Chapter 4
Transport Simulation
Methodologies

The equations explainin ort in our models were introduced

in Chapter 3. In this chapter;. sed for solving the equations
_‘
will be shown. Since the eq mcated especially the pitch-

angle transport equatiomgm: Stic 4l fethods .d. The pitch-angle transport

equation is solved by affini ' {feren ethod, the diffusion-convection

4.1 Transport Sium ;f" n b | Solving the Diffusion-

Before solving thc pro [em smplicated cases, we would like to begin

with solving the d1 dsion j”" ‘celerati ot 5 in the case of a shock,

which is the simplesi’ .
.59) can m solved directly without

a shck equation |
the assumpti ﬁ equation (3.59) to equation (3.61).
In equation aﬂ ﬁﬂ:ﬁ ﬁ %(ﬂ}ﬂ icept at the shock.
This sm #fux is constant.€hroughout the
downmlbcla iﬁ:ﬁ i}I Zhghnﬂho ﬁt]ﬂ downstream

and upstream values are different):

In the case

;b 9
dz

=0 if z#0, (4.1)
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where

dFy
S, =U.Fo— D— (4.2)

is the total z-flux (convective flux + diffusive flux). Since S, is constant, the

solution of equation (4.2) should be in the form of

) , (4.3)

where ¢; and ¢ are constants. S 1 | plasma flows from upstream

(z > 0) to downstream (2 <. 1 ; mlue. Because the particle

dawn

NS \‘ sion ¢z needs to be zero to

R

avoid the divergence of'the cial te 'his means that Fj is a constant

in the downstream region, So dF s equal to zero. Therefore, there is only
convective flux in the dev Al pegiol S, Foigun, where U, is the down-
stream plasma flow speed a s the downstream omnidirectional particle

density. Particles are conve o up stréam to downstream, and although the

pr———p——
O "

particles can diffuse back upstréam, ¢ ;r ot diffuse back very far. Assuming
that the upstream high ; particle ba ¢ry small compared with
the accelerated pa il . ."1"'#. condition Fp = 0

at far upstream. Byﬂuis condition, c¢; needs to be mo, so Fp decreases expo-
nentially in z g L3 thi ition is used with equation (4.2), it
also means tﬂﬁﬂ:ﬁﬁﬂ‘ﬂﬁuﬁt{iﬂzﬂsﬁﬁ al to zero, i.e., the
convectiv: is_bal e" iv, ol
a&m&iﬁ ﬁmiﬂmmxnﬂ;lﬁ eEJation for the

shock region is
dSz (U1 et U2) a(PFO) _
dz ) 3 #e) op

0, (4.4)
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where Uj is the upstream plasma flow speed and 6(z2) is the delta function. Since

the downstream flux is UsFyown while the upstream flux is zero, we have

ds.
dz

= —UsFiound(2). (4.5)

Because Fj is constant throughout the downstream region, we can assuime that

F, at the shock is still the same as Fyua. After substituting equation (4.5) into

(4.6)

Next, we use the prod erm O(pFy )/0p and integrate over p. and
then we get

(4.7)

where 7 is a constant
(4.8)

Since 7 is independent of p, ee that shock acceleration yields a
power-law spectrum!
In the case Of

of F o< p7™” in equaﬁn

is not constant in z. Tbi‘gnakes our pro}‘lﬁm more complicated, so a numerical

st i 4 LA R i

tion, together wlth z-boundary con.dxtlons far u&tream and far downst;ream that

oA R FI5 B 4R DG B B

shootmg method (Press et al. 1988).

gy we use the assumption

3.@), but in this case V - U

Beginning with rewriting equation (3.61) in terms of the flux,

ds,
dz

= —7; lv.u)R, (4.9)
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then reforming equation (4.2) yields

dFy -S,+ U, Fp
= . 4.1
dz D 8.10)

Along with the condition S, = U,F, far downstream, here we normalize Fy far
downstream to be 1 (actually this is arbitrary). When a vy value is given, equations

(4.9) and (4.10) are solved to obtai S, for every z-step from downstream

to far upstream by a fourth- ethod (Press et al. 1988). As

uwéle diffusion-convection equa-
T —

= 0 far upstream by the

'part of the shooting meth
tion, the v value is opti

secant method (Pres

ving the Pitch-

Angle Ir
4.2.1 Numerical o ‘. £ Solving the Pitch-Angle Trans-
port Equation for 2 Compression Region

In order to.solve equﬁﬂ@&‘?“ __; s a complicated partial differen-
tial equation, we usen rence approximation,
: . N . .
which approximates continuous s a8 slopes of straight lines

between two certain discrete points representing the f inctions. To find the steady
state solutionﬂlfg.ﬂwﬁ lELJ i q% i (z,p, s, t = 0). Af-
terward, the distribution wiyle UIIL? t yﬁﬁim function for the
next aawlﬂll’ , T ; 'lm ing. w time steps
until the new dlsﬁgﬁmzlﬁ :]e : :I ﬂ distribution

function.
Ideally, F' would be simultaneously updated due to the processes leading

to fluxes in the z, p, and p directions. Solving that problem would be quite
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difficult even if the finite-difference approximation is used. The problem can
be simplified by using a technique called “operator splitting.” This technique
approximates a simultaneous update of F' as a sequential update. If the time
step for this approximation is small enough it can give an accurate result. In

practice, the series of updating F from ¢ to t + At is as follows:

STEP 1: Update F' due to process ing to a flux in the p-direction, i.e.,

: }cattering, over a time At/2.
Sﬁo a flux in the p-direction,

focussing, differential convecti
STEP 2: Update
i.e., acceleration, over a ti
STEP 3: Update F ux in the z-direction, i.e.,
streaming and convecti
STEP 4: Updat lux in the p-direction over
e to [ processes.

a time At/2 again to‘€omple gt@, !Ib
y S

Note that the update due ». Pr

ided into two parts because

d'
e

this treatment can give more accurate ross mpared with no dividing, for the

samec time-step size, Moreover; we already Ut plit streaming and convection

:‘ d-half time step after

oﬁ splitting. Therefore, the

into a first-half a"-*,:— efore accelerat

acceleration, but thaﬁesu ~

splitting of z-processes;ss&ot needed. T e reason is the streaming, convection,

- w&ww@nw TR —

splitting is notﬂweded either.

YRAIRIATIHHFULIA o s

about elch step are unveiled here.
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STEP 1 & STEP 4: Update F due to p-processes over a half time step
When the entire process leading to the F' update is split, we will get the
process leading to F updating due to the flux in the p-direction, which can be

explained by L #a
dF\ _ 39S,
( 6t) e (4.11)

(4.12)

At p — 1, the u—ﬂuﬁ: i 3 ft-meats ok Ie cannot flow or diffuse
into the region with |u| (co 6 yhic onphysical region. For our
problems, this condition igused to be: \\o dition of the p domain.
In this work, the equations i ) ierically solved by using a finite
difference method. In particuldr, for ca d'p va ‘ue we use the Crank-Nicolson

method, which updates Solvitie the ext ations,
Flu)* — [F( A ) [ ' B/ 2))] . (413)
; old

for each grid point of u at the start of a calculatlon step, where F™* is the inter-
= LN

mediate valufﬁ uﬂe@a ﬂ ?j ﬂﬁwﬂﬁi ﬂv‘ﬁme step. Then, for

ending the caléiilation step, the updated Fis calculated by solvmg the coupled

w9 1) T 1)) N‘MWW 188

[F?ﬂ) ( )( n(u+Aﬂ/2)AMS w(n— A ) y C P, (414)

of all p-grid points at fixed values of z and p. For both STEP 1 and STEP

4, these processes are repeated for n explicit and n implicit substeps, where n
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is repeatedly doubled until the resulting F(u) changes by less than the preset
absolute tolerance or the preset relative tolerance. Each substep represents a
time increment of At/(4n). Hence, we can note that for each STEP 1 or STEP
4 dealing with the time evolution due to j-process in a time interval At/2, the

p-process is calculated for 2n substeps.

STEP 2: Update F due to ime step
To update F' due i &cceleraﬂon the split equa-

tion explaining the evolutione due to t 'w PLGCESS can be written
oF
(o) #248 Buculn
P
a& \\\\
When we denote the te ’\\ \ ch is a constant in p, the

otation,

above equation (4.15) cam'b
mj-l

1 A\

(4.16)
where 7,, called the “accelératign €i me; 4
(4.17)
Moreover, when F' v\ , ation (4.16), the equation
can be expressed in a I‘cher form,
AL -

where po is a ﬁxed reference momentum. This equation (4. 18) in the form of

s AP ALY YR Bt

which are straight lines of slope 1/7, in the graph of In(p) versus ¢t (see Figure

4.1). Mathematically, the solution of equation (4.18) can be written as

pF(t+ At z,pu,p) = pe 2T F(t, 2, p, pe~ A ™). (4.19)
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Inp

Figure 4.1: The inte JOTLASG e The solid lines are at constant t. The
dashes lines are characieristics, alc _ AR  is constant. The value of
F(tiy1,pw) can be founid froy w5 p* )y whic ‘can be estimated by geometric
interpolation between F({;, ' ' —

Therefore, in order to find t F of 2 momentum of interest, F(tit1, Pw),
where ¢ and w are the tin €p.Ar omentum step index, we need to

find F(t;,p*), where p* can O#;"n ron 1d the slope of the characteristics

in the graph of In(p)versus
L7

) (4.20)

ﬂuﬂqﬁﬂﬁswawni

demonstrated il Figure 4.1. Then, F(t., p*) is evaluated by usmg linear interpo-

o R AT O T A

In parti¢ular, F(t;,p*) can be found by this relation:

(4.21)

lOg F(tiap‘) = (1 - fp) log F(tiva-—l) 44 fp IOg F(ti1 pw), (422)



where

log p* — log puw—
fo= g 1

— . 4.23
log pw — log pu—1 A28

When considered in a normal scale, equation (4.22) can be rewritten in another

form,

p‘ expon+1
P F(ti,p") = pu-1F(ti, pu-1) (p ) , (4.24)

\ w—1

where

_"’p‘")‘ (4.25)

Then set p,F(t + At,Pw, 2 aluated p* F(t,p*, z, i), and
the F' update due to the g is finished.

For the step of Faipd ‘ ~ ess, our program has been
improved. The accelefatig / \5 once for every z and p,

and these values are stir stead of being calculated

at each time step. This modification cduce t ‘ ogram running time te about
1/8 of the running time of th J previous ed code.

STEP 3: Updat z- A due tc
Y N,
When the o' de o y evolution due to the
I I

streaming and convec on processes ma.king particles move in the z-direction, is

governed by ﬂ qu %%’njw,ﬁjaﬂﬁ, (4.26)
VMR PSP RIS v o

used for' solving the diffusion-convection equation, the above equation can be
solved by the “total variation diminishing (TVD) method,” which was first pre-

sented by Harten (1983), where the “total variation” (TV) of a function F(z,t)
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at time ¢ is defined by
TV(F(z,t)) = / l?-%t—)l dz, (4.27)
or in the form of finite differences, E

TV(F") = Fr (4.28)

where | and n are indices of Space t) respectively. Ideally, for
Tl ( P Y. y

TV(F") however, in a

numerical simulation, numeri€al@scillatio \ e TV(F"*) > TV(F™),

might occur. In the TVH : cre 1S a o in » 1) that the TV of the next
time step must not }'é crgatef than'the- IV ¢ \\ 1ous time step:

? (t* \\ '
7 = " '
POy ¥ \
This means that the TVD metho FdGests permit any numerical oscillations

S :-*‘ -J* : : 5 5 :
that create new minima and maxima. but: allows some numerical diffusion,

(4.29)

which makes TV (Fat!) su@il(E

The TVD %f: oe’s superbee limiter
(Roe 1983), which is mux 1 rious ﬁuﬂimiters, this flux limiter
is the one that providessthe most aggressiye anti-diffusion (Sweby 1984), corre-

sponding o off b8 o Ybib 3 kT oo TVD o

allow a parameter 7, called the Cogrant numbe nly in the range of0 <9<,

where Gk bbb § bbby 3 BV B o
terms in the bracket in equation (4.26), i.e., dz/dt of particles at the p and p of
interest. In this work, we use a version of TVD that is generalized to allow v > 1

or v < 0 and also 7 varying with position z (Nutaro et al. 2001). Therefore, with
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this generalized TVD method, At can be set to be bigger than it was in previous
TVD methods while the accuracy is still the same; thus the simulation time can
be greatly reduced, approximately a hundred times faster.

In the generalized TVD method, v can be greater than 1. This means

F can be convected (actually, by both convection and streaming processes) more

=28. 1@ is convected for 2.8 z-grid
points, here g is 2, so 2 or1d points, and the remainder
4" =~ — g (in this case 0 , can be accounted for by

the usual TVD method

(4.30)
where S’ 1+ is the flux fron thp Spa 1 due to v/, which can be
calculated by

l'+% '"_‘..;_—_—.“--—;_-_—,—; >/ I-g)Pi-g; (4.31)
where v, j2 = v (zlAz - gl + At _ﬁle index [ + 1/2 refers to

the position of the cellboundary at z +é;/ 2, and ¢; is Roe’s superbee limiter

given by ﬂ‘UEJ’J‘VI Vl‘iWEl']ﬂi
QW’]ﬁ\iﬂi 1IN Y

1 0h<€n=<l (4.32)



67

and ry is defined by
BB

P =
Fig—F

(4.33)

4.2.2 Orbit-Tracing Treatment for Shocks

For the cases of shocks, the pitch-angle transport equation is not used

for the whole range of simulation. ed to explain particle transport just

within the downstream or r particle transport across the

shock, which is a disconti : e uﬁticle—orhit-tracing treatment

In the simulat frate e particle distribution function is trans-
formed from our mixe hen the particle arrives

at the region where = 0, and w is the fre-

¢o Sin(% - 'lpn) (434)

sinf, cos ¢, F 08 0, sin(¢, — @ + sin 6, cos ¢, cos(Vn, — Vo)  (4.35)

SAULINBNINGINT

U
whertﬁ, (ﬁjﬁﬁ%uﬁﬁle afid ¢, is the old gyrophase ofithe particle just
iy AR LA SRV AR B
and 1, respectively (see Figure 4.2). Afterwa.rd., when particles move out from

this region, transformation to the mixed frame is used, and then the particle

transport will be governed by the pitch-angle transport equation again.
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¢ front

-
|
4 |

i |
)
Figure 4.2: T ticle Kelical orbit pathidiear an oblique shock, along with the
relevant defi % o’xai ﬂlﬁﬂﬂﬂ}ﬁﬁll change when par-
ticles cross thqfho ont. e . Leerungnavarat’et al. 2000, adapted
from Teresawa 1979

AN TN INYINY
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4.2.3 Simulation Procedure

After the discussion about the main numerical methods, which are used to
solve the pitch-angle transport equation, we would like to present our procedure,

which is used throughout our simulation and shown in steps as follows:

In this work, particl 1551 in many cases classified by an
upstream magnetic fielc d col prw Commonly used expres-
sions are “parallel” (meaund _ 1°) and “y erpendicular” (6; = 6, = 90°).
s chosen from three cases:
tan @, = 4 called “quasi ' C ~.\' “oblique”, and tanf; =
0.01 called “quasi-para. angle, @ t0g pression width is selected

from b/A; = 0.2, 0.5, 1. se is chosen (corresponding to a

After a ca _ﬁ:‘f the chosen case are
v A
assessed by satisfyln%xo 3 1@ by Ruffolo (1999), based
on de Hoffmann and T?ler (1950):

ﬂummsmmmm .
ammﬂimﬁﬂ'}wmaa =

[ —u?+ U2(1+t2)] = (4.39)

5ls
[;‘z_}‘;] = i (4.40)
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where a bracketed quantity refers to the difference between that quantity on either
side of the shock, U, and wu,, are the plasma flow speed and Alfvén speed in the
shock normal direction, u, is the sound speed, and ¢t = tan 6, where § is the field
angle. For the case of a compression, these shock jump conditions (conservation

laws) still apply when comparing conditions far upstream and far downstream.

Here, we specify us; = 1, = 50 k /s that U, = u, cos ), which are typical

for near-Earth interplaneté s ace, /—400 km /s, which is typical for

a near-Earth interplanets oc an"tl lﬁvm of the chosen upstream

angle. Then we can gc nd th \: giietic compression ratio By /By (via

to/t1), which are used ingbu: Ak ich. me important parameters
g A \.\ .'s\\

for various field angles aré tabulated in

N

3. Finding the Appsopdate Stép Sizes

For this step of ghe work, ,We have to find the step sizes used in cur sim-

AT SN
ulation. They should be small enough tc accurate results, but unnecessarily
small step sizes wa_ste comp;- ?:r 7 r, Ap = 2/N,, where N, =15 is
the number of u-steps, has been tested. Even if"we “ineyease N, to more than

Y}

w i
15, the results are Still the“value corresponding to

A(v/Uy,) = 5. This Value has been also checked. Some smaller Ap values were

used but the)ﬁiﬁiﬂ" amtw uw i all Ap can lead to
some problemanvolvm:goundary con:Eons amﬂgnoscillations, while
A(v/ﬁ)wf.df Q sl iﬁﬂ ﬁﬁ/ lem of finding
step sizes now re@ies nﬁmgﬁﬁor ‘a h Ee. .

Since, for a given p, the change in F due to , p, and z processes, described
by equations (4.11), (4.15), and (4.26), respectively, can be analytically calculated

for a short-time interval when the initial F'(y, z) is set to 1 for all 4 and z, we can
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(a) ”
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compression plane °°mpressmn plane
Y (z=0)
e i

-
-

Figure 4.3: (a) An acce ur plot on u-z plane) over a
short time At, comp 4 tour plot on p-z plane)
use this case to check iven Az and a given At
After simulating particl for: he given Az and At for a
single time step, plots of AF gwﬁne : thod and analytical method

are compared. This method is han performing a full steady-state
T 4
simulation. If the given Az atd-2Aa sirnilar results (see Figure 4.3), this
et l\-".l.p p“i}-.rr‘, - i
should mean that % and At are acc tf not (see Figure 4.4)

In some cases we ha\galso direct at redualg Az and At yields the

same steady state resulfs.o

HTHANYNINYINT

4. Finding arwappropnate p-bgundary condltlon

YD P FBOHIR I BTG i
directxor?s, but not for the p-direction because we do not exactly know what
F should be for a momentum at the boundary of the simulation region. However,

an approximate boundary condition can be found, and the boundary is set far
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(a) (b)
1 Y : 1 - T
fETY £e ?i’l
u{c ul o FEEHT
S :} o
2 1

i

compression plane compression plane

z

; ,"-~—;

To find an a rox1mate boundary condition aﬁow p, representing parti-

cles that will ﬁﬁa % assume a condition F o p~7 at the

boundary (“ iw&Ld ,f\]h e p stand for “peg,”
to yi state. That means we firfd/a 7, value that
gives gﬁﬁ:i& ﬁﬁ i]ﬂm r]bgl Ejn convective
flux. The optimized 7, is called 7, Afterward, F(z, ) at the peg momentum is

“pegged” to this approximate solution, which is used for the p-boundary condi-

tion.
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S, to higher p
Sz = UZ El‘ diffusion S =0
dOWﬂStl‘C;Iw;ln i pe—— | an e — upgtream
convection

Figure 4.5: Schemati at a shock in a steady

state (Picture credit:
5. Full Particle Tra
After the peg bo e can fully simulate particle

transport for many mome on of F' o< p77.

8. Check the ﬂl» : Decay Rate and
Anisotropy Y

|
When the fulﬂmulatlon results are obtained, the upstream decay rate vs.

z and anisotr: ﬂ dix D) are checked against analytic
results for th@.ﬂ ﬁﬁﬁﬁfﬂ Ello sflr‘iom shock (or com-
pressi %\1 he ﬁ)ﬁj -convectio tlon shouW ield accurate
results W a Eﬁ lﬂ % A] El
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7. Boundary Dependence Checking

We do not exactly know the true boundary condition at low p, so we
use an approximate condition and set the p-boundary low enough that it does
not significantly affect the results. This means our simulation results should be

insensitive to small changes in this particular boundary condition.

In this work, the boundary dependeuce of the simulation results is checked
by changing v, in the fourti. alation siépafrom 7., to 7., = 0.3, and we found
that the changed boundary=eondition” Jation wields quite the same results as

the results yielded by . Appendix D) should be correct.

The only exception is ar shock with 7, = 74+ 0.3,

in which the results do z f too much p-flux reaching

AN

the steady state. HowevgF, the Sithulationfesultswith v, = 7., and v, = Yeq—0.3

N\

are quite similar, so we s

8. Redo the Above Se en’ Steéps for Case of Interest

X

AU INENTNEYINS
MIAN TN ING I
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