CHAPTER II #### **EXPERIMENTAL** #### 2.1 Materials All reagents and solvents were of analytical grade quality. The solvents were obtained as commercial grade and refluxed over calcium hydride (CaH₂) before use. Methylene chloride (CH₂Cl₂) used in synthesis was kept in bottle filled with molecular sieve and distilled over CaH₂ immediately before use. Zinc (II) acetate dihydrate, nickel (II) acetate tetrahydrate, salicylaldehyde, triethylenetetramine, were obtained from the Fluka Chemical Company. Tolylene 2,4-diisocyanate terminated poly(propylene glycol) prepolymer, molecular weight 1000 and 2300 (PP 1000 and PP2300); tolylene 2,4-diisocyanate terminated poly(1,4-butanediol) prepolymer, molecular weight 900 and 1600 (PB900 and PB1600), dibutyltin diraulate and 4,4'-methylenebis(phenyl isocyanate) (MDI) were obtained from the Aldrich Chemical Company. All chemicals were used without further purification. #### 2.2 Analytical Procedures The IR spectra were recorded on a Nicolet Impact 410 by the potassium bromide (KBr) method at room temperature. ¹H NMR spectrum was recorded in CDCl₃ solution on a Varian Mercury 400 MHz instrument. Chemical shifts are given in parts per million (ppm) downfield from tetramethylsilane as internal standard. The solubility of the polymers was tested in various polar and nonpolar solvents by 5 mg samples being added to 1 mL of solvent. Elemental analyses were carried out on Perkin Elmer Elemental Analyzer 2400 CHN. The thermal properties were examined using a Netzsch STA 409C thermal analyzer in air/nitrogen atmosphere with heating rate of 20°Cmin⁻¹ in air atmosphere. The limiting oxygen index (LOI) data were carried out by an apparatus following ASTM D2863-70 and using a modified procedure as described in the literatures.¹⁴ The inherent viscosity of the polymer was determined in DMSO at 40°C with a Cannon-Fenske viscometer following ASTM D2270. The flow time of the DMSO solvent as well as the polymer solution (0.5 g/dL) was determined. #### 2.3 Synthesis Procedures ### 2.3.1 Preparation of hexadentate Schiff base zinc complex (ZnSal2trien) The preparation of ZnSal₂trien was performed according to the method reported in the literature. ¹⁵ A cool (0-10°C) solution of triethylenetetramine (1 mL, 6.70 mmol) in methanol (10 mL) was added dropwise to a stirred cool solution of salicylaldehyde (1.18 g, 9.66 mmol) and zinc (II) acetate dihydrate (1.05 g, 4.84 mmol) in the methanol (15 mL). The mixture was stirred for 15 minutes then was neutralized by a 2 M sodium hydroxide solution (5 mL, 10 mmol) and stirred for 1 h. The yellow crystals of ZnSal₂trien precipitated from the solution upon standing at room temperature for 10 hours. The yellow crystals were isolated by filtration and dried *in vacuo* for at least 24 hours (1.86 g, 93%). IR (KBr, cm⁻¹); 3646 (NH), 3300, 3000, 2800, 1634 (C=N), 1600, 1448, 1200, 930, 870. ¹H NMR δ (200 MHz, CDCl₃, ppm); 8.13 (2H, CH=N), 6.99-7.14 (4H, aromatic protons), 6.67-6.71 (2H, aromatic protons), 4.05-4.29 (2H, methylene protons), 3.21-3.48 (4H, methylene protons), 2.73-2.92 (2H, methylene protons), 2.35-2.61 (4H, methylene protons), ¹³C NMR (ppm); 172, 168, 135, 133, 124, 119, 112, 56, 47, 43. ### 2.3.2 Preparation of hexadentate Schiff base nickel complex (NiSal2trien) The preparation of NiSal₂trien was performed according to the method reported in the literature. ¹⁵ A cool (0-10°C) solution of triethylenetetramine (1 mL, 6.70 mmol) in methanol (10 mL) was added dropwise to a stirred cool solution of salicylaldehyde (1.18 g, 9.66 mmol) and nickel (II) acetate tetrahydrate (1.03g, 4.84 mmol) in methanol (20 mL). The mixture was neutralized by a 2M sodium hydroxide solution (5 mL, 10 mmol) and stirred for 1 h. The brown crystal of NiSal₂trien was precipitated from the solution upon standing at room temperature for 10 hrs. The NiSal₂trien crystal was isolated by filtration and dried *in vacuo* (0.532 g, 97%). IR (KBr, cm⁻¹); 3634 (NH), 3448, 3278, 2900, 2866, 1642 (C=N), 1596, 1456, 1223, 953, 850. #### 2.3.3 Preparation of polyurethanes ### 2.3.3.1 Preparation of zinc-containing polyurethane-urea from ZnSal₂trien and PB900 (PB900-Zn-30) ZnSal₂trien (0.175 g, 0.419 mmol) was dissolved in dried methylene chloride (20 mL). The solution of ZnSal₂trien was added to round bottom flask filled with PB900 (0.378 g, 0.420 mmol). Then dibutyltin diraulate 2-3 drops were added to the mixture as a catalyst. After refluxing under nitrogen gas for 8 hours at 40 °C, the mixture was poured into a large amount of methanol (250 mL) until the polymer precipitated from the mixture. The precipitated polymer was filtered and dried *in vacuo*. The polymer was obtained as yellow powder (0.3381 g, 61 %). IR (KBr, cm⁻¹); 3400 (NH), 2924, 2858, 1720 (C=O), 1635 (C=N), 1536, 1456, 1230, 1113, 763. ¹H NMR δ (200 MHz, CDCl₃, ppm, in 1 repeating unit of polymer); 8.6 (1H, urea proton), 8.4 (1H, urethane proton), 6.8-7.3 (14H, aromatic protons), 3.1-4.1 (4H, methyleneoxy protons), 1.8-2.2 (3H, methyl protons), 1.6 (4H, methylene protons). Analysis calc. for C₆₆H₉₄N₈O₁₄Zn; C 61.50; H 7.35; N 8.69. Found; C 61.51; H 7.38; N 8.36. ## 2.3.3.2 Preparation of zinc-containing polyurethane-urea from ZnSal₂trien and PB1600 (PB1600-Zn-20) The experiment was performed according to the procedure described in 2.3.3.1 employing ZnSal₂trien (0.150 g, 0.359 mmol) and PB1600 (0.575 g, 0.359 mmol). The precipitated polymer was filtered and dried *in vacuo*. The polymer was obtained as yellow powder (0.3650 g, 50%). IR (KBr, cm⁻¹); 3288 (NH), 2924, 2852, 1720 (C=O), 1635 (C=N), 1597, 1536, 1447, 1367, 1230, 1113, 814, 758. ¹H NMR δ (200 MHz, CDCl₃, ppm, in 1 repeating unit of polymer); 8.6 (1H, urea proton), 8.4 (1H, urethane proton), 6.5-7.5 (14H, aromatic protons), 3.2-4.2 (4H, methyleneoxy protons), 1.8-2.4 (3H, methyl protons), 1.7 (4H, methylene protons). Analysis calc. for $C_{106}H_{174}N_8O_{24}Zn$; C 63.34; H 8.73; N 5.57. Found; C 63.33; H 8.64; N 5.53. # 2.3.3.3 Preparation of zinc-containing polyurethane-urea from ZnSal₂trien and PP1000 (PP1000-Zn-30) The experiment was performed according to the procedure described in 2.3.3.1 employing ZnSal₂trien (0.150 g, 0.359 mmol) and PP1000 (0.359 g, 0.359 mmol). The precipitated polymer was filtered and dried *in vacuo*. The polymer was obtained as yellow powder (0.3356 g, 66 %). IR (KBr, cm⁻¹); 3293, 2970, 2924, 2863, 1729, 1635, 1536, 1449, 1378, 1291, 1224, 1106, 927, 763. ¹H NMR δ (200 MHz, CDCl₃, ppm, in 1 repeating unit of polymer); 8.56 (1H, urea proton), 8.43 (1H, urethane proton), 6.5-7.3 (14H, aromatic protons), 3.5-3.7 (2H, methyleneoxy protons), 3.3-3.5 (2H, methyleneoxy protons), 1.8-2.2 (3H, methyl protons), 1.1-1.3 (3H, methyl protons). Analysis calc. for C₇₁H₁₀₄N₈O₁₈Zn; C 59.93; H 7.37; N 7.87. Found; C 59.93; H 7.38; N 7.87. # 2.3.3.4 Preparation of zinc-containing polyurethane-urea from ZnSal₂trien and PP2300 (PP2300-Zn-20) The experiment was performed according to the procedure described in 2.3.3.1. employing ZnSal₂trien (0.150 g, 0.359 mmol) and PP2300 (0.826 g, 0.359 mmol). The precipitated polymer was filtered and dried *in vacuo*. The polymer was obtained as yellow elastomer (0.5135 g, 53 %). IR (KBr, cm⁻¹); 3288, 2965, 1724, 1630, 1536, 1455, 1369, 1224, 922, 866, 763. ¹H NMR δ (200 MHz, CDCl₃, ppm, in 1 repeating unit of polymer); 8.56 (1H, urea proton), 8.43 (1H, urethane proton),8-8.2 (1H, Schiff base proton) 6.4-7.4 (4H, aromatic protons), 3.5-3.7 (2H, methyleneoxy protons), 3.3-3.5 (2H, methyleneoxy protons), 1.8-2.2 (3H, methyl protons), 1.1-1.3 (3H, methyl protons). Analysis calc. for $C_{137}H_{236}N_8O_{40}Zn$; C 60.93; H 8.81; N 4.15. Found; C 60.93; H 8.81; N 3.92. # 2.3.3.5 Preparation of zinc-containing copolyurethanes-ureas from ZnSal₂trien, prepolymers and MDI The experiment was performed according to the procedure described in 2.3.3.1. 4,4-Methylene bis (phenyl isocyanate) was used at different wt % and dibutyltin diraulate was used as a catalyst. All starting materials were placed in round-bottom flask filled with dried methylene chloride (30 mL). The mixture was stirred to dissolve starting material and then 2 drops of dibutyltin diraulate were added. After refluxing under nitrogen gas for 8 hours, the mixture was poured into a large amount of methanol (250 mL) until the polymer precipitated from the mixture. The precipitated polymer was filtered and dried *in vacuo*. The polymer was obtained as yellow powder. The weight ratios of ZnSal₂trien: Prepolymer: 4,4-methylene bis (phenyl isocyanate) were varied as shown in Table 2.1. Table 2.1 Composition of starting materials in the preparation of zinc-containing polyurethane-ureas and copolyurethane-ureas at various wt % of ZnSal₂trien | Polymers | Wt % of ZnSal ₂
trien in polymer | Wt. Of ZnSal ₂
trien (g) | Wt. of pre
polymer (g) | Wt. Of MDI | Total wt. | Yield
(%) | |------------------|--|--|---------------------------|------------|-----------|--------------| | PB900-Zn-30 | 30 | 0.1750 | 0.3780 | - | 0.5530 | 61 | | PB900-Zn-MDI-50 | 50 | 0.5426 | 0.3000 | 0.2417 | 1.0800 | 64 | | PB1600-Zn-20 | 20 | 0.1500 | 0.5749 | - | 0.7249 | 50 | | PB1600-Zn-MDI-30 | 30 | 0.2588 | 0.5300 | 0.0725 | 0.8613 | 50 | | PB1600-Zn-MDI-50 | 50 | 0.4830 | 0.2286 | 0.2536 | 0.9652 | 77 | | PP1000-Zn-30 | 30 | 0.1500 | 0.3590 | - | 0.5090 | 64 | | PP1000-Zn-MDI-50 | 50 | 0.4695 | 0.2500 | 0.2188 | 0.9383 | 57 | | PP2300-Zn-20 | 20 | 0.1500 | 0.8264 | - | 0.9764 | 52 | | PP2300-Zn-MDI-30 | 30 | 0.2953 | 0.5750 | 0.1144 | 0.9847 | 51 | | PP2300-Zn-MDI-50 | 50 | 0.5113 | 0.2300 | 0.2813 | 1.0200 | 74 | ## 2.3.3.6 Preparation of nickel-containing polyurethane-urea from NiSal₂trien and PB900 (PB900-Ni-30) NiSal₂trien (0.150 g, 0.365 mmol) was dissolved in dried methylene chloride (20 mL). The solution of NiSal₂trien was added to round bottom flask filled with PB900 (0.328 g, 0.365 mmol). Then dibutyltin diraulate (2-3 drops) was added to the mixture as a catalyst. After refluxing under nitrogen gas for 8 hours at temperature 40°C, solvent was removed from the mixture by rotary evaporator. The precipitated polymer was filtered and dried *in vacuo*. The polymer was obtained as brown elastomer (0.4712g, 98%). IR (KBr, cm⁻¹); 3298, 2924, 2853, 1720, 1640, 1598, 1536, 1342, 1230, 1113, 758. Analysis calc. for C₆₆H₉₄N₈O₁₄Ni₃CH₃OH; C 60.13; H 7.75; N 8.13. Found; C 60.14; H 9.21; N 8.07. ## 2.3.3.7 Preparation of nickel-containing polyurethane-urea from NiSal₂trien and PB1600 (PB1600-Ni-20) The experiment was performed according to the procedure described in 2.3.3.6 employing NiSal₂trien (0.150 g, 0.365 mmol) and PB1600 (0.583 g, 0.365 mmol). The precipitated polymer was filtered and dried *in vacuo*. The polymer was obtained as brown elastomer (0.7076 g, 96 %). IR (KBr, cm⁻¹); 3297, 2931, 2856, 1720, 1640, 1597, 1536, 1451, 1367, 1225, 1113, 885, 815, 756. Analysis calc. for C₁₀₆H₁₇₄N₈O₂₄Ni₃CH₃OH; C 62.36; H 8.93; N 5.34. Found; C 62.57; H 8.96; N 5.39. ## 2.3.3.8 Preparation of nickel-containing polyurethane-urea from NiSal₂trien and PP1000 (PP1000-Ni-30) The experiment was performed according to the procedure described in 2.3.3.6 employing NiSal₂trien (0.150 g, 0.365 mmol) and PP1000 (0.3282 g, 0.365 mmol). The precipitated polymer was filtered and dried *in vacuo*. The polymer was obtained as brown elastomer (0.5531 g, 97 %). IR (KBr, cm⁻¹); 3293, 2970, 2924, 2858, 1720, 1635, 1598, 1541, 1455, 1373, 1291, 1230, 1112, 932, 820, 758. Analysis calc. for $C_{71}H_{104}N_8O_{18}Ni$ -3CH₃OH; C 62.36; H 8.93; N 5.34. Found; C 62.57; H 8.96; N 5.39. # 2.3.3.9 Preparation of nickel-containing polyurethane-urea from NiSal₂trien and PP2300 (PP2300-Ni-20) The experiment was performed according to the procedure described in 2.3.3.6 employing NiSal₂trien (0.150 g, 0.365 mmol) and PB2300 (0.8388 g, 0.365 mmol). The precipitated polymer was filtered and dried *in vacuo*. The polymer was obtained as brown elastomer (0.8915 g, 90%). IR (KBr, cm⁻¹); 3297, 2922, 2865, 1724, 1635, 1597, 1536, 1451, 1376, 1343, 1296, 1230, 1108, 929, 864, 819, 758. Analysis calc. for C₁₃₇H₂₃₆N₈O₄₀Ni₂3CH₃OH; C 60.26; H 8.96; N 4.02. Found; C 60.28; H 9.07; N 4.02. ## 2.3.3.10 Preparation of nickel-containing copolyurethanes-ureas from NiSal₂trien, prepolymers and MDI The experiment was performed according to the procedure described in 2.3.3.6. MDI was used at different wt % and dibutyltin diraulate was used as a catalyst. All starting materials were placed in round-bottom flask filled with dried methylene chloride (30 mL). The mixture was stirred to dissolve starting material and then 2 drops of dibutyltin diraulate were added. After refluxing under nitrogen gas for 8 hours, the mixture was poured into a large amount of methanol (250 mL) until the polymer precipitated from the mixture. The precipitated polymer was filtered and dried *in vacuo*. The polymer was obtained as light green powder. The weight ratios of NiSal₂trien: Prepolymer: MDI were varied as shown in Table 2.2. Table 2.2 Composition of starting materials in the preparation of nickel-containing polyurethane-ureas and copolyurethane-ureas at various wt % of NiSal₂trien | Polymers | wt % of NiSal ₂
trien in polymer | Wt. of NiSal ₂
trien (g) | Wt. of pre
polymer (g) | Wt. Of MDI
(g) | Total wt. | Yield (%) | |------------------|--|--|---------------------------|-------------------|-----------|-----------| | PB900-Ni-30 | 30 | 0.1500 | 0.3282 | - | 0.4782 | 98 | | PB900-Ni-MDI-50 | 50 | 0.5553 | 0.3000 | 0.2542 | 1.1095 | 62 | | PB1600-Ni-20 | 20 | 0.1500 | 0.5835 | - | 0.7335 | 96 | | PB1600-Ni-MDI-30 | 30 | 0.3126 | 0.6400 | 0.0900 | 1.0426 | 52 | | PB1600-Ni-MDI-50 | 50 | 0.4936 | 0.2286 | 0.2643 | 0.9865 | 70 | | PP1000-Ni-30 | 30 | 0.1500 | 0.3647 | - | 0.5147 | 97 | | PP1000-Ni-MDI-50 | 50 | 0.4781 | 0.2500 | 0.2282 | 0.9563 | 42 | | PP2300-Ni-20 | 20 | 0.1500 | 0.8388 | - | 0.9888 | 90 | | PP2300-Ni-MDI-30 | 30 | 0.2982 | 0.5750 | 0.1188 | 0.9920 | 26 | | PP2300-Ni-MDI-50 | 50 | 0.5224 | 0.2300 | 0.2926 | 1.0450 | 70 |