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CHAPTER I 
 

 
INTRODUCTION 

 
 
 
1.1 General Statement 

 

In general, hydrocarbon reservoirs have a certain degree of heterogeneity of 

reservoir properties. To describe the distribution of reservoir properties, geostatistical 

methods are often used. Geostatistics is the most effective technique to characterize 

reservoir properties since it can deal with fine scale heterogeneities and give high-

resolution images of the reservoir. Due to the fact that the number of geostatistical 

cells is tremendous, reservoir properties generated by Geostatistics cannot be handled 

by a dynamic reservoir simulator really well.  

 

In fact, larger grid blocks are needed for reservoir simulation. Reservoir 

properties of coarse blocks must be determined. These properties have to produce 

similar results to the results of fine scale simulation. The coarse scale models are 

supposed to maximize the computational efficiency by minimizing the grid block 

number needed to simulate the reservoir. 

 

 Conventional methods to compute properties of coarse blocks rely on 

upscaling of properties of fine-scale blocks. In general, upscaling is performed for the 

entire field. This approach is called global upscaling in this study. The drawback of 

global upscaling is that it takes a lot of computational time since it has to be 

performed for the entire field. In order to overcome this problem, we introduce a new 

method to determine properties of large grid blocks based on local upscaling. In this 

method, upscaling is performed at only data locations to determine the properties at 

coarse scale for these blocks. After that, the properties of the entire field can be 

determined using geostatistical method. 
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1.2 Objective 
 
 

The purpose of this study is to find the best way to reduce computational time 

to prepare raw data to be used in reservoir simulation. Two different approaches 

which are based on traditional global fine-scale upscaling and local fine-scale 

upscaling are investigated.   

 

1.3 Outline of Approach 

 

To compare two different approaches, there are four steps as following: 

1. Create raw data for three reservoir models. A data set of permeability is 

constructed in the same nature as the real field data such as the spacing of 

wells. All data in these three models are artificially created. In the first and 

second model, the raw data are 14 permeability values sampled from 14 

vertical wells. The study area covers 4,020 feet in the north-south direction 

and 4,010 ft in the east-west direction. In the third model, the raw data are 

28 permeability values sampled from 16 vertical wells and 3 horizontal 

wells. The study area covers 2,000 feet in the north-south direction and 

2,000 ft in the east-west direction.  

2. Create three reservoir models. Three reservoir models are created using 

Geostatistics. Omnidirectional variogram model, representing all 

directions, is used to find the variogram model in this step to examine the 

correlation between the data set and distance among data. In the first and 

second model, Krigging estimation is used to generate fine scale 

permeability distribution. In the third model, Sequential Gaussian 

Simulation is used to generate 60 realizations of fine scale permeability 

distribution. 

3. Determine coarse scale permeability distribution based on global and local 

upscaling.  After fine scale distribution is found, two different approaches 

based on global upscaling and local upscaling are applied to generate 

coarse scale permeability distribution. The upscaling process is based on 

Harmonic-Arithmetic average. 
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4. Compare results. Two methods are used to compare the results which are 

comparison based on values of permeability and comparison based on 

results of reservoir simulation. In comparison based on values of 

permeability, the correlation between coarse scale permeability values 

based on global and local upscaling are determined for the three reservoir 

models. In the comparison based on results of reservoir simulation, only 

coarse scale permeability distribution for Reservoir I and II are used as 

reservoir properties to perform reservoir simulation. There are too many 

realization of coarse scale permeability distribution for Reservoir III. Each 

realization contains a certain degree of randomness. Therefore, it is 

impossible to compare the results. 

 

PETREL and GSLIB softwares were used in the geostatistical modeling while 

REDUCE++ program was used for reservoir simulation.  

 

1.4 Dissertation Outline 

 

 Chapter II reviews previous works concerning with this study.  

 

 Chapter III introduces the methodology used in this study including 

Geostatistics, and upscaling. This chapter is divided into three sections, which are 

presented as follows: 

 - Section 3.1 discusses the principle of Geostatistics. The theory of 

Geostatistics is first presented. After that, a procedure to determine the relationship 

among the set of data and the separating distance is introduced in term of variogram 

analysis. In addition, discussion on Krigging estimation and Sequential Gaussian 

Simulation is included to explain how to estimate the variable value at each location 

of interest. All of the topics in this chapter can be applied to any variable of interest 

that exhibit a certain spatial relationship, including porosity, permeability, water 

saturation, and etc. 
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 - Section 3.2 introduces the upscaling process. It briefly presents the theory of 

upscaling. Two main types of upscaling techniques are also discussed.  

 

 - Section 3.3 discusses two different approaches used to determine coarse 

scale permeability distribution which are based on global and local upscaling of fine 

scale permeabilities.  

 

 Chapter IV presents the approach taken in this study including generating raw 

data, simulating realizations from the data using Krigging estimation and Sequential 

Gaussian Simulation, coarse scale permeability distribution based on global and local 

upscaling and comparing the result using reservoir performance and similarity 

between generated properties.  

 

  Chapter V summarizes the results of this study. The conclusions and 

recommendations are also presented. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 



CHAPTER II 
 
 

LITERATURE REVIEWS 
 
 
 

In order to efficiently manage hydrocarbon reservoirs, field scale simulations 

are performed. Small-scale heterogeneities in the reservoir have a significant effect in 

the performance of reservoir. However, limitations of calculation process for today’s 

reservoir simulator prevent us from performing fine-scale simulation. Therefore, there 

is a need to perform reservoir simulation at a larger scale, and the rock properties have 

to be upscaled well enough to provide a good result.  

 
Upscaling is a technique that transforms a detailed geological model to a 

coarser grid simulation model such that the fluid flow behaviors in the upscaled 

system are at best preserved. Upscaling consists of two parts: gridding and averaging 

(1). Gridding is the part that fine-scale grids are redrawn into coarser grids. Averaging 

is the step to calculate effective properties of the coarse grid blocks while preserving 

fine grid fluid flow dynamics (pressure and flow rates etc.) within the coarse grid 

blocks. Lozano, J.A(2) presented that there are three main techniques of permeability 

averaging, ranged from the simplest techniques which are analytical techniques 

(arithmetic, harmonic, and geometric means) to intermediate techniques such as 

renormalization(3) and the most complicate techniques which are numerical 

techniques (pressure solver method(4)). Simple and intermediate techniques are fast 

but less accurate while numerical techniques are accurate but time consuming and 

costly.  

 

For analytical techniques, it is well known that the arithmetic mean is derived 

for flows parallel to the layering direction and the harmonic mean is derived for flows 

perpendicular to the layering direction(5). However, Cardwell and Parsons(6) 

commented that the arithmetic and harmonic mean give only the upper and lower 

limits of the effective permeabilities rather than the effective permeabilities 

themselves. Warren and Price(7) conducted several numerical experiments to 
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investigate the effective permeability and concluded that the effective permeability of 

randomly generated three-dimensional permeable medium equals the geometric mean  

 

of the individual permeabilities. However, their conclusion is only good for purely 

uncorrelated permeability fields that seldom exist in the real world. 

 

Tang(8) conducted a study to compare coarse model performances of the 

combination of analytical techniques which are Arithmetic-Harmonic and Harmonic-

Arithmetic average. His study shows that the results of Harmonic-Arithmetic average 

are more accurate than the results of Arithmetic-Harmonic average. Therefore, 

Harmonic-Arithmetic average was used in this thesis to upscale permeabilities. 

 

Christie(9) stated that in the pressure-solver method, Christie sets up a single-

phase-flow calculation with specified boundary conditions and then determine the 

value of effective permeability that yields the same flow rate as the fine-grid 

calculation. The results depend on the assumptions made, particularly with regard to 

boundary conditions. The most common assumption is that there is no-flow boundary 

condition. 

 

There are several intermediate averaging techniques between the traditional 

simple averaging methods and the pressure solver techniques. A frequently used 

intermediate method is renormalization. Renormalization includes a series of multiple 

step calculations using an equivalent resistor network approach. There are two major 

problems for the renormalization technique. First, it is not flexible and not accurate 

for some cases. This problem arises because the renormalization technique requires 

that the fine grid blocks must be grouped in a particular fashion, e.g., 2x2 that makes 

solving a three-dimensional problem using the renormalization method quite difficult. 

Second, the unrealistic boundary conditions used in the renormalization technique 

sometimes result in estimation errors over 100%(10). 

 



CHAPTER III 

 

Methodology  
 
 

This chapter presents the theory and technique of geosatistic and upscaling. This 

involves two steps, which are geostatistical analysis and upscaling analysis. 

3.1 Geostatistics 

 

The enormous expense of developing heterogeneous offshore fields and the desire 

to increase ultimate recovery force oil companies to use innovative reservoir 

characterization techniques to determine how various properties are distributed 

throughout a reservoir. Geostatistics is one of many new technologies often incorporated 

into the reservoir characterization process. It is used as a means of calculating the values 

of properties between the actual measured data points (interpolation), thereby creating a 

grid of values which can be used to create maps, cross-sections, and flow models. 

Geostatistics may be defined as a study of spatial correlation between variables. This 

rapidly growing branch of applied statistics and mathematics offers a collection of tools 

aimed at understanding and modeling spatial variability.  

 

Spatial variability includes scales of connectivity (heterogeneity) as well as 

directionality within the data sets. Reservoir data show spatial connectivity to greater or 

lesser degrees because as the distance between two data points increases, the similarity 

between the two measurements decreases. Moreover, the similarity between two 

measurements will also change with direction. By understanding how data values vary 

with distance and direction, we can interpolate values at unsampled locations throughout 

our study area. 
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3.1.1 The basic of the regionalized variable and spatial correlation 

 

The main purpose of regionalized variables and spatial correlation is to estimate 

the continuity of sample properties with distance and direction. For example, two wells in 

same vicinity are more likely to have similar reservoir properties than two wells which 

are further apart; however there are the limitation of distance and direction, needed to be 

considered. Spatial correlation analysis is one of the most important steps in Geostatistics 

because it conditions subsequent processes, such as kriging and conditional simulation 

results, and their associated uncertainties. 

A Regionalized Variable is any variable distributed in space or sometime time. 

Any measurement of Regionalized Variable can be viewed as a realization of random 

function. The theory introduces four definitions, which are Regionalized Variables 

(ReV), Realization ( )iZ x , Random Variable (RV), and Random Function (RF). 

Regionalized Variables are measurable quantities which characterize the natural 

phenomena such as porosity of rock, ore grade, level of ground surface, etc. Realization 

is defined as a collected value of the Regionalized Variables. Random Variable is defined 

as a variable that takes a certain number of numerical values according to a certain 

probalility distribution or in specific a univariate distribution function. And, Random 

Function is the set of auto-correlated random variables or in specific a multivariate 

distribution function with n Random Variables ( n D∈ ; D = study domain). From the 

definition of Random Function, the phenomenon of study domain is completely described 

by RF. In reality, it is impossible to have a complete data to characterize natural 

phenomena. However, it can be said that the Random Function model is an effective way 

to characterize uncertainty inherited in the model. The spatial variability structure can be 

found from the Random Function model. Spatial correlation describes the relationship 

between regionalized variables sampled at different locations. Samples that are correlated 

are not independent with distance. The closer two variables are to each other in space the 

more likely they are related. In fact, the value of a variable at one location can be 
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predicted from values sampled at other (nearby) locations. The two common measures of 

spatial continuity are the variogram and its close relative. 

 

3.1.2 Variogram analysis 

 

Regionalized variable theory uses the concept of semivariance or variogram11 to 

express the relationship between different points on a surface. Semivariance is defined as: 

 

                                       γ(h) = [1/2N (h)] Σ [(Zxi) – Z (xi+h)] 2                                                      (3.1)       

 

Where: 
γ(h)  =  variogram value at distance h  
h   =  lag (separation distance) 
zxi   =  value of sample located at point xi 
zxi+h =  value of sample located at point xi+h     
N(h) =  total number of sample pairs for the lag interval h. 

 

Variogram is used to describe the rate of change of a regionalized variable as a 

function of distance. Variogram value is evaluated by calculating γ (h) for all pairs of 

points in the data set and assigning each pair to a lag interval h. The plot of variogram 

values versus lag distance, called experimental variogram. The experimental variogram is 

based on the values contained in the data set, and is computed as a preliminary step in the 

kriging process. The experimental variogram serves as a template for the model 

variogram. Fig. 3.1 shows the basic components of a variogram model.  
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Figure 3.1: Basic components of a variogram. 

As seen in Fig.3.1, there are three major components of variogram which are sill, 

range, and nugget. The sill represents the maximum variance of the measured spatial 

process being modeled. The lag distance at which the sill is reached by the variogram is 

called the range, which represents the maximum separation distance at which one data 

point will be able to correlate with any other point in the data set. Nugget represents the 

variation at small scale and should be zero at zero distance. But in practice, nugget value 

comes from two sources, measurement error and small scale variation. 

 

3.1.2.1 Variogram search strategies 

 

When computing the experimental variogram, the following search parameters 

must be taken into account. Fig 3.2 shows the example of search strategy along azimuths 

45 and 135 degrees.  
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Figure 3.2: Search strategy along directions 45 and 135 degrees. 

 

- Lag: the lag distance is the separation distance, h, between sample points used 

in calculating the experimental model. 

- Search direction: because reservoir data often exhibit directional properties, a 

certain direction for the search strategy needs to be specified. Such is the case 

when the continuity of a reservoir property is more prevalent in one direction 

than in another direction. The search direction also has a direction tolerance.  

- Bandwidth: the bandwidth restricts the limits (width) of the direction tolerance 

at large lag distances. 

In Fig. 3.2, point A is compared to point B. The bandwidth is indicated by a light 

dashed line about the search direction (heavy dashed line) of 45 degrees. Point B lies 

within one of the search bins designated by the lag tolerance. 

 

3.1.2.2. Common Variogram Models 

 

There are four common variogram models; Spherical model, Power model, 

Exponential model and Gaussian model. 

 

 

Direction Direction
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(i) Power Model 

 

The power model has no sill, so it is called non-transition; its equation is 

defined as:  

                                      = Co + Wh a                (3.2) 

where, 

h    = lag distance, 

Co  = nugget variance > 0, 

W   = slope at origin, 

a     = real number 

The power model is called linear model when “a” equals to one. Fig. 3.3 shows 

the example of power model. 

 

 

 

 

Figure 3.3: Example of Power Model. 

 

(ii) Spherical Model 

 

Based on the behavior at the origin and the presence of sill in the 

increasing of variogram values, the spherical model is called transitional model. Some 

other models that are defined as transitional model are exponential model and Gaussian 

model. This model is described by the following formula: 

 

Distance

(h)

(h)

a

a = 1

C0 
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                   (3.3) 

 

where,  

h   = the lag distance,  

Co  = nugget variance > 0,  

C1 = structural variance > Co, and  

 a = range 

  Fig. 3.4 shows the example of Spherical model. 

 

 

 

 

 

 

Figure 3.4: Example of Spherical Model. 

 

(iii) Exponential model 

Exponential model is a transitional model where the transition of the 

variogram value takes a longer distance comparing to other models. The equation and 

definitions of the exponential model is as follows: 

 

C0 

Distance

(h)
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                        (3.4) 

 

where, 

 0C  = nugget value, 

 1C  = sill value, 

 a  = range, 

                    h  = distance 

  Fig. 3.5 shows the example of Exponential model. 

 

 

 

 

 

 

 

Figure 3.5: Example of Exponential Model. 

 

(iv)  Gaussian model 

  Gaussian model is a transitional model with the S-curve behavior at the 

origin. The equation and definition of Gaussian model is: 
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where, 

  0C    = nugget value, 

   1C    = sill value, 

   a    = range, 

    h    = distance 

 

 Fig. 3.6 shows the example of Gaussian model 

 

 

 

 

 

 

 

Figure 3.6: Example of Gaussian Model.  

          

 3.1.3 Krigging estimation 

  

 Kriging is a geostatistical technique for estimating attribute values at a point, over 

an area, or within a volume. It is a linear-regression technique, normally used to 

interpolate rock properties between known points. There is no bias and its error variance 

is minimized. In the oil field, known points are the properties obtained from wells such as 

seismic and outcrop data. However, the smooth interpolation produced by kriging often 

fails to incorporate small-scale heterogeneity and/or extreme values in the properties 

being distributed, which are important factors in modeling. Fig. 3.7 shows the example of 

krigging estimation.  
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Distance
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Figure 3.7: Example of krigging estimation. 

  

From Fig. 3.7, given samples located at (Zα), where α = 1, 2, 3 and λα is the 

weight of the sample 1, 2, 3. The estimates (Z0) have to be found using krigging 

estimation.  

 

Consider Z0 as a linear combination of the data Zα  

 

Z0 = ∑ λα Zα 

 

Where: ∑ λα = 1 and E (Z0 - Zα) 2 is minimum 

 

 Although, krigging estimation is very robust as it is a linear-regression technique 

and it is an exact interpolator if the control point matches with a grid node, it tends to 

produce smooth images of reality (like all interpolation techniques). In doing so, short 

scale variability is poorly reproduced, while it underestimates extremes (high or low 

values). 
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3.1.4 Geostatistical Simulation 

 

Stochastic modeling, also known as conditional simulation, is a variation of 

conventional kriging or cokrigging. An important advantage of the geostatistical approach to 

mapping is the ability to model the spatial covariance before interpolation. Unlike krigging 

estimation, conditional simulation aims to simulate the real condition of the data. In 

geostatistical simulation, the study starts with the finding of spatial variability structure of 

variable. And, this structure is used as conditional information together with available 

samples to construct the conditional probability distribution function (pdf) at every location. 

Then, the simulated values are uniformly drawn from these estimated pdf. Finally, many 

realization maps are then generated. Each realization map is different from the other and 

conditioned to the available samples and the previously simulated data. Fig. 3.8 shows 

examples of porosity realizations, made from pdf at different locations. 

 
Figure 3.8: Geostatistical Simulation of Porosity realization. 
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3.1.4.1 Gaussian Simulation 

Consider the distribution over a field A  of one or more attribute(s) ( )z u ,u A∈ . 

Geostatistical simulation makes the alternatives, which are equally probable and high-

resolution models of the spatial distribution of ( )z u . To implement Sequential Gaussian 

Simulation, some related algorithms, which are normal score transform, checking for 

bivariate normality, and Simple Kriging (Deutsch and Journel, 1992), need to be 

explained. 

(i) Normal Score Transform 

The assumption of Gaussian Simulation states that the study variable has 

to follow standard normal distribution with zero mean and unit variance. The process of 

transforming original data to standard normal data is carried out using normal score 

transform function. 

Let Z and Y  be the two data sets and their cdf (Cumulative Distribution 

Function) are ( )ZF z and ( )YF y , respectively. The transform ( )Y Zϕ=  identifies the 

cumulative probabilities, which correspond to the Z  and Y  p-quantiles: 

[ ]( ) ( ) , 0,1Y P Z pF y F z p p= = ∀ ∈     (3.6) 

Thus, 

1( ( ))Y Zy F F z−=      (3.7) 

with 1( )YF − ⋅ being the inverse cdf, or quantile function, of Y data set: 

[ ]1( ), 0,1p Yy F p p−= ∀ ∈        (3.8) 

In case that Y  is standard normal with cdf ( ) ( )YF y G y= , the transform 

1( ( ))ZG F− ⋅  is the normal score transform. 
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  (ii) Checking for Bivariate Normality 

To perform the simulation, the bivariate cdf of any pair of va

 lues ( )Y u , ( )Y u h+ , h∀ , has to be normal. In fact, there are several ways to check 

the bivariate normality of a normal score data set but the famous method is comparing the 

experimental bivariate cdf of any set of data pairs { }( ), ( ), 1,..., ( )y U y U h N hα α α+ =  with 

covariance function ( )YC h  , which is shown as follows: 

{ }
2arcsin ( )

2

0

1Prob ( ) , ( ) exp( )
2 1 sin

YC h
p

p p

y
Y u y Y u h y p dθ

π θ
≤ + ≤ = + −∫

+
  

(3.9) 

Where 1( )py G p−=  is the standard normal p-quantile and ( )YC h  is the covariance 

function of the standard normal random function of ( )Y u . 

However, the bivariate probability of the above equation is the non-

centered indicator covariance for the threshold py : 

{ } { }Prob ( ) , ( ) ( ; ) ( ; ) ( ; )p p IY u y Y u h y E I u p I u h p p h pγ≤ + ≤ = ⋅ + = −          (3.10) 

Where 

( ; )I u p  = 1; if ( ) pY u y≤ , 

  = 0; otherwise. 

( ; )I h pγ  = the indicator variogram for the p-quantile threshold py . 

(iii) Simple Kriging 

Simple Kriging uses the basic linear regression algorithm and 

corresponding estimator: 
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[ ]*

1
( ) ( ) ( ) ( ) ( )

n

SKZ u m u u Z u m uα α α
α

λ
=

⎡ ⎤− = −∑⎣ ⎦    (3.11) 

where 

( )Z u    = the random variable model at locationu . 

uα    = the n data locations. 

{ }( ) ( )m u E Z u=  = the location-dependent expected value of random  

        variable ( )Z u . 
* ( )SKZ u   = the linear regression estimator, which is called Simple  

        Kriging. 

The Simple Kriging weights ( )uαλ  are calculated from the following Simple 

Kriging system: 

1
( ) ( , ) ( , ), 1,...,

n
u C u u C u u nβ β α α

β
λ α

=
= =∑    (3.12) 

In the Simple Kriging system, it is required that the means of ( )m u  and 

( ), 1,...,m u nα α =  must be known. In addition, the ( 1)n +  by ( 1)n +  covariance matrix 

( , ), , 0,1,...,C u u nα β α β⎡ ⎤=⎣ ⎦  with 0u u=  are required in conducting the Simple Kriging. 

However, when the random function of ( )Z u  is stationary with constant mean m , and 

covariance function ( ) ( , ),C h C u u h u= + ∀ , Eq. 3.11 can be reduced to: 

*

1 1
( ) ( ) ( ) 1 ( )

n n

SKZ u u Z u u mα α α
α α

λ λ
= =

⎡ ⎤= + −∑ ∑⎢ ⎥⎣ ⎦
   (3.13) 

with the Simple Kriging variance: 

2

1
( ) (0) ( ) ( )

n

SK u C u C u uα α
α

σ λ
=

= − −∑          (3.14) 

where 2 ( )SK uσ  is Simple Kriging variance. 
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In a nutshell, the mean and variance of conditional probability distribution are 

calculated using Simple Kriging system by which the kriged estimated values represent 

the means and the Kriging variances represent the variances. 

 

3.1.4.2 Sequential Gaussian Simulation Procedure 

Sequential Gaussian Simulation is an estimation model defined under 

multigaussian assumption. The conditional probability distribution functions are fully 

characterized by their means and variances given by Simple Kriging System. The 

estimated means and variances honor both available data and simulated data. The 

procedure to execute the simulation is presented as follows: 

1. Transform the data set into a standard normal score data. 

2. Check for Bivariate Normality of the normal score data. The data must meet 

the condition, if not, other simulation should be considered. 

3. Construct variogram analysis to fit with a proper model. 

4. Select at random grid node. 

5. Krigging estimate is performed at selected visited node to estimate the mean 

and variance. 

6. Represent a simulated data from that distribution, and add the simulated data 

to the data set. 

7. Select another grid node at random and repeat the procedure for Simple 

Kriging until all grid nodes are simulated. 

8. Back transform the simulated data to the original space, and the realization 

map is created. 

9. Provide different random number sequences for random visited nodes and 

repeat the same procedure for additional realization maps. 
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In summary, Sequential Gaussian Simulation is a high performance tool to 

estimate fine-scale properties distribution. Fig. 3.9 shows the flowchart of Sequential 

Gaussian Simulation procedure. 
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Figure 3.9: Sequential Gaussian Simulation process. 
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Geostatistical method is an effective way to estimate reservoir parameters such as 

permeability, net oil thickness, and porosity. In practice, the procedure of geostatistical 

estimation or simulation involves these steps of work: (1) preparing the raw data; (2) 

finding variogram model; (3) generating fine-scale property distribution based on kriging 

estimation or stochastic simulation.  

 

3.2 Upscaling 

 

Generally, geologic models created using geostatistical techniques are very huge 

models. There are typically millions of cells that make up the model comprising of many 

detailed features of reservoir. Moreover, studying a fine-scale reservoir model requires a 

great deal of time and file management. To simulate a reservoir at a very fine resolution 

is unreasonable and financially unacceptable. Thus, to reduce simulation time and cost, 

the reservoir engineer coarsens the fine grid of the original geological model and assigns 

new reservoir properties for the coarse grid blocks. This process is called upscaling.  

 

Upscaling methods are expected to reduce the size of the original geological model 

with minimum lost of accuracy. The values are assigned for the properties of coarse grid 

blocks in such a way that the coarse grid blocks would reproduce almost the same behavior 

as the fine grid blocks.  Upscaling techniques can be divided into two main techniques: 

analytical and numerical. 

 

3.2.1 Analytical Techniques 

 

Analytical techniques are the simple and easy way for averaging compared with 

numerical techniques. In this study, we will describe three types of averaging: simple 

averaging, composite 1-D solutions, and renormalization technique. 
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3.2.1.1 Simple Averaging 

 

In a simple averaging method, the averaging formula is not justified by reference 

to an approximate flow solution. The examples of simple averaging are arithmetic and 

harmonic averaging. Fig. 3.10 shows an example of finding average permeability (kIi) in 

one direction using arithmetic and harmonic averaging.  

 

 

 
 

Figure 3.10: An example of simple averaging. 

 

 kIi represents the absolute permeability of the microcell in the I-direction and dIi 

represents estimate of the length of the microcell in the I-direction for microcell i.  

 

(i) Arithmetic averaging  

 

Arithmetic averaging is equivalent to assuming that all the microcells are in 

series. The Arithmetic averaging equation is shown below: 

 

                                                ∑∑ 22
i

ii

i

i

dI
kIV

dI
VKI =                                          (3.15) 

 

 where 

  KI  = Upscaled absolute permeability in the I-direction 

  Vi = Estimated volume of the cell i 

 

kIi

dIi
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(ii) Harmonic averaging 

 

Harmonic averaging is equivalent to assuming that all the microcells are in 

parallel. The Harmonic averaging equation is shown below: 

 

                                      ∑∑
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ii

i

i

i

kIV
dI

V
dI

KI
=                                          (3.16) 

  

 

3.2.1.2 Composite 1-D Solutions 

 

 This averaging technique is a combination between arithmetic and harmonic 

averaging. There are two types of combination which are harmonic-arithmetic and 

arithmetic-harmonic averaging. Fig. 3.11 shows an example of the flow direction and 

microcells. 

 

 

 
 

Figure 3.11: Flow direction and microcells. 

 

(i) Harmonic-arithmetic averaging 

 

In this method, microcells are averaged using Harmonic averaging first in the i- 

direction and then arithmetic averaging is performed in the j-direction as shown in Fig. 

3.12. The equation of harmonic-arithmetic is shown below.  

Flow Direction

i

j



 

 

 
  
  26

 
 

                                           ∑ ∑
∑∑

=
j j

i ij

ij

i ijij

ij

V
dI

KI

kIV
dI 22

11
                               (3.17) 

 

   

 

 

 

 

Figure 3.12: Harmonic-arithmetic averaging. 

 

(ii) Arithmetic-harmonic averaging 

 

In this method, microcells are averaged using arithmetic averaging first in the j- 

direction and then harmonic averaging is performed in the i-direction as shown in Fig. 

3.13. The equation of arithmetic-harmonic is shown below.  
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Figure 3.13: Arithmetic-harmonic averaging. 

k1

k2

k3

KI 

KI k1 k2 k3 k4

kij 

kij 



 

 

 
  
  27

 
 

3.2.1.3 Renormalization  

 

The renormalization3 method considers adjacent blocks as an equivalent resistor 

network assuming that pressure along the boundaries perpendicular to the flow direction 

are constant. Then, the equivalent resistor between the midpoints of the edges is equal to 

1/K for a block of permeability K. This is equivalent to two resistors in series of 1/ (2K) 

as shown in Fig. 3.14.  

 

 
 

Figure 3.14: Permeability in resistor network. 
 

 

Effective permeability is calculated in only one direction. Therefore, we can set 

the end edges to uniform pressures. Fig. 3.15 shows the transformation from permeability 

type to resistor type. 

 

 
 

P1 and P2 are constant. 
 

Figure 3.15: Permeability in resistor network. 
 
 



 

 

 
  
  28

 
 

The dead end branches are trimmed off and joined together. Fig 3.16 shows a 

sketch of an equivalent resistor network. 

 
 

Figure 3.16: New equivalent resistor network. 

 

 From Fig. 3.16, this network may be simplified by use of the star-triangle 

transformation to give a circuit of resistors in series and parallel as depicted in Fig. 3.17.  

 

 
Figure 3.17: Star-triangle transformed equivalent resistor network. 

 

where 

a = 1/[4(K1+K3)], b = 1/(4K1), c = ½(1/K1+1/K2), d = 1/(4K2) 
 e = 1/[4(K2+K4)], f  = 1/(4K3), g = ½(1/K3+1/K4), h = 1/(4K4) 

 

This circuit is equivalent to Fig 3.18. 

 

 

1/ (2K1)

1/ (2K3)

1/ (2K2) 

1/ (2K4)
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Figure 3.18: Transformed equivalent resistor network. 

 

where 

B=3/4[(K1+K2)/K1K2], C=3/4[(K3+K4)/K3K4] 
 
The effective permeability of the four permeabilities is then 

 

f(K) =  4(K1+K3)(K2+K4)[K2K4(K1+K3)+K1K3(K2+K4)]X    (3.19) 

   {[K2K4(K1+K3)+K1K3(K2+K4)][K1+K2+K3+K4]+ 

   3(K1+K2)(K3+K4)(K1+K3)(K2+K4)}-1 

 

 
 3.2.2 Numerical techniques 

 

A myriad of numerical methods has been introduced by various researchers. Most 

of these methods are able to provide higher accuracy than the analytical procedures; 

however, they require solving flow equations at the fine scale which is time consuming. 

Numerical upscaling is usually used for complex modeling in situations where accuracy 

is the most important factor. The principle is that the detailed, stochastic description is 

divided into a number of sectors easy to accommodate in a flow simulator. In each of this 

sector, the flow equation is solved under stationary conditions; average pressures and 

inter-region flows are computed for regions. 

 

The pressure-solver method is the most accurate technique to calculate the 

permeability of a large coarse block containing many fine grid blocks. The upscaled 
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permeability is determined by solving flow equations with constant pressure and no-flow 

boundary conditions. This approach solves the fine-grid pressure distribution first and 

then calculates the permeability using the pressure drop and the calculated flux. The 

pressure-solver technique is generally limited by the size and complexity of a geologic 

model.  

 

3.3 Coarse-scale Permeability Distribution 

 

Upscaling approaches in this study are divided into two main categories, which 

are upscaling of global fine-scale geostatistical estimates (conventional upscaling) and 

upscaling of local fine-scale geostatistical estimates (upscaling only at certain location to 

reduce the upscaling time). 

 

3.3.1 Coarse-scale Permeability Distribution Based on Upscaling of Global Fine-

scale Geostatistical Estimates 

 

This is a conventional approach used to upscale reservoir properties by first 

applying Geostatistics to determine fine-scale geostatistical estimate for every block and 

then upscaling reservoir properties for the entire area of interest. 

 

The process of the global upscaling can be divided into three stages. The first step 

is collecting data at well locations. Fig. 3.19 sketches well locations at which 

permeability is sampled. Second, we use Geostatistics to expand the sampled data to fine-

scale field estimates. Fig. 3.20 displays scale of permeability distribution obtained from 

Geostatistics. Third, global upscaling of the fine-scale estimates to coarser field estimates 

is performed. Fig. 3.21 shows scale of distribution after global upscaling.  
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Figure 3.19: Permeabilities sampled at well locations. 

 
 
 
 
 
 

 
 

Figure 3.20: Scale of permeability distribution obtained from Geostatistics. 
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Figure 3.21: Scale of permeability distribution after global upscaling. 

 

 

 3.3.2 Coarse-scale Permeability Distribution Based on Upscaling of Local Fine-

scale Geostatistical Estimates 

 

In this approach, Geostatistics is applied to obtain the fine-scale geostatistical 

estimate for every block. Then, we upscale the local fine-scale geostatistical estimates, 

i.e., upscaling is performed only in the blocks where the wells are located. After that, 

Geostatistics is applied again to determine the distribution of reservoir properties at 

coarse scale. 

 

  There are four steps involved in this approach. The first step is to collect data at 

well locations. Fig. 3.22 shows permeability sampled at well locations. Second, 

Geostatistics is applied to expand the sampled data to fine-scale field estimates. Fig. 3.23 

displays scale of permeability distribution obtained from Geostatistics. Third, local 

upscaling of fine-scale estimates is performed, i.e., upscaling only the blocks at which the 

wells are located. Fig. 3.24 shows local upscaling. Finally, Geostatistics is used to expand 
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the local upscaled estimates to full field upscaled estimates. Fig. 3.25 displays scale of 

permeability obtained from Geostatistics.  

 

 

 
 

Figure 3.22: Permeabilities sampled at well locations. 
 
 
 
 
 

 
 

Figure 3.23: Scale of permeability distribution obtained from Geostatistics. 
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Figure 3.24: Local upscaling. 

 

 

 

 

 

 
 

Figure 3.25: Scale of permeability obtained from Geostatistics. 

 

 

   

 

  

 

 

  

 



CHAPTER IV 
 

RESULTS AND DISCUSSION 

 
This chapter composes of four sections, which are generating raw data, creating 

realizations, upscaling, and discussion of results. Three synthetic reservoir models were 

used in this study. The first and second reservoirs were constructed based on Krigging 

estimation (Reservoir I and II). The third reservoir was constructed using stochastic 

simulation (Reservoir III). These three reservoirs were upscaled using two different 

approaches, local and global upscaling. Then, the results of both local and global 

upscaling were compared based on two methods which are values of permeability and 

results of reservoir simulation.  

 

4.1 Generating raw data 

 

In order to compare the performance of local and global upscaling techniques, 

artificial data sets were generated. There are two points to consider in generating the data, 

which are well spacing and value of variable of interest, which is permeability. Well 

spacing in this study is approximately about 1640 feet. The permeability value is between 

30 and 220 md. There are 14 permeability values sampled from 14 vertical wells in 

Reservoir I and II, located in the study area of 4,020 × 4,010 ft2 which can be divided into 

400 × 400 blocks with the size 10 × 10 ft2. For Reservoir III, 28 permeability data were 

taken from 16 vertical wells and 3 horizontal wells, located in reservoir with an area of 

2,000 × 2,000 ft2 which can be divided into 200 × 200 blocks with the size 10 × 10 ft2. 
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Table 4.1: Permeability values at sampled locations for Reservoir I. 

 
X-coordinate Y-coordinate Permeability  

(feet) (feet) (md) 
840 3590 70 

1840 3590 30 
3340 3590 130 
640 2730 40 

1840 2750 190 
2840 3090 170 
1340 1980 90 
2840 1990 100 
840 1380 140 

1840 1070 120 
3340 1340 220 
840 590 80 

2840 590 150 
3340 1050 200 

 

 

 

 

 

 

 

 

 

 

 

Table 4.2: Permeability values at sampled locations for Reservoir II. 

X-coordinate Y-coordinate Permeability 
(feet) (feet) (md) 
840 3590 40 

1840 3590 100 
3340 3590 180 
640 2730 190 

1840 2750 50 
2840 3090 60 
1340 1980 120 
2840 1990 100 
840 1380 190 

1840 1070 30 
3340 1340 160 
840 590 110 

2840 590 130 
3340 1050 170 
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Table 4.3: Permeability values at sampled locations for Reservoir III. 

 

 X-coordinate Y-coordinate Permeability 
(feet) (feet) (md) 
160 250 112 
270 720 128 
330 1260 115 
340 1260 118 
350 1260 121 
360 1260 124 
230 1780 83 
480 320 118 
490 330 120 
500 340 122 
510 350 124 
540 1640 102 
760 720 138 
740 1280 142 
860 180 96 
990 1100 150 
960 1650 108 
1230 430 106 
1300 900 132 
1310 1520 126 
1440 1290 136 
1690 320 78 
1620 900 106 
1620 920 108 
1620 940 110 
1620 960 112 
1780 1780 100 
1940 1250 95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Tables 4.1, 4.2, and 4.3 show permeability values at sampled locations for 

Reservoir I, II, and III respectively. Fig. 4.1 shows the location map of the permeability 

data for Reservoir I and II while Fig. 4.2 shows the location map of the permeability data 

for Reservoir III. 
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Figure 4.1: Location map of permeability data for Reservoir I and II. 
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Figure 4.2: Location map of permeability data for Reservoir III. 
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As shown in Fig. 4.2, Reservoir III has 16 vertical wells and three horizontal 

wells scatter around the study area. Horizontal wells can be recognized from close data 

locations. 

 Table 4.4 shows a statistical analysis of the permeability data for Reservoir I. The 

mean of the data is 123.57, and variance and standard deviation are 3455.49 and 58.78, 

respectively. The minimum and maximum values of the data are 30 and 220, 

respectively. The first, second, and third quartiles are 75, 125, and 160, respectively. 

Coefficient of variation, skewness, and kurtosis are 47.57, 0.03, and 1.97, respectively. 

The statistics of Reservoir I show that values of the data spread from 30 to 220. The 

coefficient of variation is very high indicates there are high variation in the sample. The 

small skewness (0.03) close to zero and the small difference between the median (125) 

and the mean (123.57) indicate that the histogram of the data is approximately 

symmetric. 

 Table 4.5 shows a statistical analysis of the permeability data for Reservoir II. 

The mean of the data is 116.43, and variance and standard deviation are 3178.57 and 

56.38, respectively. The minimum and maximum values of the data are 30 and 190, 

respectively. The first, second, and third quartiles are 55, 115, and 165, respectively. 

Coefficient of variation, skewness, and kurtosis are 48.42, -0.13, and 1.69, respectively. 

The statistics of Reservoir II show that values of the data spread from 30 to 190. The 

coefficient of variation is very high indicates there are high variation in the sample. The 

small skewness (-0.13) close to zero and the small difference between the median (115) 

and the mean (116.43) indicate that the histogram of the data is approximately 

symmetric. 

 Table 4.6 shows a statistical analysis of the permeability data for Reservoir III. 

The mean of the data is 115.35, and variance and standard deviation are 282.98 and 

16.82, respectively. The minimum and maximum values of the data are 78 and 150, 

respectively. The first, second, and third quartiles are 106, 116, and 124, respectively. 

Coefficient of variation, skewness, and kurtosis are 14.58, -0.16, and 2.87, respectively. 
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The statistics of Reservoir III show that values of the data spread from 78 to 150. The 

coefficient of variation is very high indicates there are high variation in the sample. The 

small skewness (-0.16) close to zero and the small difference between the median (116.5) 

and the mean (115.35) indicate that the histogram of the data is approximately 

symmetric. 

Table 4.4: Statistics of permeability data for Reservoir I. 

 

Parameters Values 
Mean 123.57 

Variance 3455.49 
Std. Dev. 58.78 
Minimum 30.00 

25th% 75.00 
Median 125.00 
75th% 160.00 

Maximum 220.00 
Coefficient of variation 47.57 

Skewness 0.03 
Kurtosis 1.97 

 

Table 4.5: Statistics of permeability data for Reservoir II. 

 

Parameters Values 
Mean 116.43 

Variance 3178.57 
Std. Dev. 56.38 
Minimum 30.00 

25th% 55.00 
Median 115.00 
75th% 165.00 

Maximum 190.00 
Coefficient of variation 48.42 

Skewness -0.13 
Kurtosis 1.69 
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Table 4.6: Statistics of permeability data for Reservoir III. 

 

Parameters Values 
Mean 115.35 

Variance 282.98 
Std. Dev. 16.82 
Minimum 78.00 

25th% 106.00 
Median 116.50 
75th% 124.00 

Maximum 150.00 
Coefficient of variation 14.58 

Skewness -0.16 
Kurtosis 2.87 

 

 

4.2 Creating the realizations 

 

This part presents the procedure for generating geological model of the 

permeability. In this section, there are two different methodologies based on estimation 

process in Geostatistics which are Krigging estimation for Reservoir I and II and 

Sequential Gaussian Simulation estimation for Reservoir III. 

 

4.2.1 Krigging estimation for Reservoir I and II 

 

For Reservoir I and II, geological models based on Krigging estimation were 

constructed using a program called PETREL12. 

Variogram calculations of these data and variogram modeling were also 

constructed using PETREL program. Since there are a few points, directional variogram 

is difficult if not impossible to determine. Therefore, this study used omnidirectional 

variogram which can represent variogram in all directions.   
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Figure 4.3: Omnidirectional variogram for Reservoir I. 

 

Fig. 4.3 shows the variogram values and its model for Reservoir I. The parameters 

used to calculate this variogram are 321.5 feet of lag distance, 160.75 feet of lag 

tolerance, 8 lags, 0 degree of direction, 90 degree of angular tolerance, and no limits of 

maximum bandwidth. The solid line shown in the figure is the variogram model. Table 

4.7 shows the model parameters of variogram for Reservoir I which is spherical model 

with nugget of 0.00, range of 1,400 feet, and sill of 3,240. 

 

Table 4.7: Variogram model parameters for Reservoir I. 

 

Parameters Values 
Model Spherical 
Nugget 0.00 
Range 1,400 feet 

Sill 3,240  
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Figure 4.4: Omnidirectional variogram for Reservoir II. 

 

Fig. 4.4 shows the variogram values and its model for Reservoir II. The 

parameters used to calculate this variogram are 383.9 feet of lag distance, 191.95 feet of 

lag tolerance, 8 lags, 0 degree of direction, 90 degree of angular tolerance, and no limits 

of maximum bandwidth. The solid line shown in the figure is the variogram model. Table 

4.8 shows the model parameters of variogram for Reservoir II, which is spherical model 

with nugget of 0.00, range of 1,510 feet, and sill of 4,080. 

 

Table 4.8: Variogram model parameters for Reservoir II. 

 

Parameters Values 
Model Spherical 
Nugget 0.00 
Range 1,510 feet 

Sill 4,080  
 

 

After the variogram model parameters were found, these parameters were used to 

create fine-scale geostatistical model based on Krigging estimation method. Figs. 4.5 and 

4.6 show the picture of geological model for Reservoir I and II, respectively. The red 

color represents high values of permeability while the blue color represents low value of 

permeability. Table 4.9 and 4.10 show statistics of permeability data based on Krigging 

estimation for Reservoir I and II, respectively.  
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 Figure 4.5: Geological model using Krigging estimation for Reservoir I. 

 

Table 4.9: Statistics of permeability data based on Krigging estimation for Reservoir I. 

 

Parameters Values 
Mean 117.14 

Variance 944.48 
Std. Dev. 30.73 
Minimum 31.21 

25th% 100.04 
Median 117.40 
75th% 132.71 

Maximum 217.52 
Coefficient of variation 26.24 

Skewness 0.15 
Kurtosis 3.30 

 

 The statistics of permeability data based on Krigging estimation show that the 

data was smoothed by Krigging estimation. The variance reduces from 3455.49 down to 

944.48 and Standard deviation from 58.78 to 30.73.   
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Figure 4.6: Geological model using Krigging estimation for Reservoir II. 

 

Table 4.10: Statistics of permeability data based on Krigging estimation for Reservoir II. 

 

Parameters Values 
Mean 111.54 

Variance 1032.04 
Std. Dev. 32.13 
Minimum 32.09 

25th% 86.87 
Median 110.69 
75th% 136.12 

Maximum 188.71 
Coefficient of variation 28.80 

Skewness 0.04 
Kurtosis 2.23 

 

The statistics of permeability data based on Krigging estimation show that the 

data was smoothed by Krigging estimation. The variance reduces from 3178.57 down to 

1032.04 and Standard deviation from 56.38 to 32.13. 
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4.2.2 Sequential Gaussian Simulation estimation for Reservoir III 

 

 The simulation process can be divided into 2 steps, which are finding the spatial 

variability structure of permeability variable (known as variogram model) and conducting 

the simulation. The first step, constructing the variogram model, is executed by Variowin 

computer program, which is a good graphic display computer program that can show 

analysts how fit of a model in comparison with the calculated variogram values. The 

second step which is performing the Sequential Gaussian Simulation is implemented by 

GSLIB program. 

  

 4.2.2.1 Constructing the variogram model 

 

 To perform the Sequential Gaussian Simulation, the sample values have to be 

transformed to normal score data before further analysis due to its assumption of 

multigaussian distribution. In this study, the data were transformed using GSLIB 

program. The normal score data are presented in Table 4.11. 
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Table 4.11: Permeability values at sampled locations and normal score values. 

 

X 
coordinate 

Y 
coordinate 

(Feet) (Feet) 
Permeability 

values 
Normal score 

values 
160 250 112 -0.1347 
270 720 128 0.8544 
330 1260 115 -0.0448 
340 1260 118 0.1347 
350 1260 121 0.3186 
360 1260 124 0.5142 
230 1780 83 -1.6112 
480 320 118 0.0448 
490 330 120 0.2257 
500 340 122 0.4144 
510 350 124 0.6193 
540 1640 102 -0.8544 
760 720 138 1.3452 
740 1280 142 1.6112 
860 180 96 -1.1503 
990 1100 150 2.1002 
960 1650 108 -0.4144 

1230 430 106 -0.6193 
1300 900 132 0.9915 
1310 1520 126 0.7318 
1440 1290 136 1.1503 
1690 320 78 -2.1002 
1620 900 106 -0.7318 
1620 920 108 -0.5142 
1620 940 110 -0.3186 
1620 960 112 -0.2257 
1780 1780 100 -0.9915 
1940 1250 95 -1.3452 

 

Table 4.12 shows the statistics of the normal score data, which were transformed 

from the original permeability data. The new data have a mean of zero and variance and 

standard deviation of one, which are the characteristics of standard normal distribution. 

The minimum and maximum values are -2.1 and 2.1, respectively. The first, second, and 

third quartiles are -0.732, 0.000, and 0.619, respectively. Coefficient of variation, 

skewness, and kurtosis are 0, 0, and 2.601, respectively. 
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Table 4.12: Statistical analysis of the normal score data. 

 

Parameters Values 
Mean 0.00 

Variance 1.00 
Std. Dev. 1.00 
Minimum -2.10 

25th% -0.73 
Median 0.00 
75th% 0.62 

Maximum 2.10 
Coefficient of variation 0.00 

Skewness 0.00 
Kurtosis 2.60 

 

After the normal score data were prepared, variogram calculations of these data 

and a variogram modeling were performed using the Variowin program. Fig. 4.7 

illustrates the plot of the experimental variogram values at difference distances and its 

model. 

 

Figure 4.7: Omnidirectional variogram and its variogram model for normal score 

data. 
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The parameters used to calculate this variogram plot are 400 feet of lag spacing, 

200 feet of lag tolerance, 6 lags, 0 degree of direction, 90 degree of angular tolerance, and 

no limits of maximum bandwidth. The numbers shown near the black dots are the 

number of pairs that were used in the calculation for each lag distance and the black solid 

line is the variogram model. Table 4.13 shows the model parameters of variogram, which 

are spherical model with nugget of 0.02, range of 548 feet, and sill of 0.98. Sequential 

Gaussian Simulation technique was used to generate 60 realizations using variogram 

model obtained previously.  

 

 

Table 4.13: Variogram model parameters of normal score data. 

 

Parameters Values 
Model Spherical 
Nugget 0.02 
Range 548 feet 

Sill 0.98 
 

The variogram model for Reservoir III exhibits a small nugget effect, with the 

nugget value of 0.02 which is approximately 2 percent of the sill value. The normal score 

permeability data yields a correlation distance of 548 feet, defined within the range 

distance and representing all directions. The sill value (0.98) almost equals to the normal 

score permeability data variance (1.00). In overall, this variogram model represents the 

spatial variability structure of the transformed permeability data, and it will be used as 

conditioning information in the simulation process. 

Variogram calculation is an important step because the accuracy of the estimated 

values or realizations mostly depends on the variogram model. Hence, many variogram 

models were tried when fitting the variogram plot to find the best fit model. After a 
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variogram model is found, there is a condition that the data set has to meet the bivariate 

normal distribution before conducting Sequential Gaussian Simulation. 

4.2.2.2 Checking for Bivariate Normality 

The check for bivariate normality can be carried out by comparing the theoretical 

variogram of Bivariate Gaussian model with experimental indicator variogram at several 

cut-off values, such as second quartile, median, and third quartile. In this study, the 

median was chosen to be the cut-off value to examine the Bivariate Normality around the 

average of data set. In the checking process, the experimental indicator variogram 

corresponding to a specific cut-off, median cut-off in this case was compared to the 

theoretical variogram calculated from Eq. 3.9. The procedure for this check can be 

elaborated as follows: 

1. Calculating an experimental indicator variogram at median cut-off, which is 

116.5 for this study. 

2. Calculating the theoretical indicator variogram of Bivariate Gaussian model at 

median cut-off using Eq. 3.9. 

3. Comparison of the two indicator variograms that are obtained from step 1 and 

step 2. 

In the comparison of these two variograms, some parameters for variogram 

calculation were specified as shown in Table 4.14. These parameters were set to be the 

same for both experimental and Gaussian model indicator variograms. The cut-off 

porosity value is equal to median, which is 116.5. 

 

Table 4.14: Variogram parameters used to check for Bivariate Normality. 

 

Parameters Values 
Number of lag 40 
Lag spacing 100 

Median cut-off 116.5 
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Fig. 4.8 shows the experimental and Gaussian model indicator variograms 

corresponding to the second quartile, which is the median. As seen in the figure, there is a 

good correspondence between experimental indicator variogram at median cut-off and 

theoretical indicator variogram of Bivariate Gaussian model. This means that Sequential 

Gaussian Simulation can be used for this data set. 
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Figure 4.8: Experimental Indicator variogram and Gaussian model-derived indicator 

variogram at median cut-off. 

 

4.2.2.3 Sequential Gaussian Simulation 

Sequential Gaussian Simulation can generate many realizations at equal 

probability from the same data set. The probability distribution (ccdf) of the randomly 

visited node is constructed by Simple Kriging process, conditioned to the original data 

and previously simulated data. Then, the realization at the visited node is generated using 

the random number generator and the constructed ccdf. In practice, several realizations 

are generated to examine the spatial variability structure of a data set. The number of 

realizations generated in this study is sixty. In this study, these realization maps were 

generated by Sequential Gaussian Simulation available in GSLIB program. Fig. 4.9 to 

4.16 shows the 60 realization maps of permeability data for Reservoir III. 

 



  
  
  52

R e a l i z a t i o n

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 0

8 0

9 0

1 0 0

1 1 0

1 2 0

1 3 0

1 4 0

1 5 0

R e a l i z a t i o n

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 0

8 0

9 0

1 0 0

1 1 0

1 2 0

1 3 0

1 4 0

1 5 0

 
R e a l i z a t i o n

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 0

8 0

9 0

1 0 0

1 1 0

1 2 0

1 3 0

1 4 0

1 5 0

R e a l i z a t i o n

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 0

8 0

9 0

1 0 0

1 1 0

1 2 0

1 3 0

1 4 0

1 5 0

 
R e a l i z a t i o n

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 0

8 0

9 0

1 0 0

1 1 0

1 2 0

1 3 0

1 4 0

1 5 0

R e a l i z a t i o n

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 0

8 0

9 0

1 0 0

1 1 0

1 2 0

1 3 0

1 4 0

1 5 0

 
R e a l i z a t i o n

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 0

8 0

9 0

1 0 0

1 1 0

1 2 0

1 3 0

1 4 0

1 5 0

R e a l i z a t i o n

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 0

8 0

9 0

1 0 0

1 1 0

1 2 0

1 3 0

1 4 0

1 5 0

 
Figure 4.9: Permeability distribution for realizations 1-8. 
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Figure 4.10: Permeability distribution for realizations 9-16. 
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Figure 4.11: Permeability distribution for realizations 17-24. 
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Figure 4.12: Permeability distribution for realizations 25-32. 
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Figure 4.13: Permeability distribution for realizations 33-40. 
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Figure 4.14: Permeability distribution for realizations 41-48. 
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Figure 4.15: Permeability distribution for realizations 49-56. 
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Figure 4.16: Permeability distribution for realizations 57-60. 

 

 4.3 Creating Coarse-Scale Permeability Distribution 

 

Based on the previous study of Tang8 which shows that Harmonic-Arithmetic 

averaging is better than Arithmetic-Harmonic averaging, all realizations in this study 

were upscaled using Harmonic-Arithmetic average. Moreover, upscaling was performed 

only in the horizontal direction called aerial upscaling. There are two different upscaling 

approaches in this work: global and local upscaling. Global upscaling is a conventional 

method to upscale fine-scale property while local upscaling is introduced in this study to 

speed up the computation time. To check the effectiveness of the new procedure, three 

reservoir models (Reservoir I, II, and III) were used.  
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4.3.1 Coarse-Scale Permeability Distribution Based on Global Upscaling 

 

This upscaling approach is conventionally used to upscale fine-scale geological 

model because it is simple and straight forward. However, it is time consuming because 

all the data in fine-scale geological model have to be upscaled. In this approach, 

upscaling is performed for all fine-scale grid blocks of which permeabilities are generated 

by geostatistical methods. In this study, permeability distribution was generated using 

Krigging and Sequential Gaussian Simulation. 

 

4.3.1.1 Based on Global upscaling and Krigging 

 

Global upscaling was conducted for fine-scale permeability distributions of 

Reservoir I and II, which were generated by Krigging. Figs. 4.17 and 4.18 show the 

distribution of coarse-scale permeabilities that were globally upscaled for Reservoir I and 

II, respectively. The upscaling was performed at the ratio of 4:1, meaning that the 

upscaling was performed from the original dimension of 400 × 400 to 100 × 100.  

Comparing the coarse-scale permeability shown in Fig. 4.17 and Fig. 4.18 with 

the fine-scale permeability distribution shown in Fig 4.5 and Fig. 4.6 for Reservoir I and 

II, respectively, we can see that there are the similarities of permeability distribution 

before and after global upscaling. 
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Figure 4.17: Permeability distribution for Reservoir I based on global upscaling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                  

Figure 4.18: Permeability distribution for Reservoir II based on global upscaling. 
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4.3.1.2 Based on Global upscaling and Sequential Gaussian Simulation 

 

Global upscaling was also applied to fine-scale permeability distribution of 

Reservoir III which was generated by Sequential Gaussian Simulation. Figs. 4.19 to 4.26 

show the 60 globally upscaled realization maps of permeability data for Reservoir III. 

The upscaling was performed at the ratio of 2:1, meaning that the upscaling was 

performed from the original dimension of 200 × 200 to 100 × 100. 
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Figure 4.19: Permeability distribution for realizations 1-6 based on global upscaling. 
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Figure 4.20: Permeability distribution for realizations 7-14 based on global upscaling. 
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Figure 4.21: Permeability distribution for realizations 15-22 based on global upscaling. 
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Figure 4.22: Permeability distribution for realizations 23-30 based on global upscaling. 
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Figure 4.23: Permeability distribution for realizations 31-38 based on global upscaling. 
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Figure 4.24: Permeability distribution for realizations 39-46 based on global upscaling. 
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Figure 4.25: Permeability distribution for realizations 47-54 based on global upscaling. 
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  Figure 4.26: Permeability distribution for realizations 55-60 based on global upscaling. 

 

There are many differences among these 60 globally upscaled realizations 

because Sequential Gaussian Simulation generates the probability distribution at 

randomly visited node. However, all realizations are equally probable in representing the 

actual permeability distribution. 
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4.3.2 Coarse Scale Permeability Distribution Based on Local Upscaling 

 

The procedure of determining coarse scale permeability distribution based on 

local upscaling is introduced in order to reduce computational time. The first step is the 

same as global upscaling, that is, to determine the spatial distribution of permeability 

using Krigging. The next step is to determine the permeabilities for the coarse blocks at 

data locations. 

 

4.3.2.1 Based on Local Upscaling and Krigging 

 

Local upscaling was performed for Reservoir I and II, of which fine-scale 

permeability distributions were generated by Krigging method. Upscaling was performed 

to upscale 4 fine-scale blocks to 1 coarse block. Tables 4.15 and 4.16 show the upscaled 

estimates of local upscaling for Reservoir I and II, respectively.  

 

Table 4.15: Value of locally upscaled permeability for Reservoir I. 

 

       Well number Permeability Locally upscaled permeability 
  (md)  (md) 
1 70 69.966 
2 30 32.358 
3 130 130.020 
4 40 41.282 
5 190 188.710 
6 170 169.040 
7 90 91.022 
8 100 101.040 
9 140 139.090 

10 120 119.960 
11 220 218.510 
12 80 80.646 
13 150 149.660 
14 200 199.240 
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Table 4.16: Value of locally upscaled permeability for Reservoir II. 

 
Well number Permeability Locally upscaled permeability 

 (md) (md) 
1 40 41.798 
2 100 99.666 
3 180 178.38 
4 190 188.48 
5 50 50.76 
6 60 61.29 
7 120 119.52 
8 100 100.64 
9 190 188.34 
10 30 31.349 
11 160 159.95 
12 110 109.85 
13 130 130.1 
14 170 169.16 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.27 shows the variogram values and its model of the locally upscaled 

permeabilities for Reservoir I. The parameter used to calculate this variogram are 332.2 

feet of lag distance, 166.1 feet of lag tolerance, 8 lags, 0 degree of direction, 90 degree of 

angular tolerance, and no limits of maximum bandwidth. Table 4.17 shows the model 

parameters of variogram for Reservoir I which is spherical model with nugget of 0.00, 

range of 1,600 feet, and sill of 2,820. 

 

 
 

Figure 4.27: Omnidirectional variogram of locally upscaled permeabilities  

for Reservoir I. 
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Table 4.17: Variogram model parameters of Reservoir I based on local upscaling. 

 

Parameters Values 
Model Spherical 
Nugget 0.00 
Range 1,600 feet 

Sill 2,820  
 

Fig. 4.28 shows the variogram values and its model of locally upscaled 

permeabilities for Reservoir II. The parameter used to calculate this variogram are 340.9 

feet of lag distance, 170.45 feet of lag tolerance, 8 lags, 0 degree of direction, 90 degree 

of angular tolerance, and no limits of maximum bandwidth. Table 4.18 shows the model 

parameters of variogram for Reservoir II which is spherical model with nugget of 0.00, 

range of 1,530 feet, and sill of 4,230. 

 

 
 

Figure 4.28: Omnidirectional variogram of locally upscaled permeabilities  

for Reservoir II. 

 

Table 4.18: Variogram model parameters of Reservoir II based on local upscaling. 

 

Parameters Values 
Model Spherical 
Nugget 0.00 
Range 1,530 feet 

Sill 4,230 
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 A riogram model of the upscaled permeabilities was created, Krigging 

timat

upscaling and Krigging estimation. 

fter the va

es ion was performed to determine coarse-scale permeability distribution. Figs 4.29 

and 4.30 show distribution of coarse-scale permeabilities constructed from locally 

upscaled permeabilities for Reservoir I and II, respectively. 

 
Figure 4.29: Coarse-scale permeability distribution for Reservoir I based on local 

upscaling and Krigging estimation. 

 

 
Figure 4.30: Coarse-scale permeability distribution for Reservoir II based on local 
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4.3.2.2 Based on Local Upscaling and Sequential Gaussian Simulation 

 

fine-scale 

permeability distribution was determined by Krigging. Krigging estimation had to be 

perform

In Fig. 4  the variogram 

model is shown in the Table 4.19. 

 

 

Local Upscaling was performed for Reservoir III, of which 

ed to find the estimated data around data locations to do local upscaling. The 60 

fine-scale geological realizations cannot be used as a reference because each one is 

random. Thus, we used Krigging estimates as a reference. Fig. 4.31 represents the 

variogram of permeability raw data. The parameters, used to calculate this variogram plot 

are 420 feet of lag distance, 210 feet of lag tolerance, 4 lags, 0 degree of direction, 90 

degree of angular tolerance, and no limits of maximum bandwidth. 

 

 

 
Figure 4.31: Omnidirectional variogram for Reservoir III. 

 

.31, the line is the variogram model. The result of fitting
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Table 4.19: Variogram model parameters for Reservoir III. 

 

Parameters Values 
Model Spherical 
Nugget 2.9 
Range 554 feet 

Sill 280  
 

After the variogra odel parameters were found, these parameters were used to 

reate and estimate fine-scale geostatistic model based using Krigging estimation 

method

m m

c

. Then, the Harmonic-Arithmetic averaging method was used to determine 

permeabilities of coarse blocks at original data locations. Table 4.20 shows the upscaled 

estimates of local upscaling for Reservoir III. 
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Table 4.20: Value of locally upscaled permeability for Reservoir III. 

coordinate coordinate 

 

X Y 

(Feet) (Feet) 
Permeability 

values Locally Upscaled  
160 250 112 100 
270 720 128 128 
330 1260 115 118 
340 1260 118 118 
350 1260 121 120 
360 1260 124 120 
230 1780 83 84 
480 320 118 119 
490 330 120 119 
500 340 122 122 
510 350 124 122 
540 1640 102 101 
760 720 138 138 
740 1280 142 140 
860 180 96 97 
990 1100 150 149 
960 1650 108 98 

1230 430 106 119 
1300 900 132 133 
1310 1520 126 126 
1440 1290 136 124 
1690 320 78 79 
1620 900 106 108 
1620 920 108 110 
1620 940 110 111 
1620 960 112 113 
1780 1780 100 101 
1940 1250 95 100 

 

 

hese locally upscaled permeabilities would be used as the new raw data to 

generate 60 realizations based on Sequential Gaussian Simulation at the scale of 100 × 

100 blo

 the locally upscaled permeability values 

for Reservoir III. The mean of the data is 116.39, and variance and standard deviation are 

T

cks with an area of 20 × 20 ft per block. 

Table 4.21 gives a statistical analysis of
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276.84

permeability data for Reservoir III. 

Parameters Values 

 and 16.64, respectively. The minimum and maximum values of the data set are 79 

and 149, respectively. The first, second, and third quartiles are 101, 119, and 124, 

respectively. Coefficient of variation, skewness, and kurtosis are 14.29, -0.25, and 2.86, 

respectively. 

Table 4.21: Statistics of locally upscaled 

 

Mean 116.39 
Variance 276.84 
Std. Dev. 16.64 
Minimum 79.00 

25th% 101.00 
Median 119.00 
75th% 124.00 

Maximum 149.00 
Coeffici riation ent of va 14.29 

S  kewness -0.25 
Kurtosis 2.86 

 

 

.3.2.2.1 Constructing the variogram model 

  ple values have to be 

transformed to normal score data before further analysis due to its assumption of 

 

4

 

To perform the Sequential Gaussian Simulation, the sam

multigaussian distribution. In this study, the data were transformed using GSLIB 

program. The normal score data are shown in Table 4.22. 
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Table 4.22: Value of normal score transforms of permeability values for Reservoir III. 

coordinate coordinate 

 

X Y 

(Feet) (Feet) 
Permeability 

values 
Normal score 

values 
160 250 100 -2.1002 
270 720 128 -1.6112 
330 1260 118 -1.3452 
340 1260 118 -1.1503 
350 1260 120 -0.9915 
360 1260 120 -0.8544 
230 1780 84 -0.7318 
480 320 119 -0.6193 
490 330 119 -0.5142 
500 340 122 -0.4144 
510 350 122 -0.3186 
540 1640 101 -0.2257 
760 720 138 -0.1347 
740 1280 140 -0.0448 
860 180 97 0.0448 
990 1100 149 0.1347 
960 1650 98 0.2257 

1230 430 119 0.3186 
1300 900 133 0.4144 
1310 1520 126 0.5142 
1440 1290 124 0.6193 
1690 320 79 0.7318 
1620 900 108 0.8544 
1620 920 110 0.9915 
1620 940 111 1.1503 
1620 960 113 1.3452 
1780 1780 101 1.6112 
1940 1250 142 2.1002 

 

Table 4.23 shows the statistics of the normal score data, which were transformed 

from the original permeability data. The new data have a mean of zero and variance and 

standard deviation of one, which are the characteristics of standard normal distribution. 

The minimum and maximum values are -2.1 and 2.1, respectively. The first, second, and 

third quartiles are -0.732, 0.000, and 0.619, respectively. Coefficient of variation, 

skewness, and kurtosis are 0, 0, and 2.601, respectively. 

 



  
  
  79

Table 4.23: Statistical analysis of the normal score data. 

 

Parameters Values 
Mean 0.000 

Variance 1.000 
Std. Dev. 1.000 
Minimum -2.100 

25th% -0.732 
Median 0.000 
75th% 0.619 

Maximum 2.100 
Coeffici riation ent of va 0.000 

S  kewness 0.000 
Kurtosis 2.601 

 

After the normal ta were prepared, vari

and variogram modeling were performed using the Variowin program. Fig. 4.32 

illustrates the plot of the experimental variogram values at difference distances and its 

model. 

 normal 

 

T

210 feet of lag tolerance, 6 lags, 0 degr n, 90 degree of angular tolerance, and 

no lim aximum bandwidth. In Fig. 4.32, the numbers shown near the black dots 

 score da ogram calculations of these data 

 

Figure 4.32: Omnidirectional variogram plot and its variogram model for

score data. 

he parameters used to calculate this variogram plot are 420 feet of lag spacing, 

ee of directio

its of m
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are the

arameters Values 

 number of pairs that were used in the calculation for each lag distance, and the 

black solid line is the variogram model. The result of fitting the variogram model is 

shown in Table 4.24.  

 

Table 4.24: Variogram model parameters of normal score data. 

P
Model Spherical 
Nugget 0.01 
Range 538 feet 

Sill 0.99 
 

The variogram m t effect, with the nugget value of 0.01 

proximately 1 percent of the sill value. The norm eability data 

yields a correlation distance of 538 feet defined within the range distance and 

represe

m of Bivariate Gaussian model with 

experim ters for variogram calculation are 

specified as shown in Table 4.25. 

Values 

odel exhibits a small nugge

which is ap al score perm

nting all directions. The sill value (0.99) almost equals to the normal score 

permeability data variance (1.00). In overall, this variogram model represents the spatial 

variability structure of the transformed permeability data, and it would be used as the 

conditioning information in the simulation process. 

4.3.2.2.2 Checking for Bivariate Normality 

In the comparison of the theoretical variogra

ental indicator variogram, some parame

 

Table 4.25: Variogram parameters used to check for Bivariate Normality. 

Parameters 
Number of lag 40 
Lag spacing 100 

Cut-off 119 
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The paramete riogram calculation were set to be the same for both 

experimental and Gaus el indicator variograms. The cut-off permeability value is 

equal to

rtile which is the median. As seen in the figure, there is a 

good c

rs used in va

sian mod

 median, which is 119. 

Fig. 4.33 shows the experimental and Gaussian model indicator variograms 

corresponding to the second qua

orrespondence between experimental indicator variogram at median cut-off and 

theoretical indicator variogram of Bivariate Gaussian model. That means Sequential 

Gaussian Simulation can be used for this data set. 
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Figure 4.33: Experimental Indicator variogram and Gaussian model-derived indicator 

variogram at median cut-off. 

4.2.2.2.3 Sequential Ga

ext step is to generate permeability 

distributions using Sequential Gaussian Simulation. The results of 60 realization maps of 

permea

 

ussian Simulation 

 

After constructing the variogram, the n

bility data at the scale of 100 × 100 grid blocks are shown in Figs. 4.34 through 

4.41. 
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Figure 4.34: Permeability distribution for realizations 1-8 based on local upscaling. 

 



  
  
  83

R e a l i z a t i o n  0 0 9

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

8 0

9 0

1 0 0

1 1 0

1 2 0

1 3 0

1 4 0

1 5 0

R e a l i z a t i o n  0 1 0

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

8 0

9 0

1 0 0

1 1 0

1 2 0

1 3 0

1 4 0

1 5 0

 
R e a l i z a t i o n  0 1 1 R e a l i z a t i o n  0 1 2

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

8 0

9 0

1 0 0

1 1 0

1 2 0

1 3 0

1 4 0

1 5 0

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

8 0

9 0

1 0 0

1 1 0

1 2 0

1 3 0

1 4 0

1 5 0

 
R e a l i z a t i o n  0 1 3

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

8 0

9 0

1 0 0

1 1 0

1 2 0

1 3 0

1 4 0

1 5 0

R e a l i z a t i o n  0 1 4

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

8 0

9 0

1 0 0

1 1 0

1 2 0

1 3 0

1 4 0

1 5 0

 
R e a l i z a t i o n  0 1 5

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

8 0

9 0

1 0 0

1 1 0

1 2 0

1 3 0

1 4 0

1 5 0

R e a l i z a t i o n  0 1 6

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

8 0

9 0

1 0 0

1 1 0

1 2 0

1 3 0

1 4 0

1 5 0

 
Figure 4.35: Permeability distribution for realizations 9-16 based on local upscaling. 
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Figure 4.36: Permeability distribution for realizations 17-24 based on local upscaling. 
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Figure 4.37: Permeability distribution for realizations 25-32 based on local upscaling. 
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Figure 4.38: Permeability distribution for realizations 33-40 based on local upscaling. 
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Figure 4.39: Permeability distribution for realizations 41-48 based on local upscaling. 
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Figure 4.40: Permeability distribution for realizations 49-56 based on local upscaling. 
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Figure 4.41: Permeability distribution for realizations 57-60 based on local upscaling. 

 
 

4.4 Comparing the results 

 

There are two different approaches to determine the coarse-scale permeability 

distribution which are based on global and local upscaling. The results obtained from the 

two methods for these three reservoirs were compared based on their values and results of 

reservoir simulation. 

 

4.4.1 Comparison based on values of permeability 

ig. 4.42 shows coarse-scale permeability distributions based on global and local 

upscali

between coarse scale estimates of permeability based on global and local upscaling for 

 

F

ng for Reservoir I. Fig. 4.43 shows coarse-scale permeability distributions based 

on global and local upscaling for Reservoir II. Figs 4.44 and 4.45 show the relationship 
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Reservoir I and II, respectively. For Reservoir III, there are 60 realizations for coarse 

scale permeability based on both global and local upscaling. In order to make a 

comparison, all 60 realizations have to be averaged. Fig. 4.46 shows averaged 

permea ks based on global and local 

upscaling. Fig. 4.47 shows the relationship between coarse-scale permeabilities based on 

global 

 
 

ns based on global and local upscaling  

 
 

Figure 4.43: Permeability distributions based on global and local upscaling  

for Reservoir II. 

bility values at the scale of 100 × 100 grid bloc

and local upscaling for Reservoir III.  

 

Global Upscaling Local Upscaling 

Figure 4.42: Permeability distributio

for Reservoir I. 
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Figure 4.44: The correlation between upscaled permeability values from global and lo

upscaling for Reservoir I. 

 

 

cal 

 
 

Figure 4.45: The correlation between upscaled permeability values from global and local 

upscaling for Reservoir II. 
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Figure 4.47: The correlation between upscaled permeability values from global and local 

upscaling for Reservoir III. 

Figure 4.46: Picture of average upscaled permeability values from global and local 

upscaling for Reservoir III. 

Average upscaled 
permeabilities from global 

upscaling 

Average upscaled 
permeabilities from local 

upscaling 
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As seen in Figs. 4.44, 4.45, and 4.47, a strong linear correlation between upscaled 

permeability values from global and local upscaling and the correlation values are 0.996, 

0.999, and 0.998 for Reservoir I, II and III, respectively. They indicate a good match 

between the two approaches. Moreover, the similarity between upscaled permeability 

values from global and local upscaling for Reservoir I, II and III can be seen on Figs. 

4.42, 4.43 and 4.46, respectively.  

 

4.4.2 Comparison based on results of reservoir simulation 

 

Only Reservoir I and II, for which permeability distributions were obtained via 

Krigging estimation, were compared using reservoir simulation. The simulation was not 

performed for Reservoir III because there are too many realizations generated by 

Sequential Gaussian Simulation. This study ulation program called Spider14. 

assumed to be the same for simulation assumed that the 

thickne

able 4.26: PVT data. 

 

0 s

 used a sim

All properties except permeabilities, minimum bottom hole pressure, and skin factor were 

both reservoir models. The 

ss of the model is 1 ft and porosity is 0.25 throughout the reservoir. The properties 

that need to be entered into the reservoir simulation are: 

 

4.4.2.1 PVT data  

 

T

P B R
Oil 

viscosity BBg

Gas 
viscosity 

(psia) (rb/stb) (mcf/stb) (cp) (rb/mcf) (cp) 
500 1.1152 0.1201 0.8962298 6.23746 0.01649 
1000 1.19498 0.2827 0.6452354 3.02018 0.01772 
1500 1.29073 0.4665 0.5124182 1.95571 0.01899 
2000 1.39964 0.6655 0.4300265 1.43099 0.02031 
2359 1.485 0.816 0.3876277 1.19611 0.02127 
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4.4.2.2 Relative Permeability 

 

Table 4.27 shows relative permeability used in simulation program for these two 

reservoirs. 

                                     Table 4.27: Relative permeability. 

  Saturation   
End 

Point   
Corey 

Exponent 

 

 

Sorw 0.1 Krow ) No2 (Swc 0.6 w 3 
So 0rg .06 Krg(Swc) 0.93 Nog 3 
Sgc 0 K.037 rw(Sorw) 0.35 Ng 2.8 

0.27     Nw 3 Swc
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4.2.2.3 Well data and locations  

Six production wells were used in this study. Tables 4.28 and 4.29 show well data 

and locations for Reservoir I and II, respectively. Fig. 4.48 shows the location of these 

production wells. 

 

Table 4.28: Well data and locations for Reservoir I. 

 

 

Well  Well X direction  Y direction Pressure Maximum Radius Skin 

 

name completion (ft) (ft) constraint Rate (ft) Factor 
        (minBHP) (bbl/d)     
        (psia)       

Pw1 Vertical 1,000 1,000 500 10,000 0.3 1 
Pw2 Vertical 2,000 1,520 500 10,000 0.3 1 
Pw3 Vertical 3,000 1,000 500 10,000 0.3 1 
Pw4 Vertical 1,000 3,000 500 10,000 0.3 1 
Pw5 Vertical 2,000 2,520 500 10,000 0.3 1 
Pw6 3,000 500 10,000 0.3 1 Vertical 3,000 

 

 
 

 

Well  Well X direction  Y direction Pressure Maximum Radius Skin 

Table 4.29: Well data and locations for Reservoir II. 

name completion (10 ft) (10 ft) constraint Rate (ft) Factor 
            (minBHP) (bbl/d) 
        (psia)       

Pw1 Vertical 1,000 1,000 700 10,000 0.3 0 
Pw2 Vertical 2,000 1,520 700 10,000 0.3 0 
Pw3 Vertical 3,000 1,000 700 10,000 0.3 0 
Pw4 V  ertical 1,000 3,000 700 10,000 0.3 0 
Pw5 Vertical 2,000 2  10,000 ,520 700 0.3 0 
Pw6 Vertical 3,000 3,000 0.3 700 10,000 0 

 

 



  
  
  96

3500

0
0

500

1000

2000

2500

3000

300 4000

X loc

tio
n

1500

Y
 lo

ca

1000 2000 0

ation
 

 

Figure 4.48: L ns of si ducti . 

 

 

4.2.2.4 Simulation results 

 

Reservoir simulation results on these two models can be divided into three 

scenarios: fine-scale simulation, simulation based on coarse-scale permeability 

distribution obtained from global upscaling, and simulation based on coarse-scale 

permeability distribution obtained from local upscaling. Figs. 4.49 and 4.50 show a 

comparison of oil rate for Reservoir I and II, respectively. Figs. 4.51 and 4.52 present a 

comparison of gas rate for Reservoir I and II, respectively. Figs. 4.53 and 4.54 display a 

comparison of bottom hole pressure for Reservoir I and II, respectively. These figures 

show that co se-scale permeability obtained from local upscaling provide similar results 

with the coarse-scale perm aling and the 

fine-scale permeability distribution.   

 

ocatio x pro on wells
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eability distribution obtained from global upsc
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Figure 4.49: Oil rate obtained from simulation for Reservoir I. 
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Figure 4.50: Oil rate obtained from simulation for Reservoir II. 
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 Figure 4.51: Gas rate obtained from simulation for Reservoir I. 
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Figure 4.52: Gas rate obtained from simulation for Reservoir II. 
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Figure 4 r I. 

 
 

Figure 4.54: Bottom hole pressure obtained from simulation for Reservoir II. 

.53: Bottom hole pressure obtained from simulation for Reservoi
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In addition, the pressure distributions after one year of production of fine-scale 

eability distribution, coarse-scale permeability distribution based on global 

upscaling, and coarse-scale permeability distribution based on local upscaling for

Reservoir I are shown in Figs. 4.55, 4.56, and 4.57, respectively. These figures show that 

-scale permeability distribution based on local upscaling provide similar resu

with coarse-scale permeability distribution based on global upscaling and the fine-scale 

eability distribution. 

  

 

 

 

perm

 

coarse lts 

perm

 

 

 

 

 

 

 

 

 

lation based on 

 

 

 

Figure 4.55: Pressure distribution after one year of production for fine-scale simulation 

for Reservoir I. 

 

 

Figure 4.56: Pressure distribution after one year of production for simu

global upscaling for Reservoir I. 
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Figs. 4.58, 4.59, and ions of fine-scale, globally 

pscaling and r II. These figures 

ow that coarse-scale permeability distribution based on local upscaling provide similar 

sults with coarse-scale permeability distribution based on global upscaling and the fine-

ale permeability distribution. 

 

 

 

for Reservoir II. 

 

 

 

 

 

 

Figure 4.57: Pressure distribution after one year of production for simu

local upscaling for Reservoir I. 
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Figure 4.58: Pressure distribution after one year of production for fine-scale simulation 
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Figure 4.59: Pressure distribution after one year of production for simu

global upscaling for Reservoir II. 

lation based on 

 

Figure 4.60: Pressure distr n for simulation based on 

local upscaling for Reservoir II. 
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Oil rate, gas rate, and bottom hole pressure obtained from simulating the two 

servoirs using globally upscaled and locally upscaled permeability values are similar to 

sults obtained from fine-scale simulation. In addition, the pressure distributions after 

ne year of production obtained from coarse-scale simulation based on global and local 

pscaling are similar to the results from fine-scale simulation. This indicates that the 

oarse scale permeability distribution determined from local upscaling approach is as 

ood as the one obtained from global upscaling approach. The benefit of determining 

ermeability distribution based on local upscaling is mainly a reduction in computational 

me. 
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CHAPTER V 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

 Tremendous number of cells is needed to describe fine scale heterogeneities of 

the reservoir. Such scale cannot be accommodated by a dynamic reservoir simulator 

really well. Thus, the number of grid blocks must be reduced by averaging the 

reservoir properties to fit with the capability of the reservoir simulator. Coarse-scale 

reservoir properties have to be determined. In addition, these coarse-scale reservoir 

properties have to provide similar result to the one from fine-scale simulation. The 

process of determining properties of larger grid blocks is called upscaling. 

Conventional methods used to generate coarse-scale reservoir properties are 

performed for the entire reservoir. Thus, the approach is global upscaling in this 

study. The disadvantage of this approach is long computational time spent on 

upscaling properties for the entire field. To speed up the process, this study introduces 

a new method to generate coarse-scale reservoir properties based on local upscaling. 

Local upscaling is applied only at data locations. Distribution of upscaled properties 

are then determined using Geostatistics.  

In this study, three synthetic reservoirs were used to test the effectiveness of 

the proposed algorithm.  In the first and second reservoir, 14 permeability values 

sampled from 14 vertical wells in 4,020 x 4,010 ft2 of domain area were made up. 

Then, the variogram models which are spherical model with nugget of 0.00, range of 

1,400 ft, and sill of 3,240 for Reservoir I and nugget of 0.00, range of 1,510 ft, and sill 

of 4,080 for Reservoir II, were determined. Krigging estimation was used to generate 

fine-scale permeability distributions for both reservoirs. Then, two coarse-scale 

permeability distributions were generated based on global and local upscaling for both 

reservoirs. For local upscaling approach, the new variogram models which are 

spherical model with nugget of 0.00, range of 1,600 ft, and sill of 2,820 for Reservoir 

I and nugget of 0.00, range of 1,530 ft, and sill of 4,230 for Reservoir II was 

determined. Krigging estimation was used to generate coarse-scale permeability 

distribution. In the third reservoir, 28 permeability values sampled from 16 vertical 
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wells and 3 horizontal wells in 2,000 x 2,000 ft2 domain area were made up. Then, the 

variogram model which is spherical model with nugget of 0.02, range of 548 ft, and 

sill of 0.98 of normal score data were determined. Sequential Gaussian Simulation 

technique was used to generate 60 realizations of fine-scale permeability distribution. 

Then, 60 realizations of coarse-scale permeability distributions were computed based 

on global upscaling. For local upscaling, Krigging estimation was used to generate 

fine-scale permeability distribution. The new variogram model which is spherical 

model with nugget of 0.01, range of 538 ft, and sill of 0.99 of normal score data for 

the coarse properties was determined. Gaussian Simulation technique was then used 

to generate 60 realizations of coarse-scale permeability distribution. 

The coarse-scale permeability values based on global and local upscaling for 

all reservoirs were compared using scatter plots. The scatter plots between coarse-

scale permeability values based on global and local upscaling for all reservoirs show 

the strong correlations which are 0.996, 0.999, and 0.998 for Reservoir I, II and III, 

respectively. In addition, the results of reservoir simulation from coarse-scale 

permeability values based on global and local upscaling for Reservoir I and II were 

compared with the results from fine-scale simulations. However, Reservoir simulation 

was not performed for Reservoir III since there are too many realizations. The results 

of reservoir simulation in oil rate, gas rate, bottom hole pressure, and pressure 

distribution after one year of production from coarse-scale permeability values based 

on global and local upscaling for Reservoir I and II show similar results to those 

obtained from fine-scale permeability values. Local upscaling approach gives similar 

results compared with results obtained from global upscaling approach. Both of them 

still provide accurate results as compared with the results from fine-scale simulation. 

In conclusion, coarse-scale permeability distribution based on local upscaling 

is an alternative approach of upscaling. The new approach can be used as effectively 

as the conventional global upscaling but consumes less computational time since 

upscaling is performed only at data locations.  

It is worth pointing out that the range of permeability used in this study is 

between 30 and 220 md which is quite small. If there are more variations in 

permeability values, the results may be different.  Further investigation is thus needed. 
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