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Proof of Equation (3.42)

Recall the following relations [AB| = v/ (A") v (B) and v. (ABC) = (CT ®
A)v, (B). Employing (3.20), we obtain the first and the second derivatives as following:

0 A_IA
30 eAM](e ) {Zzz(en)zxx_' _[ zz(0 )2 Exz.l
=] 1 1
o e (1
zx)zz::)
and
(2)
A;if?nJ
Observe that éz(en) = 02(0,)7 > : o T 7(6,) according to
,\ 3 H ‘_ 7 —1 ~
(3.20¢) H s -1 Hs-1z2
((n @ (5, ) 2" €,
+( Mg 23
- ’} ﬂ W&Er’ﬂeﬂ)‘ﬁzw ) an i,

‘1!2 (6,)

imasa m&mfmmaa

Lelaon el om0l o ah e,
+ (M m " (e> b€,
IO _ (MG 02) 02" (8,) B, &, — (2N 02) 2N B 02(6,) (D)
+ (2 2) 02" 0.) P E,
= ("G, 02) 2" (0.) 8 (€, - &) — (2" B, 2)7 2" B 2(8,) 0 (D.)-
(3)
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In asymptotic region, one can achieve
Garar (On) & Niiinoo £ <ﬁAML(0n)>

(2" el0)” 2" e Q6 @
—(R"wle)” ToH wolE (6,).

€. (0n) H W—lﬁzw )
(5)
The (n,n)-th element of en by
[I—{ ame(
(6)
( $eal00))
Substituting (5) into -" 0 ' y
|: 4 ‘7 : w0, ™
Straightforward substltutmg‘(&mto ZAML , it results in
UM e«
Under a ﬂvﬂ) ‘3 fq W ﬁ] 23( as
rAM:lﬁx?ih] lim N(g(eAML n y( 0x) ﬂT Wm tEj
)

Without affecting the asymptotic performance, it might be approximated as

- -3 7l 5 7 3 o =k
[Qua O]y = & )P T (g ) F=Tef T (g ) T el

T

(10)
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where the residual vector E; eCNe*! and its limiting covariance féz ¢, are defined as
(11a)

- Ez
(11b)

(12)

), its concatenation can be

AU )

Substituting the above in

represented into two fo
(13)

-.:‘-_-_.""."
Here we define Eéze}
u

o fREInnINgng o
ROA NI UBIANLNAL.. oo

Proceedi%
variables [59]
£ (ABCD) = £ (AB) ¢ (CD)
(15)

+E(C®A)E(D®B)

+ £ (A€ (BC) D)
—2E (AYE (BYE(C)E (D).
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one can achieve the followings directly

£ (AB) £ (CD) &5 £ ((z*[n,] ® Daln,)) € ("5, ]I @ 2"[12,)))

= & <'Uc ( T]xH[nT]) > € <v (m[nT]zH [nT])>
= Uc (2653:) vc (29—'3’)

= ¢! (162)
E(C®A)E(DOB) == £ (s, n,) ® 1)) E (I ® 2"h,]) @ zln,))

(16b)
£(AE(BC)D i)Y (I © 27[1,)))
2 2"[11,]))
(16¢)
BT | T Ny xN
where (-)8T stands for block sposition, I, < |zT[n,]) € Cg® " F and
v, £ E(z*[n;] ®z[n,]) CEH ;',ﬂ-‘c plementary covariance matrix and
vector. Since Gaussian vectr [z} are of eirculafly symmetric complex-valued
Gaussian random variable with zero-mean ie. = O or equivalently vy, = 0, such

results would allow us to

>/ -\‘:#‘ zz)

0

_mﬁ" + Z Z'T 17

ﬂuﬂgﬂﬂﬂiwsﬁﬂﬁ
R TRR MY TN T Y-

gf = a:z (18)
Plugging (18) into (10), we arrive at
n i .
[@am(6) ][n Q= (0 )!Pm I se (22 0) WL2E(62). (19)

Since [Haw(0)] ) a0d [@ane(6)] m,) are the same for all n and 7, the quotation
H i\ (8) = Qane(0) is verifiable. Along with (3.41) and (3.19), we obtain (3.42).
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Proof of Theorem 2

Notice that X', might be rewritten as

N

Low = Z |S"s [nr]|22hh(Pns awns,ans) <p afl 1. (20)

ng=1

Then, to proof the Toeplitz structure in X', it suffices to proof that X', is Toeplitz.
As seen in (2.6), the (n,,n,)- nent of an be expressed as

[Zhh(pa ¢’ 0'¢)] ['"’E’ﬁ'E] = ; “";.,, 72 ( ‘ﬁanﬁ)e—zk(ﬁg—l)dg Sin(¢+6¢) d6¢

2n

Proof of Lemma 3

The solution (3. 45) is easﬂy deri é" 7 y W in (2.52) with I. To verify

(3.46), we reformulate

-

— <
J —argmin ST = Am)2m
0 Ay o Sy e
respectlvely s’ to be satisfied by

Y2)?] = 0;Vn, (60, p. 891], itsceomplex-valuedaderivative with

i b 7 11780 D

3 - r(zxm("') Azz)ZJ = _2[2122”( Tn, )] +2[ X )Z'm(TJL)J (23)

(22)

where A(x) £ 2 A(x) is the derivative with respect to x. Let us represent ¥, (7) in

a linear structure according to
Ng-1

FBolr)=mnI+ Y w Lo +14 Iy . (24)

np =1
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Then, it follows that

ool ) = (25)
M)ZJ > 0, we obtain the critical condition of the n -th
(26)

Forcing 52 [(Zzs(r) -
Toeplitz lag as
[Liny Ba] = [Livs, Bl -

Proceeding on the n -th subdiagonal, i
(27)

Proof of Lemma 4
(28)

Inserting (2.48) into

where E; = &A =
som fans(TIW) g2,
(29)

o€,

(30)

v
-
H

Forcing 3=~ & fors TIW
T gt

It ‘ﬁ'nail e

i
AMIAN TN ING Y
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Coherent Source Localization via a Spatial
Smoothing with Temporal Correlation

Bamrung Tdu Sieskul

Jatupon Pattanavichate
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Digital Signal Processing Research Laboratory, Department of Electrical Engineering, Chulalongkorn University
Bangkok, Thailand, e-mail: bts@chula.com, jatupal@chula.com, somchai.j@chula.ac.th

Abstract— This paper aims at presenting a modified spatial
smoothing for direction finding in the presence of coherent
signals. Motivation of the approach stems from an incorpora-
tion of temporal correlation inherent in observable snapshots
and simple quadratic covariance matrix. Under an appropriate
arrangement of both, not only the temporal crosscorrelations
are taken into account to refine the most appropriate rank of
the array covariance matrix, but also the squared covariance
matrix is constituted for enhancement of the angular resolution.
In conjunction with root-MUSIC algorithm, the n results
is performed to validate the significant improvement )
estimates.

I. INTRODUCTION

phenomenons of the propagation of plane w
ting through a homogenous media and the

their directions, called direction finding, is o
times ago since it is a useful parameter in sever
such as wireless commination, radar, navigation
the presence of severely correlated signals, most
subspace-based estimators does not operate well, i.e.

séie

a spatial smoothing technique to all temporal lag matrices are
disregarded, since it is not enough to increase the rank of
final cfol?s-tcmporal covariance matrix. On the other hand, we
suggest orm cross-temporal covariance approximation
before st?Aj }b{m othing since it has to retrieve more the
absent ranl‘(..alﬂﬁ_lfiyly, since the proposed method requires
only ‘one time for spatial smoothing, the computational cost
utilized by our algorithm seems to be less than that required
by, the previous-approach [4].

The remainder of this paper begins with section II which

jintroduces the model of passive sensor array that employs
‘the uniform [inear array (ULA) receiving the discrete point
“source signals. In section III, the temporal correlations are

fjfst ti(plored and then combined in the sense of crosscor-
relation as a new sample covariance. Certainly, in section
IV the quadratic spatial smoothing based on exploration of

-temponé correlations is implicitly proposed. To validate the
systems « so-called{.fo(ﬂward-exchange qudratic auto spatial smoothing
c. In |
usual ! “some nu:

".absenceﬂ@?_,éfploit%ng the temporal correlations and/or the

with' temporal correlation (TC-FEQASS) of our proposition,
nD&ical examples demonstrate improvements over the

as in uncorrelated case because the array covariance ma"tﬁ-x:quadrat't_é_i:m’.[@iplication in section V. Finally, the summariza-
is rank-deficient. Various considerable ways for solving _S’lit;hfil'jjtion at se'?tiqﬂﬂ is given for the improved spatial smoothing.

a problem are to decorrelate the signals by, eliminating the

spatial crosscorrelations of correlated signals. Even in the

II. PASSIVE ARRAY__N#XQEL FOR DISCRETE SOURCES

coherent scenarios, it is conceivable that the spatial smoothing
(SS) technique which makes use of averaging all subarray
covariance matrices usually completes the rank of array co-
variance matrix. ~

Most related works involved spatial smoothing_are, in
general, to increase the DOA resolutiony(seese.g. [+]-[3])+in
coherent case. When the signals are temporally correlated,
the use of exploration on such a correlation should be more
suitable than another one missing this ‘additional information.
Particularly, the more number of temporal.lags has.to retrieve
more the diminish rank du€ito spadally correlated!signals. As
investigated in [4], it is evident that invoking' the temporal
crosscorrelations was able to more decorrelate the coherent
signals. In addition, the DOA resolution by a quadratic spatial
smoothing [3] could also be increased considerably because
squaring the array covariance matrix yields a better condition
from that ill-conditioned matrix due to the signal coherency.

Here we propose a combination between exploration of
temporal correlation and quadratic covariance matrix under a
variational procedure which does not affect to each beneficial
performance. To see this, we first formulate the temporal
covariance lags according to [4]. Individual exploitations of

=

Restrict ourselves to tﬁ%gjopagation of N, eN'*! complex
wavefronts sp (£)e? ! Pnsding € {1,...,N;} whose
central frequency in narrowband assumption and initial phase
carrier are f. € R}*! and ¢ng € [—m, 7], respectively. Based
on the smperposition theorem, these wavefields all impinge
orjaULA Cohripgsifig™of 4V €N'*! omnidirectional sensor
¢lements-with an equidistance d€ ]Ri_“. The sensor response
is, in general, characterized by a steering vector a(¢) :
R1*1 s CNe*1at the first elementsreference (FER)

a(¢)é[1 o—ikdsin(p) o~ik(Ng = 1)dsin(¢) ]T (1)

with the wave number k = 27 /), the wavelength A = ¢/ f.
and the light speed ¢ ~ 3 x 108. Collecting N, measures under
a fixed relation ¢t = n,. T, of the sample period Ts € ]R_l,_"l
and the sample index n, € {n|1 < n < N,,ne N>} in
N, € N'! samples, the array observation z[n,] € CNe*!
annoyed by a noise n[n,.] € CVe*! becomes

z[nr] = A(¢)8[n’7‘] s n'[nT] 2)

NgxNg . .
where A(¢) : RM*1 o Cy 2" signifies the array re-
sponse matrix which is assumably time-invariant to all arrival



directions ¢, € [—m,7]. Occasionally, the noise n[n,] is
modelled to be identically distributed as cxrcularly symmetric
Gaussian with zero mean and variance 02 € R}*!, i.e. n[n, ]«
CNs.(0,02I), so that it is also uncorrelated w1th 8[n.]:

€ (s[n ] nT[0,]) = O, & (sln;|n"[A,]) = O

£ (n[n]nT[n.]) = 0, € (n[n ] nf[n,]) = 85, i, 01
where £(-) and 6, . signify the statistical expectation
and the Kronecker delta function, respectively. The array

covariance matrix is referred to deal with the positive Se[]l‘\lll-
definite Toeplitz Hermitian covariance matrix R, € Cm &

Ry £ € (zn )z [n,]) = A(P)R,,A™ () + o2l (3)

where Ry, £ £ (s[n,]s"[n,]) € Chs *™ is the source sig \
covariance matrix. In fact, the available measure fro y X

might be tapped within a batch sample X € CNg ¥

X £ [=[1] z[2] [N, ]]
Ng x N,

Let R,,z €Cyx®" F be the sample mean esti 0
covariance matrix, defined by
1 & 1
2 Y H =
R;: = FT nz_ z[n.|z"([n,] = N
=

g
1d
decompose the covariance matrix flu into a
If the eigenvalues are necessary for estimating the
sxgnals , we may adopt the OEVD providing
and B, eCN *(Nz=N5) whose columns span the si
noise subspace, respectively, resided in CNe
Both of them have to be, in principle, aligned in

al apz;'—

..-.-_._,
R,, &= pALH = [E;i E,] [g Oi"j Eg.En]H
-
= E.A4, EH +EB,A.BH \
where Aq ERD s s the signal eigenvalue r_r‘xjnx whose di-

agonal contains the N largest eigenvalues {A } . of R..

and A, e]R(N ~Re)x(Ng=R5) ; is

whose dlagonal contains the (N,
S N,

{A, e nz it of R,,. The estxmamN of signals may be

available from testing the h R1*1

- oA B S B A

For instance, the minimum descnptlon length (MDL) [5] is

Ha[Ns]
hg[Ns]

where the algebraic mean pa[N,] : N**! s R1*! and the
geometric mean yg[N,] : N'*1 — R2*! are given by

(i)

Ng+1

huoulN] £ N, (N, — ;) log (

iwo

E S

palV) & 5% 5, el &

S Ng+1

(see eg. 'EH)* =

27 ,‘jg;ﬁ% £ (2l L

)+ =Ny (2N, —N;) log N,
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The estimate ¢ € R *1 of the signal directions can be
estimated from a subspace-based algorithms. Most subspace-
based algorithms to concern with is that of MUSIC [6]

Fuussc £ argmin [|a® (9) B[ ®

III. EXPLORATION OF TEMPORAL CROSSCORRELATIONS

In buffering all N,. snapshots, we may rearrange them into
N,, € N*1 windows whose size N, € N'*! are such that

N, SNy N, Ny 2N ~N+1 ©)
F%uf’ssmaller sample batch, we may collect the received

[n, ] €CNe*N: and Xy, [n,]€CNe*Nw as

; %]-

z[n,, +1]
z[n,+1]

zn, +N,—1]] (10a)
z[n,+N, —1]] (10b)

"

T——
Theoretical e emitted signal correlation is, in general,
¥ as circularly etric such that £(s[n,]s"[i,]) =

1sT[h,]) = O. However, the first

""r — 1:7. Cﬂhsnder a cross-temporal covariance
€ ,:‘ =XNNE due to all partitioned subwindows
— F \ &
Ryse & o) 00, npl)o? (X, [, )
S RS0 R Ry [N-1]
tei ] R0 LIN-2| (an
: : :
] m [N _2] a::c [0]

ntry Ryz[n,] : N'*1 s CNe*Ne is defined by

z[n,Jz"[1,])
= A@)Ry,[n A" (¢) + d[n |02

dirac delta function. Comparing (3)
om&ed out that

Rezl0] = Ros= A(9)Ro, A% (9) + 02T (13)

In finite'time series, the temporal covariance is avallable from

(12)

B e e

A

—n; v (X, [n DX, [ ])
ﬂa HRu 1] (14)

[2 2] s
u[ N, 1] Rm[N,,zj fzm[N,,N,]
where the entry R,.[n,,7,]€ CVe XNz becomes

w
Bealnoi] & = 3 aln,+n, 1%, +n,, 1]
W on, =1 (15)
1
—N—

X, n X2 fa,]



One way to find R, appropriately is to evaluate the average
of Rm[,,! ,n,]3 Y7, In [4], it has been argued to make use of the

crosscovariances R"[n)v 7,];Vn, #1,, i.e. in off-diagonals of
Rxx Let RTC ECHE £ be the covariance estimate by

Roc 2 — Z Z R..[n,, )R (A,

' nt—l nt-l

N2 Z Z R [nnnc]RIﬂ?[nwne]

t n,=ln,=1

’t]ézz[ﬁ‘t ’nz]
(16)

It is important to emphasize that (16) can increase the rank
of array covariance matrix beneficially when N, is large as
possible as N, ie. as N, approaches 1. However, the larger
the window length, the greater the computational comkﬁ_f'fg

in temporal-based spatial smoothing. —

IV. FORWARD-EXCHANGE QUADRATIC AUM ST
SMOOTHING
With respect to the first element, the index of subarray

{n|1 < n < N,,n € N} is characterize i
selection matrix Z[n,] : N1X1 s BNe XN

(0] }n,—-1
} N,
o }NE—M—nA

The forward quadratic spatial smoothmg covariance
the n, th subarray, Rgq[n ] € CH <, can be evaluated ﬁ'dm

RFQ['"'A] = :T[nA]Rx:c'-’ (n,] Rix ERuRe r

Ny xNg
where RZ_ € C® *"& denote the quadratic c"t&'anance matrix.
Smoothmg the above suba.tray covariance 11 sg
we then have Rp € Cg , the forward=on

smoothing covariance matrix, by performing j

— Z Rpo[n

A

auto spatial

IIl>

o =571 : . ®R§,),E

1
>

i

where & € CNaNe*MNe s suba selectlon matnx and
designates the Kronecke ” il\y
the nth column of the 1de 2

matrix, 2 [qN N, _1 i ]EIBN *Ng s one
to concem with the exchange portion of RFQ (see eg[l])

REQECH x N from

Reo=15T(I® (R2,)*)Ef (20)
If £ 2 EfeRMaNe*Ne the covariance matnx of forward-
exchange auto spatial smoothmg, RFE GCH , is then

1 .T B
e =5 (27U 0 RL)5+ £ (T8 (RL,))E) @D

"" z.

& It-shqu
(7

; 1ts stey* ac i
L §
FA fhecJ tational co!
Jman ntries see
tnx ]
=y

(l§§r

- b B
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V. TC-FEQASS ALGORITHM

To clarify our algorithm, the proposed algorithm assume
that the estimated number of sources, I\?s in (7), is strictly
coincide with the true value IN;. The TC-FEQASS procedure
follows from:

1) Find the window length N, from N, = N, — N,, + 1.

2) Rearrange X of (4) into N, batches as X, [n,] in (10).

3) Formulate all lower triangular entries of RT by (15).

4) Perform Ryc in (16).

Si et RTC FEQASS € Ca’ *MNe be the result from substituting
(21) with the calculated RTC
e estimate ¢ by a subspace-based algorithm.

ical concise, we refer the approach presented
rd-exchange auto spatial smoothing (FE-
A whxmem to forward-backward auto spatial
smoothing (FB‘KSS%-.[Z] We designate the approach pre-
nted in [3] to as forward-exchange quadratic auto spatial
m thmg (FEQASS)"“hdeed the last one to compare with
the paper’s approach is the forward-exchange auto spatial
smoq ﬁg with temporal correlation (TC-FEASS) in [4].
be noted that in [4], all lower triangular entries
arately performed by forward-exchange auto
spati thing (FEASS) at its step 4). Then, they are
511 orally mbothec\ to be the crosscovariance matrix at
cording to (16). Therefore, when N, is large,
st for separately smoothing those lower
s to be much more than that required
-FEQASS.

are

Y VI. NUMERICAL EXAMPLES
s

~ To d‘éél"onsu‘ate the impact of the proposed method to

bas:d_nlgﬂ.ﬂg; commonly employ the original

signal 8 ( ;I) and their correlation coeffi-
s(ne] = I(p)so[n;], where I'(p)

SECHS™ s deqotes the correlating characterization.

Let the initial phase of atl signals be uniformly distributed as

[—11' 7| so that the down-converted envelopes obey

10log (02/02) signifies

ﬁ aiﬂ'ﬁangular separation with two

angulars of amval (AOA), the FER-ULA is incorporated with
¢'the root-MUSIC‘L’Z] and the followwparameters

_:5[ V.- Nz | N,
& 6 | 4

[sl[n'r]] — 1 0 ] [301 [n'x‘]:|
s2[n,) LP 1—p2] [S0z[nr]
The values shown above are taken into account throughout the
paper, unless otherwise a variation on the parameter of interest

will be specified individually. It allows us to receive a standard
covariance matrix of two equi-power signals

ov

0.2 0.2 *
R, — [ S P

ozp 05
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Root-MUSIC's Root Mean Square Error of the estimated DOAs in function of SNR ; Root-MUSIC's Root Mean Square Error of the estimated DOAs in function of absolute value of correlation coefficient;
o [T2GHZLN.=Z\N,=2 N =6.N =4 andd=\2 R= 1000

1,=2GHzZ N, =2°N, =2,N =6,N, =4, SNR=20 andd=V2,R= 1000  /
—2a} c W (3 0 J
- - S

z

-261 L
-20 28} e

4 3

3 g — FEASS(-5°%

% e %2r - - FEQASS(-5%)

§ -60 TC-FEASS(-5%)

e 3‘ — TC-FEQASS(-5°)

‘= FEASS(5°) \_‘ L
-- :(E:?:Esis;)‘,,o) N H{: 0 0.4 05 06 J% , 08 0.9 1
-120H correlation coefficient inp = '+ whi ~U
— TC-FEQASS(5°) R — ‘ 4 p=lpl ere arg(p)~U[-mx]
-40 -20 0 20 40 60 80 120 - =

100 140, . . 2
Signal correlation performance
SNR : Signal to Noise Ratio (dB) "y

%.“CONCLUSION

¢ improvement Eﬁ@tial smoothing based on temporal

Fig. 1. SNR performance

Root MUSIC's Rool Mean Square Error of the estimated DOAs in function of a
f,=2GHz, SNR=200B,N, =2, N,, =2, N =6,N =4, d=\2

ach is to rearrange the computations between
4 spﬁial‘ﬂnoothing and cross-temporal corre-
ake use of quadratic array covariance matrix
un atcly, the temporal-based spatial smooth-

= FEASS(s,)
- - FEQASS(6,)

.. TC-FEASS(s,)
] TC—FEQASS(QZ)

; . ere is only one time for spatial smoothing
o |t Ko i ati en numerically, the TC-FEQASS provides
) T ances for subspace-based DOA estimation.
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Decoupled Estimation of Nominal Direction and Angular Spread
based on Asymptotic Maximum Likelihood Approach
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Abstract: - The problem of estimating the nominal direc-
tion and its underlying angular spread is considered herein.
As encountered in spatially distributed source localiza-
tion, the computation of these directional parameters might
be regarded as two consecutive tasks. In this paper, we
propose an asymptotic maximum likelihood (AML) ap-=
proach to successively estimate both of them: THE firspads
vantage of estimation in this way is that i?n‘(sﬂ

two successive 1-dimensional searches rather j

2-dimensional optimization as utilized in t

flexibility. Since it belongs to a large-sa
tion of the exact ML method, numerical simul
ducted in order to validate its asymptotic

the joint AML approach, it appeared that, in the r
large number of temporal snapshot, the proposed
timator for decoupled estimation is the same as the AME—
criterion which employed the joint 2-dimensions. = A

e

Key-Words: - Maximum Likelihood, Parz«,uréter Estimation,
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fer from the lack of identifiability in the presence of large
number of directions. To deviate from the given prob-
leuz;( asonable to assume that a number of multipaths
shoukf&fge enough so that their path gains can be char-

J acterized, under the central limit theorem, by a Gaussian
random variable whose associated directions are also ran-
dom [2]-[3]. With a priori knowledge of angle probabil-
ity distribution, it appeared in general possible to govern
Xall deviated angles into a parametric model as well. As a
“matter of course, an incoming source signal immediately
‘consists itself of three individual arrival parameters, such
“as, nominal direction, angular spread and power observed
y the sensor array. Since the exact likelihood function
1th‘ all 4 parameters, which also include the spatially un-
-c'orrelated noise variance, can not be concentrated on ex-
phgtly [2], it is therefore conflictive to account for imple-
mentations as indicated before. Recently, a large-sample
dz&mlmatlon of the exact ML is proposed in [4]. It re-
quuqs Jﬁlnt 2-dimensional search and yields lower in error
variances than the WLS (weighted least squares) estima-
tor in [2].. Furthermore, relying on these restrictions, the
reducible computati ,P“ might be admitted by two succes-

Source Localization L j

1 Introduction

Most works involved direction finding prabléni were based
on maximum likelihood (ML) estimation due to-its pro-
ducible optimality [1]. To arrive dt/extremal quantity, an
optimization search of the likelihood function seems to be
inevitable in a complex modely’ In, geétieral) theyphysical
model with well-described characterization would reguires
large number of model patameters. As a consequence, the
larger the number of model parameters, the larger the di-
mension of optimization over parameter space. Unfortu-
nately, this might allow the ML estimator to be unsuitable
for being incorporated into real-word applications. This is
because of suffering from implementation aspects, for in-
stance, computational complexity and memory consump-
tion.

In the presence of local scattering around the vicin-
ity of source, most classical point source models will suf-

sive one-dimensional WLS searches [5] for estimating the
nominal direction aq_dﬁngular spread.

Here we propose an asymptotic maximum Jikelihood
(AML) approach to successively estimate both of them.
The first advantage of estimation in this way is that it re-
quites only two successive 1-dimensional searches instead
ofjoint 2-dimensional optimization as utilized in the AML
estimator [4]." Since it belongs to a large-sample approx-
imation of the exact ML method, numerical simulation is
conductedin.order to validate its/asymptotic efficiency pro-
ducible with respect to‘Cranicr-Rao bound. Although its
non-asymptoti¢ performance is inferior to that provided by
the AML approach, it appeared that the proposed AML es-
timator for decoupled estimation still keeps the asymptotic
efficiency.

2 Spatially Distributed Source Model

Restrict our attention to a signal transmitting through a
channel and then impinging on the uniform linear array
(ULA). With phase reference at the first element, or first



element reference (FER), the array response vector a(¢) :
—Z%,%] — CNe*! can be, in general, written ideally as

etkd sin(¢)

a(¢) £ 1 ezkdE(NE—l)sin(q‘))]T (1)
where k = 2T designates the wave number with associ-
ating wavelength A and N, is the number of sensor el-
ements. As previously developed, most local scattering
models assume that the nominal angle ¢ is deterministic
while angular deviation ¢, and associating path gain ~y are
considered as stochastic quantities. According to linear re-
gression analysis, the array output at time instant n,. can
be characterized in a flat fading channel by the snapshot
z[n,] € CNe *!, Mathematically speaking, it can be repre-
sented as [3, p. 25]

N,

z[n,] = sn,] Z np [Mr]0(8 + 8., [nr]) Sl

)

-i-"'"-r
where N, denotes the number of scattering o
n[n,.] € CNe*1 designates the additive noise®at sensor af-/

ray. For a large number of rays, the channel ve

Nep

hin,] = Z Tnp [nT]a(¢+6¢n

np=1

seemed, under the central limit theorem, pla
hold a circularly-symmetric complex-valued
process, i.e, h[n,] ~ N, (0;Zun,0).
dimensional variate implic1tly provides the statisti
E(hln A [n,]) € (C *Ne where hln,] 2 hln .,.1
& (h[n;]) = h[n,]. For taking an incoherently dlstnbuteq

channel into account, the second-order statistic of a certain -

incoming ray yields [3]

Accounting for small angular spread, the so-called spatial
frequency approximation results in a separable 4

Zhn(pyw,00) = pDa(w)B(0,)D (w) Q)

where D, (w) : [—kdg, kdg] — CDU Nz is diagonal
and unitary matrix parameterized by nominal angle and

B(o,) : R — Rg’EXNE is symmetric Toeplitz matrix

parametenzed by angular spread. Their (ng,7n,)-th ele-
ments can be expressed by [3, p. 22])

[Da(w)][ns'ﬁls] = el(ne-l)w(snE’ﬁE (83.)

[B aw)][TLE 'r'lE] = fr((ng - 7!"5)le01 1) (8b)

WK charactenstlc function  f,(t],0,1) =

1s equivalent to the Fourier transform

.7" (® ) cnating random variable whose PDF holds

' zero-mean-and-unit variance. If additive noise assumed is
spatially uncemelated noise and absolutely uncorrelated
from channels, it results in

-4 Zealng )= pinr)Da(w)B(0u)Dg (W) + 03T (9)

2 a 2
where pln,] = pls[n,]|? stands for the total power ob-

rved at the sensor array. In what follows, we shall con-
ider only the deterministic signal with constant modulus
s0 that ¥, [n,.] = ¥..(0,) ;Vn,., where 8, is the true
value of model parameter. Now suppose that based on the
s;ﬁ nd-order statistic X';;(6,) our problem is to find the
1 direction of arrival, ¢, given the collected data
m@%, , where true-valued parameter vector 6, € R**1

m:ﬂxerconmdered model can be defined by

: ~J‘L‘“ —

o¢f 6 os » 02" (10a)

| =

E(Vny [nal%s [r]) = 026, icbng g (@)

where J, o signifies the Kronecker delta furiction and a?,

is the power due to any path. Over spatial continuum of
incoming rays, it can be approximatéd as

Swalodio) / F(6610; 02) i+ 64)a" (& -+ 695

&
where p £ N, 07 signifies the cluster/power'dueto all paths
and f(04|0;03) denotes the conditional PDF for random
deviation d¢ given a priori knowledge of the angular spread
0. In instead of such physical angles ¢ and o, the spatial
frequency response is preferable due to the better accuracy
of approximating the first-order Taylor series around the
array broadside [3]. In general, the spatial frequency w and
its associating standard deviation o, are provided by

w(¢) = kd, sin(¢) (62)
0w (¢,04) = kd cos(¢)oy. (6b)

——osélu oo p 2" (10b)

for the physical and spatial frequency models, respec-
tively. Let us introduce the matrix trace, derivative with
respect to scalar and Kronecker product operator as [ A |,
AGd)p2 %A(x) and, @+ Under the central limit theo-
reml, the snapshot data is also of Gaussianity with z[n.] ~
N, (0; ¥z, 0). To estimate the exact X, the sample

. . N XN . .
covariance-matrix X'z, € Cy® & F is given by

N,

g NLT nzlx[nT]zH[nT]‘ (11)

3 Separable Parameterizations

In this section, the column-stacking vectoriza-
tion operator wv.(-) is performed to represent

2 .
& 2 E(@ng®zn,]) = ve(Zae) € CVe*! in
a certain parameterization.



3.1 Nominal Direction Parameterization

Let us define é(p, 0w,02) £ pB(o,) +o2l€ RQ%XNE
This exhibits a separable parameter 9, € Rz +1)x1 a5
(12)

94w nt]"

where 7, € RMe*! is the first column vector in
B(p,0.,02). Such a parameterization results in

ﬁx(ﬂw) = nw(w)r’w (13)

where full-rank matrix 2, (w) : [—kdg, kdy]— C2 e

5 Bw) £ Qa (w) & with full-rank binary selectlon ma-

XN,
trix £ € By N XN corresponding to the Toeplitz structure

of B (p, aw,ag) and nominal frequency parameterization
matnx .d_ia(w) £ DH(w) ® Da(w) : [—kdg,kdzlses

x N2
CD% £, It was mentioned in [5] that based on the ex-

tended invariance principle the reparameterlw ‘
0., and 9, yields the same performance. /“

3.2 Joint Parameterization of N
rection and Angular Spread

Assume that we wish to joint estimate bo
must define n,, , €R>*'asn,, £[p o

€m(9w) =

Qw,aw (W’ Uu)nw,au

where £2,, ;. (w,0,) :
2v,0. (W, 00) £ ['Uc (

[—kdyg, kdg] x ]Rl“

4 Decoupled AML Estimator «-_‘

N, vs RMSE of Nominal Direction Estimate
041
decoupled AML
& o joint AML
\ - CRB

o
w
)

03 M

RMSE (Root Mean @uan Emor) : degree
- &
o

1 L L ) L L L L L s
F 50, 100 150 200 250 300 350 400 450 500
i / NT (Number of Temporal snapshots)

Wamr, = arg mlne[ T](w)

(18)

A . N lin
{6u}am = arg x{‘unf,[u,,{](wmmaw).(l9)

o
a4 aw

archmg the minimum solution for &y, and {G, }amr, ac-
?dmg to two successive one-dimensional searches, we
ﬂlyja_gdlately obtain physical angle estimates via (6).

Tl

-..U'

Eﬁmencal Examples
_‘J ""q ‘H-—.
To demonstrate the im pact of the proposed estimator, we

commonly employ the ULA with half-wavelength separa-

If we demgnate the nonparametrlc és_gmafé s

xN2
CH Fas !p:cz == 2 z ® 2;,_-;;, then the
estimate becomes [4]

L nuisance

an0) = (240 2000 B OB (09),

Plugging the incomplete 7y, (t) i,nto & (00) ="

we obtain

(¢)n,

vc(Eu(L)) -‘.ﬂ(o)nm(l.)
where $'.. (1) 2
variance for AML estimate. Then, the AML estimator of
the parameter of interest can be written as

lamL = arg mmf ](L) (17a)

A0 =135, (1)Fee) +10|Z0e().  (A7H)

Now the question is implicitly imposed in what the para-
meter of interest, ¢, should be. The following procedure
enables us to an obvious answer for decoupled estimation

(16), |

xz(b ﬂm( ) i the concentratéd co-

tion to receive aQiBSld(quatemary phase shift keying) sig-
nal whose sﬁ'engt'h'" are controllable with respect to noise

variance by SNR'Z 10 log (—5-) All significant parame-

ters are set up, unless otherwise a variation on the parame-
ter.of-interest will be- speeified individually in each figure,

as tihe following table:
b0 as, | o5 [SNR] N, [N, | N,
1o R0%I0S] 5S, [001] 107 1700 [ 8 | 1,000

SH
Practically; the/pseude randoin number satisfied the Lapla-
cian PDF f(64]0,1) can be modified from d,, =

% In (%:) [6] with any two independent uniform distri-

butions 44, ~ U[0,1] and b4, ~ U[0,1]. Our empirical
standard deviation is to average RMSE from a large num-
ber of independent runs (IV,).

Recently, it is shown that the AML estimator outper-
forms the WLS in non-asymptotic region [4]. Therefore,
we shall investigate only the effect of decoupled estimation
based on AML approach.



Ny vs RMSE of Angular Spread Estimate of sensors, Technical Report, IR-S3-SB-9607, Depart-
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In Fig. 5,'the joint AML estimator SW /, [6] “B:_-.:-ml and S. Jitapunkul, Towards Laplacian
' A\ an;om model for spatially distributed source
3 llocaliza\iﬂkzcepted to participate in International

iposium on Communications and Information Tech-

ment, both estimators achieve the CRB as
temporal snapshots tends to infinity.
For estimating the angular spread in Fi

Y

/ 4
timating the angular spread has imposed the il A\
nominal direction estimation. However, this e « )il
gradually vanished when the nominal directio I

and decoupled AML estimations yields the s RMSE-. -

performance from large number of temporal snapshots.

6 Conclusion T_:_\' s

A decoupled approach with two steps een proposed
for estimating the nominal direction and its underlying an- U
gular spread. It is intended to provide moreniumerical flex-
ibility than the joint estimation in a certain application, e.g.,

the situation where the angular sp i finter- g
est in a while. Numerical simulation was alse conduc (:EJ V] j w EJ ﬁ] ﬂ ﬁ
validate the asymptotic efficiency with respéct to the jo

estimation and the CRB. The numerical results are verified &

that the decoupled estimatio; ttain, the.C —y g
TR 1194 9118 8

of temporal sanpshots. q
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Abstract— This paper aims at presenting a more realistic
Rayleigh channel model for the problem of finding the arrival
direction in the presence of spatially spread source. Unlike the
previous angular deviations assumed to be randomly distributed
as uniform or normal (Gaussian), Laplacian assumption is herein
taken into account instead of such so as to support recent field

measurements. Regarding to the inherent accuracy imposed in

our realistic model, we provide a rather systemati ulations
of Cramér-Rao bound at hand and a derivative ex 0.
lar sprea

Laplacian characteristic function aligned in the

parameterization matrix. Incorporating maximum li
timator into the model, some numerical resul
that there exist small and considerable degrad
angle and angular spread estimates owing to the
Laplacian PDF.

*4

I. INTRODUCTION

theor?ic_ally via a variational formulation of the Cramér-R ao
boun '

The'{{?jdbis paper is arranged as follows: section II
reviews M of passive sensor array that employs the
uniform Jinear fa'rza'.l (ULA) to receive a lot of distributed
source signals. In section III, an alternative CRB formulation
is derived. Certainly, in section IV the Laplacian distribution
for 'source localization is stated without realizing truncated
range. To validate the applicability of proposed deviation

. mod |, numerical examples demonstrate some reflections and
.,robWs of more realistic assumption in section V. Finally,
"thie summarization at section VI is given for all content in the

paper”

A 3 JI SPATIALLY DISTRIBUTED SOURCE MODEL

&d

Most works involved angular deviation mode W ﬂ?d-; (. 'Restriet our attention to a number of signals transmitting
to be ch?:actenzed as uniform or n.ormal distribution n(im-l through j channel and then impinging on the sensor array
geometrical model [1]. However, it is not rather corres nd"lg*‘-""antennﬁ._ﬂjth phase reference at the first element (first

to outdoor field measurements, for instance, setti
[2] and indoor experiments e.g., in testbed [3]. For a ¢

application, the way to describe the angle characterization best .

measurement result and a preassigned distribution with the
smallest residual. In the model having to ‘ =

spread, this task has been carried out by me‘nn{I ‘of goodness of
fit in [4] and [5]. It was argued that the Laplagian distribution
yields the best match in both urban and rural areas even in
a non-LOS situation. Consequently, a lot of system limitation
analysis recently focuses on Laplacian power density (See e.g.,
[6], [7] and references therein). ‘

Interestingly enough, companion studies“dealing with either
geometrical or non-geometrical models were provided without
concerning the Laplacian power density in [8]. Moreover, it
was conducted by invoking, Subspace-based estimators “which
is biased and eventually sub%optimal in high rank data fnodel
[9].

Here we proceed on spatially distributed source localization
model by replacing the existing angle PDFs in many literatures
with the Laplacian distribution. In the aspect of parameter esti-
mation, our problem belongs to jointly estimating the nominal
angle and its underlying angular spread from which random
perturbation is of Laplacian random numbers generated by
a simple method. Not only pure simulation is insightful, but
achievable performance of the Laplacian model with respect
to two other types of angular distribution is also investigated

UP .-'I!P _."
ertain

is to find the most appropriate distribution for fitting the ’éng’le =

‘.clemeﬂ}aﬁ@?nce I'(FER)), the array response vector a(¢) :
{—90°,90°}+~ CM=*! can be, in general, written ideally as
pied, ‘-‘l;
a(¢)4§“~[1" Stk sin(d})r etlch(NE—l)sin(da)]T )
. - des .ine wave number and NN, is the
number of sensor elements.dn according with linear regression
analysis, the array outpuf at time instant n,. can be character-
ized by the snapshot zfu, ] € C¥e*! in a flat fading channel
such that [13, p. 25]
zfn; )= H["T]‘{”T] +n[n,]

€))

where N; denotes the number of source signals. Here the time-
varying channel matrix H [n,.]€ C"e Vs and the source signal
vector.sfn e CAF =1 are collected.as

. th [nr]]

sy, r]]

Hin) [, |, [n,] 3a)

3[”7-] = [31[77'1] sz[nT] (3b)
where h,_[n,] € CNe*! and n[n,] € C¥e*! signify the
channel vector and additive noise. As previously developed,
most local scattering models assume that the nominal angle
¢ is deterministic while the angular deviation §, and the
associating path gain -y are considered as stochastic quantities
eventually. In the presence of local scattering, all N, [n]
non-line-of-sight (NLOS) paths with i.i.d. (identical and



independent distribution) are, under the superposition theorem
(see e.g. [10], [11], [12] and [13])

Np[ngl

hns[nr]:‘ Z ’an.ns[nT]a((pns +5¢np.ns[n7‘])' 4)
=1

For taking an incoherently distributed channel [10] into ac-

count, the second order statistic of a certain incoming ray
yields [1]

€ <'an ng [nr]'Y:iP,ﬁs [ﬁr]> =0’3"s 6nP,1’1P 6”5 g 6”7""‘1‘ ()

where J, o signifies the Kronecker delta function, o2 des-
ignates the power due to any path. Accounting for a large
number of incoming rays, the channel vector seems, under
the central limit theorem, to be circularly-symmetric Gaussian
distribution, i.e., by [ny] ~ N, (0; Zha, 0) with the channel

covariance X, £ € (h[n,Jh"[n.]) GCN *Ne ’g;%l)?;'
Zun(p,9,6) % p [ 1(6610;03)a(6 +8,)a" (6 606

where p, £ N, [ng]o? signifies the cluster p
paths and f(640; a:‘;,) denotes the conditional
deviation &, given a priori knowledge of the angulac spread
04. As encountered, a family of symmetric distributions

zero mean and variance ag is in most modelled as *

1% E
1 75 i . =
[@ol0s05) =] Vores® i Gaussiagly’ (g
2\/-0 M [~V30s,V304] ;Uniform. ——
et e

In instead of such physical angles ¢ andio,, the spatlal
frequency response is preferable due to the.b

approximating the first-order Taylor serles,n _q,pbund the array

broadside [13]. Introduce a parameterization—of the spatial
frequency w and its associating standard dev1at;bn Ow as

w(#) = kdysin(g)
0u(,04) = kd,, co8(9)a,]

For small angular spreads, the so-called spafial frequency
approximation results in a separable form of

(8a)
(8b)

Zwn(p,w, 0w) 5 p D) B(d) D () ()

where the (n,,7n,)-th elements of dlagonal and unitary matrix
D,(w) : [—kdg, kd;] — CDU Ne and symmetric Toeplitz

matrix B(o,) : [0,kd o4] — RST
p. 22]

Nz are given from [13,

[Da(w)][nE’ﬁ'E] — el(ﬂs—l)w(sns'ﬁs
[B(Uw)][na,ﬁE] = f((ng (10b)

—Ny)0,]0;1)
with the characteristic function f,(t],0;1) £ F(f(du],0;1))
of associating random variable whose PDF holds zero-mean

(10a)

. constant. modulus se.that X' ;;[n,] =

cov

."‘ - ; . Y 1 T
AR Z zln.Je"n]
: . &,

ith f
~ 0 ER{M
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and unit variance. In a certain situation, the (n
in B(o,,) can be expressed as [13, p. 28]

52T g)-th entry

e~ 3(ng—rig)iod ; Gaussian
[B(Uw)][nE,ﬁE] = sin((ngy—1;)V30u) - Uniform. 11)
(nE—nE);3aw

If additive noise assumed is spatially uncorrelated noise and
absolutely uncorrelated from channels, it indeed yields
NS
Yaalng] = Z Png [nr]Da(wns)B(a'wns )D}
=1

'r/" +0’I

where p sj? Pnglsng[ny]|? stands for the total power
observed at'the sensor array due to the ngth signal. In what
folmlvs we shall consider only the determmlstlc signal with
2z(60) ;Vn,, where
65 signifies the true value of model parameter Let the sample
iance matrix EIZECH Mo pe

(wns) (12)

(13)
— R

pnbse that our problem is to find the directions of
afnva ¢ given the collected data z[n,|;Vn, based on the
second~order statistic X';;(60,). The model parameter vector
H)x1 g in nature defined by

:-'A"..

—

0y 2 [¢ oy p' aﬁ]T

ew 4 [wT O'T T 72;]T

(14a)

&

=
# o b &
a _._“_..

{ jn‘-;.i
e

m

(14b)

e

'-..
tiv 'fy the phymj@l and spatial frequency models.

d‘-

for res

ESAIOF CRAMER-RAO BOUND

Let us introduce thm matrix trace and derivative with
respect to scalar as [A] and Ax) 2 ——A(x) respec-
tively. Under the central limit theorem, the n,th snapshot is
also of circularly-symmetric complex-valued Gaussnamty with
zlng] &N (0;25470)cTt was proposed in [11] that the
maximum likelihood (ML) estimator of 8 is given by

(15)

Récall'the Slépian-Bangs’s formulayaccounting for the zero-

O, = argmin ([521(8) £ze |+ In | 520 (0)) )

‘mean randomvector &[n.J=This leads to-the (n,73)th element

of Fisher information matrix (FIM) [14]

[IF(B)]In Al = N fzx:}z‘zz( n)E—lzxz(Gﬁ)J (16)

where the scalars 6, and 6 are the nth and 7ith elements of
the parameter vector @ for indices n, ne 15250 o8N %+ 1k
Let the derivative matrix Vy(&,) € e XA 1) of the vector
£,(0) £ v (552(6)) : RONs+Dx1 1 VX! be given by

Vo(€a) 2 —7€.(0) = [£06) - &0 .)] a7

207"



where v (-) denotes column-stacking vectorization operator.
One can fulfill the FIM (see eg. [15] [16], [17] and [18]) as

where ¥, (0) £ 21;(0)@92”(0) € CHE Ng . Based on the
spatial frequency approximation, £,(6,,) can be justified as

€:(0.) = 2(w,0u)n(p, 2) 19)
whence 2(w,o,,) : RNs)¥1 CNE " , defined by

2(w,o0,)

& [8a(w,)Eb(0w,) Ba(wy, ) Eb(0w, ) we (1)]

R(N +1)x1 +1)x1

-
and n(p,07) £ [pT o7] - ~ R,
constitute a new parametenzatlon due to bmarx‘gﬂt'ﬂm

matrix of full rank & € BNe*Ne and nominal fr
matrix $,(w) £ DH(w)®D,(w) : [~kd,, kd]| — ﬁ e
Straightforward calculating the derivatives, w. n i

éz(wns) =DPng éa(“-’ﬂs )Eb(0w,,
éz: (a“’“s) = Png Qa(wns )55(0‘,"5)

where two derivative results are adaptable fr
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spatial frequency model to be transformed into the physical
model via! [19, pp. 45-46]

Jo,(9,) O 0
Jo,(0.) = o7 I o). (26)
o7 0" 1

Furthermore, each element of the significant block matrix
Jo,(00) £ 5579.,(04) ERZNs)*(2Ns) can be drawn from
L

[J194, (19141)][115 ,ns = d)ns (¢"S)

=kd, cos(¢ns) (27a)

/ﬁ// [N +ng, s] d'w,.s (d’ns)
= -kdsa%s sin(¢n,) (27b)

‘V"" MS +ngl = d“’"s (a¢ns )
T — = kd g cos(¢n,)- (27¢)

he Jacgl)bian main'i‘%{o) therefore becomes

L Ve (E)= Vo (66, (0) (28)

‘-‘.l"|l

“InLcoagd'nc on with Bu(e3(9 ) & I7%(8,) [19], the CRB

ccounted for estimating 6 is at last given by

: _ {l : - > \ 1

$a(w) = (DH(w) ® Da(w)) + (DH(w) © D B, (0) = (V5,6 B0V, ) @)

bow) = [Blow)] . ik 4 ;

[:,1] ¥ 'Whel'\"&‘(eo) Ot& a—oj;em(e‘»)lgd‘:go.
It is easy to see that D (w) = 14Dg(w), where | ,,,JJ == =
ndns;n € {0,1,.. — 1} is a diagonal matrix. Relyiag ="~ *@LA IAN ANGLE DEVIATION MODELS
on each PDF, we encounter F ;,,_.3. Nex%provide a more realistic model for reflecting
[B(Uw)] 2 T relovant el features precisely.
[nE vf"E] c ‘ f
Y —tl X
—(ng = 145)?00[B(0u)in_ ) ( : Gaussial Distributionwith Infinite Range
Tl (cos((nE —1;)V30,) — [B(aw)][nE',{-l]) ;Uniform.  Th stribution with infinite range d, € (—00, 00)
_j (22) is cus y expresseq_ﬁy the PDF [20, p. 166]

By accumulatmg all derivatives into V,, (&, ) —@ﬁi(w

c%*M and V,, (€,) 2 -a-;rﬁ ?T
V(e)—[(l)s Q) €y,
Vou(€) = [sz(awl

the derivative Vau (&) =
respect to 9, =
by

(232)

[wT T]'ae R(2Ns)*1 can be represented

V"w (ex) = [Vw (&z) Vdu (€m)]

Then, the Jacobian V,(&,) A
in

(24)
ﬁyﬁz(n) = 2(w,0o,) results

Vo, (&) = [Vo. (&) R2(w,00)]. (25)

Since one can write 6,,(0), the Jacobian matrix Jg,(6,,) £
531-9 (84) e RGNs +1)x(3Ns+1) alows the CRB derived from

ﬁj @ﬁﬁﬁﬁu 9198 TR R B

— L \/3|6,-3,
\/_“” ¢! —00 < 0y < 00

fu(6plBgi o)

N3 mmmw i

Takmg the Founer transform, it yields 21 p- 930]

(€29

For the standard Laplacian distribution, this leads to

2
24+ t2

which equals the characteristic function in [22, p. 398].

F(fu(b410;1)) = (32)

!This is available from J5,, (p) = £ a—g-rp =0T, J,(0,) £ —9719¢ =0,
@
Jp(|’¢) = g-rp _I(N ) 5—31»0',. = oT Wﬂd’ =0, a—p-ro' = 0T

——,p Oand—,-az=1



B. Laplacian Distribution with Truncated Range

If the random variable J, is represented as spatial deviation
angle, we always encounter restriction of |64 — 64| < 7 [7].
Regarding to both edges, we arrive at (see e.g. [4] and [5])

fTL(6¢|S¢;0'g) cu(og) ——‘;\/5|6¢—6¢| (Sy—m < g < Byt

V20,
(33)

where ¢, (04), given by c,(0g) = —_1-_—7_; (see e.g. [6]), is

a constant to normalize the truncated PDF a density function.
In according with standard PDF, it then remains

2
F(f1(840;1)) = (l-e V) (2+8)

C. Laplacian Distribution for Source Localization
It is noteworthy that to be F(fr.(64(0;1)), F(fu(del0;1))
must be scaled by such a scalar c,(1). Hencefo ether‘
angular truncation is of interest or not, our source loc
model will not make a matter because the Mg\ﬂ il
depend on model parameter 6. F 4
Proposition 1: For computational simplici

of the Laplacian PDF with zero-mean and infinite
by

(34)

_;\/ﬂg i
64]0;03) = —=—e ¢
£(8410503) = —=—
In term of spatial frequency model, it follows
1
[B(ow)ling ig) =

1+ %(nE - ﬁs)zag.

Asrequired in CRB calculation, the derivative of spatial fa_,dmg' .

correlation becomes -
[B(Uw)][na,ﬁE o _(nE - ﬁE)zaw{B(gw)]an,ﬁE]'-.H *(37)"-
V. NUMERICAL EXAMPLES'

|

RMSE (Root Mean Squara, Ermr)r; degree
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N, vs RMSE of nominal angle

Receiver : ULA with FER

and hall—wavalenqlh separation

N = 8 element

Sbgnnl QPSK, N =1, oozo"
Angular Devlallnn Laplacinn Gaussian
and unform, o, = 5°

Path Gain : circularly-symmetric
complex-valued Gaussian Process

N = 1,000 paths

SNR 51068

7, 2% 2% and 2'°
N = 1OODDlndapond9nt runs

RMSE (Root Mean Square Error) : degree
o
S

=)
an

+ Laplacian ML

I
L' % % Laplacian CRB

aussian ML
aissian CRB ~
ML “~a
= rm CRB
"
A : . . : N
a2 —— 128 256 512 1024
NT (Number of Temporal snapshots)
Fig. 1. RMSE of the nominal angle ¢ in three individual scenarios with

appropriate assumptions.

- J; NT vs RMSE of angular spread

Recsiver : ULA with FER
and half—w-vsiength separation
N_ = 8 elements

Signal : QPSK, Ng =1, ¢, = 0°
Angular Devlaﬂon uplaclan Gaussian

o P

R

o o N

=L,
‘1

pr e and unform, S,
04 --‘: ~ & Path Gain : cln:ullny-symmeu'lc
{ g~ eomplex-vnlued Gaussian Process
& a4 o NF paths
ol . R SN'S zswd’ 2,28 2% and 2'°

NR = 10,000 independent runs

To demonstrate the impact of the proposeddﬁewatlon model,
we commonly employ the ULA with half-wavelength separa-
tion and first-element reference (FER) to ieceive a QPSK
(quaternary phase shift keying) signal whose, strength is
controlled with respect to noise variance by

SNR £ 10log Ei :
i

All significant parameters are set up as the following table:

(38)

o | g, o2 "hSNR| N [mINT TN
0° | 5° | 0.001 10 1" |¥1,000 | 8

As modified from [23, p. 94], the pseudo random number
satisfied the Laplacian PDF fi,(d4|0; 1) can be generated by
=L (%

V2 (%)

with any independent d,, ~ U[0,1] and 5¢u ~ U[0,1]. Our
empirical standard deviation (root mean square error (RMSE))
is to calculate the square root of averaging the squared error
from a large number of realizations (V).

1

8p, = (39)

L s
32 T 128 512 1024

256
N (Number of Temporal snapshots)

Fig.22. #RMSE jof the angular spreado, in three individual scenarios with
appropriate assumptions.

As _seen .pictorially. in, whatever. PDF, we have correctly
assumed, empirical RMSEs of ML estimates in Fig. 1 and
2"agree very well with ‘their theoretical” CRB performances
attainable from nominal angle and angular spread estimations.
The uniform distribution enables CRB to the lowest for all of
them in either Fig. 1 or Fig. 2. Intuitively, owing to the fact
that both Laplacian and Gaussian angle deviations belong to
the same class of symmetrical and exponential distribution,
the nominal angle estimation errors in Laplacian deviation
is very slightly less than that in Gaussian deviation. It is
probably due to the well-known fact that the heavier tail of
Laplacian PDF results in higher chance to encounter the large
angle deviation i.e., angular outlier. Unlike the nominal angle
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. NTvuRMSEdnominqulo N, vs RMSE of nominal angle
1
:~:: Receiver : ULA with FER 0.9}
ol 200 half wavalengh separsiin 0s8f ;Mm : ULA with FER
o Signal : QPSK, Ng = 1, ¢ = 0° 07 N_ = 8 elements
08} Angular Deviation : Laplacian, o, = 5 06 Signal : QPSK, Ng = 1, ¢, =0°
05fo Path Gain : dehny-symmwic Angular Deviation : Gaussian and uniform
§ “\_ o complex-valued 05-8. °0’
S o4 T~ :N;H:o:m §o4» Sy Path Gain : circularly-symmetric
—g ~ \: o NT-2° 127,28 2% and 2"° ‘E = \\'\o %:v;p:oanlmscmum
L R Ng = 1,000 = =
03 By, icepeiidantrirs @ o3l S Ny 2 2519657 2, 2% ana 210
>3 ] § v\.\_ Ng = 1,000 independent runs
g g & 8.
0.2 Sy g ol Sy
3 TS 2 a gnz e )
4 ~ o~
& ] i
a Sie B TR
E el o Mg o
1T 3 Uniform miss-modelied ML i ‘..\ g N
O Gaussian miss-modelled ML e ~
: : idelled ML In uniform deviation 8
b Chpecmn ML &\ idelled ML in Gaussian deviation
1 . . . . . ‘
2 o 128 = 512 m—02A— ———— 128 512 02
N, (Number of Temporal snapshots) ‘f-r = _'-HN . (Number of Tompornl snapshols)
O
Fig. 3. RMSE of the nominal angle ¢ in Laplacian scenario_wi B BN N angle ¢ in two individual scenarios with
and incorrect assumptions. i i
NT of angluar spread
. N, vs RMSE of angular spread
Laplacian miss-modelled ML In niform deviation
08r %, Laplacian miss ML in
08} Recahvr : ULA wih FER L CRB
orr N = 8 elements
08 SIgml QPSK, Ng =1, ¢, =0°
osl” Angular Deviation : Laplacian, a o i -
5 <, Path Gain :
Boab T~ . N, P00 pains " P
Sy SNR =10
E T N.,-z’1 27,28, 2% and 2'°
’§ 03 She Ng = 1,000 independent runs
S 0 o
. ‘q\_\ ° o
Yl s
L) 53
z e
01l "G Uniform miss-modelied ML T
O Gaussian miss-modelied ML iy
# Laplacian ML %
~ - Laplacian CRB
5 y - - : 256 512 1024
% NY (Numbn:gf5 Temporal snap:xs:s) -'|J2 A T (Number of Temporal snapshots)
Fig. 4. RMSE of the angular spread o in in two individual scenarios with
and incorrect assumptions.
estimation, angular spread parametrization requires itself more “due to more closéhess to the true q of array covariance
36 Toereiore, Laplacas RV dogr *&ﬁiﬁﬂ"&l‘iﬁﬂ 1@
(36)). Therefore, Laplacian 101 ti odelli cian in Fig. 5, the
in angular spread estimation of Fig. 2 underlying ML for estimating the nominal angle is inefficient

As stated involving the symmetrically exponential family, Wwith respect to the true CRBs (see Fig. 1). Nevertheless, the
miss-modelled estimations with Gaussian assumption in Fig. Laplacian CRB seemed, under the miss-modelled assumption
3 is very close to that given by the true Laplacian assumption. of Fig. 5, attainable in nominal angle estimation. The ML
In addition to the RMSE of miss-modelled estimation with estimator is also inconsistent to find angular spread in Fig. 6.
Gaussian assumption, RMSE due to uniform assumption in In addition to the efficiency of ML estimator (profitable in
Fig. 3 more differs from one with exact Laplacian assumption. all angle models correctly assumed according to Fig. 1 and
Under the same reason of angular spread parameterization 2), it is noteworthy that, for nominal angle estimation, both
imposed, the DOA estimate errors of Fig. 4 are gradually uniform and Gaussian ML estimators in Laplacian scenario
considerable in whatever severity of miss-modelling. This is are inefficient with respect to Laplacian CRB (see Fig. 3)



whereas the Laplacian CRB under Gaussian and uniform miss-
modelled assumptions seemed achievable by the Laplacian
ML estimator (see Fig. 5). These two explicit notifications
allow us to infer that uniform and Gaussian ML estimators are
not endurable to concern the Laplacian angle deviation model
while Laplacian ML estimator is beneficially robust to tackle
both Gaussian and uniform angle deviation models. Such a
deduction is however not true when contrasted with estimating
the angular spread in Fig. 4 and 6.

VI. CONCLUSION

A type of angular deviation in parametric channel model
has been proposed and then investigated against two most
deviations existed in source localization problem. It is unfor-
tunately conceivable that the Laplacian angle model slightly
deteriorates nominal angle estimate error and con'ﬁﬂémbly

increases angular spread estimate error since there is more
chance to encounter outlier directions compare aussia

d
and uniform PDFs. Our empirical and theoretW
of estimating the nominal angle yield ignorable modél mis-
leading between Gaussian and Laplacian distri
robustness of nominal angle estimation in Lapl

was also illustrated via numerical simulations.
coincide with recent field measurements, the

i
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Abstract— Two contributions are affordable in this paper.
Firstly, we provide a relationship between two well-known
methods—redudancy averaging (RA) and weighted covariance-
matching (WCM)—for estimating any Toeplitz Hermitian co-
variance matrix. The analysis presented herein enables us to
their connection by mean of optimal weight perfo By,
applying both Toeplitzifications in asymptotic weight determis
nation, another virtue is to propose an improve
asymptotic best consistent (ABC) estimator for dire
in the presence of spatially distributed source. Sinc
structure of array covariance matrix is held its
angle deviation model, it is thus advantageous to i
such a priori knowledge of the matrix structure i
weight estimation step. Based on weighted leas
criteria, our enforcement upon the Toeplitz structure i
illustrated that, in small or even moderate numbe
snapshots, the estimations of nominal direction an
ing angular spread with the additional constraint can
the conventional approach without preprocessing o
covariance estimation.

I. INTRODUCTION

|

Most(:?:? involved the direction finding problem were
based ‘on smaximum Iikelihood (ML) estimator due to its
producible“'bp&tﬁ'{li_ty [1], [6]. In order to arrive at extremal
quantity, the optimization search of likelihood function seems
inevitable for a complex model. However, the physical model
with well-deseribed characterization would, in general, re-
quires large number of model parameters. As a consequence,
the larger the number of model parameters, the larger the
sion of optimization search over parameter space. Un-

- fortunately, this might prohibit the ML estimator from being

incorporated into real-word applications.
'_.Try""g to reduce the optimization tasks, the weighted least
squar (WLS) approach is preferred instead of the criterion

based-h.l;n likelihood function [7]. Such an idea stems from

ured asymptotic performance when taking into acount any Gauss-
4t dMarkov.

odel (see e.g., [8, pp. 127-128], [9, pp. 566-567]

——

J aduteud [l():].ﬁ,ﬁj,making the WLS more attractive in computa-
“~—tional cost than the ML, there were various efforts to reduce

Sensor array processing plays a prominent role in. {hé - the dimension of optimization during computing the parameter

phenomenons of the propagation of plane waves transmitted -

through a media. The problem of ﬁndir@-:'ﬂtheir directions

estimate. A reasonable way-is to replace the optimal weight
with other one which is consistent, or obviously, converges to

impinging on array antenna or sensor array,:?‘aﬂ?d?t‘rectmn
finding, is of interest long times ago [1].~This is because
it is a useful parameter in several systems such as wireless
commination, radar, navigation and efc. ~

In circularly-symmetric complex-valued stochastic_process,
the multivariate second-order statistic-imposes the covariance
matrix with Hermitian structure. It is well-known that the sam-
ple covariance matrix is an unstructured maximum likelihood
estimate of any covariance matrix with Hermitian structure [2].
However, uniform sampling period, results in more restriction
on the covariance structures In signal processing application,
the use of uniform linear array (ULA) with phase reference
at the first element leads to Toeplitz structure which occurs in
virous situations [3].

By means of spatially distributed source localization, an
objective is to estimate the nominal direction and/or the under-
lying angular spread whereas the nuisance parameters are such
as channel gain, signal power and noise variance. Of particular
interest in the spatially distributed source localization problem
is the Toeplitz structure in the true quantity of array covariance
matrix [4]. This is due to the angle deviation model which is
in most drawn from symmetric PDF family [5].

the optimal weight. The most famous way usually concerns
a nonparametric estimationi of such value, e.g., the sample
estimate. The cause of this is that in a fairly large situation,
such a statistic is not only easy to compute but also holds the
performance of asymptotic consistency [6].

The ordinary; WLS seems, however, inefficient to hold the
statistical performance in non-asymptotic region, i.e., a small
or "even moderate” number of Samples. Towards this non-
asymptotic end, two methods which_incorporate the Toeplitz
structure have been argued to increaseé the direction estimate.
In the classical (point source) model of sensor array process-
ing, the redundancy averaging (RA) method was investigated
to carry out correlated signals [11]. Later, a weight covariance-
matching (WCM) approach was proposed to efficiently handle
uncorrelated signals [12]. The reason why one would concern
these two nonparametric estimates stems from the facts that:
i) there exists a closed form for each solution which results in
low computational complexity and ii) both of them converge,
in probability, to the true covariance.

Here we proceed on the source localization by first inves-
tigating the relationship between RA and WCM approaches.
The purpose of this is to asses their achievable performances



when one desires to make use of both methods. Owing to the
fact that the WCM belongs to an asymptotic best consistent
(ABC) estimate, the result shown earlier persuades us to
replace the ordinary sample weight matrix utilized in [13]
with one exploring the Toeplitz structure. This allows us to be
higher in performance than that utilized the ordinary sample
covariance matrix because the improved weight matrix more
approaches the exact and optimal weight matrix even in small
number of temporal snapshots. Note that this enhancement
does not require any much more computational cost as one
expected since the nonparametric weight is conducted only
one time before performing the required numerical search.
The arrangement of this paper is as follows. Spatially
distributed source localization model is introduced in section
IT for being demonstrated as an example which is familiar
with an incident of Toeplitz structure. Section ITI reviews
the covariance Toeplitzifications through RA and"WCM ap-

proaches. At the last of the section, it includes the relations)
of both methods. We further indicate the applicati
approaches to WLS loss function in section IV Withaespecy

to the classical one employing the sample mea vai
numerical examples are pictorially conducted.i 1
validate the improved angle estimates due to both

finally summarized.

II. SPATIALLY DISTRIBUTED SOURCE
Restrict our attention to a number of sourc
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quantities. Let IV, be the time-invariant number of scattering
paths. For a large number of incoming rays, the channel vector

Np

h[n’r] = Z Tnp [n’r]a(¢+6¢np [n'r])

np=1

(%)

seemed, under the central limit theorem, plausible to hold a
circularly-symmetric complex-valued Gaussian process, i.e.,
hin;] ~ N, (0; £pn,0) [14]. This N,-dimensional variate
implicitly provides the statistic X4, 2 E(h[n,.]A"[n,]) €
Ca= "%, hlny] 2 hin,]— € (hin,]) = h[n,]. For taking into

ount an incoherently distributed channel [15], the second-

a
rder ;af} f a certain incoming ray yields [5]
‘ '@T]’Y;T [fix]) = 036n,, 4,00, 5, (6)
-
where 6, o denotes-the Kronecker delta function and afl is the

power due fo any path. Over the spatial continuum of incoming
rays, it can be approximated as

S (0,0,00) ] J 8510:3)a(6 + 8,)a" (6 + 5,)d
1 B ' Q)

2

"*fwhené.ﬁ;‘é N, o3 signifies the cluster power due to all paths

and ,ﬁ{,i¢|0;03,) is a conditional PDF accounted for random

-, deviationds given a priori knowledge of the angular spread

04 As encountered, a family of symmetric distributions with

, “Zero mean and variance cri is in most modelled as follows
als & =

AR 4

N, which are transmitting trough a dispersive and + "~ f:,ﬁ i Eﬁ-ﬁﬂ [~V304,V304] ;Uniform
then impinging on a sensor array. In the so-cal ﬁr&f:*': —._—_% } - ;i%.
element reference (FER), the array response vect a(wpiz:*';f(5¢l0:»v’ﬁ;sf ’ Tt 2oy : Gaussian (8)
[—90°,90°] — CNe*1 can be, in general, written ideally as™— e 1"%_;;_\/5,5 5l )
g ".'-;:fllq'““-'-ﬁ ormd ; Laplacian.

a(¢) 4 [1 etkdE sin(¢)

where N, is the number of sensor eleni 'S, dp Signific
the equi-distance between two adjacent _Jﬁ_ents k= %\’-'
denotes the wave number whose associating~wavelength is
A. In flat fading channel, the array outputgg/time instant
ny €{1,2,...,N.}, or the snapshot vector z[n, ] € CNe*1,
can be represented as [5, p. 25] b £

zln,) = Hin, laln, {¥nlhd 7| ]
where n[n,.] € C¥e*! designates the ddditive noise at sensor

array, H[n,.| € CNe *Ns

constituted as ' 1 AN

A & [iine) L) -LOW, S CE

S

S g [nrl] !

and N, denotes the total number of temporal snapshots
collected in a data burst X e CNeXNr as

X £ [z]1] z[2 z[N;]] .

s[n,] £ [sl [nr] 8,[n) (3b)

@

As previously developed, most local scattering models assume
that the nominal angle ¢ is deterministic while angular devia-
tion 4 and associating path gain +y are considered as stochastic

etkdg (Ng—1) sin(¢)] T= r-&i”) =

=guency

Yor

and 8[n,| € CNs*! are respectively

Tesponse-is-prefeiable due to the better accuracy of
approximating the ﬁm-_ Taylor series around the array
broadside [5]. In general, the spatial frequency w and its

associating standard deviation o, are provided by

_ w(p) = kdE_ sin(¢)
o‘w (qﬁ, a:¢,) = k"d‘; cos(P)op.

Accounting for small angular spread, the so-called spatial

Rather than such physi,caé afgles ¢ and o0y, the spatial fre-

(92)
(9b)

gfrequency approximation results in asseparable form as

o v Z‘,;h(p:,‘,-wl',:ak%) z p'D@(L;%);B(;w) DH(w) (10)

Ng

|

where D, (w) : [~kdg, kd,] — Cg"i,x is diagonal and uni-
Ng X Ng s

tary matrix parameterized and B(o,) : R} — Rg%
symmetric Toeplitz matrix. Both of their (n,7i )-th elements
can be represented by [5, p. 22]
[Da(@in, ) = €06, _ s
[B(0w)ing gl = fx((ng —1i5)0u]0,1)

whence characteristic function f,(¢[,0,1) £ F(f(6,],0,1))
is equivalent to the Fourier transform F(-) of the PDF whose

(11a)
(11b)



associating random variable holds zero-mean and unit vari-
ance. In a certain situation, the (n,,7,)-th element aligned
in B(o,) can be expressed as (see e.g., [5] and [16])

sin((n,—n )\/_O'u

——E_ET_—(nE—nE) = ; uniform
[B(Uu)][nE.ﬁE]= e~3(ng=7g)%d . Gaussian (12)
1 ; Laplacian.

—_—
1+3(ng—1ig)2o2

If the additive noise assumed is spatially uncorrelated noise
and absolutely uncorrelated from channels, it results in

NS
Taz[n,] = Z Png [n’l‘]Da(w"s)B(JUns )Ds(wns) (13)
ng=1
+021
where pr,_[n] 2 pn_[sn, [np]|? stands for the ﬁ;?h:ssgnal ,,

power observed at the sensor array. Considering th

istic signal with constant modulus so that
Y 42(05) ;Vn.,., where 0, is the true value of
Now assume that, based on the Toeplitz Hermitia
matrix X;;(0,) : RGNs+1)x1 Cg‘?l-XN“', 0
find the nominal direction of arrival, ¢, gwen th
data z[n.];Vn,, where true-valued parameter
RONs+UX1 defined by

24
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where the fundamental vector 7 € R(Ne ~1)%1 of all lower
triangular entries of the Toeplitz Hermitian matrix ¥,z is

=
R(ry,-) S(ry,)] -
a7
Let L, € B=*Ne be the block-lower triangular matrix
correspondmg to the n, €{0,1,..., N, — 1}-th lag
("‘L an)

L, & = 9 (18)
= O((N —np)xnp) .

To review two following methodologies of Toeplitzification,
JI lumn rank matrices, such as the binary selection

x (2N, —1)
matrix ﬁf
reC]F

, are introduced according to

Té[ro R(r,) S(r,)

(nL x(NE—nL))

(Ng-np)

and the complex selection matrix

éé[vc(I) vc(L) ve(LT)

ve(Ly, ) ve(L] D] o
0T
3 na 1 e (19b)
i :J“; 2 I(NE") o [1 —Z]

where . (-) designates the column-stacking vectorization and
® sigbiﬁds the Kronecker product.

One thé easiest ways to Toeplitzize the covariance matrix
is to observe all entries aligned in a subdlagonal of ¥g.
Averam N, — n, redundant lags of [E'm][n +n,m, ]

a8 v o7 .2 ‘;"3'3' ‘it attributes the covariance estimate according to redundancy
0y = [¢ 9y P Un] 1 ~ averaging. ing. And the averaged result is designated as the n -th
0,2 [wT of T ”3]11 (rab’) ~ Tocplitzlag #, “€C'*! computed by [11]
are given respectively for representing the mddekparameter-in r—— = -)‘jb—n" £ 20)
term of physical and spatial frequency mo Tny o8 Zl [ "][" +nyny]

ITII. COVARIANCE TOEPLITZIFICAI_&JNS

As already mentioned that z[n 1\1 N (0; B12,0), the
sample covariance matrix 3,5 €Cy®" B cantbe given by

1 &
=E2z[n

(15)

e ny]

Since Loz = ¥42(0,) + Op(1JA/IN,), thie samplé covatiange
Z‘u thus converges in large sample to be of Toeplitz Hermi-
tian structure. Notice that the true covariance matrix satisfies

22(0,) = Bzz(1) : RGN =11y Cgﬁ.XNE and then can
be expressed in Toeplitz Hermitian form as

0 1 NE -1
- T T R
Yoa(T) = ' ’ e (16)
TN -1 TN -2 TO

Keeping it into the funfedhental vector Fpa ERGNg—1)X1 59

&

R(fy, ) S(y )
21)

then 'the Toeplitz-Hermitian covariance estimate is written as

oo B(E); S(7)

fm=

We(Zor(rn)) = B2 7en. (22)

B. Weighted Covarianae-Matching"Taeplitztﬁcation

Let |A[Z, £ vt (A)W~1v (A) be a weighted version of
the Euclidean norm, where W is a positive-definite Hermitian
weight matrix. Based on the extended invariance principle, the
WCM can be reformulated as [12]

Twem = argmin ”2::::5(7) = 2‘::2”3;,

- (23)
r—l( W—l :,-) 1:—"- W—léa;
2 " 2 2
where £, = v (X ;z) € CYe*! and W e C::EXN"’ are the

covariance vectorization and Hermitian weight, respectively.



To make the residual Fycy 2 Fycy — 7 minimal, the optimal
weight should be satisfied by [7]
. ~ ~H
W= lim NE(€.€,)=2].0 %, (24)
Ny —oo

where fx =) {; — &, is the the sample covariance residual.
Since the exact weight depends itself on the model parameter,
it is preferable to make use of nonparametric estimate W =

Y. ® ﬁ'm rather than W without loss of asymptotic perfor-
mance. Therefore, the WCM covariance estlmate Em(‘rwcm)
can be devectorized from [17]
Ve(Zaaltuan) = EEWIE)TIETWE,. (29)
It is however fruitful to see the relation between the WCM
and RA estimate. Furthermore, if it needs to deploy one of
both estimates, i.e., the WCM and RA fundame@gctor
estimates, their statistical properties should be conce
Lemma 1 (reformable weight of WCM to be ﬁ'
optunal weight W in (23) be tbe 1dent1ty matzi

which is given by

~

Teum

argn}rin ”f"z:c("') - ﬁm”f

o T

=r g &)E
is equivalent to that available from the RA metho

T

Tom = Tra
Proof: See appendix I.
Notice that (22) might be rewritten as

UC(i‘xz(":RA))= 3 (_5)‘f'RA

where ITs,a) = A(AYA)~1AH signifies the orthogona.la

projection onto the range space of any full, rank matrix A.
Such a lemma is intended to illustrate the snﬁllanty between
unweighed WCM approach and RA meth Based on
linear unbiased estimator (BLUE) viewpoint [10], the per-
formance of WCM must be, in principle, sg;ﬁor than that
available from the RA method because the one invoked
the optimal weight to reduce the residual.

IV. WEIGHTED LEAST SQUARES'ESTIMATION

The WLS estimation is to find a parametric argumeint which
provides the smallest residual in matching criteria. In spatially
distributed source localization, most work is relied upon the
second-order statistics. Therefore, the array, covariance’ mattix
is one to be matched between theoretical and receivable
quantities [13]. Being concentrated on the source signal power
and noise variance, the WLS loss function is arrived at

19WLS—argm1n$ W it W_%E;

S, W- 29)
€ RANs)X1 results in £2(9,)

$a(9.))

where 9, £ [wT O’I]
expressed by

2w, 00) 2 [ ve(Da(w,)B(ou,)DH(
Ve(Dg(w

w,))

B(ou, D) v ]

‘sﬁeci
27) cids
> e l0°, 0°5,10°
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To deal with single signal scenario, the parameter 19 will be
reduced to w and its corresponding §2(w) is given from [4]

2(w) £ (DY (w) ® D, (w)) g (1)

XNg .
where the binary selection matrix = EBF is

g2 [vell) we(L, +L]) ve(Ly _, + L}E_l)(]z,
2)

For terminology concise, one may recall 15@5 as ordinary WLS
estimate when replacing W in (29) with W in (24) and (15).
Proposition 1 By substltutmg W in (29) w1thTW(‘rRA) £

z:x:( :I(TRA) and W(TWCM) _ :::(TWCM) ®
Eu (T“i Wf’t\hall designate the improved solution as RA-
WLS and

MS estimates, respectively.
i

- VesNUMERICAL EXAMPLES

In addition to verification of the lemma 1, the following
simulations also demonstrate the impact of two proposed
improvements. Tn all experiments setting up, we commonly

- remploy the ULA with half-wavelength separation to receive a
’ QPSK (quaternary phase shift keying) signals whose strength

are centrollable with respect to noise variance by SNR £
Wlog(o? /g2). All significant parameters are set up, unless
otherwise'a variation on the parameter of interest will be
individually in each figure, as the following table:

.a.r:{,* “Po og, | 02 |[SNR|[ N, [ N,
| 5° | 0.01 | 10 | 100 8
Pracucag,'_-_‘th} pseudo random number satisfied the Laplacian

'(.?,8) “PDF fL(?AoJ) can be modified from [16]

) o
ny tw ependent u 1form distributions &g, ~ U[0, 1]

a.nd 5@, ~ U[O 1]. Our empirical standard deviation (RMSE)
is calculated from a large number of independent runs (IV,).
By inspecting the single source case in Fig. 1, 2 and 3,
all WLS:-based estimators asymptotically achieve the corre-

. sponding.CRBs, i:¢.; uniform, Gaussian and Laplacian CRBs,

respectively. It is noteworthy that the WLS estimators em-
ploying ‘the "Toeplitz-constrained weights, such as RA and
WCM covariance estimates, outperform the ordinary WLS,

(particularly in small and moderate nurfibers of temporal snap-

shiots. Furthermore, both Gonverge fo! the-CRB at hand more

‘rapid than the ordinary WALS. This is 'due to the fact that,

in each improvement, the consistent weight matrix has been
forced beforehand to be of Toeplitz structure accounting for a
property of optimal weight. For more insight into the improved
weight reflections, the WCM-WLS is better than the RA-
WLS, especially in small number of temporal snapshots. This
superiority agrees well with the lemma 1 which can be infered
that the WCM weight estimate will provide error less than that
given from RA weight estimation.

In multiple source scenario, the uniform and Gaussian
angle deviation model is of interest in Fig. 4. Their angular
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140

respectively. For the uniform gle deviation cluster, maximum
angle according to (8) becomes —10 + v/3 x 5 ~ —1.3397
degree with respect to array broadside. In the Gaussian angle
source, this leads to small spatial ambiguity because an
arrival direction in the cluster yields rather low probability to
align m another cluster. Although the Gaussian CDF giving
3T 1 (840105 5%)dds ~ 0.0117 is of low probability,
such a correlation is evidently observable when investigating
the unattainable gaps to uniform deviation CRBs in both
nominal direction and angular spread estimations at small
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N, vs RMSE
O ordinary WLS
14+ + RA-WLS
x WCM-WLS
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& os8f N, = 100 paths
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/ ‘A% \\Laphh?wiation: empirical and theoretical standard
deviations of the erro to estimating the nominal angle ¢ as a function
ber. mpora sshots Ny..

ral snapshots. In Gaussian case, there exist
s of unweighed criteria at small number of
here the RA-WLS might be more worse
S. Indeed, this region demonstrates a
due to employing the ABC weight 74
the WCM-WLS weight W(TWCM).

VI. CONCLUSION

/LA ar xpressxon between the redundancy averaging
[111 and welghted J e-matching [12] is first explored.
methodology is equivalent to the
i¢ WCM loss function. According to
hne unbiased estimator, the WCM

with optimal t outperforms that given from the
RA method in any Gauss-Makov model. Such a statement
is then wﬁable when mcorporatmg both Toeplitzifications

locallzatlon Replacing the
te sample covariance estimate
CM covariance estimate, numerical

w1th one due to

trate that the RM s;of estimated directions
ted least squares
ases [4] and [13].
invoked RA and
WCM agree well with the relationship indicated herein.

APPENDIX |
PROOF OF THE LEMMA 1

The solution (26) is easily derived by replacing W in (23)
with I. To verify (27), we reformulate the residual norm as

Lot

)2

Ten = argmin | Xy (1) —
f (34)
= arg n}rin[(Z'u('r) -



N, vs RMSE: ¢ = [-10%10°), o= [5°:5°), PDF=[Uniform;Gaussian], N, = [100;100]

SNR=[10;10]dB, Signal=[QPSK;QPSK], N = 8, and N, = 10,000

3re
© ordinary WLS S O ordinary WLS
25| .o + RA-WLS + RA-WLS
x x  WCM-WLS slxo x WCM-WLS
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2p * o
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g s, % :o = < Fa
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3 4. 457,
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1 29 d x2e
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50 100 150 200 50 100 150 200
Ny (Number of Temporal snapshots) (20:10:200] —
Fig. 4. Uniform and Gaussian angle deviations: empiri

standard deviations of the estimated direction errors as a fu
number of temporal snapshots Nj..

where ||A||Z £ [AMA| and [A| denote the
and matrix trace respectively. Since the analytic
CM needs to be satisfied by 52— [(Zsa(T)

n

0;Vn, [18,p. 891], its complex-vallfxed derivative wi
to the n, -th Toeplitz lag results in

0

orx
ny

[(Zzz(T) - 2::5)2.1

= 20 Bee Bea(ry, )] + 2 Baa(r) Faa(ri )| de 0]

3 .
where A (x) £ £ A(x) is the derivative with respee
us represent X, (7) in a linear structure aémf_ding to
|

Ng-1 M
Zoa(m) =710+ Y 7o La, + T Ln - (36)
'n.L=l
Then, it follows that
3 * 7T
Z‘m(TﬂL) = L"’L . 37

Forcing

67,'?: [(24a(r) — Bae)¥) B 0, we'obtain the critical
condition of the n . -th Toeplitz lag as

[LnL 2:::1:] = I—LnL Exx('r)_l- (38)

Proceeding on the n -th subdiagonal, it yields

1 NE L

Z [ﬁzZ][nL +n,,n,]

n,=1

-n

Tl -y 39)

which coincides with one available from the RA lag in (20).

5]
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Abstract

This paper is intended to address the cova.['_ance
matrix estimation and to improve the estimation of
nominal direction in Rayleigh channel owing to spi
tially distributed source by employing M
receiver. Three contributions are affor
Firstly, we propose a large-sample &
maximum likelihood criterion for esti
ance matrix with linearly affine st
connection of the proposed estimator to
terion is secondly provided. It is co
presented criterion yields the same soluti
from the weighted covariance-matchin
key idea behind application area stems fr
that array covariance matrix is not o
but also Toeplitz.
it is advantageous to make use of struct
ance matrix in parameter estimation.

is to incorporate the imposed Toepli -Hermitian ma-
trix into another large-sample ximated maxi-

a the'

e_Toe itz
erived ft
Theua ncl{t a.r

mum likelihood estimator. Numer@‘mmula.tlons are
conducted to verify and indicate thatsparticularly in
non-asymptotic region, the asymptotically efficient es-
timator with Toeplitz constraint always outperforms
one loosing the additional mformatlon ¢ o

ture. The reason why Toeplitz structure
is he I'belongs to; firstly, sensor elements are
aligned dmly linear and phase-referenced at the
first element, another one is due to the symmetry of

random devia und nominal direction.
Towards this end, all elements in array covariance

| sh uld be foreed to make the estimated covariance

rix Hermitian and Toeplitz. Due to approaching
¢t value more rapid than the ordinary sam-
ple-covar;a.nce, the estimated covariance matrix with
nstraint seems advantageous when having
lace the parametric array covariance matrix with
tric estimate.
purpose is to proceed on two problems,
ion of matrix with linearly affine struc-

d spatially distributed source localiza-

To decreaae_— txo:%n ge-sample approximation of maximum like-

the directional estimate error, the last contr;bu’goq:}..

lihood

imating the structured matrix is pro-
pésed erein

We then provide a connection to other

oposed estimator accounting for
: % yields the same solution being avail-
able from the weighted covariance-matching criterion
[2]. During the non-parametric array covariance esti-
matiofl,/we provxde another contribution to improve

Keywords: Toeplltz-HerlF't ) Smrﬂ ﬁt:ﬂ lihood (AML) estimator
ray processin, er e d lin [ oking the Toeplitz restriction.

1 Introduction

ThlS modification does not need any much more ad-
¢ ditional calculation because thﬂ..’I‘oephtz-constramed

T ARARRN0) SRS el
ferring the parameter ce e before the op-

of uniform linear arrdy (ULA) [1]. With phase refer-
ence at the first element, this enables array covariance
matrix to Toeplitz structure. More precisely, the sig-
nal and the additive noise must also be stochastically
uncorrelated in the classical (point source) model. As
taken into account the multipath directions, the classi-
cal model is further argued to be unrealistic. However,
the array covariance matrix still be possible to hold

*This work was supported in part by the Cooperation Project
between Department of Electrical Engineering and Private Sec-
tor for Research and Development, Chulalongkorn University,
Thailand.

timization search.

2 Spatially Distributed Source Model

Restrict our attention to the source signal trans-
mitting through dispersive channel and then imping-
ing on the sensor array. With first element reference
(FER), the array response vector a(¢) : [—%,5] —
CNe*1 is written ideally as

ekl sin(¢) etkdg (Ng—1) sin(¢)] T

(1)

a(¢) = [1



where k = %‘1 designates the wave number with as-

sociating wavelength A, d signifies the equi-distance
between two adjacent elements, and N, is the num-
ber of sensor elements. In flat-fading channel, the ar-
ray output at n. € {1,2,..., N, }—the snapshot vector
z[n,]€CNe*X1— can be represented as [4, p. 25]

NP
zng] = slng] Y n, [r]a(d + 8pn, [n]) +nlny]

=1

()
where s[n,] € C*1, v, [n.] € C*, ¢ € [-5, %,
04, nn;] € C*1 and N, signify complex base-
band signal, path gain, nominal direction, angle de-
viation, additive noise at sensor array and number of
multipath directions, consecutively!. In what follows,
our interest belongs to constant modulu‘saéigljlri.e.,
|s[ng]|? is time-invariant. Let all stoch aiii
ties are all uncorrelated with each othe;
second-order statistic, the path gain and th
tor are characterized such that v, , [n,.
(5] and n[n,] ~ N.(0;021,0), where t 2

valued stochastic processes with zero
central limit theorem, the snapshot vector
to g 2 8<z[nT]zH[nT]>€CN *Ne
from Z[n,] = z[n,] — € (z[n,]). In spati

e

1ved
e

ency

us .f
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F(e) of the associating PDF whose random variable
holds zero-mean and unit variance. In a certain sit-
uation, the (n,,7n.)-th element in B(o,) can be ex-
pressed as (see e.g., [4] and [6])

sm((nE—nE)\/_aw)

("E—"E) e ; uniform
[B(ow)ling p) = { e ¥s=2)"70 ; Gaussian
m ; Laplacian.
(6)

As arrived at z[n,] ~ N_(0;X;;,0), the sample

rﬁea* f}?rlance ¥..e CNE

Nr

4 _._za--‘ A Z_lz[nT]zH [nr].

E is computed from

(7)

3 Toeplitz Covariance Estimation
When there is no a priori knowledge of Toeplitz

' structure, it is conceivable that the sample covariance

Em, in (7) is the unstructured maximum likelihood
estimate of %, () [7]. Since the array covariance

i “matrix is itself Toeplifz, one should be aware of such

& matriX structure during a parameter estimation.

In this section, we derive an array covariance
Toep}y: ification and then consider its relationship
_to-other loss funetion. The way to explore the

model, two directions are parameterized _“‘_,,"'I‘oep .Structur oW .10} gui be iven, by ssvile
; A = (2N, -1)x1 Ny xNg
w($) = kd, sin(¢) [(Bay-ine as Zok(r): R Cre e, where

0u(9,04) = kd, cos($)os. 5

.-.a_'_.,

In term of such a reparameterization, the array covari-

7 RENM-1X1 denotes the fundamental vector of
Toeplit: itian matrix X;;(0) (see e.g., (3] for
more deta.lls) In the fgfm of linearly affine structure,
we can write? —— ot

ance matrix might be rewritten as“tib.
522(6) = pD,(w)B(0,)D" (@DL 2T (4)

where p N,o2|s[n,]|* is the obseryable power
and the model parameter 8 € R**! in spatial fre-
quency representation, the dtagonal Unitary matrix
Do(w) : [~kdg, kd,] — Cpe " Barameterized by
nominal angle, and the symmetnc Toeplitz matrix
B(o,) : RY! ]RSE = _parameterized.by angular,
spread matrlx can beg expressed as

O,=1w o, p ai]T (5a)
[Da(w)][na,ﬁE] = ez(nE_l)udnE,ﬁE (5b)
[B(GW)][nE,ﬁE] = fz((ng —15)0u[0,1). (5¢)

And the characteristic function f.(¢,0,1) £
F(f(6w],0,1)) is equivalent to the Fourier transform

LAll of these quantities are, in most, classified into two
groups, such as deterministic and stochastic processes. For the
first kind, the nominal direction ¢ and the complex base-band
signal s[n,.] are regarded herein to be deterministic. But an-
other one is to assume that all of the rest are stochastic.

51-@" ETT

where £ (1) £ vc(Ew( )) : R@Ng—1x1
designates the array covariance vectorization with
vc (+) designating the column-stacking vectorization
dperator. ONote thaty £+é4r) = 7. Let [-] and
| | be the matrix trace and determinant, respectively.

(11)

CNZXI

2Let us introduce the binary selection of Toeplltz-Hermltmn
N X (2Ng —1)
structure, asthe-full eolumn-rani mamx E EBF

el ol - b8, ) v, ] ®

where L, € BYE*PME is a block-lower triangular matrix ac-
cording to
N 0<an(~E—nL>> 0(%)
By, & o )
(Ng=np) ((Ng=np)xnp)

And the full-rank matrix ¥ €Cg
valued selection matrix, deﬁned as

(2Ng —1)x(2Ng 1) .
is a complex-
oT

1
ra 1 2
o renlt ]

where ® signifies the Kronecker product operator.

(10)



In an unstructured parameterization, the ML estimate
and negative normalized likelihood are represented by

-

Ty = arg min ZLILV"] ()
T

o™ (7)

(12a)

II>

[ (1) Ea)] +In|Zua(r)l.  (12D)

Differentiating (12b) with respect to 7, it yields

a A -~ - A
i () = (BT - (NET

or 183}

wher Yz ® Y, € CE

In what follows, we shall designate th
a
constrained covariance estimate as X (7.

A AT
Proposition 1. Since ¥, % Yo ®X,
converges in probability to Wi (T),

the parametric W .. (T) with the non-para
without loss of asymptotic performance
(14), the covariance estimate is appro

2 Ps -~ vT a—1 3

Ve(Zoo(Pan)) = ET(YHE ¥, ET)
where AML stands for the attribution of ‘asy
mazimum likelihood criterion.

‘We then recall the weighted covarla.nce-matchl
(WCM) criterion [8].
(WLS) criterion be [2]

ws(TIW) £ || Zoa(r) — 2

where ”A”w £ oM (A)W-lu (A) designates a
weighted version of the Euclidean nor y replacing
the consistent weight matrix W as Wm,(tEWCM
estimate of Toepltiz lag is giv

Twey = arg min fi
T

Lemma 1. Based
matching criterion (1
same solution as pmm

Tucn = TamML-

Proof. See appendix. a

4 A Large-Sample Approximation of Maxi-
mum Likelihood Estimator
To estimate nominal direction of spatially dis-
tributed source, in [3] a comparative study of as-
ymptotically efficient estimators is shown that the
large-sample approximated maximum likelihood esti-
mator outperforms the WLS-based estimator [§] in

Let a weighted least squares' -

e —

mqm
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non-asymptotic region. Here we try to incorporate the
Toeplitz-constrained covariance estimated from (15)

into the asymptotic maximum likelihood estimator [3].

Let 3.0(w) : [~kd,, kdy] — Ch2 ™ be a con-

centrated covariance matrix which is calculated from

Ve(Fra (@) = 2(w) (M) Ts 2(w)) (W) T, E,

(19)
~ N2xN? | . .
where ¥, €Cy® F is arbltrary non-parametric es-

txma.te of Wm(e) 2 37T (6) ® £,2(8). Then, the

&, 2 T = NZXNZ 9 £ 1 dlrectlon estimate in this way is given by
’ T
ve(E ;). Forcing -——Zw"](‘r) > 0, we obtain N, \\ gminl%f](w) (20a)

= (r'g el mET) e 8 (mmi

3 (@) S ae] + 1| Ze(w)l.

Let ng We 3., derived from (7), the
L oW (20) will be called the “ordinary

(20b)

satisfied by the standard Laplacian
odified from [6].

i
. f o]

v:RMSE

o ordinary AML
* AML with Toeplit constraint
— CRB

Receiver : ULA with FER

:‘nd h:i-vnvsleoglh separation
e =

o Sﬁgnd : QPSK

8,20"

Ang\lsgr Deviation : Uniform

;E.
06

N =100pum

N‘, = [2&2:100] temporal snapshots
N, = 10,000 independent runs

04

02

20 30 40 50 60 70 80 90 100
Nr (Number of Temporal snapshots)

Figure 1: Uniform angle deviation.

In Fig. 1, 2 and 3, we plot empirical and the-
oretical standard deviations of the errors due to esti-
mating the nominal angle ¢ as a function of number
of snapshots N,. Both AML-based estimates attain
each Cramér-Rao bound (CRB) at hand asymptoti-
cally, i.e., as the number of temporal snapshot tends
to be infinity. Since the AML with Toeplitz constraint
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Ny vm RMSE losing this additional knowledge.
o O ordinary AML
- g};;wihnwﬂmlm
osf Appendix (Proof of Lemma 1)
Recaiver :ULA with FER Inserting (11) into (16), the WLS function is
§ aik @ @ ;m.h:ﬁ-wwd-ngm separation
N - s fas(rIW) = & ¥ ,,€, (21)
ugao ok ., ° %mm Gaussian ~ .
§ | . .o : = 100 paths where £, £ £, — E ETT. Invokmg the chain rule of
g T .o - a i o
gc.s- .'too ?ge&aﬁo]lmpwswms 'a;vfuu; (W) = a—'r{ (TIW)E';-TE::” it results in
g ~ T - - o
€ Tn "e0, He L&
g"" i "';3 % TfVLS TIW) (2£m !p:ca:)(_:‘ ). (22)
SALH %o4,,
03 = 99061,@0“1 \ / ‘r|W ) & 0, we obtain
T glEr-irHsT
e chn EY)THE I 6, (23)
(Number of Temporal snapshots) ——
. Ny ' o which co_!mnd.eﬁ-t- E:ough (11), with (15)
Figure 2: Gaussian angle dev17 : .
N’. vs RMSE
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