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CHAPTER |

INTRODUCTION

1.1 Problem lIdentification

Currently, there are many alternative learning algorithms for neural networks used in
several applications. All learning algorithmsstill cannot learn anew data set without mixing
with the previously learned dataset. All current training algorithmsrequire both new incom-
ing data and those previously trained data together in order to correctly learn the whole data
set. Therefore, those previoudly trained data cannot be discarded after being learned. Some
storage space must be wasted to keep these previoudly trained data. For this reason, the
neural network cannot learn a new training data set if the old training data set is discarded.
Moreover, many learning algorithms use so many epochsin learning process because of gra-
dient method and optimization techniques. Furthermore, these algorithms consume much
time when the very large data set is learned. Some methods solve these problems by modi-
fying optimization process, but they still use alot of epochs during learning process.

In this dissertation, the problems of learning new data without forgetting the previ-
ously learned data and learning new data from their new classes in only one pass are con-
centrated. In addition, the learning process is not required to access the previously learned
data. To overcome these problems, anew neural network with incremental learning capacity
and the new incremental learning algorithm that learn a data set in only one pass are devel-
oped. This developed learning algorithm is capable of learning new information without
forgetting the previously learned information. Furthermore, this learning algorithm is able
to accommodate new classes that may accompany with new data without forgetting the pre-
viously learned data and the redundant neuronsin the neural network can be reduced during

learning process.



1.2 Problem Formulation

L earning new datawithout accessing the previously learned dataand learning new data
without forgetting the previously learned data are the challenge problem in neural network
research. The learning algorithm with both characteristics is called incremental learning.
However, it is more useful if this algorithm can learn new data in only one pass so that the
large data set can be learned. In this dissertation, these problems are concentrated. The

problem statements in this dissertation can be formalized as:

1. How can the neural network learn new data without forgetting the previously learned

data and this new data are discarded after being learned?

2. How can the neural network learn data set using in only one pass so that the learning

time can be O(n), where n is the number of data?

With these problems, the new neural network architecture and new learning algorithm should

be created to overcome these problems.

1.3 Research Objective

The main objectives of this dissertation prospectus are:

1. To develop a new incremental learning algorithm to learn a data set in only one pass

and the data are discarded after being learned

2. To develop a new neural network architecture with incremental learning capability

that can learn new information without using the previously learned data.

1.4 Scope of Work

In this dissertation, the proposed learning process must be coped with the following

capabilities:

1. It should be able to learn new data.



2. It should not require accession of the previously learned data.

3. It should preserve the previously learned data after learning new data.

1.5 Research Advantages

It is expected that the new learning algorithm has the following advantages.
1. Thisalgorithm can be used to solve classification problems.
2. Thisagorithm can learn a data set in only one pass.
3. Thisalgorithm can learn new data without using the previously learned data.

4. A storage space must not be wasted to keep the training data for further learning.

1.6 Outline of the Thesis

The remaining contents are organized as follows. Chapter |1 reviews the related lit-
eratures. Chapter 11l gives a review of some background knowledge. The new versatile
elliptic basis function neural network and learning algorithm are proposed in Chapter IV.

The experimental results are given in Chapter V. Chapter VI concludes the research.



CHAPTER 11

LITERATURE REVIEW

A radia basis function neural networks is widely applied to severa industrial prob-
lems such as face recognition, pattern recognition [1], [3], [6], pattern classification [2],
time series prediction [4], [7] , and signal processing [5]. The standard RBF neural net-
work consists of three layers. These are an input layer, a hidden layer, and an output layer.
The learning algorithm of RBF neural network concerns the selection of the hidden layer
neuron centers and estimation of the weights connecting the hidden layer and the output
layers. Although the new learning algorithms [8], [9] are proposed continuously, most of
the existing learning algorithms for RBF neural networks still use the Gaussian function as
abasisfunction for adjusting the weight that is between a hidden unit to an output unit. The
performance of this function depends on the selection of the center [10]. Some methods
are primarily used for selecting the center such as k-mean, self-organizing map (SOM), and
Gaussian mixture model. For k-mean and SOM, the number of centers cannot be predicted
in advance. For the Gaussian mixture model, it istoo difficult to compute model parameters.
Such shortcomings directly affect the performance improvement.

An éelliptical basis function neural network (EBF) [11] is an extension of a radial
basis function neural network (RBF). The distinction between the elliptical basis function
neural network and the radial basis function neural network is the covariance matrix. The
radial basis function is the Gaussian function with diagonal covariance matrix as a basis
function while the éliptical basis function is the Gaussian function with full covariance
matrices. Although the élliptical basis function is widely applied to many problems [12],
[13], [11], the basis function is still the Gaussian function with full covariance matrix. The
parameters of this basis function are difficult to compute. Man-Wai Mak [11] proposed the
expectation-maximization (EM) algorithm to estimate these parameters. This EM model is
based on the gradient method which requires too many epochs to estimate the parameters.
Jing Luo [14] applied EBF neura network to fault diagnosis of power transformer, but the



ellipsoidal function was used instead of the Gaussian function. Although this EBF can
partition the input space, this ellipsoidal function cannot rotate to cover the data like the
Gaussian function. In addition, the structure of both EBF and RBF is fixed during training
and is not appropriate for the sequential learning.

Platt [17] proposed the sequential |earning algorithm for RBF neural network inwhich
hidden neurons are added sequentially based on the novelty of the new data. This neural
network is called Resource Allocation Network (RAN). Kadirkamanathan and Niranjan [ 18]
enhanced RAN using an extended Kalman filter (EKF) for updating the network parameters
instead of least-mean square (LMS) algorithm, known as a RAN Extended Kalman Filter
(RANEKF). The drawback of RAN and RANEKF is that the hidden neurons can grow
up but they are never removed. Yingwei [19] proposed the improvement of RANEKF by
introducing a pruning strategy called Minimal Resource Allocating Network (MRAN). Li
Yan [20] proposed an improved version of the MRAN algorithm called Extended-MRAN
(EMRAN) agorithm in which the parameters that are related to the selected winner neurons
are updated by the EKF algorithm. The disadvantage of these proposed neural networks
is that there are a lot of parameters chosen by trial and error. Although these sequential
learning algorithms are able to learn new information, they are unable to accommodate new
classes that may accompany new data.

Carpenter and Grossberg [21] propose a neural network architecture for incremental
supervised learning of analog multidimensional maps called fuzzy ARTMAP. The Fuzzy
ART neural network composed of two fuzzy Adaptive Resonance Theory (ART) modules
denoted ARTa and ARTb. Each of the fuzzy ART modules consists of three neural layers:
preprocessing FO; matching F1, and competitive F2. These two fuzzy ART modules are
interconnected by map field, Fab, which forms an association between ARTa and ARTb.
The inputs are presented at the ARTa module while the corresponding outputs are presented
at the ARTb module. The fuzzy ARTa module performs clustering in the input space of
data while the fuzzy ARTb performs clustering in the output space of the target data. The
map field determines whether the mapping between the inputs and the outputsis the correct
one. The drawback of fuzzy ARTMAP neural network is that once a node is created in the
network, the node can never be removed. For this reason, it may suffer from the greedy

insertion strategy that leads to a complex network structure. Robi Polikar [22] proposed an



algorithm for incremental training of neural network pattern classifierscalled Learn++. The
proposed algorithm enables supervised neural networks such as the multilayer perceptron
(MLP) to accommodate new data including examples that correspond to previously unseen
classes. In addition, the algorithm does not require access to previously used data during
subsequent incremental learning sessionsand it does not forget previous learned knowledge.
Learn++ uses ensemble of classifiers by generating multiple hypotheses using training data
sampled according to carefully tailored distributions. The outputs of the resulting classifiers
are combined using aweighted mgjority voting procedure. However, Learn++ suffers from
the inherent out-voting problem when asked to learn new classes, causing it to generate
an unnecessarily large number of classifiers. Mu-Chun Su [23] proposed a new approach to
incrementally construct aneural network that is capable of |earning new information without
forgetting old knowledge. The proposed neural network, called Hyper-Spherical ARTMAP
network (HSSARTMAP network), is a synthesis of an RBF-network-like module and an
ART-like module. The HSSARTMAP network is trained via a training algorithm similar to
the training algorithm for the fuzzy ARTMAP system.

In this dissertation, a very fast training algorithmto learn adata set in only one passis
proposed. Once adatum islearned, it isdiscarded. Thereisno need to use this datum again
for the future learning with new incoming data. The structure of proposed neural network
consists of three layers like RBF and EBF but the structure is flexible and can be adjusted

during the training process.



CHAPTER IlI

THEORETICAL BACKGROUND

In this dissertation, the idea of radial basis function in the interpolation problem is
applied to develop a new elliptic basis function. In addition, the idea of the interpolation
problem is also applied to develop radia basis function neural network. However, in this
dissertation, theideaof radial basisfunction neural network isapplied to devel op anew neu-
ral network architecture. Furthermore, some knowledge of geometrical and some knowledge
of vector space such as orthonormal basis are combined in order to develop the new elliptic
basis function that can be translated and rotated to cover the new data in high dimensional
space. The principal component analysis is also applied to approximate the orthonormal
basisfor a data space. Therefore, the details of these theoretical backgrounds are described

in the following sections.

3.1 Interpolation Problem

Interpolation problem is currently one of the principal fields of research in numerical
analysis. There are several approaches for solving the interpolation problem including a
radial basis function technique. Radial basis functions were first applied by Powell to solve
thisinterpolation problem. The interpolation problem can be stated as follows.

Given a set of N different point {x;, € R™|k = 1,2, ..., N} and a corresponding set
of N real numbers {d, € R|k = 1,2,..., N}, find afunction F' : R™ — R that satisfies the

interpolation codition:
F(Xk) =d,, k=12 ..,N (31)

The radial-basis functions technique consists of choosing a function F that has the

following form (Powell, 1988):

sz (% = ] (32)



where w; isarea coefficient, {o (|[x — x;||), i=1,2,..., N} isaset of N random (usually
nonlinear) functions, known as radial basis functions, and ||-|| represents a norm that is
generally Euclidean. The known data vectors, x; € R™,i = 1,2, ..., N, are the centers of
radial basis functions.

Substituting the interpolation conditions of Equation (3.1) into Equation (3.2) yield,

N
> wio (1% = xill) = di, k=1,2,...N (3.3)
=1

The system of equations (3.3) can be rewritten in amatrix form as follows:

Y11 P2 o PIN w1y dy
w d
<P.21 <P.22 | QPQ.N .2 _ .2 (3.4)
_<PN1 YN QONN_ _wN_ _dN_
where
Let
d = [di, do . dn]"
W= fwy, wawy]
¢ = [‘Pij]NxN
Equation (3.4) is then rewritten compactly as follows.
dw =d (3.6)

Assuming that ¢ is nonsingular, we can solve Equation (3.6) for the weight vector w

asfollows.
w = o !x (3.7)

Micchelli’s Theorem Let {x;}, be aset of distinct pointsin R™. Then the N-by-N inter-
polation matrix ¢, whose ji-th elementis v ;; = ¢ (||X; — X;|), isnonsingular.
Thereisalarge class of radial-basis functions that is covered by Micchelli’s theorem.

These classes of functions studied in the RBF network include the following functions.



1. Gaussian function:
7'2
o(r)=exp|—==],0>0; z,ceR
202
2. Multiquadrics:

o(r) = (xz—i—cz)m, ¢c>0;z,ceR

3. Inverse Multiquadrics:

3.2 Radial Basis Function Networks

(3.8)

(3.9)

(3.10)

From Equation (3.1) through (3.7), aradial basis function (RBF) network can be con-

structed in form of alayered structure asillustrated in Figure 3.1. The RBF network consists

of three layers detailed as follows.

1. Input layer consists of m source nodes where m is the dimension of the input vector.

2. Hidden layer consists of the computational units known as hidden neurons. The num-

ber of hidden neurons in the hidden layer is equal to the number of the training sam-
ples. Each hidden neurons in the hidden layer is mathematically described by radial

basis function as follows.

v () =elx=xl), 7=12..N

The data vector x; is the center of radial basis function. The vector X is the input

signal which isfed into the input layer.

. Output layer consists of asingle computational unit known as output neuron. The out-

put neuron in the output layer is mathematically described by the following function,

F(x) = ZWP (Ix =)

where ¢(-) istheradial basisfunction and NV is the number of training data.



Input
vector 5
X

10

Output
y = F(x)

Wy

Input layer Hidden layer Output layer

Figure 3.1 Structure of RBF network.

The popular radial basis function used in RBF networks is a Gaussian function defined as

Pj

(X) = wx=x)
1

= exp (——2HX - XJ-HZ) ., J=12,..N (3.11)
20j

where o; isameasure of the width of the jth Gaussian function with center x;.

3.3 Practical Modifications to the RBF Network

The design of RBF network illustrated in Figure 3.1 via interpolation theory is not

practical in several applications when the number of training data is very large. Since the

number of hidden neurons in the RBF network of Figure 3.1 is equa to the number of

the training data, the computational cost of the network is very expensive. To reduce the

computational cost of the network, the interpolation problem with K basis functions which

islessthan V data pointsis considered instead. This interpolation problem can be done by
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modifying Equation (3.1) asfollows.

K

F(x) =Y wip (||x — xi||) (3.12)

i=1

The solution for the weight vector w in Equation (3.7) can be computed as follows.
w = (o7®) o’d
= &*d (3.13)

The matrix ®* in Equation (3.13) is the pseudo inverse of matrix ® defined as,

1

ot = (o7®) " (3.14)

From Equation (3.12) through Equation (3.14), the practical RBF network can be con-
structed asillustrated in Figure 3.2.

vestor— Output
X T y=FX)

Input layer Hidden layer Output layer
of sizem of size K<N of size one

Figure 3.2 Structure of a practical RBF network.

The structure of this RBF network consists of three layers, an input layer, a hidden

layer, and an output layer. The RBF network receives the input from the input layer and
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transfers this input to the hidden layer. There is not the synaptic weight between the input
layer and hidden layer. The hidden neuron receives the input vector from the input layer,
and calculates the Euclidean distance between the center of radial basis function and the
input vector of the network. Subsequently, the result is passed to the radial basis function.
Therefore, the hidden layer performs a nonlinear transformation and maps the input space
onto a new space call feature space. The output layer performs a linear combiner on this
new space as follows.

K

F(x) = wie([x—x) (3.15)

i=1

3.4 Principal Components Analysis

The principal component analysis (PCA) is a statistical method applied primarily
to transform the input data space into a new lower dimensional space. Let X be anh m-
dimensional random vector. The mean of random vector X is assumed to be zero. This can
be written as:
E(X) =0

where [E is the statistical expectation operator. Let g be a unit vector, also of dimension m,
onto which the vector X isto be projected. This projection is defined by the inner product

of the vectors X and q as follows.
A=X'qg=0g"X (3.16)
subject to the constraint
lall = (q"a)"* =1 (3.17)

The projection A isarandom variable with mean and variance related to the statistics
of the random variable X. From the assumption that the random vector X has zero mean, it

implies that the random vector A has zero mean too. The variance of A can be written as
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follows.

= g'Rq (3.18)

The m-by-m matrix R isthe correlation matrix of the random vector X, formally defined as

the expectation of the outer product of the vector X with itself asfollows.
R = E[XX"] (3.19)
From Equation (3.18), the variance o2 of the projection A is a function of the unit vector g
as shown in the following equation.
T(g) = o
= g’Rq (3.20)

where ¥ (q) isavariance probe.

Eigenstructure of Principal Components Analysis

The next problem is how to find the unit vectors g along which ¥(q) has extremal values,
subject to a constraint on the Euclidean norm of g. To overcome this problem, the vector
q is assumed to be a unit vector such that the variance probe ¥ (q) has an extremal value.

Therefore, for any small perturbation g of unit vector q, it is seen that
¥(q + dq) = ¥(q) (321)
From the definition of the variance probe given in Equation (3.20), it can be written as

¥(g+0q) = (q-+0a)"R(g+dq)
= d"Rqg+2(59)"Rq + (69)"Riq
The second-order term (6q)7 Rdqg can be ignored because its value is very mall, and then

obtain

U(q+dq) = q'Rg+2(60)"Rq
= ¥(q) +2(69)"Rq (3.22)
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Substituting Equation (3.21) in (3.22) yields
(09)"Rq =0 (3.23)

The perturbations are performed under the restriction that the Euclidean norm of the

perturbed vector q + g remains equal to unity. That is
la+dqf =1

or equivalently,
(a+4da)"(q+dq) =1

Using Equation (3.17), it can be written as
(09)"q =0 (3.24)

This means that the perturbations g must be orthogonal to g, and therefore only a
change in the direction of q is permitted.
Scaling Equation (3.24) with —\ and add to Equation (3.23) yields

(60)"Rg — A(69)"q =0
or equivalently,
(6a)"(Rg—Aq) =0 (3.25)
From Equation (3.25), it is sufficient to have
Rg = Aq (3.26)

Thisisthe equation that governs the unit vectors g for which the variance probe ¥ (q)
has extremal values. The Equation (3.26) is known as the eigenvalue problem, commonly
found in linear agebra. The value of ) is called the eigenvalue of the correlation matrix
R and the associated value of q is called the eigenvector. Let the eigenvalues of the m-
by-m matrix R be denoted by Aq, A, ..., \,, and the associated elgenvectors be denoted by

dy, s, .-+, d,,, respectively. Thus, for j = 1,2, ..., m, it can be written as

Rq; = A;q; (3.27)
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L et the corresponding eigenvalues be arranged in decreasing order:
AM>A> >N > 0>\, (3.28)
L et the associated eigenvectors be constructed as an m-by-m matrix:
Q=100 -0, 0y (3.29)
The set of m equations of Equation (3.27) can be combined into asingle equation asfollows.
RQ = QA (3.30)
where A isadiagonal matrix defined as follows.
A = diag[hi, Moy ooy gy ooy A (3.31)

The matrix Q is an orthogonal matrix that satisfies the conditions of orthogonality:

1, j=1
a7, = { > (332)
0, j#d
Equivalently, it can be written as
QQ=1

It can be deduced that the inverse of matrix Q is equal to its transpose as follows.

Q' =Q7" (3:33)

This means that the Equation (3.30) can be rewritten in aform of the orthogonal similarity

transfor mation:
QTRQ = A (3.34)

or in expanded form,

N, k=]

q/Rg, =< (3.35)
0, k#J

From Equation (3.20) and (3.35), it implies that the variance probes and eigenvalues are

indeed equal, as shown by
V(g;) =2, j=12,...,m (3.36)

The two important properties that have found from the eigenstructure of principal

components analysis can be summarized as follows.
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e Theeigenvectors of the correlation matrix R pertaining to the zero-mean random vec-
tor X define the unit vectors q;, representing the principal directions along which the

variance probes ¥ (q;) have their extremal values.

e The associated eigenvalues define the extremal values of the variance probes ¥(q;).

3.5 Vector Spaces

In mathematics, avector space isdefined asaset V' that is closed under two algebraic
operations called vector addition and scalar multiplication. These two algebraic opera-
tions must satisfy certain properties. To determine whether a set of objectsis avector space
depends on whether the set is closed under vector addition and scalar multiplication and sat-

isfies certain properties. These properties, the axioms of avector space, are given asfollows.

Definition 3.1: Vector Space

Let V' beaset of elements on which two operations called vector addition and scalar mul-
tiplication are defined. Then V' is said to be a vector space if the following ten properties
are satisfied.

Axioms for Vector Addition:

() IfuandvareinV,thenutvisinV

(1) Fordlu,vinV,u+tv=v+u

(7i7) For dl u, v, winV, u+(v+w) = (v+u)+w

(7v) Thereisauniquevector 0 inV such that 0+u =u+0 =0

(v) ForeachuinV, there existsavector -u such that u+(-u) = (-u)+u =0

Axioms for Scalar Multiplication:

(vi) If kisany scalaranduisinV,then kuisinV/

(vii) k(u+v) = ku+kv

(viii) (k1+ko)u = kyu+tksu

(iz) kyi(kou) = (k1ko)u

(r) lu=u
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The scalarsin Definition 1 may be taken from real numbers. Inthiscase V' isreferred
to as areal vector space. When the scalars are allowed to be complex numbers, it obtains
a complex vector space. Since R? has the properties in Definition 1, it is clear that R? isa
vector space. Moreover, since vectors in R? and R” have these same properties, it can be

concluded that R* and R™ are also vector spaces.

Definition 3.2: Linear Independence
A set of vector {uy, u,,...,u,} is said to be linearly independent if the only constants

satisfy the equation
kquqy + koUy + - - - + ]{?nun =0 (337)

aek, =ky=---=£k, = 0. If the set of vectorsis not linearly independent, then it is said

to be linearly dependent.

InR3, the vector i = [1,0,0]7, j=[0,1,0]", and k = 0,0, 1]7 are linearly independent.
Since the equation ki + ko + ksk = 0, by equality of vectors, it can be concluded that
ki = 0, ks = 0, and ks = 0. Furthermore, any vector in R?® can be written as a linear
combination of the linearly independent vectorsi, j, and k. The set of vectors {i, j, k} forms

abasis for R3.

Definition 3.3: Basisfor a Vector Space
Let's consider a set of vectors B = {uy, Uy, ...,U,} in avector space V. If the set B is
linearly independent and if every vector in V' can be expressed as a linear combination of

these vectors, then B issaid to be a basis for V.

A vector space may have many bases. It ismentioned previously that the set of vectors

{i, ], k} isabasisfor R? but it can be proved that {u, u,, us}, where
up = [1,0,0]",uy = [1,1,0]",us = [1,1,1]"

isalinearly independent set.
Proof Let k;, ko, and k5 be three real numbers such that

E1[1,0,0]7 4 ko[1,1,0]7 + ks[1,1,1]7 =0
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Therefore,

ki+ky+ks = 0

ko+ks = 0

ks = 0
The solutionto thissystemiis, k1 = 0, k; = 0, and k3 = 0. So the set of vectors {u;, Us, U3}

islinearly independent.

Furthermore, every vector a = (a,as, as) can be written as a linear combination
a = c1U; + Uy + c3Us. Therefore, the set of vectors {uy, U,, U3} is another basis for R3.
However, the set of vectors {i, j, k} is referred to as the standard basis for R3. For the

vector space R"”, the standard basis consists of the n vectors
e; =[1,0,0,...,0/", e, =10,1,0,...,0]",...,e, =[0,0,0,...,1]".

If Bisabasisfor avector spaceV, then for every vector v in V' there exists scalars ¢;,
1=1,2,...,nsuchthat

V =ciU; + coUg + - - - + c,Uy,. (338)

Thescalarsc;, i = 1,2, ..., n, inthelinear combination (3.38) are called coordinates of v

relative to the basis B.

Definition 3.4: Dimension of a Vector Space
The number of vectorsin abasis B for a vector space V' is said to be the dimension of the

space.

Every vector in the vector space R™ can be expressed as a linear combination of the

vectorsin the standard basis B = {e;,e,,...,e,}, where

e; =[1,0,0,...,0/", e, =1[0,1,0,...,0]",...,e, =[0,0,0,...,1]".

This standard basis B = {e;,e,,...,e,} isan example of an orthonormal basis, that is,
each e;, wherei = 1,2,...,n, is mutualy orthogonal to one another and is a unit vector,
that is,

ei'ej :O,’L?éjandHeZH :1,i:1,2,...,n.
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Definition 3.5: Orthonormal Basis

Let V' be afinite dimensional vector space with an inner product. A set of basis vectors
{uy,us, ..., u,} for V iscalled an orthonormal basis if

(i) uj-u;=0fori#j

(i) [Ju;] =1forj=1,2,...,n

Theorem 3.1: Coordinates Relative to an Orthonormal Basis
Suppose B = {uy, Uy, ..., U, } isan orthonormal basisfor R™. if v isany vector in R", then
V= (V- U )U; + (V-U)Us 4+ -+ (V- Uy)Uy,. (3.39)

Proof The vector v isin R™ and B is the basis for R™. Thus, there exists real scalars k;,

i=1,2,...,n,suchthat v can expressed as the linear combination
V= kU; +koly + - -+ + k’nun. (340)

The scalar k; are coordinates of v relative to the basis B. These coordinates can be found by

taking the dot product of v with each of the basis vectors:

V-u = (/f1U1+k2U2+"'+ann)'Ui

= kl(ul v Ui) i kQ(UQ 3 UZ') et kn(un . UZ') (341)

Since B isorthonormal, u; - u; = 0 fori # j and u; - u; = ||u;||* = 1. Hence from Equation

(3.41) obtainsk; = (v-u;) fori =1,2,... n.



CHAPTER IV

MATHEMATICAL MODEL AND ALGORITHM

In the previous Chapter, some knowledge background related to radial basis function,
radial basis function neural network, principal component analysis, and orthonormal basis
for a vector space are described in a particular detail. In this Chapter, this knowledge is
applied to develop a new learning algorithm and a new neural network architecture. The
developing details of these new learning algorithm and new neural network architecture are
explained in thefollowing sections. In section 4.1, the detail s of the proposed neural network
architecture are described. Section 4.2 describes how to develop the new ecliptic basis
function that can trandlate and rotate to cover the new data in high dimensional space, and
how to compute the parameters of this new devel oped function such as center, covariance
matrix, and orthonormal basis. In Section 4.3, the details of the proposed |earning algorithm
are described. The main details are how to add a new neuron to the neural network, how to
compute the parameters of this new neuron, how to merge the two redundant neurons into
a new one neuron, and how to compute the merging parameters of this new neuron. The
learning time of this proposed algorithm is aso proved to be O(n) , where n is the number
of the training data. Examples of the proposed learning algorithm areillustrated in order to
simplify the understanding.

4.1 \ersatile Elliptic Basis Function Neural Network

The structure of the versatile elliptic basis function neura network (VEBF neurdl
network) is shown in Figure 4.1. The network consists of an input layer, a hidden layer,
and an output layer. In the input layer, the number of nodes in this layer is equal to the
dimension of the input data space. In the hidden layer, the nodesin this layer are separated
into sub-hidden layers whose number of sub-hidden layersisequal to the number of classes

and all neuronsin the same sub-hidden layer are added to cover the training datain the same
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Input Layer Hidden Layer Output Layer

Sub-hidden Layer

Figure 4.1 Structure of Versatile Elliptic Basis Function neural network.

class as explained in the next section. Furthermore, the nodes in each sub-hidden layer can
be automatically increased during the learning process. In the output layer, the number of
nodes in this layer is equal to the number of classes in the training data set. Moreover,
the nodes in the output layer can be automatically increased to learn a new data from new
unseen classes during the learning process.

Initially, there is no node in the network. The nodes in each layer in the network are
automatically increased depending on some conditions during the learning process. Suppose
that the input layer consists of n nodes and the output layer consists of p nodes. For each
given input vector X = [z, z, ..., 7,7 in R", the output of the k" hidden neuron can be

calculated from the versatile elliptic basis function as follows.

Yi(X) = Zn: (e u) (4.1)

=1
where {uf, u, ..., ut} is the orthonormal basis of the £ hidden neuron and the constant
a¥ isthe i’ semi-axislength of the versatile elliptic basis function of the & hidden neuron.
Thevector ¢, = [y, Cy, ..., C,]T isthe center of the versatile élliptic basis function of the k"

hidden neuron as explained in the next section.
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In the output layer, the output at the ¢'* output neuron is obtained from finding a
minimum value from the hidden neurons in the ¢* sub-hidden layer. The output at the ¢'*

output neuron in the output layer is defined as

Y, (%) = min(g()). g = 1, .. (42)

where v, (X) isthe output at the k" hidden node in the ¢'" sub-hidden layer.

To predict the class |abel of the input vector x, the decision function for predicting the
class label of a new input vector is defined. The value of this decision function is obtained
from the minimum output value among the output neurons generated by a hidden neuron

that is covered by input vector x. The decision function, D(x), is defined as follows.

Dix) = k if k = arg mqin(yq(x)) and y,(x) <0 w5

unknown otherwise
From Equation (4.3), it is clear that the input vector x is predicted to be the k™ class if
there exists a hidden neuron in the k" sub-hidden layer covering the input vector x. If there
is no hidden neuron covering the input vector X, it is predicted to be the unknown class.
Therefore, for any new input vector X, the new input vector can be considered as either k™"
class or unknown class. However, the input vectors in the unknown class may be classified

into the k' class by using only the minimum value from the output layer.

4.2 \ersatile Elliptic Basis Function

An orthonormal basisisa set of vectorswhich form abasisfor avector space. For the

vector space R"” mentioned previoudly, the standard basis consists of the n vectors
e; =[1,0,0,...,0/", e, =1[0,1,0,...,0]",...,e, =[0,0,0,...,1]".

These vectors in the standard basis are mutually orthogonal and are all unit vectors. Thus,
thisstandard basis {e, e, . . ., &, } isthe orthonormal basis. The coordinates of any vectors
inR" arerelative to this standard basis. Therefore, for each vector x = [z, 2o, ..., z,,] INR™
and for anew given orthonormal basis {u;, u,, ..., u, } inR", the coordinate z;,i = 1, ..., n,

of the vector x relative to the new basis or the new axes can be written as follows.

T = XTUZ' (44)
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Considering the hyper-ellipsoidal equation in n-dimensional space, the hyper-ellipsoidal
equation of unrotated and centered at the origin is defined as

X2 X2 2
A%, 1% (4.5)
ay a3 an

where the constant a;,7 = 1, ..., n, isthe i"* semi-axis length of the hyper-ellipsoid. The

simplification of Equation (4.5) can be written as

€; B
; 2 =1 (4.6)
By substituting Equation (4.4) into Equation (4.6) to obtain
"L (xTu;)?
> = =1 (4.7)

P i
where {uy, Uy, ..., U, } isthe orthonormal basis.

From Theorem 3.1, the Equation (4.7) indicates that the coordinates of hyper-ellipsoid
in Equation (4.6) are changed to the new coordinates relative to the new orthonormal basis.
Therefore, if the new orthonormal basisis rotated from the original one, the hyper-ellipsoid
in Equation (4.7) isrotated along with the new orthonormal basis.

From Equation (4.7), the center of the ellipsoidal equationislocated at the origin. This
equation can be generalized by translating the center of the ellipsoidal Equation (4.7) from
the origin to the new center. Suppose X = [x1, 79, ..., 7,7 is a vector whose coordinates
are related to the original axes with the basis {u;, us,...,u,}. If the original axes of the
hyper-ellipsoidal equation are translated from the origin to anew center ¢ = [cy, co, ..., ¢,] 7,

the new coordinates of vector x relative to the basis {u;, u,, ..., u,,} can bewritten as
i = (x—c)u; (4.8)

The hyper-ellipsoidal equation rotated and located at the center ¢ = ¢y, ¢, ..., ¢,]T can be

written as

> -l (4.9)

By substituting Equation (4.8) into Equation (4.9), it can be written as

i ((X_;:ﬂ —1 (4.10)



24

From Equation (4.10), the new élliptic basisfunction, namely, Veersatile Elliptic Basis Func-
tion (VEBF) is defined as shown in the equation below
- X—C TUZ‘ 2

) = w -1 (4.12)

Ik
=1 v

where {uy, U, ..., U, } is the orthonormal basis, the constant a;, i = 1, ..., n, isthe i semi-
axis length of the hyper-ellipsoid, and the vector ¢ = [c;,C,, ..., C,]” is the center of the
hyper-ellipsoid.

In this research, the versatile elliptic basis function (4.11) is applied in the hidden
layer of the newly developed neural network. As previously mentioned, the main purpose
of this research is to develop a new learning algorithm that can learn the data only one
pass. This learned data can be discarded after learning as it is not required for subsequent
learning. Consequently, the parameters such as the center and orthonormal basis of the
versatile elliptic basisfunction (4.11) should be adjusted recursively which will be explained

in the next two subsections.

4.2.1 Recursive Mean Computation

Let X = {X1,Xo,...,Xy} beaset of N samples, whereeachx; € R",j =1,...,N,is
afeature vector. Let 1 be the mean vector (center) of this data set. The mean of this data set

can be calculated from the following equation.

o= % > ox (4.12)

Since Equation (4.12) requires al x;, j = 1,2,..., N, to compute the present value
of u, it is not suitable for 1-pass-throw-away learning where al x;, j = 1,2,..., N, are
discarded after being learned. In order to compute the present value of p, the value of u
must be rewritten in a form of recursive relation between the previous value of ¢ and the
present value of xy. Let 4 be the mean vector of the data set X. If Xy, € R™ isthe
new data vector added into the data set X, then the recursive relation can be written as

follows[16].

Pnew = Oflold + B (413)

i _ _N _ XN+1
where i, isthe new mean vector, a = 75 and 8 = 3=
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In this research, Equation (4.13) is applied for evaluating the center of the VEBF in
Equation (4.11). By using Equation (4.13) for calculating the center of the VEBF, the center
of the VEBF can be adjusted in one pass. After the the center of VEBF is adjusted by the
current datum, it does not require this datum again for further adjusting because the new
mean vector in Equation (4.13) requires the old mean vector, the number of old data, and
the new incoming datum. The old mean vector and the number of old data have been stored

in the VEBF neura network which will be explained in the next section.

4.2.2 Recursive Covariance Matrix Computation

Let X = {X1,Xo,...,Xy} beaset of N samples, whereeachx; € R",j =1,..., N, is
afeature vector. Let ;. € R™ be the mean vector of this data set. The covariance matrix of

this data set is computed from the following equation.

S== 3% — )X = )" (4.14)

Another form of the covariance matrix of Equation (4.14) can be written as
1 N
S= > xxd — " (4.15)
j=1

Both covariance matrix equations (4.14) and (4.15) are not suitable for 1-pass-throw-away
learning since all data must be presented. Therefore, in case of 1-pass-throw-away learning,
only the new incoming datum is presented. The other data are already discarded after being
learned. Thus, the present covariance matrix must be rewritten in the form of recursive re-

lation similar to Equation (4.13). The following theorem states this recursive relation.

Theorem 4.1 Let X = {X;,Xy,...,Xy} be aset of N data vectorsin R" and S,;; be the
covariance matrix of the data set X . If anew data vector X, € R" isadded into the data
set X, then

Snew = ozS(,ld + K (416)

1 N . .
where £ = % (fnew — XN41) (Hnew — Xyi)t, = N1 Mnew isthe new mean, and S,,.,, IS

the new covariance matrix.



26

Proof: Let 1., be the mean vector of the data set X. Since S, is the covariance

matrix, from Equation (4.15), it can be written as

Sold = Z Xi X uomug}d (4.17)

If a new data vector Xy, € R" is added into the data set X, the new covariance matrix,

Shew, CAN be written as

1 Xy 1 X5
Snew - E XiXT M — Unew T . 418

Subtracting Equation (4.18) by Equation (4.17) yields
N
Z X~ + Ky

X + K1

)"‘/‘il

= ( Z X uoldug}d> + K1+ Re

1
= N1 old + K1+ Ko

Snew - Sold = N Z

<:>

B 1
B _(N+1) N

= HMZ ||M2 2|

Therefore,

1
Snew - So — X7 4 Po
ld N1 1d + K1+ Ko

=nitd ! Soid + K1+
= KOaN— eI Nbs K1+ K
N +1 e ' ?

N
(m) Sold + K1+ Ko
aSyq+ K (4.19)

T T
N _ _ XN41XNgq T T _ HoldMyig
N+1’ K = R1 + Ro, K1 = N+1 - ,une’w,unew + ,uold,uoldi Rg = — N+(1) .

wherea =

Simplifying ~ in Equation (4.19)

K = K1+ Ko

XN 11X 41 T T Holdbd
N + 1 HnewHpew + HoldMord N + 1

XN+1X%+1 T N
— " — llnew o 4.20
N +1 2 Hnew + N + 1/1/ ld:uold ( )
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The Equation (4.13) can be rewritten as

1
Hold = N ((N + ]-),unew - XN+1) (421)

Considering the outer product of 1,4 and itself which can be expressed as follows.

1
,uold,u(j;ld - m ((N + 1),unew - XN+1) ((N + 1),unew - XN+1)

1
= e((V+ 1) fimewtinen, — (N + 1) finewXy 1

_(N + 1)XN+1:ugew + XNJrlX%Jrl) (422)

Multiply both terms of Equation (4.22) by % to obtain

N

T
~r o MoldHold

N +1 ((N + ]-)QMnew,ugew - (N + ]-)lunewX%Jrl

NN +1)
_(N == 1>XN+1:LLZew == XN+1X£+1) (423)

Substituting Equation (4.23) into Equation (4.20)

T
XN+1XN 41

. AN TITNAL T
KR = N+ 1 :Unewlunew

1
—— (N 1 A new 0 — (N 1 newa
+N(N—|— 1) (( + ) % :U“new ( + )/‘L N—+1
_(N + ]‘)XN+1/‘L£ew == XN+1X%+1) (424)

All denominators in Equation (4.24) are adjusted to be equal as shown in the following
equation.
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1

S o I

1

m(N(N + 1) ftnewben)

1
———((NV 1 2 new ew — N 1 newXT
+N(N+1)(( + ) H Hpew ( + )/‘L N+1
_(N + 1)XN+1:ugew + XN+1X£+1)

1
- m(((i\f +1)2 = N(N + 1)) ttnewttiy, — (N + 1) tnewXiy 41
—(N + DXnpafiley + (N + D)Xy 11X n41)
1
_ m((m +2N + 1= N? = N) pinewttnew — (N + 1) tnewXy 11

~(N + DXyt 1y + (N 4 DX 1 Xy41)

1
= —((V 1 new T N 1 newXT
N(N—|— 1) (( + ),U Hoew ( + ):u N+1

—(N 4+ DXnt1fhen + (N + D)Xns1Xn41)

1

= m((]\] + 1)(Mnewﬂgew N :U’newX%Jrl - XN-HMZew + XN+1X£+1))

1

= m((]\] + 1)(Mnew N X%Jrl)(unew - X]T\erl)T)

1

= N(Mnew - XN+1)(/"L7’7/€7.U 7 XN+1>T (425)

Since the principal component analysis is applied to find the orthonormal basis for
the versatile elliptic basis function (4.11), this technique requires the mean vector and the
covariance matrix to compute the eigenvalues and eigenvectors. The set of these eigen-
vectors forms the basis for a data space. Therefore, Equation (4.16) is applied to find the
orthonormal basis for the versatile elliptic basis function (4.11). By using Equation (4.16),
the covariance matrix can be adjusted in one pass and the data can be discard after being

|earned.

4.2.3 Orthonormal Basis Computation and Algorithm

The principal component analysis (PCA) is a statistical method applied primarily to
transform the input data space into a new lower dimensional space. The axes of the new
coordinate system of a new space are generated by translating the original axes into the
coordinate of the mean of a data set and then rotating them. The primary axis represents
the direction of maximum variance of the data set. The secondary axis, orthogonal to the

primary axis, represents the direction of the second largest variance of the data set, and so
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on. In thisresearch, we apply the concept of the PCA for finding the orthonormal basis for
the versatile eliptic basis function (VEBF).

Given the data set X = {Xy,Xs,...,Xn}, X; € R",j = 1,..., N, the mean vector
and the covariance matrix can be computed from Equation (4.13) and (4.16), respectively.
Similarly, eigenvalues and eigenvectors can be computed from the covariance matrix. Since
the eigenvectors are orthogonal to one another and their lengths are equal to 1, the set of
elgenvectors forms the orthonormal basis for this data space. Let {uq,Uus,...,u,} be the
orthonormal basis, this orthonormal basis for the VEBF can be computed by the following

algorithm.

Orthonormal Basis Computation Algorithm
1. Calculate the mean vector using Equation (4.13).
2. Calculate the covariance matrix using Equation (4.16).

3. Calculate eigenvalues of the covariance matrix in step 2:
AL > > >\, (4.26)

where \;,i = 1..n, isthe eigenvalue.

4. Calculate eigenvectors from the eigenvalues obtained in step 3:
Uy, Uo, ..., U, (427)
whereu; € R" i = 1..n, isthe eigenvector corresponding to \;.

5. Assign the set of eigenvectorsin step 4, {uy, u,, ..., U, }, to be the set of orthonormal

basisfor the data space.

Since the set of these eigenvectors formsthe basis for the data space, thisalgorithm s
applied to find the orthonormal basis for the versatile elliptic basis function (4.11) whichis

used in the new developed neural network and its learning algorithm.
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4.3 The Proposed Learning Algorithm

Let X = {(x;,t;)|1 <j < N} beafinite set of N training data, where x; is a vector
in R™ referred to as a data vector and ¢; is the class label of the vector x;. Let 2 =
{Q%|1 < k < m} beaset of mneuronsin the hidden layer. Each ;. containsthe covariance
matrix, the center vector whose dimension is equal to that of the data vector, the semi-axis
vector whose elements are the semi-axis lengths, the number of data covered by k' neuron,
and the class label. Therefore, €2, is denoted as a 5-tuple, (S, Ck, ax, nk, di), where Sy,
is the covariance matrix of k™ neuron, ¢, = [c¥, ¢k, ..., cf]" is the center of k" neuron,
a, = [a¥,db, ..., a"]T isthe semi-axis vector of k™ neuron, n; is the total number of data

covered by k' neuron, and d, is the class label of k'™ neuron. Let O = {O,|1 < q < p} be

aset of p neuronsin the output layer.

4.3.1 Geometrical Growth Criterion

Initially, there isno hidden neuron in the VEBF neura network. A new hidden neuron
can be automatically added into the network whenever the condition is satisfied. When a
training data (x;, ¢;) is fed into the network, the VEBF neura network find whether there
exists a hidden neuron with the same class that is closest to the input vector x ;. If thereisno
such hidden neuron, anew hidden neuron, defined as Q... = (Snew, Crew, Bnews Mnews dnew ) s
and a new output neuron are allocated and added into the network. Let ag = [ay, as, ..., a,]”

be aninitial axes. The parameters of this new hidden neuron are initialized as follows.

Spew = 0 (4.28)
Crhew = X (4.29)
Anew = @8 (4.30)
Npew = 1; (4.31)
dnew = tj (4.32)

The zero matrix, defined as 0 in Equation (4.28), is the matrix which all elements are zero.
However, if there exists the closest hidden neuron in the network, this data vector is tem-

porarily considered to be an element of the closest hidden neuron. Let cs be theindex of this
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closest hidden neuron. The new temporary parameters of the closest hidden neuron includ-
ing its new center c’c*, the new covariance matrix S;.; ", and the new number of elements of
this closest hidden neuron n.., are computed but the semi-axislengths of the versatile elliptic
basis function are not computed at this moment. The new semi-axislengths of VEBF are not
computed at this moment because this VEBF with the old semi-axis lengths and these new
temporary parameters need to be considered whether it can cover thisinput vector x. How-
ever, the closest hidden neuron might not be actually close to the data vector. The following
criterion is used to determine whether the closeness is acceptable. If it is not acceptable
then a new hidden neuron is introduced and added to the network. The output of the closest
hidden neuron is computed using the new temporary parameters along with Equation (4.11)

asfollows.

n

. enew\T | mew\2
wcs(xj):z((xj C) U™ (4.33)

(a")?

If ¢cs(X;) > 0, called geometrical growth criterion, is satisfied then a new hidden

neuron, Q... = (Snew, Crew, Bnew, Mnews dnew), 1S allocated and added into the network. The
parameters of this new neuron are initialized as Equation (4.28), (4.29), (4.30), (4.31), and
(4.32), respectively.

Therefore, whenever the new input vector is fed into the network and the geomet-
rical growth criterion is satisfied or there is no hidden neuron with the same class of this
new input vector, the new hidden neuron is created and then added into the network. The
new parameters of this new hidden neuron are initialized by using equations (4.28), (4.29),
(4.30), (4.31), and (4.32), respectively. Moreover, a new neuron in the output layer can be
automatically added into the network whenever the new data with the new classes are fed

into the network.

4.3.2 Merging Strategy

Since the new neurons can be automatically added into the network, the number of
neurons in the network will be gradually increased during learning process. However, it is
possible that there are some number of redundant neurons in the network. In which case,
some neurons may be very close to one another and can be merged together in order to

reduce the number of neuronsin the network. For this reason, a merging strategy for these
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redundant neurons will be introduced in the learning algorithm in order to reduce these
redundant neurons and the computational cost.

For merging the two neurons into a new neuron, since all data learned by these two
neurons are discarded, the parameters of the new neuron cannot be computed from previ-
ous learn data. The new parameters such as the new center and the new covariance must
be calculated from the parameters of these two neurons. Thus, the merging center and the
merging covariance should be derived in order to evaluate the new parameters. The follow-

ing theorems state theses merging strategies.

Theorem 4.2 Let X = {X;, Xz, ..., Xy, } beasetof NV, datavectorsandY = {y,,¥,,...,Yn, }

be a set of N, data vectors. Let 1, and -, be the mean vector of the data set X and Y,
respectively. If thesetwo dataset X and Y are merged into the new data set Z, then

new — N + N 4.34

M N{ AN, ( 1M1 2#2) ( )

where 1,,.,, 1Sthe new mean vector called combined mean vector of the new data set Z.

Proof: Sice 1, isthe mean vector of the dataset X, that is

e
] . 4,
J241 Nl ;Xz ( 35)

The Equation (4.35) can be rewritten as
N1
Nl,ul = Z ARy (436)
=1
Sice y5 isthe mean vector of the dataset Y, that is
1 &
S N 4.37
=3 Z::y (437)

The Equation (4.37) can be rewritten as

Na
Nopz =) Y, (4.38)
i=1

Because /1,,.., 1S the mean vector of the data set Z, this means that

1 Ny No
new = ———— (Y X; + ). 4.39
u N, (Z ;w (4.39)
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Substituting Equation (4.36) and Equation (4.38) into Equation (4.39) yields

Hnew = (Nllul + N2,u2) (440)

N1+ Ny

Theorem 4.3 Let X = {X;, Xz, ..., Xy, } beaset of NV, datavectorsand Y = {y,,¥,,...,Yn, }
be a set of N, data vectors. Let 1, and u» be the mean vector of the data set X and Y,
respectively, and S; and S, be the covariance matrix of the data set X and Y, respectively. If
these two data set X and Y are merged into the new data set Z then

N N. N1 N
L g 4 2S+(12

Spew = ————S +—2 - — 1) 4.41

Ny + Ny
whereS,,.., iSthe new covariance matrix called combined covariance matrix of the new data
Set Z.

Proof: Let 1., be the combined mean vector in theorem 4.2. Thus,

Mnew = (Nl,ul -+ NQILLQ) . (442)

Ny + No
Because S; and ;1; are the covariance matrix and the mean vector of data set X, respectively,
that is

Ny
1
S| = N Z XiX) = ppiy (4.43)
AT
It follows that
Ny
Z XinT = NS, + N1M1M1T (4.44)
i=1

Since S, and i, are the covariance matrix and the mean vector of data set Y, respectively,
that is

N»
1
Sy= 5 DYV — paniy (4.45)
2=
Equation (4.45) can be rewritten as
N1
> vyl = NoSy + Nojopih (4.46)
i=1

Since S,,.., isthe new covariance matrix of the new data set Z, from Equation (4.15) yields

N1 N1
1
Snew = ——— [ S xix” VA TR 4.47
NN, (Z : +izlyzyz> newHnew (4.47)

i=1



Substituting Equation (4.44) and (4.46) into Equation (4.47) yields

Spew = NSy + Ny pid + NoSy + Nofioid) — fnewftben- (4.48)

N1+ Ny (
Using Equation (4.42), the outer product of .., and itself can be written as
1

/‘Lnew:ugew = m (Nl,ul + NQ/'LQ) (Nl,ul + N2M2)T
1
- (N, + Ny)? (NPpap] + NiNopapiy 4+ NiNopop] + N3 piops)
] N, N. N, N.
1 T 14V2 T 11Vo T
(N, + N2>2,U1,U1 (N1 + N2)2'u1'u2 (N7 + N2)2'u2'u1
N2 T
A NAY) 4.49
+(N1 n N2)2M2M2 (4.49)
Equation (4.48) can be expressed as
Nl N2 Nf T N1N2 T
Snew - S + S + 4+
R A A I O A AL APl
N1 N. N2
+muzug N et Haeubinen (4.50)

Substituting ft,..1L.,, of Equation (4.49) into Equation (4.50) to obtain

new

ol N N7 B
Snew = S1+ Sy + SEENAL AL B
N+ N N e N T I g
alt r C T N? T
TN N2 oy — —————
(N1 + N2)2'u2’u2 (N + N2)2/ 2P (N7 + N2)2'u1'u1
_&M = ﬂu ~t Lu p
(N1 + Na)? " (N1 +N,)? o (N1 + Ny)? 2H2
N Ny NN, b NN, .
= S+ S, + A AT
Nl + N2 1 N1 + N2 2 (Nl + NQ)QMIMI (Nl + N2)2M2/‘L2
N1N2 T N1 Ny .
(Nl + N2)2M1M2 (Nl + N2)2M2M1
Ny N, N1 N, T’ . . .
Ny + N, ™t - N+ N, ™2 + (N1 + N)? (sl = papy — popty + pizps )
Ny Ny Ny N, ;
- Si+ Sy + - _
N1+ N ! Ny + Ny 2 (N, + N,)? (1 — p2)(pa — p2)

Any two hidden neurons can be merged into one new neuron whenever some con-
ditions are satisfied. The Equation (4.34) and (4.41) in Theorem 4.2 and 4.3 are applied
to adjust the new parameters of this new neuron. Let 2, = (S,,C,,a,,n,,d,) and 2, =
(Sy, ¢y, 8y, ny, d,) be any two hidden neurons = and y in a VEBF neural network, respec-

tively. In thisresearch, the merging function is defined in terms of the distance from neuron
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x to neuron y as follows.

¢(Cs, Cy) = Zn: (e~ ) )" (4.51)

where u? isthei™ basis of the orthonormal basis of the nodes2,, and a! isthei®" semi-axis
length of the node 2,.

If merging criterion, ¢(c,,c,) < #andd, = d,, issatisfied, these two hidden neurons
are merged into one new hidden neuron €2,,.., = (Srew, Crew, Bnew, Mnews Anew)- The thresh-
old 6 is a constant value used to identify whether these two neurons should be merged into
a single neuron. Using Equation (4.34) and (4.41), the new parameters of this new hidden

neuron can be computed as follows.

1
Chew = +Cz C 452
o + 11y (1€ + Ty y) ( )
Spew =t 05 T=T g (4.53)
Mg Ty Ng + 1y
nznu T
L (e (C, — C
+ (nT ‘I‘ny)Q( ‘ y)( y)
Npew = Mg+ Ty (454)
a® = A2, i=1,..,n (4.55)
Apew = dy (4.56)

where )\; isi'" eigenvalue of the new covariance matrix S,,..,.

4.3.3 VEBF Learning Algorithm

Let Q = {Qx|1 <k < m} bethe set of m neurons. Therefore, m is the number of
elementsin the set €2. In other words, m isthe number of neuronsin the network. If thereis
no hidden neuron in the network, the value of m is zero. Let 6 be the threshold for merging
the two hidden neuronsin the network, and X = {(x;,¢;)|1 < j < N} beaset of N training

data. The learning algorithm for VEBF neural network can be summarized as follows:

1. Initialize the semi-axis vector ay = [ay, as, ..., a,]7 and the value of ny.
2. Input the training data (x;, ¢;) into the VEBF neural network.

3. Find ahidden neuron 2;, € Q2 and d;, = t¢; such that

k= argmiin(HXj —ci),i=1,...,m.
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If there exists such a neuron €2, then do the following steps:

(a) Compute the new center ¢ based on Equation (4.13).
i = ac + 8
(b) Compute the new covariance matrix S;“* based on Equation (4.16).
SpY = aSY + K
else

(a) Create anew hidden neuron €2,,.,,.

(b) Adjust the parameters of this new neuron using Equations (4.28), (4.29), (4.30),
(4.31), and (4.32).

(c) SetQ =QUQ,., andremove (X;,t;) from the training data set X.

(d) Gotostep7.
end
4. Compute the orthonormal basisfor 2.

(8 Compute the eigenvalues of covariance matrix S;*:

N 209 a1 AL

(b) Compute the eigenvectors of the covariance matrix S;“*:

k

n

k .k
uf,us,...,u

where u¥ isthe eigenvector corresponding to ;.

(c) Assign {uf,uf, ..., ut} bethe set of orthonormal basis for €.

n X — gnew Tu]? 2
i=1 v

If 4x(x;) < 0 then update the parameters of (2, using these steps:

— 1.

(8 Update the center of €2, ¢, = cp°.
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(b) Update the covariance matrix of €2, S = S; .
(c) Update the parameter n;, = n; + 1.

(d) If n, > ng then update the semi-axis lengths of €2, by setting
af =af + (= cpTul], i=1,..,n
end
else

(@) Create anew hidden neuron €2,,.,,.

(b) Adjust the parameters of this new neuron using Equations (4.28), (4.29), (4.30),
(4.31), and (4.32).

(c) SetQ =QUQ,., andremove (X;,t;) fromthe training data set X.
end

6. Computethemerging function ¢(c, ¢;) and ¢(c;, ¢i,) suchthatdy, = d;forli =1, ....m
based on Equation (4.51).
If ¢(ck, C;) < 0 orop(c,c,) < 0 then do thefollowing steps:

(&) Merge the hidden neurons €2, and €2; into the new hidden neuron €2,,.,, and com-

pute its parameters by using Equations (4.52), (4.53), (4.54), (4.55), and (4.56).

(b) set Q2 =QUQ,., andthen remove 2, and €2, from the network.
end

7. If thetraining data set X is not empty then go to step 2

else, stop training.

Theorem 4.4. Thetime complexity, 7.,,, of the proposed |earning algorithm is O (m) where
m isthe number of data.

Proof: Since the computations in steps 1, 2, and 7 do not depend on the number of
data, the time used in these steps is constant. Then, the time complexity of these stepsis

O(1). In step 3, the searching of the minimum distance between the current training data



38

and the existing neurons can be done by comparing the distant between the current data and
the existing neurons. Because the maximum number of the existing neuronsism — 1, the
comparison can be donein m — 1 time in the worst case. In addition, since computations
of the new mean vector and the new covariance matrix are not dependent on the number of
data, the time complexity is constant. So, the time complexity of the third stepisO(m). In
step 4, the computations of eigenvalues and eigenvectors do not depend on the number of
data. Then, the time complexity of thisstep is O(1). In step 5, the computation of this step
depends on the dimension of the data which is constant and isindependent of the number of
data. So, the time complexity of thisstep is O(1). In step 6, the computations are done in
m — 1 timein the worst case so the time complexity of thisstep isO(m). From steps1to 7,

the time complexity is

T, = O(1)+ O(1) +0(m) + O(1) + O(1) + O(m) + O(1) = O(m)

4.3.4 Training VEBF Neural Network

Once each input data vector is learned, it is discarded from the process forever. Ini-
tially, the VBEF neural network is empty. The nodes in the network will be automatically
increased during the training process. Consider this simple example. Suppose that X =
{([5,16]7,0), ([15,6]7, 1), ([10, 18]*,0), ([5,6]%, 1), ([11, 16]7,0)} isaset of training data
inR2. There aretwo classesin this data set labeled by class 0 and class 1. Supposethe train-
ing datain class O isillustrated by the plus‘+’ while the training dataof class 1 isillustrated
by the star “*’.

Firstly, the training data ([5, 16], 0) is fed into the VEBF neural network. Thistrain-
ing dataisin class 0. Since thereisno VEBF neuron of class 0 in the network, anew VEBF
neuron of class O is created and all parameters of this new VEBF neuron are computed.
This creates VEBF neuron which is shown in Figure 4.2(a) with the versatile elliptic basis
function in R?.

Secondly, the training data ([15,6]%, 1) is fed into the VEBF neural network. This
training datais in class 1. Because there is no VEBF neuron of class 1 in the network, a
new VEBF neuron of class 1 is created and all parameters of this new VEBF neuron are
computed. Figure 4.2(b) shows the created VEBF neuron of class 1.
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@ (b)

Figure 4.2: Thelearning event for thefirst two input data. (a) Thefirst neuron with class’ 0’

is created in the feature space. (b) The second neuron with class’1’ is created next.

Thirdly, the training data ([10,18]%,0) is fed into the VEBF neural network. This
training datais in class 0. Since there exists a VEBF neuron in class O, the closest VEBF
neuron can be found, and the datais temporarily assigned to this neuron. All new temporary
parameters of the this neuron and the output value of this versatile elliptic basis function
are computed using these new temporary parameters. Since the computed output value of
this function is less than zero, it means that the neuron can cover the data and this training
data can be assigned to this neuron. All new temporary parameters now become the actual
parameters of this neuron. Figure 4.3(a) shows the VEBF neuron trying to adjust itself to
cover the new data. The adjusted neuron to cover the datais shown in Figure 4.3(b).

Fourthly, the training data ([5, 67, 1) isfed into the VEBF neural network. Thistrain-
ing dataisin class 1. Since there exists some VEBF neuron in class 1, the closest VEBF
neuron is found. The algorithm tries to assign the data to this neuron. All new temporary
parameters of this neuron and the output value of the versatile elliptic basis function are
computed using these new temporary parameters. Because this output value is greater than
zero, it means that the neuron cannot cover the data. A new VEBF neuron is created and all
new parameters of this neuron are assigned. Figure 4.4(a) shows the second neuron trying
to adjust itself to cover the new data. Since it cannot cover the data, anew VEBF neuronis

created to cover this new data as shown in Figure 4.4(b).
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@ (b)

Figure4.3: Thelearning processfor the next two data. (a) Thefirst neuron attemptsto adjust

itself to cover the data (dot line). (b) The adjusted neuron covering the data.

Finally, the training data ([11,16]%,0) is fed into the VEBF neural network. This
training data is in class 0. Since there exists some VEBF neurons in class 0, the closest
VEBF neuron is found. Then, the algorithm tries to assign the data to this neuron. All
new temporary parameters of this neuron and the output value of the versatile elliptic basis
function are computed using these new temporary parameters. Because the value of this
function islessthan zero, thistraining datais assigned to this neuron and all new temporary
parameters become the actual parameters of this neuron. Figure 4.5(a) shows the VEBF
neuron trying to adjust itself to cover the new data. Since it can cover the new data, the
adjusted neuron to cover the data and al new parameters of this node are updated. The
adjusted neuron is shown in Figure 4.5(b).

Another example is the spiral data set trained by the proposed algorithm with the
constant ny = 10. Theinitial semi-axis vector of VEBF isequal to [0.9,0.5]7. The network
learns this data set in only one epoch. After training, theresult isillustrated in Figure 4.6.
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Figure 4.4. The event during the fourth data training. (&) The second neuron attempts to

adjust itself to cover the data (dot line). (b) The third neuron is created in the feature space.
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Figure 4.5: The event during the fifth data training. (a) The first neuron attempts to adjust
itself to cover the data (dot line). (b) The first neuron adjusts itself to cover the data in the
feature space.
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Figure 4.6 The spiral data set trained by our proposed algorithm.
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CHAPTER YV

EXPERIMENTAL RESULTS

In this research, the performance of VEBF neural network is evaluated on the two-
class classification problem and multi-class classification problem. The results are com-
pared with the conventional radial basis function neural network with Gaussian radia ba-
sisfunction (RBF), multilayer perceptron (MLP) for multi-class classification problem and
two-class classification problem. In the two-class classification problem, the results are also
compared with support vector machine (SVM) because SVM is suitable for the two-class
classification problem. In the multi-class classification problem, the results are not com-
pared with support vector machine (SVM) because SVM has a costly computational time.
The ssimulations are done on MATLAB using neural network toolbox. To fairly evaluate
the performance, the number of neurons used in VEBF, MLP, and RBF models are equally
set in all ssimulations. However, the number of neurons of RBF and MLP are set according
to the proposed model because the numbers of neurons of the RBF and MLP can be fixed
in advance but the number of neurons of the proposed model cannot be fixed in advance.
The data sets used to train and test are collected from UCI Repository of machine learning
database [15]. The properties of the data set are given in Table 5.1. In this experiment,
five-fold cross-validation is used to train and test the models. Each data set is divided into
five digoint subsets. Then, four subsetsare used asatraining set and the other subset is used
as atesting set. This process is repeated five times which each of the five subsets is used
exactly once as the testing set. Eventually, the results from each testing set are averaged. In
multi-class classification problem, the testing data may be classified into the unknown class
which is considered as misclassification. In two-class classification problem, each datum
in the unknown class will be classified into the class of the hidden neuron that is closest to
this datum in order to reduce the problem of local decision boundary. The proposed neural
network (VEBF neura network) is trained by the proposed learning algorithm in only one
epoch. The proposed VEBF neural network can incrementally learn the new data sets with-



Table 5.1 Properties of the data sets used in the experiment.

Data sets No. of attributes | No. of classes | No. of instances
Iris 4 3 150
E.coli 8 8 336
Yeast 8 10 1484
Image Segmentation 19 7 2310
Waveform 21 3 5000
Heart 13 2 270
Spambase 57 2 4601
Sonar 60 2 208
Liver 7 2 345

out the previous |earned data sets but the MLP, RBF, and SVM cannot. Theinitial semi-axis
lengths of VEBF neural network, denoted by a,,k = 1,...,n, iscomputed from

ay = 6% dyy (5.1)
N N

where d,, = Z Z dy;, d;; isthe Euclidean distance between i and j* instances, and
N isthe numberz(:)f1 cjla:t; For VEBF learning algorithm, the constant n is set to 2 and the
threshold 0 is set to O for all experiments. For the MLP model, the simulation runs 10 times
with each data set and the best accuracy ischosen. However, theinitial width o, of theradial
basis function is equally set to the initial semi-axislength a, of the proposed basis function
if they can achieve the highest accuracy and set to be larger or smaller than the proposed

basis function if they can achieve the highest accuracy with the same number of neurons.

5.1 Multi-Class Classification Problem

5.1.1 Iris Data Set

The iris data set consists of four attributes in three classes. There are 150 instances in this
data set. In this experiment, the proposed algorithm uses only one epoch to learn this data
set. Theinitial semi-axis lengths of VEBF is computed from Equation (5.1) with § = 1/3
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and the initial width of RBF is computed from Equation (5.1) with § = 10. For the MLP
model, the simulation runs 10 times and the best result is chosen. The comparative results
of VEBF, RBF, and MLP are illustrated in Table 5.2. From this table, the accuracy of the
proposed model and MLP are equa but higher than the accuracy of RBF. However, the
training time of the proposed model is less than that of ML P and RBF when the number of

neuronsis equal.

Table 5.2 The comparative results trained by Iris Data Set.

VEBF RBF MLP
Testing | Time | No.of | Accuracy | Time | No.of | Accuracy | Time | No.of | Accuracy
fold () | neurons (%) () | neurons (%) () | neurons (%)
1 0.08 3 96.67 111 3 96.67 118 3 96.67
2 0.03 3 100.00 0.13 3 96.67 0.43 3 100.00
3 0.03 3 96.67 0.10 3 100.00 | 0.43 3 100.00
4 0.03 3 100.00 0.10 3 96.67 0.44 3 96.67
5 0.03 3 96.67 0.10 3 96.67 0.43 3 96.67
Average | 0.04 3 98.00 0.31 8 97.33 0.58 3 98.00

5.1.2 Ecoli Data Set

The ecoli data set consists of eight attributes in eight classes. There are 336 instances in
this data set. In this experiment, the initial semi-axis lengths of VEBF is computed from
Equation (5.1) with 6 = 1 and the initial width of RBF is computed from Equation (5.1)
with § = 1. For the MLP model, the simulation runs 10 times and the best result is chosen.
The proposed algorithm used only one epoch to learn this data set. The comparative results
of VEBF, RBF, and MLP are shown in Table 5.3. From this table, the accuracy of the
proposed model is higher than that of RBF and MLP. In addition, the training time of the
proposed model is less than those of RBF and MLP.

5.1.3 Yeast Data Set

The yeast data set consists of eight attributes in 10 classes. There are 1484 instances in
this data set. In this experiment, the initial semi-axis lengths of VEBF is computed from
Equation (5.1) with § = 1 and the initial width of RBF is computed from Equation (5.1)
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Table 5.3 The comparative results trained by Ecoli Data Set.

VEBF RBF MLP
Testing | Time | No. of | Accuracy | Time | No. of | Accuracy | Time | No. of | Accuracy
fold (s) | neurons (%) (8) | neurons (%) (8) | neurons (%)
1 0.12 8 88.41 113 8 68.12 124 8 66.67
2 0.09 8 87.88 0.16 8 65.15 0.49 8 72.73
3 0.09 8 92.54 0.15 8 64.18 0.57 8 62.69
4 0.08 8 79.71 0.14 8 56.52 0.52 8 62.32
5 0.09 8 84.62 0.15 8 67.69 0.43 8 72.31
Average | 0.09 8 86.63 0.35 8 64.33 0.65 8 67.34

with o = 1. For the MLP model, the simulation runs 10 times and the best result is chosen.
The proposed algorithm learned this data set in only one epoch. The comparative results
of VEBF, RBF, and MLP areillustrated in Table 5.4. From this table, the accuracy of the
proposed model ishigher than the accuracy of RBF and MLP. Furthermore, the training time
of the proposed model islessthan that of RBF and MLP.

Table 5.4 The comparative results trained by Yeast Data Set.

VEBF RBF MLP
Testing | Time | No.of | Accuracy | Time | No.of | Accuracy | Time | No.of | Accuracy
fold (s neurons (%) (9 neurons (%) (9 neurons (%)
1 0.58 17 58.59 3.04 17 41.08 1.86 17 42.09
2 0.48 17 55.70 2.08 17 39.26 2.26 17 42.62
3 0.50 18 56.76 2.16 18 43.24 0.75 18 38.18
4 0.59 17 5541 2.13 17 35.14 1.44 17 43.58
5 0.53 17 54.88 2.08 17 37.71 1.02 17 36.36
Average | 0.54 17.2 56.27 2.30 17.2 39.29 147 17.2 40.57

5.1.4 Image Segmentation Data Set

The image segmentation data set consists of 19 attributes in seven classes. There are 2310
instances in this data set. In this experiment, the initial semi-axis lengths of VEBF is com-
puted from Equation (5.1) with 6 = 1 and the initial width of RBF is computed from Equa-
tion (5.1) with § = 1. For the MLP model, the smulation runs 10 times and the best result
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is chosen. The proposed algorithm learned this data set in only one epoch. The comparative
results of VEBF, RBF, and MLP are shown in Table 5.5. From this table, the accuracy of
the proposed model is less than that of the MLP model but higher than the accuracy of the
RBF model. However, the training time of the proposed model is less than that of RBF and
MLP.

Table 5.5 The comparative results trained by Image Segmentation Data Set.

VEBF RBF MLP
Testing | Time | No.of | Accuracy | Time | No.of | Accuracy | Time | No.of | Accuracy
fold () | neurons (%) () | neurons (%) () | neurons (%)

1 1.69 13 75.76 5.63 13 39.61 7.70 13 89.18

2 1.38 12 80.74 4.61 12 45.02 3.20 12 87.45

3 1.16 10 76.62 4.19 10 40.26 3.13 10 89.18

4 142 12 80.74 4.59 12 45.45 171 12 86.36

5 1.38 12 79.00 4.54 12 44.59 3.20 12 81.17
Average | 141 11.8 78.57 471 11.8 42.99 3.79 11.8 86.67

5.1.5 Waveform Data Set

The waveform data set consists of 21 attributes in three classes. There are 5000 instances
in this data set. In this experiment, the initial semi-axis lengths of VEBF is computed from
Equation (5.1) withé = 1 and theinitial width of RBF iscomputed from Equation (5.1) with
0 = 1. The proposed algorithm learned this data set in only one epoch. The comparative
results of VEBF, RBF, and MLP are illustrated in Table 5.6. From this table, the accuracy
of the proposed model is higher than that of RBF and MLP. Moreover, the training time of
the proposed model is less than those of RBF and MLP.

5.2 Two-Class Classification Problem

5.2.1 Heart Data Set

The Heart data set consists of 13 attributes in two classes. There are 270 instances in this
data set. In this experiment, the VEBF neura network is compared to RBF, MLP, and sup-

port vector machine (SVM) with Gaussian kernel. The initial semi-axis lengths of VEBF



Table 5.6 The comparative results trained by Waveform Data Set.
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VEBF RBF MLP
Testing | Time | No.of | Accuracy | Time | No.of | Accuracy | Time | No.of | Accuracy
fold (s) | neurons (%) (9 neurons (%) (8) | neurons (%)
1 2.65 3 83.82 15.90 3 58.14 2.32 3 74.13
2 3.45 3 85.60 14.71 3 60.10 2.08 3 79.80
3 2.45 3 83.58 14.75 3 60.86 1.83 3 77.08
4 2.46 3 84.50 14.68 3 64.80 7.24 3 78.20
5 2.45 3 85.30 14.78 3 60.50 2.65 3 75.30
Average | 2.69 3 84.56 14.96 3 60.88 3.22 3 76.90

is computed from Equation (5.1) with 6 = 1. The initial width of RBF is computed from

Equation (5.1) with 6 = 10. The initia width of the Gaussian kernel of SVM is computed

from Equation (5.1) with 6 = 1. For the proposed model, the order of training inputs is

selected randomly. For the MLP model, the simulation runs 10 times and the best result is

chosen. The proposed agorithm learned this data set in only one epoch. The comparative

results areillustrated in Figure 5.1. From the results shown in Figure 5.1, the average accu-

racy of the proposed model islessthan that of MLP but higher than those of RBF and SVM.

The comparative results of the training time are shown in Table 5.7. From this table, the

average training time of the proposed model isless than that of RBF, MLP, and slightly less

than the average training time of SVM. Although the average accuracy of MLP is higher

than others, the training time of MLP is conversely higher than the rest.

Table 5.7 The comparative results trained by Heart Data Set.

VEBF RBF MLP SVM
Testing | Time | No.of | Time| No.of | Time| No.of | Time| No. of
fold (9 | neurons| (s) | neurons| (s) | neurons| (S) | neurons

1 0.21 5 0.97 5 1.15 5 0.68 N/A

2 0.07 2 0.19 2 0.42 2 0.06 N/A

3 0.15 4 0.20 4 0.39 4 0.02 N/A

4 0.13 3 0.17 3 0.37 3 0.02 N/A

5 0.15 5 0.17 5 0.43 5 0.02 N/A
Average | 014 | 380 | 034 | 380 | 055| 380 | 0.16 N/A
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Figure 5.1 The comparative results trained by Heart data set.

5.2.2 Spambase Data Set

The Spambase data set consists of 57 attributes in two classes. There are 4601 instancesin
this data set. In this experiment, the VEBF neural network is compared to RBF, MLP, and
support vector machine (SVM) with Gaussian kernel. Theinitial semi-axislengthsof VEBF
is computed from Equation (5.1) with § = 1. The initial width of RBF is computed from
Equation (5.1) with § = 10. The initial width of the Gaussian kernel of SVM is set to 100.
For the proposed model, the order of training inputs is selected randomly. The proposed
algorithm learned this data set in only one epoch and the comparative results are illustrated
in Figure 5.2. From the results shown in Figure 5.2, the average accuracy of the proposed
model isslightly less than those of RBF, SVM but lessthan MLP's. The comparativeresults
of thetraining time are shownin Table 5.8. From thistable, the average time of the proposed
model is less than those of RBF and SVM but dlightly higher than MLP. It can be seen that
when the number of the training datais large, the training time of the SVM is very high as
well.
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Figure 5.2 The comparative results trained by Spambase data set.

5.2.3 Sonar Data Set

The Sonar data set consists of 60 attributes in two classes. There are 208 instances in
this data set. In this experiment, the VEBF neural network is compared to RBF, MLP,
and support vector machine (SVM) with Gaussian kernel. The initial semi-axis lengths of
VEBF is computed from Equation (5.1) with 6 = 1. Theinitial width of RBF is computed
from Equation (5.1) with 6 = 10. The initial width of the Gaussian kernel of SVM is
computed from Equation (5.1) with 6 = 1. For the proposed model, the order of training
inputsis selected randomly. For the MLP model, the simulation runs 10 times and the best
result is chosen. The proposed agorithm learned this data in set only one epoch and the
comparative results are illustrated in Figure 5.3. From the results shown in Figure 5.3, the
average accuracy of the proposed model is slightly less than that of SVM but higher than
those of RBF and MLP. The comparative results of the training time are shown in Table 5.9.
From this table, the average training time of the proposed model is less than that of MLP
but higher than the average training time of RBF and SVM.



Table 5.8 The comparative results trained by Spambase Data Set.
VEBF RBF MLP SVM
Testing | Time | No.of | Time | No.of | Time | No. of Time No. of
fold (99 | neurons| (s) | neurons| (S) | neurons (9 neurons
1 3831 | 19.00 | 37.86| 19.00 | 40.47 | 19.00 | 5517.60 N/A
2 37.61| 20.00 | 3819 | 20.00 | 3044 | 20.00 | 3832.60| N/A
3 3559 | 18.00 | 36.59| 18.00 | 19.23 | 18.00 | 4806.63 N/A
4 36.82 | 19.00 | 37.34| 19.00 | 1398 | 19.00 | 4323.74 N/A
5 3510 | 18.00 | 36.68| 18.00 | 4537 | 18.00 | 4251.20 N/A
Average | 36.69 | 1880 | 37.33| 1880 | 2990 | 18.80 | 4546.35 N/A
Table 5.9 The comparative results trained by Sonar Data Set.
VEBF RBF MLP SVM
Testing | Time | No.of | Time| No.of | Time| No.of | Time| No. of
fold (9 | neurons| (s) | neurons| (s) | neurons| (S) | neurons
1 0.47 2.00 0.63 2.00 111 2.00 0.81 N/A
2 0.44 2.00 0.16 2.00 0.46 2.00 0.11 N/A
3 0.44 2.00 0.14 2.00 0.45 2.00 0.10 N/A
4 0.43 2.00 0.14 2.00 0.42 2.00 0.08 N/A
5 0.43 2.00 0.13 2.00 0.45 2.00 0.07 N/A
Average | 0.44 2.00 0.24 2.00 0.58 2.00 0.23 N/A

5.2.4 Liver Data Set
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The Liver data set consists of 7 attributes in two classes. There are 345 instances in this

data set. In this experiment, the VEBF neura network is compared to RBF, MLP, and sup-

port vector machine (SVM) with Gaussian kernel. The initial semi-axis lengths of VEBF

is computed from Equation (5.1) with 6 = 1. The initial width of RBF is computed from

Equation (5.1) with = 1. The initial width of the Gaussian kernel of SVM is computed

from Equation (5.1) with 6 = 1. For the proposed model, the order of training inputs is

selected randomly. For the MLP model, the simulation runs 10 times and the best result is

chosen. The proposed algorithm learned this data set in only one epoch and the compara-
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tive results are illustrated in Figure 5.4. From the results shown in Figure 5.4, the average

accuracy of the proposed model is slightly less than those of RBF and MLP but higher than

that of SVM. The comparative results of the training time are shown in Table 5.10. From

this table, the average training time of the proposed model is less than that of RBF, MLP,

and SVM.
Table 5.10 The comparative results trained by Liver Data Set.
VEBF RBF MLP SVM
Testing | Time | No.of | Time | No.of | Time| No.of | Time| No. of
fold (99 | neurons| () | neurons| (s) | neurons| (S) | neurons
1 0.21 10.00 | 0.71 10.00 1.07 10.00 | 0.67 N/A
2 0.14 9.00 0.21 9.00 0.45 9.00 0.07 N/A
3 0.15 11.00 | 0.20 11.00 | 0.45 11.00 | 0.04 N/A
4 0.11 900 | 019 | 900 | 050 9.00 | 0.04 N/A
5 0.15 8.00 0.19 8.00 0.45 8.00 0.04 N/A
Average | 0.15 940 | 030 | 940 | 059 | 940 | 0.17 N/A
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Figure 5.4 The comparative results trained by Liver data set.

5.3 Discussion

In multi-class classification problem, there are five data sets including Iris Data Set,
E.coli Data Set, Yeast Data Set, Image Segmentation Data Set, and Waveform Data Set.
From the results previously mentioned, it can be seen that the proposed model achieves
the higher performance than that of others in four data sets except Image Segmentation
Data Set. In this data set, the average accuracy of the proposed model is less than that of
the MLP model. Considering the MLP model, the decision function used in the hidden
layer and the output layer of MLP is a linear function. Therefore, the distribution of the
data in Image Segmentation Data Set is appropriate to a linear classifier. Unfortunately,
the proposed model uses a nonlinear classifier. Although the performance of the proposed
model isacceptable, it still depends upon the order of training inputsand theinitial semi-axis
lengths which can affect the number of neurons and its performance.

In two-class classification problem, four data sets are used in this problem which are
Heart Data Set, Spambase Data Set, Sonar Data Set, and Liver Data Set. From the results
mentioned previously, the average accuracy of the proposed model is higher than that of the
RBF model in two data sets which are Heart Data Set and Sonar Data Set. The average
accuracy of the proposed model is higher than that of the MLP model in Sonar Data Set.
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The average accuracy of the proposed model is higher than that of the SYM model in two
data sets which are Heart Data Set and Liver Data Set. Consequently, the proposed model
cannot achieve the best performance in two-class classification problem. Considering the
function used in each model, the basis function used in the hidden layer of RBF and the
kernel function of SVM are a nonlinear function. Therefore, these two models perform
a nonlinear mapping from the input space to the output space. If they can map the data
from the input space to the output space that can be linearly separable, it might achieve a
good performance. Since the decision function used in the output layer of RBF, MLP, and
SVM is alinear decision function, the distribution of the data in two-class classification
problem may be suitable for the linear decision function. However, the proposed model can
incrementally learn the new data set without previous learned data set so it can learn more
new data sets without considering the old data set but this cannot be handled by any other
models.

Since the different functions are applied to different models, the boundaries of these
functions around each group of data are different. Then, the distribution of the data space
can affect the performance of these models. Therefore, the distribution of the data space

should be further studied for choosing the proper model for a problem.



CHAPTER VI

CONCLUSION

A new dlliptic basis function, namely, Versatile Elliptic Basis Function (VEBF) based
on hyper-ellipsoid and orthonormal basiswas proposed. This function can be translated and
rotated to cover the data depending on the distribution of the data set in the data space. In
addition, a very fast 1-pass-throw-away neural learning algorithm based on the VEBF net-
work was introduced. The network consists of an input layer, a hidden layer, and an output
layer. In the hidden layer, the hidden neurons use the VEBF as its basis function. The pro-
posed learning algorithm adjusts the VEBF parametersin only one pass by using only new
incoming datum which is not required for subsequent learning. Consequently, this learned
datum can be discarded after being learned. For these reasons, this proposed neural network
trained by the proposed learning algorithm uses only one epoch to learn a data set. It can
learn a new data set without involving the already learned and discarded old data set. The
number of neuronsin the hidden layer and output layer can be automatically increased dur-
ing the learning process with some conditions. However, the hidden neurons in the network
can be merged into a new neuron whenever some conditions are satisfied. Consequently, the
number of redundant neurons in the network can be reduced. The proposed neural network
trained by the proposed algorithm can learn the data set in O(n), where n is the number of
data. From the experimental results, the proposed model is 7.8 times faster than RBF and
14.5 times faster than MLP in Iris Data Set. In Ecoli Data Set, the proposed model is 3.9
timesfaster than RBF and 7.2 timesfaster than MLP. In Yeast Data Set, the proposed model
Is4.3 timesfaster than RBF and 2.7 timesfaster than MLP. In Image Segmentation Data Set,
the proposed model is 3.3 timesfaster than RBF and 2.7 timesfaster than MLP. In Waveform
Data Set, the proposed model is 5.6 times faster than RBF and 1.2 times faster than MLP.
These experimental results signify that the proposed algorithm can learn the data set very
fast and the proposed a gorithm outperforms the RBF and MLP in multi-class classification

problem.
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