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CHAPTER |

INTRODUCTION

1.1 Importance

Image segmentation is one of the ubiquitous tasks in compigi®n. It tries to separate
an image into distinct and meaningful regions where segatientoutcome shall clearly mark
pixel regions according to the image region it represenisati&l intensity variation can cause
changes in the image intensity such that non-uniform orrbgeneous texture occurs. Thus, real
scenes and medical images have rise the challenging segfinartasks. Moreover, the fact that
particular images may have several objects of interestptielap each other or lie on a complex
background appearance, makes them difficult to be distihgui. The segmentation task may
be extended not only to separate desirable objects fromaitkdgvound but also from undesired

surrounding objects.

Active contour models is one of the models that have beerdbyr@gplied to image seg-
mentation. The segmentation process begins with an initiaiour that can be obtained automati-
cally or with user interaction. In these models, the basaid to evolve the contour driven by the
gradient flow which derived from an energy function that esgnted and solved in a calculus of
variations and partial differential equations (PDEs). Agml energy function consists of image
features and a closed contour that separate the image. diasional method finds a solution via
optimization where typically the energy is minimized byidiyg its first variation and iteratively
evolving the contour. Such that, when a solution is reachesd]l be optimum (maximum or

minimum) that is when the contour evolution stops at the ey

This variational technique of active contour schemes gisleleral beneficial properties.
This optimization problem is easy to understand by simpBlysing its mathematical formula-
tion of the energy functional. A variational solution degdsion the energy itself where a particular
energy minimization framework will produce a similar finaltoome of segmentation which does
not depend on the choice or heuristics related to the nualémplementation of the energy func-
tional. Furthermore, these schemes can segment the olgjectaries with sub-pixel accuracy
and a smooth and closed contour as segmentation outcomes uggful for next processing step.
Besides, they can simultaneously achieve image smoothingro-uniform intensity correction.

In the noisy environment, an enhancement operation mayaaebessary for active contour to



detect the boundaries. Moreover, incorporation of varjair knowledge such as shape, edge,

and intensity of the image is allowed in these schemes.

1.2 Literature Review

Since the work of Kaset al. [1] in 1988, snakes or active contour models have been used
extensively addressing the problem of image segmentatiosm of the important tasks in image
processing and analysis. The contour moves and evolvesdswhject boundaries under action
of a combination between internal and external forces tradlated in PDEs derived from the
energy functional. While the contour’s internal force riegess its smoothness during contour
evolution, the contour’s external force that generatethfimage features acts as a gravitational
field to pull the contour toward the boundary of desired dbyeithin the image domain. The
image feature may refer to the edge information or regioppkarances. Hence, active contour

models can be categorized into edge and region-based ones.

The edge-based external force employs local edge infoomas a clue to find the bound-
ary. Such edge information derived from image gradient issponse of an edge indicator. So
that the contour evolution will stop when it arrives at thgqesl Classical snake (CS), proposed
by Kasset al. [1], represents the contour explicitly in a parametriaicand employs gradient
vector of image’s edge map. Itis known to be unable to extsaohdary concavity and to have
limited capture range. To overcome these problems, rgcarhy edge-based active contours
with various improved external forces [7]-[9] have beengmeed. Furthermore, still using image
gradient, Casseles al. [3] and Maladiet al. [2] independently represent the contour implicitly
via level set function. Geodesic active contour [3] also edsedge information into the level set
function. It has been shown by Sethian and Osher [2] in 1988tkie level set method is capable
in handling complex topology automatically thus enablesdbntour to change its topology by
splitting and merging. While the advantage of topologicatifilities is not readily accessible in
the parametric active contours (PAC) [1], [10], these gdoimactive contours are able to auto-
matically split and merge in a natural way. Neverthelessy tire generally very sensitive to noise
and initial conditions. They often have boundary leakagdblgms where the object is occluded

or has weak boundaries.

The region-based external force, as opposed to the edge-bass which consider only a
few pixels in the image gradient as boundary candidates, meee global information than just
the gradient pixels to drive the contour toward the boursdariAs early as 1989, Mumford and
Shah [13] proposed the piecewise smooth model that provigesetical framework of image

segmentation that utilizes global regional informatidrs later independently implemented with



the level set method by Tsdtial. [14] and Vese and Chan [15]. The Mumford-Shah formulation
assumes the regions be smooth and slowly varying; whelema§han-Vese model [17] approxi-
mates the regions by two piecewise constant functions vdrielthe constants of intensity average
inside and outside evolving contour. Furthermore, Yeral. [18] added the regional variances
instead of just the mean statistics. Their energy funcgaptimized when the means on two sides
the contour are most different. Michailoviehal. [19] utilized the Bhattacharyya difference [20]
to minimize the probability density functions both sides tontour. These region-based models

use global data fitting function.

Instead of using global fitting energy, &i al. [21] proposedegion-galable ftting (RSF)
energy using local window analyzed by Brox and Cremers [82} atatistical interpretation of
the piecewise smooth model [13]. Addressing non-unifortarisity problems, the RSF locally
approximates the global image intensities using two staliabensity fitting functions in either
sides of the contour. The fixed-scale Gaussian kernel irendieoutside the contour convolve
each side image regions, thus, allow approximation of sitgraverages at a certain regions
scale. The RSF provides choices of the scale from small ¢ I&aussian sigma, however, it
is predetermined and not changing in contour’s evolutioent¢¢, we consider this model as a
global region-scalable active contour scheme. Similaesws [23]-[30] are proposed using local

energy measure of kernels or windows.

Lankton and Tannenbaum [31] proposeddlizing_egion-basedaive cntour (LRAC).
They addressed heterogeneous textures problem by empl@gional intensity statistics within
fixed-radius ball masks along the contour and ignoring inbgemeity that may rise far away.
With a predetermined ball radius, however, it has a poorwrapange and problem of reaching
boundary concavity. Darolgt al. [32] proposeddcal region_descriptors for active contour evo-
lutions called the LRD. Addressing real scene situationrelydobal distributions of foreground
and background overlap, regional information is computétiizv square windows centered at
active contour. To solve the local minima problem and seé&ockthe boundary, they added the
balloon force. The additional balloon force, however, tsylacement of the initial contour. It ac-
tually can be put anywhere but only inside the object. Moeea¥ remains unclear that the LRD
model is capable of tracing any deep concavity and solviagptbblem of limited capture range.
In contrast to the global region-scalable models whereajlmdgional statistics is approached by
the kernel in two sides of the contour as region-scalabladifunctions, we consider these two
models as local region-scalable active contours wheremeggalable statistics are controlled by

scale of the local window or ball located at the evolving comt

Phumeechanyet al. [33] proposed active contour usingchal regional_nformation on



extendable sarch lines called the LRES. The LRES was inspired by actiapas models (ASM)
[34] and active contours without edges [17]. While the ASMsugre-determined fixed length
search lines that are perpendicular to the contour fronhtbtfie strongest edge pixels, the LRES
active contour moves itself using the regional statistitshe search lines that are normal to the
contour front. Moreover, to extend the capture range intp @mncave object part, the length
of each LRES search line increases until a suspecting boyrslaletected. As a result, this
model has various capture ranges on its contour front. Ibleas shown to perform effectively
in segmenting images with heterogeneous textures [33]. ethetess, the LRES algorithm is
quite time consuming. Even though the long thin LRES’s deline is extendable, however, not
scalable to the image area. It does not have any choice to sigaskicantly larger area. Hence,

we consider it as a local region-based active contour sch8melar schemes proposed [35]-[38].

In summary, the choice of RSF's Gaussian kernel and LRACIkrask is preferable
to maintain scalability than the LRES’s search line. In casitto the RSF where the region-
scalable intensity fittings of the kernel are convolved taadund the image, the LRAC and LRES
localize the regional statistics in its ball mask and setéinghthat evenly centered and distributed
at the contour, thus, ignore any intensity information weshe masking area. Furthermore,
the scalability of the RSF’s Gaussian kernel and LRAC's bradkk is controlled priori by a pre-
determined sigma and radius from small to large choice otlade. Their scales, however, do not
change throughput the evolution process. In essence, #iebdity is manually fixed by a user.
Although the RSF uses Gaussian kernel we could not find tleeafoGaussian function in the
segmented images. In addition, using a fixed-area LRACIs th& model has poor convergence

into concave boundary and poor capture range.

Nevertheless, particular images may have a complex appssavehere exists several ob-
jects of interest with various edge’s type. This makes theaib difficult to be distinguished since
they may overlap each other or lie on a complex backgrouna pravious methods, however,
may attract the contour regardless any particular edgeés thus, lead into wrong edges that may
have different direction with respect to the desired boupndadditional directional information

is proposed to pull the contour into the intended edges only.

For instance, Parkt al. [40] proposed directional snake (DS) by adding gradiergddi
tional information into the CS which originally considenmsly magnitudes of image gradient. By
choosing directional parameter eithet or —1, the DS provides inward or outward gradient di-
rection. Angle between gradient and contour’s perpendratitection is to tell which direction
to move. The DS moves only toward edges where the angle idesntiznz /2. On the other

hand, when the contour’s normal direction is opposite togtreglient direction, corresponding



force is set to zero. In this manner, the DS does not get tdttao the edges that has opposite
direction. Thus, only edges with correct gradient diratii@rticipate in the deformation. The
DS uses TS's force field which is very sensitive to initiai@aa, has limited capture ranges, and
boundary concavity problems. Taegal. [41] added directional information into the gradient
vector field (GVF) active contour [7] where its vector fieldeistended by spatially diffused the
image gradient. Directional GVF (DGVF) provides two typdsedge map function: positive
and negative edge map. Positive edge defines an edge warfsiin a dark into a bright while
negative edge is its opposite. The DGVF's external forcenslar to the GVF's excepts com-
puted from chosen directional edge map. The contour shedichiedges from the selected edge
map function only. Furthermore, Cheng and Foo [42] modified@VF into dynamic directional
GVF (DDGVF). Unlike the TS, GVF, DS, and DGVF where they utlia static external force,
the DDGVF's force field dynamically changes in the deformatprocess. The DDGVF's vector
field has four components of both positive and negative en@eiizontal and vertical direction.

During the deformation, each component is automaticaliychwed driving the contour.

As external force of these directional edge-based appesashin a form of gradient vector
field that derived from the image gradient, although they gusige the contour into the intended
object’s edges, they basically have several drawbackgiassd with their external forces. They
are considered to have poor convergence into concave fiarited capture ranges, boundary

leakage problems in weak edges, and also to be very sertsiti@ses and initial conditions.

No longer using gradient information, Phumeechaayal. [43] proposed edge’s type
selectable active contour using local regional inforntatia extendable search line. Formulated
in parametric curve, the model uses intensity value alongtaoksearch lines. Each search
line is designed to be of adaptive length so that it can n&witfee contour front toward the
boundary. The difference of means intensity on the seanehidi employed as an information to
automatically select the edge’s type during the deformatBalloon force is to drive the contour
away from unintended object. However, it limits initialiin to be placed inside or outside object
of interest only. Although the search line is extendab$eaiea does not change much to measure
significantly smaller or larger pixel area. It is not scatatd image area thus time consuming.
Lack of information caused by inappropriate scale resulthére is no force to pull the contour

towards the boundary.

Nevertheless, those above methods with additional dineatiinformation are formulated
in the parametric form where such topological change is eatlity accessible. Furthermore,
making the PAC robust to noise and initialization, Zimmed &@iivo-Marin [10] use parametric

contour and replace the gradient information with the ClWase energy [17]. In the presence



of noises, this model does not require to smooth the imagehwvill smooth the edges too.
However, they notice a slight misplacement of the boundanged by noises. This global region-

based PAC does not guarantee detecting the boundary aslgurat

1.3 Objective

In this thesis, we propose a novel active contour model ustadpble local regional infor-
mation on expandable kernel for image segmentation. Themrabinformation are localized in
kernels by masking them only centered at the contour. Inrdcdmaintain the scalability and to
search for suspecting boundary, we use magnitude of ityetiffierence within the kernel to let
the scale of these kernels vary itself in the level set eimiutDue to various scale of the kernels
that adaptively changes in the evolution process, our LREK converge to the boundary quickly.
Meanwhile, preserving the benefits of local region deserjscalable local regional information
gives the advantages of an ability to segment desired objéitinoise, intensity inhomogeneity,
and heterogeneous textures with fast convergence. Addptial statistics of expandable kernel
allows our model tracing boundary concavity with a largeteeprange. By using Gaussian ker-
nel, our model can trace the smooth or blur boundary, hehogy the effect of Gaussian function
in the segmented images. Level set formulation of our modédas our active contour topologi-
cally flexible. In addition, to inform particular edge’s gpbjects to attract, directional property
of our model is extracted from sign of the means intensitieti#ince. Hence, our active contour

is able to choose desirable edge’s type objects with the gatiadization.

1.4 Scopeof the Thesis

1. Study characteristics and performances of existing@ctntour models available in the

literature.

2. Propose an active contour using scalable local regioriatrhation on expandable kernel

for image segmentation.

3. Extract another benefit of scalable local regional infation to select desired edge’s type

object.
4. Apply these proposed schemes to various real scene aridahiethges.

5. Study characteristics and performance of the proposedatennd provide a comparison

with existing active contour models.
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Research Procedures

Study relevant literatures.

Study characteristics and performances of existingexcthntour models.

Classify existing region descriptors of active contowdels based on data fitting terms.
Develop a novel active contour model that using localaegiescriptor.

Study characteristics and performance of the proposé¢itoti@nd compare it with existing

active contour models.

. Extract another benefit of our model to select desiraldesdype objects.

Apply the proposed schemes to various real scene and ah@dage.

. Publish in the international conferences.

Write the thesis.



CHAPTER II

THEORY

In snakes or active contour models, segmentation procesaried by evolving an initial

contour, placed around the object, subject to constraiots &n image detecting the boundaries.
2.1 TheEdge-Based Active Contour Models
2.1.1 Geodesic Active Contour (GAC)

It has been shown by Casellgsal. [3] that geodesic active contour (GAC) is derived from
a particular class of classical snakes (CS) [1]. To shoveltion, we briefly discuss the CS here.

Let : Q — R be a given image)<2 its boundary, and’(s) : [0, 1] — R? be a parametric curve.

1
ECS(C(S)) = /O [Einternal(c(s)) + Eexternal(o(s))] ds

1

1
- 5/0 [a!C’(s)P +BlC"(s)* — A;VI(C(S))\Q] ds (2.1)

The first two terms are the internal energy that regulate shmess of the contour wheeeand 3

are positive parameters to weigh the contour’s tension igmlty, respectively. Practically; is
usually zero in order to be second-order discontinuous anthin corners. The third term is the
external energy which attracts the contour towards image®dBy minimizing this energy, the
evolving contour will stop at the points maxinfe|, supposedly the true boundary, while keep

the smoothness of the contour at the boundary.

The GAC considers the rigidity coefficient to be zefo= 0) and generalizes the edge in-
dicator part by replacing-|VI|? with ¢(|VI|)%. Hence, from the CS’s energy function in the 2.1,
energy components in the GAC are reduced into two parfs, [a|C7(s)|? + Ag(|VI(C(s))])?] ds.
A general edge indicator (2.2) is defined by a positive andredesing function such that

Figure 2.1: The edge-based active contour models.



lim,,~ g(z) = 0. So that, the image would be homogeneous and positive eatéipe edges
which would be zero as illustrated in Figure 2.1. Hence, ritade of motion forcesg(|VI]),
takes smallest values when the evolving contour arrivelSeastrong edges that exist within the
image. In other words, it has an effect to slow down the slmiplor expanding speed once the

contour arrives at the edges.

1
g(IVI|) = mal)—lorl (2.2)

whereV is gradient operator an@,, + I is the convolution of the imagewith Gaussian smoothing

functionG,,.

The GAC represents regularization term of the arclengtthefdontour as line integral,
Lc = ¢|C(s)|ds = ¢ dr. AGAC'’s energy function is obtained by weighting the lengtbment

dr with g(|VI(C(s))|), which includes information of object boundaries.

1 1
EGAC(C(S)):/O g(VI(C(S)))dT:/O g(VI(C(s))) |C"(s)| ds (2.3)

This is a computational problem of geodesic or shortest pashRiemannian space regarding a
metric on image edges. By minimizing (2.3), this model ndiy@earches for the path of new

shortest lengtlf dr but also considers the image features. Thus, GAC evolutjoation becomes

oC

w5 = d(VINN — (Vg(¥I) - NN (2.4)
(V9
Kk = div (W) (2.5)

wherex is the curvature of the contour which has smoothing effe¢hercontour andV = —V¢

is the inward normal vector.

The GAC also represents the contour implicitly by embeddlegcontour as the zero level

of the level set function where the level set formulationhef GAC is given by

00 | Vo
o = (el (a1
. (Vo
— G(VIDIToldiv (Z5) + VeV - Vo 26)

We see that a gradient terfig - V¢ is naturally incorporated on geodesic framework, however,

missing in the CS (2.1) and geometric active contours (Z g geometric model that indepen-
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dently proposed by Casellesal. [4] and Malladiet al. [5] is given by

0
% = a0V (55 ) +ea(VIDIT
= GIVIDIVOI(s +) @7)

whereg(|VI|) with p = 1 for [5] and p = 2 for [4].

ThetermVg-V¢in (2.7) drives the contour to object boundaries wheérgpoints it exactly
into the middle of the boundaries. Because in pracjié® never be zero on the edges thus the
contour may not stop at the intended boundary. This termeaial help when the boundary has
a large variation on its gradient values and it has strontjexcéion to locate the contour towards

real boundary.

(@) (b) (©) (d)

Figure 2.2: Various initial contour placement; (a) outside object, (b) inside the object, (c) inside and
outside the object, and (d) final contour on the object’s loiauy

= VIVl <%>+Vg(|VII)-V¢+wg(IVII)IV¢I
= g(|VI|)|IV9[(k +w) + Vg(|VI]) - V. (2.8)

The GAC also adds the balloon force or constant motion tesimilar to the one in the geomet-
rics models in 2.7. It may help to avoid a certain local miniamal to increase the convergence
speed. On the other hand, removing this term will result ihovear convergence. The term
wg(|VI|)|Vo| is also considered as a weighted area constraint wherel@dsr¢o expand or
shrink the contour at a constant speed. Magnitude of thistaanvelocity determines how fast
the contour moves while its sign determines an inward or atdwdirection it should evolve. This
constant which allows to trace concave boundary with a lagggure range, on the other hand,
introduces an undesired property, i.e., sensitivity tahiation. If the initial contour is entirely
outside the object as in Figure 2.2(a), the coefficieid to be positive so that the contour moves

inward tracing the object. Conversely, if the coefficients set to be negative then the initial
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contour need to be put entirely inside the object as in Fi@u2¢b) so that the contour moves
outward. If the initial contour is placed both inside andside the object as in Figure 2.2(c), then
the constani should be removed so that it can move inward and outward samebusly, how-
ever, with a slower convergence. All these conditions mhlserhodel sensitive to initial contour

placement.

(@) (b) (c)

Figure 2.3: Performance of the GAC on various spatial iritgwariation

All of these methods rely on the edge indicator dependinghenimage gradientV1I]|.
Consequently, they can detect only object boundaries aebgehe gradient where the edge is
assumed located at rapid intensity changes area. In fagyitnot only represent the boundaries
but also the noises where the gradient operator may alsapeoedges of noisy pixels. As a
result, the contour may be attracted to wrong edges thusrittesrrive at the actual boundary.
The first row of Figure 2.3(b) and (c) show the performancehef GAC in the homogeneous
intensity image with Gaussian and salt and pepper noisedaddeemove the noises, the strength
of Gaussian smoothing function need to be high which howeeeild blur the edges as well, or
alternatively an enhancement operation need to be perébriiteese models has been known very
sensitive to the noises and initial contour placement. ldege in case the object is occluded or
has weak boundary, where the edges are not defined well, titeuromay pass through the
boundary. Nonetheless, an advantage of this model is tka¢ ik no consideration of global
constraint on the image region inside or outside the cont&@a that, even though the object
and background are of non-uniform or heterogeneous textareorrect segmentation may be
achieved when strong edge pixels are available. This adganif the GAC is showed in the
second row of Figure 2.3(b) and (c) in handling non-uniforrd heterogeneous textures, however,

it passes over the actual boundaries in the weak edge.
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2.2 Region-Based Active Contour Models

In the literature, there have been several region descsigtioactive contour models. We
categorize them into four main methods based on their détayfterms or energy measures. They
can be differentiated into global, region-scalable, amdllalata fitting functions. Based on these
criterion, the region-based models are classified intoajlodgion-based, global region-scalable,

local region-scalable, and local region-based activeatostas illustrated in Figure 2.4.

These two global fitting models approximate global imagerisity which are interior and
exterior regions of the contour. While the global regiosdh models only allow intensity ap-
proximation of entire image domain and do not have choicepfaraimate a smaller region
scale. The global region-scalable models provide choit#secscale from local neighbourhood
to the full domain to measure the intensity averages at aicestale. By sliding the fixed-area
kernel into image area both sides of the contour, this stafebional energy measure fits global

image intensity.

While the local region-based models are not provided by aaleschoice to measure any
smaller or larger intensity region, and thus only able torapimnate local intensity regions. In
the local region-scalable models, its local energy measasdlexibility to approximate intensity
average in small or large scale of the kernel that spreadendhtour pixels. These two regions
of the kernel inside and outside the contour are formed bitisgl the kernel with the contour

line as two local energy measures to compute samples witteérior and exterior region.

In the global region-scalable models, no matter how smalhie scale of the kernel is
used, they calculate and include all image intensities myaling the kernel to inner and outer
regions of the contour. Hence, the role of kernel scale iotdrol degree of intensity details to
preserve as the segmentation outcome. Small scale wowddrpeemore intensity details while
large scale would ignore some intensity details. On therdtlaed, the local region-scalable
models with small scale kernel will only calculate and imt#uocal intensities within the kernel
while ignoring intensities outside the kernel. With extedynlarge scale, it would include all
image intensities. In these models, hence, the degree ahlegs or globalness is controlled by

the scale of the kernel.

221 Global Region-Based Models

The global region-based models use more global consttzémt just the gradient pixels.
The active contour is to segment the image into two regiams:région inside the contour is to

be the object and the one outside the contour is to be the bagkd. The piecewise smooth of
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&

(a) Global region-based models (b) Global region-scalable models

2/

(c) Local region-scalable models (d) Local region-region models

Figure 2.4: Various region descriptor of active contour elsd

Mumford-Shah model [13] assumes the two regions be smoattslawly varying; whereas, the
piecewise constant of Chan-Vese model [17] approximatesdafjions by two constants of inten-
sity averages on two sides of the contour. This energy ismizgid when the means optimally
approximate the regions. Furthermore, Yegal. [13] assume that object and background max-
imally separate the intensity averages. Their energy iisnigetd so that the averages inside and
outside the contour are most different. Michailovettal. [19] minimize intensity histograms of

the interior and exterior regions of the contour.
2.21.1 Active Contour Without Edge (ACWE)

Active contour without edge proposed by Chan and Vese [1Bh&ed on simplification
of the piecewise smooth of the Mumford-Shah functional.eHe a brief description of the PS

model where its energy function is given by

Ers(£,C) = [

U@—Hw%wm/ V£ (x)2dx + v[C]| (2.9)
Q QC

where|C| is the length of the contou?', p, andv regulate smoothness contributions of the ap-

proximating function and of the contodat.

The minimization of the Mumford-Shah functional [13] is alsted with a piecewise
smooth functionf (x) that approximates the original imagéx) with smooth regions within each

connected components in the image donfaiand discontinuous at the boundaries separated by



14

an optimal contou€’. In practice, however, the PS model involves expensive coatipn which

limits its applications [21].

Eov (1, pin, C ZA / 11(x) — i () 2dx + v[C| (2.10)

A special case of the piecewise smooth (PS) of the MumforahSiroblem is where the
image f(x) in the (2.10) is a piecewise constant function of means sitgp;(x). This model
assumes the image intensities be statistically homogereudiseparates the image into disjoint
regions of object and background with approximately pigsevweonstant intensities of distinct
statisticsu; andus, instead of formed by smooth regions. The level set fornmatf Chan-Vese

energy is given as follows

Bov (i, ia, 6 ZA 1160 = ) P 0l
+ 1//5 )|V (x)|dx (2.11)

whereH¢(¢(x)) = He(o(x)) andHS((x)) = 1 — Ho(d(x)). He(d(x)) anddc(¢(x)) [17],[16]

are given by

Ho(é(x)) = % [1 S ctan <¢(x)>] (2.12)

1 €

de(p(x)) = H(d(x)) = T T ) (2.13)

With the smooth Heaviside function (2.12) and its derivatavsmooth Dirac delta function (2.13),
the algorithm computes a global minimizer while (3.2) an@)3hat also used by the LRAC, the

algorithm tends to compute a local minimizer [16]-[17].

From (2.11), we see that the difference between intensityegeof a given imagd and
means intensity each side image regigrandy, act as a gravitational force to evolve the contour.
If the contour is outside the object as shown in Figure 2, 2f&)intensity value inside the contour
will be different fromgu; and outside the contour be closeitg the contour will shrink capturing
the object. If the contour is inside the object as in 2.2(g, intensity values inside the contour
will be close tou; while outside the contour will be different frop,. Consequently, the contour
will expand capturing the object. If the contour is both dlesand outside the object as illustrated
in Figure 2.2(c), the intensity value inside and outsidetaonare respectively far different from

11 and e, and thus the contour will shrink and expand simultaneouhe fitting term will be
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minimized when the intensity value inside and outside thetanar are close t@; and us and

magnitude of the force is zero which is when the contour isgdaon the object as in Figure
2.2(d).

(@) (b) (©)

Figure 2.5: Performance of the ACWE on various spatial isitgrvariation.

By keepingu; andus fixed and taking the first variation @y with respect t@, we obtain

the associated Euler-Lagrange equation¢gfoiT he energy function is minimized by solving the
following gradient flow equation:

=~ (O = P = Ao ) + ey ()
= 0c(@) [~ Ml — ] + Aol I — po]* + v] (2.14)
~ Jo Hi(p(x)I(x)dx
/Lz(x) - QfQ Hf(QS(X))dX =12 (215)

wherex is given in (2.5).u1 andpus that are given in (2.15) are two constants of means intensity
that characterize the intensity of image region inside amdide the contour. Such constants
will estimate all samples from two regions either sides @f tontour and minimize the global
fitting energy. This model is less sensitive to noise astifisd in the first row of Figure 2.5(b)
but such global region descriptor tends to capture not drdyabject but also white and black
pixels of salt and pepper noise in the second row of FigurécR.9Nevertheless, by choosing
large value of/, this model can ignore such small noisy pixels as shown inr€i@.6 where the
first row shows the image corrupted by Gaussian noise whdesédtond row shows the image

corrupted by salt and pepper noise. The constants, in fastbe far away from original image



16

data if the intensity within inner and outer regions are moiform or heterogeneous. This model
is applicable to tackle homogeneous intensity images filieréails to segment particular images
with non-uniform and heterogeneous textures which ilatett in the second row of Figure 2.5(b)

and (c), respectively.

(a) (b)
Figure 2.6: Performance of the ACWE with (a) small and (b)\@ifue ofv on noisy images.

2.2.2 Global Region-Scalable Models

Those region-based models actually use global intendiitygitunction. In particular im-
ages with non-uniform or heterogeneous textures, suchabl@gion-based models, however,
may not perform efficiently. In cases where the object cabeatistinguished in terms of global
statistics, the global region-scalable active contougscapable in dealing intensity inhomogene-
ity problems. Usage of the kernel, however, leads to drawbéadocal energy measure. Small
scale gives local intensity approximation but results earéhis no evolution when it lies entirely on
a homogeneous area where local statistics on both side obtiteur are the same. By choosing
a larger scale, it leads to global intensity approximatiod st gives results similar to the global
intensity fitting energy. Solving the problem, Piovano amgh&dopoulo [24] find optimal scale
by comparing the energy measures with a constant thresAdhptive local statistics allows the
kernel neighbourhood to slowly increase from the minimuaiesto the maximum until it crosses

the boundary and gives direction where it is supposed to move
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2.2.2.1 Region-Scalable Fitting (RSF) Model

Region-scalable fitting energy proposed byetial. uses intensity information in local

regions with controllable scale which given by

2
Ersr (ul, il 6) = /Q /Q D ke = ) = o) P HE 600 vy

v [ mIvomidy (2.16)
where the kernel functiok, (x —y) = ﬁ exp (%) centered at the point with a distance

d to pointy, the Heaviside and Dirac delta function are respectivargmin (2.12) and (2.13),
similar to the ACWE, and the anduf are given in (2.17).

Ko+ [Hi (0(x))1 ()]
Ko x [H(9(x))]

X (x) = i=1,2 (2.17)
The values ofuf and & that minimizesErsr are weighted means intensity in a neighbor-
hood ofx. They are respectively determined by convolution/af(d) to inner image region
H (¢(x))I(x) divided by convolution ofK,(d) to inner areaH .(¢(x)) and convolution of
K,(d) to outer image regiofil — H.(¢(x)))I(x) divided by convolution of<,,(d) to outer area

1 — H.(¢(x)). As a matter of facts, this global region-scalable modefslmconsidered as the

global region-based models fer— oc.

g JHEGC)I(dx
Jim i () = e i = 12 (2.18)

In the data fitting term (2.16), each integral is a weightegfage square distance from the fitting
valuesyuf (x) and pf(x) to all image regions either side the contour, with the kerg(d)

as the weight. By convolving the kernel inside and outside dbntour, the weighted means
characterize the image intensities in an area centered abihtx whose scale can be controlled
by the s parameter. The data fitting term is region-scalable in aesétimest the kernel with a
small o concerns the intensities within a small neighborhood whillarges exploits a large
region of image intensities. With an extremely largéhis model is similar to the global region-
based models. This condition is confirmed wles- oo, (2.18) is similar to (2.15) which leads
to similarity of this model to the global region-based madethaviours. Hence, the regional
scalability allows the choice of the kernel scale to inclddferent scales of intensity information.

They can be in a region of any size thus are not restrictedtordysmall or large region.

By taking the derivative ofErsr with respect top and keepingu!¢ and pff fixed, the
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following gradient flow equation is achieved.

00 _<>\1 /Qaﬁ<<z><x>>Kolf —MW"‘&/

% [ 8.600) o1 |2dx> T b (o(y))n

= /Q Se(d(x)) (—MEo|I — i * + Mo Ko |I — pf|?) dx + vie(d(y))s (2.19)

wherex is as in (2.5).

(@) (b) (c)

Figure 2.7: Performance of the RSF on various spatial iftienariation.

The values ofuff (x) and uff (x) are determined by all image intensitiéss) in a region
centered ak. For a small displacementx from a pointx to an adjacent point’ = x+ Ax, most
of the pixels in the region centered=tis still on the region centered at Henceuf (x’) and
ui (x') are respectively close 10 (x) andu (x) due to overlap between neighborhoockatnd
x’. Convolution of a region arounx to the inner and outer image regions of the contour implies
the smoothness property. This property therefore oversdime problem of overlap intensity
distribution of the non-uniform or heterogeneous textae#lustrated in the second row of Figure
2.7(b) and (c). Meanwhile, the first row of Figure 2.7(b) angdepicts its global computation
where it not only captures the object but also the noisy enwirent. Nonetheless, the noise can

be ignored by setting parameter to be large as in Figure 2.8.
2.2.3 Local Region-Scalable M odels

The LRAC's superiority of localizing regional informatida global region one is an ability
to handle heterogeneous texture problems. In order tolpaitontour towards the boundary, the

LRAC masks the intensity statistics within a set of ballshwatpre-determined radius along the
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(b)

Figure 2.8: Performance of the RSF with (a) small and (b) bige ofv on noisy images.

contour. With a fixed ball radius, the LRAC is unable to traeetp with deep concavity and
has poor capture range. Moreover, the user needs to setdine of the balls priori and wisely,
depending on the distance between the position of thelingi@our and the location of the object
within the image. If the initial contour is placed too farfinache boundary and the ball radius is
too small, the contour may not reach the boundary or into amgave shapes. In other words,
this method may have a diminished capture range. On the bdred, if the radius is set too
large, it tends to ignore local intensity details and acs$ jike the global region-based method.
It is difficult to set an appropriate radius, especially whiagre are objects with various concave
shapes. In Figure 2.9, this condition is illustrated vty x 200 pixels size by varying radius of
the ball to 10, 20, 30, 40, and 50 pixels and fixing the iteratiambers to 300. Furthermore, the
LRD suffers similar problem when the contour lies in a honmegris region. The local energy
measure on both sides of a contour tends to be equal makingdkien force approximately
zero. Being unable to use information from image parts dettfie windows, the contour stuck
in a local minimum. An appropriate size of predetermined [SRBindows needs to be chosen
wisely. While small windows do not include enough sample®tiably compute statistic forces,
large windows are associated with large uncertainty alealtbhoundary positioning. As long as
the window size contains enough information from each regiod once the boundary is found,
the result is influenced minimally and generally accuratesdlve the local minima problem and
find the boundary, they added the balloon force to drive thtaro to grow when the means and
variances of either sides the contour in each window aremailty different. When the contour
reaches the boundary, the local regions are different @nfaughe contour to stop. The additional

balloon force, however, limits initial contour placemdmdt it can be put anywhere but only inside
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the object of interest. Moreover, it is not clear that the LRDdel is capable of tracing any deep

concavity and solving the problem of limited capture range.

(@) (b) (©)

Figure 2.9: Performance of the LRAC with various radius onows grayscale intensity image.

2.2.3.1 Localizing Region-Based Active Contour (LRAC)

Object and background with non-uniform and heterogeneexisiies may be correctly
segmented with less global information similar to thosehie €édge-based models. global re-
gion descriptors approximate entire image regions howieveay not applicable to image with
overlapping intensities in non-uniform and heterogengaexisires. When probability densities of
image intensities strongly overlap between foregroundtaukground, such piecewise constant
function of global region-based models may produce poamsegation result. To decrease over-
lapped intensity distribution, the following energy fuioct is re-formulated to sample intensity
within regions only around the contour. So, the regions asedbed only locally to minimize the

overlapped intensity. The energy functional proposed mkt@n and Tanenbaum are given by:

Bunscle) = [ (6 Z / 16— 1P () B, ) - HE(6(x))dxdy
+ v [ aeDIVody (2.20)

The derivation of the LRAC's energy in (2.20) is computed bglacingE (¢) with E(¢ + &)
where1) represents a small perturbation normaktaveighted by a small number Thus, the

derivative of E(¢ + &) is taken with respect tp. The LRAC’s gradient flow equation becomes

0
2 = oo ( [ 8By - ufPax— [ 8B Pax ) + vi (o))
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) [ [ OBy (1= PP = 1= i P) -t v (2.21)

1, —yl|| <
B(x,y) = be=ylf<r (2.22)
0, otherwise
where B(x,y) is the ball mask centered on the contouis defined in (2.5), the Heaviside and

Dirac delta function are given in (3.2) and (3.3), arfdand .’ are given as following

B(x,y) - Hi(¢(x)) - I(x)
B(x,y) - Hi(6(x))

pp (x) = Ji=1,2 (2.23)

We can see that behaviour of local and global constraint eacobtrolled by the radius of the
ball. If the ball radius is set to be very small, thereforetRAC energy function is to be an edge
indicator where the pixels within the ball are as small asitith of the edge derived from image
gradient. On the other hand, by tuning the radius to be lafgepall will involves the whole

image information where the regional statistics are exgibby all pixels in the image.

@) (b) (©

Figure 2.10: Performance of the LRAC on various spatiahisity variation.

Table 2.1 contains computational time required for diffeéergize of ball radius of LRAC
for image in first row of Figure 2.10(a) which illustrates ttae convergence speed is a response
of radius size. The smallest radius consumes more and moedai converge and eventually may
arrive at a local minimum. Based on less information, thet@enmakes decision and evolves
with a slower convergence. With the largest radius, too @l@mnergy measure will make the
contour converges quickly however may ignore some intggtails of the object. This shows

the trade off between speed of convergence and local radies B addition too small or big
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Table 2.1: Computational cost of the homogeneous circlgéna

Radius Computational Time
(pixels) | Iterations| Time (s)
10 810 | 144.3441
15 310 | 62.8119
20 155 | 32.2441
25 95| 19.5210
30 75| 16.8365
35 70| 17.3614
40 70| 18.1929
45 70 | 18.5836
50 70| 19.0964

radius may lead to an incorrect segmentation. Nonethdtessems the appropriate size of the
ball will optimize betweem the number of iterations and tiraquired for convergence. We see
from the Table 2.1 when the radius is getting larger the l@ss tequired. After it has reached
an optimal radius the number of iterations cannot be redaogdonger while the computational

time increases.

2.2.4 Local Region-Based Models

The local region-based method has been shown to effectegignent images with hetero-
geneous textures (see second line of Figure 2.11(b) andXls)p, the first row of Figure 2.10(b)
and (c) depicts its robustness to Gaussian and salt and pepjse. Nevertheless, the LRES
forces are determined from a set of long thin search linegavite area is very small compared
to the image domain. Therefore, it produces a relatively flokge even though it is extendable
and spreads on the contour. As a result, the LRES algorithguite time consuming where
this is confirmed with the Table 2.1 where the smaller arehagihsume more computational
time. Moreover, its inappropriate scale may lack of infotiorato consider, thus, not produce any
contour evolution which illustrated in second line of Fig.11(b) and (c). Unlike the scalable
RSF’s Gaussian kernel and LRAC's ball mask, the long thin SREearch line is not scalable to
the image area, thus, does not have any choice to mask signifidarger area even though it is
extendable. Using parametric curve, Karaoletrél. [35] proposed active contours using finite
elements to control local scale. The external force is loggilonal intensity at fix priori sampled
elements along the contour. This local region-based fdrgs pulls the contour into the bound-
ary. Segmentation accuracy then highly depends on humbibeaflements. While the LRES
has slightly similar idea with this model in embedding loelments in the contour, the authors
[36]-[38] embed local energy measure on neighbourhoodgboith sides of the contour. Ronfard

[36] employs intensity of local regions only around the migurhood of both sides the contour.
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This model, however, requires initial contour placemerittno far from the boundary than the
neighbourhood width. Dealing with non-uniform image backmd, J. Mille [37] proposed a nar-
rowband region-based active contour. He calculates twstaots of intensity variances within
inner and outer narrow region along the contour with fixedkhess. Consequently, it may not
have enough capture range and cannot escape a local minierativd energy measure on both
regions has similar statistics. Li and Yezzi [38] proposeadldront active contours. To generate
a narrow active region, morphological dilation and erosiomused to extend the contour inside
and outside. Although this model is flexible in initializatis, suitable width of the active region
needs to be priori chosen carefully. Small size leads tol lmi@ima problem while large size

makes it act with global constraint.

2.24.1 Active Contour Using Local Regional Information on Extendable Search Line
(LRES)

The LRES active contour uses intensity profiles of the piaklag a set of search lines that
are normal to the contour front. These search lines are dorinthe contour front which direction
to move in order to find object’'s boundary. The LRES is mogddby ASM the work of Cootes
et al where their approach searches for strength edge @laig a set of predetermined fixed
length lines perpendicular to the contour front. Each obéhknes guides the contour point to
move to a new location where maxiumum gradient magnitudecistéd. As a result, this model
may have a limited capture range due to fixed length of linas piniori set by a user. Hence,
the initial contour must be placed no further far from theegbpoundary than the length of each
search line. Otherwise, the contour front may not move bezthe lines is too short to find any
boundary candidate. In other words, the ASM has limiteduapdue to fixed length of the lines.
To increase the capture range, length of the LRES searchilimeeases gradually according to
the obtained local information within the search lines lienthoundary of the object is found. In
addition, instead of finding the edge pixel, the LRES usemnisity profile within the search line

as criterion to find the boundary.

2
Bunss(e) = A [ 8.0 D [ 1160 = sb)PLex.y) - H (0000
=1
+ v [ ao)IToly)dy (2.24)
The total LRES's energy functional in (2.24) consists of $heoothing term and regional

information that is embedded in each search liig,y). The intensity profile along the search

line is divided into two regions, one inside the contour ameldther outsideu andul are the
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Figure 2.11: Performance of the LRES on various spatiahsitg variation.

average statistics calculated from pixel intensity valuigsin the search line that are respectively
inside and outside the contour. The search line is spreatyewa the contour according to the
number of pixels on the contour. Each search line is graguwadlended according to image’s
local information which informs the contour front which@ation to move. The moving direction
is determined from the data fitting calculated from the défece between local image intensity
within the search line and respectively and 4. This energy function will guide the contour
front either inward or outward direction. If the intensitglue within the search line inside the
contour is about the same a$ and far different from the search line outside the contche, t
positive sign of the force will move the contour front inwai@n the other hand, if the intensity
value outside the contour is closerté than inside the contour te!, negative sign of the force

will drive the contour front in the outward direction.

By replacinge with ¢ + &1, the derivation of the LRES’s energy in (2.20) is taken. Thus
E(¢ + &) is derived with respect to where) is a small perturbation normal toweighted by
a small numbe¢. The LRES’s evolution equation is written by

26

= o) ( [ ALyl - b Pax— [ 5Ly~ p ) dx + v ot

= 06) | [ 3:0IL0xy) (1 = b 11 = ) + v (2.25)
1, (x,y)isonthe searchline

L(x,y) = (2.26)
0, otherwise
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whereL(x,y) is the search line spread on the contour as:iis defined in (2.5), the Heaviside
and Dirac delta function are respectively given in (3.2) &\8), andu! and & are given as
following

) Ley) HE(6(x) I(x)
W) = Ty HE ) P (2.27)




CHAPTER I11

PROPOSED METHODS

3.1 Local Region-Scalable Active Contour Using Expandable Kernel (LREK)

In this chapter, we describe our novel active contour moslielguscalable local regional in-
formation within a set of kernels with various scale. To gavé the contour within image domain
towards the boundary, our active contour comprises kemghsvarious scales. These kernels,
centered at the contour front, spread evenly along the comtoere its subset are shown in Figure
3.1. The support of each kernel is adaptive throughout thkigen process. The adaptation pro-
cess of the kernel scale is influenced by image’s local inétion. In other words, each kernel is
to be gradually expanded until there is enough informatioinform which direction the contour
should locally evolve. In this manner, an object locatedvdmre within the image can be cap-
tured, which is opposed to the fixed-area ball mask that meslno evolution when the ball does
not cross any object boundary. The expandable kernels #flewontour front to move into any
deep concave parts of the object with a large capture rangmnivhile, scalable local regional
information of the kernel enables in segmenting image thatrion-uniform and heterogeneous

textures with fast convergence.

3.1.1 Scalable L ocal Regional (SLR) Force

|.------ Expandable Kernels

1
1
1
1
1
1
1
1
1
1
1

—— ] L
T Contour ! Inside Outside |
Contour Contour |

@) (b)

Figure 3.1: Scalable local region on expandable kernel.

The local information that is used in our LREK active contisithe image’s weighted aver-
age intensity within the kernel, as shown in Figure 3.1 (btibh of each pixel on contour front
is determined by such scalable local regional informatirontour line divides the kernels into
two local regions, one inside the contour and another ongidmut Two local regional statistics,

1in @nd ey, are the weighted means intensity of all pixels on the inner@uter regions within
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the kernel centered on the contour, respectively.

Our model is implemented via level set technique. One of #eelits of this technique
is that it can solve problem of required topological chandesng evolution. Let a contour
C C Q an image spatial domain, which is embedded as the zero |évleédevel set function

#(x) : @ — R, whereR is a set of real numbers.

C={xe:¢x) =0} (3.1)

where(2 denotes the image domain. In addition, the inner region efcttintour,p(x) > 0, is
defined to be positive where specified in (3.2) by the smookealiside functionH,(¢) [16],
[17] and the outer onej(x) < 0, is to be negative which defined by— H.(¢). Therefore, the
derivative of H.(¢), a smooth Dirac delta functiofi(¢) as in (3.3), represents the pixels just

around the contout'.

1 if ¢(x)>e€
He(¢(x)) = 0 if ¢(x)< —c (3.2)
% 1+@+%sin (@)} if Jo(x)| <e
1 if ¢(x) =€
de(d(x)) = 0 if |p(x)]<e (3.3)

Here we derive our local region-scalable force. To maskllagion, a kernel is centered
and distributed along evolving contour. The kernel functify (d), is parameterized by poist
that is within a distance] = ||x — y||, with center point a which is on the contour, and
otherwise. || - ||, is the £,-norm. A choice ofn = 2 results in the Euclidean distance while
n = oo, the infinite norm, results in a support of square shape asrshoFig. 1(b). The choice

of the kernel is flexible, it can be chosen as a uniform fumciio(1) similar to the LRAC.

Ku(d) = c (3.4)

wherec is a positive constant.

We also choose a Gaussian kernel in our model. This kern@nsidered to be a circle
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with different weighting functions. Contribution of the@nsity decreases as the distance from the

contour or the center poirtto the pointy increases and becomes effectively zero witen3o.

d2

Kg(d)=———exp | —=— 3.5

) = e (50 @5)
We define the SLR energy in each kernel ma&Kx — y), wherey is any point within

image domain with the distanecéfrom center pointk that is exactly on the contourF’” only

operates on local image information withii(x — y). The total contribution of the energy is

the sum ofF’ values for everyK' (x — y) neighborhood distributed on the contour. So, the SLR

energy functional of each kernel can be expressed as

Bsir(6) = /Q K(x~y)- F(I(x), 6(x)) dx (3.6)

I denotes the pixel intensity values of a given imadgerepresents the SLR energy measure at
each point along the contour. From existing global regiaedal models [17]-[19], we mention

here at least two candidates fBr

Chan-Vese energy function [17] relies on the assumptionttieobject and background
are statistically homogeneous. This energy is minimizeémwo constant intensities of their

averages approximate the regions optimally, given by

Fov = |1(x) = pin(@)]* He(¢(x)) + [1(x) = proue (y)[* (1 = He($(x)))- 3.7)

The energy proposed by Yeztial. [18] is optimized when means intensity of inner and
outer regions are well separated. Since it assumes thateheswf the object and background

are most different. The mean separation energy functios shawn below:

Fuus = — ltin(y) — ronc (3] (38)

whereu;, anduq, represent local intensity averages of the two regions withjx — y) located

at the contour, written as

o Jo K(x = y)He(o(x))(x)dx
pin(y) = TR = y) (009 )i

(3.9)

_ Jo K(x—y)(1 = H(6(x) [(x)dx

Hou(Y) = e 311 = H(6(x)))dx (3.10)
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By taking the first variation of (3) with respect t§ we have the following local region-

scalable force

OF(I(x), ¢(x))

F: = Kx—vy)- dx 3.11
SLR /Q (x—y) 90(x) (3.11)
In order to fully expres&sir, we take the derivative of two aforementioned energies; and
Fyis, with respect tap. %()‘f’(x)) becomes
OF,
&ZCSV = 6:(3(x)) (|1(x) = pin(y)1* = (%) — pout (y)I*) (3.12)

aglq\;ls — —6.(6(%) (tin () — frous(¥) (I(X) ;i,:in(y) n I(x) ;O/:(t)ut(Y)> (3.13)

whereA;, andA.,; are two areas of a scalable local region of the kernel thitlgpthe contour

line, as follows:

A= [ K(x=5)H(o(0)ix (3.14)
Q
Aout = / K(x—y)(1 - H(¢p(x)))dx. (3.15)
Q
—— ([ a.6tsnBandy —v [ V(o)) (3.16)

We write our total energy term in (3.16). Multiplication &k g with the Dirac functionj.(y)
ensures the contour not to spontaneously develop new asntithough it still allows to solve
contour’s topological changes. It also accomplishes cdatjmun of Esp g only considering pix-
els contribution within the distaneéof the contour and ignores spatial variation that may arise
outside of the kernel. In addition, a regularization ternadsled to regulate contour’s elasticity

during the evolution by penalizing the arc length of the contand weighting it by a parameter

220y) = 6 (6(3)) (Feun + Fow) 317
— v [ YOW)
ro v (120 319

Finally, our LREK evolution equation in (3.17) is obtainegl taking the first variation of (3.16)
with respect top where the complete derivation can be found in Appendix A. Tits term,
Fsir, is our local region-scalable force as in (3.11) that acereattractor to move the center of
each kernel, which is the contour. The second term as in Y3&l18noothing force to keep the

contour smooth.
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Figure 3.2: Flowchart of our LREK evolution process.

3.1.2 Adaptive Local Statistics of Expandable Kernel

When the fixed-area ball mask lies on a homogeneous regianatfjact or background, it
produces motion force approximately zero. To solve the lprabwe are motivated by the local
adaptation process. In detecting object’s boundary of agenwe let the kernel expand itself
until it covers pixels of both object and background. Thelescd each kernel, which parame-
terized by distancd, gradually increases by addingyd pixels from initial distancels;..; pixels.
This process is allowed by checking whether the kernel apsrthe homogeneous region or not.
If it is still on the homogeneous area that meagsis about the same ag,,;. Then, support of
the kernel is expanded. Once it has found a non-homogenegimr supposedly crossing the

boundary, there is a significant difference of local regiatatistics on either sides of the contour.
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In other wordsu;, will be of different from uo,:. TOo check how muchy;, is different frompgys,
their absolute difference is compared to a threshold valu&/hile the threshold of the uniform
kernel is[L 7], wherer = [0,1] and L = 255 for 8-bit grayscale. For Gaussian kernel, we
can conveniently choose the threshold betw@and1 since its normalization constant satisfies
[ Kg(x —y)dx = 1. Afterwards, the kernels direct the contour front towardsal direction

to meet the boundary. The SLR force to evolve the contoueeittiward or outward depends on
the sign of the difference betweéh— p..:| and|l — ui,|. If the intensity profile of the pixel
within the kernell is closer tou.: thany,, a positive sign of the SLR force will locally move
the contour front inward. On the other hand, if the intenpityfile of the pixel within the kernel

is about the same ag, and far different fromu.,, a negative sign of the SLR force will drive the
contour front in the local outward direction. In additionagmitude of this force is normalized by
taking its sign only. Each force will have value eithew or +w, wherew is positive parameter.
This acts as a force to evolve the contour for one iteratiamther iteration of contour’s evolution
will be started by initially setl; = di,itia1 then repeat the kernel adaptation process. The contour’s
evolution will stop when the contour converges into the larg. The overall evolution process

is illustrated in the flow chart of Figure 3.2.
3.2 Directional LREK (DLREK)

In this section, we extract another advantage of using loegibn-scalable information
that is to select desirable edge’s type object. We callediiteztional bcal region-scalable active
contour using gpandable krnel (DLREK). Our active contour uses variable scale Kaméetect
an object’'s boundary. Scalable local regional informat®imtensity profile of the pixels within
the expandable kernel that spread on the contour. Two metemsity,.;, andu.:, are calculated
from inner and outer regions formed by splitting a scalatdal region of kernels with the contour.
Magnitude of intensity difference is used in detecting otijeboundary. It indicates whether the
kernel is crossing the boundary or not. If not, it is then exdead. In case it has crossed the
boundary, they are used to inform where the contour shochllipevolve. However, this attracts
the contour towards boundary regardless of any edge’s tgjpen In case the kernel has found
unintended edge’s type object, the contour point needs wuiked away from such undesired
edge by a balloon force. Next, the relationship betwggnand 1. is to be a condition for
choosing which object’s edges to attract. Sign of its differe is to inform a particular edge’s
type object to attract. It is used as a switching paramet@rtft manage the forces driving the
contour toward objects with desirable edge’s type.u;lf is smaller thanueys, it implies that
the kernel is lying on a positive edge. Once it crosses a ivegetige thenu;, will be larger

than oyt With these conditions in mind, we modify LREK evolution edjon. In addition to
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an ability in looking for objects of desired edge’s type wille same initialization, our model
preserves many advantages, such as: 1) robustness to2)aseability to segment non-uniform
and heterogeneous textures, 3) a large capture range, 4)liynta handle boundary concavity,

5) fast convergence, and 6) topologically flexible.
3.2.1 Evolution Equation

Our scalable local regional (SLR) energy is given by (3.6hisTenergy, however, will
guide the contour front towards any type of object’'s edgendy not be able to decide particular
object’s edge to attract. In case the contour lies on an uredemage region, it needs to be guided
by another energy. As the third term, we therefore add loalibbn energy to locally drive the
contour away from the unintended object. Then, we add th&eking parameter (3.20) in these
two energies so that they will be automatically chosen oretime. To regulate contour’s tension
during evolution, we add a smoothing term which associaifdeontour length as the first term.

The second term is our SLR energy. Our total energy becomes

E(6) = /Q 5.(6(y)) |V o(y)ldy
+ (1) /Q 5.(6(y)) EsLrdy

e /Q H.(8(y))dy (3.19)

Q= Sign[/@ : Sign(ﬂin = //fout) + 1] (320)
-1 for z<0

sign(z) = 0 for z=0 (3.21)
+1 for 2>0

whereH (¢) is the smooth regularized Heaviside function and the Digdtadunctiond,(¢) is
the derivative ofH,(¢) as in (3.2) and (3.3), respectively [16], [17]. The switchjparameter
« automatically manages the SLR and local balloon energyttmmdarns regarding local image
edge’s type. It switches the energy for each kernel at eachition. Value oty is either0 or 1.
We see that ity = 0, Egpr is used and itv = 1, thenFEy g is used. The local image edge’s type
within the kernel consists of two categories; positive ardative edge’s type. Positive edge is
where a darker object lies on brighter background and vicgavel he type of object’s edge that
we are interested in can be chosen by setting edge’s typenptags. Its value is either-1 or
—1. If object with positive edge is to be segment@ds set to bet+1 and in case we want to
find negative-edge object we just set= —1. Moreover,sign(-) is the sign function where its

corresponding value is shown in (3.21). We obtain an evaugiquation of (3.22) by taking the
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first variation of (3.19) with respect to.

99

5 V) = 0:(6(y)) [Fom + (1 — @) FyLr + afL] (3.22)

whereFgy; andFgpr are given in (3.18) and (3.6), respectively arigs; is as follows

4w inward local balloon
g = (3.23)
—w outward local balloon

The first term,Fgy;, enforces the smoothness of the contour. Secordlyi is our lo-
cal region-scalable force. Lastly; g is the local balloon force, where is the positive-valued
parameter and acts as the speed-sizegf. Fip is set to+w so that the contour shall locally
shrink and vice versa. With this local balloon force, thdidization is not necessarily be placed
entirely inside or outside the object of interest. In eacin&kat each iteration, eithdfgr or
15 will be selected as a force for locally driving the contoumpoThe SLR force shall pull the
contour when local image is of desired edge’s type and the loalloon force will locally drive

the contour away once it is of undesired edge’s type.

3.2.2 Evolution Process

Figure 3.3 depicts the whole evolution process of our mobtieis process starts by setting
initial condition for contour, edge’s type parameter, amdniel scale. Nexty;, and po,; are
computed for each kernel. Their absolute difference is @egbwith a threshold value If the
difference is less than the threshold then the kernel isredgé After local adaptation process of
expandable kernel found its optimal scale to detect the dh@ynwe check whether;, is larger
or smaller thanu.,;. This condition is used in controlling the forces. Supposedsets = +1
and found thaf:i, < pout, at this time the SLR force drives the contour. Once the Kdound
an area withui, > pout then the force on the contour front will be switched into Idzalloon.
For 5 = —1, the SLR force pulls the contour to a local region with > pout. On the other
hand, local balloon force shall attract the contour awaynfeolocal region withu, < pous. The

process is repeated until the contour converges.
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CHAPTER IV

EXPERIMENTS

4.1 Local Region-Scalable Active Contour Using Expandable Kernel (LREK)

In this section, we performed several experiments to ourghptbposed in Chapter 3
and various active contour models: the GAC, ACWE, RSF, LRAG BRES. In all experiment,
unless otherwise spe cified, we set= 0 ando = 1 for the GAC,v = 0.01 x 255 x 255 and
A1 = A9 = 1 for the ACWE, andr = 0.001 x 255 x 255 and\; = Ay = 1 for the RSFy = 0.8
for the GAC, LRAC, LRES, and LREK.

Images in Figure 4.1 and 4.2 are arranged into 6 rows and #nealuThe first to the sixth
rows are the GAC, ACWE, RSF, LRAC, LRES, and LREK where eadbrn depicts initial,

intermediate, final and post-final contours of each metrexpectively.

Figure 4.1 is the synthetic flower image with various graieso#ensities. Table 4.1 shows
computational cost of the synthetic flower in the Figure drlefach active contour in two different
size of images, i.e100 x 100 and200 x 200 pixels. For the image size d00 x 100 pixels,
the following parameter are used for each model: the GAC with 1, the RSF witho = 9, the
LRAC with » = 45 and Foy, the LRES withi;, ;.0 = 30, Al = 5, andr = 20, and our LREK
with dinitial = 20, Ad = 5, 7 = 10, andFoy. For200 x 200 pixels image size, each model uses
the following parameters: the GAC with = 3, the RSF withr = 15, the LRAC withr = 90 and
Feov, the LRES withl;itia = 60, Al = 5, 7 = 20, and our LREK withd;;i;.1 = 40, Ad = 5,

7 =10, andFcy.

Intermediate contours for the GAC, ACWE, RSF, LRAC, LRES] &fRREK are taken at
30, 2, 4, 85, 100, and 80 iterations, respectively. The GACWE, RSF, LRAC, LRES, and
LREK'’s contours converge to the boundary at 60, 5, 8, 190, @00 160 iterations, respectively.
By tuning more numbers of iteration to 90, 7, 8, 275, 300, a#d, 2heir contours remain the
same. Withw = 1, the GAC takes 30 and 60 iterations which consume 5.36 arfib3@conds,
respectively. By setting larger, the GAC is able to move faster however will pass through the
weak edge. The ACWE and RSF cannot trace boundary of the floorezctly. They exclude
circle area inside the flower since its intensity is simitatite background. Even so, the ACWE
just require 5 iterations for either size of images with 1lahid 1.63 second. The RSF needs

only 8 iterations for both sizes of images. Its average and totalprdational cost rise 1.5 times
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Figure 4.1: Performance of several active contour modela f&ynthetic flower image, i.e., (a) initial, (b)

intermediate, (c) final and (d) post-final contour
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from 0.26 to 0.38 second an@®.07 to 3.00 seconds, respectively. Witth = 20 andd = 40,
our method converges to desired boundary considerablgifast it just consumes11 and0.29
second per iteration which ris€ss times to the increasing image size. Meanwhile, the LRAC’s
radius needs to be set as largetasand90 to reach the boundary for both imaged & and190
iterations. We observed that its average iteration timeeizges times from0.14 to 0.52 second
per iteration. With smaller or larger radius than mentigrtbd LRAC’s contour moves with a
slower convergence. Also, it has problem of limited captarege to trace concave shape while
it also needs more iteration numbers which consumes moeettroapture the object. The larger
radius will give fast convergence on the other hand will ign®ome intensity details particularly
in the weak boundary. The LRES is considered more time comguthan the others. lIts total
computational cost increasés times from161.45 to 1071.71 seconds. This confirms that the
long thin search line is not scalable to the image area. Aljhat can be extended its area does
not change much. With the larger and larger image size, &s & still about the same where
such a small area of the search line produces a relativellf @ in any kind of image size. It
requires more and more time to arrive at the boundary. It seéetne more efficientin segmenting

image with small size.

Table 4.1: Computational cost of the synthetic flower image

Active 100 x 100 pixels 200 x 200 pixels
Contours Iterations‘ Time (s) Iterations‘ Time (s)
GAC 30 5.36 60 30.55
ACWE 5 1.17 5 1.63
RSF 8 2.07 8 3.00
LRAC 110 15.10 190 99.13
LRES 100 161.45 200 | 1071.71
LREK 85 9.35 160 46.79

Figure 4.2 contains an U-shape image with various grayso#desities and®00 x 200
pixels size. For this image, we use following parametet: 1 for the GAC,o = 5 for the RSF,
r = 20 and Fy for the LRAC, lipitia = 20, Al = 5, andr = 10 for the LRES, andl;,;i;.; = 20,
Ad =5, 7 =10, andF¢y for our LREK.

The GAC, ACWE, RSF, LRAC, LRES, and LREK’s contour converge$20, 4, 70, 2000,
360, and 400 iterations, respectively. The intermediateao in Figure 4.2(b) is taken at 60, 2,
35, 1000, 180, and 200 iterations, respectively. By addingenmumbers of iteration to 180, 6,
105, 3000, 540, and 600, each contour does not change. Weasedthough the ACWE and RSF

do not include part of the object that is almost similar to laekground intensity their contour
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Figure 4.2: Performance of several active contour modela &ynthetic U-shape image, i.e., (a) initial, (b)

intermediate, (c) final and (d) post-final contour.
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Table 4.2: Computational cost of the synthetic U-shape énag

Active Computational Time
Contours Iterations‘ Time (s)‘ Average time (s)
GAC 120 | 121.69 1.02
ACWE 4 1.17 0.29
RSF 70 15.92 0.23
LRAC 2000 | 356.29 0.18
LRES 360 | 1008.67 2.80
LREK 400 95.88 0.24

capture the whole object and are distributed everywherderimage with only small number
of iterations. That is because of global computation. ltifiecent to the contour movement of
the local models. With the initial contour placed outside dibject, the GAC, LRAC, LRES, and
LREK’s contours gradually shrink tracing the object. Witle tballoon forcev = 1, the GAC has
additional force to move inward with a constant force. At &bdtions, it has captured the outer
part of the object while is trying to move into concave pad finally converges at 120 iterations.
Even though, the LRAC's radius is set similar to the LREK'srlad scale which equal to 20 pixels,
the LRAC seems to have limited capture range and problem temto the boundary concavity.
At 1000 iterations, its contour is still unable to trace sarhthe outer part. After 2000 iterations
the contour has traced the outer part but does not move ittsgdeoncavity. By adding to 3000
iterations, it is still unable to move in. On the other hargs LRES and LREK'’s contours are
able to move inside where at 180 and 200 iterations theirrmediate contours have traced the
outer part and are trying to move in. We can see that the GAES.Bnd LREK'’s contours are
placed at about the same intermediate contour positionteeergh they need different numbers
of iterations and consume different computational coshaliy, their contours are placed at the
boundary at 120, 360, and 400 iterations by consuming 121.608.67, and 95.88 seconds,

respectively.

In Figures 4.3-4.14, eight images are arranged into two aavasfour columns. Images in
the first row consist of (a) an original image, segmented enaigh final contour of (b) the GAC,
(c) ACWE, and (d) RSF, respectively. The second row coneidia) the initial, and final contour
of (b) LRAC, (¢) LRES, and (d) our LREK that plotted on the ineagespectively. Computational
cost of each active contour model in segmenting each imagshewn in Tables 4.3-4.15 where

each table consists of iteration number, computationdl eosl average computational time.

Figure 4.3 contains an air plane image with sip@ x 340 pixels. For this image, we use
following parametero = 5 for the RSFy; = 15 and Fy for the LRAC, lipnitial = 25, Al = 5,
andr = 30 for the LRES, andl;, ;1 = 15, Ad = 5, 7 = 10, andF¢y for our LREK.
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(@) (b) (©) (d)

Figure 4.3: Performance of several active contour modelariair plane image.

Table 4.3: Computational cost of the air plane image.

Active Computational Time
Contoury Iterations| Time (s) | Average time (s)
GAC 100 103.97 1.04
ACWE 10 6.22 0.62
RSF 20 6.21 0.31
LRAC 1800 | 281.24 0.16
LRES 500 923.61 1.85
LREK 550 114.94 0.21

We see that all methods are able to segment the air plane iexagpt the GAC. That is
due to sensitivity of the GAC to initial condition. We set thalloon force equal to zero since
the initial contour is placed both inside and outside theobjHowever, it seems confused and
does not move towards the boundary even after 100 iteratibissunable to evolve tracing the
the boundary of the air plane. By choosing the balloon foockd—w or +w, the contour will
move faster however it will constantly grow or shrink, resipeely. These values are appropriate
if the initial contour is placed entirely inside or outsidetobject. The ACWE and RSF seem
to misclassify air plane part where its intensity is simitathe background pixels. Hence, their
contours split excluding that pixels. Even so, they congargnsiderably quick since they only
need 10 and 20 iterations with 6.22 and 6.21 seconds, régggcOn the other hand, the LRAC,
LREK, and LREK exhibit complete segmentation outcome ofainglane. The LRAC requires
more number of iterations with 1800 iterations and 281.2%8ds to converge while the LRES
is considered more time consuming since it needs 923.6dsdor 500 iterations to reach the
boundary of the object. Our LREK’s contour converges at $&fafions which only consumes
114.94 seconds.

Figure 4.4 is a white blood cell image of si280 x 200 pixels. For this image, we use
o = 49 for the RSFy = 45 and Fyig for the LRAC, linitian = 40, Al = 5, andr = 30 for the
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@) (b)

Figure 4.4: Performance of several active contour modela fohite blood cell image.

Table 4.4: Computational cost of the white blood cell image.

Active Computational Time
Contours Iterations‘ Time (s)‘ Average time (s)
GAC 100 73.23 0.73
ACWE 20 11.63 0.58
RSF 50 69.75 1.40
LRAC 1300 | 433.52 0.33
LRES 500 | 2223.21 4.45
LREK 390 | 141.58 0.36

LRES, d;nitia = 45, Ad = 5, 7 = 20 and Fyrs for our LREK.

In Figure 4.4, we intend to trace the U-shape nucleus of theeviafood cell. Withw = 0,
the GAC evolves slowly and with small capture range. Agaihoaigh we set iteration numbers
as much as 100, the GAC’s contour does not move anywhere. Jitaisa be stuck by noisy
environment of the image. We can see that the ACWE and RSFeganesnt the nucleos, however,
they also include some other parts which are not considertbaobject. The LRES is segmenting
the whole cell instead of the nucleus itself. Meanwhilegijuires expensive computation with
500 iterations for 2223.21 seconds. The LRAC and LREK achiatisfactory segmentation
of the nucleus only while ignoring the other parts. Noneths] our LREK converges faster
with 390 iterations for 141.58 seconds than the LRAC whersames 1300 iterations with total

computation time 433.52 seconds.

A starfish image in Figure 4.5 has siz@) x 200 pixels. The parameters are set as follows:
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Figure 4.5: Performance of several active contour modela &tarfish image.

Table 4.5: Computational cost of the starfish image.

Active Computational Time
Contours Iterations‘ Time (s)‘ Average time (s)
GAC 240 | 42211 1.76
ACWE 10 4.35 0.44
RSF 30 17.45 0.58
LRAC 1500 | 315.22 0.21
LRES 275 | 547.36 1.99
LREK 310 90.96 0.29

¢ = 1 for the GAC,o = 9 for the RSF; = 30 and Fyrs for the LRAC, l;itia1 = 30, Al = 5, and
7 = 10 for the LRES d; ;1.1 = 30, Ad = 5, 7 = 0.1 and Fjg for our LREK.

In Figure 4.5, there are two separate starfishes. By settiagl, we let the GAC’s contour
to shrink since the initial contour is placed mostly outditke starfishes. However, after 240 iter-
ations, it does not give a complete segmentation outcome RBF not only detect the starfishes
but also the noisy pixels on the starfishes. With as much a6 it&fations, the LRAC'’s con-
tour is still unable to move into the concave part in betwaemgtarfishes thus give a connected
starfishes as an segmentation result. The ACWE, LRES, antdREK is capable to provide
an actual boundary of the two separate starfishes. Becdies@&QWE separate the image by
calculating two piecewise constant of means intensity tvinaghis case best approximate homo-
geneous foreground and background of the starfishes. Wit &alaptation process, the LRES
and LREK does not have problems segmenting object with warcmncave shape. In spite of

that, our LREK only consumes 90.96 seconds for 310 iteratihich is faster than LRES with
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Table 4.6: Computational cost of the bear cartoon image.

Active Computational Time
Contours Iterations‘ Time (s)‘ Average time (s)
GAC 70 74.48 1.06
ACWE 10 7.79 0.78
RSF 40 33.34 0.83
LRAC 2000| 385.07 0.19
LRES 190 | 404.92 2.13
LREK 240 59.92 0.25

547.36 seconds for 275 iterations.

Figure 4.6: Performance of several active contour modela fiear cartoon image.

Figure 4.6 is a bear cartoon image with s x 320 pixels. The following parameter
are respectively set: the RSF with= 19, the LRAC withr = 15 and Fyg, the LRES with
linitia1 = 30, Al = 5, andr = 20, the LREK withd;pit;a = 15, Ad = 5, 7 = 20, andFys.

An initial contour in Figure 4.6 is set manually by determigieach point in the image
and connecting that point to create a region of initial cantd&So that, the user can interact to
determine the initialization. This image contains two saf@objects which are the bear cartoon
and its shadow. However, the shadow is undesired as a segfinardutcome. The GAC gen-
erally can segment only the bear while ignoring the shadoithotdgh some part of the initial
contour are inside the bear. We set= 3 because the initial contour is mainly outside the ob-
ject. High magnitude of balloon force helps the GAC to cogeequickly with just 70 iterations.
However, it constantly moves inward thus misclassifies sparts of an ear and two hands. The
ACWE and RSF not only include the shadow as segmentatiofit imsualso divide the bear as

several objects. This is due to the object contains variotesnsity region. Meanwhile the RSF
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Table 4.7: Computational cost of the T-shape image.

Active Computational Time
Contoury Iterations| Time (s) | Average time (s)
GAC 55 17.33 0.32
ACWE 20 6.71 0.34
RSF 270 58.48 0.22
LRAC 1600 | 213.88 0.13
LRES 100 157.09 1.57
LREK 140 17.19 0.12

capture more details than the ACWE because it uses smakttlkerbe convolved to all image re-
gions. With average computational time 0.78 and 0.83 sependeration, they consume similar
computational cost per iteration. However, the RSF reguliterations more than required by
ACWE to converge with only 10 iterations. Although, the &@on numbers for the LRAC is set
to 2000, the contour is unable to move into concave part ltviiead and foot. It is not easy
to determine the optimal ball radius particularly when tligeot has various concave part. The
LRES generally segments the bear although it misclasskfeegar part. This is perhaps due to
small thin search line that might not reliably sample theefsntensity thus confused and direct
the contour wrongly. Also, the LRES is considered more timescming where it requires 2.13
seconds per iteration compared to our proposed scheme whiglconsumes 0.25 second per

iteration. Meanwhile, our LREK extracts complete objeatihdaries.

(b)

Figure 4.7: Performance of several active contour modela fleshape image.

A T-shape object with non-uniform intensity in Figure 4.59& x 127 pixels of image
size. The RSF’s kernel is set with= 3, the LRAC’s ball radius is set with = 10 and Fjg, the
length of LRES's search line is set tQ;;;»1 = 10, Al = 3, andr = 30, and parameter for our
LREK is set withd;p;tia1 = 10, Ad = 5, 7 = 30, andFs.
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The T-shape object in Figure 4.7 has spatial variation afrisity inhomogeneity. With
w = 0, the GAC has low speed and small range of capture, the GA@®aois confused thus
does not move capturing the object. The ACWE is confused thighnon-uniform textures and
tends to separate the image into brighter and darker ardesREF, LRAC, LRES, and LREK
generally can deal with intensity inhomegenity of the imabee RSF'’s final contour is correctly
placed on the object. However, it consumes 270 iterationks548 seconds to successfully
place its contour on the object. To arrive at the object banyydhe LRAC's contour needs 1600
iterations and 213.88 seconds. Meanwhile, it ignores sim@hsity details in some corners of
the T-shape object. The LRES just have a small problem wélstiadow. It is confused with the
shadow part and consider it as part of the object. Finallygdoysuming just 140 iterations and

17.19 seconds, the T-shape can be segmented accuratedytrthy problem by our scheme.

(b) (d)

Figure 4.8: Performance of several active contour modela 8ynthetic heterogeneous textures image.

An object with heterogeneous texture without adding naisEigure 4.8 hag00 x 200
pixels of image size. The parameters are given as follows:R8F withc = 11, the LRAC
with r = 40 and Fvy, the LRES withl; ;.0 = 40, Al = 5, andT = 10, and our LREK with
dinitial = 10, Ad = 5, 7 = 50, and F;s.

The image in Figure 4.8 has heterogeneous textures whees & object or its background
contains both brighter and darker intensities. It also@mstvarious concave parts. Due to local
consideration of image gradient, the GAC does not confuietive overlapped intensity between
the foreground and background. However, after its contaalves for 500 iterations, the choice
of w = 0 is unable to attract the contour to some corners of the abjBgt settingw to be

positive or negative, it just makes the contour shrink oraepwith a constant speed while the
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Table 4.8: Computational cost of the heterogeneous textorage.

Active Computational Time
Contours Iterations‘ Time (s)‘ Average time (s)
GAC 500 | 718.41 1.44
ACWE 10 3.99 0.40
RSF 500 | 160.43 0.32
LRAC 550 | 133.64 0.24
LRES 300 | 658.35 2.19
LREK 350 68.91 0.19

contour actually needs to shrink and expand accordinglg. gdicewise-constant approximation
of global means intensity leads to image separation aqugtdi the image area that represented
by its intensity. Thus, the brighter area is considered addaheground while the darker area as
the background. We observed that the RSF, LRAC, and LRES esgigmost of the object parts
except the part where the intensities of foreground anddracid are hardly distinguished. They
successfully segment the part where the difference betfareground and background can be
clearly distinguished. All these region-based methods Wital constraint do not confuse the
overlapped intensities between the foreground and thegoagkd due to its local consideration.
Their total computational time are 160.43, 133.64, and 3&8econds for the RSF, LRAC, and
LREK, respectively. On the other hand, our scheme providesnaplete segmentation result.
It consumes 68.91 seconds for 350 iterations with averagguatation time 0.19 second per

iteration.

(a) (b) (c) (d)

Figure 4.9: Performance of several active contour modela &ynthetic heterogeneous texture image with
added salt and pepper noise.
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Table 4.9: Computational cost of the heterogeneous textarage with salt and pepper noise.

Active Computational Time
Contours Iterations‘ Time (s)‘ Average time (s)
GAC 220 | 308.20 1.40
ACWE 10 21.48 2.15
RSF 30 53.85 1.80
LRAC 550 | 280.65 0.51
LRES 300 | 626.59 2.09
LREK 400 | 111.34 0.28

A noisy heterogeneous textures image in Figure 4.9 hag8ize200 pixels. The following
paremeters are used:= 13 for the RSFy = 50 and Fyfor the LRAC, the LRES withi i =
40, Al = 5, andr = 10, and our LREK withd; ;i1 = 15, Ad = 5, 7 = 45, Fys.

Figure 4.9 contains the same image in Figure 4.9 with addedrsa pepper noise. Since
the GAC uses edge information of image gradient, it is siedib noise. Even though the GAC'’s
contour move for 220 iterations it does not move anywherabee it is stuck by the gradient
pixels of the salt and pepper noise. Although the ACWE rexguanly 10 iterations with 21.48
seconds it still separate the image into brighter area aslijeet and the darker area as the back-
ground. Also, it includes white and black pixels of the na@isehe object. With only 30 iterations,
the RSF almost captures the whole object. However, it alslodies the noise as part of the ob-
ject. Even though it uses local window, this is perhaps dumtwolution of two fitting functions
of the kernels to all over the image. It is different to thet i@fsthe three methods: the LRAC,
LRES and LREK. They use local image intensity and computsiiigilocal window spread on
the contour. Even so, the LRAC and LRES cannot segment pécthe lower part of the object
where the intensities of the foreground and backgroundesedistinguishable. Nonetheless, our
method still provides successful segmentation result @véime presence of noise with average

computational time 0.28 second per iteration.

An ultrasound image of siz221 x 217 is shown in Figure 4.10. The following parameter
are used: the RSF withh = 21, the LRAC withr = 15 and Fyis, the LRES withl; ;4.1 = 15,
Al = 5, andr = 20, and our LREK withd;;tia1 = 15, Ad = 5, 7 = 10, andFys.

Since the initial contour is placed entirely inside the chj¢he balloon force is set tel
to constantly grow the contour capturing the object. Noisyirenment, however, makes it stuck
thus it is unable to further capture the actual object. Th&\Cand RSF consider all the white
pixels as the object. While the RSF is capable in handlingnisity inhomogeneity, the ACWE

cannot distinguish that kind of spatial variation. Considien of local image intensity makes the



Figure 4.10: Performance of several active contour moaelarf ultrasound image.

Table 4.10: Computational cost of the ultrasound image.

Active

Computational Time

Contours

lterations| Time (s) | Average time (s)

GAC
ACWE
RSF
LRAC
LRES

LREK

150 80.37
10 5.11
35 25.36

300 29.99

150 98.49

240 29.90

1.53
0.511
0.72
0.10
0.66
0.12
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Table 4.11: Computational cost of the corpus callosum image

Active Computational Time
Contours Iterations‘ Time (s)‘ Average time (s)
GAC 180 | 549.79 3.05
ACWE 10 41.67 4.17
RSF 25| 186.72 7.47
LRAC 2500 | 689.17 0.28
LRES 670 | 923.96 1.38
LREK 1000 | 305.06 0.31

LRAC, LRES, and LREK act similar to the GAC rather than the AE\Whd RSF. Even though
the iteration numbers is set as much as 300, problem of khaiggture range makes the LRAC'’s
contour unable to evolve further into the lower part of thgeob With extendable search line,
the LRES does not have problem of limited capture range.jlisisconfused with the small area
in the lower part where its intensity is less distinguiskeal®dn the other hand, with an ability of

expandable kernel, our scheme provides more complete segtio@ outcome although its kernel

scale is set to 15 pixels similar to the LRAC.

Figure 4.11: Performance of several active contour moaela €orpus callsoum of an MR brain image.

A magnetic resonance image (MRI) of a corpus callosum paathrfin in Figure 4.11 is
of size550 x 550. For each scheme the parameter are respectively set aggolloe RSF with
o = 41, the LRAC withr = 20 and Fv, the LRES withl; ;5.1 = 20, Al = 3, andr = 10, and
our LREK with d;itia1 = 15, Ad = 5, 7 = 20, andFys.

For the corpus callosum image in Figure 4.11, the initialtoanis placed to the right of
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the corpus callosum. The constant motions set to—1.5 so the contour move outward from
initial contour that is totally inside the object. Howevitris stuck in the middle of the corpus
callosum. The ACWE and RSF tend to segment the whole paredithage instead of the corpus
callosum. The contours of LRAC, LRES and LREK are able to mint@the concave part. Itis
worth to note that by setting the LRAC’s ball radius to 15 & milar with our LREK'’s kernel
scale, the LRAC's contour is stuck. To have larger captungeaits radius is set to 20 pixels. The
adaptive statistics of expandable kernel gives the adgastaf expandable capture ranges so that
with just 15 pixels our model is able to trace a complete comgallosum without getting stuck.
Moreover, it requires less iteration number with 1000 iieres than the LRAC which requires
2500 iterations. It converges faster with only 305.06 sdsdhan computational time of 923.96

seconds required by the LRES.

(@) (b) (c) (d)

Figure 4.12: Performance of several active contour modela feft ventricle of cardiac MR image.

Figure 4.12 contains left ventricle of cardiac MRI (CMRI)tlvsize324 x 324. Parameter
settings used are as given: the RSF with: 17, the LRAC withr = 25 andF\;g, the LRES with
linitial = 30, Al = 5, andr = 20, our LREK withd;;ti. = 30, Ad = 5, 7 = 20, andFys.

Left ventricular segmentation requires segmentation mieggial and endocardium bound-
ary simultaneously and as a result it will form a ring-likgexdi. Initial contour is placed inside
the ring-like object. Withw = —1, the GAC is able to trace most of the epicardial boundary
however it has boundary leakage problem in the weak boundémngn segmenting endocardium,
it moves ignoring the endocardium particularly in some blod weak boundaries and as a result
only a small amount of pixels is left. The ACWE and RSF capéalirbrighter intensity regions as

the object. The RSF, on the other hand, captures more ityatetiails and handle non-uniform
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Table 4.12: Computational cost of the ventricle image.

Active Computational Time
Contours Iterations‘ Time (s)‘ Average time (s)
GAC 900 | 2047.82 2.28
ACWE 10 9.01 0.90
RSF 30 25.89 0.86
LRAC 4000 | 1071.63 0.26
LRES 750 | 2208.45 2.94
LREK 1700 | 724.93 0.42

textures while the ACWE ignores some details and its spiatiahsity variation. Before radius of
the LRAC’s ball is set to 25; = 30 is used. However, the LRAC’s contour shrink and disappear
immediately. Withr = 25, it evolves capturing the ring-like object. However, aftereaches
3000 iterations the contour stops at two intersections. d@jireg number of iterations to 4000,

it is no longer evolve. This is perhaps due to the distancedst the contour as the center of
fixed-radius ball and the boundary may be too far from theusdHence, the LRAC’s ball is
unable to include appropriate statistics as a force to dhgecontour to the real boundary. A a
result, it reaches local minima and stops even though we labves for 1000 iterations more.
The LRES seems confused which direction to guide the contostead of tracing the ring-like
object, it just evolves in the epicardial boundary. Nevelgls, our proposed scheme has enough
capture range to detect both epicardial and endocardiumltsineously. It has no problem to

trace concave shape object of the ring-like object. In &dibur LREK requires 1700 iterations

and 2208.45 seconds to arrive at the intended boundary.

Figure 4.13: Performance of several active contour modela fiver tumor of a CT scan image.

Figure 4.13is a liver tumor of a computed tomography (CThscwge with siz&15 x 368

pixels. The parameters used for this image are as follovesR®F witho = 23, the LRAC with
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Table 4.13: Computational cost of the liver tumor image.

Active Computational Time
Contours Iterations‘ Time (s)‘ Average time (s)
GAC 250 | 492.23 1.96
ACWE 10 11.67 1.17
RSF 30 41.71 0.31
LRAC 4000 | 1014.72 0.25
LRES 620 | 2514.90 4.06
LREK 1350 | 580.55 0.43

r = 29 and Fys, the LRES withl; i = 40, Al = 5, andr = 15, our LREK with d;pitia1 = 29,
Ad =5, 7 =10, andFys.

In Figure 4.13, liver region as well as several tumor areasdasirable as segmentation
outcome. By settingg = —3 and initial contour totally inside the object, high speedttu#
balloon force does not make the GAC's contour stuck. Herdsg,able to evolve capturing the
liver region although it does not include the tumor and naissifies some small liver region.
Again, these two global regional models tend to segmentalgie region with more organs while
the liver and tumors are the only intended segmentatiorcabj#hile the ACWE includes less
object details of the image, the RSF captures more details asi the tumors. Perhaps this is as
an advantage of convolving small kernel into all image afide&e LRAC’s contour gets stuck by
the tumors thus cannot move into lower part of the liver ragi®he LRES traces all the liver
region and half of small tumor area but still has some spiliraarea on the liver boundary. Its
average computational time reaches 4.06 seconds for eaatianh where its total computational
time costs 2514.90 seconds. Nonetheless, our LREK'’s coatalves with a large capture range
from its initial contour until reaching the boundary of tivel region while excluding some tumor
regions. It demonstrates an ability of our LREK in splittiagd merging in order to detect liver
boundary and two tumors simultaneously where this is asdhardage of level set formulation in
handling topological changes. In addition, our LREK is meffective and efficient in segmenting
the image which requires less iteration number than the LBACtakes less computational time

compared to the LRES while gives more complete segmentediarit.

An X-ray hand image in Figure 4.14 has siZ& x 180. Following parameter are used:
the RSF witho = 17, the LRAC withr = 15 and Fy, the LRES withl; ;5.0 = 40, Al = 5, and
7 = 15, the LREK withd;ti.1 = 15, Ad = 5, 7 = 10, andFy.

Figure 4.14 depicts performance of each model in segmettimdpone of X-ray image.

Placement of initial contour both inside and outside thecdfijnakes the GAC'’s contour stuck in
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Figure 4.14: Performance of several active contour modela bone part of an X-ray hand image.

Table 4.14: Computational cost of the bone image.

(©)

Active

Computational Time

Contours

lterations | Time (s) | Average time (s)

GAC
ACWE
RSF
LRAC
LRES

LREK

100

10
100
660
300
660

74.30
4.39
45.76
112.35
658.35
188.59

0.74
0.44
0.45
0.17
2.19
0.29
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the wrong image gradient. Hence, it cannot evolve and aatitiee actual boundary. The ACWE
and RSF almost traces whole bone part but the ACWE includeas wiothe skin region than
the RSF. The LRAC'’s contour cannot move into finger area wigaonsidered as the concave
shape and lower part of the hand perhaps due to its limitetiapange. The LRES, which is
able to handle concave part, can move into some fingers areaevdr, local statistics on the
search line may not enough to describe the local image ityefihis lack of information, hence,
makes the search line does not produce any force to pull th@aotowards real boundary. It is
confused then unable to move into the lower part of the hanelarivhile, our method provides
segmentation of the whole bone and completely excludesktheart. It has a large capture range
to reach concave boundary of the fingers and lower part ofahd .hWe also notice that LREK’s

contour is able to split excluding the skin part on the lowet pf the hand.

(@ (b) (©)

Figure 4.15: Performance of several active contour modela §kin part of an X-ray hand image.

Figure 4.15 contains the same image in Figure 4.14 withZize< 180 pixels. In the first
row, there are original image, segmentation result of th€€@Ad RSF, respectively. The initial,
final contour for the LRAC and LREK are respectively plottadhe second row. The following
parameter are used for each model: the GAC witk 3, the RSF witho = 101, the LRAC with
r = 100 and Fcy, our LREK with d;pitia1 = 100, Ad = 5, 7 = 10, andFgy.

In Figure 4.15, we show segmentation outcomes on the skirinstead of the bone. Es-
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Table 4.15: Computational cost of the skin image.

Active Computational Time
Contours Iterations‘ Time (s)‘ Average time (S)
GAC 125 180.02 1.44
RSF 20 48.94 2.45
LRAC 330 351.11 1.06
LREK 450 | 64517.94 143.37

pecially for the GAC, we put the initial contour entirely sigte of the object and use high speed
balloon force withv = 3. The GAC detects most of the skin part while in the weak edgessises
over the actual boundary. Even though we set large valuehfosigma of the RSF’'s Gaussian
kernel and radius of the LRAC's ball, their results are agjmately the same with the ACWE
in Figure 4.14. In our formulation, we can show the role of @&ussian function to segment
the blur or smooth boundary. By setting large value of sigma,Gaussian LREK provides most
of the skin part. It is worth to note that in the RSF we could fed the smoothness effect of
the Gaussian property in both choice of small or large schtbeokernel. In addition, the RSF
obtains accurate segmentation outcome with small scatessiyjVith sufficiently large scale, it is
insensitive to the initial condition similar to the globalgion-based model. However, it acts like

the global region-based model and ignores some objeclsleidie captured.

In summary, all these experiments verify that our LREK pdes more desirable and effi-
cient segmentation outcomes. Scalable local regionatrimdtion enables our method to quickly
converge into desired objects with noises, non-uniforng la@terogeneous textures. Adaptive
local statistics of expandable kernel allows our LREK tocteany deep concavity with a large
capture range. Our Gaussian LREK has an ability to segmerstirtfooth or blur boundary. Level

set formulation makes our LREK topologically flexible.

4.2 Directional LREK (DLREK)

In this section, we test performance of the DLREK on real sa#frmedical images. They
are two MR images of brain tumor, cardiac MR image of left vietd of the heart, and ultrasound
image. The original image is shown in the first column of e&sited image. The initial contour
and the final contour on the positive-edge object and thetivegedge object are plotted on the
second, third, and fourth column of each tested images inréfg4.16-4.19, respectively. All of
the tested images contain two objects of different edg@egy They are the positive-edge object
which are considered as a darker object lies on a brightéegpaond and the negative one as a

brighter object on a darker background.
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(b)
Figure 4.16: Performance of our DLREK for an MR brain tumoage

The image in Figure 4.16 has two objects of interest to beucagt They are a lateral
ventricle as the positive-edge object and a bright spot ofreot as the negative-edge object. We
see that our model segments two desirable objects acgurdiieé contour evolves then finally
converges in both objects using the same initial contouitipas By settings = +1, the lateral
ventricle as the positive-edge object can be correctly seded as in Figure 4.16 2(c). On the
other hand, we just sét = —1 to obtain an accurate segmentation outcome of the brighta$po

the tumor (see column d).

(@) (b)
Figure 4.17: Performance of our DLREK for a CMR left ventiaihage

(d)

Figure 4.17 contains the same image in Figure 4.12. Theréwarecandidates of left
ventricular segmentation which consist of epicardial lmarmg as positive-edge object and en-
docardial boundary as negative-edge object. By sefting +1 and = —1, postive-edge of
epicardial boundary and negative-edge of endocardiumdanyrare respectively segmented by
our DLREK. As a special help to drive the contour away from esited local image intensity,
w is chosen to be-1 so that the local balloon force gives outward direction tptoee epicardial
boundary in Figure 4.17 (c) and = +1 is to allows the contour locally shrink in the undesired
image area. After it has reached the intended object, tloe foill be switched back to the SLR

force.

Figure 4.10 contains an ultrasound image of a small babyid¢rirhage, we want to capture

the positive-edge object while ignoring small baby whiclihis negative-edge object and vice
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(a) (b) (d)

Figure 4.18: Performance of our DLREK for an ultrasound imafja small baby

versa. To detect positive-edge objeétandw are set to ber1 and—1, respectively. Since the
initial contour is put inside the positive-edge object= —1 is a special help to grow the contour
detecting the object. Once the contour is near the desikahladary, the force is switched back
to the SLR force. Otherwise, the balloon force will make tbatour further grow ignoring the
boundary. Next, the parameters are chosen t6 be —1 andw = +1. w = +1 is selected so
that it gives an inward direction for balloon force to capttiie small baby as the negative-edge

object.

(a) (b) (©) (d)
Figure 4.19: Performance of our DLREK for an MR brain tumoage

In Figure 4.19, there are two segmentation candidates thatva spots of tumors and the
right part of the brain. The tumors are considered as tworagpaositive-edge objects. The
right part of the brain that has two separate tumors is cens@las the negative-edge object. A
contour tries to segment the tumors only and the brain witltweitumors. As the advantage of
level set formulation, an initial contour may split caphgitwo separate tumors accurately as two
positive-edge objects (see column c). The fourth columrigiife 4.19(d) demonstrates an ability
of our DLREK in splitting and merging to detect the right paiithe brain but exclude the tumors
instead. The right part of the brain can be captured conaélgievithout any leaking into the
tumors or the left part of the brain. Our model has a largeway area to evolve from its initial

contour until finally reach concave shape of the boundargi@brain.
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In addition, all these experiments validate that the DLREKdpable in tracing two edge’s
type objects conveniently without getting stuck by any ngixels. The scalable kernel samples
intensity statistics with an appropriate scale thus deeasighs role of small noisy pixels by taking

averages of intensity profiles within the kernel.
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CONCLUSION

5.1 ThesisSummary

A new active contour model called the LREK that utilizes loeion-scalable statistics
on expandable kernels has been presented in this thesiscalable local regional information
is intensity profile of the pixels on a set of expandable kisriteat centered and distributed at
the contour. Each kernel is designed to be of adaptive scatleas it can navigate the contour
front toward the object boundary with expandable captungea The intensity statistics on a set
of kernels are utilized to produce local region-scalabledp enabling the contour to segment
image with intensity inhomogeneities and heterogeneodsres. We compare our LREK over
other active contour schemes. Our scheme is less sengitiveige and initial condition than
the edge-based models. When compared to such global modelsjethod is more robust to
noise than the ACWE and RSF. Although the RSF model uses Gauszrnel, we cannot find
the effect of Gaussian function in small or large sigma valda the other hand, our Gaussian
LREK is capable in tracing the smooth boundary, hence, simie role of Gaussian function
in the segmented image. From the experiments, the advathger method over the LRAC is
an ability to reach concave shape with a large range of capkurthermore, when compared to
local region-based active contour that uses extendabietsiae such as the LRES, our method
provides more effective and efficient segmentation restilte long thin LRES’s search line may
not reliably sample the local intensity, hence, confusetilarable to attract the contour to the true
boundary. Moreover, unscalable search line makes the LRE®) lcomputationally expensive.
On the other hand, we found that our model converges to teadeid boundary quickly. In addi-
tion, to choose objects of desirable edge’s type, we alssepte directional local region-scalable
active contour using expandable kernel (DLREK). While magte of intensity difference is used
in local adaptation statistics in order to detect objeabarmary, sign of the difference is utilized
to automatically switch appropriate force depending omallimage edge’s type. With directional
property, one initial contour placement results in two segtation outcomes of desirable edge’s
type. Hence, not only is our model capable in handling imagiés noises, non-uniform, and
heterogeneous textures with quick convergence, it alsa terge capture range to trace concave
shape object. In addition, formulation of our method in #neel set enables our active contour to

naturally split and merge.
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5.2 Discussion

5.2.1 Global versusL ocal Models

Such global models have one energy function that tryinggonest the object by approach-
ing whole image intensity with its statistical propertigdhat is different to the local model where
each of the energy function is defined on many local areailoliséd on the contour. The energy
function of global models should have one global minima e/lgibch of the energy function of

the local models should have one local minima.

5.2.2 Effect of Localization to | nitialization

The global region descriptor may have more flexibility intialization than the one with
local constraint. This flexible initialization, howeveragnnot have choices to get different object
of segmentation candidate by placing different initial dition. Wherever initial contour is put,
it will produce similar segmentation outcome. In fact, savenages may have complex appear-
ance where exist several objects. From several objectsitiaypar object may be desirable as
segmentation outcome. Such global models have tendenatéatdall object no matter where
initial condition is put. It may not be able to choose patacwbject of interest from several
object existing on the image. Localization property of thepmsed method, on the other hand,
can be a desirable property. As a result of the localizatiois, desirable property, even though
requires clever initialization, is able not only to separatbjects from its background but also from

undesired other objects according to initial contour ptaeet.

5.2.3 Relation between Active Contour Models

Unlike the local region-scalable models, the local regiased models are unable to change
the scale of the local region. These models just considecal Intensity region and ignore the
rest of image features, hence, with extremely small scalegk¢hey have close relation with the

edge based or local region-based models which consideraamhall edge pixels.

We also see that global region-scalable models has clagereto the global region-based
models where the scalable region of the kernel has a degrizeenfom to choose its scale to
be small to approaches local intensity details or to be lésgeaeet behaviour of global region-
based models. On the other hand, the local region-scalaidelsillustrate the connection of the
relation between the edge-based or local region-basedlmadd global region-based models.
One could see that behaviour of the LRAC is controlled by tkedfiradius ball while the width of

the edge pixels of the edge-based models are controlledybmagbarameter of the edge indicator
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where mostly is chosen to bé. Considering the ball radius is eitheor oo, with the radius of
1 then it acts similar to the edge-based or the local regi@ethanodels while with the radius of
oo the ball will include all intensity statistics all over thmage, hence, acts similar to the global

region-based models.

Hence, in our proposed model we let the relation between addeegion-based models
acts in the evolution process automatically. The kernehagp itself from its initial scale to the
optimum scale according to the local image feature so theakénnel finds its optimum scale to
detect the boundaries. In our formulation, from extremehal initial scale of the kernel, i.e.,
d = 1, the adaptive local statistics can reach the maximum scalarge as possiblel (= o)
which covers all image intensity. With= 1, our formulation of DLREK with additional balloon
force is similar to the GAC with additional balloon force todhe GAC considers only small
pixels of image gradient where the width is determinedsbyarameter of Gaussian function.
With d = 1, such small kernel only considers intensities for 1 pixelikir to the GAC. Additional
balloon force can be a special help to expand capture ranggcbfsmall kernel while switching

parameter will help to switch it back to SLR force once it\egs at the boundaries.
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APPENDIX A

DERIVATION OF THE EQUATION

For convenience, we restate here our total energy function

E(6) = - /Q (5.(6(¥)) Bser — vIVH.(6(y))) dy (A1)

Since H/(¢) = d.(¢), we getH.(¢) = 6.(¢)|V¢|. Thus, by substitutinggs;,r with (3.6), E

becomes

E(¢) = —/Q <5E(¢(Y))/QK(X —y) - FI(x),¢(x)) dx — V56(¢(Y))!V¢(Y)\> dy (A.2)

To obtain the optimad, the first variation the Euler-Lagrange equations for tivellset
must be taken. To compute the variation®fwe consider replacing with ¢ + £y where
1 represents a tiny change perpendiculaptweighted by a small number. We change the

parameters by writind”(¢) asE (¢ + )

E(é+€0) = ( / 5.0ty 4 €v) /Q K(x—y) F(I(x), 6(x) + &) dxdy

= /Q () + EDIV(B(y) + wndy) (A3)

SinceF is minimized byg, the partial derivative of this energy is derived with redge &,

%gw) = 0, evaluated af = 0 to represent a small differential of movement.
(¢+£¢ _ </5 /1/1Kx 2 () ;b( ) ixdy (A.4)
+ w/éé o(y) /Kx—y - F (I(x), ¢(x)) dxdy
Q Q

/ IV (o(y) + &)
o /Q (5€(¢<y>)|v¢<y)|¢+5E<¢<y>> 3¢ >dy>

The last partial derivative of the third term in (A.4) is egpsed by plugging if = 0.

AV (o) +€0)| 1 o ((06ly)  00N* . (96ly) . 00
¢ NG e 5(( 59 ) (%5 ))
L (200 pur v Tolyve

- 2|V (o(y)| dx Oz dy Jy Vo(y)l

On the zero level set function,(¢(y)) in the third term of (A.4) evaluates to zero. So, the
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contour movement is not affected and this term can be igndgglugging in the term in (A.5)

into the last partial derivative of the first term in (A.4) aintegrating it by parts, we obtain

LI O__(//M o x T
SEIVHEI + A (6() ,Vﬂb()v)‘w)dy)
Lo
. ( BONIVo e — dv (560 e ) o) dy )
- g

whereri denotes the exterior normal to the boundafy. We can write

aiv (3.0 2o ) = 2 (5oL )+§y (80020

Vo(y)l Vo(y)| Vo(y)l
“ 5 P2 (y) o(y)
PG O <V o)
- ¢2( 0 qby
L SV E0y)| + Bel(b(y))di (W §)| A7)

By plugging in (A.7) to the first term of (A.6)

P 5 (BN (x — y) x ZLELO) 4, (A8)
(Goe) ==L, Bl
o (), o

According to the chain rule, the partial derivative in (A& be written by simultaneously plug-
ging in¢ = 0 thus achieving%g For all v, this partial derivative must be zero, then, we have

= 0. The Cauchy-Schwartz inequality can be used to show thenaptirection to movep.

8<Z>
Hence, the gradient flow equation is expressed as
% _ (x— < ,<z><>>x , a7
_ . aF( <x>,¢< D g i [ Y0)
- (/K N ET <|V¢<y>|>>
= 0c(&(y)) (FsLr + Fsm) (A.9)

with initial condition ¢(y,0) = ¢o(y), (y) € R and boundary conditioAl22 22 = 0 on 52,

wherea denotes the normal derivative ¢fat the boundary.
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