CHAPTER IV

RESULTS

4.1 Antioxidant activity of plant extracts

4.1.1 P. mirifica

4.1.1.1 Antioxidant activity of P. mirifica

No.	Sources	IC ₅₀
	(Provinces)	(µg/ml)
1	Uthai Thani	2,470.38 <u>+</u> 37.81 [*]
2	Nong Bua Lam Phu	2,489.98 <u>+</u> 27.62 [*]
3	Phetchaburi	$2,492.61 \pm 83.02^*$
4	Phitsanulok	2,529.47 <u>+</u> 46.92 [*]
5	Phetchabun	2,563.71 +86.35 [*]
6	Ratchaburi	2,612.14 <u>+</u> 34.75 [*]
7	Chiang Mai	2,648.18+22.01
8	Nakhon Sawan	2,656.94+94.96
9	Lamphun	2,680.74 <u>+</u> 83.70
10	Nan	$2,726.04 \pm 81.03$
11	Chiang Rai	$2,817.63 \pm 40.06^{a}$
12	Sukhothai	2,889.48+70.73 ^a
13	Kanchanaburi	2,893.51±159.05 ^a
14	Lop Buri	2,900.25+23.03 ^a
15	Phrae	2,915.64+186.91 ^a
16	Chumphon	2,928.93+93.89 ^a
17	Nakhon Ratchasima	3,042.79 <u>+</u> 31.20 ^a
18	Sakon Nakhon	3,070.63 <u>+</u> 157.95 ^a
19	Phayoa	3,076.20±113.01 ^a
20	Uttharadith	3,117.09 <u>+</u> 143.44 ^a
21	Lampang	3,182.16 <u>+</u> 88.66 ^{**a}
22	Tak	3,192.05 <u>+</u> 23.17 ^{**a}
23	Chaiyaphum	3,197.86 <u>+</u> 119.83 ^{**a}
24	Mae Hong Son	3,205.37 <u>+</u> 51.14 ^{**a}
25	Prachuap Khiri Khan	3205.84 <u>+</u> 114.92 ^{**a}
26	Prachin Buri	$3,209.30\pm102.50^{**a}$
27	Saraburi	3,234.58 <u>+</u> 141.55 ^{**a}
28	Kamphaeng Phet	$3,376.97\pm69.96^{**a}$
Mean	<u>+</u> S.E.	2,904.52 <u>+</u> 33.24
P. lob	ata	2,482.00 ± 66.11***
a-toco	opherol	68.02 ± 5.52**** ^b

Table 4.1 Ranked antioxidant activity of *P. mirifica* express in term of IC_{50} (µg/ml) in comparison with *P. lobata* and α -tocopherol

 IC_{50} value; the concentration of sample required to scavenge 50% DPPH free radicals s under experimental conditions, Mean<u>+</u>S.E.

*, ***, ****; IC₅₀ value was less than the Mean value of *P. mirifica* population.

**; IC₅₀ value was more than the Mean value of *P. mirifica* population.

a; IC_{50} value was more than *P. lobata*.

b; IC₅₀ value was less than *P. lobata*.

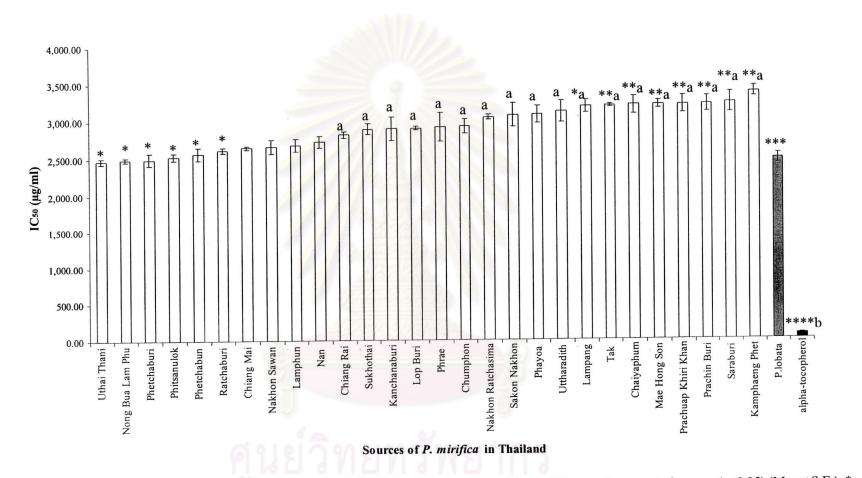


Figure 4.1 Antioxidant activity of P. mirifica from 28 provinces in Thailand, Significant difference from control groups (p<0.05) (Mean±S.E.). *, ***, ****; IC₅₀ value was less than the Mean value of P. mirifica population. **; IC₅₀ value was more than the Mean value of P. mirifica population.a; IC₅₀ value was more than P. lobata, b; IC₅₀ value was less than P. lobata.

4.1.1.2 Percent inhibition of the free radicals of P.mirifica

The percent inhibition (PI) was calculated for inhibiting the free radicals of *P. mirifica* collected from 28 provinces (Table 4.2). The effective concentrations were in the range of 75-300 μ g/ml. The results revealed that *P. mirifica* was able to inhibit DPPH free radicals. The dose of 300 μ g/ml were evaluated for the highest and lowest PI. *P. mirifica* extract from Uthai Thani showed the highest PI value and the sample from Kamphaeng Phet showed the lowest PI value. Seven provinces of samples showed significant higher PI value whereas 5 samples showed significant lower PI value than the Mean PI value of *P.mirifica* population. *P. lobata* showed significant less PI value than *P. mirifica* population aswell as *P. mirifica* colleted from 21 provincs.

Table 4.2 Percent inhibition (PI) of α -tocopherol

Sources				PI value		
		7/8		tion of the extra (µg/ml)	nct	
	12.5	25	50	100	150	200
a-tocopherol	16.66 <u>+</u> 0.48	26.11 <u>+</u> 1.2	44.51 <u>+</u> 0.45	79.99 <u>+</u> 0.82	85.96 <u>+</u> 0.25	88.40 <u>+</u> 0.37

****, PI value was less than the Mean value of P. mirifica population in Table 4.3

		PI value							
No.	Sources (Provinces)	Concentration of the extracts (µg/ml)							
		75	112.5	150	187.5	225	300		
1	Uthai Thani	10.23 <u>+</u> 0.85	10.88 <u>+</u> 0.15	12.33 <u>+</u> 0.19	13.36 <u>+</u> 0.21	14.78 <u>+</u> 0.18	16.99 <u>+</u> 0.36 [*]		
2	Nong Bua Lam Phu	10.90 <u>+</u> 0.64	10.41 <u>+</u> 0.32	12.44 <u>+</u> 0.06	13.03 <u>+</u> 0.25	14.36 <u>+</u> 0.35	16.41 <u>+</u> 0.32 [*]		
3	Phetchaburi	10.26 <u>+</u> 0.38	10.66 <u>+</u> 0.47	11.82 <u>+</u> 0.29	13.56 <u>+</u> 0.21	14.01 <u>+</u> 0.58	16.15 <u>+</u> 0.53*		
4	Phitsanulok	10.01 <u>+</u> 0.55	9.57 <u>+</u> 0.43	11.12 <u>+</u> 0.37	12.26 <u>+</u> 0.73	13.87 <u>+</u> 0.24	15.52 <u>+</u> 0.25 [*]		
5	Phetchabun	10.50 <u>+</u> 0.24	10.84 <u>+</u> 0.17	12.13 <u>+</u> 0.34	12.60 <u>+</u> 0.19	13.84+0.14	15.93+0.65*		
6	Ratchaburi	10.12 <u>+</u> 0.37	9.70 <u>+</u> 0.38	11.40 <u>+</u> 0.67	12.65±0.45	13.27±0.29	14.99 <u>+</u> 0.07 [*]		
7	Chiang Mai	11.06 <u>+</u> 0.49	11.38 <u>+</u> 0.36	12.55 <u>+</u> 0.27	13.70 <u>+</u> 0.21	14.58 <u>+</u> 0.15	16.66±0.31		
8	Nakhon Sawan	12.19 <u>+</u> 0.52	11.34 <u>+</u> 0.25	12.71 <u>+</u> 0.40	13.39 <u>+</u> 0.34	14.09 <u>+</u> 0.23	15.89 <u>+</u> 0.34 [*]		
9	Lamphun	9.41 <u>+</u> 0.47	8.57 <u>+</u> 0.64	9.38 <u>+</u> 0.58	10.23 <u>+</u> 0.29	9.80 <u>+</u> 0.57	14.00 <u>+</u> 0.44 ^a		
10	Nan	9.31 <u>+</u> 1.07	10.97 <u>+</u> 0.42	10.68 <u>+</u> 0.58	11.94 <u>+</u> 0.23	12.77 <u>+</u> 0.02	14.26 <u>+</u> 0.41 ^a		
11	Chiang Rai	9.79 <u>+</u> 0.18	8.81 <u>+</u> 0.49	9.93 <u>+</u> 0.64	11.33 <u>+</u> 0.73	11.76 <u>+</u> 0.29	12.91 ± 0.48^{a}		
12	Sukhothai	8.02 <u>+</u> 0.51	9.33 <u>+</u> 0.09	9.07 <u>+</u> 0.36	10.10 <u>+</u> 0.46	11.08 <u>+</u> 0.59	12.57 ± 0.51^{a}		
13	Kanchanabu ri	12.22 <u>+</u> 1.20	12.18 <u>+</u> 0.34	14.01 <u>+</u> 0.48	13.96 <u>+</u> 0.21	14.32 <u>+</u> 0.91	13.94 ± 1.50^{a}		
14	Lop Buri	8.38 <u>+</u> 1.90	8.32 <u>+</u> 0.45	9.31 <u>+</u> 0.56	10.45 <u>+</u> 0.46	10.99 <u>+</u> 0.33	12.39 <u>+</u> 0.55 ^a		
15	Phrae	7.35 <u>+</u> 0.86	6.47 <u>+</u> 1.30	7.07 <u>+</u> 1.50	9.33 <u>+</u> 0.85	9.31 <u>+</u> 1.40	11.83 <u>+</u> 1.6 ^a		
16	Chumphon	10.39 <u>+</u> 0.29	9.44 <u>+</u> 0.34	10.40 <u>+</u> 0.07	11.90 <u>+</u> 0.67	12.58 <u>+</u> 0.67	12.95 <u>+</u> 0.27 ^a		
17	Nakhon Ratchasima	7.31 <u>+</u> 0.23	6.12 <u>+</u> 0.17	7.42 <u>+</u> 0.53	8.81 <u>+</u> 0.58	9.33 <u>+</u> 0.22	10.83 <u>+</u> 0.30 ^{**a}		
18	Sakon Nakhon	7.49+0.80	7.97+0.26	8.17+0.22	8.71+0.19	9.50 <u>+</u> 0.61	11.17 <u>+</u> 1.20 ^a		
19	Phayoa	8.92 <u>+</u> 0.07	9.02 <u>+</u> 0.36	9.58 <u>+</u> 0.14	9.44 <u>+</u> 0.40	10.62 <u>+</u> 0.15	12.38 ± 0.38^{a}		
20	Uttharadith	10.57 <u>+</u> 0.16	9.37 <u>+</u> 0. 33	9.86 <u>+</u> 0.65	11.34 <u>+</u> 0.30	11.22 <u>+</u> 0.08	12.67 <u>+</u> 0.66 ^a		
21	Lampang	8.10 <u>+</u> 0.03	9.45 <u>+</u> 0.30	8.53 <u>+</u> 0.98	10.35 <u>+</u> 0.12	10.63 <u>+</u> 0.72	10.33 <u>+</u> 1.20 ^{**a}		
22	Tak	8.78 <u>+</u> 0.20	8.96 <u>+</u> 1.56	9.86 <u>+</u> 1.19	8.69 <u>+</u> 0.61	9.94 <u>+</u> 0.34	$11.00+0.30^{\circ}$		
23	Chaiyaphum	8.12 <u>+</u> 1.01	7.90 <u>+</u> 0.64	8.65 <u>+</u> 0.75	9.72 <u>+</u> 0.71	9.88 <u>+</u> 0.52	$10.88\pm0.04^{**a}$		
24	Mae Hong Son	8.88 <u>+</u> 0.27	8.61 <u>+</u> 0.27	8.34 <u>+</u> 0.75	9.54 <u>+</u> 0.52	10.37 <u>+</u> 0.22	11.40 <u>+</u> 0.36 ^a		
25	Prachuap Khiri Khan	7.27 <u>+</u> 0.78	6.42 <u>+</u> 0.53	7.21 <u>+</u> 0.71	8.10 <u>+</u> 0.64	9.38 <u>+</u> 0.53	11.02 <u>+</u> 1.50 ^{**a}		
26	Prachin Buri	9.30 <u>+</u> 0.34	8.27 <u>+</u> 0.50	8.14 <u>+</u> 0.52	8.85 <u>+</u> 0.73	10.24+0.83	10.90 <u>+</u> 0.10 ^a		
27	Saraburi	9.15 <u>+</u> 1.20	8.58 <u>+</u> 0.53	9.60 <u>+</u> 0.62	10.63 <u>+</u> 0.11	10.08 <u>+</u> 0.46	11.94 <u>+</u> 0.52 ^a		
28	Kamphaeng Phet	6.66 <u>+</u> 0.89	5.55 <u>+</u> 0.12	7.90 <u>+</u> 1.20	7.57 <u>+</u> 0.55	7.26 <u>+</u> 1.23	6.36 <u>+</u> 1.49 ^{**a}		
	n <u>+</u> S.E.	9.29 <u>+</u> 0.18 ^A	9.17 <u>+</u> .018 ^A	10.01 ± 0.21^{B}	10.90 <u>+</u> 0.21 ^C	11.61 <u>+</u> 0.23 ^D	12.97 <u>+</u> 0.28 ^{Eb}		
P. lo	bata	9.30 <u>+</u> 0.34	12.18 <u>+</u> 0.15	13.49 <u>+</u> 0.18	13.93 <u>+</u> 0.24	15.77 <u>+</u> 0.29	16.95 <u>+</u> 0.21		

Table 4.3 Percent inhibition (PI) of *P. mirifica* in the concentration range of 75-300 µg/ml

*,***,****, PI value was less than the Mean value of P. mirifica population

**, PI value was more than the Mean value of P. mirifica population

a; the PI value was more than P. lobata

b; the PI value was less than P. lobata

A, B, C, D, E; PI value was significant different (p<0.05)

4.1.1.3 Correlation of antioxidant activity and isoflavone content of *P. mirifica*

The chemical isoflavone contents of *P. mirifica* tuber consist of puerarin, daidzin, genistin, daidzein and genistein analysis by HPLC (Subtang, 2002) (Table 4.4-4.5). To establish indirect correlation between antioxidant activity and isoflavone content, the Mean value of the amount of isoflavone of the first 6 highest antioxidant activities, namely Uthai Thani, Nong Bua Lam Phu, Phetchaburi, Phitsanulok, Phetchabun and Ratchaburi was compared with the left 22 samples. It was found that only daidzein and genistein content were significant between the test groups (Table 4.6).

 Table 4.4 IC₅₀ value of the first 6 highest antioxidant activity in correlation with isoflavone content (%) (Subtang, 2002)

No.	Sources (Provinces)	IC ₅₀ (µg/ml)	Puerarin (%)	Daidzin (%)	Genistin (%)	Daidzein (%)	Genistein (%)
1	Uthai Thani	2,470.38 <u>+</u> 37.81	10.53 <u>+</u> 0.55	21.17 <u>+</u> 0.66	48.73 <u>+</u> 0.77	15.99 <u>+</u> 0.49	3.57 <u>+</u> 0.06
2	Nong Bua Lam Phu	2,489.98 <u>+</u> 27.62	21.74 <u>+</u> 3.30	20.25 <u>+</u> 4.31	41.51 <u>+</u> 4.95	13.10 <u>+</u> 1.96	3.38 <u>+</u> 0.60
3	Phetchaburi	2,492.61+83.02	16.76 <u>+</u> 0.13	26.37 <u>+</u> 1.32	47.78 <u>+</u> 1.44	7.64+0.36	1.44+0.02
4	Phitsanulok	2,526.47+46.92	41.94+0.34	14.60+0.21	31.58 <u>+</u> 0.23	9.95 <u>+</u> 0.06	1.94±0.02
5	Phetchabun	2,563.71+86.35	20.96 <u>+</u> 0.42	23.46±1.78	34.52 <u>+</u> 2.44	18.13 <u>+</u> 0.72	2.90 <u>+</u> 0.11
6	Ratchaburi	2,612.14 <u>+</u> 34.75	10.43 <u>+</u> 0.10	18.14 <u>+</u> 0.44	60.32 <u>+</u> 0.27	8.08 <u>+</u> 0.66	3.01 <u>+</u> 0.28
Mean	$n \pm S.E.$	2,525.88+21.86*	20.39 <u>+</u> 2.61	20.66 <u>+</u> 1.13	44.07+2.46	12.15+1.00	2.70 <u>+</u> 0.20

No.	Sources (Provinces)	IC ₅₀ (µg/ml)	Puerarin (%)	Daidzin (%)	Genistin (%)	Daidzein (%)	Genistein (%)
7	Chiang Mai	2,648.18+22.01	21.51 <u>+</u> 1.26	22.77 <u>+</u> 1.40	45.17 <u>+</u> 3.60	8.06±1.21	2.48 <u>+</u> 11.26
8	Nakhon Sawan	2,656.94+94.96	21.15 <u>+</u> 1.55	25.81 <u>+</u> 1.37	44.41 <u>+</u> 2.76	7.46 <u>+</u> 0.27	1.15 <u>+</u> 0.50
9	Lamphun	2,680.74+83.70	21.40 <u>+</u> 0.59	18.28 <u>+</u> 0.27	54.28 <u>+</u> 0.37	5.54 <u>+</u> 0.02	0.49 <u>+</u> 0.22
10	Nan	2,726.04+81.03	28.37±1.54	12.61 <u>+</u> 0.92	40.04 <u>+</u> 4.17	17.69 <u>+</u> 1.47	1.31 <u>+</u> 0.25
11	Chiang Rai	2,817.63+40.06	32.89+1.42	14.19 <u>+</u> 1.97	48.58+3.06	3.55±0.07	0.79 <u>+</u> 0.44
12	Sukhothai	2,889.48+70.73	13.76±0.51	24.45 <u>+</u> 0.22	50.20 <u>+</u> 0.71	10.86 <u>+</u> 0.30	0.72 <u>+</u> 0.25
13	Kanchanaburi	2,893.51+15.05	9.14 <u>+</u> 0.54	21.26 <u>+</u> 0.89	58.79±1.24	8.61±0.33	2.19 <u>+</u> 0.09
14	Lop Buri	2,900.25+23.03	28.13+0.78	9.94+0.56	57.09±0.73	3.41±1.01	1.41 <u>+</u> 0.06
15	Phrae	2,915.64+18.91	38.46+1.59	11.57+0.67	42.99+3.02	5.24 <u>+</u> 1.24	1.73+0.18
16	Chumphon	2,928.93+93.89	16.15+1.09	14.13+1.09	63.93+2.43	4.98+0.03	0.80+0.28
17	Nakhon Ratchasima	3,042.79+31.20	<u>29.72+2.67</u>	12.69 <u>+</u> 0.22	54.46 <u>+</u> 1.68	2.66 <u>+</u> 0.79	0.46 <u>+</u> 0.42
18	Sakon Nakhon	3,070.63 <u>+</u> 15.95	72.80 <u>+</u> 0.29	9.56 <u>+</u> 0.07	12.40 <u>+</u> 0.16	4.00 <u>+</u> 0.29	1.19 <u>+</u> 0.10
19	Phayoa	3,076.20+13.01	22.41+1.14	14.68+0.57	56.41 <u>+</u> 1.11	5.25±0.45	1.25±0.49
20	Uttharadith	3,117.09+14.34	48.71+0.09	22.04+0.03	16.54+0.04	12.69+0.08	0.00 <u>+</u> 0.00
21	Lampang	3,182.16+88.66	37.71+0.77	18.09+0.26	36.29+0.60	6.23±0.01	1.67±0.10
22	Tak	3,192.05+23.17	20.35+0.97	13.89+0.30	48.18+1.23	15.63+0.69	1.93+0.13
23	Chaiyaphum	3,197.86+19.83	23.32+1.97	19.15+0.69	43.95+1.31	10.64+1.83	2.92+0.85
24	Mae Hong Son	3,205.37 <u>+</u> 51.14	2680 <u>+</u> 0.90	20.15 <u>+</u> 0.81	33.52 <u>+</u> 1.53	16.27 <u>+</u> 0.68	3.23 <u>+</u> 0.10
25	Prachuap Khiri Khan	3,205.84 <u>+</u> 114.92	23.57 <u>+</u> 0.76	20.97 <u>+</u> 1.64	44.48 <u>+</u> 0.59	9.05 <u>+</u> 0.39	1.92±0.31
26	Prachin Buri	3,209.30+102.50	26.48+0.79	27.80+1.30	35.51+0.86	9.12+1.21	1.07+0.18
27	Saraburi	3,234.58+141.55	14.80+4.42	35.76+12.58	42.95+8.44	4.56+0.42	1.89+0.42
28	Kamphaeng Phet	3,376.97 <u>+</u> 69.96	35.66+2.98	16.65+4.03	41.26 <u>+</u> 7.47	5.33 <u>+</u> 0.26	1.08 <u>+</u> 0.30
Mean	n±S.E.	3,007.00 <u>+</u> 64.00	27.80+1.66	18.47 <u>+</u> 0.93	44.15 <u>+</u> 1.60	8.04 <u>+</u> 0.54	1.44+0.11

 Table 4.5 Isoflavone content (%) in 22 P. mirifica samples with lower antioxidant activity than the first 6 highest antioxidant activity (Subtang, 2002)

Table 4.6 Mean of isoflavone content (%) in first 6 higest antioxidant compared with 22

P. mirifica samples

Groups	IC ₅₀ (µg/ml)	Puerarin (%)	Daidzin (%)	Genistin (%)	Daidzein (%)	Genistein (%)
Mean <u>+</u> S.E. of 6 <i>P. mirifica</i>	2,525.88 <u>+</u> 21.86*	20.39 <u>+</u> 2.61	20.66 <u>+</u> 1.13	44.07 <u>+</u> 2.46	12.15 <u>+</u> 1.00*	2.70 <u>+</u> 0.20*
Mean <u>+</u> S.E. of 22 <i>P. mirifica</i>	3,007.00 <u>+</u> 64.00	27.80 <u>+</u> 1.66	18.47+0.93	44.15 <u>+</u> 1.60	8.04 <u>+</u> 0.54	1.44 <u>+</u> 0.11

6 P. mirifica; the first 6 highest antioxidant activity P. mirifica

22 P. mirifica; the left 22 P. mirifica with lower antioxidant activity

4.1.1.4 Correlation of antioxidant activity and isoflavone glycoside and aglycoside contents of *P.mirifica*

The percentage of the amount of isoflavone glycoside, with glucose binding (daidzin plus genistin) and isoflavone aglycoside, without glucose binding (daidzein plus genistein) of the first 6 highest antioxidant activities, including Uthai Thani, Nong Bua Lam Phu, Phetchaburi, Phitsanulok, Phetchabun and Ratchaburi was compared with the left 22 samples (Table 4.7). It was found that isoflavone aglycoside content were significant between the test groups. The isoflavone content of *P. lobata* showed no significant different when compared with isoflavone content of *P. mirifica*.

Table 4.7 Isoflavone glycoside and aglycoside content (%) of the first 6 highestantioxidant activity P. mirifica (Subtang, 2002)

No.	Sources (Provinces)	IC ₅₀ (µg/ml)	Isoflavone glycoside (%)	Isoflavone aglycoside (%)
1	Uthai Thani	2,470.38±37.81	78.12 <u>+</u> 0.65	21.87 <u>+</u> 0.65
2	Nong Bua Lam Phu	2,489.98 <u>+</u> 27.62	79.14 <u>+</u> 2.46	20.86 <u>+</u> 2.46
3	Phetchaburi	2,492.61 <u>+</u> 83.02	89.08 <u>+</u> 0.48	10.91 <u>+</u> 0.48
4	Phitsanulok	2,526.47 <u>+</u> 46.92	79.53 <u>+</u> 0.48	20.46 <u>+</u> 0.26
5	Phetchbun	2,563.71 <u>+</u> 86.35	73.38+0.97	26.61 <u>+</u> 0.97
6	Ratchaburi	2,612.14 <u>+</u> 34.75	87.61 <u>+</u> 0.84	12.39 <u>+</u> 0.84
Mean	+S.E.	2,525.88+21.86*	81.14 <u>+</u> 1.39	18.85 <u>+</u> 1.39*
P. lob	oata	2,482.00 <u>+</u> 66.11	81.06 <u>+</u> 0.65	18.93 <u>+</u> 0.65

*; Significant difference as compared with the Mean of 22 samples of P. mirifica

No.	Sources (Provinces)	IC ₅₀ (μg/ml)	Isoflavone glycoside (%)	Isoflavone aglycoside (%)	
7	Chiang Mai	2,648.18+22.01	86.51 <u>+</u> 2.06	13.48 <u>+</u> 2.06	
8	Nakhon Sawan	2,656.94 <u>+</u> 94.96	89.06 <u>+</u> 0.39	10.93 <u>+</u> 0.39	
9	Lamphun	2,680.74 <u>+</u> 83.70	92.33 <u>+</u> 0.26	7.67 <u>+</u> 0.26	
10	Nan	2,726.04 <u>+</u> 81.03	73.34 <u>+</u> 3.02	26.65±3.02	
11	Chiang Rai	2,817.63 <u>+</u> 40.06	93.54 <u>+</u> 0.47	6.46 <u>+</u> 0.47	
12	Sukhothai	2,889.48+70.73	86.56 <u>+</u> 0.14	13.43 <u>+</u> 0.14	
13	Kanchanaburi	2,893.51±15.05	88.11 <u>+</u> 0.50	11.89+0.50	
14	Lop Buri	2,900.25+23.03	93.29 <u>+</u> 1.42	6.71 <u>+</u> 1.42	
15	Phrae	2,915.64+18.91	88.54+2.36	11.46+2.36	
16	Chumphon	2,928.93+93.89	93.09 <u>+</u> 0.43	6.91 <u>+</u> 0.43	
17	Nakhon Ratchasima	3,042.79 <u>+</u> 31.20	95.69 <u>+</u> 1.62	4.31 <u>+</u> 1.62	
18	Sakon Nakhon	3,070.63+15.95	80.95+1.19	19.04+1.19	
19	Phayoa	3,076.20+13.01	91.64+1.13	8.35+1.13	
20	Uttharadith	3,117.09+14.34	75.25+0.12	24.75+0.12	
21	Lampang	3,182.16+88.66	87.30+0.30	12.69+0.30	
22	Tak	3,192.05+23.17	77.93+0.81	22.06+0.81	
23	Chaiyaphum	3,197.86+19.83	82.45+2.95	17.54+2.95	
24	Mae Hong Son	3,205.37+51.14	73.34+0.89	26.65+0.89	
25	Prachuap Khiri Khan	3,205.84 <u>+</u> 114.92	85.62 <u>+</u> 1.04	14.37 <u>+</u> 1.04	
26	Prachin Buri	3,209.30+102.50	86.09 <u>+</u> 1.61	13.90±1.61	
27	Saraburi	3,234.58+141.55	92.38±0.53	7.61 <u>+</u> 0.53	
28	Kamphaeng Phet 3,376.97±69.96		89.89±1.37 10.10±1.3		
Mean	<u>+S.E.</u>	3,007 <u>+</u> 0.64	86.49±0.83	13.50±0.84	
P. lol	pata	2,482.00 <u>+</u> 66.11	81.06+0.65	18.93+0.78	

Table 4.8 Isoflavone glycoside and aglycoside content (%) in 22 P. mirifica sampleswith lower antioxidant activity than the first 6 highest antioxidant activity(Subtang, 2002)

*; Significant difference as compared with the Mean of 6 samples of P. mirifica

Table 4.9	Isoflavone contents of P. mirifica from 28 provinces in comparision with P. lobate	1
	(Subtang, 2002)	

No	Sources (Provinces)	IC ₅₀ (μg/ml)	Puerarin (Mean+S.E)	Daidzin (Mean+S.E)	Genistin (Mean+SE)	Daidzein (Mean+SE)	Genistein (Mean+ SE.)	Total Isoflavone (Mean+SE.)
1	Uthai Thani	2,470.38 <u>+</u> 37.81 [*]	10.85±1.01**b	21.70 <u>+</u> 0.84*	50.17 <u>+</u> 3.57 ^{*a}	16.48 <u>+</u> 1.35 ^{**a}	3.66+0.16 ^{*a}	102.86+6.53*a
2	Nong Bua Lam Phu	2,489.98 <u>+</u> 27.62 [*]	12.65 <u>+</u> 2.42 ^{**b}	11.91 <u>+</u> 3.02 ^b	23.65 <u>+</u> 2.14	7.46 <u>+</u> 0.96 ^{*b}	$1.91 \pm 0.25^{*a}$	57.58 <u>+</u> 3.61
3	Phetchaburi	$2,492.61 \pm 83.02^*$	13.19±0.45**b	20.82 <u>+</u> 1.78 [*]	37.56±1.33 ^{*a}	6.00±0.24 ^b	1.13+0.04	78.71±3.15 ^{*a}
4	Phitsanulok	2,529.47 <u>+</u> 46.92*	32.24 <u>+</u> 1.06*	12.26±0.13 ^b	26.53+0.57	8.36+0.23*b	1.63+0.05*a	84.02+1.91 ^{*a}
5	Phetchabun	2,563.71+86.35*	9.40±0.45*** ^a	10.48±0.67 ^b	15.53±1.60**b	8.10+0.04*b	1.29+0.01	35.42+1.31**b
6	Ratchaburi	2,612.14 <u>+</u> 34.75*	8.85±0.36**b	15.39 <u>+</u> 0.79** ^b	51.15 <u>+</u> 1.75 ^{*a}	6.84 <u>+</u> 0.53 ^b	$2.54\pm0.15^{*a}$	84.77 <u>+</u> 2.67 ^{*a}
7	Chiang Mai	2,648.18+22.01	11.66 <u>+</u> 0.63 ^{**b}	12.37+0.58b	24.87+3.25	4.33+0.41 ^b	1.34 ± 0.11^{a}	54.58±3.08**
8	Nakhon Sawan	2,656.94 <u>+</u> 94.96	13.34 <u>+</u> 1.46 ^{**b}	16.28 <u>+</u> 1.64 ^{*a}	27.71 <u>+</u> 0.75	4.70 <u>+</u> 0.37 ^b	0.72 <u>+</u> 0.32	62.75 <u>+</u> 3.24
9	Lamphun	2,680.74+83.70	33.18±0.92*	28.35+0.68 ^{*a}	84.13±0.54 ^{*a}	8.59±0.09*b	0.76+0.36	155.00±1.42*a
10	Nan	2,726.04 <u>+</u> 81.03	5.32 <u>+0.44</u> **b	2.36 <u>+</u> 0.22 ^{**b}	7.62 <u>+</u> 1.36 ^{**b}	3.31±0.31**b	0.24 <u>+0</u> .04**	18.85 <u>+</u> 1.92 ^{**b}
11	Chiang Rai	$2,817.63 \pm 40.06^{a}$	20.02+1.42 ^b	8.61±1.12**b	29.58+2.43	2.16+0.08**b	0.50+0.28**	60.87+3.30
12	Sukhothai	2,889.48+70.73 ^a	14.12 <u>+</u> 0.92 ^{**b}	25.09±1.50*a	51.43+2.40 ^{*a}	11.16+0.85*	0.73+0.23	102.52+5.35**
13	Kanchanabu ri	2,893.51 <u>+</u> 159.05 ^a	7.15 <u>+</u> 0.51** ^b	16.61 <u>+</u> 0.70 ^{*b}	45.93 <u>+</u> 0.75 ^{*a}	6.73 <u>+</u> 0.32 ^b	$1.71 \pm 0.98^{*a}$	78.13 <u>+</u> 0.94 ^{**} a
14	Lop Buri	2,900.25+23.03 ^a	19.50+1.44 ^b	6.84 <u>+</u> 0.09 ^{**b}	39.47 <u>+</u> 1.65 ^{*a}	2.42 <u>+</u> 0.79 ^{**b}	0.98+0.09	69.21 <u>+</u> 3.77 ^a
15	Phrae	2,915.64+186.91 ^a	17.47+2.21 ^b	5.34+1.00**b	19.62+2.87**	2.30±0.39**b	0.81+0.19	45.55 <u>+</u> 5.89 ^{**b}
16	Chumphon	2,928.93 <u>+</u> 93.89 ^a	8.45+0.22**b	7.38+1.11**b	34.17+4.81ª	2.64+0.26**b	0.40+0.17**	53.04+5.30**
17	Nakhon Ratchasima	3,042.79 <u>+</u> 31.20ª	13.09 <u>+</u> 0.77 ^{**b}	5.61 <u>+</u> 0.07 ^{**b}	24.15 <u>+</u> 1.42	1.20 <u>+</u> 0.37 ^{**b}	0.21±0.2**b	44.27 <u>+</u> 1.27 ^{**b}
18	Sakon Nakhon	3,070.63 <u>+</u> 157.95 ^a	87.05 <u>+</u> 0.79 [*] ª	11.48 <u>+</u> 0.21 ^b	14.83 <u>+</u> 0.22***b	4.78 <u>+</u> 0.37 ^b	1.42 <u>+</u> 0.14 ^a	119.57 <u>+</u> 1.39 [*] a
19	Phayoa	3,076.20+113.01 ^a	12.91±0.99**b	8.46+0.62**b	32.43+1.35	3.03±0.36**b	0.73+0.30	57.56+3.02
20	Uttharadith	3,117.09 <u>+</u> 143.44 ^a	30.25 <u>+</u> 0.44**	13.69 <u>+</u> 0.21 ^b	10.27±0.19**b	7.88 <u>+</u> 0.18 ^{*b}	0.00±0.0**b	62.08±1.03
21	Lampang	3,182.16 <u>+</u> 88.66** ^a	34.65 <u>+</u> 0.72*	16.59 <u>+</u> 0.08 ^{*b}	33.30 <u>+</u> 0.08 ^a	5.72 <u>+</u> 0.09 ^b	1.53 ± 0.12^{a}	91.79 <u>+</u> 1.72 ^{*a}
22	Tak	3,192.05 <u>+</u> 23.17** ^a	12.58 <u>+</u> 1.45 ^{**b}	8.55 <u>+</u> 0.73 ^{**b}	29.48 <u>+</u> 0.67	9.60 <u>+</u> 0.81*	1.20±0.15	61.42 <u>+</u> 4.41
23	Chaiyaphum	3,197.86 <u>+</u> 119.83 ^{**a}	15.83 <u>+</u> 2.43 ^b	12.91 <u>+</u> 1.44 ^b	29.48 <u>+</u> 2.33	7.02 <u>+</u> 0.89 ^b	$1.89\pm0.42^{*a}$	67.13 <u>+</u> 5.47
24	Mae Hong Son	3,205.37 <u>+</u> 51.14 ^{**} a	10.40±1.03**b	7.82 <u>+</u> 0.81 ^{**} ^b	12.90 <u>+</u> 0.58 ^{**} ^b	6.26 <u>+</u> 0.23 ^b	1.25 <u>+</u> 0.92	38.65 <u>+</u> 2.53 ^{**b}
25	Prachuap Khiri Khan	3205.84 <u>+</u> 114.92 ^{**a}	9.29 <u>+</u> 0.61 ^{**b}	8.21 <u>+</u> 0.38 ^{**b}	17.50 <u>+</u> 2.66 ^{**b}	3.57 <u>+</u> 0.27 ^{**b}	0.76 <u>+</u> 0.14	39.33 <u>+</u> 1.36 ^{**b}
26	Prachin Buri	3,209.30±102.50 ^{**a}	12.42±0.26**b	13.05±0.65 ^b	16.69 <u>+</u> 0.78 ^{**b}	4.28+0.56 ^b	0.51+0.09**	46.94 <u>+</u> 1.12 ^{**b}
27	Saraburi	3,234.58±141.55***a	7.82+3.31**b	14.50±1.39 ^b	21.82+7.20**	2.21+0.59** ^b	0.81+0.33	47.18+9.50**b
28	Kamphaeng Phet	3,376.97 <u>+</u> 69.96 ^{**} a	15.44 <u>+</u> 1.14 ^b	7.01 <u>+</u> 1.10 ^{**b}	18.50 <u>+</u> 4.45 ^{**b}	2.31 <u>+</u> 0.11** ^b	0.46±0.08**	43.71 <u>+</u> 4.02 ^{**b}
Mea	in <u>+</u> SE.	2,904.52 <u>+</u> 33.24	17.93 <u>+</u> 1.72	12.48 <u>+</u> 0.67	29.42 <u>+</u> 1.80	5.69 <u>+</u> 0.37	1.11 <u>+</u> 0.09	66.55 <u>+</u> 3.15
P. lo		2,482.0 ± 66.11***	32.85+0.72***	21.94+0.74***	25.63+0.86***	10.34+0.79***	0.81+0.08	91.98+1.20***

**, the value was less than the Mean value of P. mirifica population

*;***, the value was greater than the Mean value of P. mirifica population

a; the value was greater than P. lobata

b; the value was less than P. lobata

Antioxidant activity	Puerarin (%)	Daidzin (%)	Genistin (%)	Daidzein (%)	Genistein (%)	Total isoflavone
1 st	20 th	4 th	4 th	1 st	1 st	3 rd
Uthai Thani	Uthai Thani 10.55	Uthai Thani 21.11	Uthai Thani 48.78	Uthai Thani 16.02	Uthai Thani 3.56	Uthai Thani
2 nd	16 th	15 th	18 th	8 th	3 rd	16 th
Nong Bua Lam Phu	Nong Bua Lam Phu 21.97	Nong Bua L <mark>a</mark> m Phu 20.69	Nong Bua Lam Phu 41.07	Nong Bua Lam Phu 12.96	Nong Bua Lam Phu 3.32	Nong Bua Lam Phu
3 rd	13 th	4 th	7 th	13 th	13 th	8 th
Phetchaburi	Phetchaburi 16.75	Phetchaburi 26.46	Phetchaburi 47.72	Phetchaburi 7.62	Phetchaburi 1.44	Phetchaburi
4 th Phitsanulok	2 nd Phitsanulok 41.95	14 th Phitsanulok 14.60	15 th Phitsanulok 31.57	5 th Phitsanulok 9,95	6 th Phitsanulok 1.94	7 th Phitsanulok
5 th	22 nd	17 th	23 rd	6 th	10 th	27 th
Phetchabun	Phetchabun 20.98	Phetchabun 23.39	Phetchabun 34.66	Phetchabun 18.08	Phetchabun 2.89	Phetchabun
6 th	24 th	8 th	3 th	10 th	2 th	6 th
Ratchaburi	Ratchaburi 10.44	Ratchaburi 18.16	Ratchaburi 60.33	Ratchaburi 8.07	- Ratchaburi 2.99	Ratchaburi
Mapping frequency	1/6	2/6	2/6	3/6	4/6	2/6

Table 4.10 The ranked *P. mirifica* sample according to the amount of isoflavone; puerarin, daidzin, genistin, daidzein and genistein contents

จุฬาลงกรณ่มหาวิทยาลัย

4.1.1.5 The antioxidant activity of isoflavone

Puerarin, daidzin, genistin, daidzein and genistein, were investigated for antioxidant activity by DPPH assay (Table 4.11) for direct correlation assay. It was found that puerarin express the highest antioxidant activity. Puerarin, daidzin and daidzein showed no significant different as compared with α -tocopherol.

Table 4.11 The antioxidant activity of isoflavone as compared with α -tocopherol

No.	Chemicals	IC ₅₀ (µg/ml)
1	Puerarin	93.26+9.14 ^a
2	Daidzin	108.26+9.94 ^{ab}
2	Genistin	362.10+25.46 ^c
3	Daidzein	82.58+4.53 ^a
4		155.75 <u>+</u> 25.19 ^b
5	Genistein	72.33±6.48 ^a
6	a-tocopherol	12:00_0110

a, b, c, d; Significant difference (p<0.05) as compared with α -tocopherol

4.1.2 B. superba

4.1.2.1 Antioxidant activity of B. superba

B. superba collected from 23 provinces in Thailand was able to scavenge DPPH radicals by 50% (IC₅₀). The antioxidant activity value of *B. superba* showed significant variation (Table 4.12, Figure 4.2). *B. superba* from Loei showed highest antioxidant activity with IC₅₀ of 227.08 μ g/ml. The sample from Nakhon Sawan showed lowest antioxidant activity with IC₅₀ of 1,198.04 μ g/ml. The Mean value of antioxidant activity of *B. superba* population (653.64 μ g/ml) was compared with individual sample. It was found that 13 samples exhibited significant higher antioxidant activity value and 9 samples exhibited significant lower antioxidant activity value than the Mean value of *B. superba* population (p<0.05). The antioxidant activity of α -tocopherol (68.02 μ g/ml) showed obviously significant higher level than the Mean value of *B. superba* population.

No.	Sources (Provinces)	ΙC ₅₀ (μg/ml)
1	Loei	227.08 <u>+</u> 0.38 [*]
2	Lop Buri	$289.82 \pm 6.05^*$
3	Saraburi	323.50 <u>+</u> 8.43 [*]
4	Lampang	358.39 <u>+</u> 4.76 [*]
5	Uttharadith	371.58 <u>+</u> 0.95 [*]
6	Phetchabun	372.07 <u>+</u> 3.00 [*]
7	Chonburi	377.89 <u>+</u> 8.10 [*]
8	Sakon Nakhon	401.84 <u>+</u> 12.42 [*]
9	Phitsanulok	413.34 <u>+</u> 4.34 [*]
10	Chiang Mai	435.85 <u>+</u> 5.20 [*]
11	Tak	470.10 <u>+</u> 3.75 [*]
12	Ratchaburi	535.14 <u>+</u> 5.92 [*]
13	Chiang Rai	579.01 <u>+</u> 2.77 [*]
14	Chantaburi	685.07 <u>+</u> 17.45
15	Kanchanaburi	808.09 <u>+</u> 5.29 ^{**}
16	Chaiyaphum	839.74+9.70**
17	Chachoengsoa	966.74 <u>+</u> 30.06 ^{**}
18	Srisaket	970.56±21.33**
19	Phrachinburi	1,006.96 <u>+</u> 12.56 ^{**}
20	Mae Hong Son	1,055.36+34.70**
21	Nong Bua Lam Phu	1,129.15+45.44**
22	Khon Kaen	1,185.11+17.69**
23	Nakhon Sawan	1,198.04+18.76**
Mean	$1 \pm S.E.$	653.64+38.83
a-toc	opherol	68.02 <u>+</u> 5.52***

Table 4.12 Antioxidant activity of B. superba

 IC_{50} value; the concentration of sample required to scavenge 50% DPPH free radicals s under experimental conditions, Mean<u>+</u>S.E.

*, ***, IC₅₀ value was greater than the Mean value of *B. superba* population

**; IC₅₀ value was less than the Mean value of *B. superba* population

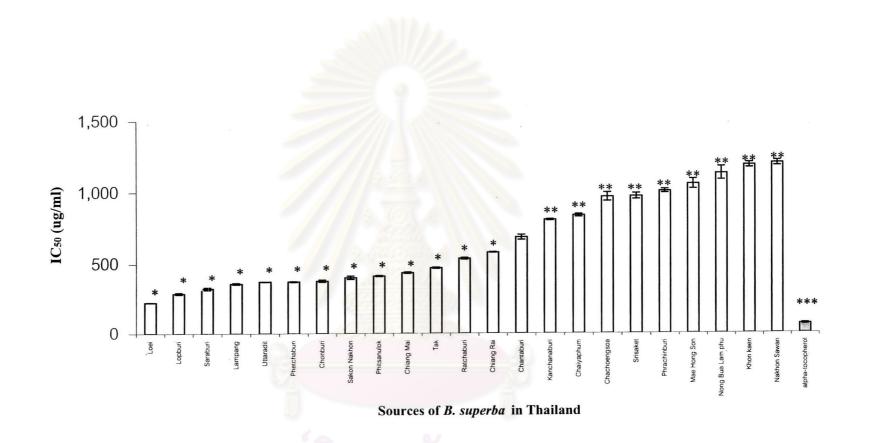


Figure 4.2 Antioxidant activity of *B. superba* from 23 provinces in Thailand. Significant difference from control (p<0.05) (Mean±SE). *, ***, IC₅₀ value was greater than the Mean value of *B. superba* population. **; IC₅₀ value was less than the Mean value of *B. superba* population.

65

4.1.2.2 Percent inhibition of the free radicals of B. superba

The percent inhibition (PI) was calculated for inhibiting the free radicals of *B. superba* collected from 23 provinces (Table 4.13). The most effective concentrations were in the range of 56.25-150 µg/ml and there exhibited significant inhibition of the DPPH free radicals. *B. superba* extract at the concentration of 150 µg/ml from Loei (91.11%) showed the highest PI value and the sample from Nakon Sawan (15.52%) showed the lowest PI value as well as IC₅₀ value. The PI value was concentration-dependent and showed significant different (p<0.05). Thus, the Mean value of PI of individual *B. superba* at highest dose (150 µg/ml) was selected for comparision with the Mean value of *B. superba* population. Twelveth provinces of sample showed significant higher PI value and 11 samples showed PI value lower than the Mean value of *B. superba* population. In contrary, the PI value of α -tocopherol was significant higher than the Mean value of all *B. superba* samples.

		-		PI va	alue	n ngan sanah nga karan sa karan nga karan		
No.	Sources (Provinces)	Concentration of the extract (µg/ml)						
		56.25	75	93.75	112.5	131.25	150	
1	Loei	60.78 <u>+</u> 072	73.42 <u>+</u> 0.46	84.91 <u>+</u> 0.15	89.30 <u>+</u> 0.30	90.98 <u>+</u> 0.05	91.11 <u>+</u> 0.12*	
2	Lop Buri	48.37±1.11	58.31 <u>+</u> 3.21	69.18 <u>+</u> 0.63	77.57 <u>+</u> 0.50	84.17 <u>+</u> 0.95	87.14 <u>+</u> 0.34*	
3	Saraburi	39.78 <u>+</u> 0.91	52.07 <u>+</u> 0.82	62.33 <u>+</u> 0.96	71.66 <u>+</u> 1.56	80.40 <u>+</u> 0.50	86.60 <u>+</u> 1.33*	
4	Lampang	34.29+1.30	45.83±0.36	53.85 <u>+</u> 0.82	63.70 <u>+</u> 0.34	72.17 <u>+</u> 0.14	81.43 <u>+</u> 1.38*	
5	Uttharadith	37.11±0.42	45.03±0.36	53.41±0.71	61.36 <u>+</u> 0.30	69.04 <u>+</u> 0.72	77.44 <u>+</u> 0.60*	
6	Phetchabun	36.58±1.19	44.90 <u>+</u> 0.38	52.21 <u>+</u> 0.98	61.26 <u>+</u> 0.57	70.23 <u>+</u> 0.75	77.64 <u>+</u> 1.52*	
7	Chonburi	32.24+1.81	43.95+2.52	52.38 <u>+</u> 2.39	57.11 <u>+</u> 0.87	70.76 <u>+</u> 2.08	76.12 <u>+</u> 3.16*	
8	Sakon Nakhon	31.91+2.75	39.98+2.29	49.37+2.61	55.34 <u>+</u> 2.04	65.36 <u>+</u> 4.10	69.80 <u>+</u> 2.30*	
9	Phitsanulok	31.63+1.09	41.65+1.10	48.32 <u>+</u> 0.45	55.10±0.52	62.33 <u>+</u> 0.19	70.68 <u>+</u> 0.60*	
10	Chiang Mai	27.38+1.42	33.57+1.87	42.34+2.39	50.39±1.91	57.06 <u>+</u> 2.10	61.62 <u>+</u> 2.49 [*]	
11	Tak	27.35+1.00	33.26+1.03	40.88 <u>+</u> 0.62	47.69±0.17	54.14 <u>+</u> 0.36	62.32 <u>+</u> 1.01*	
12	Ratchaburi	25.81+0.48	30.40+1.02	34.58+0.34	40.80 <u>+</u> 0.80	45.91 <u>+</u> 0.33	52.46 <u>+</u> 0.90	
13	Chiang Rai	23.56+0.22	25.09+1.92	33.13±0.58	37.79±0.30	41.78 <u>+</u> 0.62	46.38 <u>+</u> 0.24**	
14	Chantaburi	21.46+1.07	23.96+0.85	27.37±0.69	30.14±1.05	33.68 <u>+</u> 1.39	37.00 <u>+</u> 1.39**	
15	Kanchanaburi	17.37+0.54	18.69+0.63	21.57±0.31	24.29 <u>+</u> 0.67	25.97 <u>+</u> 0.44	29.87 <u>+</u> 1.20**	
16	Chaiyaphum	17.95+0.84	20.46+0.28	20.95±0.34	22.20 <u>+</u> 1.10	25.32±0.33	27.79 <u>+</u> 0.35**	
17	Chachoengsoa	14.11+0.25	14.47+0.94	16.53+1.00	19.17±1.37	19.59 <u>+</u> 0.75	22.05 <u>+</u> 1.03**	
18	Srisaket	14.92+0.44	16.08+0.16	17.20+0.65	19.95±0.71	20.44 <u>+</u> 0.60	21.76±0.78**	
19	Phrachinburi	12.63+0.10	12.34+0.52	14.78±0.47	16.64 <u>+</u> 0.45	18.14 <u>+</u> 0.66	20.38 <u>+</u> 0.48**	
20	Mae Hong Son	12.97+0.21	12.44+0.78	14.37+0.33	15.52+1.11	17.54 <u>+</u> 0.92	19.30 <u>+</u> 0.74**	
21	Nong Bua Lam Phu	11.28 <u>+</u> 0.24	11.23 <u>+</u> 0.43	12.88 <u>+</u> 0.36	13.39 <u>+</u> 0.38	15.12 <u>+</u> 0.25	17.76 <u>+</u> 2.09**	
22	Khon kaen	10.08 <u>+</u> 0.41	10.67 <u>+</u> 0.27	11.56±0.54	12.49 <u>+</u> 0.19	13.89 <u>+</u> 0.25	15.28 <u>+</u> 0.29**	
23	Nakhon Sawan	10.21 <u>+</u> 0.20	10.80+0.27	11.42 <u>+</u> 0.13	12.68±0.15	13.40 <u>+</u> 0.38	15.52 <u>+</u> 0.29**	
Mean	n + S.E.	26.09+1.56 ^A	31.24+2.0 ^{AB}	36.76±2.48 ^{BC}	41.56±2.78 ^{CD}	46.41 <u>+</u> 3.09 ^{DE}	50.76 <u>+</u> 3.26 ^E	

Table 4.13 Percent inhibition (PI) of B. superba

*,***; amount of isoflavone was greater than Mean value of B. superba population

**; amount of isoflavone was less than the value of B. superba population

A, B, C, D, E; PI value was significant different (p<0.05)

4.1.2.3 The antioxidant activity of flavonoid

Flavonoid and sterol fraction antioxidant activity were investigated by DPPH assay (Table 4.14). It was found that flavonoid fraction express certain level of antioxidant activity, while sterol fraction showed no activity. Flavonoid fraction showed significant different as compared with α -tocopherol.

Table 4.14 The antioxidant activity of flavonoid as compared with α-tocopherol

No.	Chemicals	IC ₅₀ (μg/ml)	
1	Flavonoid fraction	1,354.29 <u>+</u> 46.75 ^b	
2	Sterol fraction	-	
3	α-tocopherol	72.33 <u>+</u> 6.48 ^a	

a,b; Significant different as compared with α-tocopherol

4.1.3.1 Antioxidant activity of M. collettii

The great difference between the sample with the highest and lowest antioxidant activity, IC₅₀ of 55.53 µg/ml versus IC₅₀ of 127.34 µg/ml of the samples from Chiang Rai and Lampang, respectively. There were 2 samples, from Chiang Rai and Chiang Mai that showed higher antioxidant activity as well as α -tocopherol and 1 sample, from Lampang showed lower antioxidant activity than the Mean value of *M. collettii* population (83.06±8.10 µg/ml) (Table 4.15, Figure 4.3)

Table 4.15 Antioxidant activity of M. collettii

No.	Sources (Provinces)	IC ₅₀ (μg/ml)	
1	Chiang Rai	$55.53 \pm 2.66^*$	
2	Chiang Mai	71.52 ±0.61*	
3	Kanchanaburi	77.84 <u>+</u> 0.79	
4	Lampang	127.34 <u>+</u> 0.47**	
Mean	$1 \pm S.E.$	83.06+8.10	
	opherol	$68.02 \pm 5.52^{***}$	

 IC_{50} value; the concentration of sample required to scavenge 50% DPPH free radicals s under experimental conditions, Mean<u>+</u>S.E.

,*; amount of isoflavone was greater than Mean value of *M. collettii* population

*; amount of isoflavone was less than the value of M. collettii population

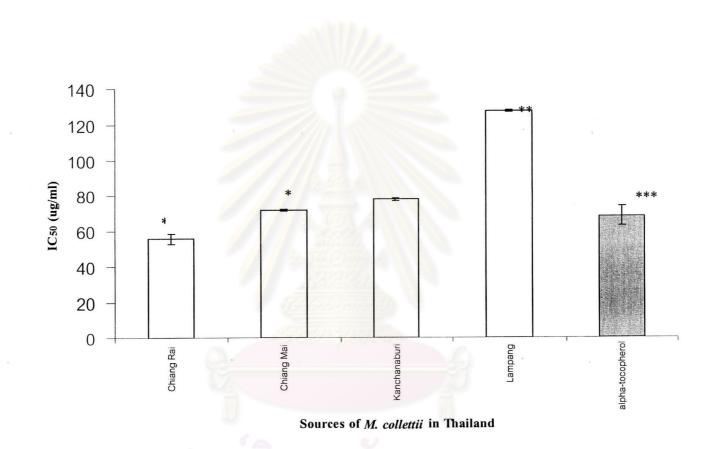


Figure 4.3 Antioxidant activity of *M. collettii* from 4 provinces in Thailand. Significant difference from control (p<0.05) (Mean±S.E.) **,***; amount of isoflavone was greater than Mean value of *M. collettii* population *; amount of isoflavone was less than the value of *M. collettii* population.

4.1.3.2 Percent inhibition of the free radicals of M. collettii

The PI value was calculated at each of concentration of *M. collettii* collected from 4 provinces in Thailand (Table 4.16). The concentration of 20-200 μ g/ml showed significant different. The PI value of *M. collettii* was compared at the higest does (200 μ g/ml). The sample from Chiang Rai showed the highest PI value and the sample from Lampang showed the lowest PI value as well as IC₅₀ value, whereas three samples exhibited significant higher and 1 sample exhibited significant lower PI value than Mean value of *M. collettii* population.

Table 4.16 Percent inhibition (PI) of M. collettii

No.	Sources (Provinces)			PI v:	alue				
		Concentration of the extracts (µg/ml)							
		20	40	60	80	100	200		
1	Chiang Rai	26.97 <u>+</u> 0.15	44.29+1.28	62.15 <u>+</u> 2.02	76.38±0.73	85.05 <u>+</u> 1.81	90.89 <u>+</u> 0.45 [*]		
2	Chiang Mai	22.90 <u>+</u> 0.43	36.87 <u>+</u> 0.64	48.97 <u>+</u> 0.31	62.72 <u>+</u> 0.745	74.44+0.82	90.17 <u>+</u> 0.17 [*]		
3	Kanchanaburi	22.35 <u>+</u> 0.79	32.23 <u>+</u> 0.12	46.50 <u>+</u> 1.20	57.85 <u>+</u> 0.30	68.78 <u>+</u> 0.77	89.75 <u>+</u> 0.21 [*]		
4	Lampang	16.22 <u>+</u> 1.14 ⁻	23.43 <u>+</u> 0.72	29.49 <u>+</u> 0.18	36.38 <u>+</u> 0.27	42.85 <u>+</u> 0.98	70.83+0.28**		
Mea	n + S.E.	22.12+1.19a	34.21 <u>+</u> 2.30b	46.78 <u>+</u> 3.53c	58.33 <u>+</u> 4.34d	67.78 <u>+</u> 4.71e	85.41 <u>+</u> 2.54f		

*; ***, PI value was greater than the Mean value of M. collettii population

**, PI value was less than Mean value of M. collettii population

4.1.4 Ranking for the antioxidant activity of *P. mirifica*, *P. lobata*,*B. superba* and *M. collettii*

The Mean value of antioxidant activity (IC₅₀) of *P. mirifica* population, *P. lobata* population, *B. superba* population and *M. collettii* population (Table 4.17) showed variation. The results reveal that *M. collettii* population exhibited the highest antioxidant activity value (83.06µg/ml), *B. superba* population showed the second order (653.64 µg/ml), and *P. lobata* showed the third order (2,482.00 µg/ml) and *P. mirifica* population showed the fourth order (2,904.52 µg/ml). In comparison with individual plant extracts, there showed significant lower antioxidant value than the Mean value of antioxidant activity of α -tocopherol. The direct relation between the antioxidant activity effectiveness of *M. collettii*, *B. superba*, *P. mirifica*, *P. lobata* and α -tocopherol for the DPPH radicals scavenging assay (Figure 4.4).

Table 4.17 The Mean value of antioxidant activities (IC₅₀) of *P. mirifica* population, *B. superba* population and *M. collettii* population, *P. lobata* and α-tocopherol

Plant extracts	IC ₅₀ (μg/ml)
P. mirifica population	2,904.52 <u>+</u> 33.24 ^D
P. lobata	2,482.00 <u>+</u> 66.11 ^C
B. superba population	653.64 <u>+</u> 38.83 ^B
M. collettii population	83.06 ± 8.10^{A}
α-tocopherol	68.02 <u>+</u> 5.52 ^E

 IC_{50} value; the concentration of sample required to scavenge 50% DPPH free radicals under experimental conditions, Mean<u>+</u>S.E.

A, B, C, D, E; significant different between test samples (p<0.05)

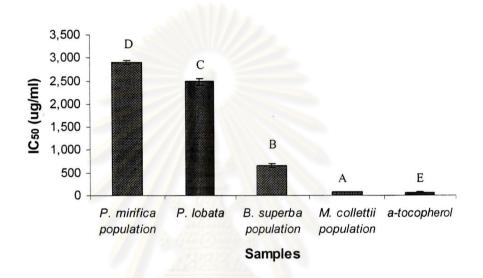


Figure 4.4 The Mean value of antioxidant activities (IC₅₀) of *P. mirifica* population, *B. superba* population and *M. collettii* population, *P. lobata* and α-tocopherol. A, B, C, D, E; significant different between test samples (p<0.05)</p>

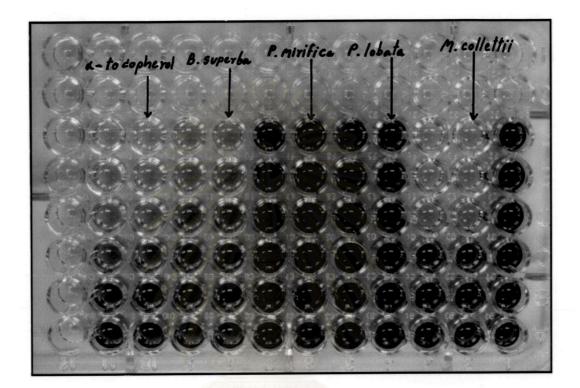


Figure 4.5 Color of DPPH free radicals s (purple color) were against with the plant extracts for 30 min compared with α-tocopherol (yellow color)

4.2 Mutagenicity and antimutagenicity by Ames' test (preincubate technique)

Plant extracts with highest antioxidant activity, *P. mirifica* from Uthai Thani (2,904.52 \pm 33.24 µg/ml), *B. superba* from Loei (653.64 \pm 38.83 µg/ml), *M. collettii* from Chiang Rai (83.06 \pm 8.10 µg/ml) and *P. lobata* (2,482.00 \pm 66.11µg/ml) were chosen for mutagenicity (Table 4.18) and antimutagenicity (Table 4.19).assay by Ames' test. The potential mutagenicity of plant extracts were investigated at the concentration; 2.5, 5, 10 and 20 mg/plate of *P. mirifica* as well as *P. lobata*, 0.5, 1.0, 2.5 and 5 mg/plate of *B. superba*, 0.5, 1.0, 2.5, 5, 10 and 20 mg/plate of *M. collettii* extract. Positive control, which used diagnostic mutagens to confirm the reversion properties of S. Typhimurium, AF₂ (not required the metabolic activation) for TA 98 strain (0.1 µg/plate) and TA100 strain (0.01 µg/plate), respectively, B(a)P mutagen (required the metabolic activation) for TA 98 (5 µg/plate) and TA100 (10 µg/plate), respectively (Figure 4.6-4.7).

4.2.1 Mutagenicity of plant extracts

4.2.1.1 Mutagenicity of P. mirifica

P. mirifca showed no mutagenicity effect to TA98 and TA100 strain both with and without enzymatic activation. *P. mirifica* (2.5 mg/plate) showed significant revertant colonies lower value than the negative control, but partial killing effect was not found. *P. mirifica* (10 mg/plate) which showed significant higher value of revertant colonies than negative control and *P. lobata* under the absence of enzymatic activation of TA98, however, cytotoxic effect was found in TA100 strain as partial killing was presence at the highest dose (20 mg/plate) in both TA98 and TA100. It was also found in TA98 under activation with enzyme.

4.2.2 Mutagenicity of P. lobata

P. lobata showed neither mutagenic nor toxic effect to TA98 and TA100 strain which absence and presence the metabolic activation, except at highest dose of TA100 strain as activate with enzyme showed partial killing effect. *P. lobata* showed no significantly different as compared with the negative control.

4.2.3 Mutagenicity of B. superba

B. superba showed neither mutagenic nor toxic effect to TA98 and TA100 strain which absence the metabolic activation. *B. superba* showed significant the revertant colonies hiher value than the negative control, but not more than 2 times. *B. superba* showed significant the revertant colonies lower and higher value than *P. lobata* at same dose both absence and presence the activation of enzyme.

4.2.4 Mutagenicity of M. collettii

M. collettii showed no mutagenic effect to TA98 and TA100 strain both in the absence and presence of the metabolic activation. Partial killing effect was found at the concentration of 10 and 20 mg/plate both in the absence and presence of the activation with enzyme in TA98 strain, while in TA100 was found at the concentration of 5 mg/plate under the absence of the enzyme. When activation with enzymatic, partial killing was presence at highest dose. *M. collettii* showed significant higher revertant colonies than the negative control, but not double as well as *P. lobata*.

หา้ลงกรณ์มหาวิทยาลัย

Plant extracts	Concentration (mg/plate)	Average of his ⁺ revertant colonies (Mean <u>+</u> SE)				
		T	A 98	TA 100		
		-S9 mix	+S9 mix	-S9 mix	+S9 mix	
P. mirifica	0	27.31 <u>+</u> 4.10	49.32 <u>+</u> 3.70	136.02 <u>+</u> 7.70	165.04 <u>+</u> 18.00	
(Uthai Thani)	2.5	27.00 ± 1.51	47.61 <u>+</u> 1.31	134.31 <u>+</u> 1.55	137.60 <u>+</u> 5.03 [*]	
	5	27.41 <u>+</u> 3.22	49.00 <u>+</u> 2.01	137.34 <u>+</u> 3.10	142.33 ± 3.21	
	10	$38.61 \pm 0.83^{*a}$	52.32+1.20	PK	161.00 <u>+</u> 9.52	
	20	PK	53.06 <u>+</u> 1.12	РК	РК	
P .lobata	0	28.71+2.30	54.51+3.90	150.62 <u>+</u> 5.20	168.66 <u>+</u> 3.71	
	2.5	27.33 ± 3.90	46.62+2.72	142.64 ± 1.40	151.62 ± 1.20	
	5	28.73 ± 0.90	51.61+6.50	143.01 ± 1.52	160.01+2.52	
	10	33.01+1.52	51.02+2.00	155.77+4.10	164.74 ± 2.90	
	20	34.02 <u>+</u> 3.14	50.01 <u>+</u> 5.22	162.32 <u>+</u> 3.90	PK	
B .superba	0	26.60+3.10	33.31 <u>+</u> 0.80	123.66 <u>+</u> 4.92	168.62 <u>+</u> 16.72	
(Loei)	0.5	29.35+1.41	40.09+2.00	102.61+2.32	186.00 + 4.70	
()	1.0	31.36+1.80	44.37+2.31*	110.00 ± 5.53	192.02+4.51	
	2.5	35.67+2.40*	45.00+4.02*	109.13+3.72 ^a	$200.63\pm6.70^{*a}$	
	5.0	34.69+2.42*	54.39 <u>+</u> 2.11*	108.60 ± 1.40^{a}	201.04 <u>+</u> 2.00 _{* a}	
M. collettii	0	31.08+1.50	46.66+2.00	109.63+4.71	151.64+6.30	
(Chiang Rai)	2.5	33.67+3.51	63.31+5.01 ^{*a}	150.30+6.12 ^{* a}	149.01 ± 4.90	
(childing run)	5	33.32+2.60	67.34+8.70 ^{*a}	PK –	153.72 ± 5.01^{a}	
	10	PK	PK	PK	168.80 ± 0.70	
	20	PK	PK	PK	PK –	
Positive contr						
AF ₂	0.1	490.62+7.60	ND	ND	ND	
A 2	0.01	ND	ND	700.60 <u>+</u> 5.91	ND	
$\mathbf{D}(\mathbf{a})\mathbf{D}$	5	ND	693.71 <u>+</u> 3.32	ND	ND	
B(a)P	5 10	ND	ND	ND	883.00+5.42	

Table 4.18 Mutagenicity of the plant extracts analyzed by S. Typhimurium TA 98 andTA100 on non-metabolic and metabolic activation

ND = Not determined

* ; significant compared with negative control (p<0.05), but non-mutagenic (the number of revertant colony less than 2 times of control)

a ; significant compared with P. lobata at same dose (p<0.05)

PK ; partial killing effect

4.2.2 Antimutagenicity of plant extracts

4.2.2.1 Antimutagenicity of P. mirifica

P. mirifica (10 mg/plate) showed weak antimutagenicity in TA98 strain (-S9 mix) and there showed positive antimutagenicity in TA100 strain (+S9 mix)

4.2.2.2 Antimutagenicity of P. lobata

P. lobata (10 and 20 mg/plate) showed weak antimutagenicity (-S9 mix) as well as at the concentration of 2.5, 5 and 10 mg/plate under enzymatic activation (+S9 mix) while at highest dose (20 mg/plate) showed positive antimutagenicity in strain TA98. *P. lobata* (10 and 20 mg/plate) showed weak antimutagenicity as well as at dose 5 and 10 mg/plate under enzymatic activation (+S9 mix) in TA100 strain.

4.2.2.3 Antimutagenicity of B. superba

B. superba (0.5 mg/plate) showed weak antimutagenicity in TA100 (-S9 mix) while other concentration showed negative result in either TA98 or TA100 strain.

4.2.2.4 Antimutagenicity of M. collettii

M. collettii (10 and 20 mg/plate) showed positive and strong antimutagenicity, respectively under the absence of the metabolic activation (-S9 mix) but showed weak and positive antimutagenicity in the presence of the metabolic activation (+S9 mix) in TA98 strain. *M. collettii* (10 mg/plate) showed strong antimutagenicity in the presence of the metabolic activation (+S9 mix) in TA100 strain.

Table 4.19 Antimutagenicity of P. mirifica, B. superba and M. collettii in comparisonwith P. lobata in S. Typhimurium TA98 and TA100 strains, in the absence andpresence of the metabolic activation system

Treatment	Dose (mg/plate)	Antimutagenicity (PI value)					
		ТА	98	TA100			
		-\$9	+\$9	-89	+\$9		
P. mirifica (Uthai Thani)	2.5 5 10 20	8.21±5.92* 18.32±2.74* 27.58±1.91** ND	0* 0* 0* 0*	3.45±2.21 2.47±1.80 ND ND	0* 7.34 <u>+</u> 2.82* 42.09 <u>+</u> 7.41 ND		
P. lobata	2.5 5 10 20	6.83±1.90 [*] 16.15±2.01 [*] 29.74±3.44 ^{***} 30.02±4.71 ^{**}	27.03±0.97** 28.52±1.94** 29.09±2.26** 45.85±3.30***	7.97±1.53* 16.02±1.10* 21.29±7.12** 22.73±8.26**	18.50 <u>+</u> 7.62 [*] 26.81 <u>+</u> 4.40 ^{**} 35.53 <u>+</u> 3.01 ^{**} ND		
<i>B. superba</i> (Loei)	0.5 1 2.5 5	$7.51\pm2.27^{*}$ 13.19±4.93^{*} 4.63±1.30^{*} 0 [*]	0* 0* 11.44 <u>+</u> 2.13*	24.83 <u>+</u> 4.03 ^{**} 2.41 <u>+</u> 0.40 [*] 0 [*] 0 [*]	0* 0* 0* 0*		
<i>M. collettii</i> (Chiang Rai)	0.5 1 2.5 5 10 20	0* 5.40±1.10* 11.37±1.30* 56.91±0.41 63.79±1.24* ND	0° 0° 30.74 <u>+</u> 1.42° 52.16 <u>+</u> 4.84° ND	2.24±1.28 [•] 0.57±1.63 [•] 2.30±1.70 [•] ND ND ND	0 [*] 0 [*] 13.42±0.57 [*] 85.10±4.71 ^{***} ND		
Spontaneous		30.60 <u>+</u> 1.20	40.00 <u>+</u> 1.10	114.32 <u>+</u> 6.61	119.00 <u>+</u> 6.21		
AF ₂	0.1	505.66 <u>+</u> 7.60 ND	ND ND	ND 694.32 <u>+</u> 8.80	ND ND		
B(a)P	10 5	ND ND	742.01 <u>+</u> 22.52	ND ND	ND 705.00 <u>+</u> 29.11		

*, Negative antimutagenicity effect

**, Weak antimutagenicity effect

- ***, Positive antimutagenicity effect
- ****, Strong antimutagenicity effect

ND = Not determined

Figure 4.6 The revertant colonies of mutagen in S. Typhimurium TA98

Figure 4.7 The revertant colonies of mutagen in S. Typhimurium TA100

4.3 Genotoxicity by micronucleus test

The PCEs and NCEs of erythrocytes, which stain differentially, the combination of the May-Gruenwald and Giemsa stains PCEs bluish and NCEs relatively red dish in color and micronucleus in PCEs (Figure 4.8). An increase in the frequency of micronucleated PCE (MNPCEs) in test agent-treated animals is an indication of induced chromosome damage

4.3.1 Dose variation study

The preliminary on micronucleus formation of only *M. collettii* crude extract at the concentration approximately 1, 10 and 20 g powder/kg B. W. in male rats at 30 hours is shown in Table 4.20. *M. collettii* at the highest dose showed significant diffece as compared with the negative control and no treat group (Table 4.20).

 Table 4.20 Micronucleus test in rats' bone marrow after oral administration of

 M. collettii extracts at 30 hours

Samples	Dose (g/kg B.W.)	Time (hours)	No. of MN/1000PCEs (Mean <u>+</u> S.E.) Male	PCEs/NCEs (Mean±S.E.) Male
No treat	0	30	2.66±0.80	0.57 <u>+</u> 0.11
1% absolute ethanol	0	0.7	2.33 <u>+</u> 0.88	0.53 <u>+</u> 0.05
M. collettii	2 1 9 9	19159	2.33 <u>+</u> 0.33	0.53 <u>+</u> 0.71
	10		4.00 <u>+</u> 0.57	$0.67 \pm 0.09^{*}$
0.970.0	20		9.01 <u>+</u> 0.68 [*]	0.47 <u>+</u> 0.54
Cyclophosphamide	0.08	1 11 16 1	18.33 <u>+</u> 0.89 ^{**}	0.33 <u>+</u> 0.50 ^{**}
(i.p)				

*, **; Significant diffence (p<0.05)

4.4.2 Time variation study of plant extracts

The frequency of micronucleated polychromatic erythrocytes (MNPCEs) in 1,000 PCEs and the ratio of PCE to NCE after 24, 48 and 72 hours exposure to *P. mirifica*, *P. lobata*, *B. superba* and *M. collettii* extract crude extract (Table 4.21).

4.4.2.1 Micronucleus test of P. mirifica

P. mirifica extract showed non-mutagenic and non-toxicity effect to bone marrow cells of male rats. *P. mirifica* showed no significant difference as compare with the negative control groups (p<0.01). Micronucleus frequencies and PCEs/NCEs of *P. mirifica* exhibited no significant different as compared with *P. lobata*.

4.4.2.2 Micronucleus test of P. lobata

P. lobata extract showed non-mutagenic and non-toxicity effect to bone marrow cells of male rats. *P. lobata* showed no significant difference as compared with the negative control groups (p<0.01).

4.4.2.3 Micronucleus test of B. superba

B. superba extract showed weakly mutagenic activity and non-toxicity effect to bone marrow cells of male rats at tested dose. *B. superba* could induce significantly increase in the frequency of MNPCEs after 24 hours as compared with the negative control (p<0.01). Micronucleus frequencies of *B. superba* exhibited significant different as compared with *P. lobata*.

4.4.2.4 Micronucleus test of M. collettii

M. collettii showed weak mutagenic activity but non-toxicity effect to bone marrow cells of male rats. *M. collettii* exhibited significant increase of the MNPCE frequencies after treated sample in comparison to the negative control. The micronucleus frequencies of *M. collettii* exhibited significant different (p<0.01) as compared with *P. lobata*.

Compound	Dose (g/kg B.W.)	Time (hours)	No. of MN/1000 PCEs (Mean <u>+</u> S.E.)	PCEs/NCEs (Mean <u>+</u> S.E.)
			Male	Male
1%EtoH	0	24	1.49+0.22	0.62+0.03
		48	1.97+0.35	0.65 ± 0.04
		72	2.31±0.33	0.70 ± 0.03
P. mirifica	16	24	1.74 <u>+</u> 0.69	0.59+0.06
(Uthai Thani)		48	1.14 ± 0.29	0.74 ± 0.05
		72	0.98 <u>+</u> 0.36	0.63 ± 0.04
P. lobata	16	24	0.33+0.21	0.63 <u>+</u> 0.03
		48	0.78+0.27	0.65 ± 0.03
		72	1.13 <u>+</u> 0.29	0.70 ± 0.05
B. superba	16	24	5.49 <u>+</u> 1.23 ^{** a}	0.56+0.06
(Loei)		48	4.12 ± 0.29^{a}	0.70 ± 0.04
		72	4.92 ± 0.72^{a}	0.60 ± 0.07
M collettii	16	24	4.43 <u>+</u> 1.24 ^a	0.52 <u>+</u> 0.06
(Chiang Rai)		48	5.54 <u>+</u> 1.04 ^{**a}	0.70 <u>+</u> 0.04
		72	$4.94 \pm 0.75^{**a}$	0.68+0.06
Cyclophosphamide	0.08	24	15.61 <u>+</u> 0.89 ^{** a}	0.39±0.03 ^{**a}
(i.p)	0.00	48	16.12 <u>+</u> 0.67 ^{**a}	$0.40\pm0.05^{**a}$
(72	$14.43 \pm 1.16^{**a}$	$0.34\pm0.04^{**a}$

Table 4.21 Micronucleus test in rats' bone marrow after oral administration of plantextracts at 24, 48 and 72 hours

Mean<u>+</u>S.E., n = 6, 2000 PCEs scored per animal, Mean<u>+</u>S.E., n = 6, 1,000 erythrocytes (PCEs+NCEs) scored per animal.

* ; Significant difference from control (p<0.01)

**; Ratio of PCEs/NCEs in 1,000 erythrocytes/slides (<0.1) as no toxic effect

a; Significant difference from *P. lobata* (p<0.01)

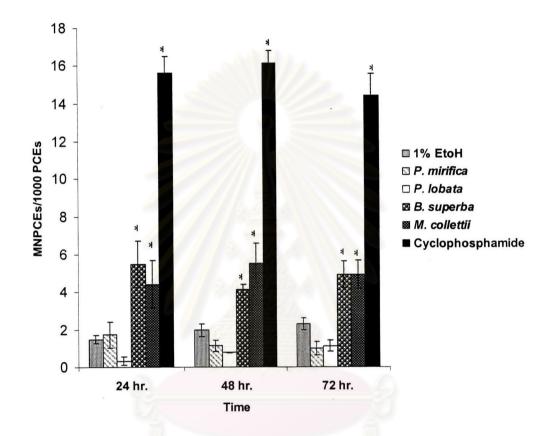


Figure 4.8 The micronucleus per 1,000 PCEs in bone marrow of male rats after oral administration at 24, 48 and 72 hours of *P. mirifica*, *P. lobata*, *B. superba* and *M. collettii* extracts

จุฬาลงกรณ์มหาวิทยาลัย

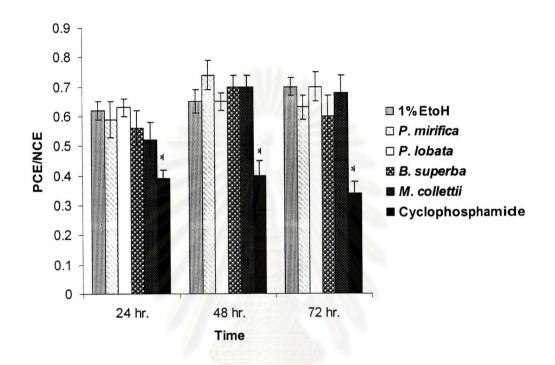


Figure 4.9 The polycromatic erythrocytes (PCEs) per normochromatic erythrocytes (NCEs) in bone marrow of male rats after oral administration at 24, 48 and 72 hours of *P. mirifica*, *P. lobata*, *B. superba*, *M. collettii* extracts

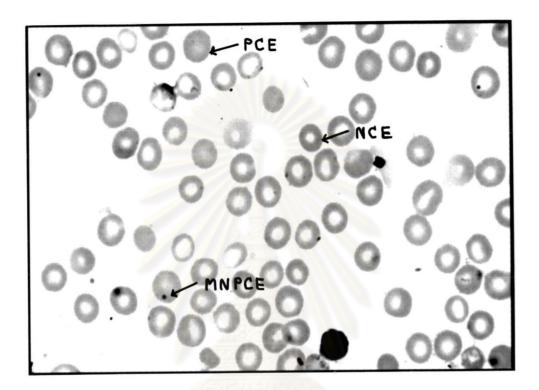


Figure 4.10 A photograph of rat whole bone marrow smear showing the microscopic observation of micronucleus in polychromatic erythrocyte of cyclophosphamide