CHAPTER II

HISTORICAL

Alkaloids Isolated from Species of Stephania

The Stephania alkaloids were firstly studied by Kondo and Sanada in 1925 from stems and roots of Stephania japonica Miers.

Recently, there are about 144 alkaloids of known structures from 25 Stephania species. Most of them were isolated from the tubers. Zhu et al. (1983) reported the total amount of alkaloids from roots or tubers of some Stephania species in China as shown in Table 1.

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

Table 1 Total amount of the alkaloids from some Stephania species in China

Stephania brachyandra Diels S. cepharantha Hayata S. delavayi Diels S. dicentrinifera H.S. Lo et M. Yang S. dielsiana Wu S. epigeae S. excentrica S. hainanensis S. hainanensis S. kwangsiensis H.S. Lo S. longa Lour. S. mashanica 1.52 3.10 2.62 3.10 2.62 3.10 2.62 3.10 2.62 3.10 2.62 3.10 3.10 4.20 4.20 5. dielsiana Wu 5. epigeae 6.65 1.52 3.10 4.20 4.20 5. epigeae 7.96 7.01 7.01 7.02 7.03 7
S. delavayi Diels S. dicentrinifera H.S. Lo et M. Yang 4.20 S. dielsiana Wu 2.62 S. epigeae 2.96 S. excentrica 19.65 S. hainanensis 2.44 S. japonica (Thunb.) Miers 0.19 S. kwangsiensis H.S. Lo 2.62 S. longa Lour. 0.86
S. dicentrinifera H.S. Lo et M. Yang S. dielsiana Wu 2.62 S. epigeae 2.96 S. excentrica 19.65 S. hainanensis 2.44 S. japonica (Thunb.) Miers 0.19 S. kwangsiensis H.S. Lo 2.62 S. longa Lour. 0.86
S. dielsiana Wu S. epigeae S. excentrica S. hainanensis S. japonica (Thunb.) Miers S. kwangsiensis H.S. Lo S. longa Lour. 2.62 2.96 2.96 2.96 2.96 2.96 2.96 3. 19.65 2.44 3. 19.65 2.44 3. 10.19 3. 10.19 4. 10.19 5. 10.19
S. epigeae 2.96 S. excentrica 19.65 S. hainanensis 2.44 S. japonica (Thunb.) Miers 0.19 S. kwangsiensis H.S. Lo 2.62 S. longa Lour. 0.86
S. excentrica S. hainanensis 2.44 S. japonica (Thunb.) Miers 0.19 S. kwangsiensis H.S. Lo 2.62 S. longa Lour. 0.86
S. hainanensis 2.44 S. japonica (Thunb.) Miers 0.19 S. kwangsiensis H.S. Lo 2.62 S. longa Lour. 0.86
S. japonica (Thunb.) Miers S. kwangsiensis H.S. Lo 2.62 S. longa Lour. 0.86
S. kwangsiensis H.S. Lo 2.62 S. longa Lour. 0.86
S. longa Lour.
C washaniaa
S. masnancea
S. micrantha 1.00
S. sinica 2.04
S. succifera 2.32
S. tetrandra S. Moore 2.96
S. viridiflavens 6.00
S. yunnanensis 5.16

The distribution of alkaloids in the genus ${\it Stephania}$ are summarized in Table 2

Table 2 Distribution of Stephania alkaloids

Plant	Alkaloid	Reference
Stephania abyssinica	6-dihydroepistephamier-	Waal and Weideman,
Walp. (roots)	sine-6-acetate	1962; Kupchan
	neostephanine	et al., 1970,
	oxoxylopine	Van, 1975
S. brachyandra	corytuberine	Chen et al.,1982
Diels (roots)	dehydrodicentrine	,
	dicentrine	
	8,14-dihydrosalu-	
	taridine	
Q.	isoboldine	2
4	isocorydine	
30	N-methyllaurotetanine	
ศนย	sinoacutine	าร
- g	sinomenine	e e
จุฬาลง	l-tetrahydropalmatine	<u> </u>
S. capitata	crebanine	Tomita and Shirai,
Sprengel (roots)	cycleanine	1942, 1943 b;
	d-dicentrine	Shirai, 1944;
	phanostenine	Shirai and Oda,
	stephanine	1956; Tomita and
		Hirai, 1957, 1958

Table 2 (Continued)

Plant	Alkaloid	Reference
Stephania cepharantha	berbamine	Kondo et al., 1934,
Hayata (roots)	cepharamine	1938; Kondo and
	cepharanoline	Keimatsu, 1935 a,
	cepharanthine	b; Tomita and
1	cycleanine	Kozuka, 1966 a,
	homoaromoline	1967; Tomita
	isotetrandrine	et al., 1969
S. cepharantha	berbamine	Kunitomo et al.,
Hayata (seeds)	crebanine	1981 b
	dehydrocrebanine	
	dehydrostephanine	
	isotetrandrine	
8	O-nornuciferine	
4	stephanine	
9	stesakine	
ศาย	วิทยทรัพยา	าร
S. delavayi Diels	delavaine	Fadeeva et al.,
(leaves, stems,	isostephodeline	1970 b, 1971 b;
roots)	16-oxodelavaine	Il' inskaya et al.,
		1972; Perel'son
		et al., 1975
S. dicentrinifera	dehydrodicentrine	Min and Zheng,
H.S. Lo et M.	dehydrostephanine	1984
Yang (roots)	dicentrine	

Table 2 (Continued)

Plant	Alkaloid	Reference
Stephania	isocorydine	
dicentrinifera	sinoacutine	·
H.S. Lo et M. Yang	sinomenine	
(roots)	stephanine	
S. dielsiana Wu	crebanine	Min, 1983
(roots)	dehydrostephanine	
	sinoacutine	
	stephanine	
	l-tetrahydropalmatine	
	xylopinine	
S. dinklagei Diels	corydine	Debray et al., 1967;
(roots)	dicentrine	Quevauviller and
4	isocorydine	Sarrazin, 1967;
	N-methyl∞rydine	Tackie et al.,
ศามย์	N-methylglucine	1974; Dwuma
11 10 1	norcorydine	et al., 1980
จุฬาลง	roemerine stephalagine	ยาลัย
	stepharine	
	steporphine	

Table 2 (Continued)

Plant	Alkaloid	Reference
Stephania elegans	cyclanoline	Khosa et al.,
Hook.f. et Thoms.	isosinoacutine	1980 a,b
(roots)	magnoflorine	
	sinoacutine	
	tetrahydropalmatine	
S. elegans	aknadinine	Singh et al., 1981
Hook.f. et Thoms.	cyclanoline	
(leaves, stems,	cycleanine	
roots)	epihernandolinol :	
	hasubanonine	
	isochondrodendrine	
	isotetrandrine	\
	magnoflorine	
	N-methylcorydalmine	
S. epigeae	cepharanthine	Huang and Chen,
(roots)	curine	1979
	cycleanine	าลัย
	isocorydine	
S. erecta Craib	cepharanthine	Prawat et al.,
(roots)	homoaromoline	1982
	·	

Table 2 (Continued)

Plant	Alkaloid	Reference
Stephania glabra	capaurine	Chaudhry and
(Roxb.) Miers	columbamine	Siddiqui, 1950;
(roots)	corydalmine	Chaudhry et al.,
	corynoxidine	1952; Cava.
	cycleanine	et al., 1964;
	dehydrocorydalmine	Shchelchkova
	jatrorrhizine	et al., 1965;
	magnoflorine	Rabinovich
	N-methylcycleanine	et al., 1965;
	palmatine	Doskotch et al.,
	palmatrubine	1967; TinWa et al.,
	(+)-pronuciferine .	1967; Berezhin-
<u>a</u>	stephaglabrine	skaya et al.,
	(+)-stepharanine	1977; Patra
	(+)-stepharine	et al., 1980;
ศบย่	stepholidine	Bhakuni and
1000	l-tetrahydropalmatine	Gupta, 1982
S. hernandifolia	aknadine	Tomita and Ueda,
(Willd.) Walp.	aknadicine	1959; Kupchan
(roots)	(4-desmethyl-	et al., 1961;
	norhasubanonine)	Moza, 1967;
	aknadinine	Moza and
	(4-desmethyl	Basu, 1967 a,b;
	hasubanonine)	Fadeeva et al.,

Table 2 (Continued)

Plant	Alkaloid	Reference
Stephania	fangchinoline	1967, 1970 a,c;
hernandifolia	hernandoline	Kupchan et al.,
(Willd.) Walp.	hernandolinol	1968; Moza
(roots)	d-isochondrodendrine	et al., 1969,
	isotrilobine	1970; Kupchan
	stephisoferuline	and Suffness,
	d-tetrandrine	1970
	dl-tetrandrine	
S. hernandifolia	aknadinine	Fadeeva et al.,
(Willd.) Walp.	3-O-dimethyl-	1971 a, 1972;
(aerial parts)	hernandifoline	Fesenko et al.,
	epistephanine	1971; Il'inskaya
	hernandifoline	et al., 1971;
	hernandine	Ray et al., 1979
ರ ಾ	magnoflorine	106
ri la	methylhernandine	1119
S. intermedia	1-corydalmine	Chen et al., 1985
(roots)	dehydrocorydalmine	
	dehydrodiscretamine	
	1-discretamine	
	jatrorrhizine	
	palmatine	
	stepharanine	

Table 2 (Continued)

Plant	Alkaloid	Reference
Stephania intermedia (roots)	stepharine l-stepholidine	
S. japonica (Thunb.) Miers	1-tetrahydropalmatine stephadiamine	Taga et al., 1984
(whole plants)		
S. japonica (Thunb.)	cyclanoline	Kondo and Sanada,
Miers (roots)	episteph <mark>amie</mark> rsine	1923, 1927 a,b,
	epistephanine	1928, 1931; Kondo
	hasubanonine	and Watanabe,
·	homostephanoline	1938, 1950;
	hypoepistephanine	Kondo and Nozoye,
์ ศนย์	insularine	1943; Kondo and
	lanuginosine	Tanaka, 1943;
	metaphanine	Tanaka, 1944;
q)	oxoepistephamiersine	Kondo et al.,
จุฬาลง	16-oxohasubanonine	1951, 1952, 1953;
	16-oxoprometaphanine	Satomi, 1952,
	oxostephamiersine	1955; Kondo and
	oxostephanine	Takeda, 1953,
	oxostephasunoline	1954, 1955, 1956,
	prometaphanine	1958; Takeda,
	protostephanine	1956, 1960, 1963;

Table 2 (Continued)

Plant	Alkaloid	Reference
Stephania japonica	stebisimine	Tomita and Watanabe,
(Thunb.) Miers	stephamiersine	1956; Tomita
(roots)	stephanine	et al., 1957,
,	stephanoline	1964, 1965 a,b,
	stepharine	c, 1967 b;
	stephasunoline	Watanabe 1957,
	stepholine (obamegine)	1960; Watanabe
	steponine	et al., 1957,
	stepinonine	1975a,b; Nozoye,
¥.		1957; Tomita and
	<u>ASS (2888)</u> WAS (2800)	Ibuka, 1963a,b,
		1965; Barton
Q ₂		et al. , 1966a, b;
4	·	Ibuka and Kitano,
20		1967a, b; Thornber,
ศนะ	เวิทยทรัพยา	1970; Ibuka et al.,
9	6	1975; Matsui et al ,
จหาลง	กรณมหาวิทเ	1975, 1984; Matsui
9		and Watanabe, 1984.
,		

Table 2 (Continued)

Plant	Alkaloid	Reference
Stephania japonica	16-oxoprometaphanine	Matsui et al.,
(Thunb.) Miers	oxostephamiersine	1982
(leaves)	stebisimine	
S. japonica (Thunb.)	stephabenine	Kondo et al., 1983
Miers (fruits)		
S. kwangsiensis H.S.Lo	l-capaurine	Min and Zhong,
(roots)	dehydroroemerine	1980
	dehydrostephanine	Cheng et al., 1981
	dihydropalmatine	
	d-isocorydine	
	palmatine	
	l-roemerine	9
	stephanine	
- 20	tetrahydropalmatine	
S. longa Lour.	longanine	Lao et al., 1980,
(Stems and roots)	longanone	1981, 1982
4 M 1 8 A	prostephabyssine	0 1915
	stephaboline	
	stephabyssine	
S. mashanica	l-dicentrine	Wang and Wei, 1983
(roots)	dicentrinone	
	sinoacutine	

Table 2 (Continued)

Plant	Alkaloid	Reference
Stephania mashanica	l-tetrahydrocolumbamine	
(roots)	l-tetrahydrojatrorrhizine	
·	l-tetrahydropalmatine	
S. micrantha	l-capaurine	Min et al., 1981
(roots)	corypalmine	
	dehydroroemerine	
	dehydrostephanine	
	d-isocorydine	
	sin <mark>oacutine</mark>	
	sinomenine	
	stephanine	
	tetrahydrocolumbanine	Ó
	l-tetrahydropalmatine	J
III	xylopinine	
S. rotunda Lour.	pronuciferine	Tomita et al.,
(roots)	stepharine	1965 d, 1966;
ลหาลง	stepharotine	Tomita and
9 71 101 4	tetrahydropalmatine	Kozuka, 1966 b
	tuduramine	
S. rotunda Lour.	cepharamine	Kozuka et al.,
(leaves and		1985
stems)		

Table 2 (Continued)

		,
Plant	Alkaloid	Reference
Stephania sasakii	N-acetylstepharine	Kondo and Tomita
Hayata ex	aknadilactam	1939; Tomita,
Yamamoto (roots)	aknadinine	and Shirai 1943
	berbamine	a; Tomita and
	bisaknadinine	Kishikita, 1944;
	cepharadione-A	Kunitomo et al.,
	cepharamine	1966, 1967,
	cepharanthine	1969 a,b, 1972,
	crebanine	1980 a,b, 1981
	dehydrocrebanine	a,c, 1985
	dehydrophanostenine	
	dehydroroemerine	
	dehydrostesakine	7
The state of the s	dihydrosecocepharanthine	
~	4,5-dioxodehydrocrebanine	3
ศนะ	4-hydroxycrebanine	าร
d)	d-isocorydine	e e
จหาลง	lanuginosine	ยาลย
9	liriodinine	
	lysicamine	
	N-methyl-6,7-dimethoxy-	
	l-isoquinolone	
	N-methylpapaveraldinium	
	O-methyldeoxopunjabine	
1	1	

Table 2 (Continued)

Plant	Alkaloid	Reference
Stephania sasakii	O-methylpunjabine	
Hayata ex Yamamoto	nuciferine	
(roots)	obaberine	
	7-oxocrebanine	
	phanostenine	
	pronuciferine	
	roemerine	
	(R)-roemeroline	
	secocepharanthine	
	steponine	
	steporphine	
	stesakine	
	l-tetrahydropalmatine	· ·
Ī	thalrugosine	
	tuduranine	
S. suberosa Forman	(-)-capaurimine	Patra et al.,
(roots)	(-)-coreximine	unpublished
d M 101 /	(-)-corytenchine	at this time
	(-)-discretine	
	(-)-kikemanine	
	8-oxypseudopalmatine	
	(-)-8-oxoxylopinine	
	pseudopalmatine	
	(-)-stephabinamine	

Table 2 (Continued)

Plant	Alkaloid	Reference
LIGIIC		
Stephania suberosa	stephabine	
Forman (roots)	stepholidine	
	(-)-tetrahydropalmatine	
	(-)-tetrahydropalma-	
	trubine	
	(-)-tetrahydrostephabine	
	(-)-xylopinine	
	(-)trans-xylopinine	
6	N-oxide	
	(-)cis-xylopinine	
	N-oxide	
S. tetrandra s.Moore	auglangling	Kondo and Yano,
	cyclanoline	1928, 1929;
(roots)	fangchinoline	Tomita et al.,
	tetrandrine	
คนะ	วทยทรพยา	1967 c
S. venosa Spreng.	ayuthianine	Tomita et al.,
(roots)	d-corydine	1967 a;
	(-)-crebanine	Guinaudeau
	stephanine	et al., 1981,
	sukhodianine	1982; Pharadai,
	tetrahydropalmatine	et al., 1981
	thailandine	
	ushinsunine	
	uthongine	

Table 2 (Continued)

Plant	Alkaloid	Reference
Stephania venosa Spreng.	(-)0-acetylsukhodianine	Pharadai et al.,
(leaves)	(-)-crebanine	1985
·	dehydrocrebanine	
	(-)-kikemanine	
	liriodenine	
	oxocrebanine	
	oxostephanine	
	oxostephanosine	
	(-)-sukhodianine	
7	(-)-tetrahydropalmatine	
	(-)-ushinsunine	
	49000000000000000000000000000000000000	D 04 78 1001
S. viridiflavens	jatrorrhizine	Fang et al., 1981
(roots)	palmatine	
	1-tetrahydropalmatine	
COLOR	l-xylopinine	
MINE.	ILI BIM CIKBIKI	9
	<u> </u>	

Chemistry of Stephania alkaloids

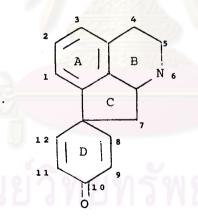
Most of alkaloids found in the *Stephania* species are isoquinolines as benzylisoquinolines proaporphines, aporphines, oxoaporphines, dioxoaporphines, dehydroaporphines, morphinandienones,
tetrahydroprotoberberines, quaternary protoberberines, dihydroprotoberberines, hasubanans, oxo-hasubanans, dioxohasubanans, hasubanalactams, hasubanan esters, C-norhasubanans, bisbenzylisoquinolines, secobisbenzylisoquinolines, benzyl-rheadans, isoquinolones
and dibenzazonines

The numbering and structure of the alkaloids are as follows :-

I. Benzylisoquinolines

The benzylisoquinolines occupy a paramount position in alkaloid chemistry because they act as in vivo precursors to so many of the other naturally occurring isoquinoline alkaloids. Ring A in the benzylisoquinoline alkaloids may possess two or three oxygenated substituents, which ring C has only one or two (Shamma, 1972b).

In genus Stephania it was found only one benzylisoquinoline, N-methylpapaveraldinium chloride, isolated from Stephania sasakii Hayata (Kunitomo et al., 1966).


N-methylpapaveraldinium chloride

II. Proaporphines

The proaporphine alkaloids occur in a variety of oxidation states. (+)-Pronuciferine possesses a cyclohexadienone system which is present in many other proaporphines such as (+)-crotonosine and (-)-orientalinone. The proaporphine numbering system is as indicated for (+)-pronuciferine. Because of the asymmetry at C-6a, one side of the dienone system is not equivalent to the other. The lower numbers (C-8 and C-9) are assigned to the side of the dienone above the mean plane of the molecule, and the higher numbers (C-11 and C-12) to the side below, as shown for (+)-linearisine (Shamma, 1972d).

There are three proaporphines isolated from genus

Stephania and shown below:-

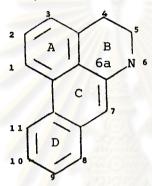
-11 1 1		Substitution						
Alkaloid	1	2	6	11				
N-Acetylstepharine	OCH ₃	OCH ₃	COCH ₃					
Pronuciferine	осн ₃	OCH ₃	Н	CH ₃				
Stepharine	OCH ₃	OCH ₃	Н					

III Aporphines

The aporphines are the large group of *Stephania* alkaloids, being second only to the tetrahydroprotoberberines. A methyl group is usually attached to the nitrogen and formed tertiary nitrogen atom. If the nitrogen is secondary, the alkaloid is called noraporphine.

Position 1 and 2 are always substituted with hydroxyl, methoxyl or methylenedioxyl. Other substitutions may be found on the position 9,10,11 and less often on the position 3,8. In a few cases, a hydroxyl may locates at position 7, while steporphine is the only aporphine alkaloid known to be oxygenated at C-4 (Shamma, 1972e). Kunitomo et al. (1981c) isolated 4-hydroxycrebanine, a new 4-hydroxyaporphine alkaloid from Stephania sasakii Hayata.

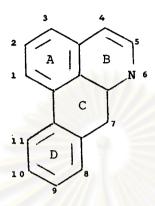
The basic structure, the substitution of this alkaloidal type of *Stephania* species are shown below.


				S	ubstit	ution		AND THE THE PARTY OF THE PARTY		
Alkaloid	1	2	3	4	6	7	8	9	10	11
Stephalagine	OCI	H ₂ O	OCH ₃		CH ₃					
Steporphine	OC	^H 2 ^O		ОН	CH ₃					
4-Hydroxycrebanine	oc	H ₂ O		OH	CH ₃		OCH ₃	OCH ₃		
Roemerine					CH ₃					
Ushinsunine	oc	н ₂ о			CH ₃	OH				
Ayuthianine	oc	H ₂ O			CH ₃	OH	OCH ₃			
Sukhodianine	oc	H ₂ O			CH ₃	OH	OCH ₃	OCH ₃		
O-Acetyl	oc	H ₂ O			CH ₃	OAc	OCH ₃	OCH ₃		
sukhodianine										
Stephanine	oc	H ₂ O			CH ₃		OCH ₃			
Crebanine	oc	H ₂ O			CH ₃		OCH ₃	OCH ₃		
Stesakine	oc	H ₂ O			CH ₃		OCH ₃	OH		
Roemeroline	oc	H ₂ O			CH ₃			OH		
Dicentrine	oc	H ₂ O			CH ₃			OCH ₃	OCH ₃	
Phanostenine	oc	H ₂ O			CH ₃			OCH ₃	OH	
Norcorydine	ОН	OCH ₃			H				OCH ₃	OCH ₃
Corytuberine	ОН	OCH ₃			CH ₃				OCH ₃	OH
Corydine	ОН	OCH ₃			CH ₃				OCH ₃	OCH ₃
Magnoflorine	ОН	OCH ₃			(CH ₃)	2			OCH ₃	OH
N-methyl corydine	ОН	OCH ₃			(CH ₃)	2			OCH ₃	OCH ₃
Tuduranine	OCH.	OCH ₃			H				OH	
Nuciferine	OCH.	OCH ₃			CH ₃					
N-methyllauro-	OCH.	OCH ₃			CH ₃			OH	OCH ₃	
tetanine										
Isocorydine	осн	OCH ₃			CH ₃				OCH ₃	ОН
N-methyl	осн	OCH ₃			(CH ₃)	2		OCH ₃	OCH 3	
glaucine										
Isoboldine		OCH ₃			CH ₃			OH	OCH ₃	

IV. Dehydroaporphines

The dehydroaporphines are optically inactive and classified as a subgroup of the aporphine alkaloids (Shamma, 1972e). From the basic structure, there are two types of this subgroup.

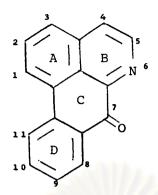
a) 6a,7-Dehydroaporphines. In this subgroup, dehydro-dicentrine was first reported to be isolated from natural sources.


The unsaturation is on the C-6a,7. The details of their structures isolated from Stephania species are shown below:

	Substitution					
Alkaloid	1	2	6	8	9	10
Dehydrostephanine	OCH,	0	CH ₃	OCH ₃		
Dehydrocrebanine	OCH	20	CH ₃	OCH ₃	OCH ₃	
Dehydrostesakine	OCH,	20	CH ³	och ₃	ОН	
Dehydrodicentrine	OCH,	20	CH ₃		och ₃	OCH3
Dehydrophanostenine	OCH ₂ O		CH ₃		OCH ₃	ОН

/

b) 4,5-Dehydroaporphines. The unsaturation is on the C-4,5. Only one alkaloid of this subgroup in *Stephania* species is dehydroroemerine.


211-1-1-1		Substitut	ion	
Alkaloid	1	2	6	
Dehydroroemerine	осн	20	CH ₃	

V. Oxoaporphines

Oxoaporphine alkaloids are probably derived in plant by oxidation of the corresponding aporphine alkaloids. The free bases possess a bright yellow or orange color which will be turned to pink or red upon the addition of mineral acids.

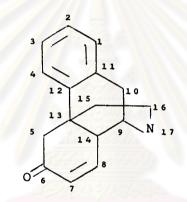
W.I. Taylor, in 1961, described the structural elucidation and synthesis of liriodenine, the first oxoaporphine to be full characterized (Shamma, 1972f).

The structures of this alkaloidal group in *Stephania* species are summarized and shown below :-

			Subst	itutio	on		
Alkaloid	1		2	6	8	9	10
Liriodenine		осн ₂ о					
Thailandine		осн ₂ о		CH ₃	OCH ₃		
Uthongine		осн ₂ о		CH ₃	OCH ₃	OCH ₃	
Oxostephanine		осн ₂ о		4	OCH ₃		
7-oxocrebanine		осн ₂ о		-	OCH ₃	OCH ₃	
Lanuginosine		OCH ₂ O		_		OCH ₃	
Dicentrinone		осн ₂ о		- -		OCH ₃	оснз
Oxoxylopine	นย	осн ₂ о		1948			осн ₃
Lysicamine	осн ₃		осн3				3
9 M.J	9/1						

VI. 4,5-Dioxoaporphines

It is only recently that the reddish-orange 4,5-dioxo-aporphines have been recognized as a distinct group of isoquinoline alkaloids. This group includes cepharadione-A and -B, norcepharadione-B and pontevedrine which was previously believed to be a 5,7-dioxoaporphine (Shamma and Moniot, 1978b).

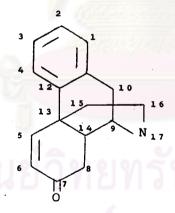

For Stephania species, this group of alkaloid was only isolated from Stephania sasakii Hayata as cephanadione-A and 4,5-dioxodehydrocrebanine (Kunitomo et al., 1980a, 1981a).

nll-alaid	Substitution						
Alkaloid	1	2	6	8	9		
Cepharadione-A 4,5-Dioxodehydrocrebanine	осн ₂ о		CH ₃	OCH ₃	осн3		

VII. Morphinandienones

The morphinandienone alkaloids are more limited in numbers and distribution. There are fewer than a dozen of them distributed in Family Papaveraceae, the genus *Papaver* and several genera of the Menispermaceae (Robinson, 1981).

The basic structure of the morphinandienone alkaloids found in genus Stephania are occurred in three formulae; A,B and C. The summarization of the structures and their substitutions are shown in the following tables.



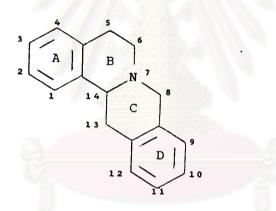
Formula A

Alkaloid	Substitution							
Formula A	2	0/1/21	3	4	7	8	16	17
Sinomenine			осн ₃	ОН	осн ₃			CH ₃
Isostephodeline	OCH ₃		осн ₃		OCH ₃	осн ₃		Н
Delavaine		осн ₂ о			OCH ₃	och ₃		CH ₃
16-Oxodelavaine		OCH ₂ O			OCH ₃	OCH ₃	0	CH ₃
								!

Formula B

Alkaloid	Substitution						
Formula B	3	4	6	17			
Sinoacutine	осн ₃	ОН	OCH ₃	CH ₃			

Formula C


Alkaloid	Substitution				
Formula C	3	4	6	17	
8,14-dihydrosalutaridine	OCH ₃	ОН	OCH ³	CH ₃	

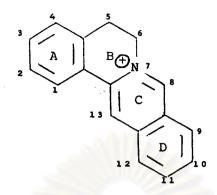
VIII. Protoberberines

Most of protoberberine alkaloids exist in nature as tetrahydroprotoberberine and quaternary protoberberine salts, but some dihydroprotoberberines are also known. Substitutions are usually present at C-2 and C-3, C-9 and C-10, or C-10 and C-11. In some instances a hydroxyl or methyl substitution may be presented at C-1 (Shamma, 1972g).

The basic structure, the substitutions and the list of alkaloids are summarized in three subgroups as was mentioned above.

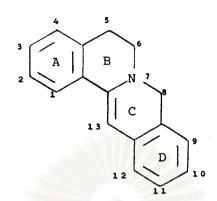
a) Tetrahydroprotoberberines and its N-oxides

ศูนยวิทยทรพยากร เหาลงกรณ์มหาวิทยาลัย


Alkaloid			S	ubsti	tu t	ion		
WIYGIOIG		2	3	7	8	9	10	11
Capaurine	OH	осн ₃	осн ₃	_		OCH ₃	осн3	
Capaurimine	ОН	OCH ₃	OCH ₃	-		OCH ₃	OH	
Stephabinamine	OH	OCH ₃	OCH ₃	-			OCH ₃	ОН
Tetrahydrostephabine	ОН	OCH ₃	OCH ₃	-			OCH ₃	осн ₃
Kikemanine	CH ₃	OCH ₃	OCH ₃	-		OCH ₃	OH	
Isocorypalmine		OH	OCH ₃	<u> </u>		OCH ₃	OCH ₃	
Stepholidine		OH	OCH ₃	_		OCH ₃	OH	
Tetrahydrocolumbamine		ОН	OCH ₃	_		OCH ₃	OCH ₃	
Coreximine		ОН	OCH ₃	-			OCH ₃	ОН
Tetrahydropalmatine		OCH ₃	OCH ₃	-		och ₃	OCH ₃	
Corydalmine		OCH ₃	OCH ₃	-		OCH ₃	OH	
Tetrahydropalmatrubine		OCH ₃	OCH ₃	\ - \		OH	OCH ₃	
Tetrahydrojatrorrhizine		OCH ₃	OH	 -		OCH ₃	OCH ₃	•
Corypalmine		OCH ₃	ОН	-		OCH ₃	OCH ₃	
Discretamine		OCH ₃	OH	-		OCH ₃	ОН	
Xylopinine		OCH ₃	OCH ₃				OCH ₃	осн ₃
Corytenchine		OCH ₃	OCH ₃	-			OCH ₃	OH
Discretine		OCH ₃	ОН	100			OCH ₃	осн ₃
Cyclanoline		ОН	OCH ₃	CH ₃		OH	OCH ₃	
Steponine		осн3	ОН	CH ₃		OH	OCH ₃	
N-methyl corydalmine		осн ₃	OCH ₃	CH ₃		OCH ₃	ОН	
Corynoxidine		осн ₃	OCH ₃	β-ОН		OCH ₃	осн ₃	. '
8-Oxoxylopinine			OCH ₃		0	าก	OCH ₃	och ₃

$$CH_3$$
 CH_3 CCH_3 CCH_3

(-)-trans-xylopinine N-oxide


(-)-cis-xylopinine N-oxide

b) Quaternary protoberberines

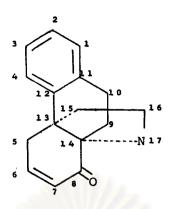
Alkaloid	,		Sub	stitut	ion	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Alkaloid	1	2		3	9	10	11
Berberine			осн ₂ о		och ₃	OCH ₃	
Palmatine		осн ₃		осн ₃	OCH ₃	OCH ₃	
Columbamine		ОН		OCH ₃	OCH ₃	OCH ₃	
Jatrorrhizine		OCH ₃		ОН	OCH ₃	OCH ₃	:
Dehydrodiscretamine		OCH ₃		ОН	OCH ₃	OH	
Dehydrocorydalmine		OCH ₃		OCH ₃	OCH ₃	ОН	
Stepharanine	10	ОН		OCH ₃	OCH ₃	ОН	
Palmatrubine	7.9	осн3		осн3	ОН	OCH ₃	
Stephabine	ОН	осн ₃	มหา	OCH ₃	ายา	OCH ₃	осн3

c) Dihydroprotoberberines

	Substitution								
Alkaloid	2	3	8	9	10				
Dihydropalmatine 8-Oxypseudopalmatine	OCH ₃	осн ₃	0	och ³	OCH ₃				

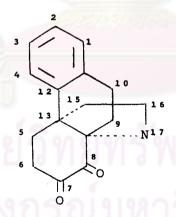
ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

IX. Hasubanans


The hasubanan alkaloids are limited in distribution to the genera Menispermum, Sinomenium and Stephania in the family Menispermaceae. The numbering system of the skeleton is suggested by Tomita (Cordell, 1981b).

The basic structures and substitutions of the alkaloids found in Stephania species are summarized in five formulae in the following tables.

Formula A


Alkaloid	ASS	19 /2/		Substi	tution	1	
Formula A	3	4	6	7	8	16	17
Homostephanoline	ОН	осн3	0	OCH ₃	осн ₃		CH ₃
Cepharamine	OCH ₃	ОН	0	OCH ₃			CH ₃
4-Desmethylhasubanonine	осн ₃	ОН	0	осн ₃	осн ₃		CH ₃
(aknadinine)							
4-Desmethylnorhasuba-	осн ₃	ОН	0	осн ₃	OCH ₃		Н
nonine (aknadicine)							
Hasubanonine	осн ₃	och ₃	0	OCH ₃	OCH ₃		CH ³
Hernandoline	OCH ₃	ОН	0	OCH ₃	OCH ₃		CH ₃
Hernandolinol	OCH ₃	ОН	ОН	och ₃	OCH ₃		ОН
16-oxohasubanonine	OCH ₃	OCH ₃	0	och ₃	och ₃	0	CH ₃
Aknadilactam	och ³	ОН	0	осн ₃	OCH ₃	. 0	CH ₃

Formula B

Alkaloid	Substitution							
Formula B	3	4	7	10	16	17		
Prometaphanine	OCH ₃	OCH ₃	OCH ₃	ОН		CH ₃		
16-oxoprometaphanine	OCH ₃	осн ₃	och ³	ОН	0	CH ₃		

Formula C

Alkaloid	Substitution									
Formula C	3 4 10 17									
Metaphanine	осн ₃ осн ₃ он сн ₃									

Formula D

Alkaloid			Sub	stitu	tion			
Formula D	2	3	4	6	7	8	16	17
Stephabenine	осн ₂ о							CH ₃
Hernandine		осн ₃	OH	ОН	ОН	OCH ₃		CH ₃
Methylhernandine	1 1/10	осн ₃	ОН	ОН	осн ₃	OCH ₃		сн3
Stephaboline	49	осн ₃	ОН		ОН	ОН		сн3
Longanine		осн ₃	ОН	ОН	осн ₃	ОН		СН ₃
Stephasunoline		och ₃	осн ₃	ОН	осн 3	ОН		сн ₃
Longanone	10	och ₃	ОН	0	och ₃	осн ₃		сн3
Stephamiersine	มวท	OCH ₃	осн ₃	O	осн ₃	OCH ₃		снз
Stephabyssine		осн ₃	ОН		0	ОН		сн3
Oxostephasunoline	กรถ	осн ₃	OCH ₃	ОН	осн3	ОН	0	CH ₃
Oxostephamiersine		OCH ₃	осн 3	0	OCH ₃	och ₃	0	CH ₃
6-dihydroepistepha-		OCH ₃	осн 3	OAc	OCH ₃	OCH ₃		CH ₃
miersine-6 acetate								

Formula E

Alkaloid	Substitution									
Formula E	3	4	7	8	17	3'	4'			
Hernandifoline	осн ₃	ОН	осн ₃	OCH ₃	н	осн 3	ОН			
Stephisoferuline	OCH ₃	ОН	OCH ₃	осн ₃	Н	OCH ³	ОН			
3-0-demethyl- hernandifoline	ОН	ОН	OCH ₃	OCH ₃	Н	OCH ₃	ОН			

Stephadiamine, a new skeletal alkaloid from Stephania japonica (Thunb.) Miers is the first example of a C-Norhasubanan alkaloid.

The ethanolic extract of the whole plant collected in Taiwan was previously reported to yield many alkaloids such as metaphanine.

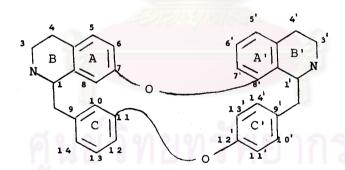
Taga et al. (1984) isolated a novel skeletal lactonic alkaloid, stephadiamine. The structure of stephadiamine has a hasubanan-like pentacyclic skeleton, which has not previously been found in nature.

$$CH_3O$$
 CH_3O
 CH_3

Stephadiamine

Bisaknadinine is a new dimeric hasubanan type alkaloid containing biphenyl linkage, isolated from Stephania sasakii Hayata. The structure is shown below :-

Bisaknadinine


X. Bisbenzylisoquinolines

Bisbenzylisoquinoline alkaloids have been classified into 28 types. An asterisk (*) or other symbol (+ or +) on the upper right of a number indicated the diarylether terminals. Numbers in parentheses are used to indicate aryl-aryl bonds. Square brackets are used to indicate the terminals of a methylene dioxy bridge (Shamma and Moniot, 1978a). Among 28 types of them, the alkaloids in genus Stephania distribute in 5 types of bisbenzylisoquinolines as follows.

a) Bisbenzylisoquinolines; Berbamine type; 6,7,8,11⁺, 12-6,7,12⁺

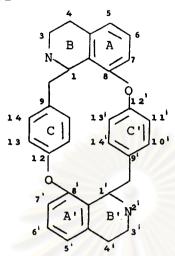
	-	Substitution									
Alkaloid .	2	6	7	12	2'	5'	6'	7 '	11'		
Berbamine	CH ₃	осн ₃			CH ₃		осн3	осн ₃			
Tetrandrine	CH ₃	OCH ₃		OCH ₃	CH ₃		OCH ₃	OCH ₃			
Isotetrandrine	СНЗ	OCH ₃		OCH ₃	CH ₃		OCH ³	OCH ₃			
Fangchinoline	CH ₃	OCH ₃		OCH ₃	CH ₃		OCH ₃				
Obamegine	CH ₃	OCH ₃			CH ₃		OCH ₃				
(= Stepoline)											
Stephanoline	CH ₃				CH ₃	осн ₃	осн ₃	OCH ₃	OCH ₃		
Thalrugosine	CH ₃	OCH ₃	ОН	OCH ₃	CH ₃		och ₃				

b) Bisbenzylisoquinolines; Oxycanthine type; 6,7,11,11, 12-6,7,8,12

Formula A

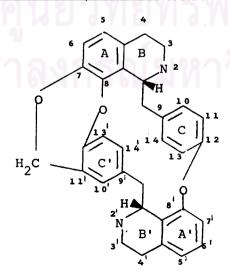
Alkaloid		Substitution						
Formula A	2	6	12	2'	6'	7'		
Cepharanoline	CH ₃	осн3		CH ₃	-oci	H ₂ O-		
Cepharanthine	CH ₃	OCH ₃	OCH ₃	CH ₃	-oci	H ₂ O-		
Homoaromoline	CH ₃	OCH ₃	OCH ₃	CH ₃	OCH ₃			
Obaberine	CH ³	OCH ³	och ³	CH ₃	OCH3	OCH ₃		

Substitution Alkaloid 2 6 ، 6 12 7' Formula B OCH₃ CH₃ OCH₃ OCH₃ OCH₃ Epistephanine CH₃ OCH₃ осн₃ осн₃ Hypoepistephanine


Formula C

Alkaloid		Substit	tution		
Formula C	6	12	6'	7'	
Stebisimine	осн ₃	OCH ₃	OCH ₃	OCH ³	

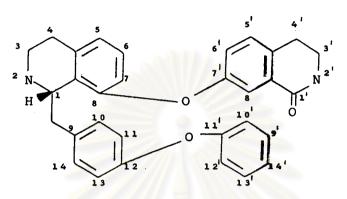
c) Bisbenzylisoquinolines; Dibenzo-p-dioxin type; $6^*,7^+,11^+,12-6,7^*,8^+,12^+$


	Substitution	
Alkaloid	2 12 2' 6'	
Isotrilobine	CH ₃ OCH ₃ CH ₃ OCH ₃	

d) Bisbenzylisoquinolines; Isochondodendrine type;

Formula A

Alkaloid	Substitution					
Formula A	2 .	6	7	2'	6'	7'
Isochondodendrine	CH ₃	OCH ₃		CH ₃	OCH ₃	
Cycleanine	CH3	OCH ₃	OCH ₃	CH ₃	OCH ₃	OCH ₃
N-desmethyl cycleanine	CH ₃	OCH ₃	OCH ₃	H	och ³	och ³
6	_					


Formula B

Alkaloid	Substitution						
Formula B	2	6	2'	6'	7:		
Insularine	CH ₃	осн ₃	CH ₃	осн ₃	осн ₃		

e) Bisbenzylisoquinoline; Curine type; 6,7,8*,11+,

Alkaloid	Substitution						Configuration	
Alkaloid	2	6	2'	6'	7'	13'	A	В
d-Curine	CH ₃	осн ₃	CH ₃	OCH ₃	ОН	ОН	L	L
l-Curine	CH ₃	OCH ₃	CH ₃	OCH ₃	ОН	ОН	D	D

Four secobisbenzylisoquinoline aklalonds, dihydrosecocepharanthine, O-methyldeoxypunjabine and O-methyl-punjabine were isolated from *Stephania sasakii* Hayata. Their structures were established as formula A or B.

Formula A

Alkaloid		Subs	stitut	io n		
Formula A	2	6 7	2'	6'	9'	12'
dihydrosecoce-	CH3	och ₂ o	CH ₃	осн ₃	СНО	осн ₃
pharanthine secocepharanthine	CH ₃	осн ₂ о	СНЗ	och ₃	CH ₂ OH	OCH ₃

Formula B

2	6	2'	91	12'
² H ₃	och ³	CH ₃	CH3	OCH ₃
CH ₃	OCH ₃	CH3	СНО	OCH ₃
	3	3 3	3 3 3	3 3 3

XI. Benzyl-Rheadans

211-1-2		Su	bstituti	on	
Alkaloid	2	6	7	7'	12'
Stepinonine	CH ₃	осн3	OCH ₃	осн3	ОН

Stepinonine is an unusual bisbenzylisoquinolines, isolated from Stephania japonica Miers (Shamma and Moniot, 1978a).

XII. Isoquinolones

The isoquinolone alkaloids are a small group of alkaloids present in plants only in minor amounts. They can be subdivided into two categories: those with a totally aromatic nucleus such as doryanine, thalactamine and those which incorporate a C-3,4 single bond (Shamma, 1972b).

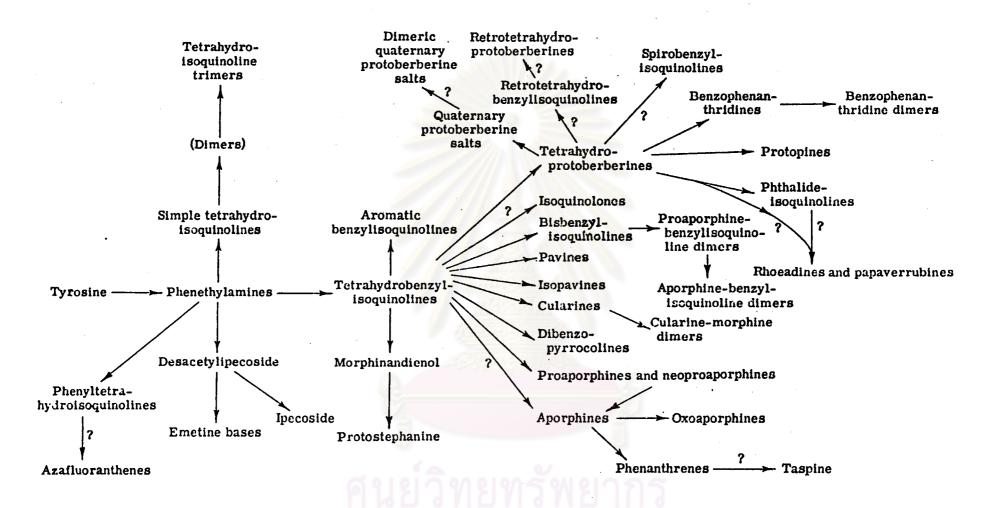
In Stephania species, it was found only one isoquinolone, N-methyl-6, 7-dimethoxy-1-isoquinolone, from Stephania sasakii Hayata (Kunitomo et al., 1981a).

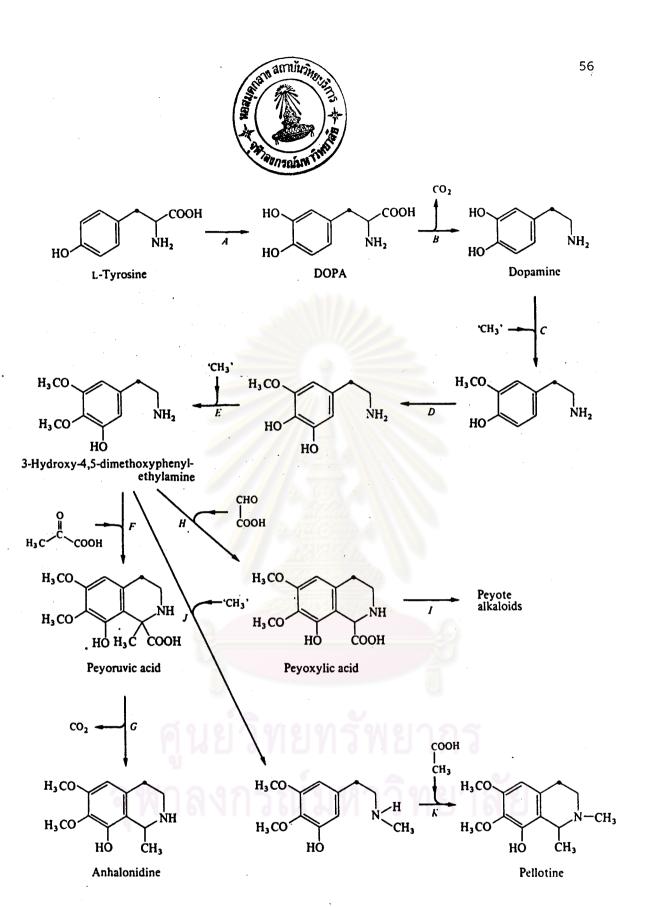
	Substitution				
Alkaloid	2	6	7		
N-Methyl-6, 7-dimethoxy-	СН ³	осн ₃	осн ₃		

XIII. Dibenzazonine

The dibenzazonine alkaloids are the small group of isoquinoline alkaloids. It can be divided into two types, the fully oxygenated bases such as erybidine, and those which have undergone a net deoxygenation with respect to their precursors, for example, protostephanine, laurifinine, laurifine and laurifonine (Shamma and Moniot, 1978c).

In Stephania species, it was found only protostephanine from Stephania japonica Miers. by Kondo and Sanada (1972a). The structure of the alkaloid is shown below:


Protostephanine


Biosynthesis

The biosynthetic routes of isoquinoline alkaloids which, generally accepted are started from the essential amino acid, tyrosine as shown in Scheme 1 (Shamma, 1972a). It is conveniently treated the alkaloids in two parts, starting with the generation of simple isoquinoline structures, then elaborating to more complicated structures (Staunton, 1979).

The formation of the simple tetrahydroisoguinoline alkaloids involves the hydroxylation of the aromatic ring of L-tyrosine followed by decarboxylation and then ring closure with another compound, which provides an additional one or two carbon units, occurs. A typical example of this procedure is seen in the formation of anhalonidine by the peyote cactus (Scheme 2). It is assumed that 3,4-dihydroxyphenylalanine (DOPA), formed by 3-hydroxylation of L-tyrosine, is converted into 3-hydroxy-4,5-dimethoxyphenylethylamine, known to be present in the peyote cactus Lophophora williamsii (Lam.) Coulter, by a series of steps (steps B,C,D and E). The 3-hydroxy-4,5-dimethoxyphenylethylamine then undergoes ring closure (step F) with pyruvate to form peyoruvic acid which is then decarboxylated (step G) to anhalonidine. The proposed intermediate, peyoruvic acid, has been isolated from L. williamsii. The analogue of peyoruvic acid, peyoxylic acid, is formed by the condensation of the precursor amine with glyoxylic acid (step H); peyoxylic acid can also be incorporated into peyote alkaloids (step I). The N-methylated isoquinoline alkaloids are formed by N-methylation of a precursor amine (step J,K) (Goodwin and Mercer, 1983).

Scheme 1 Proven or Probable Biogenetic Loci for the Formation of the Isoquinoline Alkaloids

Scheme 2 The formation of peyote alkaloids from L-tyrosine

The benzylisoquinolines are biosynthesised from L-tyrosine by way of DOPA. From Scheme 3 the first step (step A) involves the conversion of two molecules of L-tyrosine into two molecules of DOPA. One molecule of DOPA is converted into dopamine (step B) whilst the other is converted into 3,4-dihydroxyphenylpyruvate (step C). These two compounds then combine with the elimination of water and carbon dioxide in a Mannich-type reaction to yield a molecule of norlaudanosoline (step D) O- and N-methylation (step E) then lead to (-)-reticuline (sometimes called protothebaine) (Goodwin and Mercer, 1983).

The benzylisoquinoline alkaloids are the precursors of a large array of polynuclear structures including simple benzylisoquinolines, bisbenzylisoquinoline dimers, proaporphines, aporphines, aporphine-benzylisoquinoline dimers, oxoaporphines, protoberberines, benzophenanthridines, protopines, phthalideisoquinolines and hasubanan derivatives. Some biogenetic relationships of these alkaloid groups are shown in Scheme 4 (Cordell, 1981a).

Scheme 3 The formation of 1-benzyl-1,2,3,4-tetrahydroisoquinolines

^{*}SAM = S-adenosylmethionine

Scheme 4 Biogenetic relationships of the major alkaloid groups derived from a tetrahydrobenzylisoquinoline precursor

According to biogenetic theory, the tetrahydroprotoberberine and quaternary protoberberine bases of *Stephania glabra* could be derived in nature from norlaudanosoline (1) derivatives. Reticuline (2) could be oxidised to give the iminium salt (6) which would then cyclise to yield scoulerine (13), the key intermediate. The bases 11, 12 and 15 could then be formed from 13 by unexceptional steps. The tetrahydroprotoberberines (11-15) and the quaternary protoberberines (22-26), however, could also be formed in nature from orientaline (3), protosinomenine (4) and laudanidine (5) via the iminium intermediates 9, 7 and 8 respectively. The dienone intermediate (10) derived from 12 could undergo dienone-phenol rearrangement as shown in 10 to give corydalmine (12). The tetrahydroprotoberberine alkaloid capaurine (16) could be formed in the plants from tetrahydropalmatine (15) by nuclear hydroxylation at position 1 in ring A and corynoxidine by N-oxidation of 15.

The quaternary protoberberine alkaloids (22-26) of S. glabra could be formed in nature by dehydrogenation of the corresponding tetrahydroprotoberberines.

The proaporphine alkaloids pronuciferine (20) and stepharine (19) of S. glabra could be formed in the plant from coclaurine (21) via the dienone (18) intermediate.

The bisbenzylisoquinoline alkaloids cycleanine (30) and N-desmethylcycleanine (29) could be derived in nature from coclaurine derivatives. Oxidative dimerization of (R)-coclaurine (17, R=H) could give the dimeric base (27). O-Methylation of the phenolic

groups in 27 could give norcycleanine (28). Finally N-methylation could yield cycleanine (30). Selective N-methylation of the secondary amine functions in (28) could give N-desmethylcycleanine (29). Cycleanine could also be formed by direct oxidation dimerization of (R)-N-methylcoclaurine (17, R=Me) via (31) (Bhakuni et al., 1983).

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

1 : $R=R^1=R^2=R^3=R^4=H$

2 : $R^1 = R^3 = H$; $R = R^2 = R^4 = CH_3$

3 : $R = R^2 = H$; $R = R^3 = R^4 = CH_3$

4 : $R=R^3=H$; $R^1=R^2=R^4=CH_3$

5 : $R^3 = H$; $R = R^1 = R^2 = R^4 = CH_3$

6 : $R = CH_3$; $R^1 = H$

7 : $R^1 = CH_3$; R = H

 $8 : R=R^1=CH_3$

$$CH_3^{O}$$
 HO
 N^+
 CH_2
 HO
 OCH_2

11 : $R=R^2=H$; $R^1=CH_3$; $R^3=\cdots H$

12 : $R^2 = H$; $R = R^1 = CH_3$; $R^3 = ... H$

13 : $R=R^1=H$; $R^2=CH_3$; $R^3=H$

14 : $R^1 = H$; $R = R^2 = CH_3$; $R^3 = H$

15 : $R=R^1=R^2=CH_3$; $R^3=\cdots H$

18 : R=R¹=H

19 : $R = CH_3$; $R^1 = H$

20 : $R=R^1=CH_3$

 $21 : R=R^1=R^2=H$

22 :
$$R=R^2=CH_3$$
; $X=NO_3$

23 :
$$R=R^1=CH_3$$
; $R^2=H$; $X=C1$

24 :
$$R^1 = R^2 = CH_3$$
; $R = H$; $X = C1$

25 :
$$R=CH_3$$
; $R^1-R^2=H$; $X=C1$

26 :
$$R=R^1 = -CH_2 - ; R^2 = CH_3; X=C1$$

$$27 : R=R^1=R^2=R^3=H$$

28 :
$$R^1 = R^3 = CH_3$$
; $R = R^2 = H$

29 :
$$R=H$$
; $R^1=R^2=R^3=CH_3$

30 :
$$R=R^1=R^2=R^3=CH_3$$

31 =
$$R^1 = R^3 = H$$
; $R = R^2 = CH_3$