Chapter 4

Development of a Bayesian

| ,@%ctrum

7
analytic continuation of 1mag1n@i
)

13
Gubernatis (1996)], f}}e determination c{f roin RBS data [Toussaint et
al. (1999)], the deterntination of crysta Sitiod from x-ray line profiles

[Armstrong et al. QO(E] and the QCD spectral analym [Nakahara (2001)].
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tropy method ofimobility spectrum. F1rstly, the formulatlon of the problem and the
R O A SN Y e
entropy principle are briefly introduced. Next, Bayes’ theorem is introduced to the
data analysis in Section 4.3. In Section 4.4, Bayes’ theorem with maximum entropy
principle is applied, and the problem is related to probability functions. The cal-
culation procedure and the demonstration are also included. Section 4.5 describes
the error analysis of mobility calculation. The usage numerical algorithm, Markov

chain Monte Carlo (MCMC), are separately introduced in the last section.
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As same as the maximum entropy method, a set of partial conductivity {s;}
and magnetoconductivity tensor components o, (B;) and 04y (B;) at M different

magnetic fields are bnormalized with the conductivity at zero magnetic field

Py == = (4.1)

and

: (4.2)

where {p;} is a set of prébs a number of mobility points)

and j =1, 2,...,2M 4 .5) and (3.6) can be written

in a matrix form in te

(4.3)

where

(4.4)
y 1S p@tive and electron mobility

AULANINITNYINT

4.2 Information Entropy and Maximum entropy

PRAAANIUARTINETIRE

Suppose that an event z with probability p has been observed. In an infor-

It is noted that, in this form

is negative.

mation theory, the information can be measured by defining the information in terms
of the probability p. The information is defined to satisfy the following properties.
They are:

1) Information is a non-negative quantity : I (p) >0.
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2) If an event has a probability of 1, there is no information to get from the

obseriration it Ip) =

3) The information of two independent events is the sum of each information

2 I (p1 X pg) =1 (p1) + I (p2).

4) The information me nic and continuous function of the
probability. From these r pert1 rmatlon function is derived as

[see Carter (2002)]

(4.5)

Suppose that th X -prevides 'tk of events z1,s,...,zy with

assumed to be independent
\\ 3

ome event is found to be a

summation of weighted ge amiong thed or ion of each independent event
(4.6)

) no: (1948). The entropy is
the quantity used to mgsure the degreeof ignorance (uxgrtainty) of any probability

distribution. Generally, fthe, entropy H istdefined for an ﬁ continuous probability

sennson ) b Sbl T E
ol Nﬁﬁn!ﬁwﬁﬂmaa “

= / P (z)log P (z) dz.

This function is concave, and the global maximum occurs when the probability

distribution is uniform.

The information entropy is used as a tool in the inverse problem, namely

Maximum Entropy principle [Jaynes (1957) and Agmon et al. (1979)]. The solution
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of a problem is considered probability distribution. From the maximum entropy view
point, the uniform distribution indicates that all events happen equally and this is
preferable if there is no measurement. After data are taken, the distribution must be

modified to yield the result that fit to data. In general, the fitting method can not

ata. In principle, the distribution
which is maximally noncommittal t ta is the most feasible one that
- T ——

e distribution with maximum

. 9 kY ( 8, \
likely solution among sible istrik §

In summary, hodsusing ! ' maximun entropy principle yields a

W
d ;\, to the data.

raints, and it is the most

unique solution distribition by rody cin

e

'{ “- statistics. It explains
how the existing beher' hould: ghtiﬂf new data. On the other

hand, it provides an altgrnatlve approach &‘9{ inferring parameters from their ob-

e S L TO CE R N—

distribution. Inﬂrestmgly, it allows‘addlng the easurement no into the model

and thQ w&}tﬂm&xﬁﬁtwﬁéﬁ %@tﬂ&}ﬂnﬂ Et]atlstlcal data

a.nalys1s

Let X and Y are sequential events. Bayesian formulation is derived from

probabilistic rules, the sum rule

P(X)+P(X)=1 (4.8)
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and the ‘product rule
P(X,Y)=P(X|Y)P(Y)=P(Y|X)P(X). (4.9)

The sum rule states that the probability that X is true (P (X)) and the probability
that X is false (P (X)) sum to unit

e product rule states that the probability
that both X and Y are true

/yto the multiplication between the

probability that X is true given ths Y)) and the probability that Y

is true (P (Y)), and vi s’ theorem (see Sivia (1996)

and Lee (1997) for m

(4.10)

The probability P (X) obability of X, represents the
existing knowledge of X | hg?jgd ‘ 8¢ ¥is available. The probability
P (Y|X) is called the likeli f_ n-whichrelates to probability model of data
measurement. The probabﬂmﬁ'f% }Y’L d_the posterior probability which
yields the modified knowled he probability P (Y) is

called the evidence anﬂié 0

However, Bayes’ theorem provides enly the relation between the probability

s 10 aon B ) ) B0 N EX AL s st

For the hkehhooy function, there are'many choices=of statistical models available; for
el AT BLUBAINBIAREL worenin
dlstrlbutlon To assign the appropriate model of likelihood function and prior dis-
tribution, the characteristic of the concerned problem must be considered. The
interested likelihood function and prior distribution are presented at the end of this
section. Moreover, the determination of the posterior probability distribution. is also

outside the Bayes’ theorem. There are many methods, including both analytical and
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numerical methods, to calculate the posterior probability or the required expecta-
tion value. In this thesis, the Markov chain Monte Carlo (MCMC) sampling method

is chosen.

To demonstrate the usage of Bayes’ theorem, a simple coin-tossing exper-

tion is “Is this a fair coin?”. Let A

denotes the head bias-weighi 18 1. h = 0.5 represents a fair coin.
To make the conclusion _‘ k@es’ theorem gives

(@ (4.11)
where d is the result of i, d 1 or tail) and N represents the number
of tossings. Each tossing ke ihood can be written as the
product of the likelihood o orobability P (h) represents the
prior knowledge about the c01 tion about bias is not presented,
the probability dlst(r}mion of ] niform. The likelihood
function P (d|h) relates to the ‘ at'there are two independent

outcomes, head or taimand it is given by binomial diﬂibution for R heads in N

ﬂummmwmm »
The g PO T N s

represent§ the inference. For large number of tosses, the results are shown in Fig.
4.1. Fig. 4.1 (a) shows posterior distribution for none of data that indicates the
lack of information state. If the number of tosses increases, the width of posterior
distribution becomes narrow indicating that the knowledge about bias-weighting of
this coin is clearer. Finally, we observe that the coin is head bias-weighting about

0.25 in Fig. 4.1 (f). In addition, the width of the posterior distribution can be used
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(after Sivia (1996)).
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Figure 4.1: The posterior probability distribution of bias-weighting for head of a coin
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to représent the uncertainty in a solution; the narrower width the more confidence

on inference.

4.3.1 Gaussian likelihood

In an experiment, there ociated with the measured data. Con-

sidering only the random ment of data d gives

(4.13)
where noise is assumed ; all distributi aussian noise). A function
f (z) defines the theoret] Slation betwe ¢ 1 the ve ‘"\ z and the observed data d.
The Gaussian distribution isfa theorétical model v h 1s usually used to describe

il oida \ " ; .
a random noise in medsurgme ‘ onsidering:th: bblhty of measuring a single
variable y from the distribugion which has/ an 1 and a finite variance o2. The
¥ o e ) '.ﬁ"" £
Gaussian distribution is de ne =T
. (4.14)
A 7 '
For the case of M vaables Yy =Wk ="1,2,..., M }lwith the mean vector u =

{uk|k =1,2,..., M} and the constant covatiance matrix C, the multivariate Gaus-

ww U RV N3
Wﬁﬁm%ﬂ@mwﬂww s

where Det(C) is the determinant of C. The diagonal components of covariance
matrix C are the variance o2 of each datum index k, and the off-diagonal components

are the covariance 02 between a pair of data.

In the problem of inferring the variables x = {z;i = 1,2, ..., N} by mea-
suring data d = {di|k = 1,2,..., M} imposed with random noise, the likelihood
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function can be assigned to the Gaussian distribution, and it is called the Gaussian

likelihood. The Gaussian likelihood for multivariable case is presented as

P(d|x,C) = i L exp (—-1- d-fx)'Cld-f (x))) , (4.16)
(2m)2 Det (C) 2

where f (x) is the known model of the problem and the covariance matrix C is already

known. For simplification, the n assumed to be independent to each

other so that only the dia %’c The likelihood can be simply
written as

P(dJx,C 1 op (=30 > . (4.17)

A summation term in onsidered as the chi-square

misfit of measured dat elihood is equivalent to the

method of chi-square reduet ique of maximizing the likeli-

In many physics proble : spe(ﬁa.l analysis, the interested

spectrum A (z) is a pos@v and additive distribution (PAD) which has two prop-

&wﬁmmamwmm
AR T

) Additive: The summation of all components has a. physical meaning.

For example, the power spectrum of light, the electron density in crystal,
and mobility spectrum are positive and additive distributions. The properties of
PAD relates to the probability concept. Since the considered spectrum is PAD,

the maximum entropy principle can be applied to the prior distribution. Because
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the probability is defined positive and sum up to unity, Skilling (1989) suggested

that the most appropriate prior probability for PAD is the entropic prior

P(A(z)|o,m (z)) = Zisexp (k). (4.18)

H is the Shannon-Jaynes entropy or ’7 }elatlve entropy which can be expressed

generally as

H(A(z)) =

where A(z) and m(z
of interest. The func

Zs is a normalizatio . JThé defa 1 mode! 5) is the PAD that defines

H is a concave functio ) in relative to m (z). H

is globally maximum at ‘}:he value of zero when A (x) and m (z) are equal. H is

i ) 4 ) SR 1 ot

larger when A (%) is further apart erQm m (z).

WA AN A b AN B, w0

reduced to
H=- /A x)log( E ))) (4.20)

This reduced form is slightly different from Eq. (4.7) by the default model m (@),
and the values are only different by some constant. The advantage of Eq. (4.20) over

Eq. (4.7) is to allow adding the background information into the prior probability.
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In the absence of measured data, the posterior is considered proportional
to the prior distribution. The most probable spectrum A (z) that maximizes the

posterior probability can be obtained by maximizing the entropy according to the

pectrum analysis, one has

\- oblem terms. In the present
\ represents the probability

(@ and 0,,) and variances

principle of maximum entropy.

4.4 Bayesian mob}

In order to appk
to relate the probabili
case, the posterior p
of mobility spectrum

{var (¢;)}. It is conne E 113 ‘. on P({o;}|{si},{var (c;)}), the

The likelihood function -*.:;33 K i€ statistical information of the mea-
sured data given by a certaim mobility otbr nd noise in the measurement. In
the case of Gaussia 19—#’ : nied as Gaussian distribu-
tion of misfit where each data, take ent gnet@ﬁeld strengths, is assumed
independent. This gives ¢

@,Hﬁ}agajﬂ EW]‘SW i) ).

(27r vaﬂaj)) 3

v ® W) aﬁﬂim u‘m'mma d

for 05
M+YL,M+2,...,2M foray, '’

N 2
(aj—ZKji-p,) ;
g v";} ) : (4.22)

M and N are already defined in Section 4.1.

which gives
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The prior probability distribution P ({p;}) contains the knowledge about
mobility spectrum {s:} before the measured data is available. Since the mobility
spectrum is positive and additive, the appropriate prior probability is an entropic

prior (Eq. (4.18)),

(4.23)
H is the entropy function i written in a discrete form as

(4.24)
where

(4.25)
The default model {m;} s deéfiged to'b lorm distribution over the interested
mobility range. This is to dssume tha Lcarriers have the same conductivity if the

data is not available. The dependent on the parameter o

and it is approximately given by Farrell a bernatis (1996)]

-

T (4.26)

The evidence P {ammw} the denominator in Bayes’ formula, is a normalized

V1200 1) (e LT3,

Combining all probability terms the posterlor probablhty distribution can

“"T"ﬁmfﬁ\ﬂﬂﬁm um’mma d
Y P (et {os}, far (o)}, fm}ra) o exp (-gx +aH> (4.27)

x exp(Q),

where @) = —%x2 + aH and the normalization terms are neglected.

To determine the most probable mobility spectrum {p:},, for a given o, the

posterior probability is maximized until Q is globally maximum. The problem of
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ma)dmiéing @Q can be considered as the regularization technique [Press et al. (1986)].
The technique is to fit the spectrum to the measured data by minimizing x? where

H is a constraint, which is kept as maximum as possible. In addition, the entropy is

parameter o can be considered as

h‘r
of x? important. On the;ﬁd Qe la&pf a enhances the maximizing

of the entropy H. Th

of the entropy H and the x? ll value of o makes the minimizing

used to stabilize the convergence of the optimization procedure. At this stage, the
Wge multiplier that controls the weight
this thesis, we follow icati Barradus et.al. (1999). In their approach,

thin film depth pro ion. lem arradas et al. (1999). The set

of spectrum {p;} will ed : ; Aarkov chain. By the Markov

process, the probability ill converge to the posterior
distribution. The most pr pec occurs when a maximum value of Q)
is found. In addition, the Mm&f}t‘;‘ﬁ‘éiq} t of sampled spectra according

to the posterior pro V___:Wfﬁ_‘“*“@"""‘"" {‘- ability distribution gives
all the statistical informiati 1 ruﬁ such as the most probable

spectrum (more details %re described in Se&"ron 4.5), expectation values, variances,

it omtcenfi HYTNUNINYINT

Bayes1an with Maximum enfropy proceduze usmilM’_(iNfa@&ﬁerformed ac-

cortng o We kbt dem E1d 6 V17179V

Step 1) Calculating the most probable spectrum for a given a.

At the first step, a large value of « is set allowing the entropy term to play
an important role in the optimizing process. This step aims to calculate the extreme
smooth spectrum. A procedure starts at the global maximum of H , {pi} = {m:}.

Then MCMC method is used to sample a set of spectrum {p;} from the posterior
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probabiiity distribution. When the Markov chain reaches its equilibrium state, the

desired spectrum can be expected.
Step 2) Finding a suitable a.
The value of a has to be slowly stepwise decreased toward zero during the
» ?’ ell and Gubernatis (1996), and Naka-
nant and the spectrum tends to
then becomes clearer (sharper

..va.lue, 1dea11y 2M, then the

calculation [Gallicchio and Berne\

hara (2001)]. As a result, t

reduce misfit to the dat@x
X sioflyGe

parameter « is selective ~ ~thi op] e sampling still continues

gk *( 00
and the members of Magz ‘ _ S of solution spectrum. It is

recommend that Markov hain ghe - the equilibrium is reached.
Step 3) Calculating the m 111 centration and error bound.

By the statistical methex ': e mean'spe and its covariance matrix are

expected from the set of SOM}Q{L‘&Q 2. in tep 2). The resultant spectrum is

each carrier species are calculated The uncertalntles of the calculated values are

also obtained ﬁtWﬂ ‘ﬂﬁﬂ m wﬁs&}lﬂ ﬁjSectlon 4.6.

The Ba%man technique was performed Lon a syntheticgdata in order to
demon@a% %@x@ﬂfﬁweulﬁﬂaum E]je%e&l data of Hall
coefficient and resistivity (11 = 2,000 cn?V—s71, g = 1x10" em=2 and , = 6,000
cm?V-1s71 ny = 1 x 101 cm™?) are generated for 100 magnetic field points uni-
formly distributed from 0.1 to 10 Tesla. The mobility of each carrier species was
assigned the mobility spectrum of normal distribution with standard deviation of
250 and 500 cm®V~'s~! respectively. The 0.1 % Gaussian noise was added to Hall

coefficient and resistivity data.



38

The mobility range was defined from 100 to 10,000 cm2V~1s~! for holes and
from -100 to -10,000 cm?V~1s~1 for electrons with 50 mobility points spaced equally
over thé mobility fange. The default model {m;} was chosen to be the uniform
distribution. Fig. 4.2 shows the formation of mobility spectra at different iterations
for a = 900. The problem is quite efined because the number of data points

(200) is greater than the num\’ 0). The lowest value of mobility in
Wé K. :
T ————

the system corresponds t es the problem be sufficient for
—

the analysis. In Fig. 4 .22), and entropy H in Eq.

(4.24) versus the iterati ility spectrum is uniform. xX?

%Q ro. After 1,000 iterations,
Y

“'\Sﬂ The x? decreases rapidly

and H becomes a ne . 0. ands of iterations, the sharp

shows a large value o

the spectrum has a

peaks near the mobility e ;g,p@ 2 re formed. Both x? and H

(j;.pectrum completely forms
I
e mobilities of 2,000 and

6,000 cm?V-1g» ,Tg tjﬂﬁﬂpﬂﬂf‘ ﬁresolved completely,
dated the calcula

with satisfying smooth ess, and peaks locate around

the result has v 1on procedure

BV T B9 4% B e s

different &. It demonstrates that the smooth mobility spectrum requires a reasonable

large a.

According to Step 2), a is manually decreased by a factor 0.9 for every
200,000 iterations. The evaluation of mobility spectrum is in Fig. 4.5. In Fig.
4.6, the corresponding x? (solid square) and H (hollow circle) versus the number of

iterations are shown. The spectrum in Fig 4.2 (£) is used as the initial state for this
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step. Décreasing a results in the reduction of both x% and H. At 5, 000,000 iterations,
. apprommately reaches its saturated theoretical value of 195, (2 7 ~ 0. 97) Over
5,000,000 iterations, x? fluctuates around the saturated value but H continues to
decrease. This causes the split peaks. Therefore, we will choose to stop when x?

saturates. At this point, the soluti

regarded in equilibrium and the Markov
chain will be collected. The y 6 represents H at a = 80 showing
the equilibrium state. Th th error bar is shown in Fig.
4.7. The Bayesian pe e peaks, and its error bar do

not perfectly cover t

4.5 Mobilit | \ or Analysis

Each peak repr he d species of carrier. Summing the partial

conductivities over the mo jfange of ez eak, the conductivity of that species

O 4.28
Y e
Hall mobility and Hal%nce rati es ca.n@e calculated by considering

all partial conductivity points constitutingsas particular peak (see Egs. (2.34) and
= Qo

(2.35)) whlchﬂeuﬂqv-lﬂﬂg:waqﬂj

AANTEANTY o
Ntta = > i (4.30)

The corresponding uncertainties are obtained by using an error propagation equa-

tion.
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To estimate the uncertainty in determination of a variable z = f {9

the error propagation equation is given as

oz oz \ 2 ox o
2 (28 onnqa? (28] (25 ..., ;
72~ %u (6u) v (81}) 2o (au) (81)) ’ i

where o2 is the variance of variable 202 jand o2 are the known variances of variable

u and v respectively, and o2, cen u and v [Bevington and Robinson

(1992)]. Using Eq. (4.31)tor

S y of conductivity, mobility and
—

concentration given by.Jgs: O (4. the variances of those parameters are
(4.32)
o? (1 o2,
1757 — 21. (l“l"l,) Si,8j ’ (4.33)
MKy
and
(4.34)

Mmﬂ}’lﬂ Ef"‘ﬁ e W‘?Wﬁﬂ‘ﬁ?‘“ e the same

principle with Monte Carlo 1ntegral It is the method for samphng an object from
any di WWﬂﬁWﬂW ﬂxﬂﬁﬂ H distribution
of a chai b}ﬁs to converge to its assigned stationary distribution. Then the Markov
chain reaches its equilibrium, further state of chain will represent a random sample

which forms desired target distribution.

The Markov chain is a sequence of random variables, 1%t =0,1,2,...},
that sampling from a transition probability distribution P (Xt+1|X:). The next state

Xt+1 depends only on the current state X;. The Markov chain will converge to a
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a bivariate stat % distribution as their
al-distribution is illustrated by

, il
the last 500 states of those chains in Fig. 4.8 (c). In general, the Markov chain Monte

L - LY
ceromethod SR R P Y VYT T PN B g cxpectoion vlue

from any distribution function, multi-dimensional integration and evaluating the

e T R T e

where X chas any distribution, is calculated from the output of Markov chain by

BIAX| = (£ (0) = —— 3 (). (4.3

- t=m+1

Mean and variance are estimated by

G- > X (4.36)
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and

a__ 1 - 2
o _n—m—lt;_I(Xt X)°, (4.37)

where m is the number of iterations during the burn-in period. More details can be

found in Gelman et al. (1995) and Gilks et al. (1996).

There are many algorith n. Metropolis algorithm is

the specific one proposéd 03 , as the following sequence:

1) The algorithmgéts

2) At time ¢, thesea led from a proposal distribu-

tion g (+|X;) which depend (0 X¢:. The proposal distribution

must be symmetric, that is g ) for all ¢, such as a multivariate

distribution with mean X, andw-‘:

random walk is the mbs

yfﬁ
3) The candidate pe

covariance matrix. In addition, the

posal distribution function .

rbility
Audtidiisnems «

where 7 (X) is the interested distribution. X 1 = X™ is then set if the candidate
+

* QAR TOL IRV A e

approxiniated. Hastings (1970) generalized the method for an arbitrary proposal

including an asymmetric distribution and the accepted probability is modified to be

Paccept (X3, X*) = min (1, 7;((};33(())?'&)) ) , (4.39)

which is called Metropolis-Hastings algorithm.
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An appropriated proposal distribution is necessary because it contributes a
rapid convergence to the stationary distribution. There are many techniques sug-
gested to improve the efficiency of the used algorithm. However, this topic goes
beyond the basic idea of Markov chain simulation. The convergence monitoring

method may be done empirically b tructing several chains with difference

AUt INeninens
AR TUNN NG Y
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