Chapter 4
Numerical Simulations

To account for the search in each algorithm, the optimization tool fminsearch in
MATLAB 6.5 is used without any specification on its option.

In the numerical complexity experiments, the tic and toc instructions in MATLAB
6.5 are the tools to assess the computational ,tlme utilized in each method. Numerical
simulation in this aspect is conducted by usmg,/\:lyz 512-MHz RAM and the 2.80-GHz
Pentium(R)-4 CPU. ? _,..--'
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Significant parameters are set up,, tnless dirj(e;wise a variation on the parameter of
interest will be specified individually in.each ﬁ'gftﬂf; as the table 4.1. In all situations,
assume that the path power in each cluster 1ﬁxed as pn, = 1;Vng. The pseudo
random number satlsﬁed by the standard Laplac1an“1’DF f,_(&#O

modified from [19] =
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with any two independent dniform distributions.d4, ~ [0, 1] and éy, ~ U[0,1]. Our
empirical standard deviation (RMSE) is the square foot of averaging the error square
from a large number of independent runs (/Vy).

Optimally, the exact ML _[9] require_joint 3[V; 41 dimension search. With an
insignificant modification, we compute 2V, :dimensional weighted least squares (WLS)
[9] in the same sense as [35] from

1) can be, in practice,
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o 0o | SNR | N, | N, N,

0°,10°812° | 5° | 3&10 | 8 | 504100 | 1,000

Table 4.1 Significant parameters in the numerical simulations of AML estimator.
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N vs RMSE: ¢,=[0°%10°), u'=[5°;5°]), PDF=[Laplacian;Laplacian], N, = [50;50]

SNR=[10;10]dB, Signal=[QPSK;QPSK], Ng = 8 and N = 1,000
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Including the estimatik “
we apply the redundancy

M) [40], needing jointly

2N;-dimensional optimization, to estimate only the nominal angles. Since it is miss-

modlled as exponential cohé’rdwe model, the RAEM is not desued for joint estimation of
ﬁl dition, preliminary
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computation of all N -1 Toephz lags, our large-sample ML estimator is roughly
UGN P RN iR .

411 AML Performance
By inspecting Fig. 4.1, we investigate the effect of number of snapshot N, in the

nominal angles

situation where angle deviation is in most realistic, i.e., Laplacian distribution [14].
When increasing the number of snapshots, the AML estimate is gradually comparable
to that available from ML. Its RMSE is identical to ML in large sample, i.e., around
N, = 80, and eventually attains the CRB. Note that in the aspect of rate converging to
ML performance the AML estimator achieves CRB more rapid than the WLS. This is
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Ng vs RMSE: ¢°=[o°;12°1, a‘=[2°;3°]), PDF=[Gaussian;Gaussian], N, = [100;100]

SNR=[3;3]dB, Signal=[QPSK;QPSK], N =200 and N_ = 1,000
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ating the nominal angle ¢ as

: = —- .
Next we shall investigate the error e any nuEPer of sensor elements in

Fig. 4.2. Setting up all parameters according to [40, Fig. 4], one can argue that the
RACM does no ﬁ ute m%ﬂ ,ljx St that its coherence
parameter is as (ﬁ tial function which

can not coincides Wwith the Gaussian sgatlal fading correlatlon ahgne the first sub-
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Fig. 4.3 keeps N, = 100 and varies SNR from 0 to 10 dB. As expected, higher SNR
results in lower CRB. In this situation, the AML rather behaves well as the exact ML.
It does not achieve the CRB because of invoking N, = 100.

For angular spread viewpoint, in Fig. 4.4 the number of snapshot is set up to hold a
rather asymptotic region. As expected earlier, the RACM obviously deviates from the
CRB, particularly in large quantities of angular spread. One can see that the AML still,
fortunately, outperforms the WLS at large angular spread. It is also equivalent to the
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SNR vs RMSE: ¢°=[0°;1 ), F apla ;Laplacian], N, =[100;100]
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A, vs RMSE : ¢g=[-4,/24,12], o =[5°10°)), PDF={Laplacian;Laplacian], N, = [50;50]
SNR=[0;0]dB, Slgnal-[QIgSK:QPSK]. NE =8, NT =100 and NR =1,000
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ML which attains the C qu1t well. This fig
AML estimator whose pe ormance is satlsfactorily comparable to that of the exact ML
without any loss ﬁ asym tﬂ.u@perfonnance
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direction of two signals is translated symmetrically with respect to array broadside. As
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for small A¢. Since small quantities of angular separation yields difficulty in angular

tes a prominent superiors of

spread estimation, the calculated RMSEs thus reflect more fluctuations, especially in
the second signal whose angular spread is rather large (04, = 10°).
412 AML Complexity

Fig. 4.6 plots the ratio of computational times between the exact ML estimator and
the WLS/AML. As being higher in non-asymptotic performance than the WLS estimator,
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®o a¢°. 03 SNR | N, | N
0°| 5° |0.01| 10 | 100

oo

Table 4.2 Significant parameters in the numerical simulations of improved WLS esti-
mators.

the AML is shown under the situation of Fig. 4.1 that its computational speed with
respect to the exact ML is more worse tllanl‘r that required by the WLS approximately

one time. /

42  Toeplitz Constraint Applications < —"
—

421 Improved WLS EstliBaMr/

In addition to verification'of e lemma , the following simulations also demonstrate
the impact of two propose ovem rits.iSigniﬁcant parémetcrs are set up, unless
otherwise a variation on_ihe parameter oT;Tin!S}es_t will be specified individually in each
figure, as the table 4.2: ' k. .

By inspecting the single Source .géée uifj‘;mg.- 4.7, 4.8 and 4.9, all WLS-based
estimators asymptotically achie the: Sénespd’%ilng CRBs, i.e., uniform, Gaussian and
Laplacian CRBs, respectively. . ii‘,ljigggyvorth@}he WLS estimators employing the
Toeplitz-constrained weights, such ISRA an(EZECM covariance estimates, outperform
the ordinary WLS, particularly ifi stall and moderaté numbers. of temporal snapshots.
Furthermore, both converge fo the hand _more

y the CRB at han rapid than the ordinary WLS.
This is due to the faét-/f_h'at, in each improvement, the

cogSis{ent weight matrix has
been forced beforehand gc_)jbe of Toeplitz structure accounting for a property of optimal
weight. For more insight into the improved weight reflections, the WCM-WLS is better
than the RA-WLS; especiallyin small'number-of térporal snapshats. This superiority
agrees well with'the lefnrha 3 Which' can be infered that-the WCM ‘Weight estimate will
provide error less than that given from RA weight estimation.

422 Improved AML Estimator
4221 Performance of the Improved AML

For all situations, we assume that the path power in each cluster is normalized as
p= N,,a$ = 1. Pseudo random number satisfied by the standard Laplacian PDF can
be modified from [19]. Significant parameters are set up, unless otherwise a variation
on the parameter of interest will be specified individually in each figure, as the table
4.3.
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Ny vs RMSE
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Table 43 Significant parameters in the numerical simulations of improved AML esti-
mator.
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SNR vs RMSE
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In Fig. 4.10, 4.11§' .12, we plot empirical an ( :_ij,:al standard deviations
of the errors due to estimating the nominal angle ¢ as a function of number of
snapshots V.. Both AMﬁ.—based estimates attain each Cramér-Rao bound (CRB) at
hand asymptotically, i.e., as‘thesnumber of temporal snapshot tends to be infinity. Since

the AML with Téeplitz censtraint 1§ more accurate than one without this knowledge,
the RMSE in this Way is thus lower than such ordinary AML. This can be observed in
all angular PDFs.

Fig. 4.13,4.14 and 4.15 are the plots of empirical and theoretical standard deviations
of the errors due to estimating the nominal angle ¢ as a function of SNR. In all angle
deviation models, the AML with Toeplitz constraint outperforms the ordinary AML
estimator. It can be observed evidently in small SNR. Note that both AML-based
estimators do not achieve the CRB. The cause of this is that as mentioned earlier, the
AML will attain the CRB when the number of temporal snapshots tends to infinity (see
Fig. 4.10, 4.11 and 4.12). Since N, = 75 in Fig. 4.13, 4.14 and 4.15, there must be
unattainable gaps.
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