ศิลาธารณาและธรรมเนียมของหินอักคนิทรัพช์ บริเวณบ้านโพธิ์สารรก
อำเภอพิษณุโลก จังหวัดพระนครชัยศรี

นางปะประชาติ นพภัทธ

ศูนย์วิทยาทรัพยากร
จุฬาลงกรณ์มหาวิทยาลัย
วิทยาเนียนพันธุ์เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาตรีวิทยาศาสตรมหาบัณฑิต
สาขาวิชาวิทยาการสารสนเทศ ภาควิชาวิทยาการสารสนเทศ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2547

ISBN 974-53-1510-9

ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย
PETROGRAPHY AND GEOCHEMISTRY OF INTRUSIVE ROCKS AT BAN PHO-SAWAN AREA,
AMPHOE BUNG SAMPHAN, CHANGWAT PHETCHABUN

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science in Geology

Department of Geology
Faculty of Science
Chulalongkorn University
Academic Year 2004
ISBN 974-53-1510-9
Thesis Title
PETROGRAPHY AND GEOCHEMISTRY OF INTRUSIVE ROCKS
AT BAN PHO SAWAN AREA, AMPHOE BUNG SAMPHAN,
CHANGWAT PETCHABUN.

By
Mr. Prayath Nantasin

Field of Study
Geology

Thesis advisor
Assistant Professor Somchai Nakapadungrat, Ph.D.

Thesis Co-advisor
Malatee Taiaquipt, M.Sc.

Accepted by the Faculty of Science, Chulalongkorn University in Partial
Fulfillment of the Requirements for the Master's Degree

Dean of the Faculty of Science
(Professor Piamsak Methasvetta, Ph.D.)

THESIS COMMITTEE

Chairman
(Assistant Professor Vicerote Dacork, M.Sc.)

Thesis advisor
(Assistant Professor Somchai Nakapadungrat, Ph.D.)

Thesis Co-advisor
(Malatee Taiaquipt, M.Sc.)

Member
(Associate Professor Visut Pisutha-Armond, Ph.D.)

Member
(Sirot Salyapongse, M.Sc.)
การศึกษาครั้งนี้มีวัตถุประสงค์ในการหาความสัมพันธ์ระหว่างกันของหินอันธกิจแทรกซ้อนบริเวณบ้านโพธิสาร์ อำเภอปทุมทิน จังหวัดพระประแดง. (PETROGRAPHY AND GEOCHEMISTRY OF INTRUSIVE ROCKS AT BAN PHOSAWAN AREA, AMPHOE BUNG SAMPHAN, CHANGWAT PETCHBUN) ที่ปรึกษา: ผู้ช่วยศาสตราจารย์ ดร. สมชาย มหาสงวนราช, น.ศ.ปรีกนันท์ หักขุน.
The main objective of this thesis is to find out a relationship among intrusive rocks that occur in the Ban Phosawan area, Amphoe Bung Samphan, Petchabun province, which show several field-notable features. The study area covers approximately 176 km² and is located on the so-called “Eastern granite belt” of Thailand. It contains both extrusive and intrusive rocks. Based on petrography, whole-rock chemistry, and mineral chemistry, intrusive rocks in the study area can be divided into four types: namely gabbro, diorite, quartz-diorite, and hornblende-biotite granodiorite, with a composition ranging from mafic to felsic respectively. Most of them are high-alumina and calc-alkaline series. Their trace element characteristics suggest that most of them were emplaced in a setting of volcanic arc and their whole-rock compositions may have been affected by clinopyroxene and plagioclase fractionation. Rare earth spider diagram patterns suggest that most of them originated from a similar magma source. The Al-in-hornblende barometry and amphibole-plagioclase thermometry reveal that the most probable ranges of pressure and temperature for these four intrusive rocks are 2.5 to 2.8 kbar, and 609 to 677°C, respectively. The U-Pb age from two in situ zircon grains dated by laser ablation – ICP MS technique yield 230 ± 4 Ma, middle Triassic period.

Based on all results above, the four rock types seem to relate to one another as a 'zoned pluton' which emplace as a unique mass of magma, consequently, in situ differentiation was took place in the kind of side-wall accretion or inward crystal fractionation.
ACKNOWLEDGEMENTS

Foremost, I would like to thank my advisors Assistant Professor Dr. Somchai Nakapadungrat and Archan Malatee Taiyaqupt for their advice and encouragement throughout the course of this study. I am very grateful to Associate Professor Dr. Visut Pisutha-Armond for his advice and criticism for the manuscript.

Sincerely appreciations also provide to Department of Geology, Chulalongkorn University for allow the author to use laboratory facilities, Mr. Somsak Dajrungsri and his family who offered an accommodation during field observation, Assistant Professor Dr. Pornsawat Wattanakul and Mrs. Tin Tin Win for their suggestion, help and offering the budget for zircon dating. I would like to thank Assistant Professor Dr. Chakkphan Suthirat for his advice and help about EPMA analysis and pressure-temperature calculation in this study. I sincerely thank to Mr. Somkiat Maranate who provided geologic data, geologic map and report, for this study.

The author also acknowledge the Thai Government and the Graduate School, Chulalongkorn University for their providing the financial support throughout this study. Many thanks also due to Mr. Khanpong Chingchit and Mr. Umonchai Prasomboon, staff of Rock and Mineral Resources Analysis Group, Mineral Resources Analysis and Identification Division, Department of Mineral Resources, Thailand, for their help to analyze trace elements by atomic absorption spectrometer.

Thanks are also given to Associate Professor Dr. Veerasak Udomchok, Head of Department of General Science, Faculty of Kasetsart University, who encouraged throughout this study. Special thanks are also delivered to laboratory staff and graduate students of Department of Geology, Chulalongkorn University, who are not named here for their helps and encouragement.

Last, special thanks are given to my parents, brothers, sisters and friends for their encouragement and helps.
CONTENTS

PAGE

ABSTRACT IN ENGLISH...iv
ABSTRACT IN THAI..v
ACKNOWLEDGEMENT...vi
CONTENTS..vii
LIST OF TABLES..ix
LIST OF FIGURES..x
CHAPTER I INTRODUCTION...1
 1.1 General statement..1
 1.2 Location and accessibility...2
 1.3 Objectives...2
 1.4 Previous work...4
 1.5 Tectonic framework of Thailand..4
 1.6 Granitoid belts of Thailand...9

CHAPTER II METHODOLOGY...12
 2.1 Field study..12
 2.1.1 Field investigation..12
 2.1.2 Sample collection..12
 2.2 Laboratory study...14
 2.2.1 Petrography..14
 2.2.1.1 Thin section...14
 2.2.1.2 Slab staining...14
 2.2.2 Polished section for mineral chemistry study...14
 2.2.2.1 Mineral chemistry by EPMA...14
 2.2.3 Zircon dating..15
 2.2.4 Whole-rock analysis...16
 2.2.4.1 Major and minor element analysis...16
 2.2.4.2 Trace element analysis..19

CHAPTER III GEOLOGY AND PETROGRAPHY...22
3.1 Physiography ... 22
3.2 Geology .. 22
3.3 Intrusive rocks .. 24
 3.3.1 Gabbro ... 26
 3.3.2 Diorite .. 33
 3.3.3 Quartz diorite 39
 3.3.4 Hornblende-biotite granodiorite 44
3.4 Discussion on petrographic study 50
3.5 Modal analysis ... 52
CHAPTER IV RESULTS AND DISCUSSIONS 53
 4.1 Introduction .. 53
 4.2 Whole-rock geochemistry 53
 4.2.1 Major and minor elements 53
 4.2.2 Trace elements 53
 4.2.3 Rock nomenclature based on major oxides 57
 4.2.4 Chemical variation among various rock types . 58
 4.2.5 Chemical affinity 66
 4.2.6 Signatures of trace and rare earth elements . 68
 4.3 Mineral chemistry 74
 4.4 Geochronology 77
CHAPTER V INTERPRETATION AND CONCLUSION 80
 5.1 Interpretation .. 80
 5.2 Conclusion .. 84
REFERENCES ... 86
APPENDICES .. 92
APPENDIX A Staining techniques on rock slabs and thin section 93
APPENDIX B Major and minor element results by XRF 94
APPENDIX C Calibration curves of trace elements by AAS 95
APPENDIX D EPMA results 98
BIOGRAPHY .. 108
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Summary of granitoid belts of Thailand</td>
<td>10</td>
</tr>
<tr>
<td>2.1</td>
<td>Conditions for electron probe micro-analysis in this study</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>Standard materials, for EPMA, used in this study</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Operating conditions for U, Th and Pb isotopic analysis by laser ablation ICP-MS</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>Methods and wavelengths used in major and minor element determinations by spectrophometer</td>
<td>17</td>
</tr>
<tr>
<td>2.5</td>
<td>Methods and wavelength used in major and minor element determinations by Atomic Absorption Spectrometer</td>
<td>18</td>
</tr>
<tr>
<td>2.6</td>
<td>Conditions used in major and minor element determinations by XRF</td>
<td>18</td>
</tr>
<tr>
<td>2.7</td>
<td>Conditions of trace element analyses by AAS at Department of Mineral Resources</td>
<td>20</td>
</tr>
<tr>
<td>2.8</td>
<td>Conditions of rare earth elements analyses by ICP-OES at the National Waste and Disaster Disposal Management College</td>
<td>21</td>
</tr>
<tr>
<td>4.1</td>
<td>Major, minor and trace element concentrations of intrusive rocks in the study area</td>
<td>54</td>
</tr>
<tr>
<td>4.2</td>
<td>Aluminium saturated index (ASI)</td>
<td>67</td>
</tr>
<tr>
<td>4.3</td>
<td>Summary of calculated P–T of emplacement of the three rock type in the study area</td>
<td>75</td>
</tr>
<tr>
<td>4.4</td>
<td>Isotopic ratios of samples and standard materials (Samples include A13A-1, A19A-2, A13C-1 and A13C-2)</td>
<td>77</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Map shows location of the study area, distribution of volcanic rocks and granitic belt of Thailand (after Puttapiban, 2002).</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Tectonic evolution of Thailand after Bunopas and Vella (1983).</td>
<td>7</td>
</tr>
<tr>
<td>1.3</td>
<td>New synthetic tectonic framework of Thailand (Charusiri et al., 2001).</td>
<td>8</td>
</tr>
<tr>
<td>2.1</td>
<td>Showing methodology in this study.</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Sample location map.</td>
<td>13</td>
</tr>
<tr>
<td>3.1</td>
<td>Topographic map shows general physiography of the study area.</td>
<td>24</td>
</tr>
<tr>
<td>3.2</td>
<td>Geologic map of study area.</td>
<td>25</td>
</tr>
<tr>
<td>3.3</td>
<td>Natural exposure of gabbro.</td>
<td>28</td>
</tr>
<tr>
<td>3.4</td>
<td>Showing the Felsic dike cross-cutting the gabbro at Khao Mae Kae.</td>
<td>28</td>
</tr>
<tr>
<td>3.5</td>
<td>General features of gabbro.</td>
<td>29</td>
</tr>
<tr>
<td>3.6</td>
<td>Showing general texture of gabbro (x-nicols).</td>
<td>29</td>
</tr>
<tr>
<td>3.7</td>
<td>Lamellar intergrowth between clinopyroxene and orthopyroxene (X-nicols).</td>
<td>30</td>
</tr>
<tr>
<td>3.8</td>
<td>Showing corrosion rim of pyroxene (X-nicols).</td>
<td>30</td>
</tr>
<tr>
<td>3.9</td>
<td>Pyroxene nomenclature after Dear et al. (1966).</td>
<td>31</td>
</tr>
<tr>
<td>3.10</td>
<td>Plagioclase paths enclose accessory minerals. (photo taken from polished thin section, X-nicols).</td>
<td>31</td>
</tr>
<tr>
<td>3.11</td>
<td>Sieve texture in pyroxene (X-nicols).</td>
<td>32</td>
</tr>
<tr>
<td>3.12</td>
<td>Hornblende nomenclature after Leap (1978).</td>
<td>32</td>
</tr>
<tr>
<td>3.13</td>
<td>Quartz-exposure of diorite.</td>
<td>35</td>
</tr>
<tr>
<td>3.14</td>
<td>Field relationship of diorite and limestone.</td>
<td>35</td>
</tr>
<tr>
<td>3.15</td>
<td>Specimens of diorite show porphyritic texture.</td>
<td>36</td>
</tr>
<tr>
<td>3.16</td>
<td>Showing subophitic texture in diorite (X-nicols).</td>
<td>36</td>
</tr>
<tr>
<td>3.17</td>
<td>Showing micrographic texture in diorite (X-nicols).</td>
<td>37</td>
</tr>
<tr>
<td>3.18</td>
<td>Showing pyroxene in diorite (X-nicols).</td>
<td>37</td>
</tr>
<tr>
<td>3.19</td>
<td>Showing general crystal habits of hornblende including euhedral, subhedral, anhedral and twinning (X-nicols).</td>
<td>38</td>
</tr>
</tbody>
</table>
Figure 3.20 Hornblende in diorite shows lilac and purple-blue corona -zoning and corroded rim (X-nicos)...38
Figure 3.21 Quarry-exposure of quartz diorite...41
Figure 3.22 Specimen of quartz diorite show slightly porphyritic texture.........................41
Figure 3.23 Showing phenocryst of hornblende in quartz diorite (x-nicos).......................42
Figure 3.24 Showing typical ganophytic texture of in quartz diorite (x-nicos)...............42
Figure 3.25 Showing relationship among minerals in quartz diorite (x-nicos)...............43
Figure 3.26 Natural exposure of hornblende-biotite granodiorite...46
Figure 3.27 Specimen and staining slab of hornblende-biotite granodiorite....................46
Figure 3.28 Showing pyroxene in hornblende-biotite granodiorite (x-nics).....................47
Figure 3.29 Showing relationship among hornblende, biotite, Zoned plagioclase and interstitial quartz in hornblende-biotite granodiorite(x-nics)..................47
Figure 3.30 Poikiloblast twinned hornblende enclosing plagioclase, apatite, zircon and opaque minerals and partially enclose plagioclase (x-nics)...........................48
Figure 3.31 (a-b) Characteristic of hornblende and general texture of hornblende-biotite granodiorite (X-nicps, plain polarized light)..48
Figure 3.32 Typical co-exist hornblende and biotite show partial replacement in hornblende-biotite granodiorite (x-nics)..49
Figure 3.33 Summary of petrographic characteristics throughout the study area........51
Figure 3.34 QAP diagram shows the results of plot of gabbro (5 samples) and hornblende-biotite granodiorite (3 samples)..52

Figure 4.1 Harker variation diagrams of TiO₂ against SiO₂, compare between wet analyses results (solid and cross symbols, blue color) and XRF results (blank symbols, red color)...55
Figure 4.2 Harker variation diagrams of Al₂O₃ against SiO₂, compare between wet analyses results (solid and cross symbols, blue color) and XRF results (blank symbols, red color)...55
Figure 4.3 Harker variation diagrams of Fe total against SiO₂, compare between wet analyses results (solid and cross symbols, blue color) and XRF results (blank symbols, red color)..56
Figure 4.4 Harker variation diagrams of MgO against SiO₂, compare between wet analyses results (solid and cross symbols, blue color) and XRF results (blank symbols, red color). ... 56

Figure 4.5 Harker variation diagrams of CaO against SiO₂, compare between wet analyses results (solid and cross symbols, blue color) and XRF results (blank symbols, red color). ... 57

Figure 4.6 Total alkali silica (TAS) diagram ... 58

Figure 4.7 Harker variation diagram shows a decreasing of TiO₂ with respect to increasing of SiO₂ content .. 59

Figure 4.8 Harker variation diagram shows a decreasing of total Fe with respect to increasing of SiO₂ content .. 59

Figure 4.9 Harker variation diagram shows a decreasing of MgO with respect to increasing of SiO₂ content .. 60

Figure 4.10 Harker variation diagram shows a decreasing of CaO with respect to increasing of SiO₂ content .. 60

Figure 4.11 Harker variation diagram shows a decreasing of Al₂O₃ with respect to increasing of SiO₂ content .. 61

Figure 4.12 Harker variation diagram shows a decreasing of Pb with respect to increasing of SiO₂ content .. 61

Figure 4.13 Harker variation diagram shows a decreasing of Nb with respect to increasing of SiO₂ content .. 62

Figure 4.14 Harker variation diagram shows a decreasing of MnO with respect to increasing of SiO₂ content .. 62

Figure 4.15 Harker variation diagram shows a decreasing of Zn with respect to increasing of SiO₂ content .. 63

Figure 4.16 Harker variation diagram shows a decreasing of Y with respect to increasing of SiO₂ content .. 63

Figure 4.17 Harker variation diagram shows a increasing of K₂O with respect to increasing of SiO₂ content .. 64
Figure 4.18 Harker variation diagram shows a increasing of Na₂O with respect to
increasing of SiO₂ content. ... 64
Figure 4.19 Harker variation diagram shows a increasing of Ba with respect to
increasing of SiO₂ content. ... 65
Figure 4.20 Harker variation diagram shows a increasing of Rb with respect to
increasing of SiO₂ content. ... 65
Figure 4.21 Na₂O vs K₂O diagram represents the affinity of intrusive rocks in
study area (after Chappell and White, 1974) ... 66
Figure 4.22 Subalkallic subdivision of intrusive rocks in the study area 66
Figure 4.23 The Nb-Y discrimination diagram for granitic rocks
(after Pearce et al., 1984) ... 68
Figure 4.24 The Rb-(Y+Nb) discrimination diagram for granitic rocks
(after Pearce et al., 1984) ... 68
Figure 4.25 Mineral vector diagram shows the effects of clinopyroxene and
plagioclase on the variation among intrusive rocks in the study area
(after Rollinson, 1993) ... 69
Figure 4.26 Vector diagram shows the changes in normalized
(Ce/Sm) versus Ce concentration during the partial melting of a
primitive mantle source applied to four intrusive rock types in
study area and compared with extrusive rocks from
Intasopa (1993) ... 70
Figure 4.27 Chondrite-normalized rare earth pattern of the gabbro. 71
Figure 4.28 Chondrite-normalized rare earth pattern of the diorite. 72
Figure 4.29 Chondrite-normalized rare earth pattern of the quartz diorite. 72
Figure 4.30 Chondrite-normalized rare earth pattern of the hornblende-biotite
granodiorite .. 73
Figure 4.31 Chondrite-normalized rare earth pattern of the intrusive rocks in
the study area compare to each others and andesite of adjacent
area (data from Intasopa, 1993) ... 73
Figure 4.32 Two zircon crystals for U-Pb dating by LA-ICP MS 78
Figure 4.33 showing the plot of in situ zircon dating values in the Concordia.............78

Figure 5.1 Interpretative model illustrates eastward and westward subductions
of paleothethys oceanic plate beneath the Indo-China and
Shan-Thai plate, respectively...81

Figure 5.2 Interpretative model illustrates intrusion of the intrusive rocks
into limestone and volcanic rocks...81

Figure 5.3 Interpretative model illustrates inward inward crystallization that
took place in the intrusive chamber...82

Figure 5.4 Interpretative model illustrates the fracturing process in the
intrusive chamber...82

Figure 5.5 Interpretative model illustrates a complete result of inward
crystallization...83

Figure 5.6 Interpretative model of style of present relationship among the
intrusive rocks, volcanic rocks and limestone in the study area.............83