Chapter 3
Shock and Compression Models

and Transport Equations

In this work, the moti ay particles along magnetic field
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lines in many situations o plained. Normally, Newton’s
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downstream Shock upstream

Y

Figure 3.1: Our model of anfastrophysica ,:H s a unit vector in the direction
of the magnetic field line JU i§ the plasma velocity, 1 is the shock normal vector,
and 0 is the field angle S scrjﬁ;'ﬂ A a ?‘. o \ > labels for upstream and
downstream, respectively. &&f"‘ 4 )

JE.-’.
3.1.1 Shock Modelling . .~

= et WSS, *_
In the cases of shocks, wé model thetn

mar sh ks. Plasma properties
are constant on HV%EE} and they only have
a sudden change at Ee sho OWS o@ model of a shock in a
special reference frame ysed in this work, galled the “de Hoffmann-Teller frame”

(o Hoffman ﬂiwqowmqg 2 IS, B is the mean

magnetic field, ql is the shock normal vector, 6.i ).is the “field ae}le ” the angle
betwedd e i ﬂe‘i@.&%&hﬁ%’% Pedede | irlgdee 5.1, tne
shock ca’l be characterized by 6, and 5. In the de Hoffmann-Teller frame, the
shock front is stationary, the electric field disappears on both sides of the shock,

and the plasma flows along the magnetic field lines (Kirk et al. 1994).
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3.1.2 Compression Region Modelling

Apart from shocks, there are continuous “compression regions,” that can
accelerate cosmic ray particles also (Klappong et al. 2001, K. Klappong M.Sc. the-
sis). In such a region, plasma properties continuously change; of ét;urse, magnetic

field lines change gradually as well.
In this case, we need a gradual f ing magnetic field line configura-
tion, but the field line configuraf ‘ ared with the shock magnetic

. ar,mwould be a straight line

erence Lompressmn plane

field line configuration also.
when z — +00, where 2.4

(at this plane 2=0; an i lane ermore, the curvature of

spatial scale of the axgleratlon echa n, the paralﬂ mean free path, .

At thlsﬁiomt a thathematical description of the hyperbolic magnetic field

i el indode) Wbmclobiil bl i sections,  yper.

bolic functlon see Figure 3.3) that has a trangverse axis, 2a, along the ¥’ axis

ot o Bl 54 TR g e 4 ol b descrbed

by this equatlon

configuration

(v -k _ (& =hy

a? b2

=1. (3.1)

We will use only the upper branch of the hyperbola. We choose to place the
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shock compression region

s

compression plane
z=0)
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The half-conjugate axis, b, is used to parameterize the width of the compression.
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Figure 3.3: A hyperboli : p »ordinates with center at (h, k);
2a is the length of the m ist, onjugate axis, 2c is the
length between the tweorfoci vl
“* pe
extremum point of theip an : 0 =0 and k = —a, so the
[ i
equation should be ‘Mﬁ I
U | (3.2)
) A0
Over and abov bolic function. To describe
this, the hyperboli needs to be transformed
to the unprimed coo@nates re 3.@ by these relations

ﬂ‘LlEl’J WB’W?WEI']ﬂ‘i (3'3’
5] RIAINIUURINGINY o0

When equatlon (3.3) and (3.4) are substituted 1nt;o equation (3.2), it yields

(ycosf + zsinf +a)®  (—ysinf + zcosf)?
a? b?

=1. (3.5)
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Figure 3.4: A sh1 y erbohc functlou in prlmed cordmates following equa-

tion (3.2), mt unpr aes 0 05+ 6,)/2 is the angle
between the E d On = (02—6,)/2
is the angle be een the asymptotic li e 0, and 6, are an-

gles between the upper asymptotic lines and the axls upstream and downstream,

= RRIANNTUARIINEIAE

T91044041
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The above equation is a quadratic equation, and it has two solutions, the upper
branch and the lower branch. In this work, only the upper branch is used. More-
over, the ratio of a to b is set to be constant, equal to tan #j, to retain the same
asymptotic lines, implying that the width b can change independently without

affecting the field angle. The solution function y(z) is

, (3.6)

where A, B, and C are

=7

(3.7)

>? tan? O,

d 0, mean the angles between the

upper asymptotic lines and the z#xis upst m

d downstream, respectively.
In this work, we chara teri compression region magnetic field con-

figuration by #; andyf. be ddirectly compared with

the shock-field angles'in : k rioze, for the compression

regions there is a va,rimle b used to spe e compr&ion width as well.

£)d VIELVL AN EL LY Qo e compression

plane normal to the direction of the ﬁne (see Eigure 3.

TS AT A b e«

compression regions, they change in only one direction, the z-direction, as in the

For a co ressi(flxﬂgion, we work ihthe “normal incidence frame.” In this
frame, the co e

shock model. An illustration of the constant magnetic field intensity and constant

plasma speed in the y-direction is shown in Figure 3.5.
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frame, where plasma flows to encounter the compression plane in the direction
normal to the plane. Plasma speed and magnetic intensity are changed in only 2
direction. 1 is the unit vector in the direction of magnetic field, U is the plasma
velocity, i is compression plane normal vector.
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3.2 Pitch-Angle Transport Equation

At this stage, we would like to introduce the “pitch-angle transport equa-

tion,” used in order to explain the dynamics of cosmic ray particles.

3.2.1 Pitch-Angle Distribution Function

For a system with a large icles, the concept of a distribution

o be identical. Generally, the
_‘
phase space distributiow 1e number of particles in a

and momentum p at a

(3-8)

entum is treated in

spherical coordinatesé: p describes the

‘E momentum, ¢ is the
¢ pitch anglm We can usually assume
gyrotropy, articles aré-iniformly distributed in gyrophase.
Therefore, a ]ﬁﬁag lﬂﬂﬂn mﬂ ’] ﬂ ﬁeded In addition,
for mathem ﬁlcal convenience, the €osine of the ﬁch angle, u, i§ased instead of

6. The% trl QQIﬂujim}ijnwr] cﬂ;L!EDll’;I aigliistribution

functlon are p and p. Now the pitch-angle transport distribution function can be

gyrophase of the moﬂntum, and 0

written as
3N
dzdpdp’

F(z,p,p,t) = (3.9)
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F(z,p,u,t)

pitch-angle transport

imensional volume dzdpdye,

distribution function and the phase
space distribution function ca n befou d by futegrating f(x, p,t) over dz, dy, and

ntegration, we get

(3.10)

where A is the ﬁux—tube‘cross section perp&}dlcular to the z-direction. Similarly,

) B PPN oo

d®*N/(dz dydz dp dy d¢), introduced in §2.1.2, by

A9 AIAIUHAIANENNY o

In addition, in our work, p, i, z and t are not treated in the same frame

of reference. The 2- and t-coordinates are treated in a fixed frame, a stationary
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frame such as the de Hoffmann-Teller frame or the normal incidence frame, while
the momentum components, p and u, are treated in the plasma frame. In other

words, our distribution function, F(z,p, u,t), is treated in a “mixed” frame.

3.2.2 General Form of the Pitch-Angle Transport Equa-
tion

To explain the dynami 'r of cosmic ray particles, trans-

port equations can be us s subset ‘would like to introduce the
——
pitch-angle transport _in{this work™
For simplicit ~'.\\ cle tramsport in one dimension.

Here, we define a on 10

(3.12)

where dN is the numbe e-dimensional cell de. The

number of particles in a cell can ehiange d inflow/outflow at the left or right
boundary. Then the change _-#c_g,a nbe icles in the cell, f(z,t)Az, can
be explained in terms of the flux, S(z. t), flowing thr sugh the cell in z direction:

7 = X
28 >

x) , (3.13)

/

gy e SUHNT

o = (3.14)

= o/
PRAFI T HNTINR TR o
to fluxes! systematic and random processes. A systematic or convection process
is a process in which all particles in a cell move together with the same speed

v (see Figure 3.7a). The flux due to the systematic process can be called the
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Figure 3.7: (a) Systemati ’ . J A vective flux. (b) Random process
leading to diffusive fl
convective flux,” des
(3.15)
where (Az)/At refers to th o-Tate’o qw e z-coordinate of particles. In

this case, (Az)/Al ;,—ﬁm.ﬁ.?
On the other 2 flux due to the random
movement of the partlc}es The flux due to this random process depends on the

oo B BV P2 s

density on the féft-hand side is mo ‘p than on the nght hand 51de Due to random

s YRR SR S o

more than in the opposite way. For the net result, there is the a “diffusive flux”

which is proportional to particle gradient (Fick’s law),

Sz, ) ditrusive % ~ [ oz

(3.16)
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p T

L1 C
ot \\‘\ e particle number in the

Figure 3.8: Fluxes n/ Q\ z, p, and p directions;
i i , ‘e the tg

volume changes.

or

(3.17)

where D is the diffusion inus sign means the diffusive flux

has a flow direction opposite.te. ' b he gradient.
In the caseé-of our distribution function FZipl 1, t), fluxes can flow
\ "7 |
through a given volu sions, 2, p, and 41, so the con-

vective change in the %pswy of partlcles 1n the volume should be described by a

combination ﬂuﬁgﬂ q%gmﬂtaﬁrﬂ?ee dimensions (see

[@m @ﬁﬂi@‘?ﬂmlwq qY

= 62 ap au (3.18)

T oz (%?) ap ((21:) ) au(%l:‘)F>
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In the pitch-angle transport equation, for particle motion along a mag-
netic field, we consider convective fluxes in all dimensions, but only the u-
dimension has a diffusive flux (for reasons to be explained shortly). Then equation

(3.18) can be re-written as

OF (z,p, i, t) 9 (8w g
ot an \ At

(3.19)
where ¢(u) is the pitch-

(3.20)
where a-is the scattez U o 4 i ie form of the scattering coefficient,
v is the particle speed | o’ bind veloeityl is the unit vector along
the magnetic field line, - \ a\~ Skilling 1975, Ruffolo and

Chuychai 1999). Note that't ?::T"— )/c? is required to transform

our mixed frame distribution function t a, pure plasma frame distribution
function used in tie-¥pitch-angle : g ”i.ey the last term of equation

hY

(3.19) (Ruffolo 1995)" .
Cmy’ the (Ax)/At, (Ap)/At, axﬂ (Ap)/At terms can be

expressed followi o § i41999) and P. Chuychai
A i) (1) (01 151
¢

More specifi

senior project

PEAATERNINGIAY  om

(Ap) 1-3u®  9U; 1
R P l;l

2
- . 0U
5 - — v-U—%l-w], (3.22)
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(D)  1-p 9U;  vU 0l
% = =g vV-14pV-U-3ul lJa c2 31
2;: AU  pv’U- 1 =
~ = = V-l]. | (3.23)

Note that the Einstein summation convention is used in the equations

(3.22) and (3.23). Our shock and cempression models are not time-dependent,

so all time-dependent terms in equations/(32.2 and (3.23) are zero. Moreover,
in our work, (Ax)/At redt --.. ' _we are interested in particle
motion along the ma, 1 along the magnetic field
and also U are functions of

t, (Ap)/At, and (Ap)/At

can be described by
only one spatial coo
in equations (3.21), into equation (3.19), the
pitch-angle transport tion along a general, static

magnetic field configur

6F(t,azt,,u,p) _ Ll F
=k 2“v U}F
ﬂumﬁ%—ﬂ%‘ﬂﬂj 3
AWIANNTE u)w(rm ) Y
s ‘PZ" ;ﬂ 1 ’“’:2]1 F|. (3.24)

The first term on the right hand side of equation (3.24) is the “streaming

and convection term.” It describes the change of F' due to the systematic particle



45

motion in the z-direction with respect to our fixed frame. In particular, streaming
explains the z-motion of particles with respect to the plasma, and convection
explains the z-motion of plasma with respect to our fixed frame. Next, the
second term can be called the- “acceleration term.” It explains the change of F

due to systematic changes in particle momentum in the plasma frame, caused by

he fluid flow. The third term is the

ﬂatlc focusing, also known as
ﬁby systematic changes in

magnetic mirroring, explains
p due to gradual changes i
explains the change in F
plasma speed, that is to s ¢ o i I,; yur reference frame causes changes
in p values of the par. interest.( The it ter escribes the change of F' due
to random changes in g of parf aused by small scale irregularities

of the magnetic field, knowan as pite! ' (see §2.2.1). This term is

3 -i'__.r ";T’ H
called the “scattering term.” “===" " =

3.2.3 Pitch-Ang or Cases of Inter-
est Y Y]

For special cases of imerest we need to specify the mnctional form of various
quantities us cj j ral static magnetic
field conﬁgurﬂ ﬁqﬂ ?Im ﬁgj ‘jefc.j:iressmns for Us; 1,

; m ﬁt e specified
for t ﬁfnﬁgﬂﬁ i[iayl mgjgjé(}r
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Shock Case

In the case of shocks (see Figure 3.1), our fixed frame is the de Hoffmann-
Teller frame, in which plasma flows along magnetic field lines. The z-direction is
normal to the shock plane. Moreover, plasma properties and the magnetic field

are constant on a given side of the shock. Therefore, for each side of the shocks

(3.25)
(3.26)
(3.27)
(3.28)
(3.29)

(3.30)

where 6 is 6; or 6, for t cam side, respectively. After

substitution of equations (3.2 V263507 into equation (3.24), we obtain the pitch-

angle transport equagion

Vv, Y
OF(t, z, 1, 9= 2 U
EY ll = - 2 lcose] F

AEEREE (T 1
WY 0 N bAY M 1121015 )

i
parameters for either upstream or downstream. For the transport of particles

across the shock, we use a special treatment that considers the actual orbits of

particles (Sanguansak and Ruffolo 1999, Leerungnavarat et al. 2000).
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Compression Region Case

Turn to the case of compression regions (see Figure 3.5), plasma properties
are not constant as in the case of shocks. Additionally, compression regions are
modelled in the normal incidence frame, with plasma flow in the direction normal
to the compression plane. In this case, the transport equation is more complicated

than in the case of shocks.

1S involving land U in equation
(3.24) for the case of compression regions, wike to start by considering
an infinitesimal distan \agnetic field | c"direction. 41, which satisfies

In order to find expre

' (3.32)
In Cartesian coordinates, \
(3.33)
X (3.34)
Aadiais o
From equations (3.32)-(3.34), we-get the
(3.35)

Because in our model§the 1 1e ) the y-z plane, equation
I

(3.35) can be re—writi:en‘as

]
AUEINENENEING oo
' L o A& Y
YRTANNIRRFIINETINE e
With su?)stitution of the equations (3.36) and (3.37) and B, = 0 into equation
(3.34), we obtain

()

dy .
B=B,|=y+z]), }
B (dzy+z) (3.38)
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where dy/dz can be found from the magnetic configuration of our models (§3.1.2).
Now we can find the unit vector along the magnetic field line, 1. Start

with the definition of 1:
- . B
i=—,
B|
where |B| = \/B} + B2. Then, from the equations (3.38) and (3.39), the value

i,

“-!f )/dz)?

(3.39)

of 1is unveiled:

2. (3.40)

In the normaldncidenice frame, -\}‘*‘-‘W‘*h \in the z-direction only, so

for the case of compre an be written

(3.41)

Sometimes we will also refer , as U, the nal component. Furthermore, as

agged by the plasma. Therefore,

we can describe the piasma velocity by ca ing changes in the magnetic field.

rrom the magneti nfigurat. igure 3.5, the relation
Fd ‘

between the plasm YT : : "J be found:

I

or Uy (3.42)

e EIUUAY u&mﬂﬂm I
4R NI ) (10131

¢ = —|Ui,| - tan b, (3.43)
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where the minus sign means that plasma flows in the —z-direction. Using equa~-
tions (3.42) and (3.43), equation (3.41) yields

—|U1n‘ s tan91 .

U= dy/dz

(3.44)

Finally, since, we can express 1 and U in terms of known parameters, the

others specific terms in equation (3.24 also be written in terms of known

parameters, as shown here:

(3.45)
(3.46)
, (3.47)
(3.48)

ﬂ%ﬁ%ﬂ%ﬂ?ﬂﬂﬂﬂﬁ
ama\aﬂifﬂﬂﬁ‘ﬁﬂmaa o
-~ p(lU(g;l/Zf;fl.fzg) , (3.50)
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3.3 Diffusion-Convection Equation

Here, another transport equation is introduced. It is the “diffusion-
convection equation,” obtained by using the “diffusion approximation” on the
pitch-angle tfansport equation. The diffusion approximation uses the concept

that the effects of pitch-angle scattering and p-dependent streaming together

distribution in the particles’ di-

c& particle diffusion in z-space;

e ——
arly comstant, the pitch-angle transport

with the existence of anisotro

rection of motion (indicat
— .‘

then, if the anisotropy i
equation will be grea wection equation.
Consider the . There is pitch-angle

scattering making p . Furthermore, there is

due to pitch-angle t icéity depends on p. The
combination of the two processes j » z-direction, demonstrated

in Figure 3.10.

More 7115 distribution func-
tion, F(z,p, p qﬁﬁ fajlﬂn ot gﬂﬂ;’jpﬁe isotropic compo-
nent t ﬁ is an odd
functlonqoﬂzlzﬁ, u,n imngmﬁMﬂjl Hen function

of p with integral zero, Fy(z,p, i1, t) (Earl 1974):

F(z,p,u,t) = Fo(z,p,t) + Fi(z,p, u, t) + Fa(2,p, 1, t). (3.51)
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Figure 3.9: The pitch- ndergo a random walk in
x\ \
1, represented by u \\ s process makes particles
move along z with velo€ity ' \ orizontal arrows with -

dependent magnitudes. . Thesis 2002)

Then, equation (3.48)- is gub 1&@ \ gle transport equation for
DA

a general static magnetic field, eaua Sis ' ‘ nsequently, the equation can
fPatid

be separated into two equations: g-odd te and p-even terms:
oF; ’

5, [ L] (Fo + F)

A u&iﬁ&%&m neang.

ARBSATYNI)INLINY,

e [vV-i] (Fo+ F)
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time=t, }1]
-1 » Z
1
time=t, >t pIO
0
e » Z
1
time=t, >t, uTo
I
-1 > Z

Figure 3.10: mﬂﬂ mmmﬁmT in the z-direction
due to the e endent streaming.

Left panels: dm)sn;y plots of particles in the u—z plane. nght panels: particle
¢

denSI‘*ilFW'] AINTUUNIINNAY
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9 pp) d ., 0 pp)d poU-i
Yo 2 6uFl u 2 ou 2 (Fo+ F»), (3.52)

EVEN :
aFo 8F2
5t "ot - To: bl B
(Fo + Fz)
v?2U -1
- 2 V1| (Fo+ F)
povU - 1
= ) Fy.  (3.53)
Next, somesimplifying approximations are made. Eirst, the even anisotropic

‘ r, compared with F and

Ly
F, (Earl 1974). Then ay.graglng over (i, the even equation (3.53) becomes

UL Vtﬁiﬂq UGS
amammymfmmaﬂ .

Evidently, this is much simpler than equation (3.50) (if we are not interested in

component of the distr I

the pitch-angle distribution). However, there is the odd anisotropic distribution
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function, Fy, embedded in the streaming term. Since at the end we would like
to describe particle transport without x, the term of f_ll uFidp will have to be
rewritten. To do this, we integrate the odd equation (3.52) from -1 to v, along
with the assumption that F} is small and nearly constant in space and time. Since

we also consider U to be small (compared with v), we neglect terms of order U F,

v from 0 to . Then we

Rw = -|[

(3.56)

Next, we su%tute equat 0 equaon (3.54), and integrate

and rearrange terms. Usider the assumption of a constant flux-tube cross section

wong the =affetiablib s /| £ V13 WE 1T

yFo _ 0 aFo

0 1
RTTEHA DM Ry
where D represents a coefficient of diffusion in the z-direction, called the “spatial

diffusion coefficient,”

v2l2 /l [ L3 | I/2
D = - I / du] d
2 LM ey Y
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v2l2 1 (1 _ ”'2)2
= z d 3.58
1), e * (3.58)

(using integration by parts).

For a steady state, equation (3.57) becomes

e Df’ﬂ o azU,Fo +omp [%v ; U] Fo=0, (3.59)

Finally, one last asSimption can ake equation (3.59) simpler.

The assumption is 7 —
(2, k) T (3.60)

where 7y is a constant calle ‘Powet- spectral index,” as dis-

cussed in §2.1.2.

differential equation,
) Fo =0. (3.61)

Since the first term, of this dif explains particle diffusion in 2

and the second te ..;, —-.-:i can be called the

“diffusion—convectiorﬁlua on.

J
It can be seen that.the diffusion awoximation makes the equations much

s, chereft, ) QY B P s on 5 e on ke

diffusion apprallmatlon However 4this work w111 resent ev1dence that using this

ol FN L U A ’W%El 188
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