Chapter 2
Spatially Distributed Source Localization
21 Sensor Array Processing

Sensor array processing is regarded as a common framework for taking into account
several problems involved with the use of R 2rray- The sensor elements are located
at different points in space, to receive a lot of 14{1}06 ing signals. The problem of finding
several arrival directions impinging on an array- €naa or sensor array, called direction
finding, is of interest long times ago sincejit is 2 fiseful parameter in several systems

such as wireless comminationy radar, navigation and éfe. it therefore plays a prominent

role in the phenomenons to_ihe propagation of plane waves transmitted through a

media.

The fundamental of sensor array p. ocq;ssi’_ggi is to infer the information implicit in the
incident signals by colleciing multiple observations from a number of sensor elements.

4 parameterized quantity, it is plausible to retrieve

When modelling the array
-d l( .
the location information ‘of impinged ijt‘;qs;; Literature review on the area can
be found in [3], [4] and [ is conceiva;b"lg that most DOA (direction of arrival)
b’ “dia

estimators can be classified into fQﬁr.‘.groupsT,-:mﬂ as, beamforming, subspace (also
# ] sindsa PR |

known as Eigenstructure), maximﬁﬁﬁkeﬁho@fi‘ﬁa combinatorial scheme. For more
details on these, we refer to [S]. -Tmf'-ﬁtenﬁod:gﬁéﬁwd in this section is to reveiew an
alternative developmegtﬁo the classical (point source) model of sensor array processing
as illustrated in Fig. 2‘-1:"’ : :

In some radio propagation scenarios, especially in urtg_e?p areas when there is no
line of sight between th_; source and the receiving antenna array, the array receives
many rays from the wicinity of\sourcerand therefore the assumption on number of rays
becomes too restrictivé) This ddnstitutes the tefin Iocalscattéring which is often used to
describe a wireless channel in the formrof a physical phenomenon. In, the presence of
local scattering afoundithé vicinity of source, the classical poin sourcé.mnodel will suffer
from the lack of identifiability accounted for large number of directions.” To deviate
from the problem given, it is preferred to assume that a number of multipaths is large
enough so that their path gains can be characterized under the central limit theorem. As
governed by a Gaussian random variable and associated random directions, the channel
response beholds stochastic process. It seemed in general possible to govern deviated
angles into a parametric model as well, whenever a priori knowledge of angle deviation
is available. Note that such a model development rather coincides with the following
quotation.
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and then modelled it as a continuum of multiple directions. This work was further
studied in [7] to find the nominal direction and its associating maximum deviation in

two frameworks, such as coherently and incoherently distributed sources.

During the post doctoral degree at Royal Institute of Technology, Trump considered
the same problem in communication applications when there is no line-of-sight (LOS)
between the source and the receiving antenna array [8]. His attempt was to make use
of the second-order statistic and to model all deviated directions as a reasonable spatial
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multipaths is large enough in ox:dgpﬂpt th %ns can be characterized, under
the central limit theorcrﬁ.. by a Gaussmn random vanahlmg;s associated directions
are also random. By mga (te aroun( ‘inity of source, Asztély
proposed a generalized ‘- y manifold model i

of deterministic quantity for
estimating the parametenzed spatial 31gnature [1 11. To reliéve estimation complexity,

Bengtsson’s spati ted for partitioning
the covariance ﬁm )ﬁﬁpimetenzatmn

The Iamal channel model described above has beén validated against experimental

data cofiscl by e Wiy St Lfh e fldeiperinept, o ramsmicer

has been Pplaced in urban areas approximately 1km from the receiving array [13].

Furthermore, a lot of measurements have shown that local scattering in the vicinity of
a mobile is a non-negligible phenomenon [14].

In the vicinity of the mobile sources, local scattering leads to fading statistic and
angular spread of the signals incident on the array. Herein, a time-invariant scenario
with small angular spread (see e.g., [8] [10] [11] and [12]) is considered as illustrated
in Fig. 2.2.



2.2 Mathematical Abstraction

Restrict our attention to a signal transmitting through a dispersive channel and then
impinging on the ULA. With phase reference at the first element, or first element
reference (FER), the array response vector a(@) : -5, %] — CNe*! can be, in general,
written ideally as (see e.g., [15, ch. 2], [16], [17], [18])

o
a(g) 2 [1 etk sin(¢)\' ’ ezkdE(NE—l)sin(cb)] (2.1)

where k = 2" designates the w E"‘numb@r ’.‘ynng wavelength A, d, signifies
the equl-dlstance between wt e.l‘gmenés—!m" N, is the number of sensor
iglocw models assume that the

elements. As previously

nominal angle ¢ is determini Ang l'zu\deViaLtI and associating path gain
. 1 Figi 22, array output at time instant
el by the smapshot z[n,] € CNe*1,

ing to l_'xxear regression as [12, p.

v are considered as stochasti
n, can be characterized
Mathematically speaking, i
25]

1) +n[n,] (2.2)

iths ‘and [n,] € CNe*! designates the
a data burst X e CNe*Mr as

(2.3)

—
For a large number of inﬂr_:}ming rays, the cl ector [1@

ﬂu@r%‘ﬁw%iwmm
e ﬁﬁmm"m T3 o

variate im hc1tly provides the statistic' Xy, = £ (h[nT]hH [n.]) € CN “Me  where
h[n,] £ h[n,]— € (h[n,]) = h[n,]. For taking into account an incoherently distributed
channel [7], the second-order statistic of a certain incoming ray yields [12]

8<7"p [n ]’711 [nT]> nP,nPCSnT,nT (2.5)

!By means of spatially extended or distributed source, the indicator to assess the extension of such
a source is given from the eigenvalue distribution of the channel covariance matrix X



where ¢. . signifies the Kronecker delta function, £ (-) denotes the statistical expectation
operator and 03 designates the power in each path. Over the spatial continuum of
interest, the channel covariance can be approximated as

Znn(p,¢,04) = p / F(8510; 03)a(¢ + d4)a" (¢ + 64)dd (2.6)

where p £ N, 02 signifies the cluster power due to all paths and f(J4|0;07) denotes
the conditional PDF for random dev1a n a priori knowledge of the angular
spread o4. As encountered, a f W istributions with zero mean and
variance a¢ is in most mode

— "J -———'

; 'x%miform

~ ;Gaussian
-
; Laplacian.

2.7

; i =)

Rather than estimating the d jodal ] Al physical angles ¢ and oy, the
spatial frequency response i accuracy of truncating the
Taylor series with first-order aro ands e 12] In general, the spatial

frequency w and its associating

(2.8a)
(2.8b)

Accounting for small aﬁlar spread, the sc atiaﬂfrequency approximation

results in a separable fo

A U%}@iﬂﬁ OIS @9

where D, ( %4 kd L kd) g: # is diagonal and unitary matrix/parameterized

o oo SR FOPD) REE L 1 S Fap e

eterized by angular spread. Their (ng,7,)-th elements can be expressed by [12, p.
22]

[Da(@)ling g = €264 (2.10a)
[B(0w)ling izl = f=((ng —125)00[0,1) (2.10b)

whence characteristic function f,(t],0,1) £ F(f(d,|,0,1)) is equivalent to the Fourier
transform F(-) of the associating PDF whose random variable holds zero-mean and



unit variance. In a certain situation, the (n,,7)-th element in B(o,,) can be expressed
as (see e.g., [12] and [19])

——E‘—Efsm((n “fplV3%) . yniform
(ng—1g)V3ou L
[B(Uw)][nE,r’zE] = e-%(%-%)’mi ; Gaussian (2.11)

1
—_—
1+3(ng—rig )202

; Laplacian.

from channels, it results in

5. [nT}$ + 021 2.12)

'_-"cmﬂaled at the sensor array. In

what follows, we shall consid with constant modulus so
that X'.[n.] = 2..(0.) <8 ihére P, 4 value of model parameter. For all

If additive noise assumed is spatially un‘ lated noise and absolutely uncorrelated

where p[n,] £ p|s[n,][? s

50a(6.) =45 | gn )+ 021 (2.13)

Now suppose that, based on t_pgt
- .--'=.ﬁ"
find the nominal dlrecggns of amval ¢ angular spreads, o,

ector 0, € RBNs+1)x1

T
T T 2] (2.14a)

2o |¢"
ﬂﬂﬂ%?{&]%‘iﬂﬂ’]ﬂ‘ﬁ @140

for the physical and spatial frequency models, respectively.

AN I UATINYIRE

24 Optimal Solution

The term “optimal" in most framework is quoted when comparing the statistical
error variance with the inherent accuracy limitation in the model. Next section will
be devoted to the Cramér-Rao bound which is well-known as an inherent accuracy
limitation of sensor array processing. In this section, we shall concern the exact
maximum likelihood estimator because its asymptotic performance is plaus1b1e to attain
the Cramér-Rao bound.
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Assume that the Nyquist-based sampling rate is conducted in such a way that several
samples are all statistically independent i.e.,

Ny,
fx(@ll]zf2],...,2[N)16) = [] fulzln.]|0). (2.15)

As mentioned above, all available snapshots are based on the central limit theorem such
that

(2.16a)

E{(z[n,] — € (z[n (2.16b)

E{(zn,] - & (z (2.16¢)

Therefore, the complex N, (0; ¥..(0),0) is imme-
diately governed by [20] N

w’“‘r]. (2.17)

The joint probability densi h : i §nz ] allows us to the likelihood

function (see e.g., [21], [ :
(2.18)

pnstant term be

(2.19)

It was proposed atﬁ Eifiﬂg m.in o Owsgﬁ‘ﬁ 35 e@ivalent:ji)
(N ] _‘9 A F=3 a/
AW SN B a Y o

where the Sample covariance matrix X, ECHEX ¥ is computed from

1
P = N > zln,lz"[n,). (2.21)
np=1
It is important to note that the exact likelihood function £47)(6) : RGNs+Dx1 , Rix1

straightforwardly requires (3/V; + 1)-dimensional search to arrive at the critical point
for the ML solution éML.
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Most works involved the direction finding problem were based on the exact ML
estimator due to its producible dptimality [4], [20]. In order to arrive at extremal
quantity, the optimization search of likelihood function seems, in general, inevitable for
a complex model. However, the physical model with well-described characterization
would, in nature, requires large number of model parameters. As a consequence, the
larger the number of model parameters, the larger the dimension of optimization search
over parameter space. Unfortunately, this might prohibit the exact ML estimator from
being incorporated into real-word applications.

25 Sub-Optimal Solutions 2

For jointly estimating the nominal dlrectlon and its associating angular spread, there
is a weighted least squarcs"f WIES) éstimato proposed in [9]). Since this requires 2N;-
dimensional search, it is rf;ozgle to review, under the same dimension, a Jeast squares
(LS) approach [40] which is ll_gd thefein-as ‘:"Fédundancy averaging covariance matching
(RACM) method. Note that gﬁbspgcéba_édrmethods such as [24], [25], [26], [27],
(28], [29], [30] and [31] jf e gégiegted J‘Jre:in because the local scattering model
leads to full-rank channel co riaﬁee matrix. Henee, all subspace-based estimators are
biased eventually (see e.g., 12) and f32]) Mpreover it was shown in [33] and [34]

that beamforming and linear pi’edxc,tlon can carry. op,t the distributed source localization

only in small angular spread. . 3—' :
& N —
ot e -

!
> . J
- -l
- v |

251 WLS Estimator

ol

Trying to reduce the éptimization tasks, the WLS approéch is preferred instead of
the criterion based on likelihood function [35]. Such an idea stems from the fact that
both ML and WES methods jyield theysame, asymptotic performanee when taking into
acount any Gauss-Markov.model (see.e.g,, [22) pp. 127—128], [23, pp. 566—567] and
[36]). For making the WLS more attractive in computational cost than,the ML, there
were various efforts{n reduce the dimension of optimization daring. thé' computation
of the parameter estimate. " A reasonable way'is to replace the optimalweight with
other one which is consistent, or obviously, converges to the optimal weight. The most
famous way usually makes use of a nonparametric estimation of such value, e.g., the
sample covariance estimate. The cause of this is that in a fairly general situation, such
a statistic is not only easy to compute but also holds the performance of asymptotic
consistency [20].

The WLS estimation is to find a parametric argument which provides the smallest
residual in matching criteria. In spatially distributed source localization, most work is
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relied upon the second-order statistics. Therefore, the array covariance matrix is one
to be matched between theoretical and receivable quantities [9]. Being concentrated on
the source signal power and noise variance, the WLS loss function is arrived at [35]

A

Jwis = arg m1n£ W Hl “%ﬁz (2.22)

e (W™ %n(m))

where £, = UC(Z‘M) € CNs*! is the covariance vectorization with column-stacking

¥
vectorization operator v (A) : CNa*fea -5 C alea)*1 and 9, £ [wT o'I] €
R@Ns)¥1 results in £2(9,) expressed by / /

H__..-"
2(w,0.) 2 | TlDafw) Ba, ) D@L,

j«%ﬂ D) B, P v |

To deal with single signal

(2.23)

n the p eter of interest, 9,,, will be reduced to w
and thus its corresponding f2(w )1 g' (20! fmm [37]

'-(D‘? (WX®'JDa(w)) £ (2.24)

-d 2
where the binary selection elBFE f“?; ‘being of full rank is
JA‘JJ'“. g JFf.h
g & [’UC(I) 1 },vc(L,\,E_1 +L,TVE_1)] (2.25)

with the block-lower tnangular mamx L EJBW J-‘J according to

A .
[ o=—tg o =
7 él R MY (2.26)

(Ng-np) 0((NE_"L)X",L)

Now the problem of mterest belongs to what the weight matnx W should be. To make
the residual 19w,_s = ﬁww + ¥ minimal, the optimal weight should be satisfied by [35]

W= NE.IPOONT“&’” ) FI B Xy (2.27)

where £~$ 2 E; —&, 15 the'the sanmiplecavariance residual. Since.the exact weight depends
itself on the model parameter, it is preferable to make use of nonparametric estimate
W= E . Q@ Z’m rather than W in (2.22) without loss of asymptotic performance.

252 RACM Estimator

Unlike the exact ML and WLS presented in the previous, the redundancy-averaged
covariance-matching method was not designed for handling the local scattering model.
Instead of such, it was developed from the imperfect spatial wavefront model which is
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an extension of the classical point source model in array signal processing. It borrowed
the key idea from ordinary (unweighted) least squares. Interesting enough, it is rather
sophisticate because the vector to be fitted in its matching criterion is given by sufficient
statistic, i.e., the first column of the Toeplitz-constrained covariance estimate. This is
given by preprocessing the sample covariance in such a way that the new covariance
estimate holds the Toeplitz structure. The technique employed in this step is borrowed
from the redundancy-averaging approach which will be described in details later. Here

we shall recall the objective function & method.
Let p, [n,] € CNe*1 be the..g"i'-\nie- )e ations of the ng-th source. Its
second-order statistic is governﬁm.;s [n - N XN

wu, 0), where X', € Rp's
is the associating covarianceﬁm .
output snapshot is modelled a

In the ilmc?%ﬁal wavefront model, the
£, [38); ‘['3"9‘1'2&&
.r"\\'

( ab\gn[nT]. (2.28)

(vng)) + 021 (2.29)

~Y

N,

Ny
Faalng] = Z |Pr

ng=1

| ———a

FF T

where v € R'*! is a sufficient p. We refer to [38], [39] and [40]
for more details on the paramte_njzjgﬁ@mf: u,%{u). Over the batch data X, the
model parameter 6 € R&s#1*1 can be expressed as Wy, {

T 7 J (2.30)

| — |
where peRNs*1 signiﬁegthc signal power, defined as U

F;l u ﬂ';}qﬂ gﬁiﬁﬁ’] ﬂ ﬁ (2.31)
e AN S T Y A

different fﬁ>m the local scattering model because it was assumed to possess the spatial
perturbation in different idea.

Let us introduce the array response matrix A(¢) : [-%, F]"s*! +— C"=*"s and the
imperfect spatial parameterization matrix U(v) € RVe*Ms according to

A@) = [a(4,) a(g)) - alpy)] (2322)
U(”) = [ul(ul) uz(yz) e u’NS (VNS )] (2.32b)

LT
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If $ra € CVeX1 is the RA estimate of the first column vector in the Toeplitz-constrained
covariance estimate of X, the the RACM objective function is formulated as

(& v, Phracw £ arg min | (A(6) © UM))p — SuallE: (2.33)

For estimating both ¢ and v, one can concentrate on the RACM function in order to
derive [40]

{¢, V}racu = arg max§R(TRAAU ®, u) —7AU(¢, v)Ay(d, v))R(AN (¢, v)Ska)
(2.34)

where Ay (¢,v) £ A(¢) 0 U (n):ﬁ’\CNE XN

26 Cramér-Rao Bount7 )

The Cramér-Rao bound 18,

lower bQund on the error variance of
mator will be conicerned. It might be considered
as a benchmark of achiev S ' cient esgmators. Herein, the CRB
is accounted for vector pa Esion - odel taken several parameters
into account. Firstly, we 1] t - ,l ér-Rao 1 ity theorem for inspiring
the further specifications of

estimated parameter fro

(2.35)

S ‘Hﬁ Ja)]] ?UWEZJ e
Theorem 1 (Cra any unbiased es mato ( of the true-valued

parameter vector 0, is estimable from the observationwdata X, we then'hdve a condition

ot QW’WMﬂ‘ﬁE}Jﬂ{W’]’WH’mH

Under the regular condition £ (2 1nll™1 (6| X)) = 0, there exists Cramér-Rao in-
equality given by

(2.36)

E((6 — 0.)(0 — 0,)") = Bgeg)(05) (2.37)

2

Definition 2. IfZ € ng *Nz s positive semi-definite, then we have yHZy > 0 for any y € CVz *1.
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where the Cramér-Rao bound matrix B g)(6.) : RN} Ré3N5+1)x(3NS+1) is

available from
B yg)(8o) = I5'(8.). (2.38)

Proof. See e.g., [41, pp. 66—67], [36, Appendix 3B] and [42, pp. 288—289]. O

It is systematically preferable to emphasize that the first step for calculating the
error covariance bound is to derive the FIM.

261 Explicit Derivatives ;b\\ '/////

Lemma 1 (Slepian-Bangs fo&mr'iigbformting the prcceding theorem,

the second-order derivati kelihood m(@l or, equivalently,
i ‘n n}\ant of the FIM as

[N‘"] (6| X) are combata

[Te(0)]na) =

where the scalars 6,, and 0
for any indices n,n € {1,2, ..

Proof. See [20, p. 21]. O

262 Separable Derivatives

"
Proceeding on th s} ian-

to represent the FIM
in compact form is to express the derivative int i

| i
Lemma 2 (Jansson_GéraJsson formula). Let V@(&x) € CNQ@N *1) be the derivative
matrix defined by

Fug qm%@mmm

3 Actually, ﬁe has beer:é generalization gf the Sle f rmu a‘-" E]
[/I](ﬁ[n 7] m ; 60 a:z 30 (0' J
P (2.39)
+2N,R (( - nm(e,;)) mg ux(en)>

However, two special scenarios where p, £ € (z[n.]) is a zero vector or it does not depend on
will reduce the above result to the lemma version or the Slepian-Bangs formula. We refer to [43,
pp. 141—147], [36, Appendix 15C], [42, p. 292] and [46, pp. 926—927] for single snapshot derivations
of such a generalization. Indeed it can be easily modified to all N,. snapshots based on the mutually
independent snapshots assumed.
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where £€,(0) = v. (X ,,(0)). To fulfill the dimension of FIM, we will arrive at (see
e.g., [44] and [45])

—Al,—IF(e) V(&) T2 (0)V(E,) (2.42)

A N3 N2
where ¥,,(0) £ X1 (0) ® X,.(8) € Cy*

Proof. In a separable formulation of v ( m) the relations [AB] = v (A") v, (B)
and v, (ABC) = (CT ® A)v,. (B) allow tliee%)an—Bangs formula to

NiT[IF(o)][,,,ﬁFU:* (a_z;‘g )w ®‘f’ (n (en)>. (2.43)

By invoking the transforn‘ljble/
attainable to acquire such a yari

tﬁetry U (%A(xn)) = a%vc (A(xp)), it is
on of FIM formula. O

27 Toeplitz Covariance/Esti OffS et

As stated, sensor array processing ﬂéals;riin general, with inferring the parameter
- of” umfomf Jirlear array (ULA) [4]. When there is
no a priori knowledge of Toeplitz* .structure-./the sample covariance Em computed
from (2.21) is conceivable to be,'t:he unstrucmmé’ maximum likelihood estimate of

of source signal based on t

Y :2(0) [52]. With phase reference at the ﬁrﬂkment this enables array covariance
matrix to Toeplitz struqure More precxsely, the 51gnal anq( the additive noise must
also be stochastically 1 u i i i 9) model. As taken into
account the multipath dlfectlons the classical model is further argued to be unrealistic.
However, the array covariance matrix still be possible to hold Toeplitz structure.

In this section, we shall explore the imposed Toeplitz-Hermitian structure in the
array covariance“matrix. - The way to explore) the Toeplitz structure in X, (6) can
be given by rewriting as X, (1) : R@e1Dx1 C;rv’%XNE , where 7 € R(2Ng-1)x1
denotes the fundamental yector of Toeplitz-Hermitiafr'matrix_X ., (). “Notice that the
actual cévarignce maftix\satisfies| X.,(0,). = /¥, (7) and thérefore'can be expressed
in Toeplitz-Hermitian form as

* *
To Tl TNE—I
T T, T
. 3 0 =
Yea(T) =" N~ (2.44)
T T T,
| 'Ng-1  'Ng-2 o ]

“The name is after Otto Toeplitz (1881-1940), a German mathematician.
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where the fundamental vector 7 € R@N~1*1 of all lower triangular entries of the
Toeplitz-Hermitian matrix X', is

r2[n RE) 8) Ryl S| - @49

Let us introduce the binary selection of Toeplitz-Hermitian structure as the full column-

N2 x(2Ng —1)
V// vl(L, 1)] (2.46)

rank matrix Z € By~
r ma g to (2.26). The full-rank

WX-valucd selection matrix,
T W - "

",

)¢

é[vc(z) ve(L,) vI(I

where L"L is the block-lower

matrix 1 € Cg"NE ‘I)X(ZNEW
defined by /

i

(2.47)

where ® signifies the form of linearly affine

structure, we can write
(2.48)

where £€_(1) 2 v (Z.(7)) : R —C% ignates the array covariance

..-*.':-A-L-“,::" :

271 Redundancy-AvP.?;@g Toeplitzi

One of the easiest wa

is to notice that all
. Averaging all N, — n
redundant lags of [fim] I npn, it attributeig'ne covariance estimate according to

fjj‘:gi?;:ﬂ:flm’m B TR R oot e
R84 agwﬁmmm A e

nr—l

entries aligned in a subdiag

Keeping it into the fundamental vector Fgy € RGNe~1)*1 a5
fon=[fo R) SG) - Rey) Sy, )| (2.50)
then the Toeplitz-Hermitian covariance estimate is written as

V(B oo (Fra)) = & Thra. @2.51)
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272 Weighted Covariance-Matching Toeplitzification

Let [|A% £ vt (A) W—lu. (A) be a weighted version of the Euclidean norm,
where W is a positive-definite Hermitian weight matrix. Based on the extended
invariance principle, the WCM can be reformulated as [48]

Twem = argmjn ”ff‘zx("') - Ezzllfv

E W, (2.52)

=1
= | / &
where £, = v (%,,) € CY ( H&c covariance vectorization

and Hermitian weight, r . WCM loss function can
be concentrated on ¥ b ' To make the residual

Fwem = Fwem — To Minimg cfoptimal weight shoul tisﬁedby (351

= ( TH éTw—l —

(2.53)
where E; £ ¢, " , cova \ Since the exact weight
depends itself on the model parameter, it is preferable to make use of nonparametric

- 2 AT a
estimate W = Y ® Y.,
Therefore, the WCM covariance eséin

ss of asymptotic performance.
be devectorized from [49]

2

(2.54)

AUEINENTNYINT
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