-03-06	63.59	- ° ₅	94.43
- 0 ₄	94.43	$0_1 - 0_4 - 0_3$	63.58	0 ₄ - 0 ₆ - 0 ₅	58.54

Table 5.4(a) Interatomic angles of WO_6 octahedron in Fig. 5.3(a).

Bond	Angle	Bond	Angle	Bond	Angle
0 ₁ -Co - 0 ₂	93.66	°2 ⁻ °1 ⁻ °5	62.50	0 ₁ - 0 ₄ - 0 ₅	64.02
- 0 ₃	84.91	0 ₃ - 0 ₁ - 0 ₄	56.87	- ° ₆	94.30
- 0 ₄	84.78	- 0 ₅	90.00	0 ₃ - 0 ₄ - 0 ₅	94.73
- 0 ₅	95.07	0 ₄ - 0 ₁ - 0 ₅	60.64	- 0 ₆	61.50
- c ₆	166.58	0 ₁ - 0 ₂ - 0 ₃	55.77	0 ₅ - 0 ₄ - 0 ₆	63.17
0 ₂ - co - 0 ₃	90.86	- ° ₅	59.29	$0_1 - 0_5 - 0_2$	58.21
- 0 ₄	170.39	- 0 ₆	84.91	- 0 ₄	55.33
- 0 ₅	98.73	0 ₃ - 0 ₂ - 0 ₅	85.27	- 0 ₆	84.91
- 0 ₆	95.07	- c ₆	55.33	0 ₂ -0 ₅ -0 ₄	85.27
0 ₃ - Co - 0 ₄	79.56	0 ₅ - 0 ₂ - 0 ₆	58.21	- 0 ₆	59.29
- 0 ₅	170.39	0 ₁ - 0 ₃ - 0 ₂	63.17	0 ₄ - 0 ₅ - 0 ₆	55.77
- 0 ₆	84.78	- c ₄	61.50	0 ₂ -0 ₆ -0 ₃	60.64
0 ₄ - Co - 0 ₅	90.86	- °6	94.30	- 04	90.00
- 0 ₆	84. 91	0 ₂ - 0 ₃ - 0 ₄	94.73	- 0 ₅	62.50
0 ₅ - co - 0 ₆	93.66	- °6	64.02	0 ₃ -0 ₆ -0 ₄	56. 37
0 ₂ -0 ₁ -0 ₃	61.06	0 ₁ - 0 ₃ - 0 ₆	61.63	- ° ₅	90.78
- 0 ₄	90 .7 8	$0_{1} \cdot 0_{4} - 0_{3}$	61.63	0 ₆ - 0 ₆ - 0 ₅	61.06

Table 5.4(b) Interatomic angles of CoO₆ octahedron in Fig. 5.3(b).

- X - -

.

Table 5.4(c) Interatomic angles of distorted hexagonal close packing of oxygen atoms surrounded an oxygen atom in Fig. 5.3(c).

Benđ	Angle	Bond	Angle	Bond	Angle
0 ₂ - 0 ₁ - 0 ₃	64.02	°4- °5- °9	85.27	0 ₁₀ - 0 ₉ - 0 ₆	87.49
- 0 ₇	`64 . 01	- 012	90.76	- 0 ₈	58.02
0 ₃ - 0 ₁ - 0 ₄	57.97	0 ₆ - 0 ₅ - 0 ₉	59.20	0 ₂ -0 ₁₀ -0 ₇	61.06
$0_4 - 0_1 - 0_5$	60.64	- 0 ₁₂	52.83	- 0 ₈	94.30
0 ₅ - 0 ₁ - 0 ₆	54.99	0 ₅ - 0 ₆ - 0 ₉	65.77	$0_9 - 0_{10} - 0_7$	88.89
0 ₆ - 0 ₁ - 0 ₇	· 58.34	- 0 ₁₂	63.59	- 0 ₈	64.01
0 ₃ - 0 ₂ - 0 ₁₀	90.00	0 ₇ - 0 ₆ - 0 ₉	93.92	° ₃ - ° ₁₁ - ° ₄	59.53
- 0 ₁₃	84.32	- 0 ₁₂	94.88	- ° ₁₃	90.78
°7- °2- °10	63.17	0 ₂ - 0 ₇ - 0 ₁₀	55.77	0 ₁₂ - 0 ₁₁ - 0 ₄	88.44
- 0 ₁₃	57.73	- 0 ₁₃	60.38	- 0 ₁₃	57.97
0 ₂ - 0 ₃ - 0 ₈	84.91	0 ₆ - 0 ₇ - 0 ₁₀	117.75	05- 012- 06	63.58
- 0 ₁₁	90.42	- ° ₁₃	119.76	- ° ₁₁	90.76
0 ₄ - 0 ₃ - 0 ₈	54.36	03-08-04	58.48	° ₁₃ - ° ₁₂ - ° ₆	94.43
- ° ₁₁	59,30	- ° ₁₀	90 .7 8	- 0 ₁₁	58.02
0 ₃ - 0 ₄ - 0 ₈	67.17	0 ₉ - 0 ₈ - 0 ₄	94.73	0 ₂ - 0 ₁₃ - 0 ₇	61.89
- ° ₁₁	61.17	- 0 ₁₀	57.97	- 0 ₁₁	94.19
0 ₅ - 0 ₄ - 0 ₈	94.73	0 ₅ - 0 ₉ - 0 ₆	52.03	° ₁₂ - ° ₁₃ - ° ₇	82.54
- 0 ₁₁	88.44	- 0 ₈	85.27	- ° ₁₁	64.01

.

.

.

In the isomorphous series of small cations which includes NiWO₄ CoWC₄, MgWO₄, MnWO₄, FeWO₄ and ZnWO₄, the structure of NiWO₄ has been determined by Keeling⁽²⁾. The structure of CoWO₄ determined in the present study is very similar to that of NiWO₄. The compound CoWO₄ crystallizos with the same space group symmetry as NiWO₄ and the atoms are situated in the same type of crystallographic position. The structure of CoWO₄ and NiWO₄ are both based on a distorted hexagonal close packing of oxygen atoms with Co or Ni and W atoms each occupying one-fourth of the octahedral holes. The distances between a cobalt atom and six oxygen neighbours are nearly equal and also for nickel atom, but the octahedral group around a tungsten atom of both CoWO₄ and NiWO₄ are compared in Table 5.5.

The structure of CoWO₄ obtained thus confirms that the space group is P2/c and the x coordinate of tungsten atom is 0.0. The individual temperature factors of oxygen atoms obtained from the least squares refinement were negative values. This effect can be ascribed to the influence of the **absorption**, since the crystal used for hk0 data was a flat needle-shaped but for absorption correction it was approximated to be cylinder. Furthermore, it is probably related to a systematic error in the intensity measurement. However, the full matrix least squares refinement converged satisfactorily and gave the R value of 0.09.

108

Table 5.5 Comparison of the structure data between $CoWO_4$ and $NiWO_4$. Standard

,

deviations are shown in parentheses.

Atom	x	У	Z	B o 2 A	a QA	r oa	c A	β .degree
соио4					4.678(1)	5.684(1)	4.949(1)	90.04(3)
Co	0.5	0.6644(23)	0.25	0.52 (6)				
W	0.0	0.1785(7)	0.25	0.10 (2)				
°I	0.217(4)	0.9053 (75)	0.430(5)	-0.35(15)			1	
o ^{II}	0,258(6)	0,3794 (83)	0 .3 98 (6)	-0 .13(2 0		•		
NiWO				(BEGUE)		· · · · · · · · · · · · · · · · · · ·		
Ni	0.5	0.653	0.25	2.0	4.600(15)-	5.66(2)	4.910(15)	90.08(8)
W	0.0	0.180	0.25	1.0		30		
°I	0.22	0.11	0.96	1.0				
°11	0.26	0.39	0.39	1.0	รัพย	ากร		

จุฬา้ลงกรณ์มหาวิทยาลัย