Chapter 3
Separable Parameterization

As seen in the topic, the key behind thesis idea is to separate the model parameter
in an appropriate way. This task will be described in section 3.1. To investigate the
inherent accuracy limitation, we provide a systematic formulation of Cramér-Rao bound

variational result of the lemma 2, it is tl:’lu e computed.

Regarding the parameter esq.tghnon, an a .“_Wmammum likelihood estimator
is derived in section 3.3. Thg:pmm of pwpos:ﬂﬁﬁ'amr is to outperform previous
sub-optimal estimators, i non asymermance Its asymptotic

+ then m&h&:g; that it holds asymptotic

in section 3.2. The expression is based OI e’Z;Zrable parameterization. Since this is a

performances is derived i
efficiency with respect to t
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structure in local scatteri

we provide the existence of Toeplitz
‘Next we also extend the idea of

AML in section 3.5.3 to th ﬂn the Toeplitz-Hermitian covariance
matrix. In section 3.5 *WdM and the proposed AML
approaches are provided by pel d in seetions 3.5.2 and 3.5.4. These

n logy connection but also the

adads M s
achievable performance. Finally, Wa.ggpl he covariance Toeplitzifications into WLS
and AML estimators 1n sectlon 3«6,16‘,i‘§duc’e ﬁ‘é‘e&onal estimate errors.

31 Separable Para ation
In this section, we sha-l'i separate the parameter into two ions, such as, parameter
of interest I, ( : RAs)>1  RGNs)¥lsand nuisance parameter 7)(p,o2) :

e T Ot e

parameters p and @2 would be ehmmated from hkehhood function. Let us partition @,

“""“““ifm AINIRUUPIFNAY

n(p,0%) £ [pT a,,] ; (3.1b)

This exhibits a separable form of 8, as

(3.1a)

8= [191 nT]T. (3.2)

Next the column-stacking vectorization operator v (-) allows us to represent the vector
£.(6,) £ € (2] ® 2[ny]) = ve (Faa(6,)) : REVHDXL 1y C¥%X1 in such a way
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that

£.(0.) = 2(9,)n(p,02) (3.3)

N X(Ng+1) .

where £2(9,) : R®Ns)*1 s Cp2 is defined by

2(9.) 2 | ve(Da(w,)B(0u,)D(,))

3.4)
ve(Da(wy, )B(0u, JDH(wy))  ve(d) |.
Note that the covariance vector 51 9.,) is now linear in nuisance vector 1(p,o2). This
indeed amounts 2N, -dimensio '
32 A Formulation of
Recall the Slepian-Bangs g for -mean random vector z[n.,.]
This leads to the (n,7 " Fisher, T trix (FIM) according to
[20] -
[IF a. Li .:- " w . - Ti)J (35)

where the scalars 6,, and @,
for indices n,n€{1,2,...,

of the parameter vector 6
atrix V0 (53) € CNE2 x(3Ng+1)

Vofﬁi) > ggﬁﬁé{ 6+ 1)] : (3.6)

One can fulfill the FI (see e.g., [35] and [SOT

e
ity ﬁﬁ&?ﬁﬁ%ﬂ‘m‘ﬂ'ﬁ“
w"s>apw’ﬁ’a~aﬁww Dy PI B D)

3.7)

(3.8a)
E(Gun,) = Pugve (Da(w,,s )B(o,,, ) D" (w,,s)) (3.8b)
V(&) = 2(w,0,) _ (3.8¢)

where the derivative matrix Da (wn S) is available from

Dq(wny) = 14Dq(wn,) (3.9)
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with
b0 G =+: 0
01 ---
A=|. | . (3.10)
00 --- N;—-1
Relying on the PDF encountered, the necessary derivative B can be represented in one’s
stride as follows [19]

B(Uw¢)][nE,ﬁE]) ; Uniform

[B(o w¢)] [igtig] = ; Gaussian
; Laplacian.

(3.11)

2

By accumulating all deri =*N and V,,(€,) £

2
E%Ez(a'w) €CNe*% as

(3.12a)
Vo, (€ )4 B g )] (3.12b)
the derivative Vy_ (&,) respect to 9, can be represented
by
(3.13)
Then, it yields :
w, m]El (3.14)

Owing to the fact that“our. parameter estifnation aliorithms are based on spatial

frequency appro %&Jx{% %%@nw flqlﬁ sﬁuld be the Cramér-

Rao bound accouiited for the physical model parameter, which is of course derived via

T A R S0 AN A Yt o

be transfofmed into the physical model via the Jacobian matrix [36, pp. 45—46]. In
this work, we may express it as Jy,(6,) = 53r0,,(0,) € RENs+D)xENs+1) 1t can be
illustrated that ’

(3.15)

J0¢(0w) — l:J19¢("9w) O:l

o 1
whence we have Jy,(n) =3 %In =0, ()= ’876771945 =0 and J,(9y) £ 8_31,.,7 -

Iy, .- Furthermore, the elements of Jy, () & 8—3:19‘,,(04;) € R(@Ns)*(2Ns) are given
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from [19]

[Jl9¢ (19w)][ns,ns] = d}ns ((bns)

= ki, cos(¢ns) (3.16a)
[J19¢ ("-9w)][NS+ns,ns] == a.'wns (¢"s)
= —kdg04, sin(¢n,) (3.16b)
[J19¢, ("9w)] [Ng+ng,N, & 5 (0‘¢ns )

| \ ' (3.16¢)

Therefore, the Jacobian matzi i
(3.17)
In conjunction with B ., 7o), ‘ the CRB matrix accounted for estimating

0, is therefore given by

B (3.18)
where V, (§,) denotes " he separable form of (3.2) so that

K-matrix inversion that

vow (€a:) = [Vﬂu (&z)

1 _1 -1
Bers(6:) = 7 (¥ = (0)V0.(6)) -
T SR\ ¥z (9 )38(Vo) )

~ ' he ) (3.19)

where Vy_(&,) denote l 83(.1 £.(0)|¢,=¢, and the idempdﬂnt and Hermitian matrix

IOz, 0 =1- lﬁ\HA)‘fAﬁsi nifies the orMWal complementary projection onto
: s N 1T
Y

i range space oy ik
B AT I NYNA Y

Next we shall derive AML estimator. Recall the matrix derivatives with respect to
a real-valued scalar x that [51]

2 n[AG) = [A™ A (3.208)
~TAB()] = [BHIAG)] + [AC)B)] (3.200)
0

aA—l(x) = -A"1(x)A(x)A}(x). (3.20¢)
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Differentiating the ML function with respect to the unstructured nuisance parameter 7,
it yields
D00 m) = —€F B2(0.) o (B ) + £1(0.) B2 (0) e (D)
onT = “’aT - e T e
= (2(3.)n - £,)" ¥2)(6.)2(3.)
(3.21)

> 2
where the vector £, € CNe*! i

is derived fr. ve( X..). Forcing 5" Vi T]('ﬂw,n) >
0, we obtain a critical relat10nsh1 j
)’& )

J” :@m (3.22)

i ‘ -'-'Hmuhsn depends itself on model

e quite hard to compute.

Since 5,z = X.12(0,) + Qs / IV ivalently [52, p. 194]
(3.23)
we may replace X ..(9,,7) with. 61 etri imate 2@: without loss of
><N2

asymptotic efficiency. If we

¢ estimate ¥, € CH
A AT A
v, 2 Y o ® Xy, it follows

nuisance estimate becomes

Nam (Y (3.24)

Plugging the mcompl' - ami{ O )-into-(3:3);-we-obiiar
(3.25)

where X'pz (9, £ Yoo( @9 )) : RGN CNEXNE is the concentrated

covariance for Aﬁ.ulﬁ [ ] m ‘j w EJ q ﬂ j

Proposition 1. If We define £,k ML w,nAML('ﬂw)) the exact ML estimator

" % WY 'QJ %L‘Vl'n NYIRY e
E50.) = [32(0) Bee) + 10| Sua (B, (3.26b)

1
Definition 3. x, = Op(bn) if £ = Op(1).

Definition 4. x, = Op(1) if for every € > 0, 3 a number k(¢) and an integer n(e) such that if n > n(e),
then Pr(|x,| < k(e)) > 1—e.
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Searching the minimum solution for 15AML as 2N dimensions in (3.26), we immediately
obtain physical angle estimates via (2.8).

Substituting it into 77,,, (9¥,,), the AML estimate of model parameter @ is thus

“ TE A - T
O = [19AML ﬁIML(ﬂAML):I . (3.27)

As described above, it is noteworthy that the estimation in this way invokes
the reparamterization, the concentraQ ihood function, and the asymptotic
approximation. Therefore, it aumrgatlc n alternative way for lowering
computational complexity Wl to the ethod. Next we shall provide
an asymptotic performance asse: it of the prepo,sg___-L estimator.

34 Asymptotic Distributio
-

reported in [53] that th

on Gaussian signal assumption
is asymptotically attainabl i

the situation missing a priori

convergence of the estimate 19@ 4S.eque
distribution will be inspected by d"_'_" eriving _th totic efficiency relative to CRB.
Without loss of generality, the pard"métér 9 rm e no 1
spatial frequency modé :

341 Consistency )
Let the lmﬁu ﬁgﬂjﬁﬂ Ef% %4?] E ﬂlﬁ ﬁﬁmcuon designated

Ca(9) £ afm AML (3.28)

v oA B BB bl 1R A thenr

281] in su¢h a way that

the implied convergence in

pecified as physical or

9, = 8ty mgn ZAML(ﬂ). (3.29)

In domain D, of a uniformly stable model [54, p. 252], the AML criterion uniformly
converges to the limiting function £,y (9) with probability one, i.e., [54, p. 254] and
[21, p. 90]

lim Pr ( sup
IVI-—’OO IED p

Hﬁ;ﬂ(ﬂ) ZAML(6)| > e> =0 :Ve>0. (3.30)
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This follows, under the analogous argument, that for any model without ambiguities in
array manifold the AML estimate Jame almost surely converges to the true quantity 9,

as?

hm Pr( sup |1§AML—00| > e) =0 ;Ve>0. (3.31)

=200 YED M
One may translate (3.30) and (3.31) into [21, pp. 89—90]

Pr (nlim gl ‘)’ AML(ﬂ)) (3.32a)
&& /! =1. (3.32b)
e

The above convergence enables

¢ a consistent estimator [55, p.
384] and in the sense of stro

\ B‘«:ﬂessian matrix H ,[,ff},ﬂ(ﬂ) -

(3.33a)
(3.33b)

i .aJ i-'
It is obvious that a n essary con'&{ﬁ* existence in the AML
function must be exact DY Qs . Assume that there is a parameter
vector 9., aligned in a gion | ' ue“value 9, and the AML
estimate 1§AML This might be assuiie ‘ a way th“the Taylor series can be

expanded around 19AML as ¢a

A DUGMBBOHIWNT o

Under the same reason in (3. 30)Jﬁ the AML Hessian stfon ly convggfesﬂdlts asymptotic

wmou BN 19 Eld 4l 1A71°d

( Jim HY(9,) = HAML(BO)) =1 (3.35)
where the limiting Hessian matrix H i (0) : RGNt @G T (2N can be defined
as

p: L Jim_€ <HE§3‘L‘ (0)) . (3.36)

2The notation | - | in this expression denotes the absolute-valued operator.



25
For large enough N, the AML residual 1§AML = 1§AML — 19, might be expressed as®
(see e.g., [57, p. 11])

-

- _ 1
Faww = —H 7 (0:)9m5 (82) + 0 (\/_N—> (3.37)

whence the limiting Hessian matrix is assumed to be invertible. Based on the Lyapunov
central limit theorem [53], the gradient vector with true parameter will converge in
distribution to normal dxstnbutlon 1 W ally distribute as

(3.38)
where the asymptotic covariance-matri t vector g[NT] QAML(O)
RGNs+)x1 R§2NS)X(2 - %

e iy _ : (3.39)
The transformation in \\Umate also converges in
distribution to normal distzibut;

(3.40)
where the limiting AML residual qgvhﬁ nce

(3.41)
In appendix 5.2, it w !

al;l = —Bg;(é)ao). (3.42)

;iimer with (%‘M(ﬂ \qdﬂfﬁ cﬁ ?Wﬁl qﬂnﬁj theoretically from
AR AN HEITAATN A oo

Indeed thé! AML standard deviation coincides in large sample with the square root of
Cramér-Rao bound (3.18).

3

Definition 5. x, = 0p(bn) if §* = 0p(1).

Definition 6. X, = 0p(1) if x,, converges in probability to zero (x, 5 0), or mathematically speaking
in the sense of plim , ﬂlinoloPr(|x,,| >e)=0;Ve>0.
n—o00 ok
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35 Toeplitzification Relationships

Before proceeding on the methodologies of Toeplitzification, it is noteworthy to see
how the array covariance matrix X';, can be Toeplitz.

351 How the array covariance matrix can be Toeplitz

For more clarification, we develop a theorem on such.
o\
Theorem 2 (How can the array covarian i +z be Toeplitz 7). If we employ
the ULA indicated in (2.1), th;n____ilows that ovariance matrix X, is also

Toeplitz, i.e., .

Vn E{l, V. — .} (3.44)
where n, = Jex of sub—dﬂgona] or lag.
Proof. See appendix. 25 i ' - ]

Remark 1. The reason why Qel ltself beIongs to the assumption

that sensor elements are alj, } with phase reference at the

first element.

Remark 2. It is worthwhile to pomtr-ob_; tba mﬁé does not make any assumption
on the symmetry of tZﬁ angle deviation whxch is. i, modelled as random
Th , another virtute derived

distribution symmetric. a re,
witlﬁhis additional information

from the latter theorem 15 at the parameter
is as general as that recently reponed in [58].

Theorem 2 eﬂﬂ%s&j '%;W%‘% wr%};f\)rﬂ'l‘c%structure Towards

this end, all elements in array covariance should be forced to make the estimated

covarian an plitz t value more
o N - e b o b b o
constraint Seems advantageous when havmg to replace the parametric array covariance
matrix with a non-parametric estimate.

352 Relationship between RA and WCM Toeplitzifications

It is however fruitful to see the relation between the WCM and RA estimate.
Furthermore, if it needs to deploy one of both estimates, ie., the WCM and RA
fundamental vector estimates, their statistical properties should be concerned.
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Lemma 3 (Reformable weight from WCM to RA). Let the optimal weight W in (2.52)
be the identity matrix. Then, a consistent fundamental vector estimate 7cy € RNe~1)*1
which is given by

fou £ arg H}rin “‘E‘zx(‘") - 212“%

= (THETET)1THETE, (3.45)
=T (& E)EE,

is equivalent to that available from thi o\ /
‘--.._'\?)zm L (3.46)

_—— -
Proof. See appendix. __.__,..--' Y — — O
Notice that (2.51) migg.be/ ejas| | \
% & A (3.47)
s r N
where Il s, (a) = A(AM igni . ‘~ > ‘orthogon: pro;ectlon onto the range

space of any full rank
between unweighed WCM

E) viewpoint [36], the perfor-
an that available from the RA method

. 'f S ti;rjesxdual.

353 AML Toeplitzi

In this section, we de € an array covariance Toep11t1z1ﬁcat10n and then consider its
relationship to o e thal D erentiating (2.20b)
with respect to ﬂ EJ

9 & =1
aTQ Mﬁ ) = _E:c a:a: a z(T !p ﬁ &‘h (3.48)
’m#ﬂ ,ﬁJﬂﬁr “ﬁ T8

where !ﬁm £ EL ® 5,.eCNe*Nz and €, =v(3,,). Forcing 2 2 gl T](-r) > 0, we

obtain

= (T"ET e () ET) T rHET o]
P | _m_ ( )ET)" i =(T)E, 5.09)
= r—-l ( z:z: ( ) ) L=l :z:x: ( )6

In what follows, we shall designate the Toeplitz-constrained covariance estimate as

X (o).
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. A 4T

Proposition 2. Since ¥ ,, £ Y..® Z‘m e, convcrges in probability to Wu('r)
we can replace the parametric !Pm(‘r) with the non-parametric Wﬂ, without loss of
asymptotic performance. Based on (3.49), the Toeplitz-constrained covariance estimate

can be approximated as
T 2-1 v\ —1

vc(izx('FAML)) :(‘= ﬁzm"‘)

where AML stands for the attribution of asymptotic maximum likelihood criterion.

354 Relationship between WCM aﬁﬂ% ifications

We then recall the weig énan e— CM) criterion [35]. Let a

5T HE, (3.50)

“-gar) = Zaelly (3.51)
a welghted‘versmn of the Euclidean
as Wm, the WCM estimate of

K}
. (3.52)

Lemma 4 (Equivalence of
criterion (3.51), the WCM esti
estimate, i.e.,

ighted covariance-matching
tion as provided by the AML

(3.53)

ol 0

Proof. See appendix. T -
Remark 4. The Icmmé‘ gﬂows us to omxt he ﬁ'lﬁcalion since the WCM
and AML are available from the same express:on (see (2.5 d (3.50)).

36 Apphcatmﬁf%ée%%%}%?% JAI 3

Since the array covariance matrix is itself Toeplitz, one has to begaware of such a

= FRTRIRRNTINEIRE

361 Improved WLS Estimators

For terminology concise, one may recall "9‘w1.s as ordinary WLS estimate when
replacing W in (3.51) with W in (2.53) and (2.21).
a 2T a
Proposition 3. By substituting W in (3.51) with W (#ra) 2 X, (Tra) ® Xz (ra) and

2 2T a
W (Fwem) = 2. (Fwem) ® X oz(Fwem), we shall designate the improved solution as
“RA-WLS” and “WCM-WLS” estimates, respectively.



29

362 Improved AML Estimator

To estimate nominal direction in the presence of spatially distributed source, the
comparative study of asymptotically efficient estimators in what follows of the thesis is
shown that the large-sample approximated maximum likelihood estimator outperforms
the WLS-based estimator [35] in non-asymptotic region. Here we try to incorporate the
Toeplitz-constrained covariance estimated from (3.50) into the asymptotic maximum

likelihood estimator shown earlier.
Let ¥oo(w) : [—kdg, kdy] — # //oentrated covariance matrix which
_@ W) €, 3.54)

is calculated from
N

UC(E:::::(W)) =

~ ~T
where ¥, £ ¥__ ®
Then, the nominal directi:

ic estimate of ¥ .. (6).

(3.55a)
(3.55b)
Plugging f}'u. in (3.54) as ived om (2 : e above Wy owing to (3.55)
will be called the “ordinary AM F;
Proposition 4. By mvokmg Z'm q‘W" g to (3.50) and (3.54), we shall
designate the solution S Toeplitz constraint”.

ﬂumwamwmm
awna\mim URNINYAY
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