ผลของ ANTIOXIDANTS ในการเกิดสีของยาหยอดตา

โซเดียมซัลฟาเซตาไมค์ เมื่อถูกแสง

นางสมัย สุภพันธ์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาเภสัชศาสตรมหาบัณฑิต

ภาควิชาเภสัชอุตสาหกรรม

บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

W.fl.2527

ISBN 974-563-687-8

013174

17811218

THE EFFECT OF ANTIOXIDANTS IN COLOR FORMATION OF SULFACETAMIDE SODIUM EYE DROP UNDER LIGHT STRESS

MRS SMAT SUPAPAND

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF SCIENCE IN PHARMACY

DEPARTMENT OF INDUSTRIAL PHARMACY

GRADUATE SCHOOL

CHULALONGKORN UNIVERSITY

Ų.

The Effect of Antioxidants in Color Formation of Thesis Title Sulfacetamide Sodium Eye Drop Under Light Stress Mrs. Smai Supapand Ву Manufacturing Pharmacy Department Assistant Professor Songsak Srianujata, Ph.D. Thesis Advisor Accepted by the Graduate School, Chulalongkorn University in partial fulfillment of the requirements for the Master's Degree S. Bunnag..... Dean of Graduate School (Associate Professor Supradit Bunnag, Ph.D.) Thesis Committee Pisidli Sudli-Bromna (Professor Captian Pisidhi Sudhi-Aromna RTN.) Vaner Krismannis Member (Associate Professor Vanee Krisnamis) Rawedu Dhumma-Upakom Member (Associate Professor Rawadee Dhumma-Upakorn) (Assistant Professor Songsak Srianujata, Ph.D.) Parune Thanomkiat Member

Copyright of the Graduate School, Chulalongkorn University

(Assistant Professor Parunee Thanomkiat)

หัวข้อวิทยานีพนธ์

ผลของ ANTIOXIDANTS ในการเกิดสีของยาหยอดตา

โซเคียมซัลฟาเซตาไมค์ เมื่อถูกแสง

ชื่อนิสิต

นางสมัย สุภพันธ์

อาจารยที่ปรึกษา

ผู้ช่วยศาสตราจารย์ ดร. ทรงศักดิ์ ศรีอนุชาต

ภาควิชา

เภส์ชอุตสาหกรรม

ปีการศึกษา

2526

บทคัดยอ

การทดลองเพื่อศึกษาผลของการใช้ antioxidants คือ โซเกียม เมตาใบซัลไฟท์ โซเดียม ไธโอซัลเฟต และ chelating agent คือ ไดโซเกียม อีดีทีเอ ต่อการเปลี่ยนสีของ ยาหยอดตา โซเดียม ซัลฟาเซตาไมค์ ความเข้มขั้น 10%

ผลการทดลองพบว่า โซเดียม ไธโอซัลเฟต ให้ผลในการป้องกันการเกิดสีดีกว่า โซเดียม เมตาไบซัลไฟท์ ในความเข้มขันเท่ากันทุกความเข้มขัน การใช้ ไดโซเดียม อีดีที่เอ ร่วมกับ antioxidants สามารถช่วยทำให้อัตราการเปลี่ยนสีลดลงอีก นอกจากนี้ เมื่อสาร ละลายมีความเป็นกรดมากขึ้น และเมื่อใช้ บัฟเฟอร์ ปรับความเป็นกรดค่างให้มีคาใกล้เคียงกับ ความเป็นกรดคางของน้ำตา มีผลเร่งอัตราการเกิดสีของยาหยอดตา โซเดียม ซัลฟาเซตาไมด์

สูตรยาหยอดตา โซเดียม ซัลฟาเซตาไมค์ ความเข้มข้น 10% ที่ดีที่สุดที่ได้จากการ ทดลองนี้ ได้แก่ สูตรที่ใช้ โซเดียม ไธโอซัลเฟต ความเข้มข้น 0.1% และ ไดโซเดียม อีดีทีเอ ความเข้มข้น 0.05% สารละลายที่ได้จะมีความเป็นกรดดาง ประมาณ 8.0 ซึ่งเป็นที่ยอมรับใน ยาหยอดตาโดยทั่วไป และเมื่อบรรจุในภาชนะป้องกันแสง จะสามารถลดการเกิดสีได้มาก Thesis Title

The Effect of Antioxidants in Color Formation of Sulfacetamide Sodium Eye Drop Under Light Stress

Name

Mrs. Smai Supapand

Thesis Advisors

Assistant Professor Songsak Srianujata, Ph.D.

Department

Industrial Pharmacy

Academic Year

1983

ABSTRACT

This experiment is designed to study the effect of antioxidants, sodium metabisulfite and sodium thiosulfate, and chelating agent, disodium EDTA in color formation of sulfacetamide sodium eye drop.

The results show that sodium thiosulfate can prevent the color formation better than sodium metabisulfite at every concentration used. The use of chelating agent, disodium EDTA, in combination with anti-oxidants show a synergistic effect of the antioxidants on color formation. However, the results indicate that the drug will be darken faster when the solution is more acidic. Phosphate buffer used for controling ph will also have an accelerated effect on the color formation of sulfacetamide sodium.

It may be concluded that the most suitable formular for 10% sulfacetamide sodium eye drop derived from this experiment should contain 0.1% sodium thiosulfate and 0.05% disodium EDTA. The pH of the solution is about 8.0 which is acceptable for eye drop. The use of light resistant container can reduce the rate of color formation further.

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Assistant

Professor Dr. Songsak Srianujata, Research Center, Ramathibodi Hospital,

Mahidol University and to Associate Professor Dr. Preeya Atmiyanan,

Head of the Department of Industrial Pharmacy, Faculty of Pharmaceutical Science, Chulalongkorn University for their excellent supervision and invaluable guidance throughout this project and encouragement for me to continue this Masters' programme.

Gratitude is also extended to Associate Professor Lamduan
Sawetamarn, Head of the Department of Food Chemistry, Faculty of Pharmaceutical Science, Chulalongkorn University for allowing me to use facilities which enable me to carry out this research project and to Professor
Captian Pisidhi Sudhi-Aromna RTN. for his useful suggestion.

I would like to express my thank to all personel in the Department of Industrial Pharmacy, Faculty of Pharmaceutical Science, Chulalongkorn University for all their assistance.

CONTENTS

	Page
THAI ABSTRACT	iv
ENGLISH ABSTRACT	`
ACKNOWLEDGEMENTS	vi
LIST OF FIGURES	viii
LIST OF TABLES	xi
CHAPTER	
I INTRODUC <mark>TION</mark>	1
II MATERIALS AND METHODS	19
III RESULTS	25
IV DISCUSSION	54
V CONCLUSION	60
REFERENCES	62
APPENDIX	64
VITA	74
จุฬาลงกรณ์มหาวิทยาลัย	

LIST OF FIGURES

· Fig.

		Page
1	Standard curve plotting the concentration of sulfaceta-	
	mide sodium versus absorbance at 540 nm, slope 0.031	
	A/mg.	24
2	Absorption spectra between 200-600 nm of 10 mcg/ml	
	sulfacetamide sodium, 0.8 mg/ml sulfanilamide.	26
3	Absorbance spectra of 0.1% sodium metabisulfite and	
	after exposure to artificial daylight for 3 days; 0.1%	
	sodium thiosulfate and after exposure to artificial	
	daylight for 3 days; 0.05% disodium EDTA and after	
	exposure to artificial daylight for 3 days, at	
	200-600 nm.	27
4	Visible absorption spectra of 0.5% sulfacetamide sodium	
	solution after exposure to artificial daylight light	
	for 1 day, 3 days, 5 days, 7 days and 8 days.	28
5	Visible absorption spectra of 0.5% sulfacetamide sodium	
	solution with 0.1% sodium metabisulfite and 0.05% di-	
	sodium EDTA after exposure to artificial daylight light	
	for 96 hours and to natural sunlight for 48 hours.	32
6	Visible absorption spectra of 0.5% sulfanilamide sodium	
	solution, pH 11 and in phosphate buffer pH 8 after	-
	to artificial daylight light for 3 days.	33

45

7.	Visible absorption spectra of sulfacetamide sodium	
	solution at concentration of 0.5%, 5% and 10% after	
	exposure to artificial daylight light for 6 days.	35
8	Visible absorption spectra of 10% sulfacetamide	
	sodium buffered at pH 7, pH 7.4, pH 8.0 and unbuffered	
	solution pH 9.1, after exposure to artificial daylight	
	light for 3 days.	37
9	Absorbance at 450 nm plotted at different times after	
	exposure to artificial daylight light of 10% sulface-	
	tamide sodium solution buffered at different pH and at	
	different concentration of buffer at pH 8.0.	39
10	Absorbance at 450 nm plotted at different times after	
	exposure to artificial daylight light, of 0.5% sulfa-	
	cetamide sodium solutions with various concentration	
	of antioxidants.	42
11	Absorbance at 450 nm plotted at different times after	
	exposure to artificial daylight light of 0.5% sulface-	
	tamide sodium sodium solution with various concentra-	
	tion of antioxidants and 0.05% disodium EDTA.	43
12	Absorbance at 450 nm plotted with different times after	
	exposure to artificial daylight light of 0.5% sulface-	
	tamide sodium solution with 0.1% sodium metabisulfite	
	and sodium thiosulfate with and without 0.05% disodium	

EDTA 0.05% in buffer at pH 7.4.

51

-	٠		
₩,	7	α	
	٠.	ч	٠

13	Absorbance at 450 nm plotted at different times after	
	exposure to artificial daylight light of 10% sulface-	
	tamide sodium solution with various concentration anti-	
	oxidants and with chelating agent 0.05% disodium EDTA	
	in buffered at pH 7.4.	46
14	Absorbance at 450 nm plotted at different times after	
	exposure to artificial daylight light of 10% sulface-	
	tamide sodium solution with various concentrations of	
	antioxidants without buffer.	48
15	Absorbance at 450 nm plotted at different times after	
	exposure to artificial daylight of 10% sulfacetamide	
	sodium solution 0.1% antioxidants and various concen-	
	trations of disodium EDTA in buffer at pH 7.4.	49
16	Absorbance at 450 nm plotted at different times after	

exposure to artificial daylight light of 10% sulface-

tamide sodium solution with 0.1% antioxidants and

various concentrations of disodium EDTA.

LIST OF TABLES

			Page
Table			
	1	The concentrations of standard caramel solutions, the	
		shade of color and the code used in this experiment.	30
	2	The color formation compared with standard color and	
		the percentage of labelled amount of 0.5% sulfaceta-	
		mide sodium solution after exposure to artificial	
		daylight light for 1, 3, 5, 7 and 8 days.	31
	3	Color formation of sulfacetamide sodium solution at	
		concentrations of 0.5, 1, 5 and 10% compared with	
		standard color solution after exposure to artificial	
		daylight for 2, 4 and 6 days.	36.
	4	The color formation and absorbance measured at 450 nm	
		after 1, 2, 3, 4, 5 days of exposure to artificial	
		daylight light of 10% sulfacetamide sodium solution,	
		pH 9.2 and buffered at pH 7, 7.4 and 8.	38
	5	pH of sulfacetamide sodium solutions at concentration	
		of 0.5, 5, 10%, with and without antioxidants and/or	
		disodium EDTA at different concentrations.	40
	6	The color compared with standard color after 7 days	
		exposed to artificial daylight light and pH initial	
		and after 7 days of sulfacetamide solution 10%	٥
		solution.	50

Table

7 Comparing the color formation and absorbance at 450 nm of two sulfacetamide sodium solution 10% filled in clear and amber ampoules after expose to artificial daylight light for 1, 2, 3, 4, 5 and 6 days.

52

